1
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
2
|
Taskiran SY, Taskiran M, Unal G, Golgeli A. Group I mGluRs positive allosteric modulators improved schizophrenia-related behavioral and molecular deficits in the Poly I:C rat model. Pharmacol Biochem Behav 2023:173593. [PMID: 37390974 DOI: 10.1016/j.pbb.2023.173593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
RATIONALE Maternal polyinosinic-polycytidylic acid (Poly I:C) exposure leads to an increase in various proinflammatory cytokines and causes schizophrenia-like symptoms in offspring. In recent years, group I metabotropic glutamate receptors (mGluRs) have emerged as a potential target in the pathophysiology of schizophrenia. OBJECTIVES The aim of our study was to investigate the behavioral and molecular changes by using the mGlu1 receptor positive allosteric modulator (PAM) agent RO 67-7476, and the negative allosteric modulator (NAM) agent JNJ 16259685 and the mGlu5 receptor PAM agent VU-29, and NAM agent fenobam in the Poly I:C-induced schizophrenia model in rats. METHODS Female Wistar albino rats were treated with Poly I:C on day 14 of gestation after mating. On the postnatal day (PND) 35, 56 and 84, behavioral tests were performed in the male offspring. On the PND84, brain tissue was collected and the level of proinflammatory cytokines was determined by ELISA method. RESULTS Poly I:C caused impairments in all behavioral tests and increased the levels of proinflammatory cytokines. While PAM agents caused significant improvements in prepulse inhibition (PPI), novel object recognition (NOR), spontaneous alternation and reference memory tests, they brought the levels of proinflammatory cytokines closer to the control group. NAM agents were ineffective on behavioral tests. It was observed that PAM agents significantly improved Poly I:C-induced disruption in behavioral and molecular analyses. CONCLUSIONS These results suggest that PAM agents, particularly the mGlu5 receptor VU-29, are also promising and could be a potential target in schizophrenia.
Collapse
Affiliation(s)
| | - Mehmet Taskiran
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey.
| | - Gokhan Unal
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey.
| | - Asuman Golgeli
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
3
|
The neuroprotective and neuroplastic potential of glutamatergic therapeutic drugs in bipolar disorder. Neurosci Biobehav Rev 2022; 142:104906. [DOI: 10.1016/j.neubiorev.2022.104906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/21/2022]
|
4
|
Dogra S, Conn PJ. Metabotropic Glutamate Receptors As Emerging Targets for the Treatment of Schizophrenia. Mol Pharmacol 2022; 101:275-285. [PMID: 35246479 PMCID: PMC9092465 DOI: 10.1124/molpharm.121.000460] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/22/2022] [Indexed: 11/22/2022] Open
Abstract
Accumulating evidence of glutamatergic abnormalities in the brains of schizophrenia patients has led to efforts to target various components of glutamatergic signaling as potential new approaches for schizophrenia. Exciting research suggests that metabotropic glutamate (mGlu) receptors could provide a fundamentally new approach for better symptomatic relief in patients with schizophrenia. In preclinical studies, the mGlu5 receptor positive allosteric modulators (PAMs) show efficacy in animal models relevant for all symptom domains in schizophrenia. Interestingly, biased pure mGlu5 receptor PAMs that do not potentiate coupling of mGlu5 receptors to N-methyl-D-aspartate (NMDA) receptors lack neurotoxic effects associated with mGlu5 PAMs that enhance coupling to NMDA receptors or have allosteric agonist activity. This provides a better therapeutic profile for treating schizophrenia-like symptoms. Additionally, the mGlu1 receptor PAMs modulate dopamine release in the striatum, which may contribute to their antipsychotic-like effects. Besides group I mGlu (mGlu1 and mGlu5) receptors, agonists of mGlu2/3 receptors also induce robust antipsychotic-like and procognitive effects in rodents and may be effective in treating symptoms of schizophrenia in a selective group of patients. Additionally, mGlu2/4 receptor heterodimers modulate glutamatergic neurotransmission in the prefrontal cortex at selective synapses activated in schizophrenia and therefore hold potential as novel antipsychotics. Excitingly, the mGlu3 receptor activation can enhance cognition in rodents, suggesting that mGlu3 receptor agonist/PAM could provide a novel approach for the treatment of cognitive deficits in schizophrenia. Collectively, the development of mGlu receptor-specific ligands may provide an alternative approach to meet the clinical need for safer and more efficacious therapeutics for schizophrenia. SIGNIFICANCE STATEMENT: The currently available antipsychotic medications do not show significant efficacy for treating negative symptoms and cognitive deficits in schizophrenia. Emerging preclinical and clinical literature suggests that pharmacological targeting of metabotropic glutamate receptors could potentially provide an alternative approach for designing safer and more efficacious therapeutics for treating schizophrenia.
Collapse
Affiliation(s)
- Shalini Dogra
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - P Jeffrey Conn
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
5
|
Kryszkowski W, Boczek T. The G Protein-Coupled Glutamate Receptors as Novel Molecular Targets in Schizophrenia Treatment-A Narrative Review. J Clin Med 2021; 10:jcm10071475. [PMID: 33918323 PMCID: PMC8038150 DOI: 10.3390/jcm10071475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/02/2022] Open
Abstract
Schizophrenia is a severe neuropsychiatric disease with an unknown etiology. The research into the neurobiology of this disease led to several models aimed at explaining the link between perturbations in brain function and the manifestation of psychotic symptoms. The glutamatergic hypothesis postulates that disrupted glutamate neurotransmission may mediate cognitive and psychosocial impairments by affecting the connections between the cortex and the thalamus. In this regard, the greatest attention has been given to ionotropic NMDA receptor hypofunction. However, converging data indicates metabotropic glutamate receptors as crucial for cognitive and psychomotor function. The distribution of these receptors in the brain regions related to schizophrenia and their regulatory role in glutamate release make them promising molecular targets for novel antipsychotics. This article reviews the progress in the research on the role of metabotropic glutamate receptors in schizophrenia etiopathology.
Collapse
Affiliation(s)
- Waldemar Kryszkowski
- General Psychiatric Ward, Babinski Memorial Hospital in Lodz, 91229 Lodz, Poland;
| | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, 92215 Lodz, Poland
- Correspondence:
| |
Collapse
|
6
|
Upreti C, Woodruff CM, Zhang XL, Yim MJ, Zhou ZY, Pagano AM, Rehanian DS, Yin D, Kandel ER, Stanton PK, Nicholls RE. Loss of retinoid X receptor gamma subunit impairs group 1 mGluR mediated electrophysiological responses and group 1 mGluR dependent behaviors. Sci Rep 2021; 11:5552. [PMID: 33692389 PMCID: PMC7946894 DOI: 10.1038/s41598-021-84943-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/17/2021] [Indexed: 11/09/2022] Open
Abstract
Retinoid X receptors are members of the nuclear receptor family that regulate gene expression in response to retinoic acid and related ligands. Group 1 metabotropic glutamate receptors are G-protein coupled transmembrane receptors that activate intracellular signaling cascades in response to the neurotransmitter, glutamate. These two classes of molecules have been studied independently and found to play important roles in regulating neuronal physiology with potential clinical implications for disorders such as depression, schizophrenia, Parkinson's and Alzheimer's disease. Here we show that mice lacking the retinoid X receptor subunit, RXRγ, exhibit impairments in group 1 mGluR-mediated electrophysiological responses at hippocampal Schaffer collateral-CA1 pyramidal cell synapses, including impaired group 1 mGluR-dependent long-term synaptic depression (LTD), reduced group 1 mGluR-induced calcium release, and loss of group 1 mGluR-activated voltage-sensitive currents. These animals also exhibit impairments in a subset of group 1 mGluR-dependent behaviors, including motor performance, spatial object recognition, and prepulse inhibition. Together, these observations demonstrate convergence between the RXRγ and group 1 mGluR signaling pathways that may function to coordinate their regulation of neuronal activity. They also identify RXRγ as a potential target for the treatment of disorders in which group 1 mGluR signaling has been implicated.
Collapse
Affiliation(s)
- Chirag Upreti
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Caitlin M Woodruff
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Xiao-Lei Zhang
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Michael J Yim
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Zhen-Yu Zhou
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA.,Department of Neurology, New York Medical College, Valhalla, NY, 10595, USA
| | - Andrew M Pagano
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Dina S Rehanian
- Department of Pathology and Cell Biology, Columbia University, 630 West 168thStreet, New York, NY, 10032, USA.,Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University, 630 West 168thStreet, New York, NY, 10032, USA
| | - Deqi Yin
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY, 10027, USA.,Howard Hughes Medical Institute, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Eric R Kandel
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY, 10027, USA.,Howard Hughes Medical Institute, Columbia University, 3227 Broadway, New York, NY, 10027, USA.,Kavli Institute for Brain Science, Columbia University, 3227 Broadway, New York, NY, 10027, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Patric K Stanton
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA.,Department of Neurology, New York Medical College, Valhalla, NY, 10595, USA
| | - Russell E Nicholls
- Department of Pathology and Cell Biology, Columbia University, 630 West 168thStreet, New York, NY, 10032, USA. .,Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University, 630 West 168thStreet, New York, NY, 10032, USA.
| |
Collapse
|
7
|
Hodges SL, Reynolds CD, Nolan SO, Huebschman JL, Okoh JT, Binder MS, Lugo JN. A single early-life seizure results in long-term behavioral changes in the adult Fmr1 knockout mouse. Epilepsy Res 2019; 157:106193. [PMID: 31520894 PMCID: PMC6823160 DOI: 10.1016/j.eplepsyres.2019.106193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/06/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022]
Abstract
Fragile X syndrome (FXS) is the leading cause of inherited intellectual disability and a significant genetic contributor to Autism spectrum disorder. In addition to autistic-like phenotypes, individuals with FXS are subject to developing numerous comorbidities, one of the most prevalent being seizures. In the present study, we investigated how a single early-life seizure superimposed on a genetic condition impacts the autistic-like behavioral phenotype of the mouse. We induced status epilepticus (SE) on postnatal day (PD) 10 in Fmr1 wild type (WT) and knockout (KO) mice. We then tested the mice in a battery of behavioral tests during adulthood (PD90) to examine the long-term impact of an early-life seizure. Our findings replicated prior work that reported a single instance of SE results in behavioral deficits, including increases in repetitive behavior, enhanced hippocampal-dependent learning, and reduced sociability and prepulse inhibition (p < 0.05). We also observed genotypic differences characteristic of the FXS phenotype in Fmr1 KO mice, such as enhanced prepulse inhibition and repetitive behavior, hyperactivity, and reduced startle responses (p < 0.05). Superimposing a seizure on deletion of Fmr1 significantly impacted repetitive behavior in a nosepoke task. Specifically, a single early-life seizure increased consecutive nose poking behavior in the task in WT mice (p < 0.05), yet seizures did not exacerbate the elevated stereotypy observed in Fmr1 KO mice (p > 0.05). Overall, these findings help to elucidate how seizures in a critical period of development can impact long-term behavioral manifestations caused by underlying gene mutations in Fmr1. Utilizing double-hit models, such as superimposing seizures on the Fmr1 mutation, can help to enhance our understanding of comorbidities in disease models.
