1
|
Zandalasini M, Pelizzari L, Ciardi G, Giraudo D, Guasconi M, Paravati S, Lamberti G, Frizziero A. Bowel dysfunctions after acquired brain injury: a scoping review. Front Hum Neurosci 2023; 17:1146054. [PMID: 37900728 PMCID: PMC10602674 DOI: 10.3389/fnhum.2023.1146054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Bowel dysfunction is a common consequence of neurological diseases and has a major impact on the dignity and quality of life of patients. Evidence on neurogenic bowel is focused on spinal cord injury and multiple sclerosis; few studies have focused on patients with acquired brain injury (ABI). Neurogenic bowel dysfunction is related to a lifelong condition derived from central neurological disease, which further increases disability and social deprivation. The manifestations of neurogenic bowel dysfunction include fecal incontinence and constipation. Almost two out of three patients with central nervous system disorder have bowel impairment. This scoping review aims to comprehend the extent and type of evidence on bowel dysfunction after ABI and present conservative treatment. For this scoping review, the PCC (population, concept, and context) framework was used: patients with ABI and bowel dysfunction; evaluation and treatment; and intensive/extensive rehabilitation path. Ten full-text articles were included in the review. Oral laxatives are the most common treatment. The Functional Independence Measure (FIM) subscale is the most common scale used to assess neurogenic bowel disease (60%), followed by the Rome II and III criteria, and the colon transit time is used to test for constipation; however, no instrumental methods have been used for incontinence. An overlapping between incontinence and constipation, SCI and ABI increase difficulties to manage NBD. The need for a consensus between the rehabilitative and gastroenterological societies on the diagnosis and medical care of NBD. Systematic review registration Open Science Framework on August 16, 2022 https://doi.org/10.17605/OSF.IO/NEQMA.
Collapse
Affiliation(s)
- Matteo Zandalasini
- Department of Rehabilitative Medicine, Azienda USL Piacenza, Piacenza, Italy
| | - Laura Pelizzari
- Department of Rehabilitative Medicine, Azienda USL Piacenza, Piacenza, Italy
| | - Gianluca Ciardi
- Department of Rehabilitative Medicine, Azienda USL Piacenza, Piacenza, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Donatella Giraudo
- Department of Urology, San Raffaele Hospital, Ville Turro, Milan, Italy
| | - Massimo Guasconi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Dipartimento della Direzione delle Professioni Sanitarie, Azienda USL Piacenza, Piacenza, Italy
| | - Stefano Paravati
- Department of Rehabilitative Medicine, Azienda USL Piacenza, Piacenza, Italy
| | - Gianfranco Lamberti
- Department of Rehabilitative Medicine, Azienda USL Piacenza, Piacenza, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Antonio Frizziero
- Department of Rehabilitative Medicine, Azienda USL Piacenza, Piacenza, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
2
|
Neural signalling of gut mechanosensation in ingestive and digestive processes. Nat Rev Neurosci 2022; 23:135-156. [PMID: 34983992 DOI: 10.1038/s41583-021-00544-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/29/2022]
Abstract
Eating and drinking generate sequential mechanosensory signals along the digestive tract. These signals are communicated to the brain for the timely initiation and regulation of diverse ingestive and digestive processes - ranging from appetite control and tactile perception to gut motility, digestive fluid secretion and defecation - that are vital for the proper intake, breakdown and absorption of nutrients and water. Gut mechanosensation has been investigated for over a century as a common pillar of energy, fluid and gastrointestinal homeostasis, and recent discoveries of specific mechanoreceptors, contributing ion channels and the well-defined circuits underlying gut mechanosensation signalling and function have further expanded our understanding of ingestive and digestive processes at the molecular and cellular levels. In this Review, we discuss our current understanding of the generation of mechanosensory signals from the digestive periphery, the neural afferent pathways that relay these signals to the brain and the neural circuit mechanisms that control ingestive and digestive processes, focusing on the four major digestive tract parts: the oral and pharyngeal cavities, oesophagus, stomach and intestines. We also discuss the clinical implications of gut mechanosensation in ingestive and digestive disorders.
Collapse
|
3
|
Kawatani M, deGroat W, Itoi K, Uchida K, Sakimura K, Yamanaka A, Yamashita T, Kawatani M. Downstream projection of Barrington's nucleus to the spinal cord in mice. J Neurophysiol 2021; 126:1959-1977. [PMID: 34731061 DOI: 10.1152/jn.00026.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Barrington's nucleus (Bar) which controls micturition behavior through downstream projections to the spinal cord contains two types of projection neurons BarCRH and BarESR1 that have different functions and target different spinal circuitry. Both types of neurons project to the L6-S1 spinal intermediolateral (IML) nucleus while BarESR1 neurons also project to the dorsal commissural nucleus (DCN). To obtain more information about the spinal circuits targeted by Bar, we used patch-clamp recording in spinal slices from adult mice in combination with optogenetic stimulation of Bar terminals. Recording of opto-evoked excitatory post synaptic currents (oEPSCs) in DiI-labeled lumbosacral preganglionic neurons (LS-PGN) revealed that both Bar neuronal populations make strong glutamatergic monosynaptic connections with LS-PGN, while BarESR1 neurons also elicited smaller amplitude glutamatergic polysynaptic oEPSCs or polysynaptic inhibitory post synaptic currents (oIPSCs) in some LS-PGN. Optical stimulation of BarCRH and BarESR1 terminals also elicited monosynaptic oEPSCs and polysynaptic oIPSCs in sacral DCN neurons, some of which must include interneurons projecting either to the IML or ventral horn. Application of capsaicin increased opto-evoked firing during repetitive stimulation of Bar terminals through the modulation of spontaneous post synaptic currents in LS-PGN. In conclusion, our experiments have provided insights into the synaptic mechanisms underlying the integration of inputs from Bar to autonomic circuitry in the lumbosacral spinal cord that may control micturition.
Collapse
Affiliation(s)
- Masahiro Kawatani
- Department of Neurophysiology, Graduate School of Medicine, Akita University, Akita, Japan.,Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan.,Department of Physiology, School of Medicine, Fujita Health University, Aichi, Japan
| | - William deGroat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Keiichi Itoi
- Department of Neuroendocrinology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Katsuya Uchida
- Department of Neuroendocrinology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| | - Takayuki Yamashita
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan.,Department of Physiology, School of Medicine, Fujita Health University, Aichi, Japan
| | - Masahito Kawatani
- Department of Neurophysiology, Graduate School of Medicine, Akita University, Akita, Japan
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW In this review, we summarize recent advances in the understanding of the neural control of the bladder, bowel and sexual function, in both men and women. RECENT FINDINGS Evidence of supraspinal areas controlling the storage of urine and micturition in animals, such as the pontine micturition centre, emerged in the early 20th century. Neurological stimulation and lesion studies in humans provided additional indirect evidence for additional bladder-related brain areas. Thereafter, functional neuroimaging in humans with PET and fMRI provided more direct evidence of the involvement of these brain areas. The areas involved in the storage and expulsion of urine also seem to be involved in the central control of storage and expulsion of feces. Furthermore, most knowledge on the brain control of sexual function is obtained from dynamic imaging in human volunteers. Relatively little is known about the dysfunctional central circuits in patients with pelvic organ dysfunction. SUMMARY fMRI has been the most widely used functional neuroimaging technique in the last decade to study the central control of bladder function, anorectal function and sexual function. The studies described in this review show which sensory and motor areas are involved, including cortical and subcortical areas. We propose the existence of a switch-like phenomenon located in the pons controlling micturition, defecation and orgasm.
Collapse
|
5
|
Panicker JN, Marcelissen T, von Gontard A, Vrijens D, Abrams P, Wyndaele M. Bladder-bowel interactions: Do we understand pelvic organ cross-sensitization? International Consultation on Incontinence Research Society (ICI-RS) 2018. Neurourol Urodyn 2020; 38 Suppl 5:S25-S34. [PMID: 31821639 DOI: 10.1002/nau.24111] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/30/2019] [Indexed: 12/26/2022]
Abstract
AIMS Mounting evidence from experimental animal and human studies suggests that cross-sensitization exists between different organs. Lower urinary tract (LUT) and bowel dysfunction commonly overlap, and the role of cross-sensitization between pelvic visceral organs is uncertain. METHODS At the International Consultation on Incontinence Research Society (ICI-RS) meeting in 2018, a panel of clinicians participated in a discussion on bladder and bowel interactions in the context of pelvic organ cross-sensitization. RESULTS Bladder and bowel problems commonly co-occur in adults and children across different disorders, and the mechanism responsible for overlapping dysfunction is uncertain in most instances. At a neuronal level, cross-sensitization occurs as a result of afferent signaling from the LUT and lower bowel through different central and peripheral mechanisms. Studies in animals and humans have demonstrated evidence for cross-organ sensitization following experimental inflammation or distension of the lower bowel, affecting the LUT. Nerve stimulation is an effective treatment for different functional LUT and bowel disorders, and whether this treatment may influence cross-organ sensitization remains uncertain. The role of physiologically dormant C-fibers, the bladder-gut-brain axis, and gut microbiome in cross-sensitization are speculative. CONCLUSION Recommendations for research were made to explore the role of cross-organ sensitization in the pathogenesis of co-occurring LUT and bowel dysfunction in humans.
Collapse
Affiliation(s)
- Jalesh N Panicker
- Department of Uro-Neurology and UCL Queen Square Institute of Neurology, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Tom Marcelissen
- Department of Urology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Alexander von Gontard
- Department of Child and Adolescent Psychiatry, Saarland University Hospital, Homburg, Germany
| | - Desiree Vrijens
- Department of Urology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Paul Abrams
- Professor of Urology, Bristol Urological Institute, Southmead Hospital, Bristol, UK
| | - Michel Wyndaele
- Department of Urology, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Ito H, Sales AC, Fry CH, Kanai AJ, Drake MJ, Pickering AE. Probabilistic, spinally-gated control of bladder pressure and autonomous micturition by Barrington's nucleus CRH neurons. eLife 2020; 9:56605. [PMID: 32347794 PMCID: PMC7217699 DOI: 10.7554/elife.56605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/28/2020] [Indexed: 12/27/2022] Open
Abstract
Micturition requires precise control of bladder and urethral sphincter via parasympathetic, sympathetic and somatic motoneurons. This involves a spino-bulbospinal control circuit incorporating Barrington’s nucleus in the pons (Barr). Ponto-spinal glutamatergic neurons that express corticotrophin-releasing hormone (CRH) form one of the largest Barr cell populations. BarrCRH neurons can generate bladder contractions, but it is unknown whether they act as a simple switch or provide a high-fidelity pre-parasympathetic motor drive and whether their activation can actually trigger voids. Combined opto- and chemo-genetic manipulations along with multisite extracellular recordings in urethane anaesthetised CRHCre mice show that BarrCRH neurons provide a probabilistic drive that generates co-ordinated voids or non-voiding contractions depending on the phase of the micturition cycle. CRH itself provides negative feedback regulation of this process. These findings inform a new inferential model of autonomous micturition and emphasise the importance of the state of the spinal gating circuit in the generation of voiding.
