1
|
Jalise SZ, Habibi S, Fath-Bayati L, Habibi MA, Ababzadeh S, Hosseinzadeh F. Role and Interplay of Different Signaling Pathways Involved in Sciatic Nerve Regeneration. J Mol Neurosci 2024; 74:108. [PMID: 39531101 DOI: 10.1007/s12031-024-02286-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Regeneration of the sciatic nerve is a sophisticated process that involves the interplay of several signaling pathways that orchestrate the cellular responses critical to regeneration. Among the key pathways are the mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/AKT, cyclic adenosine monophosphate (cAMP), and Janus kinase/signal transducers and transcription activators (JAK/STAT) pathways. In particular, the cAMP pathway modulates neuronal survival and axonal regrowth. It influences various cellular behaviors and gene expression that are essential for nerve regeneration. MAPK is indispensable for Schwann cell differentiation and myelination, whereas PI3K/AKT is integral to the transcription, translation, and cell survival processes that are vital for nerve regeneration. Furthermore, GTP-binding proteins, including those of the Ras homolog gene family (Rho), regulate neural cell adhesion, migration, and survival. Notch signaling also appears to be effective in the early stages of nerve regeneration and in preventing skeletal muscle fibrosis after injury. Understanding the intricate mechanisms and interactions of these pathways is vital for the development of effective therapeutic strategies for sciatic nerve injuries. This review underscores the need for further research to fill existing knowledge gaps and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Saeedeh Zare Jalise
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran
| | - Sina Habibi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leyla Fath-Bayati
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Amin Habibi
- Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
| | - Shima Ababzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran.
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran.
| | - Faezeh Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran.
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran.
- Clinical Trial Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
2
|
Jiang BC, Ling YJ, Xu ML, Gu J, Wu XB, Sha WL, Tian T, Bai XH, Li N, Jiang CY, Chen O, Ma LJ, Zhang ZJ, Qin YB, Zhu M, Yuan HJ, Wu LJ, Ji RR, Gao YJ. Follistatin drives neuropathic pain in mice through IGF1R signaling in nociceptive neurons. Sci Transl Med 2024; 16:eadi1564. [PMID: 39413164 DOI: 10.1126/scitranslmed.adi1564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024]
Abstract
Neuropathic pain is a debilitating chronic condition that lacks effective treatment. The role of cytokine- and chemokine-mediated neuroinflammation in its pathogenesis has been well documented. Follistatin (FST) is a secreted protein known to antagonize the biological activity of cytokines in the transforming growth factor-β (TGF-β) superfamily. The involvement of FST in neuropathic pain and the underlying mechanism remain largely unknown. Here, we report that FST was up-regulated in A-fiber sensory neurons after spinal nerve ligation (SNL) in mice. Inhibition or deletion of FST alleviated neuropathic pain and reduced the nociceptive neuron hyperexcitability induced by SNL. Conversely, intrathecal or intraplantar injection of recombinant FST, or overexpression of FST in the dorsal root ganglion (DRG) neurons, induced pain hypersensitivity. Furthermore, exogenous FST increased neuronal excitability in nociceptive neurons. The biolayer interferometry (BLI) assay and coimmunoprecipitation (co-IP) demonstrated direct binding of FST to the insulin-like growth factor-1 receptor (IGF1R), and IGF1R inhibition reduced FST-induced activation of extracellular signal-regulated kinase (ERK) and protein kinase B (AKT), as well as neuronal hyperexcitability. Further co-IP analysis revealed that the N-terminal domain of FST exhibits the highest affinity for IGF1R, and blocking this interaction with a peptide derived from FST attenuated Nav1.7-mediated neuronal hyperexcitability and neuropathic pain after SNL. In addition, FST enhanced neuronal excitability in human DRG neurons through IGF1R. Collectively, our findings suggest that FST, released from A-fiber neurons, enhances Nav1.7-mediated hyperexcitability of nociceptive neurons by binding to IGF1R, making it a potential target for neuropathic pain treatment.
Collapse
Affiliation(s)
- Bao-Chun Jiang
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Yue-Juan Ling
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Meng-Lin Xu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Jun Gu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Xiao-Bo Wu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Wei-Lin Sha
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Tian Tian
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Xue-Hui Bai
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Nan Li
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518052, China
| | - Chang-Yu Jiang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518052, China
| | - Ouyang Chen
- Center for Translational Pain Medicine, Departments of Anesthesiology, Cell Biology, and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ling-Jie Ma
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Zhi-Jun Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Yi-Bin Qin
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| | - Meixuan Zhu
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hong-Jie Yuan
- Department of Pain Management, Nantong Hospital of Traditional Chinese Medicine, Jiangsu 226001, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Departments of Anesthesiology, Cell Biology, and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yong-Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Department of Pain Management of the Affiliated Hospital, Nantong University, Jiangsu 226019, China
| |
Collapse
|
3
|
Qiao LY. Satellite Glial Cells Bridge Sensory Neuron Crosstalk in Visceral Pain and Cross-Organ Sensitization. J Pharmacol Exp Ther 2024; 390:213-221. [PMID: 38777604 PMCID: PMC11264254 DOI: 10.1124/jpet.123.002061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Following colonic inflammation, the uninjured bladder afferent neurons are also activated. The mechanisms and pathways underlying this sensory neuron cross-activation (from injured neurons to uninjured neurons) are not fully understood. Colonic and bladder afferent neurons reside in the same spinal segments and are separated by satellite glial cells (SGCs) and extracellular matrix in dorsal root ganglia (DRG). SGCs communicate with sensory neurons in a bidirectional fashion. This review summarizes the differentially regulated genes/proteins in the injured and uninjured DRG neurons and explores the role of SGCs in regulation of sensory neuron crosstalk in visceral cross-organ sensitization. The review also highlights the paracrine pathways in mediating neuron-SGC and SGC-neuron coupling with an emphasis on the neurotrophins and purinergic systems. Finally, I discuss the results from recent RNAseq profiling of SGCs to reveal useful molecular markers for characterization, functional study, and therapeutic targets of SGCs. SIGNIFICANCE STATEMENT: Satellite glial cells (SGCs) are the largest glial subtypes in sensory ganglia and play a critical role in mediating sensory neuron crosstalk, an underlying mechanism in colon-bladder cross-sensitization. Identification of novel and unique molecular markers of SGCs can advance the discovery of therapeutic targets in treatment of chronic pain including visceral pain comorbidity.
Collapse
Affiliation(s)
- Liya Y Qiao
- Department of Physiology and Biophysics, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
4
|
Bolívar S, Sanz E, Ovelleiro D, Zochodne DW, Udina E. Neuron-specific RNA-sequencing reveals different responses in peripheral neurons after nerve injury. eLife 2024; 12:RP91316. [PMID: 38742628 PMCID: PMC11093584 DOI: 10.7554/elife.91316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Peripheral neurons are heterogeneous and functionally diverse, but all share the capability to switch to a pro-regenerative state after nerve injury. Despite the assumption that the injury response is similar among neuronal subtypes, functional recovery may differ. Understanding the distinct intrinsic regenerative properties between neurons may help to improve the quality of regeneration, prioritizing the growth of axon subpopulations to their targets. Here, we present a comparative analysis of regeneration across four key peripheral neuron populations: motoneurons, proprioceptors, cutaneous mechanoreceptors, and nociceptors. Using Cre/Ai9 mice that allow fluorescent labeling of neuronal subtypes, we found that nociceptors showed the greater regeneration after a sciatic crush, followed by motoneurons, mechanoreceptors, and, finally, proprioceptors. By breeding these Cre mice with Ribotag mice, we isolated specific translatomes and defined the regenerative response of these neuronal subtypes after axotomy. Only 20% of the regulated genes were common, revealing a diverse response to injury among neurons, which was also supported by the differential influence of neurotrophins among neuron subtypes. Among differentially regulated genes, we proposed MED12 as a specific regulator of the regeneration of proprioceptors. Altogether, we demonstrate that the intrinsic regenerative capacity differs between peripheral neuron subtypes, opening the door to selectively modulate these responses.
Collapse
Affiliation(s)
- Sara Bolívar
- Institute of Neurosciences, and Department Cell Biology, Physiology and Immunology, Universitat Autònoma de BarcelonaBellaterraSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadridSpain
| | - Elisenda Sanz
- Institute of Neurosciences, and Department Cell Biology, Physiology and Immunology, Universitat Autònoma de BarcelonaBellaterraSpain
| | - David Ovelleiro
- Peripheral Nervous System, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital CampusBarcelonaSpain
| | - Douglas W Zochodne
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
| | - Esther Udina
- Institute of Neurosciences, and Department Cell Biology, Physiology and Immunology, Universitat Autònoma de BarcelonaBellaterraSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
5
|
Liu D, Liu M, Yu P, Li H. Brain-derived neurotrophic factor and nerve growth factor expression in endometriosis: A systematic review and meta-analysis. Taiwan J Obstet Gynecol 2023; 62:634-639. [PMID: 37678988 DOI: 10.1016/j.tjog.2023.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 09/09/2023] Open
Abstract
Endometriosis is diagnosed by laparoscopic surgery. The availability of biomarkers can help understand the pathophysiology and aid in the diagnosis of the condition. In this context, this review aimed to examine levels of expression of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are increased amongst patients with endometriosis and if they can serve as a potential biomarker. PubMed, CENTRAL, Scopus, Web of Science, and Embase databases were searched for studies comparing BDNF or NGF levels amongst endometriosis patients and controls. Data were pooled for serum and tissue levels of BDNF and NGF. Ten fulfilled the inclusion criteria. On comparing BDNF levels, it was noted that endometrial tissue had significantly higher expression of BDNF levels as compared to controls (SMD: 1.73 95% CI: 0.64, 2.82 I2 = 89%). Similarly, the meta-analysis found significantly higher serum levels of BDNF in endometriosis patients as compared to controls (SMD: 1.66 95% CI: 0.73, 2.59 I2 = 95%). Pooled analysis showed significantly increased levels of NGF in endometrial tissue as compared to controls (SMD: 4.15 95% CI: 0.11, 8.18 I2 = 98%) but with unstable results on sensitivity analysis. Only one study showed higher levels of NGF in serum amongst endometriosis patients. Limited data shows higher expression of BDNF in endometrial lesions and increased serum levels of BDNF in endometriosis patients. Similar results were noted for NGF but with very scarce data. Further research is needed to establish BDNF and NGF as suitable biomarkers for the disease.
Collapse
Affiliation(s)
- Danqiu Liu
- Department of Gynaecology and Obstetrics, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang Province 315000, China.
| | - Minjie Liu
- Department of Obstetrics, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang Province 315000, China
| | - Pinling Yu
- Department of Gynaecology and Obstetrics, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang Province 315000, China
| | - Hongfeng Li
- Department of Gynaecology and Obstetrics, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang Province 315000, China
| |
Collapse
|
6
|
Zajączkowska R, Pawlik K, Ciapała K, Piotrowska A, Ciechanowska A, Rojewska E, Kocot-Kępska M, Makuch W, Wordliczek J, Mika J. Mirogabalin Decreases Pain-like Behaviors by Inhibiting the Microglial/Macrophage Activation, p38MAPK Signaling, and Pronociceptive CCL2 and CCL5 Release in a Mouse Model of Neuropathic Pain. Pharmaceuticals (Basel) 2023; 16:1023. [PMID: 37513935 PMCID: PMC10384153 DOI: 10.3390/ph16071023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Neuropathic pain is a chronic condition that significantly reduces the quality of life of many patients as a result of ineffective pain relief therapy. For that reason, looking for new analgesics remains an important issue. Mirogabalin is a new gabapentinoid that is a specific ligand for the α2σ-1 and α2σ-2 subunits of voltage-gated calcium channels. In the present study, we compared the analgesic effect of pregabalin and mirogabalin in a neuropathic pain chronic constriction injury (CCI) of the sciatic nerve in a mouse model. The main purpose of our study was to determine the effectiveness of mirogabalin administered both once and repeatedly and to explain how the drug influences highly activated cells at the spinal cord level in neuropathy. We also sought to understand whether mirogabalin modulates the selected intracellular pathways (p38MAPK, ERK, JNK) and chemokines (CCL2, CCL5) important for nociceptive transmission, which is crucial information from a clinical perspective. First, our study provides evidence that a single mirogabalin administration diminishes tactile hypersensitivity more effectively than pregabalin. Second, research shows that several indirect mechanisms may be responsible for the beneficial analgesic effect of mirogabalin. This study reports that repeated intraperitoneally (i.p.) mirogabalin administration strongly prevents spinal microglia/macrophage activation evoked by nerve injury, slightly suppresses astroglia and neutrophil infiltration, and reduces the p38MAPK levels associated with neuropathic pain, as measured on Day 7. Moreover, mirogabalin strongly diminished the levels of the pronociceptive chemokines CCL2 and CCL5. Our results indicate that mirogabalin may represent a new strategy for the effective pharmacotherapy of neuropathic pain.