Collapse
Affiliation(s)
- Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
| | - Conner D Reynolds
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth TX, 76107, USA
| | - Suzanne O Nolan
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| | | | - James T Okoh
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew S Binder
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| | - Joaquin N Lugo
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA; Department of Biology, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
8
|
Cholinergic Neurons of the Medial Septum Are Crucial for Sensorimotor Gating. J Neurosci 2019; 39:5234-5242. [PMID: 31028115 DOI: 10.1523/jneurosci.0950-18.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 03/23/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Hypofunction of NMDA receptors has been considered a possible cause for the pathophysiology of schizophrenia. More recently, indirect ways to regulate NMDA that would be less disruptive have been proposed and metabotropic glutamate receptor subtype 5 (mGluR5) represents one such candidate. To characterize the cell populations involved, we demonstrated here that knock-out (KO) of mGluR5 in cholinergic, but not glutamatergic or parvalbumin (PV)-positive GABAergic, neurons reduced prepulse inhibition of the startle response (PPI) and enhanced sensitivity to MK801-induced locomotor activity. Inhibition of cholinergic neurons in the medial septum by DREADD (designer receptors exclusively activated by designer drugs) resulted in reduced PPI further demonstrating the importance of these neurons in sensorimotor gating. Volume imaging and quantification were used to compare PV and cholinergic cell distribution, density, and total cell counts in the different cell-type-specific KO lines. Electrophysiological studies showed reduced NMDA receptor-mediated currents in cholinergic neurons of the medial septum in mGluR5 KO mice. These results obtained from male and female mice indicate that cholinergic neurons in the medial septum represent a key cell type involved in sensorimotor gating and are relevant to pathologies associated with disrupted sensorimotor gating such as schizophrenia.SIGNIFICANCE STATEMENT The mechanistic complexity underlying psychiatric disorders remains a major challenge that is hindering the drug discovery process. Here, we generated genetically modified mouse lines to better characterize the involvement of the receptor mGluR5 in the fine-tuning of NMDA receptors, specifically in the context of sensorimotor gating. We evaluated the importance of knocking-out mGluR5 in three different cell types in two brain regions and performed different sets of experiments including behavioral testing and electrophysiological recordings. We demonstrated that cholinergic neurons in the medial septum represent a key cell-type involved in sensorimotor gating. We are proposing that pathologies associated with disrupted sensorimotor gating, such as with schizophrenia, could benefit from further evaluating strategies to modulate specifically cholinergic neurons in the medial septum.
Collapse
|
9
|
Stansley BJ, Conn PJ. Neuropharmacological Insight from Allosteric Modulation of mGlu Receptors. Trends Pharmacol Sci 2019; 40:240-252. [PMID: 30824180 PMCID: PMC6445545 DOI: 10.1016/j.tips.2019.02.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 12/11/2022]
Abstract
The metabotropic glutamate (mGlu) receptors are a family of G-protein-coupled receptors (GPCRs) that regulate cell physiology throughout the nervous system. The potential of mGlu receptors as therapeutic targets has been bolstered by current research that has provided insight into the diverse modes of mGlu activation and signaling. In particular, the allosteric modulation of mGlu receptors represents a major area of focus in studies of basic pharmacology as well as drug development, largely due to the high subtype specificity achievable by targeting allosteric sites on mGlu receptors. These provide sophisticated regulation of neuronal excitability and synaptic transmission to influence behavioral output. Here, we review how these allosteric mechanisms have been leveraged preclinically to demonstrate the therapeutic potential of allosteric modulators for neurological and neuropsychiatric disorders, such as autism, cognitive impairment, Parkinson's disease (PD), stress, and schizophrenia.
Collapse
Affiliation(s)
- Branden J Stansley
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
10
|
Nicoletti F, Orlando R, Di Menna L, Cannella M, Notartomaso S, Mascio G, Iacovelli L, Matrisciano F, Fazio F, Caraci F, Copani A, Battaglia G, Bruno V. Targeting mGlu Receptors for Optimization of Antipsychotic Activity and Disease-Modifying Effect in Schizophrenia. Front Psychiatry 2019; 10:49. [PMID: 30890967 PMCID: PMC6413697 DOI: 10.3389/fpsyt.2019.00049] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/23/2019] [Indexed: 01/03/2023] Open
Abstract
Metabotropic glutamate (mGlu) receptors are considered as candidate drug targets for the treatment of schizophrenia. These receptors form a family of eight subtypes (mGlu1 to -8), of which mGlu1 and -5 are coupled to Gq/11, and all other subtypes are coupled to Gi/o. Here, we discuss the possibility that selective ligands of individual mGlu receptor subtypes may be effective in controlling the core symptoms of schizophrenia, and, in some cases, may impact mechanisms underlying the progression of the disorder. Recent evidence indicates that activation of mGlu1 receptors inhibits dopamine release in the meso-striatal system. Hence, selective positive allosteric modulators (PAMs) of mGlu1 receptors hold promise for the treatment of positive symptoms of schizophrenia. mGlu5 receptors are widely expressed in the CNS and regulate the activity of cells that are involved in the pathophysiology of schizophrenia, such as cortical GABAergic interneurons and microglial cells. mGlu5 receptor PAMs are under development for the treatment of schizophrenia and cater the potential to act as disease modifiers by restraining neuroinflammation. mGlu2 receptors have attracted considerable interest because they negatively modulate 5-HT2A serotonin receptor signaling in the cerebral cortex. Both mGlu2 receptor PAMs and orthosteric mGlu2/3 receptor agonists display antipsychotic-like activity in animal models, and the latter drugs are inactive in mice lacking mGlu2 receptors. So far, mGlu3 receptors have been left apart as drug targets for schizophrenia. However, activation of mGlu3 receptors boosts mGlu5 receptor signaling, supports neuronal survival, and drives microglial cells toward an antiinflammatory phenotype. This strongly encourages research of mGlu3 receptors in schizophrenia. Finally, preclical studies suggest that mGlu4 receptors might be targeted by novel antipsychotic drugs, whereas studies of mGlu7 and mGlu8 receptors in animal models of psychosis are still at their infancy.
Collapse
Affiliation(s)
- Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Rosamaria Orlando
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | - Luisa Iacovelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Francesco Matrisciano
- Department of Psychiatry, The Psychiatric Institute, College of Medicine, University of Illinois, Chicago, IL, United States
| | | | - Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy.,Oasi Research Institute (IRCCS), Troina, Italy
| | - Agata Copani
- Department of Drug Sciences, University of Catania, Catania, Italy.,Institute of Biostructure and Bioimaging, National Research Council, Catania, Italy
| | | | - Valeria Bruno
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
11
|
Tabor KM, Smith TS, Brown M, Bergeron SA, Briggman KL, Burgess HA. Presynaptic Inhibition Selectively Gates Auditory Transmission to the Brainstem Startle Circuit. Curr Biol 2018; 28:2527-2535.e8. [PMID: 30078569 DOI: 10.1016/j.cub.2018.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/25/2022]
Abstract
Filtering mechanisms prevent a continuous stream of sensory information from swamping perception, leading to diminished focal attention and cognitive processing. Mechanisms for sensory gating are commonly studied using prepulse inhibition, a paradigm that measures the regulated transmission of auditory information to the startle circuit; however, the underlying neuronal pathways are unresolved. Using large-scale calcium imaging, optogenetics, and laser ablations, we reveal a cluster of 30 morphologically identified neurons in zebrafish that suppress the transmission of auditory signals during prepulse inhibition. These neurons project to a key sensorimotor interface in the startle circuit-the termination zone of auditory afferents on the dendrite of a startle command neuron. Direct measurement of auditory nerve neurotransmitter release revealed selective presynaptic inhibition of sensory transmission to the startle circuit, sparing signaling to other brain regions. Our results provide the first cellular resolution circuit for prepulse inhibition in a vertebrate, revealing a central role for presynaptic gating of sensory information to a brainstem motor circuit.
Collapse
Affiliation(s)
- Kathryn M Tabor
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| | - Trevor S Smith
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Mary Brown
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Sadie A Bergeron
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Kevin L Briggman
- Circuit Dynamics and Connectivity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Harold A Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Lum JS, Millard SJ, Huang XF, Ooi L, Newell KA. A postmortem analysis of NMDA ionotropic and group 1 metabotropic glutamate receptors in the nucleus accumbens in schizophrenia. J Psychiatry Neurosci 2018; 43. [PMID: 29481317 PMCID: PMC5837882 DOI: 10.1503/jpn.170077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The nucleus accumbens (NAcc) has been implicated in the pathology and treatment of schizophrenia. Recent postmortem evidence suggests a hyperglutamatergic state in the NAcc. With the present study we aimed to explore possible glutamatergic alterations in the NAcc of a large schizophrenia cohort. METHODS We performed immunoblots on postmortem NAcc samples from 30 individuals who had schizophrenia and 30 matched controls. We examined the protein expression of primary glutamatergic receptors, including the N-methyl-D-aspartate (NMDA) receptor (NR1, NR2A and NR2B subunits) and the group 1 metabotropic glutamate receptor (mGluR1 and mGluR5; dimeric and monomeric forms). In addition, we measured the group 1 mGluR endogenous regulators, neurochondrin and Homer1b/c, which have recently been implicated in the pathophysiology of schizophrenia. RESULTS Protein levels of glutamatergic receptors and endogenous regulators were not significantly different between the controls and individuals who had schizophrenia. Furthermore, mGluR5, but not mGluR1, showed a positive association with NMDA receptor subunits, suggesting differential interactions between these receptors in this brain region. LIMITATIONS Investigation of these proteins in antipsychotic-naive individuals, in addition to the subregions of the NAcc and subcellular fractions, will strengthen future studies. CONCLUSION The present study does not provide evidence for glutamatergic abnormalities within the NAcc of individuals with schizophrenia. Taken together with the results of previous studies, these findings suggest NMDA receptors and group 1 mGluRs are altered in a brain region-dependent manner in individuals with schizophrenia. The differential associations between mGluR1, mGluR5 and NMDA receptors observed in this study warrant further research into the interactions of these proteins and the implications for the therapeutic and adverse effect profile of glutamatergic-based novel therapeutics.