Collapse
Affiliation(s)
- Hiroki Ito
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom.,Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Anna C Sales
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Christopher H Fry
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Anthony J Kanai
- Department of Medicine and Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, United States
| | - Marcus J Drake
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom.,Bristol Urology Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Anthony E Pickering
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom.,Anaesthetic, Pain and Critical Care research group, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
7
|
Neuropeptides' Hypothalamic Regulation of Sleep Control in Children Affected by Functional Non-Retentive Fecal Incontinence. Brain Sci 2020; 10:brainsci10030129. [PMID: 32106434 PMCID: PMC7139357 DOI: 10.3390/brainsci10030129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 02/08/2023] Open
Abstract
Functional non-retentive fecal incontinence (FNRFI) is a common problem in pediatric age. FNRFI is defined as unintended loss of stool in a 4-year-old or older child after organic causes have been excluded. FNRFI tends to affects up to 3% of children older than 4 years, with males being affected more frequently than females. Clinically, children affected by FNRFI have normal intestinal movements and stool consistency. Literature data show that children with fecal incontinence have increased levels of separation anxiety, specific phobias, general anxiety, attention-deficit/hyperactivity disorder (ADHD), and oppositional defiant disorder. In terms of possible relationship between incontinence and sleep, disorders of sleep organization have been observed in the pathogenesis of enuresis so generating the hypothesis that the orexinergic system may have a crucial role not only for the sleep organization per se but also for the sphincterial control in general. This study aimed to focus on specific neurophysiological aspects to investigate on the possible relationship between sleep organizational abnormalities and FNRFI. Specifically, we aimed to measure orexin serum levels in children with FNRFI and assess their polysomnographic sleep macrostructure patterns. Two study groups were considered: FNFRI (n = 45) and typically developed (TD) (n = 45) group. In both groups, sleep patterns and respiratory events were assessed by polysomnographic recordings (PSG) during a period of two nights at least, and plasma levels of Orexin-A were measured in each participant. The findings of this initial investigation seem to support a major role of Orexin-A in sleep organization alterations in children with FNFRI. Also, our data suggest that sleep habits evaluation should be considered as screening and complementary tool for the diagnosis of fecal incontinence in children.
Collapse
|
8
|
Abstract
The pons contains neurons that control urinary bladder function. Using the modern tools of neurobiology, new studies reveal a heterogeneous population of neurons which interact with higher centers and the sacral and lumbar spinal cord to coordinate complex voiding behaviors.
Collapse
|
9
|
Verstegen AMJ, Klymko N, Zhu L, Mathai JC, Kobayashi R, Venner A, Ross RA, VanderHorst VG, Arrigoni E, Geerling JC, Zeidel ML. Non-Crh Glutamatergic Neurons in Barrington's Nucleus Control Micturition via Glutamatergic Afferents from the Midbrain and Hypothalamus. Curr Biol 2019; 29:2775-2789.e7. [PMID: 31422881 PMCID: PMC6736713 DOI: 10.1016/j.cub.2019.07.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 11/23/2022]
Abstract
Lower urinary tract symptoms (LUTS) are exceptionally common and debilitating, and they are likely caused or exacerbated by dysfunction of neural circuits controlling bladder function. An incomplete understanding of neural control of bladder function limits our ability to clinically address LUTS. Barrington's nucleus (Bar) provides descending control of bladder and sphincter function, and its glutamatergic neurons expressing corticotropin releasing hormone (BarCrh/Vglut2) are implicated in bladder control. However, it remains unclear whether this subset of Bar neurons is necessary for voiding, and the broader circuitry providing input to this control center remains largely unknown. Here, we examine the contribution to micturition behavior of BarCrh/Vglut2 neurons relative to the overall BarVglut2 population. First, we identify robust, excitatory synaptic input to Bar. Glutamatergic axons from the periaqueductal gray (PAG) and lateral hypothalamic area (LHA) intensely innervate and are functionally connected to Bar, and optogenetic stimulation of these axon terminals reliably provokes voiding. Similarly, optogenetic stimulation of BarVglut2 neurons triggers voiding, whereas stimulating the BarCrh/Vglut2 subpopulation causes bladder contraction, typically without voiding. Next, we genetically ablate either BarVglut2 or BarCrh/Vglut2 neurons and found that only BarVglut2 ablation replicates the profound urinary retention produced by conventional lesions in this region. Fiber photometry recordings reveal that BarVglut2 neuron activity precedes increased bladder pressure, while activity of BarCrh/Vglut2 is phase delayed. Finally, deleting Crh from Bar neurons has no effect on voiding and related bladder physiology. Our results help identify the circuitry that modulates Bar neuron activity and identify subtypes that may serve different roles in micturition.
Collapse
Affiliation(s)
- Anne M J Verstegen
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA.
| | - Nataliya Klymko
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| | - Lin Zhu
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| | - John C Mathai
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| | - Reina Kobayashi
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| | - Anne Venner
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| | - Rachel A Ross
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| | - Veronique G VanderHorst
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| | - Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| | - Joel C Geerling
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| | - Mark L Zeidel
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| |
Collapse
|
10
|
The locus coeruleus-norepinephrine system and sensory signal processing: A historical review and current perspectives. Brain Res 2019; 1709:1-15. [DOI: 10.1016/j.brainres.2018.08.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 11/22/2022]
|
11
|
Tache Y, Larauche M, Yuan PQ, Million M. Brain and Gut CRF Signaling: Biological Actions and Role in the Gastrointestinal Tract. Curr Mol Pharmacol 2018; 11:51-71. [PMID: 28240194 DOI: 10.2174/1874467210666170224095741] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/16/2016] [Accepted: 08/03/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Corticotropin-releasing factor (CRF) pathways coordinate behavioral, endocrine, autonomic and visceral responses to stress. Convergent anatomical, molecular, pharmacological and functional experimental evidence supports a key role of brain CRF receptor (CRF-R) signaling in stress-related alterations of gastrointestinal functions. These include the inhibition of gastric acid secretion and gastric-small intestinal transit, stimulation of colonic enteric nervous system and secretorymotor function, increase intestinal permeability, and visceral hypersensitivity. Brain sites of CRF actions to alter gut motility encompass the paraventricular nucleus of the hypothalamus, locus coeruleus complex and the dorsal motor nucleus while those modulating visceral pain are localized in the hippocampus and central amygdala. Brain CRF actions are mediated through the autonomic nervous system (decreased gastric vagal and increased sacral parasympathetic and sympathetic activities). The activation of brain CRF-R2 subtype inhibits gastric motor function while CRF-R1 stimulates colonic secretomotor function and induces visceral hypersensitivity. CRF signaling is also located within the gut where CRF-R1 activates colonic myenteric neurons, mucosal cells secreting serotonin, mucus, prostaglandin E2, induces mast cell degranulation, enhances mucosal permeability and propulsive motor functions and induces visceral hyperalgesia in animals and humans. CRF-R1 antagonists prevent CRF- and stressrelated gut alterations in rodents while not influencing basal state. DISCUSSION These preclinical studies contrast with the limited clinical positive outcome of CRF-R1 antagonists to alleviate stress-sensitive functional bowel diseases such as irritable bowel syndrome. CONCLUSION The translational potential of CRF-R1 antagonists in gut diseases will require additional studies directed to novel anti-CRF therapies and the neurobiology of brain-gut interactions under chronic stress.
Collapse
Affiliation(s)
- Yvette Tache
- CURE/Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073. United States
| | - Muriel Larauche
- CURE/Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073. United States
| | - Pu-Qing Yuan
- CURE/Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073. United States
| | - Mulugeta Million
- CURE/Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073. United States
| |
Collapse
|
12
|
Keller JA, Chen J, Simpson S, Wang EHJ, Lilascharoen V, George O, Lim BK, Stowers L. Voluntary urination control by brainstem neurons that relax the urethral sphincter. Nat Neurosci 2018; 21:1229-1238. [PMID: 30104734 PMCID: PMC6119086 DOI: 10.1038/s41593-018-0204-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 06/19/2018] [Indexed: 11/09/2022]
Abstract
Voluntary urination ensures that waste is eliminated when safe and socially appropriate, even without a pressing urge. Uncontrolled urination, or incontinence, is a common problem with few treatment options. Normal urine release requires a small region in the brainstem known as Barrington's nucleus (Bar), but specific neurons that relax the urethral sphincter and enable urine flow are unknown. Here we identify a small subset of Bar neurons that control the urethral sphincter in mice. These excitatory neurons express estrogen receptor 1 (BarESR1), project to sphincter-relaxing interneurons in the spinal cord and are active during natural urination. Optogenetic stimulation of BarESR1 neurons rapidly initiates sphincter bursting and efficient voiding in anesthetized and behaving animals. Conversely, optogenetic and chemogenetic inhibition reveals their necessity in motivated urination behavior. The identification of these cells provides an expanded model for the control of urination and its dysfunction.
