1
|
Sourav S, Kekunnaya R, Bottari D, Shareef I, Pitchaimuthu K, Röder B. Sound suppresses earliest visual cortical processing after sight recovery in congenitally blind humans. Commun Biol 2024; 7:118. [PMID: 38253781 PMCID: PMC10803735 DOI: 10.1038/s42003-023-05749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Neuroscientific research has consistently shown more extensive non-visual activity in the visual cortex of congenitally blind humans compared to sighted controls; a phenomenon known as crossmodal plasticity. Whether or not crossmodal activation of the visual cortex retracts if sight can be restored is still unknown. The present study, involving a rare group of sight-recovery individuals who were born pattern vision blind, employed visual event-related potentials to investigate persisting crossmodal modulation of the initial visual cortical processing stages. Here we report that the earliest, stimulus-driven retinotopic visual cortical activity (<100 ms) was suppressed in a spatially specific manner in sight-recovery individuals when concomitant sounds accompanied visual stimulation. In contrast, sounds did not modulate the earliest visual cortical response in two groups of typically sighted controls, nor in a third control group of sight-recovery individuals who had suffered a transient phase of later (rather than congenital) visual impairment. These results provide strong evidence for persisting crossmodal activity in the visual cortex after sight recovery following a period of congenital visual deprivation. Based on the time course of this modulation, we speculate on a role of exuberant crossmodal thalamic input which may arise during a sensitive phase of brain development.
Collapse
Affiliation(s)
- Suddha Sourav
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany.
| | - Ramesh Kekunnaya
- Jasti V Ramanamma Children's Eye Care Center, Child Sight Institute, L V Prasad Eye Institute, Hyderabad, India
| | - Davide Bottari
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
- IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Idris Shareef
- Jasti V Ramanamma Children's Eye Care Center, Child Sight Institute, L V Prasad Eye Institute, Hyderabad, India
| | - Kabilan Pitchaimuthu
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
- Jasti V Ramanamma Children's Eye Care Center, Child Sight Institute, L V Prasad Eye Institute, Hyderabad, India
- Department of Medicine and Optometry, Linnaeus University, Kalmar, Sweden
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
- Jasti V Ramanamma Children's Eye Care Center, Child Sight Institute, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
2
|
López-Bendito G, Aníbal-Martínez M, Martini FJ. Cross-Modal Plasticity in Brains Deprived of Visual Input Before Vision. Annu Rev Neurosci 2022; 45:471-489. [PMID: 35803589 DOI: 10.1146/annurev-neuro-111020-104222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unimodal sensory loss leads to structural and functional changes in both deprived and nondeprived brain circuits. This process is broadly known as cross-modal plasticity. The evidence available indicates that cross-modal changes underlie the enhanced performances of the spared sensory modalities in deprived subjects. Sensory experience is a fundamental driver of cross-modal plasticity, yet there is evidence from early-visually deprived models supporting an additional role for experience-independent factors. These experience-independent factors are expected to act early in development and constrain neuronal plasticity at later stages. Here we review the cross-modal adaptations elicited by congenital or induced visual deprivation prior to vision. In most of these studies, cross-modal adaptations have been addressed at the structural and functional levels. Here, we also appraise recent data regarding behavioral performance in early-visually deprived models. However, further research is needed to explore how circuit reorganization affects their function and what brings about enhanced behavioral performance.