Collapse
Affiliation(s)
- Jeremy S Lum
- From the School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia (Lum, Millard, Huang, Newell); the Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (Lum, Millard, Huang, Ooi, Newell); the Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia (Lum); and the School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia (Ooi)
| | - Samuel J Millard
- From the School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia (Lum, Millard, Huang, Newell); the Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (Lum, Millard, Huang, Ooi, Newell); the Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia (Lum); and the School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia (Ooi)
| | - Xu-Feng Huang
- From the School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia (Lum, Millard, Huang, Newell); the Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (Lum, Millard, Huang, Ooi, Newell); the Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia (Lum); and the School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia (Ooi)
| | - Lezanne Ooi
- From the School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia (Lum, Millard, Huang, Newell); the Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (Lum, Millard, Huang, Ooi, Newell); the Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia (Lum); and the School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia (Ooi)
| | - Kelly A Newell
- From the School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia (Lum, Millard, Huang, Newell); the Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (Lum, Millard, Huang, Ooi, Newell); the Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia (Lum); and the School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia (Ooi)
| |
Collapse
|
13
|
Stansley BJ, Conn PJ. The therapeutic potential of metabotropic glutamate receptor modulation for schizophrenia. Curr Opin Pharmacol 2018; 38:31-36. [PMID: 29486374 PMCID: PMC5949078 DOI: 10.1016/j.coph.2018.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/10/2018] [Indexed: 12/21/2022]
Abstract
Accumulating evidence suggests that a dysregulation of the glutamatergic system exists in the brains of schizophrenia patients. The metabotropic glutamate (mGlu) receptors are being investigated as novel drug targets for this disease, and have shown promise in both preclinical and clinical studies. Activation of mGlu5 receptors may be efficacious for several symptom domains (positive, negative, and cognitive) and the potential for targeting mGlu5 receptors has been bolstered by recent research on mitigating toxicity profiles associated with mGlu5 activation. Additionally, genetic profiling of schizophrenia patients suggests that genes encoding for mGlu1 and mGlu3 receptors are altered, prompting preclinical studies that have demonstrated potential antipsychotic and cognitive enhancing effects of agents that activate mGlu1 and mGlu3 receptors, respectively. Development of subtype-specific drugs for the mGlu receptors, such as allosteric modulators, could provide a path forward for more efficacious and tolerable therapeutics for schizophrenia.
Collapse
Affiliation(s)
- Branden J Stansley
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
14
|
Kole K, Scheenen W, Tiesinga P, Celikel T. Cellular diversity of the somatosensory cortical map plasticity. Neurosci Biobehav Rev 2017; 84:100-115. [PMID: 29183683 DOI: 10.1016/j.neubiorev.2017.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 01/23/2023]
Abstract
Sensory maps are representations of the sensory epithelia in the brain. Despite the intuitive explanatory power behind sensory maps as being neuronal precursors to sensory perception, and sensory cortical plasticity as a neural correlate of perceptual learning, molecular mechanisms that regulate map plasticity are not well understood. Here we perform a meta-analysis of transcriptional and translational changes during altered whisker use to nominate the major molecular correlates of experience-dependent map plasticity in the barrel cortex. We argue that brain plasticity is a systems level response, involving all cell classes, from neuron and glia to non-neuronal cells including endothelia. Using molecular pathway analysis, we further propose a gene regulatory network that could couple activity dependent changes in neurons to adaptive changes in neurovasculature, and finally we show that transcriptional regulations observed in major brain disorders target genes that are modulated by altered sensory experience. Thus, understanding the molecular mechanisms of experience-dependent plasticity of sensory maps might help to unravel the cellular events that shape brain plasticity in health and disease.
Collapse
Affiliation(s)
- Koen Kole
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands; Department of Neuroinformatics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands.
| | - Wim Scheenen
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Paul Tiesinga
- Department of Neuroinformatics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Blacker CJ, Lewis CP, Frye MA, Veldic M. Metabotropic glutamate receptors as emerging research targets in bipolar disorder. Psychiatry Res 2017; 257:327-337. [PMID: 28800512 DOI: 10.1016/j.psychres.2017.07.059] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/02/2017] [Accepted: 07/29/2017] [Indexed: 01/03/2023]
Abstract
Glutamatergic dysregulation is implicated in the neuropathology of bipolar disorder (BD). There is increasing interest in investigating the role of metabotropic glutamate receptors (mGluRs) in BD and as a target for treatment intervention. Bipolar mGluR studies (published January 1992-April 2016) were identified via PubMed, Embase, Web of Science, and Scopus. Full-text screening, data extraction, and quality appraisal were conducted in duplicate, with strict inclusion and exclusion criteria. The initial literature search for mGluRs in BD, including non-bipolar mood disorders and primary psychotic disorders, identified 1544 articles. 61 abstracts were selected for relevance, 16 articles met full inclusion criteria, and three additional articles were found via citations. Despite limited literature, studies demonstrated: single nucleotide polymorphisms (SNPs) associated with BD, including a GRM3 SNP associated with greater likelihood of psychosis (rs6465084), mRNA binding protein Fragile X Mental Retardation Protein associated with altered mGluR1/5 activity in BD populations, and lithium decreasing mGluR5 expression and mGluR-mediated intracellular calcium signaling. Limited research has been performed on the role of mGluRs in BD, but results highlight the importance of ongoing study. Future directions for research of mGluRs in BD include GRM polymorphisms, epigenetic regulation, intracellular proteins, and pharmacologic interactions.
Collapse
Affiliation(s)
- Caren J Blacker
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Charles P Lewis
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Marin Veldic
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
16
|
Watson LM, Bamber E, Schnekenberg RP, Williams J, Bettencourt C, Lickiss J, Jayawant S, Fawcett K, Clokie S, Wallis Y, Clouston P, Sims D, Houlden H, Becker EB, Németh AH. Dominant Mutations in GRM1 Cause Spinocerebellar Ataxia Type 44. Am J Hum Genet 2017; 101:451-458. [PMID: 28886343 PMCID: PMC5591020 DOI: 10.1016/j.ajhg.2017.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/25/2017] [Indexed: 12/15/2022] Open
Abstract
The metabotropic glutamate receptor 1 (mGluR1) is abundantly expressed in the mammalian central nervous system, where it regulates intracellular calcium homeostasis in response to excitatory signaling. Here, we describe heterozygous dominant mutations in GRM1, which encodes mGluR1, that are associated with distinct disease phenotypes: gain-of-function missense mutations, linked in two different families to adult-onset cerebellar ataxia, and a de novo truncation mutation resulting in a dominant-negative effect that is associated with juvenile-onset ataxia and intellectual disability. Crucially, the gain-of-function mutations could be pharmacologically modulated in vitro using an existing FDA-approved drug, Nitazoxanide, suggesting a possible avenue for treatment, which is currently unavailable for ataxias.
Collapse
|
17
|
Foster DJ, Conn PJ. Allosteric Modulation of GPCRs: New Insights and Potential Utility for Treatment of Schizophrenia and Other CNS Disorders. Neuron 2017; 94:431-446. [PMID: 28472649 PMCID: PMC5482176 DOI: 10.1016/j.neuron.2017.03.016] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 01/11/2023]
Abstract
G-protein-coupled receptors (GPCRs) play critical roles in regulating brain function. Recent advances have greatly expanded our understanding of these receptors as complex signaling machines that can adopt numerous conformations and modulate multiple downstream signaling pathways. While agonists and antagonists have traditionally been pursued to target GPCRs, allosteric modulators provide several mechanistic advantages, including the ability to distinguish between closely related receptor subtypes. Recently, the discovery of allosteric ligands that confer bias and modulate some, but not all, of a given receptor's downstream signaling pathways can provide pharmacological modulation of brain circuitry with remarkable precision. In addition, allosteric modulators with unprecedented specificity have been developed that can differentiate between subpopulations of a given receptor subtype based on the receptor's dimerization state. These advances are not only providing insight into the biological roles of specific receptor populations, but hold great promise for treating numerous CNS disorders.
Collapse
Affiliation(s)
- Daniel J Foster
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
18
|
mGlu1 receptor as a drug target for treatment of substance use disorders: time to gather stones together? Psychopharmacology (Berl) 2017; 234:1333-1345. [PMID: 28285325 DOI: 10.1007/s00213-017-4581-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/21/2017] [Indexed: 10/20/2022]
Abstract
Modulation of the mGlu1 receptor was repeatedly shown to inhibit various phenomena associated with exposure to abused drugs. Efficacy in preclinical models was observed with both positive and negative allosteric modulators (PAMs and NAMs, respectively) using essentially non-overlapping sets of experimental methods. Taken together, these data indicate that the mGlu1 receptor certainly plays a significant role in the plasticity triggered by the exposure to abused drugs and is involved in the maintenance of drug-seeking and drug-taking behaviors. Understanding whether modulation of the mGlu1 receptor activity can also affect drug-seeking and drug-taking in humans could have a significant impact on the future development of medications in this field. We argue that the mGlu1 receptor NAMs have a significant value as potential tools for human experimental pharmacology that could help to validate methods used in preclinical research. Compared with the PAMs, the mGlu1 receptor NAMs appear to be better candidates for this role due to the following: (1) a number of highly potent, selective, and chemically diverse mGlu1 receptor NAMs to choose from; (2) availability of high-quality PET ligands to monitor target exposure; and (3) a rich pharmacological profile with a number of effects that can complement anti-addictive action (e.g., anxiolytic/antidepressant) and may also serve as additional pharmacodynamic readouts during the preclinical-to-clinical translation. We believe that the mGlu1 receptor NAMs have a significant value as potential tools for human experimental pharmacology that could help to validate methods used in preclinical research.
Collapse
|
19
|
Maksymetz J, Moran SP, Conn PJ. Targeting metabotropic glutamate receptors for novel treatments of schizophrenia. Mol Brain 2017; 10:15. [PMID: 28446243 PMCID: PMC5405554 DOI: 10.1186/s13041-017-0293-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/04/2017] [Indexed: 12/22/2022] Open
Abstract
Support for the N-methyl-D-aspartate receptor (NMDAR) hypofunction hypothesis of schizophrenia has led to increasing focus on restoring proper glutamatergic signaling as an approach for treatment of this devastating disease. The ability of metabotropic glutamate (mGlu) receptors to modulate glutamatergic neurotransmission has thus attracted considerable attention for the development of novel antipsychotics. Consisting of eight subtypes classified into three groups based on sequence homology, signal transduction, and pharmacology, the mGlu receptors provide a wide range of targets to modulate NMDAR function as well as glutamate release. Recently, allosteric modulators of mGlu receptors have been developed that allow unprecedented selectivity among subtypes, not just groups, facilitating the investigation of the effects of subtype-specific modulation. In preclinical animal models, positive allosteric modulators (PAMs) of the group I mGlu receptor mGlu5 have efficacy across all three symptom domains of schizophrenia (positive, negative, and cognitive). The discovery and development of mGlu5 PAMs that display unique signal bias suggests that efficacy can be retained while avoiding the neurotoxic effects of earlier compounds. Interestingly, mGlu1 negative allosteric modulators (NAMs) appear efficacious in positive symptom models of the disease but are still in early preclinical development. While selective group II mGlu receptor (mGlu2/3) agonists have reached clinical trials but were unsuccessful, specific mGlu2 or mGlu3 receptor targeting still hold great promise. Genetic studies implicated mGlu2 in the antipsychotic effects of group II agonists and mGlu2 PAMs have since entered into clinical trials. Additionally, mGlu3 appears to play an important role in cognition, may confer neuroprotective effects, and thus is a promising target to alleviate cognitive deficits in schizophrenia. Although group III mGlu receptors (mGlu4/6/7/8) have attracted less attention, mGlu4 agonists and PAMs appear to have efficacy across all three symptoms domains in preclinical models. The recent discovery of heterodimers comprising mGlu2 and mGlu4 may explain the efficacy of mGlu4 selective compounds but this remains to be determined. Taken together, compounds targeting mGlu receptors, specifically subtype-selective allosteric modulators, provide a compelling alternative approach to fill the unmet clinical needs for patients with schizophrenia.