Collapse
Affiliation(s)
- Jason A Keller
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA, USA.,Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Jingyi Chen
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA, USA.,Biomedical Sciences Graduate Program, The Scripps Research Institute, La Jolla, CA, USA
| | - Sierra Simpson
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA, USA.,Biomedical Sciences Graduate Program, The Scripps Research Institute, La Jolla, CA, USA
| | - Eric Hou-Jen Wang
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Varoth Lilascharoen
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Olivier George
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Byung Kook Lim
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Lisa Stowers
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
13
|
Fuentes IM, Christianson JA. The Influence of Early Life Experience on Visceral Pain. Front Syst Neurosci 2018; 12:2. [PMID: 29434541 PMCID: PMC5790786 DOI: 10.3389/fnsys.2018.00002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/12/2018] [Indexed: 12/12/2022] Open
Abstract
Pain is the most reported and troublesome symptom of nearly all functional disorders affecting the genitourinary and gastrointestinal organs. Patients with irritable bowel syndrome (IBS), interstitial cystitis/painful bladder syndrome (IC/PBS), vulvodynia, and/or chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS; collectively termed chronic pelvic pain syndromes) report pain severe enough to impact quality of life and often suffer from symptoms of or are diagnosed with more than one of these syndromes. This increased comorbidity between chronic pelvic pain syndromes, and with pain disorders of disparate body regions, as well as with mood disorders, can be influenced by disruptions in the hypothalamic-pituitary-adrenal (HPA) axis, which regulates the response to stress and influences the perception of pain. Experiencing trauma, neglect, or abuse in early life can permanently affect the functioning of the HPA axis. As such, a significant proportion of patients suffering from comorbid chronic pelvic pain syndromes report a history of early life stress or trauma. Here we will report on how these early life experiences influence chronic pelvic pain in patients. We will also discuss various rodent models that have been developed to study this phenomenon to understand the mechanisms underlying HPA axis dysfunction, as well as potential underlying mechanisms connecting these syndromes to one another.
Collapse
Affiliation(s)
- Isabella M Fuentes
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Julie A Christianson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
14
|
Girard BM, Tooke K, Vizzard MA. PACAP/Receptor System in Urinary Bladder Dysfunction and Pelvic Pain Following Urinary Bladder Inflammation or Stress. Front Syst Neurosci 2017; 11:90. [PMID: 29255407 PMCID: PMC5722809 DOI: 10.3389/fnsys.2017.00090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022] Open
Abstract
Complex organization of CNS and PNS pathways is necessary for the coordinated and reciprocal functions of the urinary bladder, urethra and urethral sphincters. Injury, inflammation, psychogenic stress or diseases that affect these nerve pathways and target organs can produce lower urinary tract (LUT) dysfunction. Numerous neuropeptide/receptor systems are expressed in the neural pathways of the LUT and non-neural components of the LUT (e.g., urothelium) also express peptides. One such neuropeptide receptor system, pituitary adenylate cyclase-activating polypeptide (PACAP; Adcyap1) and its cognate receptor, PAC1 (Adcyap1r1), have tissue-specific distributions in the LUT. Mice with a genetic deletion of PACAP exhibit bladder dysfunction and altered somatic sensation. PACAP and associated receptors are expressed in the LUT and exhibit neuroplastic changes with neural injury, inflammation, and diseases of the LUT as well as psychogenic stress. Blockade of the PACAP/PAC1 receptor system reduces voiding frequency in preclinical animal models and transgenic mouse models that mirror some clinical symptoms of bladder dysfunction. A change in the balance of the expression and resulting function of the PACAP/receptor system in CNS and PNS bladder reflex pathways may underlie LUT dysfunction including symptoms of urinary urgency, increased voiding frequency, and visceral pain. The PACAP/receptor system in micturition pathways may represent a potential target for therapeutic intervention to reduce LUT dysfunction.
Collapse
Affiliation(s)
| | | | - Margaret A. Vizzard
- Department of Neurological Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| |
Collapse
|
15
|
Neural pathways for colorectal control, relevance to spinal cord injury and treatment: a narrative review. Spinal Cord 2017; 56:199-205. [PMID: 29142293 DOI: 10.1038/s41393-017-0026-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 02/08/2023]
Abstract
STUDY DESIGN Narrative review. OBJECTIVES The purpose is to review the organisation of the nerve pathways that control defecation and to relate this knowledge to the deficits in colorectal function after SCI. METHODS A literature review was conducted to identify salient features of defecation control pathways and the functional consequences of damage to these pathways in SCI. RESULTS The control pathways for defecation have separate pontine centres under cortical control that influence defecation. The pontine centres connect, separately, with autonomic preganglionic neurons of the spinal defecation centres and somatic motor neurons of Onuf's nucleus in the sacral spinal cord. Organised propulsive motor patterns can be generated by stimulation of the spinal defecation centres. Activation of the somatic neurons contracts the external sphincter. The analysis aids in interpreting the consequences of SCI and predicts therapeutic strategies. CONCLUSIONS Analysis of the bowel control circuits identifies sites at which bowel function may be modulated after SCI. Colokinetic drugs that elicit propulsive contractions of the colorectum may provide valuable augmentation of non-pharmacological bowel management procedures.
Collapse
|
16
|
Verstegen AMJ, Vanderhorst V, Gray PA, Zeidel ML, Geerling JC. Barrington's nucleus: Neuroanatomic landscape of the mouse "pontine micturition center". J Comp Neurol 2017; 525:2287-2309. [PMID: 28340519 PMCID: PMC5832452 DOI: 10.1002/cne.24215] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 12/12/2022]
Abstract
Barrington's nucleus (Bar) is thought to contain neurons that trigger voiding and thereby function as the "pontine micturition center." Lacking detailed information on this region in mice, we examined gene and protein markers to characterize Bar and the neurons surrounding it. Like rats and cats, mice have an ovoid core of medium-sized Bar neurons located medial to the locus coeruleus (LC). Bar neurons express a GFP reporter for Vglut2, develop from a Math1/Atoh1 lineage, and exhibit immunoreactivity for NeuN. Many neurons in and around this core cluster express a reporter for corticotrophin-releasing hormone (BarCRH ). Axons from BarCRH neurons project to the lumbosacral spinal cord and ramify extensively in two regions: the dorsal gray commissural and intermediolateral nuclei. BarCRH neurons have unexpectedly long dendrites, which may receive synaptic input from the cerebral cortex and other brain regions beyond the core afferents identified previously. Finally, at least five populations of neurons surround Bar: rostral-dorsomedial cholinergic neurons in the laterodorsal tegmental nucleus; lateral noradrenergic neurons in the LC; medial GABAergic neurons in the pontine central gray; ventromedial, small GABAergic neurons that express FoxP2; and dorsolateral glutamatergic neurons that express FoxP2 in the pLC and form a wedge dividing Bar from the dorsal LC. We discuss the implications of this new information for interpreting existing data and future experiments targeting BarCRH neurons and their synaptic afferents to study micturition and other pelvic functions.
Collapse
Affiliation(s)
- Anne M. J. Verstegen
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine & Neurology, Harvard Medical School, Boston, Massachusetts
| | - Veronique Vanderhorst
- Department of Medicine & Neurology, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Paul A. Gray
- Department of Anatomy & Neurobiology, Washington University School of Medicine, Saint Louis, Missouri
- Indigo Ag, Inc., Charlestown, Massachusetts
| | - Mark L. Zeidel
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine & Neurology, Harvard Medical School, Boston, Massachusetts
| | - Joel C. Geerling
- Department of Medicine & Neurology, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
17
|
Malykhina AP, Brodie KE, Wilcox DT. Genitourinary and gastrointestinal co-morbidities in children: The role of neural circuits in regulation of visceral function. J Pediatr Urol 2017; 13:177-182. [PMID: 28392009 PMCID: PMC5501166 DOI: 10.1016/j.jpurol.2016.04.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/05/2016] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Pediatric lower urinary tract dysfunction (LUTD) is a common problem in childhood. Lower urinary tract symptoms in children include overactive bladder, voiding postponement, stress incontinence, giggle incontinence, and dysfunctional voiding. Gastrointestinal co-morbidities, including constipation or fecal incontinence, are commonly associated with lower urinary tract (LUT) symptoms in children, often reaching 22-34%. This review summarized the potential mechanisms underlying functional lower urinary and gastrointestinal co-morbidities in children. It also covered the current understanding of clinical pathophysiology in the pediatric population, anatomy and embryological development of the pelvic organs, role of developing neural circuits in regulation of functional co-morbidities, and relevant translational animal models. MATERIALS AND METHODS This was a non-systematic review of the published literature, which summarized the available clinical and translational studies on functional urologic and gastrointestinal co-morbidities in children, as well as neural mechanisms underlying pelvic organ 'cross-talk' and 'cross-sensitization'. RESULTS Co-morbidity of pediatric lower urinary and gastrointestinal dysfunctions could be explained by multiple factors, including a shared developmental origin, close anatomical proximity, and pelvic organ 'cross-talk'. Daily physiological activity and viscero-visceral reflexes between the lower gastrointestinal and urinary tracts are controlled by both autonomic and central nervous systems, suggesting the dominant modulatory role of the neural pathways. Recent studies have provided evidence that altered sensation in the bladder and dysfunctional voiding can be triggered by pathological changes in neighboring pelvic organs due to a phenomenon known as pelvic organ 'cross-sensitization'. Cross-sensitization between pelvic organs is thought to be mainly coordinated by convergent neurons that receive dual afferent inputs from discrete pelvic organs. Investigation of functional changes in nerve fibers and neurons sets certain limits in conducting appropriate research in humans, making the use of animal models necessary to uncover the underlying mechanisms and for the development of novel therapeutic approaches for long-term symptomatic treatment of LUTD in the pediatric population. CONCLUSION Pediatric LUTD is often complicated by gastrointestinal co-morbidities; however, the mechanisms linking bladder and bowel dysfunctions are not well understood. Clinical studies have suggested that therapeutic modulation of one system may improve the other system's function. To better manage children with LUTD, the interplay between the two systems, and how co-morbid GI and voiding dysfunctions can be more specifically targeted in pediatric clinics need to be understood.