Collapse
Affiliation(s)
- Renata Zajączkowska
- Department of Interdisciplinary Intensive Care, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Anna Piotrowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Magdalena Kocot-Kępska
- Department of Pain Research and Treatment, Jagiellonian University Medical College, 31-501 Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Jerzy Wordliczek
- Department of Interdisciplinary Intensive Care, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| |
Collapse
|
7
|
Huang Y, Zhang X, Zou Y, Yuan Q, Xian YF, Lin ZX. Quercetin Ameliorates Neuropathic Pain after Brachial Plexus Avulsion via Suppressing Oxidative Damage through Inhibition of PKC/MAPK/ NOX Pathway. Curr Neuropharmacol 2023; 21:2343-2361. [PMID: 37533160 PMCID: PMC10556381 DOI: 10.2174/1570159x21666230802144940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Brachial plexus avulsion (BPA) animally involves the separation of spinal nerve roots themselves and the correlative spinal cord segment, leading to formidable neuropathic pain of the upper limb. METHODS The right seventh cervical (C7) ventral and dorsal roots were avulsed to establish a neuropathic pain model in rats. After operation, rats were treated with quercetin (QCN) by intragastric administration for 1 week. The effects of QCN were evaluated using mechanical allodynia tests and biochemical assay kits. RESULTS QCN treatment significantly attenuated the avulsion-provoked mechanical allodynia, elevated the levels of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) and total antioxidant capacity (TAC) in the C7 spinal dorsal horn. In addition, QCN administration inhibited the activations of macrophages, microglia and astrocytes in the C6 dorsal root ganglion (DRG) and C6-8 spinal dorsal horn, as well as attenuated the release of purinergic 2X (P2X) receptors in C6 DRG. The molecular mechanism underlying the above alterations was found to be related to the suppression of the PKC/MAPK/NOX signal pathway. To further study the anti-oxidative effects of QCN, we applied QCN on the H2O2-induced BV-2 cells in vitro, and the results attested that QCN significantly ameliorated the H2O2-induced ROS production in BV-2 cells, inhibited the H2O2-induced activation of PKC/MAPK/NOX pathway. CONCLUSION Our study for the first time provided evidence that QCN was able to attenuate pain hypersensitivity following the C7 spinal root avulsion in rats, and the molecular mechanisms involve the reduction of both neuro-inflammatory infiltration and oxidative stress via suppression of P2X receptors and inhibition of the activation of PKC/MAPK/NOX pathway. The results indicate that QCN is a natural compound with great promise worthy of further development into a novel therapeutic method for the treatment of BPA-induced neuropathic pain.
Collapse
Affiliation(s)
- Yanfeng Huang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Xie Zhang
- Research Center for Integrative Medicine of Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong. P.R. China
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong. P.R. China
| | - Yidan Zou
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Qiuju Yuan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Shatin, N.T., Hong Kong SAR, China
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Translocator Protein 18 kDa (TSPO) as a Novel Therapeutic Target for Chronic Pain. Neural Plast 2022; 2022:8057854. [PMID: 36071748 PMCID: PMC9444456 DOI: 10.1155/2022/8057854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/19/2022] [Accepted: 08/13/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic pain is an enormous modern public health problem, with significant numbers of people debilitated by chronic pain from a variety of etiologies. Translocator protein 18 kDa (TSPO) was discovered in 1977 as a peripheral benzodiazepine receptor. It is a five transmembrane domain protein, mainly localized in the outer mitochondrial membrane. Recent and increasing studies have found changes in TSPO and its ligands in various chronic pain models. Reversing their expressions has been shown to alleviate chronic pain in these models, illustrating the effects of TSPO and its ligands. Herein, we review recent evidence and the mechanisms of TSPO in the development of chronic pain associated with peripheral nerve injury, spinal cord injury, cancer, and inflammatory responses. The cumulative evidence indicates that TSPO-based therapy may become an alternative strategy for treating chronic pain.
Collapse
|
9
|
Differential Activation of pERK1/2 and c-Fos Following Injury to Different Regions of Primary Sensory Neuron. Life (Basel) 2022; 12:life12050752. [PMID: 35629419 PMCID: PMC9147482 DOI: 10.3390/life12050752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/30/2022] Open
Abstract
Nerve injury causes hyperexcitability of the dorsal root ganglion (DRG) and spinal dorsal horn (DH) neurons, which results in neuropathic pain. We have previously demonstrated that partial dorsal rhizotomy (PDR) produced less severe pain-like behavior than chronic constriction injury (CCI) or chronic compression of DRG (CCD) and did not enhance DRG neuronal excitability. However, the mechanisms underlying such discrepancy remain unclear. This study was designed to compare the activation of phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) in DRG and DH, and c-Fos in DH following treatments of CCI, CCD, and PDR. We confirmed that thermal hyperalgesia produced by PDR was less severe than that produced by CCI or CCD. We showed that pERK1/2 in DRG and DH was greatly activated by CCI or CCD, whereas PDR produced only transient and mild pERK1/2 activation. CCI, CCD, and PDR induced robust c-Fos expression in DH; nevertheless, c-Fos+ neurons following PDR were much fewer than that following CCI or CCD. Blocking retrograde axonal transport by colchicine proximal to the CCI injury site diminished thermal hyperalgesia and inhibited pERK1/2 and c-Fos activation. These findings demonstrate that less severe pain-like behavior produced by PDR than CCI or CCD attributes to less activation of pERK1/2 and c-Fos. Such neurochemical activation partially relies on retrograde axonal transport of certain “injury signals” from the peripheral injured site to DRG somata.
Collapse
|
10
|
Discrepancy in the Usage of GFAP as a Marker of Satellite Glial Cell Reactivity. Biomedicines 2021; 9:biomedicines9081022. [PMID: 34440226 PMCID: PMC8391720 DOI: 10.3390/biomedicines9081022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Satellite glial cells (SGCs) surrounding the neuronal somas in peripheral sensory ganglia are sensitive to neuronal stressors, which induce their reactive state. It is believed that such induced gliosis affects the signaling properties of the primary sensory neurons and is an important component of the neuropathic phenotype leading to pain and other sensory disturbances. Efforts to understand and manipulate such gliosis relies on reliable markers to confirm induced SGC reactivity and ultimately the efficacy of targeted intervention. Glial fibrillary acidic protein (GFAP) is currently the only widely used marker for such analyses. However, we have previously described the lack of SGC upregulation of GFAP in a mouse model of sciatic nerve injury, suggesting that GFAP may not be a universally suitable marker of SGC gliosis across species and experimental models. To further explore this, we here investigate the regulation of GFAP in two different experimental models in both rats and mice. We found that whereas GFAP was upregulated in both rodent species in the applied inflammation model, only the rat demonstrated increased GFAP in SGCs following sciatic nerve injury; we did not observe any such GFAP upregulation in the mouse model at either protein or mRNA levels. Our results demonstrate an important discrepancy between species and experimental models that prevents the usage of GFAP as a universal marker for SGC reactivity.
Collapse
|
11
|
Pierre O, Fouchard M, Le Goux N, Buscaglia P, Leschiera R, Lewis RJ, Mignen O, Fluhr JW, Misery L, Le Garrec R. Pacific-Ciguatoxin-2 and Brevetoxin-1 Induce the Sensitization of Sensory Receptors Mediating Pain and Pruritus in Sensory Neurons. Mar Drugs 2021; 19:387. [PMID: 34356812 PMCID: PMC8306505 DOI: 10.3390/md19070387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 11/24/2022] Open
Abstract
Ciguatera fish poisoning (CFP) and neurotoxic shellfish poisoning syndromes are induced by the consumption of seafood contaminated by ciguatoxins and brevetoxins. Both toxins cause sensory symptoms such as paresthesia, cold dysesthesia and painful disorders. An intense pruritus, which may become chronic, occurs also in CFP. No curative treatment is available and the pathophysiology is not fully elucidated. Here we conducted single-cell calcium video-imaging experiments in sensory neurons from newborn rats to study in vitro the ability of Pacific-ciguatoxin-2 (P-CTX-2) and brevetoxin-1 (PbTx-1) to sensitize receptors and ion channels, (i.e., to increase the percentage of responding cells and/or the response amplitude to their pharmacological agonists). In addition, we studied the neurotrophin release in sensory neurons co-cultured with keratinocytes after exposure to P-CTX-2. Our results show that P-CTX-2 induced the sensitization of TRPA1, TRPV4, PAR2, MrgprC, MrgprA and TTX-r NaV channels in sensory neurons. P-CTX-2 increased the release of nerve growth factor and brain-derived neurotrophic factor in the co-culture supernatant, suggesting that those neurotrophins could contribute to the sensitization of the aforementioned receptors and channels. Our results suggest the potential role of sensitization of sensory receptors/ion channels in the induction or persistence of sensory disturbances in CFP syndrome.
Collapse
Affiliation(s)
- Ophélie Pierre
- Laboratoire Interactions Epithéliums-Neurones (LIEN), University of Brest, EA4685, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
| | - Maxime Fouchard
- Laboratoire Interactions Epithéliums-Neurones (LIEN), University of Brest, EA4685, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
| | - Nelig Le Goux
- Lymphocytes B et Autoimmunité, Faculty of Medicine and Health Sciences, University of Brest, Inserm, UMR1227, F-29200 Brest, France; (N.L.G.); (P.B.); (O.M.)
| | - Paul Buscaglia
- Lymphocytes B et Autoimmunité, Faculty of Medicine and Health Sciences, University of Brest, Inserm, UMR1227, F-29200 Brest, France; (N.L.G.); (P.B.); (O.M.)
- Department of Molecular Physiology and Biophysics, Fraternal Order of Eagle Diabetes Research Center, Iowa Neuroscience Institute, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Raphaël Leschiera
- Laboratoire Interactions Epithéliums-Neurones (LIEN), University of Brest, EA4685, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
| | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Olivier Mignen
- Lymphocytes B et Autoimmunité, Faculty of Medicine and Health Sciences, University of Brest, Inserm, UMR1227, F-29200 Brest, France; (N.L.G.); (P.B.); (O.M.)
| | - Joachim W. Fluhr
- Laboratoire Interactions Epithéliums-Neurones (LIEN), University of Brest, EA4685, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
- Department of Dermatology and Allergology, Universitaetsmedizin Charité Berlin, D-10117 Berlin, Germany
| | - Laurent Misery
- Laboratoire Interactions Epithéliums-Neurones (LIEN), University of Brest, EA4685, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
| | - Raphaële Le Garrec
- Laboratoire Interactions Epithéliums-Neurones (LIEN), University of Brest, EA4685, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
| |
Collapse
|
12
|
Chang CH, Chang YS, Hsieh YL. Transient receptor potential vanilloid subtype 1 depletion mediates mechanical allodynia through cellular signal alterations in small-fiber neuropathy. Pain Rep 2021; 6:e922. [PMID: 34585035 PMCID: PMC8462592 DOI: 10.1097/pr9.0000000000000922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/22/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022] Open
Abstract
Transient receptor potential vanilloid subtype 1 (TRPV1) is a polymodal nociceptor that monitors noxious thermal sensations. Few studies have addressed the role of TRPV1 in mechanical allodynia in small-fiber neuropathy (SFN) caused by sensory nerve damage. Accordingly, this article reviews the putative mechanisms of TRPV1 depletion that mediates mechanical allodynia in SFN. The intraepidermal nerve fibers (IENFs) degeneration and sensory neuronal injury are the primary characteristics of SFN. Intraepidermal nerve fibers are mainly C-polymodal nociceptors and Aδ-fibers, which mediated allodynic pain after neuronal sensitization. TRPV1 depletion by highly potent neurotoxins induces the upregulation of activating transcription factor 3 and IENFs degeneration which mimics SFN. TRPV1 is predominately expressed by the peptidergic than nonpeptidergic nociceptors, and these neurochemical discrepancies provided the basis of the distinct pathways of thermal analgesia and mechanical allodynia. The depletion of peptidergic nociceptors and their IENFs cause thermal analgesia and sensitized nonpeptidergic nociceptors respond to mechanical allodynia. These distinct pathways of noxious stimuli suggested determined by the neurochemical-dependent neurotrophin cognate receptors such as TrkA and Ret receptors. The neurogenic inflammation after TRPV1 depletion also sensitized Ret receptors which results in mechanical allodynia. The activation of spinal TRPV1(+) neurons may contribute to mechanical allodynia. Also, an imbalance in adenosinergic analgesic signaling in sensory neurons such as the downregulation of prostatic acid phosphatase and adenosine A1 receptors, which colocalized with TRPV1 as a membrane microdomain also correlated with the development of mechanical allodynia. Collectively, TRPV1 depletion-induced mechanical allodynia involves a complicated cascade of cellular signaling alterations.