Collapse
Affiliation(s)
- Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain; ,
| | - Mar Aníbal-Martínez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain; ,
| | - Francisco J Martini
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain; ,
| |
Collapse
|
3
|
Shin H, Kawai HD. Sensitive timing of undifferentiation in oligodendrocyte progenitor cells and their enhanced maturation in primary visual cortex of binocularly enucleated mice. PLoS One 2021; 16:e0257395. [PMID: 34534256 PMCID: PMC8448312 DOI: 10.1371/journal.pone.0257395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022] Open
Abstract
Sensory experience modulates proliferation, differentiation, and migration of oligodendrocyte progenitor cells (OPCs). In the mouse primary visual cortex (V1), visual deprivation-dependent modulation of OPCs has not been demonstrated. Here, we demonstrate that undifferentiated OPCs developmentally peaked around postnatal day (P) 25, and binocular enucleation (BE) from the time of eye opening (P14-15) elevated symmetrically-divided undifferentiated OPCs in a reversible G0/G1 state even more at the bottom lamina of the cortex by reducing maturing oligodendrocyte (OL) lineage cells. Experiments using the sonic hedgehog (Shh) signaling inhibitor cyclopamine in vivo suggested that Shh signaling pathway was involved in the BE-induced undifferentiation process. The undifferentiated OPCs then differentiated within 5 days, independent of the experience, becoming mostly quiescent cells in control mice, while altering the mode of sister cell symmetry and forming quiescent as well as maturing cells in the enucleated mice. At P50, BE increased mature OLs via symmetric and asymmetric modes of cell segregation, resulting in more populated mature OLs at the bottom layer of the cortex. These data suggest that fourth postnatal week, corresponding to the early critical period of ocular dominance plasticity, is a developmentally sensitive period for OPC state changes. Overall, the visual loss promoted undifferentiation at the early period, but later increased the formation of mature OLs via a change in the mode of cell type symmetry at the bottom layer of mouse V1.
Collapse
Affiliation(s)
- Hyeryun Shin
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Hideki Derek Kawai
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo, Japan
- Department of Biosciences, Graduate School of Science and Engineering, Soka University, Hachioji, Tokyo, Japan
| |
Collapse
|
4
|
Shin H, Kawai HD. Visual deprivation induces transient upregulation of oligodendrocyte progenitor cells in the subcortical white matter of mouse visual cortex. IBRO Neurosci Rep 2021; 11:29-41. [PMID: 34286312 PMCID: PMC8273201 DOI: 10.1016/j.ibneur.2021.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Sensory experience influences proliferation and differentiation of oligodendrocyte progenitor cells (OPCs). Enhanced sensorimotor experience promoted the lineage progression of OPCs and myelination in the gray matter and white matter (WM) of sensorimotor cortex. In the visual cortex, reduced experience reportedly delayed the maturation of myelination in the gray matter, but whether and how such experience alters the subcortical WM is unclear. Here we investigated if binocular enucleation from the onset of eye opening (i.e., P15) affects the cell state of OPCs in mouse primary visual cortex (V1). Proliferative cells in the WM declined nearly half over 3 days from postnatal day (P) 25. A 3-day BrdU-labeling showed gradual decline in proliferation rates from P19 to P28. Binocular enucleation resulted in an increase in the cycling state of the OPCs that were proliferated from P22 to P25 but not before or after this period. This increase in proliferative OPCs was not associated with lineage progression toward differentiated oligodendrocytes. Proliferative OPCs arose mostly due to symmetric cell division but also asymmetric formation of proliferative and quiescent OPCs. By P30, almost all the proliferated cells exited the cell cycle. Maturing oligodendrocytes among the proliferated cells increased at this age, but most of them disappeared over 25 days. The cell density of the maturing oligodendrocytes was unaffected by binocular enucleation, however. These data suggest that binocular enucleation transiently elevates proliferative OPCs in the subcortical WM of V1 during a specific period of the fourth postnatal week without subsequently affecting the number of maturing oligodendrocytes several days later. Binocular enucleation increased proliferative OPCs during P22-25 in the V1 WM. Proliferative OPCs decrease in half from P25 over 3 days. P22-25 proliferated cells nearly all exited the cell cycle by P30. Some P22-25 proliferated OPCs matured over 5 days but disappeared over 25 days. Visual loss did not influence oligodendrocyte maturation or its disappearance.