Collapse
Affiliation(s)
- A P Malykhina
- Division of Urology, Department of Surgery, University of Colorado School of Medicine, USA
| | - K E Brodie
- Division of Urology, Department of Surgery, University of Colorado School of Medicine, USA; Department of Pediatric Urology, Children's Hospital of Colorado, 13123 E 16th Avenue, Aurora, CO 80045, USA
| | - D T Wilcox
- Division of Urology, Department of Surgery, University of Colorado School of Medicine, USA.
| |
Collapse
|
18
|
Central Control Circuit for Context-Dependent Micturition. Cell 2016; 167:73-86.e12. [PMID: 27662084 DOI: 10.1016/j.cell.2016.08.073] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/28/2016] [Accepted: 08/23/2016] [Indexed: 01/23/2023]
Abstract
Urine release (micturition) serves an essential physiological function as well as a critical role in social communication in many animals. Here, we show a combined effect of olfaction and social hierarchy on micturition patterns in adult male mice, confirming the existence of a micturition control center that integrates pro- and anti-micturition cues. Furthermore, we demonstrate that a cluster of neurons expressing corticotropin-releasing hormone (Crh) in the pontine micturition center (PMC) is electrophysiologically distinct from their Crh-negative neighbors and sends glutamatergic projections to the spinal cord. The activity of PMC Crh-expressing neurons correlates with and is sufficient to drive bladder contraction, and when silenced impairs micturition behavior. These neurons receive convergent input from widespread higher brain areas that are capable of carrying diverse pro- and anti-micturition signals, and whose activity modulates hierarchy-dependent micturition. Taken together, our results indicate that PMC Crh-expressing neurons are likely the integration center for context-dependent micturition behavior.
Collapse
|
19
|
Krajewski W, Wojciechowska J, Krefft M, Hirnle L, Kołodziej A. Urogenital tract disorders in children suspected of being sexually abused. Cent European J Urol 2016; 69:112-7. [PMID: 27123337 PMCID: PMC4846719 DOI: 10.5173/ceju.2016.673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 12/27/2015] [Accepted: 02/02/2016] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Child sexual abuse (CSA) is generally defined as child exploitation that leads to achievement of sexual satisfaction. According to data from European countries, sexual abuse of children affects 10-40% of girls and 5-20% of boys. MATERIAL AND METHODS The Medline, and Web of Science databases were searched with no date limitation on May 2015 using the terms 'child abuse' in conjunction with 'urinary tract', 'urologist', 'urological dysfunction', 'urologic symptoms', 'LUTS' or 'urinary infection'. RESULTS Awareness of the CSA problem among paediatricians and urologists is very important, because they are often the only physicians who are able to recognize the problem. CSA diagnosis is possible only through the proper collection of a medical history and a thorough physical examination. Urologists have to remember that children exposed to sexual abuse rarely exhibit abnormal genital findings. In fact, absence of genital findings is the rule rather than the exception. In most cases, the final diagnosis of sexual abuse is based on the child's history and behavior, along with the onset and exacerbation of urologic symptoms. CONCLUSIONS In this article, we present a review of studies and literature concerning urinary symptoms in sexually abused children to clarify the problem for a broad group of urologists. We present common symptoms and premises that can point to the right diagnosis and basic guidelines of proceeding after suspicion of abuse.
Collapse
Affiliation(s)
- Wojciech Krajewski
- Department of Urology and Oncological Urology, Wrocław Medical University, Wrocław, Poland
| | - Joanna Wojciechowska
- Department of Otolaryngology and Head and Neck Surgery, Wrocław Medical University, Wrocław, Poland
| | - Maja Krefft
- Department of Psychiatry, Wrocław Medical University, Wrocław, Poland
| | - Lidia Hirnle
- Department and Clinic of Gynaecology and Obstetrics, Wrocław Medical University, Wrocław, Poland
| | - Anna Kołodziej
- Department of Urology and Oncological Urology, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
20
|
Kaddumi EG. Cervical vagotomy increased the distal colon distention to urinary bladder inhibitory reflex in male rats. Clin Auton Res 2015; 26:33-9. [PMID: 26607592 DOI: 10.1007/s10286-015-0326-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/02/2015] [Indexed: 11/26/2022]
Abstract
PURPOSE Many studies have demonstrated the convergence of vagal inputs into brainstem centers with inputs from the urinary bladder and colon, as well as the convergence of vagal inputs into other centers controlling the urinary bladder and colon reflexes. However, the effect of the vagal inputs on the interaction between the urinary bladder and other pelvic organs has not been studied. In this study, the effect of bilateral cervical vagotomy on the distal colon to urinary bladder reflex was examined. METHODS Changes to cystometry parameters in response to increased distal colon distensions (1, 2, and 3 ml) were tested in urethane-anesthetized male rats with or without bilateral cervical vagotomy. RESULTS In animals with intact vagus nerves, 1 and 2 ml distal colon distentions had no significant effects on micturition frequency; however, 3 ml distal colon distention significantly decreased the frequency of micturition cycles. Also, 3 ml distal colon distention inhibited micturition cycles in 37.5 % of these animals. On the other hand, following cervical vagotomy, 1 ml distal colon distention was enough to significantly decrease the frequency of micturition cycles and to inhibit the cycles in 75 % of the animals. CONCLUSION These results demonstrate the presence of supraspinal inhibitory regulation, via the vagus nerve, over the distal colon to urinary bladder inhibitory reflex.
Collapse
Affiliation(s)
- Ezidin G Kaddumi
- Department of Basic Medical Sciences (mail code 6677), Faculty of Medicine, King Saud Bin Abdulaziz University for Health Sciences, National Guard Health Affairs, P.O. Box 9515, Jeddah, 21423, Saudi Arabia.
| |
Collapse
|
21
|
Voiding Dysfunction: What Can Radiologists Tell Patients and Pediatric Urologists? AJR Am J Roentgenol 2015; 205:W532-41. [PMID: 26496575 DOI: 10.2214/ajr.14.14019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Imaging children with dysfunctional voiding remains a challenge because 98% of these children have normal anatomy. Identifying the 1-2% of children who do have an anatomic basis for incontinence is important; this article focuses on how pediatric urologists use imaging for the evaluation of patients with this condition. CONCLUSION Imaging a patient with dysfunctional voiding can provide findings that will allow an accurate diagnosis and lead to optimal management. The key for the pediatric urologist is using imaging studies judiciously because the diagnostic yield is low. If every patient with dysfunctional voiding who presents to the clinic undergoes imaging, there will be little gain. Understanding in which patients to try imaging sooner versus trying medical and behavioral management first is a function of experience.
Collapse
|
22
|
Browning KN, Travagli RA. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol 2015; 4:1339-68. [PMID: 25428846 DOI: 10.1002/cphy.c130055] [Citation(s) in RCA: 333] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although the gastrointestinal (GI) tract possesses intrinsic neural plexuses that allow a significant degree of autonomy over GI functions, the central nervous system (CNS) provides extrinsic neural inputs that regulate, modulate, and control these functions. While the intestines are capable of functioning in the absence of extrinsic inputs, the stomach and esophagus are much more dependent upon extrinsic neural inputs, particularly from parasympathetic and sympathetic pathways. The sympathetic nervous system exerts a predominantly inhibitory effect upon GI muscle and provides a tonic inhibitory influence over mucosal secretion while, at the same time, regulates GI blood flow via neurally mediated vasoconstriction. The parasympathetic nervous system, in contrast, exerts both excitatory and inhibitory control over gastric and intestinal tone and motility. Although GI functions are controlled by the autonomic nervous system and occur, by and large, independently of conscious perception, it is clear that the higher CNS centers influence homeostatic control as well as cognitive and behavioral functions. This review will describe the basic neural circuitry of extrinsic inputs to the GI tract as well as the major CNS nuclei that innervate and modulate the activity of these pathways. The role of CNS-centered reflexes in the regulation of GI functions will be discussed as will modulation of these reflexes under both physiological and pathophysiological conditions. Finally, future directions within the field will be discussed in terms of important questions that remain to be resolved and advances in technology that may help provide these answers.
Collapse
Affiliation(s)
- Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | | |
Collapse
|
23
|
Taché Y, Million M. Role of Corticotropin-releasing Factor Signaling in Stress-related Alterations of Colonic Motility and Hyperalgesia. J Neurogastroenterol Motil 2015; 21:8-24. [PMID: 25611064 PMCID: PMC4288101 DOI: 10.5056/jnm14162] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 12/28/2014] [Indexed: 12/13/2022] Open
Abstract
The corticotropin-releasing factor (CRF) signaling systems encompass CRF and the structurally related peptide urocortin (Ucn) 1, 2, and 3 along with 2 G-protein coupled receptors, CRF1 and CRF2. CRF binds with high and moderate affinity to CRF1 and CRF2 receptors, respectively while Ucn1 is a high-affinity agonist at both receptors, and Ucn2 and Ucn3 are selective CRF2 agonists. The CRF systems are expressed in both the brain and the colon at the gene and protein levels. Experimental studies established that the activation of CRF1 pathway in the brain or the colon recaptures cardinal features of diarrhea predominant irritable bowel syndrome (IBS) (stimulation of colonic motility, activation of mast cells and serotonin, defecation/watery diarrhea, and visceral hyperalgesia). Conversely, selective CRF1 antagonists or CRF1/CRF2 antagonists, abolished or reduced exogenous CRF and stress-induced stimulation of colonic motility, defecation, diarrhea and colonic mast cell activation and visceral hyperalgesia to colorectal distention. By contrast, the CRF2 signaling in the colon dampened the CRF1 mediated stimulation of colonic motor function and visceral hyperalgesia. These data provide a conceptual framework that sustained activation of the CRF1 system at central and/or peripheral sites may be one of the underlying basis of IBS-diarrhea symptoms. While targeting these mechanisms by CRF1 antagonists provided a relevant novel therapeutic venue, so far these promising preclinical data have not translated into therapeutic use of CRF1 antagonists. Whether the existing or newly developed CRF1 antagonists will progress to therapeutic benefits for stress-sensitive diseases including IBS for a subset of patients is still a work in progress.