Collapse
Affiliation(s)
- James Maksymetz
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232 USA
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN 37232 USA
| | - Sean P. Moran
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN 37232 USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232 USA
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232 USA
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN 37232 USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232 USA
| |
Collapse
|
20
|
Molecular Basis for Modulation of Metabotropic Glutamate Receptors and Their Drug Actions by Extracellular Ca 2. Int J Mol Sci 2017; 18:ijms18030672. [PMID: 28335551 PMCID: PMC5372683 DOI: 10.3390/ijms18030672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/13/2017] [Accepted: 03/17/2017] [Indexed: 12/24/2022] Open
Abstract
Metabotropic glutamate receptors (mGluRs) associated with the slow phase of the glutamatergic signaling pathway in neurons of the central nervous system have gained importance as drug targets for chronic neurodegenerative diseases. While extracellular Ca2+ was reported to exhibit direct activation and modulation via an allosteric site, the identification of those binding sites was challenged by weak binding. Herein, we review the discovery of extracellular Ca2+ in regulation of mGluRs, summarize the recent developments in probing Ca2+ binding and its co-regulation of the receptor based on structural and biochemical analysis, and discuss the molecular basis for Ca2+ to regulate various classes of drug action as well as its importance as an allosteric modulator in mGluRs.
Collapse
|
21
|
Kalinowska M, Francesconi A. Group I Metabotropic Glutamate Receptor Interacting Proteins: Fine-Tuning Receptor Functions in Health and Disease. Curr Neuropharmacol 2017; 14:494-503. [PMID: 27296642 PMCID: PMC4983749 DOI: 10.2174/1570159x13666150515234434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/24/2015] [Accepted: 05/12/2015] [Indexed: 11/22/2022] Open
Abstract
Group I metabotropic glutamate receptors mediate slow excitatory neurotransmission in the central nervous system and are critical to activity-dependent synaptic plasticity, a cellular substrate of learning and memory. Dysregulated receptor signaling is implicated in neuropsychiatric conditions ranging from neurodevelopmental to neurodegenerative disorders. Importantly, group I metabotropic glutamate receptor signaling functions can be modulated by interacting proteins that mediate receptor trafficking, expression and coupling efficiency to signaling effectors. These interactions afford cell- or pathway-specific modulation to fine-tune receptor function, thus representing a potential target for pharmacological interventions in pathological conditions.
Collapse
Affiliation(s)
| | - Anna Francesconi
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center, Room 706, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
22
|
Gaskin PL, Toledo-Rodriguez M, Alexander SP, Fone KC. Down-Regulation of Hippocampal Genes Regulating Dopaminergic, GABAergic, and Glutamatergic Function Following Combined Neonatal Phencyclidine and Post-Weaning Social Isolation of Rats as a Neurodevelopmental Model for Schizophrenia. Int J Neuropsychopharmacol 2016; 19:pyw062. [PMID: 27382048 PMCID: PMC5137279 DOI: 10.1093/ijnp/pyw062] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/27/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Dysfunction of dopaminergic, GABAergic, and glutamatergic function underlies many core symptoms of schizophrenia. Combined neonatal injection of the N-methyl-D-aspartate (NMDA) receptor antagonist, phencyclidine (PCP), and post-weaning social isolation of rats produces a behavioral syndrome with translational relevance to several core symptoms of schizophrenia. This study uses DNA microarray to characterize alterations in hippocampal neurotransmitter-related gene expression and examines the ability of the sodium channel blocker, lamotrigine, to reverse behavioral changes in this model. METHODS Fifty-four male Lister-hooded rat pups either received phencyclidine (PCP, 10mg/kg, s.c.) on post-natal days (PND) 7, 9, and 11 before being weaned on PND 23 into separate cages (isolation; PCP-SI; n = 31) or received vehicle injection and group-housing (2-4 per cage; V-GH; n = 23) from weaning. The effect of lamotrigine on locomotor activity, novel object recognition, and prepulse inhibition of acoustic startle was examined (PND 60-75) and drug-free hippocampal gene expression on PND 70. RESULTS Acute lamotrigine (10-15mg/kg i.p.) reversed the hyperactivity and novel object recognition impairment induced by PCP-SI but had no effect on the prepulse inhibition deficit. Microarray revealed small but significant down-regulation of hippocampal genes involved in glutamate metabolism, dopamine neurotransmission, and GABA receptor signaling and in specific schizophrenia-linked genes, including parvalbumin (PVALB) and GAD67, in PCP-SI rats, which resemble changes reported in schizophrenia. CONCLUSIONS Findings indicate that alterations in dopamine neurotransmission, glutamate metabolism, and GABA signaling may contribute to some of the behavioral deficits observed following PCP-SI, and that lamotrigine may have some utility as an adjunctive therapy to improve certain cognitive deficits symptoms in schizophrenia.
Collapse
Affiliation(s)
- Philip Lr Gaskin
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, United Kingdom (Drs Gaskin, Toledo-Rodriguez, Alexander, and Fone)
| | - Maria Toledo-Rodriguez
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, United Kingdom (Drs Gaskin, Toledo-Rodriguez, Alexander, and Fone)
| | - Stephen Ph Alexander
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, United Kingdom (Drs Gaskin, Toledo-Rodriguez, Alexander, and Fone)
| | - Kevin Cf Fone
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, United Kingdom (Drs Gaskin, Toledo-Rodriguez, Alexander, and Fone)
| |
Collapse
|
23
|
Lum JS, Fernandez F, Matosin N, Andrews JL, Huang XF, Ooi L, Newell KA. Neurodevelopmental Expression Profile of Dimeric and Monomeric Group 1 mGluRs: Relevance to Schizophrenia Pathogenesis and Treatment. Sci Rep 2016; 6:34391. [PMID: 27721389 PMCID: PMC5056358 DOI: 10.1038/srep34391] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/08/2016] [Indexed: 12/18/2022] Open
Abstract
Group 1 metabotropic glutamate receptors (mGluR1/mGluR5) play an integral role in neurodevelopment and are implicated in psychiatric disorders, such as schizophrenia. mGluR1 and mGluR5 are expressed as homodimers, which is important for their functionality and pharmacology. We examined the protein expression of dimeric and monomeric mGluR1α and mGluR5 in the prefrontal cortex (PFC) and hippocampus throughout development (juvenile/adolescence/adulthood) and in the perinatal phencyclidine (PCP) model of schizophrenia. Under control conditions, mGluR1α dimer expression increased between juvenile and adolescence (209-328%), while monomeric levels remained consistent. Dimeric mGluR5 was steadily expressed across all time points; monomeric mGluR5 was present in juveniles, dramatically declining at adolescence and adulthood (-97-99%). The mGluR regulators, Homer 1b/c and Norbin, significantly increased with age in the PFC and hippocampus. Perinatal PCP treatment significantly increased juvenile dimeric mGluR5 levels in the PFC and hippocampus (37-50%) but decreased hippocampal mGluR1α (-50-56%). Perinatal PCP treatment also reduced mGluR1α dimer levels in the PFC at adulthood (-31%). These results suggest that Group 1 mGluRs have distinct dimeric and monomeric neurodevelopmental patterns, which may impact their pharmacological profiles at specific ages. Perinatal PCP treatment disrupted the early expression of Group 1 mGluRs which may underlie neurodevelopmental alterations observed in this model.
Collapse
Affiliation(s)
- Jeremy S. Lum
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522 Australia
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522 Australia
- Schizophrenia Research Institute, Sydney, NSW 2010 Australia
| | - Francesca Fernandez
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522 Australia
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522 Australia
- Schizophrenia Research Institute, Sydney, NSW 2010 Australia
- School of Psychology, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Natalie Matosin
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522 Australia
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522 Australia
- Schizophrenia Research Institute, Sydney, NSW 2010 Australia
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10 Munich Germany
| | - Jessica L. Andrews
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522 Australia
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522 Australia
- Schizophrenia Research Institute, Sydney, NSW 2010 Australia
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522 Australia
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522 Australia
- Schizophrenia Research Institute, Sydney, NSW 2010 Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522 Australia
- School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Kelly A. Newell
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522 Australia
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522 Australia
- Schizophrenia Research Institute, Sydney, NSW 2010 Australia
| |
Collapse
|
24
|
Shifting towards a model of mGluR5 dysregulation in schizophrenia: Consequences for future schizophrenia treatment. Neuropharmacology 2015; 115:73-91. [PMID: 26349010 DOI: 10.1016/j.neuropharm.2015.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/02/2015] [Accepted: 08/03/2015] [Indexed: 12/22/2022]
Abstract
Metabotropic glutamate receptor subtype 5 (mGluR5), encoded by the GRM5 gene, represents a compelling novel drug target for the treatment of schizophrenia. mGluR5 is a postsynaptic G-protein coupled glutamate receptor strongly linked with several critical cellular processes that are reported to be disrupted in schizophrenia. Accordingly, mGluR5 positive allosteric modulators show encouraging therapeutic potential in preclinical schizophrenia models, particularly for the treatment of cognitive dysfunctions against which currently available therapeutics are largely ineffective. More work is required to support the progression of mGluR5-targeting drugs into the clinic for schizophrenia treatment, although some obstacles may be overcome by comprehensively understanding how mGluR5 itself is involved in the neurobiology of the disorder. Several processes that are necessary for the regulation of mGluR5 activity have been identified, but not examined, in the context of schizophrenia. These processes include protein-protein interactions, dimerisation, subcellular trafficking, the impact of genetic variability or mutations on protein function, as well as epigenetic, post-transcriptional and post-translational processes. It is essential to understand these aspects of mGluR5 to determine whether they are affected in schizophrenia pathology, and to assess the consequences of mGluR5 dysfunction for the future use of mGluR5-based drugs. Here, we summarise the known processes that regulate mGluR5 and those that have already been studied in schizophrenia, and discuss the consequences of this dysregulation for current mGluR5 pharmacological strategies. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
|
25
|
Abstract
Accumulating data, including those from large genetic association studies, indicate that alterations in glutamatergic synapse structure and function represent a common underlying pathology in many symptomatically distinct cognitive disorders. In this review, we discuss evidence from human genetic studies and data from animal models supporting a role for aberrant glutamatergic synapse function in the etiology of intellectual disability (ID), autism spectrum disorder (ASD), and schizophrenia (SCZ), neurodevelopmental disorders that comprise a significant proportion of human cognitive disease and exact a substantial financial and social burden. The varied manifestations of impaired perceptual processing, executive function, social interaction, communication, and/or intellectual ability in ID, ASD, and SCZ appear to emerge from altered neural microstructure, function, and/or wiring rather than gross changes in neuron number or morphology. Here, we review evidence that these disorders may share a common underlying neuropathy: altered excitatory synapse function. We focus on the most promising candidate genes affecting glutamatergic synapse function, highlighting the likely disease-relevant functional consequences of each. We first present a brief overview of glutamatergic synapses and then explore the genetic and phenotypic evidence for altered glutamate signaling in ID, ASD, and SCZ.