Collapse
Affiliation(s)
- Chin-Hong Chang
- Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Ying-Shuang Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
13
|
Gabapentin and Duloxetine Prevent Oxaliplatin- and Paclitaxel-Induced Peripheral Neuropathy by Inhibiting Extracellular Signal-Regulated Kinase 1/2 (ERK1/2) Phosphorylation in Spinal Cords of Mice. Pharmaceuticals (Basel) 2020; 14:ph14010030. [PMID: 33396362 PMCID: PMC7824557 DOI: 10.3390/ph14010030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy is a common factor in limiting therapy which can result in therapy cessation or dose reduction. Gabapentin, a calcium channel inhibitor, and duloxetine, a serotonin noradrenaline reuptake inhibitor, are used to treat a variety of pain conditions such as chronic low back pain, postherpetic neuralgia, and diabetic neuropathy. It has been reported that administration of gabapentin suppressed oxaliplatin- and paclitaxel-induced mechanical hyperalgesia in rats. Moreover, duloxetine has been shown to suppress oxaliplatin-induced cold allodynia in rats. However, the mechanisms by which these drugs prevent oxaliplatin- and paclitaxel-induced neuropathy remain unknown. Behavioral assays were performed using cold plate and the von Frey test. The expression levels of proteins were examined using western blot analysis. In this study, we investigated the mechanisms by which gabapentin and duloxetine prevent oxaliplatin- and paclitaxel-induced neuropathy in mice. We found that gabapentin and duloxetine prevented the development of oxaliplatin- and paclitaxel-induced cold and mechanical allodynia. In addition, our results revealed that gabapentin and duloxetine suppressed extracellular signal-regulated protein kinase 1/2 (ERK1/2) phosphorylation in the spinal cord of mice. Moreover, PD0325901 prevented the development of oxaliplatin- and paclitaxel-induced neuropathic-like pain behavior by inhibiting ERK1/2 activation in the spinal cord of mice. In summary, our findings suggest that gabapentin, duloxetine, and PD0325901 prevent the development of oxaliplatin- and paclitaxel-induced neuropathic-like pain behavior by inhibiting ERK1/2 phosphorylation in mice. Therefore, inhibiting ERK1/2 phosphorylation could be an effective preventive strategy against oxaliplatin- and paclitaxel-induced neuropathy.
Collapse
|
14
|
Avraham O, Deng PY, Jones S, Kuruvilla R, Semenkovich CF, Klyachko VA, Cavalli V. Satellite glial cells promote regenerative growth in sensory neurons. Nat Commun 2020; 11:4891. [PMID: 32994417 PMCID: PMC7524726 DOI: 10.1038/s41467-020-18642-y] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/04/2020] [Indexed: 01/11/2023] Open
Abstract
Peripheral sensory neurons regenerate their axon after nerve injury to enable functional recovery. Intrinsic mechanisms operating in sensory neurons are known to regulate nerve repair, but whether satellite glial cells (SGC), which completely envelop the neuronal soma, contribute to nerve regeneration remains unexplored. Using a single cell RNAseq approach, we reveal that SGC are distinct from Schwann cells and share similarities with astrocytes. Nerve injury elicits changes in the expression of genes related to fatty acid synthesis and peroxisome proliferator-activated receptor (PPARα) signaling. Conditional deletion of fatty acid synthase (Fasn) in SGC impairs axon regeneration. The PPARα agonist fenofibrate rescues the impaired axon regeneration in mice lacking Fasn in SGC. These results indicate that PPARα activity downstream of FASN in SGC contributes to promote axon regeneration in adult peripheral nerves and highlight that the sensory neuron and its surrounding glial coat form a functional unit that orchestrates nerve repair. The contribution of satellite glia to peripheral nerve regeneration is unclear. Here, the authors show that satellite glia are transcriptionally distinct from Schwann cells, share similarities with astrocytes, and, upon injury, they contribute to axon regeneration via Fasn-PPARα signalling pathway.
Collapse
Affiliation(s)
- Oshri Avraham
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Pan-Yue Deng
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Sara Jones
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Clay F Semenkovich
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, 63110, USA.,Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Vitaly A Klyachko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA. .,Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
15
|
Kim EJ, Kim HY, Ahn JH. Neurotoxicity of local anesthetics in dentistry. J Dent Anesth Pain Med 2020; 20:55-61. [PMID: 32395610 PMCID: PMC7193059 DOI: 10.17245/jdapm.2020.20.2.55] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/02/2022] Open
Abstract
During dental treatment, a dentist usually applies the local anesthesia. Therefore, all dentists should have expertise in local anesthesia and anesthetics. Local anesthetics have a neurotoxic effect at clinically relevant concentrations. Many studies have investigated the mechanism of neurotoxicity of local anesthetics but the precise mechanism of local anesthetic-induced neurotoxicity is still unclear. In addition, it is difficult to demonstrate the direct neurotoxic effect of local anesthetics because perioperative nerve damage is influenced by various factors, such as the anesthetic, the patient, and surgical risk factors. This review summarizes knowledge about the pharmacology of local anesthetics, nerve anatomy, and the incidence, risk factors, and possible cellular mechanisms of local anesthetic-induced neurotoxicity.
Collapse
Affiliation(s)
- Eun-Jung Kim
- Department of Dental Anesthesia and Pain Medicine, Pusan National University Dental Hospital, Dental Research Institute, Yangsan, Korea
| | - Hee Young Kim
- Department of Anesthesia and Pain Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Ji-Hye Ahn
- Department of Dental Anesthesia and Pain Medicine, Pusan National University Dental Hospital, Dental Research Institute, Yangsan, Korea
| |
Collapse
|
16
|
Jager SE, Pallesen LT, Richner M, Harley P, Hore Z, McMahon S, Denk F, Vaegter CB. Changes in the transcriptional fingerprint of satellite glial cells following peripheral nerve injury. Glia 2020; 68:1375-1395. [PMID: 32045043 DOI: 10.1002/glia.23785] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/13/2023]
Abstract
Satellite glial cells (SGCs) are homeostatic cells enveloping the somata of peripheral sensory and autonomic neurons. A wide variety of neuronal stressors trigger activation of SGCs, contributing to, for example, neuropathic pain through modulation of neuronal activity. However, compared to neurons and other glial cells of the nervous system, SGCs have received modest scientific attention and very little is known about SGC biology, possibly due to the experimental challenges associated with studying them in vivo and in vitro. Utilizing a recently developed method to obtain SGC RNA from dorsal root ganglia (DRG), we took a systematic approach to characterize the SGC transcriptional fingerprint by using next-generation sequencing and, for the first time, obtain an overview of the SGC injury response. Our RNA sequencing data are easily accessible in supporting information in Excel format. They reveal that SGCs are enriched in genes related to the immune system and cell-to-cell communication. Analysis of SGC transcriptional changes in a nerve injury-paradigm reveal a differential response at 3 days versus 14 days postinjury, suggesting dynamic modulation of SGC function over time. Significant downregulation of several genes linked to cholesterol synthesis was observed at both time points. In contrast, regulation of gene clusters linked to the immune system (MHC protein complex and leukocyte migration) was mainly observed after 14 days. Finally, we demonstrate that, after nerve injury, macrophages are in closer physical proximity to both small and large DRG neurons, and that previously reported injury-induced proliferation of SGCs may, in fact, be proliferating macrophages.
Collapse
Affiliation(s)
- Sara E Jager
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark.,Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Lone T Pallesen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Mette Richner
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Peter Harley
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Zoe Hore
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Stephen McMahon
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Christian B Vaegter
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
17
|
Liang L, Wu S, Lin C, Chang YJ, Tao YX. Alternative Splicing of Nrcam Gene in Dorsal Root Ganglion Contributes to Neuropathic Pain. THE JOURNAL OF PAIN 2020; 21:892-904. [PMID: 31917219 DOI: 10.1016/j.jpain.2019.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/04/2019] [Accepted: 12/11/2019] [Indexed: 01/23/2023]
Abstract
NrCAM, a neuronal cell adhesion molecule in the L1 family of the immunoglobulin superfamily, is subjected to extensively alternative splicing and involved in neural development and some disorders. The aim of this study was to explore the role of Nrcam mRNA alternative splicing in neuropathic pain. A next generation RNA sequencing analysis of dorsal root ganglions (DRGs) showed the differential expression of two splicing variants of Nrcam, Nrcam+10 and Nrcam-10, in the injured DRG after the fourth lumbar spinal nerve ligation (SNL) in mice. SNL increased the exon 10 insertion, resulting in an increase in the amount of Nrcam+10 and a corresponding decrease in the level of Nrcam-10 in the injured DRG. An antisense oligonucleotide (ASO) that specifically targeted exon 10 of Nrcam gene (Nrcam ASO) repressed RNA expression of Nrcam+10 and increased RNA expression of Nrcam-10 in in vitro DRG cell culture. Either DRG microinjection or intrathecal injection of Nrcam ASO attenuated SNL-induced the development of mechanical allodynia, thermal hyperalgesia, or cold allodynia. Nrcam ASO also relieved SNL- or chronic compression of DRG (CCD)-induced the maintenance of pain hypersensitivities in male and female mice. PERSPECTIVE: We conclude that the relative levels of alternatively spliced Nrcam variants are critical for neuropathic pain genesis. Targeting Nrcam alternative splicing via the antisense oligonucleotides may be a new potential avenue in neuropathic pain management.
Collapse
Affiliation(s)
- Lingli Liang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Shaogen Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Corinna Lin
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Yun-Juan Chang
- Office of advanced research computing, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey; Department of Cell Biology & Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey; Department of Physiology, Pharmacology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey.
| |
Collapse
|
18
|
Chen JY, Kubo A, Shinoda M, Okada-Ogawa A, Imamura Y, Iwata K. Involvement of TRPV4 ionotropic channel in tongue mechanical hypersensitivity in dry-tongue rats. J Oral Sci 2020; 62:13-17. [DOI: 10.2334/josnusd.18-0468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Jui Yen Chen
- Department of Physiology, Nihon University School of Dentistry
| | - Asako Kubo
- Department of Physiology, Nihon University School of Dentistry
| | | | - Akiko Okada-Ogawa
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry
| | - Yoshiki Imamura
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry
| |
Collapse
|
19
|
Li C, Ban M, Bai F, Chen J, Jin X, Song Y. Anti-Nociceptive and Anti-Inflammation Effect Mechanisms of Mutants of Syb-prII, a Recombinant Neurotoxic Polypeptide. Toxins (Basel) 2019; 11:E699. [PMID: 31805689 PMCID: PMC6949983 DOI: 10.3390/toxins11120699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/09/2023] Open
Abstract
Syb-prII, a recombinant neurotoxic polypeptide, has analgesic effects with medicinal value. Previous experiments indicated that Syb-prII displayed strong analgesic activities. Therefore, a series of in vivo and vitro experiments were designed to investigate the analgesic and anti-inflammatory properties and possible mechanisms of Syb-prII. The results showed that administered Syb-prII-1 and Syb-prII-2 (0.5, 1, 2.0 mg/kg, i.v.) to mice significantly reduced the time of licking, biting, or flicking of paws in two phases in formalin-induced inflammatory nociception. Syb-prII-1 inhibited xylene-induced auricular swelling in a dose-dependent manner. The inhibitory effect of 2.0 mg/kg Syb-prII-1 on the ear swelling model was comparable to that of 200 mg/kg aspirin. In addition, the ELISA and Western blot analysis suggested that Syb-prII-1 and Syb-prII-2 may exert an analgesic effect by inhibiting the expression of Nav1.8 and the phosphorylation of ERK, JNK, and P38. Syb-prII-1 markedly suppressed the expression of IL-1β, IL-6, and TNF-α of mice in formalin-induced inflammatory nociception. We used the patch-clamp technique and investigated the effect of Syb-prII-1 on TTX-resistant sodium channel currents in acutely isolated rat DRG neurons. The results showed that Syb-prII-1 can significantly down regulate TTX-resistant sodium channel currents. In conclusion, Syb-prII mutants may alleviate inflammatory pain by significantly inhibiting the expression of Nav1.8, mediated by the phosphorylation of MAPKs and significant inhibition of TTX-resistant sodium channel currents.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongbo Song
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China; (C.L.); (M.B.); (F.B.); (J.C.); (X.J.)
| |
Collapse
|
20
|
Giorgi S, Nikolaeva-Koleva M, Alarcón-Alarcón D, Butrón L, González-Rodríguez S. Is TRPA1 Burning Down TRPV1 as Druggable Target for the Treatment of Chronic Pain? Int J Mol Sci 2019; 20:ijms20122906. [PMID: 31197115 PMCID: PMC6627658 DOI: 10.3390/ijms20122906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
Over the last decades, a great array of molecular mediators have been identified as potential targets for the treatment of chronic pain. Among these mediators, transient receptor potential (TRP) channel superfamily members have been thoroughly studied. Namely, the nonselective cationic channel, transient receptor potential ankyrin subtype 1 (TRPA1), has been described as a chemical nocisensor involved in noxious cold and mechanical sensation and as rivalling TRPV1, which traditionally has been considered as the most important TRP channel involved in nociceptive transduction. However, few TRPA1-related drugs have succeeded in clinical trials. In the present review, we attempt to discuss the latest data on the topic and future directions for pharmacological intervention.