Collapse
Affiliation(s)
- Yvette Taché
- CURE/Digestive Diseases Research Center, and Center for the Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Mulugeta Million
- CURE/Digestive Diseases Research Center, and Center for the Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
24
|
Abstract
This article summarizes anatomical, neurophysiological, pharmacological, and brain imaging studies in humans and animals that have provided insights into the neural circuitry and neurotransmitter mechanisms controlling the lower urinary tract. The functions of the lower urinary tract to store and periodically eliminate urine are regulated by a complex neural control system in the brain, spinal cord, and peripheral autonomic ganglia that coordinates the activity of smooth and striated muscles of the bladder and urethral outlet. The neural control of micturition is organized as a hierarchical system in which spinal storage mechanisms are in turn regulated by circuitry in the rostral brain stem that initiates reflex voiding. Input from the forebrain triggers voluntary voiding by modulating the brain stem circuitry. Many neural circuits controlling the lower urinary tract exhibit switch-like patterns of activity that turn on and off in an all-or-none manner. The major component of the micturition switching circuit is a spinobulbospinal parasympathetic reflex pathway that has essential connections in the periaqueductal gray and pontine micturition center. A computer model of this circuit that mimics the switching functions of the bladder and urethra at the onset of micturition is described. Micturition occurs involuntarily in infants and young children until the age of 3 to 5 years, after which it is regulated voluntarily. Diseases or injuries of the nervous system in adults can cause the re-emergence of involuntary micturition, leading to urinary incontinence. Neuroplasticity underlying these developmental and pathological changes in voiding function is discussed.
Collapse
Affiliation(s)
- William C. de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine Pittsburgh, Pennsylvania
| | - Derek Griffiths
- Department of Medicine (Geriatrics), University of Pittsburgh, School of Medicine Pittsburgh, Pennsylvania
| | - Naoki Yoshimura
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine Pittsburgh, Pennsylvania
- Department of Urology, University of Pittsburgh, School of Medicine Pittsburgh, Pennsylvania
| |
Collapse
|
25
|
Persyn S, De Wachter S, Wyndaele M, Birder L, Wyndaele JJ. Mechanisms of Pelvic Organ Cross-Talk: Impact of Urethral Ligation on the Inhibitory Rectovesical Reflex. J Urol 2014; 192:1574-9. [DOI: 10.1016/j.juro.2014.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Sara Persyn
- Department of Urology, Antwerp University Hospital and Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Stefan De Wachter
- Department of Urology, Antwerp University Hospital and Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Michel Wyndaele
- Department of Urology, Antwerp University Hospital and Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Lori Birder
- Department of Urology, Antwerp University Hospital and Faculty of Medicine, University of Antwerp, Antwerp, Belgium
- Departments of Medicine and Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jean-Jacques Wyndaele
- Department of Urology, Antwerp University Hospital and Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
26
|
Yoshioka K, Tanahashi M, Takeda M, Masuda N. Induction of Bladder Overactivity by Nerve Growth Factor in Testes in Rats: Possible Neural Crosstalk Between the Testes and Urinary Bladder. Low Urin Tract Symptoms 2014; 8:62-7. [PMID: 26789545 DOI: 10.1111/luts.12075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/10/2014] [Accepted: 07/06/2014] [Indexed: 12/30/2022]
Abstract
OBJECTIVES To clarify the pathophysiological factor underlying neural crosstalk among pelvic organs, we investigated the possible role of nerve growth factor (NGF) in the neural crosstalk between the testes and urinary bladder. METHODS Nerve growth factor (10, 30, and 100 µg/mL) or saline was injected into the testes of male Wistar rats. The change in bladder capacity via cystometry and duration of spontaneous scratching behavior induced by NGF in conscious rats was measured. The effects of pretreatment with capsaicin on NGF-induced changes in bladder capacity and behavior were examined. Further, we evaluated the effect of analgesics, indomethacin and morphine, and pretreatment with compound 48/80 on NGF-induced scratching behavior to elucidate the mechanism of the behavior. RESULTS Injection of saline into the testes had no effect on bladder capacity or behavior. However, an injection of NGF (30 and 100 µg/mL) reduced bladder capacity, which was regarded as bladder overactivity, and evoked scratching behavior in a dose-dependent manner. Pretreatment with capsaicin inhibited NGF-induced bladder overactivity and scratching behavior. Neither indomethacin nor pretreatment with compound 48/80 affected the scratching behavior, but morphine inhibited the behavior. CONCLUSIONS The present study provides evidence of a possible new role of NGF in the testes regarding the activation of testicular primary afferent neurons mediated by capsaicin-sensitive C-fibers, which evokes bladder overactivity via neural crosstalk between the testes and the urinary bladder as well as testicular pain.
Collapse
Affiliation(s)
- Katsuro Yoshioka
- Pharmacology Research Labs, Astellas Pharma Inc., Tsukuba-shi, Japan
| | | | - Masahiro Takeda
- Pharmacology Research Labs, Astellas Pharma Inc., Tsukuba-shi, Japan
| | - Noriyuki Masuda
- Pharmacology Research Labs, Astellas Pharma Inc., Tsukuba-shi, Japan
| |
Collapse
|
27
|
Blanco L, Ros CM, Tarragón E, Fernández-Villalba E, Herrero MT. Functional role of Barrington's nucleus in the micturition reflex: relevance in the surgical treatment of Parkinson's disease. Neuroscience 2014; 266:150-61. [PMID: 24568730 DOI: 10.1016/j.neuroscience.2014.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 01/23/2023]
Abstract
The pontine micturition center or Barrington's nucleus (BN) - besides regulating micturition - co-regulates the activity of other pelvic viscera such as the colon and genitals. At present, this issue is gaining particular importance due to: (i) recent findings of α-synuclein in BN, (ii) known urinary dysfunction in parkinsonian patients (part of the so-called non-motor symptoms), other patients with dementia and as in very old individuals; and (iii) its proximity to the pedunculopontine nucleus, a surgical target in deep brain stimulation for Parkinson's disease (PD). The structural and functional organization of the micturition reflex comprises a coordinating action of somatic motor activity with both divisions of the autonomic nervous system, modulated by trunk encephalic and cortical centers that involve the BN as locus coeruleus and periaqueductal gray matter, among other trunk encephalic structures. The involvement of dopaminergic activity (physiologic inhibition of the micturition reflex mediated by dopaminergic D1 activity) that diminishes in Parkinsonism and leads to overactivity of the micturition reflex is also well known. In this review, the integrating role of the BN in the context of vesical and gastrointestinal behavior is revisited, and the principal morpho-functional findings that associate dysfunction with the urinary disorders that appear during the pre-motor stages of PD are summarized.
Collapse
Affiliation(s)
- L Blanco
- Clinical and Experimental Neuroscience, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), School of Medicine, University of Murcia, Campus de Espinardo, 30071 Murcia, Spain; International Center of Neurological Restoration, Department of Experimental Neurophysiology, Avenue 25 #15805, 11300 Havana, Cuba
| | - C M Ros
- Clinical and Experimental Neuroscience, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), School of Medicine, University of Murcia, Campus de Espinardo, 30071 Murcia, Spain; Department of Medicine, School of Health Sciences, University Jaime I, Campus del Riu Sec, 12071 Castellón de la Plana, Spain
| | - E Tarragón
- Department of Medicine, School of Health Sciences, University Jaime I, Campus del Riu Sec, 12071 Castellón de la Plana, Spain
| | - E Fernández-Villalba
- Clinical and Experimental Neuroscience, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), School of Medicine, University of Murcia, Campus de Espinardo, 30071 Murcia, Spain
| | - M T Herrero
- Clinical and Experimental Neuroscience, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), School of Medicine, University of Murcia, Campus de Espinardo, 30071 Murcia, Spain; Department of Medicine, School of Health Sciences, University Jaime I, Campus del Riu Sec, 12071 Castellón de la Plana, Spain.
| |
Collapse
|
28
|
Wood SK, McFadden K, Griffin T, Wolfe JH, Zderic S, Valentino RJ. A corticotropin-releasing factor receptor antagonist improves urodynamic dysfunction produced by social stress or partial bladder outlet obstruction in male rats. Am J Physiol Regul Integr Comp Physiol 2013; 304:R940-50. [PMID: 23552576 DOI: 10.1152/ajpregu.00257.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Barrington's nucleus, in the pons, regulates micturition through spinal projections to preganglionic parasympathetic neurons. The stress neuropeptide CRF is prominent in these projections and has an inhibitory influence. Social stress in rats causes urinary retention and abnormal urodynamics resembling those produced by partial bladder outlet obstruction (pBOO), and this is associated with CRF upregulation in Barrington's nucleus. Here, we examined the role of CRF in social stress- and pBOO-induced urodynamic dysfunction by assessing the ability of a CRF₁ receptor antagonist to alter these effects. Male rats exposed to repeated resident-intruder stress were administered vehicle or a CRF₁ antagonist (NBI-30775) daily prior to the stress. Urodynamic function was recorded in the unanesthetized state 72 h after the final stress. NBI-30775 prevented the increased intermicturition interval, micturition volume, and bladder capacity produced by social stress, but not the increase in CRF expression in Barrington's nucleus neurons. The urinary dysfunction was also partly prevented by shRNA targeting of CRF in Barrington's nucleus, suggesting that stress-induced urinary dysfunction results, in part, from CRF upregulation in Barrington's nucleus and enhanced postsynaptic effects in the spinal cord. Finally, NBI-30775 improved urodynamic function of rats that had pBOO of 2-wk duration when administered daily during the second week but did not block the increase in CRF expression in Barrington's nucleus neurons. These findings implicate a role for Barrington's nucleus CRF in stress- and pBOO-induced urodynamic changes and suggest that CRF₁ antagonists may be useful therapeutic agents for the treatment of urinary dysfunction.
Collapse
Affiliation(s)
- Susan K Wood
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
29
|
Li C, Zhu Y, Shenoy M, Pai R, Liu L, Pasricha PJ. Anatomical and functional characterization of a duodeno-pancreatic neural reflex that can induce acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 2013; 304:G490-500. [PMID: 23306082 PMCID: PMC3602681 DOI: 10.1152/ajpgi.00012.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neural cross talk between visceral organs may play a role in mediating inflammation and pain remote from the site of the insult. We hypothesized such a cross talk exists between the duodenum and pancreas, and further it induces pancreatitis in response to intraduodenal toxins. A dichotomous spinal innervation serving both the duodenum and pancreas was examined, and splanchnic nerve responses to mechanical stimulation of these organs were detected. This pathway was then excited on the duodenal side by exposure to ethanol followed by luminal mustard oil to activate transient receptor potential subfamily A, member 1 (TRPA1). Ninety minutes later, pancreatic inflammation was examined. Ablation of duodenal afferents by resiniferatoxin (RTX) or blocking TRPA1 by Chembridge (CHEM)-5861528 was used to further investigate the duodeno-pancreatic neural reflex via TRPA1. ~40% of dorsal root ganglia (DRG) from the spinal cord originated from both duodenum and pancreas via dichotomous peripheral branches; ~50% splanchnic nerve single units responded to mechanical stimulation of both organs. Ethanol sensitized TRPA1 currents in cultured DRG neurons. Pancreatic edema and myeloperoxidase activity significantly increased after intraduodenal ethanol followed by mustard oil (but not capsaicin) but significantly decreased after ablation of duodenal afferents by using RTX or blocking TRPA1 by CHEM-5861528. We found the existence of a neural cross talk between the duodenum and pancreas that can promote acute pancreatitis in response to intraduodenal chemicals. It also proves a previously unexamined mechanism by which alcohol can induce pancreatitis, which is novel both in terms of the site (duodenum), process (neurogenic), and receptor (TRPA1).