Collapse
Affiliation(s)
- Lenora Volk
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| | | | | | | |
Collapse
|
26
|
Cho H, Garcia-Barrantes PM, Brogan JT, Hopkins CR, Niswender CM, Rodriguez AL, Venable DF, Morrison RD, Bubser M, Daniels JS, Jones CK, Conn PJ, Lindsley CW. Chemical modulation of mutant mGlu1 receptors derived from deleterious GRM1 mutations found in schizophrenics. ACS Chem Biol 2014; 9:2334-46. [PMID: 25137254 PMCID: PMC4201332 DOI: 10.1021/cb500560h] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/19/2014] [Indexed: 12/16/2022]
Abstract
Schizophrenia is a complex and highly heterogeneous psychiatric disorder whose precise etiology remains elusive. While genome-wide association studies (GWAS) have identified risk genes, they have failed to determine if rare coding single nucleotide polymorphisms (nsSNPs) contribute in schizophrenia. Recently, two independent studies identified 12 rare, deleterious nsSNPS in the GRM1 gene, which encodes the metabotropic glutamate receptor subtype 1 (mGlu1), in schizophrenic patients. Here, we generated stable cell lines expressing the mGlu1 mutant receptors and assessed their pharmacology. Using both the endogenous agonist glutamate and the synthetic agonist DHPG, we found that several of the mutant mGlu1 receptors displayed a loss of function that was not due to a loss in plasma membrane expression. Due to a lack of mGlu1 positive allosteric modulators (PAM) tool compounds active at human mGlu1, we optimized a known mGlu4 PAM/mGlu1 NAM chemotype into a series of potent and selective mGlu1 PAMs by virtue of a double "molecular switch". Employing mGlu1 PAMs from multiple chemotypes, we demonstrate that the mutant receptors can be potentiated by small molecules and in some cases efficacy restored to that comparable to wild type mGlu1 receptors, suggesting deficits in patients with schizophrenia due to these mutations may be amenable to intervention with an mGlu1 PAM. However, in wild type animals, mGlu1 negative allosteric modulators (NAMs) are efficacious in classic models predictive of antipsychotic activity, whereas we show that mGlu1 PAMs have no effect to slight potentiation in these models. These data further highlight the heterogeneity of schizophrenia and the critical role of patient selection strategies in psychiatric clinical trials to match genotype with therapeutic mechanism.
Collapse
Affiliation(s)
- Hyekyung
P. Cho
- Vanderbilt Center for Neuroscience
Drug Discovery, Department of Pharmacology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232 United States
| | - Pedro M. Garcia-Barrantes
- Vanderbilt Center for Neuroscience
Drug Discovery, Department of Pharmacology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232 United States
| | - John T. Brogan
- Vanderbilt Center for Neuroscience
Drug Discovery, Department of Pharmacology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232 United States
| | - Corey R. Hopkins
- Vanderbilt Center for Neuroscience
Drug Discovery, Department of Pharmacology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232 United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232 United States
| | - Colleen M. Niswender
- Vanderbilt Center for Neuroscience
Drug Discovery, Department of Pharmacology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232 United States
| | - Alice L. Rodriguez
- Vanderbilt Center for Neuroscience
Drug Discovery, Department of Pharmacology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232 United States
| | - Daryl F. Venable
- Vanderbilt Center for Neuroscience
Drug Discovery, Department of Pharmacology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232 United States
| | - Ryan D. Morrison
- Vanderbilt Center for Neuroscience
Drug Discovery, Department of Pharmacology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232 United States
| | - Michael Bubser
- Vanderbilt Center for Neuroscience
Drug Discovery, Department of Pharmacology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232 United States
| | - J. Scott Daniels
- Vanderbilt Center for Neuroscience
Drug Discovery, Department of Pharmacology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232 United States
| | - Carrie K. Jones
- Vanderbilt Center for Neuroscience
Drug Discovery, Department of Pharmacology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232 United States
| | - P. Jeffrey Conn
- Vanderbilt Center for Neuroscience
Drug Discovery, Department of Pharmacology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232 United States
| | - Craig W. Lindsley
- Vanderbilt Center for Neuroscience
Drug Discovery, Department of Pharmacology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232 United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232 United States
| |
Collapse
|
27
|
Pomierny-Chamioło L, Rup K, Pomierny B, Niedzielska E, Kalivas PW, Filip M. Metabotropic glutamatergic receptors and their ligands in drug addiction. Pharmacol Ther 2014; 142:281-305. [DOI: 10.1016/j.pharmthera.2013.12.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/02/2013] [Indexed: 02/07/2023]
|
28
|
TN D, MJ M, PM V, RS O, B O, L G. Valproate improves prepulse inhibition deficits induced by corticotropin-releasing factor independent of GABAA and GABAB receptor activation. Neuropharmacology 2014; 79:66-74. [DOI: 10.1016/j.neuropharm.2013.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 10/06/2013] [Accepted: 10/23/2013] [Indexed: 12/11/2022]
|
29
|
Variations in postnatal maternal care and the epigenetic regulation of metabotropic glutamate receptor 1 expression and hippocampal function in the rat. Proc Natl Acad Sci U S A 2012; 109 Suppl 2:17200-7. [PMID: 23045678 DOI: 10.1073/pnas.1204599109] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Variations in maternal care in the rat affect hippocampal morphology and function as well as performance on hippocampal-dependent tests of learning and memory in the offspring. Preliminary genome-wide analyses of gene transcription and DNA methylation of the molecular basis for such maternal effects suggested differences in the epigenetic state and transcriptional activity of the Grm1 gene in the rat as a function of maternal care. Grm1 encodes the type I metabotropic glutamate receptor (mGluR1), and we found increased mGluR1 mRNA and protein in hippocampus from the adult offspring of mothers showing an increased frequency of pup licking/grooming (i.e., high-LG mothers) that was associated with a decrease in the methylation of Grm1. ChIP assays showed increased levels of histone 3 lysine 9 acetylation and histone 3 lysine 4 trimethylation of Grm1 in hippocampus from the adult offspring of high-LG compared with low-LG mothers. These histone posttranslational modifications were highly correlated, and both associate inversely with DNA methylation and positively with transcription. Studies of mGluR1 function showed increased hippocampal mGluR1-induced long-term depression in the adult offspring of high-LG compared with low-LG mothers, as well as increased paired-pulse depression (PPD). PPD is an inhibitory feedback mechanism that prevents excessive glutamate release during high-frequency stimulation. The maternal effects on both long-term depression and PPD were eliminated by treatment with an mGluR1-selective antagonist. These findings suggest that variations in maternal care can influence hippocampal function and cognitive performance through the epigenetic regulation of genes implicated in glutamatergic synaptic signaling.
Collapse
|
30
|
Hovelsø N, Sotty F, Montezinho LP, Pinheiro PS, Herrik KF, Mørk A. Therapeutic potential of metabotropic glutamate receptor modulators. Curr Neuropharmacol 2012; 10:12-48. [PMID: 22942876 PMCID: PMC3286844 DOI: 10.2174/157015912799362805] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 01/10/2011] [Accepted: 03/04/2011] [Indexed: 12/21/2022] Open
Abstract
Glutamate is the main excitatory neurotransmitter in the central nervous system (CNS) and is a major player in complex brain functions. Glutamatergic transmission is primarily mediated by ionotropic glutamate receptors, which include NMDA, AMPA and kainate receptors. However, glutamate exerts modulatory actions through a family of metabotropic G-protein-coupled glutamate receptors (mGluRs). Dysfunctions of glutamatergic neurotransmission have been implicated in the etiology of several diseases. Therefore, pharmacological modulation of ionotropic glutamate receptors has been widely investigated as a potential therapeutic strategy for the treatment of several disorders associated with glutamatergic dysfunction. However, blockade of ionotropic glutamate receptors might be accompanied by severe side effects due to their vital role in many important physiological functions. A different strategy aimed at pharmacologically interfering with mGluR function has recently gained interest. Many subtype selective agonists and antagonists have been identified and widely used in preclinical studies as an attempt to elucidate the role of specific mGluRs subtypes in glutamatergic transmission. These studies have allowed linkage between specific subtypes and various physiological functions and more importantly to pathological states. This article reviews the currently available knowledge regarding the therapeutic potential of targeting mGluRs in the treatment of several CNS disorders, including schizophrenia, addiction, major depressive disorder and anxiety, Fragile X Syndrome, Parkinson’s disease, Alzheimer’s disease and pain.
Collapse
Affiliation(s)
- N Hovelsø
- Department of Neurophysiology, H. Lundbeck A/S, Ottiliavej 9, 2500 Copenhagen-Valby, Denmark
| | | | | | | | | | | |
Collapse
|
31
|
Pratt J, Winchester C, Dawson N, Morris B. Advancing schizophrenia drug discovery: optimizing rodent models to bridge the translational gap. Nat Rev Drug Discov 2012; 11:560-79. [DOI: 10.1038/nrd3649] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Ayoub MA, Angelicheva D, Vile D, Chandler D, Morar B, Cavanaugh JA, Visscher PM, Jablensky A, Pfleger KDG, Kalaydjieva L. Deleterious GRM1 mutations in schizophrenia. PLoS One 2012; 7:e32849. [PMID: 22448230 PMCID: PMC3308973 DOI: 10.1371/journal.pone.0032849] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 02/03/2012] [Indexed: 01/12/2023] Open
Abstract
We analysed a phenotypically well-characterised sample of 450 schziophrenia patients and 605 controls for rare non-synonymous single nucleotide polymorphisms (nsSNPs) in the GRM1 gene, their functional effects and family segregation. GRM1 encodes the metabotropic glutamate receptor 1 (mGluR1), whose documented role as a modulator of neuronal signalling and synaptic plasticity makes it a plausible schizophrenia candidate. In a recent study, this gene was shown to harbour a cluster of deleterious nsSNPs within a functionally important domain of the receptor, in patients with schizophrenia and bipolar disorder. Our Sanger sequencing of the GRM1 coding regions detected equal numbers of nsSNPs in cases and controls, however the two groups differed in terms of the potential effects of the variants on receptor function: 6/6 case-specific and only 1/6 control-specific nsSNPs were predicted to be deleterious. Our in-vitro experimental follow-up of the case-specific mutants showed that 4/6 led to significantly reduced inositol phosphate production, indicating impaired function of the major mGluR1 signalling pathway; 1/6 had reduced cell membrane expression; inconclusive results were obtained in 1/6. Family segregation analysis indicated that these deleterious nsSNPs were inherited. Interestingly, four of the families were affected by multiple neuropsychiatric conditions, not limited to schizophrenia, and the mutations were detected in relatives with schizophrenia, depression and anxiety, drug and alcohol dependence, and epilepsy. Our findings suggest a possible mGluR1 contribution to diverse psychiatric conditions, supporting the modulatory role of the receptor in such conditions as proposed previously on the basis of in vitro experiments and animal studies.