Collapse
Affiliation(s)
- Simona Giorgi
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Magdalena Nikolaeva-Koleva
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
- AntalGenics, SL. Ed. Quorum III, Parque Científico Universidad Miguel Hernández, Avda de la Universidad s/n, 03202 Elche, Spain.
| | - David Alarcón-Alarcón
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Laura Butrón
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Sara González-Rodríguez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| |
Collapse
|
21
|
Zhou D, Zhang S, Hu L, Gu YF, Cai Y, Wu D, Liu WT, Jiang CY, Kong X, Zhang GQ. Inhibition of apoptosis signal-regulating kinase by paeoniflorin attenuates neuroinflammation and ameliorates neuropathic pain. J Neuroinflammation 2019; 16:83. [PMID: 30975172 PMCID: PMC6458750 DOI: 10.1186/s12974-019-1476-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neuropathic pain is a serious clinical problem that needs to be solved urgently. ASK1 is an upstream protein of p38 and JNK which plays important roles in neuroinflammation during the induction and maintenance of chronic pain. Therefore, inhibition of ASK1 may be a novel therapeutic approach for neuropathic pain. Here, we aim to investigate the effects of paeoniflorin on ASK1 and neuropathic pain. METHODS The mechanical and thermal thresholds of rats were measured using the Von Frey test. Cell signaling was assayed using western blotting and immunohistochemistry. RESULTS Chronic constrictive injury (CCI) surgery successfully decreased the mechanical and thermal thresholds of rats and decreased the phosphorylation of ASK1 in the rat spinal cord. ASK1 inhibitor NQDI1 attenuated neuropathic pain and decreased the expression of p-p38 and p-JNK. Paeoniflorin mimicked ASK1 inhibitor NQDI1 and inhibited ASK1 phosphorylation. Paeoniflorin decreased the expression of p-p38 and p-JNK, delayed the progress of neuropathic pain, and attenuated neuropathic pain. Paeoniflorin reduced the response of astrocytes and microglia to injury, decreased the expression of IL-1β and TNF-α, and downregulated the expression of CGRP induced by CCI. CONCLUSIONS Paeoniflorin is an effective drug for the treatment of neuropathic pain in rats via inhibiting the phosphorylation of ASK1, suggesting it may be effective in patients with neuropathic pain.
Collapse
Affiliation(s)
- Danli Zhou
- Department of Clinical Pharmacy, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Siqi Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Liang Hu
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yu-Feng Gu
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yimei Cai
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Deqin Wu
- Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wen-Tao Liu
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Chun-Yi Jiang
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China. .,Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, 210029, China.
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Guang-Qin Zhang
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
22
|
Role of receptor-interacting protein 1/receptor-interacting protein 3 in inflammation and necrosis following chronic constriction injury of the sciatic nerve. Neuroreport 2019; 29:1373-1378. [PMID: 30192300 PMCID: PMC6181278 DOI: 10.1097/wnr.0000000000001120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nerve damage often leads to nervous system dysfunction and neuropathic pain. The serine-threonine kinases receptor-interacting protein 1 (RIP1) and 3 (RIP3) are associated with inflammation and cell necrosis. This study aimed to explore the role of RIP1 and RIP3 in sciatic nerve chronic constriction injury (CCI) in mice. On a total of thirty mice, sciatic nerve CCI was performed. The paw withdrawal threshold was measured using Von Frey filaments. The mRNA expression and protein levels of inflammatory factors RIP1 and RIP3 in the dorsal root ganglion (DRG), spinal cord (SC) and hippocampus (HIP) were also determined. We found that paw withdrawal threshold was significantly reduced from the second day after the operation, and the levels of tumour necrosis factor-α and interferon-γ in DRG, SC and HIP were significantly increased on the eighth and 14th days in CCI mice. Furthermore, the downstream signalling molecules of RIP1 and RIP3, GTPase dynamin-related protein-1, NLR family pyrin domain containing-3 (NLRP3) and nuclear factor κB-p65 were upregulated. Increased protein levels of programmed cell death protein 1, which indicate cell death of peripheral and central nervous tissue, were induced by CCI of the sciatic nerve. Overall, this study showed that RIP1 and RIP3 were highly expressed in DRG, SC and HIP of the sciatic nerve in CCI mice and may be involved in chronic neuroinflammation and neuronecrosis.
Collapse
|
23
|
Bennett DL, Clark AJ, Huang J, Waxman SG, Dib-Hajj SD. The Role of Voltage-Gated Sodium Channels in Pain Signaling. Physiol Rev 2019; 99:1079-1151. [DOI: 10.1152/physrev.00052.2017] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute pain signaling has a key protective role and is highly evolutionarily conserved. Chronic pain, however, is maladaptive, occurring as a consequence of injury and disease, and is associated with sensitization of the somatosensory nervous system. Primary sensory neurons are involved in both of these processes, and the recent advances in understanding sensory transduction and human genetics are the focus of this review. Voltage-gated sodium channels (VGSCs) are important determinants of sensory neuron excitability: they are essential for the initial transduction of sensory stimuli, the electrogenesis of the action potential, and neurotransmitter release from sensory neuron terminals. Nav1.1, Nav1.6, Nav1.7, Nav1.8, and Nav1.9 are all expressed by adult sensory neurons. The biophysical characteristics of these channels, as well as their unique expression patterns within subtypes of sensory neurons, define their functional role in pain signaling. Changes in the expression of VGSCs, as well as posttranslational modifications, contribute to the sensitization of sensory neurons in chronic pain states. Furthermore, gene variants in Nav1.7, Nav1.8, and Nav1.9 have now been linked to human Mendelian pain disorders and more recently to common pain disorders such as small-fiber neuropathy. Chronic pain affects one in five of the general population. Given the poor efficacy of current analgesics, the selective expression of particular VGSCs in sensory neurons makes these attractive targets for drug discovery. The increasing availability of gene sequencing, combined with structural modeling and electrophysiological analysis of gene variants, also provides the opportunity to better target existing therapies in a personalized manner.
Collapse
Affiliation(s)
- David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Alex J. Clark
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Jianying Huang
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Stephen G. Waxman
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Sulayman D. Dib-Hajj
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
24
|
Chew LA, Bellampalli SS, Dustrude ET, Khanna R. Mining the Na v1.7 interactome: Opportunities for chronic pain therapeutics. Biochem Pharmacol 2019; 163:9-20. [PMID: 30699328 DOI: 10.1016/j.bcp.2019.01.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/24/2019] [Indexed: 12/14/2022]
Abstract
The peripherally expressed voltage-gated sodium NaV1.7 (gene SCN9A) channel boosts small stimuli to initiate firing of pain-signaling dorsal root ganglia (DRG) neurons and facilitates neurotransmitter release at the first synapse within the spinal cord. Mutations in SCN9A produce distinct human pain syndromes. Widely acknowledged as a "gatekeeper" of pain, NaV1.7 has been the focus of intense investigation but, to date, no NaV1.7-selective drugs have reached the clinic. Elegant crystallographic studies have demonstrated the potential of designing highly potent and selective NaV1.7 compounds but their therapeutic value remains untested. Transcriptional silencing of NaV1.7 by a naturally expressed antisense transcript has been reported in rodents and humans but whether this represents a viable opportunity for designing NaV1.7 therapeutics is currently unknown. The demonstration that loss of NaV1.7 function is associated with upregulation of endogenous opioids and potentiation of mu- and delta-opioid receptor activities, suggests that targeting only NaV1.7 may be insufficient for analgesia. However, the link between opioid-dependent analgesic mechanisms and function of sodium channels and intracellular sodium-dependent signaling remains controversial. Thus, additional new targets - regulators, modulators - are needed. In this context, we mine the literature for the known interactome of NaV1.7 with a focus on protein interactors that affect the channel's trafficking or link it to opioid signaling. As a case study, we present antinociceptive evidence of allosteric regulation of NaV1.7 by the cytosolic collapsin response mediator protein 2 (CRMP2). Throughout discussions of these possible new targets, we offer thoughts on the therapeutic implications of modulating NaV1.7 function in chronic pain.
Collapse
Affiliation(s)
- Lindsey A Chew
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Shreya S Bellampalli
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Erik T Dustrude
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; Graduate Interdisciplinary Program in Neuroscience, College of Medicine, University of Arizona, Tucson, AZ, USA; The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ 85724, USA.
| |
Collapse
|
25
|
Zhang ZJ, Guo JS, Li SS, Wu XB, Cao DL, Jiang BC, Jing PB, Bai XQ, Li CH, Wu ZH, Lu Y, Gao YJ. TLR8 and its endogenous ligand miR-21 contribute to neuropathic pain in murine DRG. J Exp Med 2018; 215:3019-3037. [PMID: 30455267 PMCID: PMC6279408 DOI: 10.1084/jem.20180800] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/10/2018] [Accepted: 10/17/2018] [Indexed: 01/20/2023] Open
Abstract
TLRs are known to be essential for innate and adaptive immunity. Zhang et al. show the involvement of TLR8 and its endogenous ligand miR-21 in neuropathic pain via inducing ERK-dependent proinflammatory mediators’ production and neuronal hyperexcitability in the DRG. Toll-like receptors (TLRs) are nucleic acid–sensing receptors and have been implicated in mediating pain and itch. Here we report that Tlr8−/− mice show normal itch behaviors, but have defects in neuropathic pain induced by spinal nerve ligation (SNL) in mice. SNL increased TLR8 expression in small-diameter IB4+ DRG neurons. Inhibition of TLR8 in the DRG attenuated SNL-induced pain hypersensitivity. Conversely, intrathecal or intradermal injection of TLR8 agonist, VTX-2337, induced TLR8-dependent pain hypersensitivity. Mechanistically, TLR8, localizing in the endosomes and lysosomes, mediated ERK activation, inflammatory mediators’ production, and neuronal hyperexcitability after SNL. Notably, miR-21 was increased in DRG neurons after SNL. Intrathecal injection of miR-21 showed the similar effects as VTX-2337 and inhibition of miR-21 in the DRG attenuated neuropathic pain. The present study reveals a previously unknown role of TLR8 in the maintenance of neuropathic pain, suggesting that miR-21–TLR8 signaling may be potential new targets for drug development against this type of chronic pain.
Collapse
Affiliation(s)
- Zhi-Jun Zhang
- Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Jiangsu, China.,Department of Human Anatomy, School of Medicine, Nantong University, Jiangsu, China
| | - Jian-Shuang Guo
- Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Jiangsu, China
| | - Si-Si Li
- Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Jiangsu, China
| | - Xiao-Bo Wu
- Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Jiangsu, China
| | - De-Li Cao
- Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Jiangsu, China
| | - Bao-Chun Jiang
- Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Jiangsu, China
| | - Peng-Bo Jing
- Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Jiangsu, China
| | - Xue-Qiang Bai
- Department of Human Anatomy, School of Medicine, Nantong University, Jiangsu, China
| | - Chun-Hua Li
- Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Jiangsu, China
| | - Zi-Han Wu
- Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Jiangsu, China.,Department of Human Anatomy, School of Medicine, Nantong University, Jiangsu, China
| | - Ying Lu
- Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Jiangsu, China.,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Jiangsu, China
| | - Yong-Jing Gao
- Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Jiangsu, China .,Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, China
| |
Collapse
|
26
|
Yoon JH, Son JY, Kim MJ, Kang SH, Ju JS, Bae YC, Ahn DK. Preemptive application of QX-314 attenuates trigeminal neuropathic mechanical allodynia in rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:331-341. [PMID: 29719455 PMCID: PMC5928346 DOI: 10.4196/kjpp.2018.22.3.331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/09/2018] [Accepted: 02/19/2018] [Indexed: 12/19/2022]
Abstract
The aim of the present study was to examine the effects of preemptive analgesia on the development of trigeminal neuropathic pain. For this purpose, mechanical allodynia was evaluated in male Sprague-Dawley rats using chronic constriction injury of the infraorbital nerve (CCI-ION) and perineural application of 2% QX-314 to the infraorbital nerve. CCI-ION produced severe mechanical allodynia, which was maintained until postoperative day (POD) 30. An immediate single application of 2% QX-314 to the infraorbital nerve following CCI-ION significantly reduced neuropathic mechanical allodynia. Immediate double application of QX-314 produced a greater attenuation of mechanical allodynia than a single application of QX-314. Immediate double application of 2% QX-314 reduced the CCI-ION-induced upregulation of GFAP and p-p38 expression in the trigeminal ganglion. The upregulated p-p38 expression was co-localized with NeuN, a neuronal cell marker. We also investigated the role of voltage-gated sodium channels (Navs) in the antinociception produced by preemptive application of QX-314 through analysis of the changes in Nav expression in the trigeminal ganglion following CCI-ION. Preemptive application of QX-314 significantly reduced the upregulation of Nav1.3, 1.7, and 1.9 produced by CCI-ION. These results suggest that long-lasting blockade of the transmission of pain signaling inhibits the development of neuropathic pain through the regulation of Nav isoform expression in the trigeminal ganglion. Importantly, these results provide a potential preemptive therapeutic strategy for the treatment of neuropathic pain after nerve injury.