Collapse
Affiliation(s)
- Cuiping Li
- 1Division of Gastroenterology and Hepatology, Stanford University, Stanford, California; and
| | - Yaohui Zhu
- 1Division of Gastroenterology and Hepatology, Stanford University, Stanford, California; and
| | - Mohan Shenoy
- 1Division of Gastroenterology and Hepatology, Stanford University, Stanford, California; and
| | - Reetesh Pai
- 2Department of Pathology, Stanford University, Stanford, California
| | - Liansheng Liu
- 1Division of Gastroenterology and Hepatology, Stanford University, Stanford, California; and
| | - Pankaj Jay Pasricha
- 1Division of Gastroenterology and Hepatology, Stanford University, Stanford, California; and
| |
Collapse
|
30
|
Verberne AJM, Llewellyn-Smith IJ. Juxtacellular Neuronal Labelling, Physiological Characterization and Phenotypic Identification of Single Neurons In Vivo. STIMULATION AND INHIBITION OF NEURONS 2013. [DOI: 10.1007/978-1-62703-233-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
31
|
Griffiths DJ, Fowler CJ. The micturition switch and its forebrain influences. Acta Physiol (Oxf) 2013; 207:93-109. [PMID: 23164237 DOI: 10.1111/apha.12019] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/29/2012] [Accepted: 09/10/2012] [Indexed: 12/30/2022]
Abstract
Dr DeGroat and Wickens has reviewed the central neural mechanisms controlling the lower urinary tract with a major focus on the brain stem circuitry that mediates the switch-like characteristics of micturition, in particular the periaqueductal grey and the pontine micturition centre (de 2012). The review culminates in a computer model of how the brainstem switch operates in animals in which forebrain influences on micturition have been removed by decerebration. In this complementary paper, we review the mechanisms of forebrain involvement in the voluntary control of human micturition and the maintenance of continence with evidence based heavily on the results of functional brain imaging experiments.
Collapse
Affiliation(s)
- D. J. Griffiths
- Division of Geriatric Medicine, University of Pittsburgh; Pittsburgh; PA; USA
| | - C. J. Fowler
- Institute of Neurology, University College London; London; UK
| |
Collapse
|
32
|
McFadden K, Griffin TA, Levy V, Wolfe JH, Valentino RJ. Overexpression of corticotropin-releasing factor in Barrington's nucleus neurons by adeno-associated viral transduction: effects on bladder function and behavior. Eur J Neurosci 2012; 36:3356-64. [PMID: 22882375 DOI: 10.1111/j.1460-9568.2012.08250.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The stress-related neuropeptide, corticotropin-releasing factor (CRF), is prominent in neurons of the pontine micturition center, Barrington's nucleus. These neurons co-innervate spinal preganglionic neurons that control the bladder, and locus coeruleus (LC) neurons that provide norepinephrine innervation throughout the brain. Adeno-associated viral (AAV) vector-mediated transfer of CRF cDNA was used to increase CRF expression in Barrington's nucleus neurons and investigate the impact of a gain of function in Barrington's nucleus spinal and LC projections. AAV transfer of the reverse CRF cDNA sequence served as the control. Bladder urodynamics and behavior were assessed 4 weeks after vector injection into Barrington's nucleus. Rats with bilateral injections of AAV-CRF cDNA into Barrington's nucleus had immunohistochemical evidence of CRF overexpression in neurons and transport to the spinal cord and LC. The bladder : body weight ratio was greater and micturition pressure was less in these rats compared with controls, consistent with an inhibitory influence on bladder function. Other indices of urodynamic function were not altered. CRF innervation of the LC was increased in rats with bilateral Barrington's nucleus injections of AAV-CRF cDNA, and this was associated with increased burying behavior, an endpoint of LC activation by CRF. The results provide immunohistochemical evidence for viral vector-induced CRF overexpression in Barrington's nucleus neurons and underscore the ability of AAV vector-mediated transfer to increase CRF function in selective circuits. The findings support an inhibitory influence of CRF in Barrington's nucleus regulation of the bladder and an excitatory influence on the brain norepinephrine system that translates to behavioral activation.
Collapse
Affiliation(s)
- Kile McFadden
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
33
|
Petrella C, Agostini S, Guerrini R, Calò G, Giaquinto A, De Nuccio C, Improta G, Broccardo M. Neuropeptide S inhibits stress-stimulated faecal output in the rat. Pharmacol Res 2011; 64:471-7. [DOI: 10.1016/j.phrs.2011.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/03/2011] [Accepted: 06/10/2011] [Indexed: 01/16/2023]
|
34
|
Toll L, Khroyan TV, Sonmez K, Ozawa A, Lindberg I, McLaughlin JP, Eans SO, Shahien AA, Kapusta DR. Peptides derived from the prohormone proNPQ/spexin are potent central modulators of cardiovascular and renal function and nociception. FASEB J 2011; 26:947-54. [PMID: 22038051 DOI: 10.1096/fj.11-192831] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Computational methods have led two groups to predict the endogenous presence of a highly conserved, amidated, 14-aa neuropeptide called either spexin or NPQ. NPQ/spexin is part of a larger prohormone that contains 3 sets of RR residues, suggesting that it could yield more than one bioactive peptide; however, no in vivo activity has been demonstrated for any peptide processed from this precursor. Here we demonstrate biological activity for two peptides present within proNPQ/spexin. NPQ/spexin (NWTPQAMLYLKGAQ-NH(2)) and NPQ 53-70 (FISDQSRRKDLSDRPLPE) have differing renal and cardiovascular effects when administered intracerebroventricularly or intravenously into rats. Intracerebroventricular injection of NPQ/spexin produced a 13 ± 2 mmHg increase in mean arterial pressure, a 38 ± 8 bpm decrease in heart rate, and a profound decrease in urine flow rate. Intracerebroventricular administration of NPQ 53-70 produced a 26 ± 9 bpm decrease in heart rate with no change in mean arterial pressure, and a marked increase in urine flow rate. Intraventricular NPQ/spexin and NPQ 53-70 also produced antinociceptive activity in the warm water tail withdrawal assay in mice (ED(50)<30 and 10 nmol for NPQ/spexin and NPQ 53-70, respectively). We conclude that newly identified peptides derived from the NPQ/spexin precursor contribute to CNS-mediated control of arterial blood pressure and salt and water balance and modulate nociceptive responses.
Collapse
|
35
|
Sexual dimorphism in locus coeruleus dendritic morphology: a structural basis for sex differences in emotional arousal. Physiol Behav 2011; 103:342-51. [PMID: 21362438 DOI: 10.1016/j.physbeh.2011.02.037] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 02/22/2011] [Accepted: 02/23/2011] [Indexed: 11/20/2022]
Abstract
Stress-related psychiatric disorders, such as depression and anxiety, affect a disproportionate number of women. We previously demonstrated that the major brain norepinephrine (NE)-containing nucleus, locus coeruleus (LC) is more sensitive to stressors and to the stress-related neuropeptide, corticotropin-releasing factor (CRF) in female compared to male rats. Because the LC-NE system is a stress-responsive system that is thought to be dysregulated in affective disorders, sex differences in LC structure or function could play a role in female vulnerability to these diseases. The present study used different approaches to compare LC dendritic characteristics between male and female rats. Immunofluorescence labeling of tyrosine hydroxylase, the norepinephrine synthetic enzyme, revealed that LC dendrites of female rats extend further into the peri-LC region, covering a significantly greater area than those of males. Optical density measurements of dendrites in the peri-LC revealed increased dendritic density in females compared to their male counterparts. Additionally, immunoreactivity for synaptophysin, a synaptic vesicle protein, was significantly greater in the LC in female rats, suggesting an increased number of synaptic contacts onto LC processes. Individual LC neurons were juxtacellularly labeled with neurobiotin in vivo for morphological analysis. LC dendritic trees of females were longer and had more branch points and ends. Consistent with this, Sholl analysis determined that, compared to males, LC dendrites of females had a more complex pattern of branching. The greater dendritic extension and complexity seen in females predicts a higher probability of communication with diverse afferents that terminate in the peri-LC. This may be a structural basis for heightened arousal in females, an effect which may, in part, account for the sex bias in incidence of stress-related psychiatric disorders.
Collapse
|
36
|
Abstract
Much of the current research on lower urinary tract dysfunction is focused on afferent mechanisms. The main goals are to define and modulate the signaling pathways by which afferent information is generated and conveyed to the central nervous system. Alterations in bladder afferent mechanisms are a potential source of voiding dysfunction and an emerging source of drug targets. Even some established drug therapies such as muscarinic receptor antagonists, as well as emerging therapies such as botulinum toxin type-A, may act partly through afferent mechanisms. This review presents up-to-date findings on the localization of afferent fiber types within the bladder wall, afferent receptors and transmitters, and how these may communicate with the urothelium, interstitial cells, and detrusor smooth muscle to regulate micturition in normal and pathological bladders. Peripheral and central mechanisms of afferent sensitization and myogenic mechanisms that lead to detrusor overactivity, overactive bladder symptoms, and urgency sensations are also covered as well as new therapeutic approaches and new and established methods of measuring afferent activity.