Collapse
Affiliation(s)
- Mohammed Akli Ayoub
- Western Australian Institute for Medical Research/UWA Centre for Medical Research, University of Western Australia, Perth, Australia
| | - Dora Angelicheva
- Western Australian Institute for Medical Research/UWA Centre for Medical Research, University of Western Australia, Perth, Australia
| | - David Vile
- Centre for Clinical Research in Neuropsychiatry, The University of Western Australia, Perth, Australia
| | - David Chandler
- Western Australian Institute for Medical Research/UWA Centre for Medical Research, University of Western Australia, Perth, Australia
| | - Bharti Morar
- Western Australian Institute for Medical Research/UWA Centre for Medical Research, University of Western Australia, Perth, Australia
| | - Juleen A. Cavanaugh
- Research School of Biological Sciences, Australian National University, Canberra, Australia
| | - Peter M. Visscher
- Queensland Institute for Medical Research, Royal Brisbane Hospital, Brisbane, Australia
| | - Assen Jablensky
- Centre for Clinical Research in Neuropsychiatry, The University of Western Australia, Perth, Australia
- School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Perth, Australia
| | - Kevin D. G. Pfleger
- Western Australian Institute for Medical Research/UWA Centre for Medical Research, University of Western Australia, Perth, Australia
| | - Luba Kalaydjieva
- Western Australian Institute for Medical Research/UWA Centre for Medical Research, University of Western Australia, Perth, Australia
| |
Collapse
|
33
|
Herman EJ, Bubser M, Conn PJ, Jones CK. Metabotropic glutamate receptors for new treatments in schizophrenia. Handb Exp Pharmacol 2012:297-365. [PMID: 23027420 DOI: 10.1007/978-3-642-25758-2_11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Metabotropic glutamate receptors (mGluRs) represent exciting targets for the development of novel therapeutic agents for schizophrenia. Recent studies indicate that selective activation of specific mGluR subtypes may provide potential benefits for not only the positive symptoms, but also the negative symptoms and cognitive impairments observed in individuals with schizophrenia. Although optimization of traditional orthosteric agonists may still offer a feasible approach for the activation of mGluRs, important progress has been made in the discovery of novel subtype-selective allosteric ligands, including positive allosteric modulators (PAMs) of mGluR2 and mGluR5. These allosteric mGluR ligands have improved properties for clinical development and have served as key preclinical tools for a more in-depth understanding of the potential roles of these different mGluR subtypes for the treatment of schizophrenia.
Collapse
Affiliation(s)
- E J Herman
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
34
|
Powell SB, Weber M, Geyer MA. Genetic models of sensorimotor gating: relevance to neuropsychiatric disorders. Curr Top Behav Neurosci 2012; 12:251-318. [PMID: 22367921 PMCID: PMC3357439 DOI: 10.1007/7854_2011_195] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sensorimotor gating, or the ability of a sensory event to suppress a motor response, can be measured operationally via prepulse inhibition (PPI) of the startle response. PPI is deficient in schizophrenia patients as well as other neuropsychiatric disorders, can be measured across species, and has been used widely as a translational tool in preclinical neuropharmacological and genetic research. First developed to assess drug effects in pharmacological and developmental models, PPI has become one of the standard behavioral measures in genetic models of schizophrenia and other neuropsychiatric disorders that exhibit PPI deficits. In this chapter we review the literature on genetic models of sensorimotor gating and discuss the utility of PPI as a tool in phenotyping mutant mouse models. We highlight the approaches to genetic mouse models of neuropsychiatric disease, discuss some of the important caveats to these approaches, and provide a comprehensive table covering the more recent genetic models that have evaluated PPI.
Collapse
Affiliation(s)
- Susan B. Powell
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0804, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Martin Weber
- Department of Neuroscience, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080-4990, USA
| | - Mark A. Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0804, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
35
|
Frank RAW, McRae AF, Pocklington AJ, van de Lagemaat LN, Navarro P, Croning MDR, Komiyama NH, Bradley SJ, Challiss RAJ, Armstrong JD, Finn RD, Malloy MP, MacLean AW, Harris SE, Starr JM, Bhaskar SS, Howard EK, Hunt SE, Coffey AJ, Ranganath V, Deloukas P, Rogers J, Muir WJ, Deary IJ, Blackwood DH, Visscher PM, Grant SGN. Clustered coding variants in the glutamate receptor complexes of individuals with schizophrenia and bipolar disorder. PLoS One 2011; 6:e19011. [PMID: 21559497 PMCID: PMC3084736 DOI: 10.1371/journal.pone.0019011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 03/21/2011] [Indexed: 01/03/2023] Open
Abstract
Current models of schizophrenia and bipolar disorder implicate multiple genes, however their biological relationships remain elusive. To test the genetic role of glutamate receptors and their interacting scaffold proteins, the exons of ten glutamatergic 'hub' genes in 1304 individuals were re-sequenced in case and control samples. No significant difference in the overall number of non-synonymous single nucleotide polymorphisms (nsSNPs) was observed between cases and controls. However, cluster analysis of nsSNPs identified two exons encoding the cysteine-rich domain and first transmembrane helix of GRM1 as a risk locus with five mutations highly enriched within these domains. A new splice variant lacking the transmembrane GPCR domain of GRM1 was discovered in the human brain and the GRM1 mutation cluster could perturb the regulation of this variant. The predicted effect on individuals harbouring multiple mutations distributed in their ten hub genes was also examined. Diseased individuals possessed an increased load of deleteriousness from multiple concurrent rare and common coding variants. Together, these data suggest a disease model in which the interplay of compound genetic coding variants, distributed among glutamate receptors and their interacting proteins, contribute to the pathogenesis of schizophrenia and bipolar disorders.
Collapse
Affiliation(s)
- René A. W. Frank
- Wellcome Trust Sanger Institute, Genome
Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Allan F. McRae
- Queensland Institute of Medical Research,
Royal Brisbane Hospital, Brisbane, Australia
| | | | | | - Pau Navarro
- MRC Human Genetics, Institute of Genetics and
Molecular Medicine, Western General Hospital, Edinburgh, United
Kingdom
| | - Mike D. R. Croning
- Wellcome Trust Sanger Institute, Genome
Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Noboru H. Komiyama
- Wellcome Trust Sanger Institute, Genome
Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Sophie J. Bradley
- Department of Cell Physiology and
Pharmacology, University of Leicester, Leicester, United Kingdom
| | - R. A. John Challiss
- Department of Cell Physiology and
Pharmacology, University of Leicester, Leicester, United Kingdom
| | | | - Robert D. Finn
- Wellcome Trust Sanger Institute, Genome
Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Mary P. Malloy
- Division of Psychiatry, University of
Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - Alan W. MacLean
- Division of Psychiatry, University of
Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - Sarah E. Harris
- Department of Psychology, Centre for Cognitive
Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United
Kingdom
| | - John M. Starr
- Department of Psychology, Centre for Cognitive
Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United
Kingdom
| | - Sanjeev S. Bhaskar
- Wellcome Trust Sanger Institute, Genome
Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Eleanor K. Howard
- Wellcome Trust Sanger Institute, Genome
Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Sarah E. Hunt
- Wellcome Trust Sanger Institute, Genome
Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Alison J. Coffey
- Wellcome Trust Sanger Institute, Genome
Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Venkatesh Ranganath
- Wellcome Trust Sanger Institute, Genome
Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Panos Deloukas
- Wellcome Trust Sanger Institute, Genome
Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Jane Rogers
- Wellcome Trust Sanger Institute, Genome
Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Walter J. Muir
- Division of Psychiatry, University of
Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - Ian J. Deary
- Department of Psychology, Centre for Cognitive
Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United
Kingdom
| | - Douglas H. Blackwood
- Division of Psychiatry, University of
Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - Peter M. Visscher
- Queensland Institute of Medical Research,
Royal Brisbane Hospital, Brisbane, Australia
| | - Seth G. N. Grant
- Wellcome Trust Sanger Institute, Genome
Campus, Hinxton, Cambridgeshire, United Kingdom
| |
Collapse
|
36
|
Sagata N, Iwaki A, Aramaki T, Takao K, Kura S, Tsuzuki T, Kawakami R, Ito I, Kitamura T, Sugiyama H, Miyakawa T, Fukumaki Y. Comprehensive behavioural study of GluR4 knockout mice: implication in cognitive function. GENES BRAIN AND BEHAVIOR 2011; 9:899-909. [PMID: 20662939 DOI: 10.1111/j.1601-183x.2010.00629.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fast excitatory transmission in the mammalian central nervous system is mediated by AMPA-type glutamate receptors. The tetrameric AMPA receptor complexes are composed of four subunits, GluR1-4. The GluR4 subunit is highly expressed in the cerebellum and the early postnatal hippocampus and is thought to be involved in synaptic plasticity and the development of functional neural circuitry through the recruitment of other AMPA receptor subunits. Previously, we reported an association of the human GluR4 gene (GRIA4) with schizophrenia. To examine the role of the GluR4 subunit in the higher brain function, we generated GluR4 knockout mice and conducted electrophysiological and behavioural analyses. The mutant mice showed normal long-term potentiation (LTP) in the CA1 region of the hippocampus. The GluR4 knockout mice showed mildly improved spatial working memory in the T-maze test. Although the retention of spatial reference memory was intact in the mutant mice, the acquisition of spatial reference memory was impaired in the Barnes circular maze test. The GluR4 knockout mice showed impaired prepulse inhibition. These results suggest the involvement of the GluR4 subunit in cognitive function.
Collapse
Affiliation(s)
- N Sagata
- Division of Human Molecular Genetics, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zeng R, Farias FHG, Johnson GS, McKay SD, Schnabel RD, Decker JE, Taylor JF, Mann CS, Katz ML, Johnson GC, Coates JR, O'Brien DP. A truncated retrotransposon disrupts the GRM1 coding sequence in Coton de Tulear dogs with Bandera's neonatal ataxia. J Vet Intern Med 2011; 25:267-72. [PMID: 21281350 DOI: 10.1111/j.1939-1676.2010.0666.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Bandera's neonatal ataxia (BNAt) is an autosomal recessive cerebellar ataxia that affects members of the Coton de Tulear dog breed. OBJECTIVE To identify the mutation that causes BNAt. ANIMALS The study involved DNA from 112 Cotons de Tulear (including 15 puppies with signs of BNAt) and 87 DNA samples from dogs of 12 other breeds. METHODS The BNAt locus was mapped with a genome-wide association study (GWAS). The coding exons of positional candidate gene GRM1, which encodes metabotropic glutamate receptor 1, were polymerase chain reaction (PCR)-amplified and resequenced. A 3-primer PCR assay was used to genotype individual dogs for a truncated retrotransposon inserted into exon 8 of GRM1. RESULTS The GWAS indicated that the BNAt locus was in a canine chromosome 1 region that contained candidate gene GRM1. Resequencing this gene from BNAt-affected puppies indicated that exon 8 was interrupted by the insertion of a 5'-truncated retrotransposon. All 15 BNAt-affected puppies were homozygous for the insert, whereas all other Cotons de Tulear were heterozygotes (n = 43) or homozygous (n = 54) for the ancestral allele. None of the 87 dogs from 12 other breeds had the insertion allele. CONCLUSIONS AND CLINICAL IMPORTANCE BNAt is caused by a retrotransposon inserted into exon 8 of GRM1. A DNA test for the GRM1 retrotransposon insert can be used for genetic counseling and to confirm the diagnosis of BNAt.