Collapse
Affiliation(s)
- Jeong-Ho Yoon
- Department of Oral Physiology School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Jo-Young Son
- Department of Oral Physiology School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Min-Ji Kim
- Department of Oral Physiology School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Song-Hee Kang
- Department of Oral Physiology School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Jin-Sook Ju
- Department of Oral Physiology School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Yong-Chul Bae
- Department of Oral Anatomy, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Dong-Kuk Ahn
- Department of Oral Physiology School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| |
Collapse
|
27
|
Barakat-Walter I, Kraftsik R. Stimulating effect of thyroid hormones in peripheral nerve regeneration: research history and future direction toward clinical therapy. Neural Regen Res 2018; 13:599-608. [PMID: 29722302 PMCID: PMC5950660 DOI: 10.4103/1673-5374.230274] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Injury to peripheral nerves is often observed in the clinic and severe injuries may cause loss of motor and sensory functions. Despite extensive investigation, testing various surgical repair techniques and neurotrophic molecules, at present, a satisfactory method to ensuring successful recovery does not exist. For successful molecular therapy in nerve regeneration, it is essential to improve the intrinsic ability of neurons to survive and to increase the speed of axonal outgrowth. Also to induce Schwann cell phenotypical changes to prepare the local environment favorable for axonal regeneration and myelination. Therefore, any molecule that regulates gene expression of both neurons and Schwann cells could play a crucial role in peripheral nerve regeneration. Clinical and experimental studies have reported that thyroid hormones are essential for the normal development and function of the nervous system, so they could be candidates for nervous system regeneration. This review provides an overview of studies devoted to testing the effect of thyroid hormones on peripheral nerve regeneration. Also it emphasizes the importance of combining biodegradable tubes with local administration of triiodothyronine for future clinical therapy of human severe injured nerves. We highlight that the local and single administration of triiodothyronine within biodegradable nerve guide improves significantly the regeneration of severed peripheral nerves, and accelerates functional recovering. This technique provides a serious step towards future clinical application of triiodothyronine in human severe injured nerves. The possible regulatory mechanism by which triiodothyronine stimulates peripheral nerve regeneration is a rapid action on both axotomized neurons and Schwann cells.
Collapse
Affiliation(s)
- I Barakat-Walter
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - R Kraftsik
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
28
|
Ma B, Liu X, Huang X, Ji Y, Jin T, Ma K. Translocator protein agonist Ro5-4864 alleviates neuropathic pain and promotes remyelination in the sciatic nerve. Mol Pain 2017; 14:1744806917748019. [PMID: 29212402 PMCID: PMC5805004 DOI: 10.1177/1744806917748019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Our previous study reported the translocator protein to play a critical role in neuropathic pain and the possible mechanisms in the spinal cord. However, its mechanism in the peripheral nervous system is poorly understood. This study was undertaken to explore the distribution of translocator protein in the dorsal root ganglion and the possible mechanisms in peripheral nervous system in a rat model of spared nerve injury. Our results showed that translocator protein was activated in dorsal root ganglion after spared nerve injury. The translocator protein signals were primarily colocalized with neurons in dorsal root ganglion. A single intrathecal (i.t.) injection of translocator protein agonist (7-chloro-5-4-chlorophenyl)-1,3-dihydro-1-methyl-2-H-1,4-benzodiaze-pine-2) (Ro5-4864) exerted remarkable analgesic effect compared with the spared nerve injury group ( P < 0.01). After i.t. administration of 2 µg Ro5-4864 on day 3, the expression of translocator protein in ipsilateral dorsal root ganglion was significantly increased on day 7( P < 0.01) but decreased on day 14 ( P < 0.05) compared with the same point in time in the control group. The duration of translocator protein activation in dorsal root ganglion was remarkably shortened. Ro5-4864 also inhibited the activation of phospho-extracellular signal-regulated kinase 1(p-ERK1) ( P < 0.01), p-ERK2 (D7: P < 0.01, D14: P < 0.05), and brain-derived neurotrophic factor ( P < 0.05) in dorsal root ganglion. Meanwhile, i.t. administration of 2 µg Ro5-4864 on day 3 further accelerated the expression of myelin protein zero(P0) and peripheral myelin protein 22 (PMP22). Our results suggested Ro5-4864 could alleviate neuropathic pain and attenuate p-ERK and brain-derived neurotrophic factor activation in dorsal root ganglion. Furthermore, Ro5-4864 stimulated the expression of myelin regeneration proteins which may also be an important factor against neuropathic pain development. Translocator protein may present a novel target for the treatment of neuropathic pain both in the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Bingjie Ma
- Department of Pain management, 91603 Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Xiaoming Liu
- Department of Pain management, 91603 Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Xuehua Huang
- Department of Pain management, 91603 Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Yun Ji
- Department of Pain management, 91603 Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Tian Jin
- Department of Pain management, 91603 Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Ke Ma
- Department of Pain management, 91603 Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| |
Collapse
|
29
|
Ding S, Zhu T, Tian Y, Xu P, Chen Z, Huang X, Zhang X. Role of Brain-Derived Neurotrophic Factor in Endometriosis Pain. Reprod Sci 2017; 25:1045-1057. [DOI: 10.1177/1933719117732161] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shaojie Ding
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Tianhong Zhu
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Yonghong Tian
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Ping Xu
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Zhengyun Chen
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiufeng Huang
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Xinmei Zhang
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
30
|
Price TJ, Das V, Dussor G. Adenosine Monophosphate-activated Protein Kinase (AMPK) Activators For the Prevention, Treatment and Potential Reversal of Pathological Pain. Curr Drug Targets 2017; 17:908-20. [PMID: 26521775 DOI: 10.2174/1389450116666151102095046] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 10/20/2015] [Accepted: 10/29/2015] [Indexed: 12/23/2022]
Abstract
Pathological pain is an enormous medical problem that places a significant burden on patients and can result from an injury that has long since healed or be due to an unidentifiable cause. Although treatments exist, they often either lack efficacy or have intolerable side effects. More importantly, they do not reverse the changes in the nervous system mediating pathological pain, and thus symptoms often return when therapies are discontinued. Consequently, novel therapies are urgently needed that have both improved efficacy and disease-modifying properties. Here we highlight an emerging target for novel pain therapies, adenosine monophosphate-activated protein kinase (AMPK). AMPK is capable of regulating a variety of cellular processes including protein translation, activity of other kinases, and mitochondrial metabolism, many of which are thought to contribute to pathological pain. Consistent with these properties, preclinical studies show positive, and in some cases disease-modifying effects of either pharmacological activation or genetic regulation of AMPK in models of nerve injury, chemotherapy-induced peripheral neuropathy (CIPN), postsurgical pain, inflammatory pain, and diabetic neuropathy. Given the AMPK-activating ability of metformin, a widely prescribed and well-tolerated drug, these preclinical studies provide a strong rationale for both retrospective and prospective human pain trials with this drug. They also argue for the development of novel AMPK activators, whether orthosteric, allosteric, or modulators of events upstream of the kinase. Together, this review will present the case for AMPK as a novel therapeutic target for pain and will discuss future challenges in the path toward development of AMPK-based pain therapeutics.
Collapse
Affiliation(s)
- Theodore J Price
- School of Behavioral and Brain Sciences, University of Texas at Dallas, JO 4.212 800 W Campbell Rd, Richardson TX 75080, USA.
| | | | | |
Collapse
|
31
|
Zhao G, Li D, Ding X, Li L. Nerve growth factor pretreatment inhibits lidocaine‑induced myelin damage via increasing BDNF expression and inhibiting p38 mitogen activation in the rat spinal cord. Mol Med Rep 2017; 16:4678-4684. [PMID: 28849178 PMCID: PMC5647042 DOI: 10.3892/mmr.2017.7197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 05/19/2017] [Indexed: 01/19/2023] Open
Abstract
The present study aimed to investigate the effect of exogenous nerve growth factor (NGF) pretreatment on demyelination in the spinal cord of lidocaine-treated rats, and explored the potential neuroprotective mechanisms of NGF. A total of 36 rats were randomly assigned to three groups (n=12 per group): Sham group; Lido group, received intrathecal injection of lidocaine; NGF group, received intrathecal injection of NGF followed by intrathecal injection of lidocaine. Tail-flick tests were used to evaluate neurobehavioral function. Ultrastructural alternations were analyzed by transmission electron microscopy. Immunofluorescence was used to examine the expression of myelin basic protein (MBP) and brain-derived neurotrophic factor (BDNF). ELISA was used to determine serum levels of MBP and proteolipid protein (PLP). Western blotting was used to detect the expression of phosphorylated mitogen activated protein kinase (MAPK). NGF pretreatment reduced lidocaine-induced neurobehavioral damage, nerve fiber demyelination, accompanied by a decrease in MBP expression in the spinal cord and an increase in MBP and PLP in serum. In addition, NGF pretreatment increased BDNF expression in the spinal cord of lidocaine-treated rats. Furthermore, NGF pretreatment reduced p38 MAPK phosphorylation in the spinal cord of lidocaine-treated rats. NGF treatment reduces lidocaine-induced neurotoxicity via the upregulation of BDNF and inhibition of p38 MAPK. NGF therapy may improve the clinical use of lidocaine in intravertebral anesthesia.
Collapse
Affiliation(s)
- Guangyi Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Dan Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xudong Ding
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Lu Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
32
|
Xue P, Chen L, Lu X, Zhang J, Bao G, Xu G, Sun Y, Guo X, Jiang J, Gu H, Cui Z. Vimentin Promotes Astrocyte Activation After Chronic Constriction Injury. J Mol Neurosci 2017; 63:91-99. [PMID: 28791619 DOI: 10.1007/s12031-017-0961-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 07/31/2017] [Indexed: 12/24/2022]
Abstract
Vimentin, among the family of the intermediate filament, plays as the organizer of some critical proteins involved in migration, attachment, and cell signaling. In this study, the role of vimentin in chronic constriction injury (CCI) was investigated. Western blot revealed increased protein level of vimentin following CCI, peaking at 7 days. Double immunofluorescent staining showed that vimentin was mostly co-localized with astrocytes, not with neurons or microglia. In vitro, sensory neuronal injury stimulated astrocytes to produce more pro-inflammation cytokines, p-ERK (phosphorylated extracellular signal-regulated protein kinase), and vimentin. However, vimentin knockdown by siRNA (small interfering RNA) reversed the upregulation of p-ERK and vimentin expression and reduced the release of pro-inflammatory cytokines. Overall, stimulated astrocytes might release pro-inflammatory cytokines to promote the development of neuropathic pain via vimentin/ERK signaling.