Collapse
Affiliation(s)
- Anthony J Kanai
- University of Pittsburgh, School of Medicine, Pittsburgh, PA15261, USA.
| |
Collapse
|
37
|
Abstract
The coordination of pelvic visceral activity with appropriate elimination behaviors is a complex task that requires reciprocal communication between the brain and pelvic organs. Barrington's nucleus, located in the pons, is central to a circuit involved in this function. Barrington's nucleus neurons project to both pelvic visceral motorneurons and cerebral norepinephrine neurons that modulate behavior. This circuit coordinates the descending limb of the micturition reflex with a central limb that initiates arousal and shifts the focus of attention to facilitate elimination behavior. The same circuitry that links the bladder and brain enables pathological processes in one target of the circuit to be expressed in the other. Urological disorders can, therefore, have cognitive and behavioral consequences by affecting components of this circuit; and in the opposing direction, psychosocial stressors can produce voiding dysfunctions and bladder pathology. The stress-related neuropeptide, corticotropin-releasing factor, which is prominent in Barrington's nucleus neurons, is a potential mediator of these effects.
Collapse
|
38
|
Drake MJ, Fowler CJ, Griffiths D, Mayer E, Paton JFR, Birder L. Neural control of the lower urinary and gastrointestinal tracts: supraspinal CNS mechanisms. Neurourol Urodyn 2010; 29:119-27. [PMID: 20025025 DOI: 10.1002/nau.20841] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Normal urinary function is contingent upon a complex hierarchy of CNS regulation. Lower urinary tract afferents synapse in the dorsal horn of the spinal cord and ascend to the midbrain periaqueductal gray (PAG), with a separate nociception path to the thalamus. A spino-thalamo-cortical sensory pathway is present in some primates, including humans. In the brainstem, the pontine micturition center (PMC) is a convergence point of multiple influences, representing a co-ordinating center for voiding. Many PMC neurones have characteristics necessary to categorize the center as a pre-motor micturition nucleus. In the lateral pontine brainstem, a separate region has some characteristics to suggest a "continence center." Cerebral control determines that voiding is permitted if necessary, socially acceptable and in a safe setting. The frontal cortex is crucial for decision making in an emotional and social context. The anterior cingulate gyrus and insula co-ordinate processes of autonomic arousal and visceral sensation. The influence of these centers on the PMC is primarily mediated via the PAG, which also integrates bladder sensory information, thereby moderating voiding and storage of urine, and the transition between the two phases. The parabrachial nucleus in the pons is also important in behavioral motivation of waste evacuation. Lower urinary tract afferents can be modulated at multiple levels by corticolimbic centers, determining the interoception of physiological condition and the consequent emotional motor responses. Alterations in cognitive modulation, descending modulation, and hypervigilance are important in functional (symptom-based) clinical disorders.
Collapse
Affiliation(s)
- M J Drake
- Bristol Urological Institute, Southmead Hospital, Bristol, UK.
| | | | | | | | | | | |
Collapse
|
39
|
Brumovsky P, Gebhart G. Visceral organ cross-sensitization - an integrated perspective. Auton Neurosci 2010; 153:106-15. [PMID: 19679518 PMCID: PMC2818077 DOI: 10.1016/j.autneu.2009.07.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 07/09/2009] [Accepted: 07/10/2009] [Indexed: 12/12/2022]
Abstract
Viscero-somatic referral and sensitization has been well documented clinically and widely investigated, whereas viscero-visceral referral and sensitization (termed cross-organ sensitization) has only recently received attention as important to visceral disease states. Because second order neurons in the CNS have been extensively shown to receive convergent input from different visceral organs, it has been assumed that cross-organ sensitization arises by the same convergence-projection mechanism as advanced for viscero-somatic referral and sensitization. However, increasing evidence also suggests participation of peripheral mechanisms to explain referral and sensitization. We briefly summarize behavioral, morphological and physiological support of and focus on potential mechanisms underlying cross-organ sensitization.
Collapse
Affiliation(s)
- P.R. Brumovsky
- Pittsburgh Center for Pain Research, Department of Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Faculty of Biomedical Sciences, Austral University, Buenos Aires, Argentina
| | - G.F. Gebhart
- Pittsburgh Center for Pain Research, Department of Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
40
|
Rose MF, Ahmad KA, Thaller C, Zoghbi HY. Excitatory neurons of the proprioceptive, interoceptive, and arousal hindbrain networks share a developmental requirement for Math1. Proc Natl Acad Sci U S A 2009; 106:22462-7. [PMID: 20080794 PMCID: PMC2799716 DOI: 10.1073/pnas.0911579106] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Indexed: 11/18/2022] Open
Abstract
Hindbrain networks important for sensation and arousal contain diverse neuronal populations with distinct projections, yet share specific characteristics such as neurotransmitter expression. The relationship between the function of these neurons, their developmental origin, and the timing of their migration remains unclear. Mice lacking the proneural transcription factor Math1 (Atoh1) lose neurons essential for hearing, balance, and unconscious proprioception. By using a new, inducible Math1(Cre*PR) allele, we found that Math1 is also required for the conscious proprioceptive system, including excitatory projection neurons of the dorsal column nuclei and for vital components of the interoceptive system, such as Barrington's nucleus, that is closely associated with arousal. In addition to specific networks, Math1 lineages shared specific neurotransmitter expression, including glutamate, acetylcholine, somatostatin, corticotropin releasing hormone, and nitric oxide. These findings identify twenty novel Math1 lineages and indicate that the Math1 network functions partly as an interface for conscious (early-born) and unconscious (late-born) proprioceptive inputs to the cortex and cerebellum, respectively. In addition, these data provide previously unsuspected genetic and developmental links between proprioception, interoception, hearing, and arousal.
Collapse
Affiliation(s)
| | | | | | - Huda Y. Zoghbi
- Program in Developmental Biology
- Departments of Pediatrics
- Molecular and Human Genetics, and
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
41
|
Rose MF, Ren J, Ahmad KA, Chao HT, Klisch TJ, Flora A, Greer JJ, Zoghbi HY. Math1 is essential for the development of hindbrain neurons critical for perinatal breathing. Neuron 2009; 64:341-54. [PMID: 19914183 DOI: 10.1016/j.neuron.2009.10.023] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2009] [Indexed: 10/20/2022]
Abstract
Mice lacking the proneural transcription factor Math1 (Atoh1) lack multiple neurons of the proprioceptive and arousal systems and die shortly after birth from an apparent inability to initiate respiration. We sought to determine whether Math1 was necessary for the development of hindbrain nuclei involved in respiratory rhythm generation, such as the parafacial respiratory group/retrotrapezoid nucleus (pFRG/RTN), defects in which are associated with congenital central hypoventilation syndrome (CCHS). We generated a Math1-GFP fusion allele to trace the development of Math1-expressing pFRG/RTN and paratrigeminal neurons and found that loss of Math1 did indeed disrupt their migration and differentiation. We also identified Math1-dependent neurons and their projections near the pre-Bötzinger complex, a structure critical for respiratory rhythmogenesis, and found that glutamatergic modulation reestablished a rhythm in the absence of Math1. This study identifies Math1-dependent neurons that are critical for perinatal breathing that may link proprioception and arousal with respiration.
Collapse
Affiliation(s)
- Matthew F Rose
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Fitzgerald JJ, Pezzone MA. Role of bowel pathophysiology in voiding dysfunction. CURRENT BLADDER DYSFUNCTION REPORTS 2009. [DOI: 10.1007/s11884-009-0033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Brumovsky PR, Feng B, Xu L, McCarthy CJ, Gebhart GF. Cystitis increases colorectal afferent sensitivity in the mouse. Am J Physiol Gastrointest Liver Physiol 2009; 297:G1250-8. [PMID: 19779012 PMCID: PMC2850082 DOI: 10.1152/ajpgi.00329.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Studies in humans and rodents suggest that colon inflammation promotes urinary bladder hypersensitivity and, conversely, that cystitis contributes to colon hypersensitivity, events referred to as cross-organ sensitization. To investigate a potential peripheral mechanism, we examined whether cystitis alters the sensitivity of pelvic nerve colorectal afferents. Male C57BL/6 mice were treated with cyclophosphamide (CYP) or saline, and the mechanosensitive properties of single afferent fibers innervating the colorectum were studied with an in vitro preparation. In addition, mechanosensitive receptive endings were exposed to an inflammatory soup (IS) to study sensitization. Urinary bladder mechanosensitive afferents were also tested. We found that baseline responses of stretch-sensitive colorectal afferents did not differ between treatment groups. Whereas IS excited a proportion of colorectal afferents CYP treatment did not alter the magnitude of this response. However, the number of stretch-sensitive fibers excited by IS was increased relative to saline-treated mice. Responses to IS were not altered by CYP treatment, but the proportion of IS-responsive fibers was increased relative to saline-treated mice. In bladder, IS application increased responses of muscular afferents to stretch, although no differences were detected between saline- and CYP-treated mice. In contrast, their chemosensitivity to IS was decreased in the CYP-treated group. Histological examination revealed no changes in colorectum and modest edema and infiltration in the urinary bladder of CYP-treated mice. In conclusion, CYP treatment increased mechanical sensitivity of colorectal muscular afferents and increased the proportion of chemosensitive colorectal afferents. These data support a peripheral contribution to cross-organ sensitization of pelvic organs.
Collapse
Affiliation(s)
- Pablo Rodolfo Brumovsky
- Center for Pain Research, Departments of Anesthesiology, University of Pittsburgh, Pennsylvania, USA.
| | - Bin Feng
- Center for Pain Research, 1Departments of Anesthesiology and
| | | | | | - G. F. Gebhart
- Center for Pain Research, 1Departments of Anesthesiology and
| |
Collapse
|
44
|
|
45
|
Sonmez K, Zaveri NT, Kerman IA, Burke S, Neal CR, Xie X, Watson SJ, Toll L. Evolutionary sequence modeling for discovery of peptide hormones. PLoS Comput Biol 2009; 5:e1000258. [PMID: 19132080 PMCID: PMC2603333 DOI: 10.1371/journal.pcbi.1000258] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 11/21/2008] [Indexed: 01/05/2023] Open
Abstract
There are currently a large number of "orphan" G-protein-coupled receptors (GPCRs) whose endogenous ligands (peptide hormones) are unknown. Identification of these peptide hormones is a difficult and important problem. We describe a computational framework that models spatial structure along the genomic sequence simultaneously with the temporal evolutionary path structure across species and show how such models can be used to discover new functional molecules, in particular peptide hormones, via cross-genomic sequence comparisons. The computational framework incorporates a priori high-level knowledge of structural and evolutionary constraints into a hierarchical grammar of evolutionary probabilistic models. This computational method was used for identifying novel prohormones and the processed peptide sites by producing sequence alignments across many species at the functional-element level. Experimental results with an initial implementation of the algorithm were used to identify potential prohormones by comparing the human and non-human proteins in the Swiss-Prot database of known annotated proteins. In this proof of concept, we identified 45 out of 54 prohormones with only 44 false positives. The comparison of known and hypothetical human and mouse proteins resulted in the identification of a novel putative prohormone with at least four potential neuropeptides. Finally, in order to validate the computational methodology, we present the basic molecular biological characterization of the novel putative peptide hormone, including its identification and regional localization in the brain. This species comparison, HMM-based computational approach succeeded in identifying a previously undiscovered neuropeptide from whole genome protein sequences. This novel putative peptide hormone is found in discreet brain regions as well as other organs. The success of this approach will have a great impact on our understanding of GPCRs and associated pathways and help to identify new targets for drug development.