Collapse
Affiliation(s)
- R Zeng
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sheffler DJ, Gregory KJ, Rook JM, Conn PJ. Allosteric modulation of metabotropic glutamate receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 62:37-77. [PMID: 21907906 DOI: 10.1016/b978-0-12-385952-5.00010-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of receptor subtype-selective ligands by targeting allosteric sites of G protein-coupled receptors (GPCRs) has proven highly successful in recent years. One GPCR family that has greatly benefited from this approach is the metabotropic glutamate receptors (mGlus). These family C GPCRs participate in the neuromodulatory actions of glutamate throughout the CNS, where they play a number of key roles in regulating synaptic transmission and neuronal excitability. A large number of mGlu subtype-selective allosteric modulators have been identified, the majority of which are thought to bind within the transmembrane regions of the receptor. These modulators can either enhance or inhibit mGlu functional responses and, together with mGlu knockout mice, have furthered the establishment of the physiologic roles of many mGlu subtypes. Numerous pharmacological and receptor mutagenesis studies have been aimed at providing a greater mechanistic understanding of the interaction of mGlu allosteric modulators with the receptor, which have revealed evidence for common allosteric binding sites across multiple mGlu subtypes and the presence for multiple allosteric sites within a single mGlu subtype. Recent data have also revealed that mGlu allosteric modulators can display functional selectivity toward particular signal transduction cascades downstream of an individual mGlu subtype. Studies continue to validate the therapeutic utility of mGlu allosteric modulators as a potential therapeutic approach for a number of disorders including anxiety, schizophrenia, Parkinson's disease, and Fragile X syndrome.
Collapse
Affiliation(s)
- Douglas J Sheffler
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
39
|
Nicoletti F, Bockaert J, Collingridge GL, Conn PJ, Ferraguti F, Schoepp DD, Wroblewski JT, Pin JP. Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology 2010; 60:1017-41. [PMID: 21036182 DOI: 10.1016/j.neuropharm.2010.10.022] [Citation(s) in RCA: 483] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/15/2010] [Accepted: 10/21/2010] [Indexed: 12/24/2022]
Abstract
Metabotropic glutamate (mGlu) receptors were discovered in the mid 1980s and originally described as glutamate receptors coupled to polyphosphoinositide hydrolysis. Almost 6500 articles have been published since then, and subtype-selective mGlu receptor ligands are now under clinical development for the treatment of a variety of disorders such as Fragile-X syndrome, schizophrenia, Parkinson's disease and L-DOPA-induced dyskinesias, generalized anxiety disorder, chronic pain, and gastroesophageal reflux disorder. Prof. Erminio Costa was linked to the early times of the mGlu receptor history, when a few research groups challenged the general belief that glutamate could only activate ionotropic receptors and all metabolic responses to glutamate were secondary to calcium entry. This review moves from those nostalgic times to the most recent advances in the physiology and pharmacology of mGlu receptors, and highlights the role of individual mGlu receptor subtypes in the pathophysiology of human disorders. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- F Nicoletti
- Department of Physiology and Pharmacology, University of Rome, Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Lesage A, Steckler T. Metabotropic glutamate mGlu1 receptor stimulation and blockade: therapeutic opportunities in psychiatric illness. Eur J Pharmacol 2010; 639:2-16. [PMID: 20371230 DOI: 10.1016/j.ejphar.2009.12.043] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 12/15/2009] [Accepted: 12/18/2009] [Indexed: 12/26/2022]
Abstract
Metabotropic glutamate mGlu(1) receptors play a modulatory role in the nervous system. They enhance cell excitability, modulate synaptic neurotransmission and are involved in synaptic plasticity. During the last 10 years, several selective metabotropic glutamate mGlu(1) receptor competitive antagonists and potentiators have been discovered. These pharmacological tools, together with early and later work in metabotropic glutamate mGlu(1) receptor mutant mice have allowed studying the role of the receptor in various aspects of psychiatric illnesses such as anxiety, depression and schizophrenia. We here review the data on selective metabotropic glutamate mGlu(1) receptor antagonists in support of their potential as anxiolytic and antidepressant treatments. We propose a rationale for the development of metabotropic glutamate mGlu(1) receptor positive allosteric modulators for the treatment of schizophrenia. Potential side effects of blockade and activation of metabotropic glutamate mGlu(1) receptors are addressed, with special focus on the differential effects of metabotropic glutamate mGlu(1) receptor antagonists in cognition models with positive reinforcement versus those that use aversive learning procedures. Further development of negative allosteric modulators and more drug-like positive allosteric modulators will be required in order to decipher the therapeutic efficacy and safety margin of these compounds in the clinic.
Collapse
Affiliation(s)
- Anne Lesage
- Department of CNS-Neuroscience, Research and Early Development, Johnson and Johnson Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | | |
Collapse
|
41
|
Pharmacological effects of metabotropic glutamate receptor ligands on prepulse inhibition in DBA/2J mice. Eur J Pharmacol 2010; 639:99-105. [PMID: 20371235 DOI: 10.1016/j.ejphar.2010.03.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 08/19/2009] [Accepted: 03/25/2010] [Indexed: 11/22/2022]
Abstract
Schizophrenic patients typically exhibit impairment of sensorimotor gating, which can be modeled in animals using acoustic prepulse inhibition of the startle. Both classical and atypical antipsychotics have been shown to improve prepulse inhibition in DBA/2J mice, a non-pharmacological model for impaired sensorimotor gating. The purpose of the present study was to clarify whether metabotropic glutamate receptors participate in control of sensorimotor gating. We evaluated various metabotropic glutamate receptor ligands on prepulse inhibition in DBA/2J mice. This basal level of prepulse inhibition in DBA/2J mice was increased by only the mGlu(1) receptor antagonists [2-cyclopropyl-5-[1-(2-fluoro-3-pyridinyl)-5-methyl-1H-1,2,3-triazol-4-yl]-2,3-dihydro-1H-isoindol-1-one] (CFMTI), 6-amino-N-cyclohexyl-N,3-dimethylthiazolo[3,2-alpha]benzimidazole-2-carboxamide hydrochloride (YM-298198), and (3,4-dihydro-2H-pyrano[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone (JNJ16259685). There was no effect after treatments with the mGlu(5) receptor antagonist 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP), the mGlu(2/3) receptor agonist (-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY379268), the mGlu(2/3) receptor antagonist (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495), the mGlu(7) receptor agonist N,N'-dibenzhydrylethane-1,2-diamine dihydrochloride (AMN082), the mGlu(7) receptor antagonist 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazonolo[4,5-c]pyridin-4(5H)-one (MMPIP), or the mGlu(8) receptor agonist (S)-3,4-dicarboxyphenylglycine (DCPG). These findings indicate that inhibition of mGlu(1) receptor selectively increases prepulse inhibition in DBA/2J mice and suggest that mGlu(1) receptor antagonists could be a novel treatment for some aspects of schizophrenia.
Collapse
|
42
|
Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 2010; 50:295-322. [PMID: 20055706 DOI: 10.1146/annurev.pharmtox.011008.145533] [Citation(s) in RCA: 1348] [Impact Index Per Article: 96.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The metabotropic glutamate receptors (mGluRs) are family C G-protein-coupled receptors that participate in the modulation of synaptic transmission and neuronal excitability throughout the central nervous system. The mGluRs bind glutamate within a large extracellular domain and transmit signals through the receptor protein to intracellular signaling partners. A great deal of progress has been made in determining the mechanisms by which mGluRs are activated, proteins with which they interact, and orthosteric and allosteric ligands that can modulate receptor activity. The widespread expression of mGluRs makes these receptors particularly attractive drug targets, and recent studies continue to validate the therapeutic utility of mGluR ligands in neurological and psychiatric disorders such as Alzheimer's disease, Parkinson's disease, anxiety, depression, and schizophrenia.
Collapse
Affiliation(s)
- Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37212, USA.
| | | |
Collapse
|
43
|
van den Buuse M. Modeling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophr Bull 2010; 36:246-70. [PMID: 19900963 PMCID: PMC2833124 DOI: 10.1093/schbul/sbp132] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, there have been huge advances in the use of genetically modified mice to study pathophysiological mechanisms involved in schizophrenia. This has allowed rapid progress in our understanding of the role of several proposed gene mechanisms in schizophrenia, and yet this research has also revealed how much still remains unresolved. Behavioral studies in genetically modified mice are reviewed with special emphasis on modeling psychotic-like behavior. I will particularly focus on observations on locomotor hyperactivity and disruptions of prepulse inhibition (PPI). Recommendations are included to address pharmacological and methodological aspects in future studies. Mouse models of dopaminergic and glutamatergic dysfunction are then discussed, reflecting the most important and widely studied neurotransmitter systems in schizophrenia. Subsequently, psychosis-like behavior in mice with modifications in the most widely studied schizophrenia susceptibility genes is reviewed. Taken together, the available studies reveal a wealth of available data which have already provided crucial new insight and mechanistic clues which could lead to new treatments or even prevention strategies for schizophrenia.
Collapse
Affiliation(s)
- Maarten van den Buuse
- Mental Health Research Institute of Victoria, Parkville, Melbourne, Victoria 3052, Australia.
| |
Collapse
|
44
|
Gaspar PA, Bustamante ML, Silva H, Aboitiz F. Molecular mechanisms underlying glutamatergic dysfunction in schizophrenia: therapeutic implications. J Neurochem 2009; 111:891-900. [PMID: 19686383 DOI: 10.1111/j.1471-4159.2009.06325.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Early models for the etiology of schizophrenia focused on dopamine neurotransmission because of the powerful anti-psychotic action of dopamine antagonists. Nevertheless, recent evidence increasingly supports a primarily glutamatergic dysfunction in this condition, where dopaminergic disbalance is a secondary effect. A current model for the pathophysiology of schizophrenia involves a dysfunctional mechanism by which the NMDA receptor (NMDAR) hypofunction leads to a dysregulation of GABA fast- spiking interneurons, consequently disinhibiting pyramidal glutamatergic output and disturbing the signal-to-noise ratio. This mechanism might explain better than other models some cognitive deficits observed in this disease, as well as the dopaminergic alterations and therapeutic effect of anti-psychotics. Although the modulation of glutamate activity has, in principle, great therapeutic potential, a side effect of NMDAR overactivation is neurotoxicity, which accelerates neuropathological alterations in this illness. We propose that metabotropic glutamate receptors can have a modulatory effect over the NMDAR and regulate excitotoxity mechanisms. Therefore, in our view metabotropic glutamate receptors constitute a highly promising target for future drug treatment in this disease.