Collapse
Affiliation(s)
- Pengfei Xue
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Haier Lane North Road No. 6, Nantong, Jiangsu, 226001, China
| | - Liming Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Haier Lane North Road No. 6, Nantong, Jiangsu, 226001, China
| | - Xiongsong Lu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Haier Lane North Road No. 6, Nantong, Jiangsu, 226001, China
| | - Jinlong Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Haier Lane North Road No. 6, Nantong, Jiangsu, 226001, China
| | - Guofeng Bao
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Haier Lane North Road No. 6, Nantong, Jiangsu, 226001, China
| | - Guanhua Xu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Haier Lane North Road No. 6, Nantong, Jiangsu, 226001, China
| | - Yuyu Sun
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Haier Lane North Road No. 6, Nantong, Jiangsu, 226001, China
| | - Xiaofeng Guo
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Haier Lane North Road No. 6, Nantong, Jiangsu, 226001, China
| | - Jiawei Jiang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Haier Lane North Road No. 6, Nantong, Jiangsu, 226001, China
| | - Haiyan Gu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Haier Lane North Road No. 6, Nantong, Jiangsu, 226001, China
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Haier Lane North Road No. 6, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
33
|
Singh S, Dallenga T, Winkler A, Roemer S, Maruschak B, Siebert H, Brück W, Stadelmann C. Relationship of acute axonal damage, Wallerian degeneration, and clinical disability in multiple sclerosis. J Neuroinflammation 2017; 14:57. [PMID: 28302146 PMCID: PMC5356322 DOI: 10.1186/s12974-017-0831-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/06/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Axonal damage and loss substantially contribute to the incremental accumulation of clinical disability in progressive multiple sclerosis. Here, we assessed the amount of Wallerian degeneration in brain tissue of multiple sclerosis patients in relation to demyelinating lesion activity and asked whether a transient blockade of Wallerian degeneration decreases axonal loss and clinical disability in a mouse model of inflammatory demyelination. METHODS Wallerian degeneration and acute axonal damage were determined immunohistochemically in the periplaque white matter of multiple sclerosis patients with early actively demyelinating lesions, chronic active lesions, and inactive lesions. Furthermore, we studied the effects of Wallerian degeneration blockage on clinical severity, inflammatory pathology, acute axonal damage, and long-term axonal loss in experimental autoimmune encephalomyelitis using Wallerian degeneration slow (Wld S ) mutant mice. RESULTS The highest numbers of axons undergoing Wallerian degeneration were found in the perilesional white matter of multiple sclerosis patients early in the disease course and with actively demyelinating lesions. Furthermore, Wallerian degeneration was more abundant in patients harboring chronic active as compared to chronic inactive lesions. No co-localization of neuropeptide Y-Y1 receptor, a bona fide immunohistochemical marker of Wallerian degeneration, with amyloid precursor protein, frequently used as an indicator of acute axonal transport disturbance, was observed in human and mouse tissue, indicating distinct axon-degenerative processes. Experimentally, a delay of Wallerian degeneration, as observed in Wld S mice, did not result in a reduction of clinical disability or acute axonal damage in experimental autoimmune encephalomyelitis, further supporting that acute axonal damage as reflected by axonal transport disturbances does not share common molecular mechanisms with Wallerian degeneration. Furthermore, delaying Wallerian degeneration did not result in a net rescue of axons in late lesion stages of experimental autoimmune encephalomyelitis. CONCLUSIONS Our data indicate that in multiple sclerosis, ongoing demyelination in focal lesions is associated with axonal degeneration in the perilesional white matter, supporting a role for focal pathology in diffuse white matter damage. Also, our results suggest that interfering with Wallerian degeneration in inflammatory demyelination does not suffice to prevent acute axonal damage and finally axonal loss.
Collapse
Affiliation(s)
- Shailender Singh
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | - Tobias Dallenga
- Institute of Neuropathology, University Medical Center, Göttingen, Germany.,Cellular Microbiology, Research Center Borstel, Borstel, Germany
| | - Anne Winkler
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | - Shanu Roemer
- Institute of Neuropathology, University Medical Center, Göttingen, Germany.,Department of Neurology, Rigshospitalet, Copenhagen, Denmark
| | - Brigitte Maruschak
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | - Heike Siebert
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | | |
Collapse
|
34
|
Wu XB, Cao DL, Zhang X, Jiang BC, Zhao LX, Qian B, Gao YJ. CXCL13/CXCR5 enhances sodium channel Nav1.8 current density via p38 MAP kinase in primary sensory neurons following inflammatory pain. Sci Rep 2016; 6:34836. [PMID: 27708397 PMCID: PMC5052602 DOI: 10.1038/srep34836] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/21/2016] [Indexed: 02/07/2023] Open
Abstract
CXCL13 is a B lymphocyte chemoattractant and activates CXCR5 receptor in the immune system. Here we investigated whether CXCL13/CXCR5 mediates inflammatory pain in dorsal root ganglia (DRG) and the underlying mechanisms. Peripheral injection of complete Freund’s Adjuvant (CFA) increased the expression of CXCL13 and CXCR5 in DRG neurons. In Cxcr5−/− mice, CFA-induced pain hypersensitivity were attenuated. Whole-cell patch-clamp recording showed that the excitability of dissociated DRG neurons was increased after CFA injection or CXCL13 incubation from wild-type (WT) mice, but not from Cxcr5−/− mice. Additionally, sodium channel Nav1.8 was co-expressed with CXCR5 in dissociated DRG neurons, and the increased neuronal excitability induced by CFA or CXCL13 was reduced by Nav1.8 blocker. Intrathecal injection of Nav1.8 blocker also attenuated intrathecal injection of CXCL13-induced pain hypersensitivity. Furthermore, CXCL13 increased Nav1.8 current density in DRG neurons, which was inhibited by p38 MAP kinase inhibitor. CFA and CXCL13 increased p38 phosphorylation in the DRG of WT mice but not Cxcr5−/− mice. Finally, intrathecal p38 inhibitor alleviated CXCL13-induced pain hypersensitivity. Taken together, these results demonstrated that CXCL13, upregulated by peripheral inflammation, acts on CXCR5 on DRG neurons and activates p38, which increases Nav1.8 current density and further contributes to the maintenance of inflammatory pain.
Collapse
Affiliation(s)
- Xiao-Bo Wu
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu 226019, China
| | - De-Li Cao
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu 226019, China
| | - Xin Zhang
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu 226019, China
| | - Bao-Chun Jiang
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu 226019, China
| | - Lin-Xia Zhao
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu 226019, China
| | - Bin Qian
- Department of Anesthesiology, The First People's Hospital of Yancheng, Jiangsu 224005, China
| | - Yong-Jing Gao
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu 226019, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
35
|
Chen Y, Jiang S, Liu Y, Xiong J, Liang J, Ji W. Role of ERK1/2 activation on itch sensation induced by bradykinin B1 activation in inflamed skin. Exp Ther Med 2016; 12:627-632. [PMID: 27446253 PMCID: PMC4950635 DOI: 10.3892/etm.2016.3426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/11/2016] [Indexed: 12/26/2022] Open
Abstract
It has previously been demonstrated that bradykinin receptor B1 (B1R) agonists evoke an itch-related scratching response in inflamed skin via the B1 receptor; however, the mechanisms responsible for this abnormal itch sensation remain unclear. Therefore, the present study utilized a complete Freund's adjuvant (CFA)-induced mouse model of inflammation to elucidate the mechanisms responsible. Over a period of 30 min, scratching behavior was quantified by the number of hind limb scratches of the area surrounding the drug injection site on the neck. Furthermore, western blot analysis was used to investigate the potential role of extracellular signal-regulated kinase (ERK) 1/2 signaling as a mediator of itch in CFA-treated mice. The results demonstrated that CFA-induced inflammation at the back of the neck is associated with sustained enhancement of ERK1/2 activation in the spinal cord. Moreover, B1R agonist treatment resulted in increased expression of phosphorylated ERK1/2 in the spinal cord, which peaked at 45 min. Consistent with these findings, inhibition of either mitogen-activated protein/ERK kinase or ERK1/2, as well as inhibition of ERK1/2 activation following inflammation, attenuated B1 receptor-mediated scratching responses to a greater extent, as compared with control mice. Collectively, the results of the present study indicated that enhanced and persistent ERK1/2 activation in the spinal cord may be required to induce a scratching response to B1R agonists following CFA-induced inflammation.
Collapse
Affiliation(s)
- Yuanzhen Chen
- Postgraduate Institute, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Department of Anesthesiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Shuyan Jiang
- Postgraduate Institute, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Division of Anesthesiology, Department of Cardiovascular Surgery, Guangdong Institute of Cardiovascular Diseases, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yuying Liu
- Postgraduate Institute, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Department of Anesthesiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Jialing Xiong
- Postgraduate Institute, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Division of Anesthesiology, Department of Cardiovascular Surgery, Guangdong Institute of Cardiovascular Diseases, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Jiexian Liang
- Postgraduate Institute, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Division of Anesthesiology, Department of Cardiovascular Surgery, Guangdong Institute of Cardiovascular Diseases, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Wenjin Ji
- Department of Anesthesiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
36
|
Abstract
BACKGROUND Reactive oxygen species (ROS) are often associated with persistent pains such as neuropathic and inflammatory pain. Hydrogen gas can reduce ROS and alleviate cerebral, myocardial, and hepatic ischemia/reperfusion injuries. In the present study, we aim to investigate whether hydrogen-rich saline can reduce neuropathic pain in a rat model of chronic constriction injury (CCI). METHODS Thirty SD rats were randomly divided into three groups: sham group was administered sodium chloride by intrathecal injection (n=10); control groups underwent CCI surgery and were administered sodium chloride by intrathecal injection (n=10); vehicle group underwent CCI surgery and was administered hydrogen-rich saline by intrathecal injection (n=10). Drugs were administered in the dose of 100 ul/kg once a day at 0.5 hours before and 1-7 day after CCI surgery. The mechanical thresholds were tested at one day before and 3-14 day after CCI surgery. RESULTS We found that hydrogen-rich saline significantly elevated the mechanical thresholds of neuropathic pain compared to vehicle (physiologic saline) control in CCI rats (p<0.05); it also decreased the levels of myeloperoxidase, maleic dialdehyde, and protein carbonyl in spinal cord by 7 days post-chronic constriction injury(p<0.05). In addition, hydrogen-rich saline also suppressed the expression of p38-mitogen-activated protein kinase (p38MAPK) and brain-derived neurotrophic factor (BDNF) in the spinal cord by 7 days post-chronic constriction injury (p<0.01, p<0.01, respectively), but had no effect on P2X4R (p>0.05), an ATP receptor. CONCLUSION Intrathecal injection of hydrogen-rich saline can decrease oxidative stress and the expression of p38MAPK and BDNF that may contribute to the elevated threshold of neuropathic pain in rat CCI model. Le salin riche en hydrogène atténue la douleur névropathique en réduisant le stress oxydatif.
Collapse
|
37
|
Yoo N, Lee HR, Shin SH, Sohn KY, Kim HJ, Han YH, Chong S, Kim MH, Yoon SY, Kim JW. PLAG (1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol) augments the therapeutic effect of pegfilgrastim on gemcitabine-induced neutropenia. Cancer Lett 2016; 377:25-31. [PMID: 27105612 DOI: 10.1016/j.canlet.2016.04.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/14/2016] [Accepted: 04/14/2016] [Indexed: 12/31/2022]
Abstract
Granulocyte colony-stimulating factor (G-CSF) is widely used for preventing neutropenia during chemotherapy. Polyethylene glycol-conjugated granulocyte colony-stimulating factor (PEG-G-CSF, pegfilgrastim) serves the same purpose but has a longer half-life and greater stability than G-CSF. In this study, we investigated whether 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol, acetylated diglyceride (PLAG), augments the therapeutic effect of pegfilgrastim on chemotherapy-induced neutropenia. We compared neutrophil counts in four groups of mice: control mice, gemcitabine-treated mice, gemcitabine/pegfilgrastim-treated mice, and gemcitabine/pegfilgrastim/PLAG-treated mice. PLAG (50 mg/kg) was orally administered every day during the treatment course. CBC analysis showed that the group treated with PLAG experienced a dramatically increased neutrophil counts on the third day following pegfilgrastim treatment. PLAG had no effect on blood cell apoptosis and neutrophil release from bone marrow. Additionally, pegfilgrastim-induced CXCR2 expression in neutrophils was markedly decreased in PLAG-treated animals. These results suggest that PLAG plays a role in inhibiting neutrophil extravasation, giving rise to an increased number of circulating neutrophils when used with pegfilgrastim during gemcitabine treatment. These data support the potential for PLAG to be used with pegfilgrastim to treat or prevent chemotherapy-induced neutropenia by modulating neutrophil transmigration.