Collapse
Affiliation(s)
- Kemal Sonmez
- SRI International, Menlo Park, California, United States of America
| | | | - Ilan A. Kerman
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sharon Burke
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Charles R. Neal
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Xinmin Xie
- AfaSci, Burlingame, California, United States of America
| | - Stanley J. Watson
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lawrence Toll
- SRI International, Menlo Park, California, United States of America
- * E-mail:
| |
Collapse
|
46
|
Impact of overactive bladder on the brain: central sequelae of a visceral pathology. Proc Natl Acad Sci U S A 2008; 105:10589-94. [PMID: 18645186 DOI: 10.1073/pnas.0800969105] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Neural circuits that allow for reciprocal communication between the brain and viscera are critical for coordinating behavior with visceral activity. At the same time, these circuits are positioned to convey signals from pathologic events occurring in viscera to the brain, thereby providing a structural basis for comorbid central and peripheral symptoms. In the pons, Barrington's nucleus and the norepinephrine (NE) nucleus, locus coeruleus (LC), are integral to a circuit that links the pelvic viscera with the forebrain and coordinates pelvic visceral activity with arousal and behavior. Here, we demonstrate that a prevalent bladder dysfunction, produced by partial obstruction in rat, has an enduring disruptive impact on cortical activity through this circuit. Within 2 weeks of partial bladder obstruction, the activity of LC neurons was tonically elevated. LC hyperactivity was associated with cortical electroencephalographic activation that was characterized by decreased low-frequency (1-3 Hz) activity and prominent theta oscillations (6-8 Hz) that persisted for 4 weeks. Selective lesion of the LC-NE system significantly attenuated the cortical effects. The findings underscore the potential for significant neurobehavioral consequences of bladder disorders, including hyperarousal, sleep disturbances, and disruption of sensorimotor integration, as a result of central noradrenergic hyperactivity. The results further imply that pharmacological manipulation of central NE function may alleviate central sequelae of these visceral disorders.
Collapse
|
47
|
Malykhina AP. Neural mechanisms of pelvic organ cross-sensitization. Neuroscience 2007; 149:660-72. [PMID: 17920206 DOI: 10.1016/j.neuroscience.2007.07.053] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 07/05/2007] [Accepted: 07/12/2007] [Indexed: 12/12/2022]
Abstract
Clinical observations of viscerovisceral referred pain in patients with gastrointestinal and genitourinary disorders suggest an overlap of neurohumoral mechanisms underlying both bowel and urinary bladder dysfunctions. Close proximity of visceral organs within the abdominal cavity complicates identification of the exact source of chronic pelvic pain, where it originates, and how it relocates with time. Cross-sensitization among pelvic structures may contribute to chronic pelvic pain of unknown etiology and involves convergent neural pathways of noxious stimulus transmission from two or more organs. Convergence of sensory information from discrete pelvic structures occurs at different levels of nervous system hierarchy including dorsal root ganglia, the spinal cord and the brain. The cell bodies of sensory neurons projecting to the colon, urinary bladder and male/female reproductive organs express a wide range of membrane receptors and synthesize many neurotransmitters and regulatory peptides. These substances are released from nerve terminals following enhanced neuronal excitability and may lead to the occurrence of neurogenic inflammation in the pelvis. Multiple factors including inflammation, nerve injury, ischemia, peripheral hyperalgesia, metabolic disorders and other pathological conditions dramatically alter the function of directly affected pelvic structures as well as organs located next to a damaged domain. Defining precise mechanisms of viscerovisceral cross-sensitization would have implications for the development of effective pharmacological therapies for the treatment of functional disorders with chronic pelvic pain such as irritable bowel syndrome and painful bladder syndrome. The complexity of overlapping neural pathways and possible mechanisms underlying pelvic organ crosstalk are analyzed in this review at both systemic and cellular levels.
Collapse
Affiliation(s)
- A P Malykhina
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK 73104, USA.
| |
Collapse
|
48
|
Link CL, Lutfey KE, Steers WD, McKinlay JB. Is abuse causally related to urologic symptoms? Results from the Boston Area Community Health (BACH) Survey. Eur Urol 2007; 52:397-406. [PMID: 17383083 PMCID: PMC2139977 DOI: 10.1016/j.eururo.2007.03.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 03/06/2007] [Indexed: 12/25/2022]
Abstract
OBJECTIVES We investigated (1) whether sexual, physical, or emotional abuse experienced either as a child or as an adolescent/adult is associated with symptoms of urinary frequency, urgency, and nocturia, and (2) the extent to which the observed association between abuse and urologic symptoms may be causal. METHODS Analyses are based on data from the Boston Area Community Health (BACH) survey, a community-based epidemiologic study of many different urologic symptoms and risk factors. BACH used a multistage stratified cluster sample to recruit 5506 adults, aged 30-79 yr (2301 men, 3205 women; 1770 black [African American], 1877 Hispanic, and 1859 white respondents). RESULTS The symptoms considered are common, with 33% of BACH respondents reporting urinary frequency, 12% reporting urgency, and 28% reporting nocturia. All three symptoms are positively associated with childhood and adolescent/adult sexual, physical, and emotional abuse (p<0.05), with abuse significantly increasing the odds of urinary frequency by a factor ranging from 1.6 to 1.9, the odds of urgency by a factor from 2.0 to 2.3, and the odds of nocturia by a factor from 1.3 to 1.5. CONCLUSIONS Our analyses extend previous work. First, we show a strong association between abuse and urinary frequency, urgency, and nocturia in a community-based random sample. Second, we move beyond discussion of statistical association and find considerable evidence to suggest that the relationship between abuse and these symptoms may be causal.
Collapse
Affiliation(s)
- Carol L Link
- New England Research Institutes, Watertown, MA 02472, USA.
| | | | | | | |
Collapse
|
49
|
Gareau MG, Jury J, Perdue MH. Neonatal maternal separation of rat pups results in abnormal cholinergic regulation of epithelial permeability. Am J Physiol Gastrointest Liver Physiol 2007; 293:G198-203. [PMID: 17510196 DOI: 10.1152/ajpgi.00392.2006] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neonatal maternal separation (MS) predisposes adult rats to develop stress-induced mucosal barrier dysfunction/visceral hypersensitivity and rat pups to develop colonic epithelial dysfunction. Our aim was to examine if enhanced epithelial permeability in such pups resulted from abnormal regulation by enteric nerves. Pups were separated from the dam for 3 h/day (days 4-20); nonseparated (NS) pups served as controls. On day 20, colonic tissues were removed and mounted in Ussing chambers. Horseradish peroxidase (HRP) flux was used to measure macromolecular permeability. HRP flux was increased in MS versus NS pups. The enhanced flux was inhibited by the cholinergic muscarinic antagonist atropine and the nicotinic antagonist hexamethonium. The cholinergic component was greater in tissues from MS versus NS pups, suggesting that increased cholinergic activity was responsible for the MS elevated permeability. Western blots and immunohistochemistry of colonic tissues demonstrated increased expression of choline acetyltransferase (ChAT) in MS pups, indicating greater synthesis of acetylcholine. Since a previous study indicated that corticotrophin-releasing factor (CRF) mediates barrier dysfunction in MS pups, we examined if the two pathways were linked. In MS tissues, nonselective CRF receptor antagonism inhibited the enhanced flux, and the addition of atropine did not produce further inhibition. Using selective receptor antagonists, we identified that CRF receptor 2 was involved in mediating this effect. These findings suggest that CRF, via CRF receptor 2, acts on cholinergic nerves to induce epithelial barrier dysfunction. Our study provides evidence that MS stimulates synthesis of acetylcholine, which, together with released CRF, creates a condition conducive to the development of epithelial barrier defects.
Collapse
Affiliation(s)
- Mélanie G Gareau
- The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
50
|
Stam R. PTSD and stress sensitisation: a tale of brain and body Part 2: animal models. Neurosci Biobehav Rev 2007; 31:558-84. [PMID: 17350095 DOI: 10.1016/j.neubiorev.2007.01.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 11/28/2006] [Accepted: 11/30/2006] [Indexed: 10/23/2022]
Abstract
Animal models that are characterised by long-lasting conditioned fear responses as well as generalised behavioural sensitisation to novel stimuli following short-lasting but intense stress have a phenomenology that resembles that of PTSD in humans. These models include brief sessions of shocks, social confrontations, and a short sequence of different stressors. Subgroups of animals with different behavioural traits or coping styles during stress exposure show a different degree or pattern of long-term sensitisation. Weeks to months after the trauma, treated animals on average also show a sensitisation to novel stressful stimuli of neuroendocrine, cardiovascular and gastrointestinal motility responses as well as altered pain sensitivity and immune function. Functional neuroanatomical and pharmacological studies in these animal models have provided evidence for involvement of amygdala and medial prefrontal cortex, and of brain stem areas regulating neuroendocrine and autonomic function and pain processing. They have also generated a number of neurotransmitter and neuropeptide targets that could provide novel avenues for treatment in PTSD.
Collapse
Affiliation(s)
- Rianne Stam
- Department of Pharmacology and Anatomy, Rudolf Magnus Institute of Neuroscience, Utrecht, the Netherlands.
| |
Collapse
|