Collapse
Affiliation(s)
- Pablo A Gaspar
- Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Casilla, Santiago, Chile.
| | | | | | | |
Collapse
|
45
|
Inta D, Monyer H, Sprengel R, Meyer-Lindenberg A, Gass P. Mice with genetically altered glutamate receptors as models of schizophrenia: a comprehensive review. Neurosci Biobehav Rev 2009; 34:285-94. [PMID: 19651155 DOI: 10.1016/j.neubiorev.2009.07.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Revised: 07/24/2009] [Accepted: 07/24/2009] [Indexed: 01/28/2023]
Abstract
Recent clinical evidence for the effectiveness of new antipsychotic drugs that specifically target glutamate receptors has rekindled interest in the glutamatergic system regarding pathophysiology and treatment of schizophrenia. The glutamatergic hypothesis of schizophrenia was triggered by the clinical/behavioural observation that NMDA receptor antagonists can induce psychosis in humans and abnormal behaviour with schizophrenia-like symptoms in animals. Initial models focused on NMDA receptor hypofunction as a potential pathogenetic mechanism. More recent genetic and pharmacological studies revealed that malfunction of other components of the glutamatergic system might also be relevant in explaining specific symptoms of this complex disease. Here, we review mutant mouse models with relevance for schizophrenia. These rodent models, in which specific glutamate receptor subtypes or various components of their intracellular transduction machinery are genetically altered, permit a detailed dissection of the contribution of different components of the glutamate system in inducing schizophrenia-like behaviours. They may provide insight into the pathophysiology of schizophrenia and prove useful in the development of new therapeutics.
Collapse
Affiliation(s)
- Dragos Inta
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, J5, 68159 Mannheim, Germany.
| | | | | | | | | |
Collapse
|
46
|
Bellesi M, Melone M, Gubbini A, Battistacci S, Conti F. GLT-1 upregulation impairs prepulse inhibition of the startle reflex in adult rats. Glia 2009; 57:703-13. [PMID: 18985735 DOI: 10.1002/glia.20798] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We tested the hypothesis that glutamate transporter GLT-1 (also known as EAAT2) plays a role in the regulation of prepulse inhibition (PPI) of the acoustic startle reflex, a simple form of information processing which is reduced in schizophrenia. To do this, we studied PPI in rats treated with ceftriaxone (200 mg/kg/day for 8 days), an antibiotic that selectively enhances GLT-1 expression and activity. We showed that ceftriaxone-induced GLT-1 upregulation is associated with impaired PPI of the startle, that this effect is reversed by dihydrokainate, a GLT-1 antagonist, that GLT-1 expression correlates negatively with PPI, and that PPI normalizes when GLT-1a levels return to baseline. Our data indicate that GLT-1 regulates PPI of the startle reflex.
Collapse
Affiliation(s)
- Michele Bellesi
- Dipartimento di Neuroscienze, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | | |
Collapse
|
47
|
Powell SB, Zhou X, Geyer MA. Prepulse inhibition and genetic mouse models of schizophrenia. Behav Brain Res 2009; 204:282-94. [PMID: 19397931 DOI: 10.1016/j.bbr.2009.04.021] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 04/15/2009] [Accepted: 04/19/2009] [Indexed: 12/26/2022]
Abstract
Mutant mouse models related to schizophrenia have been based primarily on the pathophysiology of schizophrenia, the known effects of antipsychotic drugs, and candidate genes for schizophrenia. Sensorimotor gating deficits in schizophrenia patients, as indexed by measures of prepulse inhibition of startle (PPI), have been well characterized and suggested to meet the criteria as a useful endophenotype in human genetic studies. PPI refers to the ability of a non-startling "prepulse" to inhibit responding to the subsequent startling stimulus or "pulse." Because of the cross-species nature of PPI, it has been used primarily in pharmacological animal models to screen putative antipsychotic medications. As techniques in molecular genetics have progressed over the past 15 years, PPI has emerged as a phenotype used in assessing genetic mouse models of relevance to schizophrenia. In this review, we provide a selected overview of the use of PPI in mouse models of schizophrenia and discuss the contribution and usefulness of PPI as a phenotype in the context of genetic mouse models. To that end, we discuss mutant mice generated to address hypotheses regarding the pathophysiology of schizophrenia and candidate genes (i.e., hypothesis driven). We also briefly discuss the usefulness of PPI in phenotype-driven approaches in which a PPI phenotype could lead to "bottom up" approaches of identifying novel genes of relevance to PPI (i.e., hypothesis generating).
Collapse
Affiliation(s)
- Susan B Powell
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr. MC0804, La Jolla, CA 92093, United States.
| | | | | |
Collapse
|
48
|
Ohgake S, Shimizu E, Hashimoto K, Okamura N, Koike K, Koizumi H, Fujisaki M, Kanahara N, Matsuda S, Sutoh C, Matsuzawa D, Muramatsu H, Muramatsu T, Iyo M. Dopaminergic hypofunctions and prepulse inhibition deficits in mice lacking midkine. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:541-6. [PMID: 19217924 DOI: 10.1016/j.pnpbp.2009.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 02/08/2009] [Accepted: 02/08/2009] [Indexed: 02/04/2023]
Abstract
Midkine is a 13-kDa retinoic acid-induced heparin-binding growth factor involved in various biological phenomena such as cell migration, neurogenesis, and tissue repair. We previously demonstrated that midkine-deficient (Mdk(-/-)) mice exhibited a delayed hippocampal development with impaired working memory and increased anxiety only at the age of 4 weeks. To assess whether midkine gene could play important roles in development and maintenance of central nervous system, we investigated biochemical and behavioral parameters in dopamine and glutamate neurotransmission of Mdk(-/-) mice. The Mdk(-/-) mice exhibited a hypodopaminergic state (i.e., decreased levels of dopamine and its receptors in the striatum) with no alterations of glutamatergic system (i.e., normal level of glutamate, glutamine, glycine, d-serine, l-serine, and NMDA receptors in the frontal cortex and hippocampus). We also found prepulse inhibition deficits reversed by clozapine and haloperidol in the Mdk(-/-) mice. Our results suggested that midkine deficiency may be related to neurochemical and behavioral dysfunctions in dopaminergic system.
Collapse
MESH Headings
- Acoustic Stimulation/methods
- Analysis of Variance
- Animals
- Behavior, Animal/drug effects
- Chromatography, High Pressure Liquid/methods
- Cytokines/deficiency
- Dopamine/metabolism
- Dopamine Antagonists/metabolism
- Dopamine Antagonists/pharmacology
- Dopamine Plasma Membrane Transport Proteins/metabolism
- Dose-Response Relationship, Drug
- Exploratory Behavior/physiology
- Interpersonal Relations
- Mice
- Mice, Inbred C57BL/metabolism
- Mice, Inbred DBA/metabolism
- Mice, Knockout
- Midkine
- Motor Activity/drug effects
- Motor Activity/genetics
- Neural Inhibition/drug effects
- Neural Inhibition/genetics
- Protein Binding/drug effects
- Protein Binding/genetics
- Radioligand Assay/methods
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/metabolism
- Reflex, Startle/drug effects
- Reflex, Startle/genetics
- Tritium/metabolism
Collapse
Affiliation(s)
- Shintaro Ohgake
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ferraguti F, Crepaldi L, Nicoletti F. Metabotropic glutamate 1 receptor: current concepts and perspectives. Pharmacol Rev 2009; 60:536-81. [PMID: 19112153 DOI: 10.1124/pr.108.000166] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Almost 25 years after the first report that glutamate can activate receptors coupled to heterotrimeric G-proteins, tremendous progress has been made in the field of metabotropic glutamate receptors. Now, eight members of this family of glutamate receptors, encoded by eight different genes that share distinctive structural features have been identified. The first cloned receptor, the metabotropic glutamate (mGlu) receptor mGlu1 has probably been the most extensively studied mGlu receptor, and in many respects it represents a prototypical subtype for this family of receptors. Its biochemical, anatomical, physiological, and pharmacological characteristics have been intensely investigated. Together with subtype 5, mGlu1 receptors constitute a subgroup of receptors that couple to phospholipase C and mobilize Ca(2+) from intracellular stores. Several alternatively spliced variants of mGlu1 receptors, which differ primarily in the length of their C-terminal domain and anatomical localization, have been reported. Use of a number of genetic approaches and the recent development of selective antagonists have provided a means for clarifying the role played by this receptor in a number of neuronal systems. In this article we discuss recent advancements in the pharmacology and concepts about the intracellular transduction and pathophysiological role of mGlu1 receptors and review earlier data in view of these novel findings. The impact that this new and better understanding of the specific role of these receptors may have on novel treatment strategies for a variety of neurological and psychiatric disorders is considered.
Collapse
Affiliation(s)
- Francesco Ferraguti
- Department of Pharmacology, Innsbruck Medical University, Peter-Mayr Strasse 1a, Innsbruck A-6020, Austria.
| | | | | |
Collapse
|
50
|
Normal electrocortical facilitation but abnormal target identification during visual sustained attention in schizophrenia. J Neurosci 2009; 28:13411-8. [PMID: 19074014 DOI: 10.1523/jneurosci.4095-08.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Attentional deficits in schizophrenia have been investigated using target identification tasks which conflate the abilities to successfully (1) attend to possible target locations and (2) detect target events. Whether compromised attentional selectivity or abnormal target detection causes schizophrenia subjects' poor performance on visual attention tasks, therefore, is unknown. To address this issue, we measured the neural activity (using electroencephalography) of 17 schizophrenia and 17 healthy subjects during a target identification task. Participants viewed superimposed images (horizontal and vertical bars differing in color) and attended to one image to identify bar width changes in specific locations. Bars were frequency tagged so attention directed to unique parts of the images could be tracked. Steady-state visual evoked potentials (ssVEPs) were used to quantify attention-related neural activity to specific parts of the visual images. Behavioral performance and event-related potentials (ERPs) in response to the target events were used to quantify target detection abilities. For both schizophrenia and healthy subjects, attending to specific parts of the attended image enhanced brain activity related to attended bars and reduced activity evoked by unattended bars. Activity in relation to the spatially overlapping unattended image was unaffected. Schizophrenia patients, however, were impaired on target detection abilities on both behavioral and brain activity measures. Target-related behavioral and brain activity measures were highly correlated in both groups. These findings indicate that deficient target detection rather than compromised attentional selectivity accounts for previously reported visual attention deficits in schizophrenia.
Collapse
|