Collapse
Affiliation(s)
- Nina Yoo
- Cell Factory Research Center, Division of Systems Biology and Bioengineering, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea; ENZYCHEM Lifesciences, 103-6, KAIST-ICC F741, Munjidong, Daejeon 305-732, Republic of Korea
| | - Ha-Reum Lee
- Cell Factory Research Center, Division of Systems Biology and Bioengineering, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea; ENZYCHEM Lifesciences, 103-6, KAIST-ICC F741, Munjidong, Daejeon 305-732, Republic of Korea
| | - Su-Hyun Shin
- Cell Factory Research Center, Division of Systems Biology and Bioengineering, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ki-Young Sohn
- ENZYCHEM Lifesciences, 103-6, KAIST-ICC F741, Munjidong, Daejeon 305-732, Republic of Korea
| | - Heung-Jae Kim
- ENZYCHEM Lifesciences, 103-6, KAIST-ICC F741, Munjidong, Daejeon 305-732, Republic of Korea
| | - Yong-Hae Han
- ENZYCHEM Lifesciences, 103-6, KAIST-ICC F741, Munjidong, Daejeon 305-732, Republic of Korea
| | - Saeho Chong
- ENZYCHEM Lifesciences, 103-6, KAIST-ICC F741, Munjidong, Daejeon 305-732, Republic of Korea
| | - Myung-Hwan Kim
- Division of Gastroenterology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sun Young Yoon
- ENZYCHEM Lifesciences, 103-6, KAIST-ICC F741, Munjidong, Daejeon 305-732, Republic of Korea.
| | - Jae Wha Kim
- Cell Factory Research Center, Division of Systems Biology and Bioengineering, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
38
|
Kaji K, Shinoda M, Honda K, Unno S, Shimizu N, Iwata K. Connexin 43 contributes to ectopic orofacial pain following inferior alveolar nerve injury. Mol Pain 2016; 12:12/0/1744806916633704. [PMID: 27030716 PMCID: PMC4955997 DOI: 10.1177/1744806916633704] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 12/29/2015] [Indexed: 12/22/2022] Open
Abstract
Background Clinically, it is well known that injury of mandibular nerve fiber induces persistent ectopic pain which can spread to a wide area of the orofacial region innervated by the uninjured trigeminal nerve branches. However, the exact mechanism of such persistent ectopic orofacial pain is not still known. The present study was undertaken to determine the role of connexin 43 in the trigeminal ganglion on mechanical hypersensitivity in rat whisker pad skin induced by inferior alveolar nerve injury. Here, we examined changes in orofacial mechanical sensitivity following inferior alveolar nerve injury. Furthermore, changes in connexin 43 expression in the trigeminal ganglion and its localization in the trigeminal ganglion were also examined. In addition, we investigated the functional significance of connexin 43 in relation to mechanical allodynia by using a selective gap junction blocker (Gap27). Results Long-lasting mechanical allodynia in the whisker pad skin and the upper eyelid skin, and activation of satellite glial cells in the trigeminal ganglion, were induced after inferior alveolar nerve injury. Connexin 43 was expressed in the activated satellite glial cells encircling trigeminal ganglion neurons innervating the whisker pad skin, and the connexin 43 protein expression was significantly increased after inferior alveolar nerve injury. Administration of Gap27 in the trigeminal ganglion significantly reduced satellite glial cell activation and mechanical hypersensitivity in the whisker pad skin. Moreover, the marked activation of satellite glial cells encircling trigeminal ganglion neurons innervating the whisker pad skin following inferior alveolar nerve injury implies that the satellite glial cell activation exerts a major influence on the excitability of nociceptive trigeminal ganglion neurons. Conclusions These findings indicate that the propagation of satellite glial cell activation throughout the trigeminal ganglion via gap junctions, which are composed of connexin 43, plays a pivotal role in ectopic mechanical hypersensitivity in whisker pad skin following inferior alveolar nerve injury.
Collapse
Affiliation(s)
- Kaori Kaji
- Department of Orthodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Kuniya Honda
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Syumpei Unno
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Noriyoshi Shimizu
- Department of Orthodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
39
|
Verlinde M, Hollmann MW, Stevens MF, Hermanns H, Werdehausen R, Lirk P. Local Anesthetic-Induced Neurotoxicity. Int J Mol Sci 2016; 17:339. [PMID: 26959012 PMCID: PMC4813201 DOI: 10.3390/ijms17030339] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/08/2016] [Accepted: 02/23/2016] [Indexed: 12/22/2022] Open
Abstract
This review summarizes current knowledge concerning incidence, risk factors, and mechanisms of perioperative nerve injury, with focus on local anesthetic-induced neurotoxicity. Perioperative nerve injury is a complex phenomenon and can be caused by a number of clinical factors. Anesthetic risk factors for perioperative nerve injury include regional block technique, patient risk factors, and local anesthetic-induced neurotoxicity. Surgery can lead to nerve damage by use of tourniquets or by direct mechanical stress on nerves, such as traction, transection, compression, contusion, ischemia, and stretching. Current literature suggests that the majority of perioperative nerve injuries are unrelated to regional anesthesia. Besides the blockade of sodium channels which is responsible for the anesthetic effect, systemic local anesthetics can have a positive influence on the inflammatory response and the hemostatic system in the perioperative period. However, next to these beneficial effects, local anesthetics exhibit time and dose-dependent toxicity to a variety of tissues, including nerves. There is equivocal experimental evidence that the toxicity varies among local anesthetics. Even though the precise order of events during local anesthetic-induced neurotoxicity is not clear, possible cellular mechanisms have been identified. These include the intrinsic caspase-pathway, PI3K-pathway, and MAPK-pathways. Further research will need to determine whether these pathways are non-specifically activated by local anesthetics, or whether there is a single common precipitating factor.
Collapse
Affiliation(s)
- Mark Verlinde
- Department of Anesthesiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105AZ, The Netherlands.
| | - Markus W Hollmann
- Department of Anesthesiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105AZ, The Netherlands.
| | - Markus F Stevens
- Department of Anesthesiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105AZ, The Netherlands.
| | - Henning Hermanns
- Department of Anesthesiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105AZ, The Netherlands.
| | - Robert Werdehausen
- Department of Anesthesiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, Düsseldorf 40225, Germany.
| | - Philipp Lirk
- Department of Anesthesiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105AZ, The Netherlands.
| |
Collapse
|
40
|
Reyes-Gibby CC, Wang J, Silvas MRT, Yu R, Yeung SCJ, Shete S. MAPK1/ERK2 as novel target genes for pain in head and neck cancer patients. BMC Genet 2016; 17:40. [PMID: 26872611 PMCID: PMC4752805 DOI: 10.1186/s12863-016-0348-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/05/2016] [Indexed: 01/23/2023] Open
Abstract
Background Genetic susceptibility plays an important role in the risk of developing pain in individuals with cancer. As a complex trait, multiple genes underlie this susceptibility. We used gene network analyses to identify novel target genes associated with pain in patients newly diagnosed with squamous cell carcinoma of the head and neck (HNSCC). Results We first identified 36 cancer pain-related genes (i.e., focus genes) from 36 publications based on a literature search. The Ingenuity Pathway Analysis (IPA) analysis identified additional genes that are functionally related to the 36 focus genes through pathway relationships yielding a total of 82 genes. Subsequently, 800 SNPs within the 82 IPA-selected genes on the Illumina HumanOmniExpress-12v1 platform were selected from a large-scale genotyping effort. Association analyses between the 800 candidate SNPs (covering 82 genes) and pain in a patient cohort of 1368 patients with HNSCC (206 patients with severe pain vs. 1162 with non-severe pain) showed the highest significance for MAPK1/ERK2, a gene belonging to the MAP kinase family (rs8136867, p value = 8.92 × 10−4; odds ratio [OR] = 1.33, 95 % confidence interval [CI]: 1.13–1.58). Other top genes were PIK3C2G (a member of PI3K [complex], rs10770367, p value = 1.10 × 10−3; OR = 1.46, 95 % CI: 1.16–1.82), TCRA (the alpha chain of T-cell receptor, rs6572493, p value = 2.84 × 10−3; OR = 0.70, 95 % CI: 0.55–0.88), PDGFC (platelet-derived growth factor C, rs6845322, p value = 4.88 × 10−3; OR = 1.32, 95 % CI: 1.09–1.60), and CD247 (a member of CD3, rs2995082, p value = 7.79 × 10−3; OR = 0.76, 95 % CI: 0.62–0.93). Conclusions Our findings provide novel candidate genes and biological pathways underlying pain in cancer patients. Further study of the variations of these candidate genes could inform clinical decision making when treating cancer pain. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0348-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cielito C Reyes-Gibby
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, U.S.A..
| | - Jian Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, U.S.A..
| | - Mary Rose T Silvas
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, U.S.A..
| | - Robert Yu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, U.S.A..
| | - Sai-Ching J Yeung
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, U.S.A..
| | - Sanjay Shete
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, U.S.A.. .,Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, U.S.A.
| |
Collapse
|
41
|
Abstract
Chronic pain is a major clinical problem that is poorly treated with available therapeutics. Adenosine monophosphate-activated protein kinase (AMPK) has recently emerged as a novel target for the treatment of pain with the exciting potential for disease modification. AMPK activators inhibit signaling pathways that are known to promote changes in the function and phenotype of peripheral nociceptive neurons and promote chronic pain. AMPK activators also reduce the excitability of these cells suggesting that AMPK activators may be efficacious for the treatment of chronic pain disorders, like neuropathic pain, where changes in the excitability of nociceptors is thought to be an underlying cause. In agreement with this, AMPK activators have now been shown to alleviate pain in a broad variety of preclinical pain models indicating that this mechanism might be engaged for the treatment of many types of pain in the clinic. A key feature of the effect of AMPK activators in these models is that they can lead to a long-lasting reversal of pain hypersensitivity even long after treatment cessation, indicative of disease modification. Here, we review the evidence supporting AMPK as a novel pain target pointing out opportunities for further discovery that are likely to have an impact on drug discovery efforts centered around potent and specific allosteric activators of AMPK for chronic pain treatment.
Collapse
|
42
|
Popiolek-Barczyk K, Mika J. Targeting the Microglial Signaling Pathways: New Insights in the Modulation of Neuropathic Pain. Curr Med Chem 2016; 23:2908-2928. [PMID: 27281131 PMCID: PMC5427777 DOI: 10.2174/0929867323666160607120124] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/23/2016] [Accepted: 06/06/2016] [Indexed: 12/30/2022]
Abstract
The microglia, once thought only to be supporting cells of the central nervous system (CNS), are now recognized to play essential roles in many pathologies. Many studies within the last decades indicated that the neuro-immune interaction underlies the generation and maintenance of neuropathic pain. Through a large number of receptors and signaling pathways, the microglial cells communicate with neurons, astrocytes and other cells, including those of the immune system. A disturbance or loss of CNS homeostasis causes rapid responses of the microglia, which undergo a multistage activation process. The activated microglia change their cell shapes and gene expression profiles, which induce proliferation, migration, and the production of pro- or antinociceptive factors. The cells release a large number of mediators that can act in a manner detrimental or beneficial to the surrounding cells and can indirectly alter the nociceptive signals. This review discusses the most important microglial intracellular signaling cascades (MAPKs, NF-kB, JAK/STAT, PI3K/Akt) that are essential for neuropathic pain development and maintenance. Our objective was to identify new molecular targets that may result in the development of powerful tools to control the signaling associated with neuropathic pain.
Collapse
Affiliation(s)
| | - Joanna Mika
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Str., 31-343 Krakow, Poland.
| |
Collapse
|
43
|
Borges G, Berrocoso E, Mico JA, Neto F. ERK1/2: Function, signaling and implication in pain and pain-related anxio-depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2015; 60:77-92. [PMID: 25708652 DOI: 10.1016/j.pnpbp.2015.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/31/2015] [Accepted: 02/15/2015] [Indexed: 12/15/2022]
Abstract
Despite the increasing knowledge regarding pain modulation, the understanding of the mechanisms behind a complex and pathologic chronic pain condition is still insufficient. These knowledge gaps might result in ineffective therapeutic approaches to relieve painful sensations. As a result, severe untreated chronic pain frequently triggers the onset of new disorders such as depression and/or anxiety, and therefore, both the diagnosis and treatment of patients suffering from chronic pain become seriously compromised, prompting a self-perpetuating cycle of symptomatology. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) are molecules strongly implicated in the somatic component of pain at the spinal cord level and have been emerging as mediators of the emotional-affective component as well. Although these molecules might represent good biomarkers, their use as pharmacological targets is still open to discussion as paradoxical information has been obtained. Here we review the current scientific literature regarding ERK1/2 signaling in the modulation of pain, depression and anxiety, including the emotional-affective spheres of the pain experience.
Collapse
Affiliation(s)
- Gisela Borges
- Neuropsycopharmacology and Psychobiology Research Group, Department of Neuroscience (Pharmacology and Psychiatry), University of Cádiz, 11003 Cádiz, Spain; Departamento de Biologia Experimental, Centro de Investigação Médica da Faculdade de Medicina da Universidade do Porto (CIM-FMUP), 4200-319 Porto, Portugal; Grupo de Morfofisiologia do Sistema Nervoso, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
| | - Esther Berrocoso
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, University of Cádiz, 11510 Cádiz, Spain
| | - Juan Antonio Mico
- Neuropsycopharmacology and Psychobiology Research Group, Department of Neuroscience (Pharmacology and Psychiatry), University of Cádiz, 11003 Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Fani Neto
- Departamento de Biologia Experimental, Centro de Investigação Médica da Faculdade de Medicina da Universidade do Porto (CIM-FMUP), 4200-319 Porto, Portugal; Grupo de Morfofisiologia do Sistema Nervoso, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal.
| |
Collapse
|
44
|
Carvalho TT, Borghi SM, Pinho-Ribeiro FA, Mizokami SS, Cunha TM, Ferreira SH, Cunha FQ, Casagrande R, Verri WA. Granulocyte-colony stimulating factor (G-CSF)-induced mechanical hyperalgesia in mice: Role for peripheral TNFα, IL-1β and IL-10. Eur J Pharmacol 2015; 749:62-72. [PMID: 25584775 DOI: 10.1016/j.ejphar.2014.12.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 12/17/2014] [Accepted: 12/22/2014] [Indexed: 01/28/2023]
Abstract
Granulocyte-colony stimulating factor (G-CSF) is a therapeutic approach to increase peripheral neutrophil counts after anti-tumor therapies. Pain is the major side effect of G-CSF. Intraplantar administration of G-CSF in mice induces mechanical hyperalgesia. However, the peripheral mechanisms involved in this effect were not elucidated. Therefore, the participation of pronociceptive cytokines tumor necrosis factor (TNF) alpha (TNFα), interleukin (IL)-1 beta (IL-1β) and antinociceptive cytokine IL-10 in G-CSF-induced mechanical hyperalgesia in mice was investigated. G-CSF-induced mechanical hyperalgesia was inhibited by systemic and local treatment with etanercept and IL-1 receptor antagonist (IL-1ra) or TNF receptor 1 (TNFR1) deficiency and increased in IL-10 deficient mice. In agreement, G-CSF injection induced significant TNFα, IL-1β and IL-10 production in paw tissue. G-CSF-induced hyperalgesia was dose-dependently inhibited by thalidomide (5-45mg/kg) and pentoxifylline (0.5-13.5mg/kg), and treatment with these drugs inhibited G-CSF-induced TNFα, IL-1β and IL-10 production. The combined treatment with pentoxifylline or thalidomide with morphine, at doses that are ineffective as single treatment, diminished G-CSF-induced hyperalgesia through inhibiting cytokine production. Indomethacin also reduces G-CSF hyperalgesia alone or combined with pentoxifylline or thalidomide. Thus, G-CSF-induced hyperalgesia might be mediate by peripheral production of pronociceptive cytokines TNFα and IL-1β and down-regulated by IL-10. Systemic IL-1ra reduced G-CSF-induced increase of peripheral neutrophil counts. However, local treatment with morphine, IL-1ra or etanercept, and systemic treatment with indomethacin, etanercept, thalidomide and pentoxifylline did not alter G-CSF-induced mobilization of neutrophils. Therefore, this study advances in the understanding of G-CSF-induced hyperalgesia and suggests therapeutic approaches for its control.
Collapse
Affiliation(s)
- Thacyana T Carvalho
- Department of Pathology, Center of Biological Science, Londrina State University, Rod. Celso Garcia Cid KM480 PR445, CEP 86057-970, Cx Postal 10.011, Londrina, Paraná, Brazil.
| | - Sergio M Borghi
- Department of Pathology, Center of Biological Science, Londrina State University, Rod. Celso Garcia Cid KM480 PR445, CEP 86057-970, Cx Postal 10.011, Londrina, Paraná, Brazil.
| | - Felipe A Pinho-Ribeiro
- Department of Pathology, Center of Biological Science, Londrina State University, Rod. Celso Garcia Cid KM480 PR445, CEP 86057-970, Cx Postal 10.011, Londrina, Paraná, Brazil.
| | - Sandra S Mizokami
- Department of Pathology, Center of Biological Science, Londrina State University, Rod. Celso Garcia Cid KM480 PR445, CEP 86057-970, Cx Postal 10.011, Londrina, Paraná, Brazil.
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, CEP 14049-900 Ribeirao Preto, Sao Paulo, Brazil.
| | - Sergio H Ferreira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, CEP 14049-900 Ribeirao Preto, Sao Paulo, Brazil.
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, CEP 14049-900 Ribeirao Preto, Sao Paulo, Brazil.
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, University Hospital (Health Science Centre), Londrina State University, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, Paraná, Brazil.
| | - Waldiceu A Verri
- Department of Pathology, Center of Biological Science, Londrina State University, Rod. Celso Garcia Cid KM480 PR445, CEP 86057-970, Cx Postal 10.011, Londrina, Paraná, Brazil.
| |
Collapse
|
45
|
Kallenborn-Gerhardt W, Hohmann SW, Syhr KMJ, Schröder K, Sisignano M, Weigert A, Lorenz JE, Lu R, Brüne B, Brandes RP, Geisslinger G, Schmidtko A. Nox2-dependent signaling between macrophages and sensory neurons contributes to neuropathic pain hypersensitivity. Pain 2014; 155:2161-70. [PMID: 25139590 DOI: 10.1016/j.pain.2014.08.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/18/2014] [Accepted: 08/12/2014] [Indexed: 12/22/2022]
Abstract
Emerging lines of evidence indicate that production of reactive oxygen species (ROS) at distinct sites of the nociceptive system contributes to the processing of neuropathic pain. However, the mechanisms underlying ROS production during neuropathic pain processing are not fully understood. We here detected the ROS-generating nicotinamide adenine dinucleotide phosphate oxidase isoform Nox2 in macrophages of dorsal root ganglia (DRG) in mice. In response to peripheral nerve injury, Nox2-positive macrophages were recruited to DRG, and ROS production was increased in a Nox2-dependent manner. Nox2-deficient mice displayed reduced neuropathic pain behavior after peripheral nerve injury, whereas their immediate responses to noxious stimuli were normal. Moreover, injury-induced upregulation of tumor necrosis factor α was absent, and activating transcription factor 3 induction was reduced in DRG of Nox2-deficient mice, suggesting an attenuated macrophage-neuron signaling. These data suggest that Nox2-dependent ROS production in macrophages recruited to DRG contributes to neuropathic pain hypersensitivity, underlining the observation that Nox-derived ROS exert specific functions during the processing of pain.
Collapse
Affiliation(s)
- Wiebke Kallenborn-Gerhardt
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Stephan W Hohmann
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Katharina M J Syhr
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Katrin Schröder
- Institute of Cardiovascular Physiology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Marco Sisignano
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Andreas Weigert
- Institute of Biochemistry I/ZAFES, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jana E Lorenz
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Ruirui Lu
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Medical School, Frankfurt am Main, Germany; Institute of Pharmacology and Toxicology, ZBAF, Witten/Herdecke University, Witten, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I/ZAFES, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ralf P Brandes
- Institute of Cardiovascular Physiology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Medical School, Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology - Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, Germany
| | - Achim Schmidtko
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Medical School, Frankfurt am Main, Germany; Institute of Pharmacology and Toxicology, ZBAF, Witten/Herdecke University, Witten, Germany.
| |
Collapse
|
46
|
van den Heuvel I, Reichl S, Segelcke D, Zahn PK, Pogatzki-Zahn EM. Selective prevention of mechanical hyperalgesia after incision by spinal ERK1/2 inhibition. Eur J Pain 2014; 19:225-35. [PMID: 24976579 DOI: 10.1002/ejp.540] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2014] [Indexed: 01/15/2023]
Abstract
BACKGROUND Activation of extracellular signal-regulated kinases (ERK1/2) has been shown to play an important role in several pain states. Here we investigated the ERK1/2 contribution to non-evoked and evoked pain-like behaviour in rats after surgical incision. METHODS Spinal phosphorylation of ERK1 and ERK2 was assessed 15 min, 4 h, 24 h and 5 days after plantar incision and sham incision. The effect of PD98059, a specific inhibitor of ERK1/2 activation, administered intrathecally (IT) 1 h before or 2 h after incision on spinal ERK1 and ERK2 phosphorylation was assessed. In behavioural experiments, the effect of PD98059 administered 1 h before or after incision on non-evoked pain behaviour and mechanical and heat hyperalgesia was assessed. RESULTS Phosphorylated ERK1 and ERK2 were rapidly increased in the ipsilateral dorsal horn from rats after incision post-operatively. This increased ERK1 and ERK2 phosphorylation were blocked by PD98059 administered before incision. In congruence, IT administration of PD98059 before incision delayed mechanical hyperalgesia after incision; however, administration after incision had only a modest effect on mechanical hyperalgesia. In addition, PD98059 did not affect non-evoked pain behaviour or heat hyperalgesia after incision. CONCLUSION The results suggest that spinal ERK1 and ERK2 are involved in regulation of pain after incision differentially with regard to the pain modality. Furthermore, blockade of ERK1/2 activation was most effective in a preventive manner, a condition which is rare after incision. Spinal ERK1/2 inhibition could therefore be a very useful tool to manage selectively movement-evoked pain after surgery in the future.
Collapse
Affiliation(s)
- I van den Heuvel
- Department of General Pediatrics, University Children's Hospital Muenster, Germany
| | | | | | | | | |
Collapse
|
47
|
Richner M, Ulrichsen M, Elmegaard SL, Dieu R, Pallesen LT, Vaegter CB. Peripheral nerve injury modulates neurotrophin signaling in the peripheral and central nervous system. Mol Neurobiol 2014; 50:945-70. [PMID: 24752592 DOI: 10.1007/s12035-014-8706-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/01/2014] [Indexed: 12/21/2022]
Abstract
Peripheral nerve injury disrupts the normal functions of sensory and motor neurons by damaging the integrity of axons and Schwann cells. In contrast to the central nervous system, the peripheral nervous system possesses a considerable capacity for regrowth, but regeneration is far from complete and functional recovery rarely returns to pre-injury levels. During development, the peripheral nervous system strongly depends upon trophic stimulation for neuronal differentiation, growth and maturation. The perhaps most important group of trophic substances in this context is the neurotrophins (NGF, BDNF, NT-3 and NT-4/5), which signal in a complex spatial and timely manner via the two structurally unrelated p75(NTR) and tropomyosin receptor kinase (TrkA, Trk-B and Trk-C) receptors. Damage to the adult peripheral nerves induces cellular mechanisms resembling those active during development, resulting in a rapid and robust increase in the synthesis of neurotrophins in neurons and Schwann cells, guiding and supporting regeneration. Furthermore, the injury induces neurotrophin-mediated changes in the dorsal root ganglia and in the spinal cord, which affect the modulation of afferent sensory signaling and eventually may contribute to the development of neuropathic pain. The focus of this review is on the expression patterns of neurotrophins and their receptors in neurons and glial cells of the peripheral nervous system and the spinal cord. Furthermore, injury-induced changes of expression patterns and the functional consequences in relation to axonal growth and remyelination as well as to neuropathic pain development will be reviewed.
Collapse
Affiliation(s)
- Mette Richner
- Danish Research Institute of Translational Neuroscience DANDRITE, Nordic EMBL Partnership, and Lundbeck Foundation Research Center MIND, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, 8000, Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
48
|
Drummond ES, Dawson LF, Finch PM, Bennett GJ, Drummond PD. Increased Expression of Cutaneous α1-Adrenoceptors After Chronic Constriction Injury in Rats. THE JOURNAL OF PAIN 2014; 15:188-96. [DOI: 10.1016/j.jpain.2013.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/02/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
|
49
|
The five “Ws” for bone pain due to the administration of granulocyte-colony stimulating factors (G-CSFs). Crit Rev Oncol Hematol 2014; 89:112-28. [DOI: 10.1016/j.critrevonc.2013.08.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/26/2013] [Accepted: 08/13/2013] [Indexed: 11/21/2022] Open
|
50
|
Resiniferatoxin (RTX) causes a uniquely protracted musculoskeletal hyperalgesia in mice by activation of TRPV1 receptors. THE JOURNAL OF PAIN 2013; 14:1629-41. [PMID: 24188863 DOI: 10.1016/j.jpain.2013.07.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/26/2013] [Accepted: 07/30/2013] [Indexed: 11/20/2022]
Abstract
UNLABELLED Inactivation of transient receptor potential vanilloid-1 (TRPV1) receptors is one approach to analgesic drug development. However, TRPV1 receptors exert different effects on each modality of pain. Because muscle pain is clinically important, we compared the effect of TRPV1 ligands on musculoskeletal nociception to that on thermal and tactile nociception. Injected parenterally, capsaicin had no effect on von Frey fiber responses (tactile) but induced a transient hypothermia and hyperalgesia in both the tail flick (thermal) and grip force (musculoskeletal) assays, presumably by its agonistic action at TRPV1 sites. In contrast, resiniferatoxin (RTX) produced a chronic (>58 days) thermal antinociception, consistent with its reported ability to desensitize TRPV1 sites. In the same mice, RTX produced a transient hypothermia (7 hours) and a protracted (28-day) musculoskeletal hyperalgesia in spite of a 35.5% reduction in TRPV1 receptor immunoreactivity in muscle afferents. Once musculoskeletal hyperalgesia subsided, mice were tolerant to the hyperalgesic effects of either capsaicin or RTX whereas tolerance to hypothermia did not develop until after 3 injections. Musculoskeletal hyperalgesia was prevented but not reversed by SB-366791, a TRPV1 antagonist, indicating that TRPV1 receptors initiate but do not maintain hyperalgesia. Injected intrathecally, RTX produced only a brief musculoskeletal hyperalgesia (2 days), after which mice were tolerant to this effect. PERSPECTIVE The effect of TRPV1 receptors varies depending on modality and tissue type, such that RTX causes thermal antinociception, musculoskeletal hyperalgesia, and no effect on tactile nociception in healthy mice. Spinal TRPV1 receptors are a potential target for pain relief as they induce only a short musculoskeletal hyperalgesia followed by desensitization.
Collapse
|