Collapse
Affiliation(s)
- Hyeryun Shin
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan
| | - Hideki Derek Kawai
- Department of Biosciences, Graduate School of Science and Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan
| |
Collapse
|
5
|
Touj S, Gallino D, Chakravarty MM, Bronchti G, Piché M. Structural brain plasticity induced by early blindness. Eur J Neurosci 2020; 53:778-795. [PMID: 33113245 DOI: 10.1111/ejn.15028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/28/2020] [Accepted: 10/20/2020] [Indexed: 11/30/2022]
Abstract
It is well established that early blindness results in behavioural adaptations. While the functional effects of visual deprivation have been well researched, anatomical studies are scarce. The aim of this study was to investigate whole brain structural plasticity in a mouse model of congenital blindness. Volumetric analyses were conducted on high-resolution MRI images and histological sections from the same brains. These morphometric measurements were compared between anophthalmic and sighted ZRDBA mice obtained by breeding ZRDCT and DBA mice. Results from MRI analyses using the Multiple Automatically Generated Templates (MAGeT) method showed smaller volume for the primary visual cortex and superior colliculi in anophthalmic compared with sighted mice. Deformation-based morphometry revealed smaller volumes within the dorsal lateral geniculate nuclei and the lateral secondary visual cortex and larger volumes within olfactory areas, piriform cortex, orbital areas and the amygdala, in anophthalmic compared with sighted mice. Histological analyses revealed a larger volume for the amygdala and smaller volume for the superior colliculi, primary visual cortex and medial secondary visual cortex, in anophthalmic compared with sighted mice. The absence of superficial visual layers of the superior colliculus and the thinner cortical layer IV of the primary and secondary visual cortices may explain the smaller volume of these areas, although this was observed in a limited sample. The present study shows large-scale brain plasticity in a mouse model of congenital blindness. In addition, the congruence of MRI and histological findings support the use of MRI to investigate structural brain plasticity in the mouse.
Collapse
Affiliation(s)
- Sara Touj
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Daniel Gallino
- Computational Brain Anatomy Laboratory, Brain Imaging Center, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Mallar M Chakravarty
- Computational Brain Anatomy Laboratory, Brain Imaging Center, Douglas Mental Health University Institute, Verdun, QC, Canada.,Department of Biological and Biomedical Engineering, McGill, Montréal, QC, Canada.,Department of Psychiatry, McGill, Montréal, QC, Canada
| | - Gilles Bronchti
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Mathieu Piché
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|
6
|
Self-Generated Whisker Movements Drive State-Dependent Sensory Input to Developing Barrel Cortex. Curr Biol 2020; 30:2404-2410.e4. [PMID: 32413304 DOI: 10.1016/j.cub.2020.04.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/25/2020] [Accepted: 04/16/2020] [Indexed: 01/02/2023]
Abstract
Cortical development is an activity-dependent process [1-3]. Regarding the role of activity in the developing somatosensory cortex, one persistent debate concerns the importance of sensory feedback from self-generated movements. Specifically, recent studies claim that cortical activity is generated intrinsically, independent of movement [3, 4]. However, other studies claim that behavioral state moderates the relationship between movement and cortical activity [5-7]. Thus, perhaps inattention to behavioral state leads to failures to detect movement-driven activity [8]. Here, we resolve this issue by associating local field activity (i.e., spindle bursts) and unit activity in the barrel cortex of 5-day-old rats with whisker movements during wake and myoclonic twitches of the whiskers during active (REM) sleep. Barrel activity increased significantly within 500 ms of whisker movements, especially after twitches. Also, higher-amplitude movements were more likely to trigger barrel activity; when we controlled for movement amplitude, barrel activity was again greater after a twitch than a wake movement. We then inverted the analysis to assess the likelihood that increases in barrel activity were preceded within 500 ms by whisker movements: at least 55% of barrel activity was attributable to sensory feedback from whisker movements. Finally, when periods with and without movement were compared, 70%-75% of barrel activity was movement related. These results confirm the importance of sensory feedback from movements in driving activity in sensorimotor cortex and underscore the necessity of monitoring sleep-wake states to ensure accurate assessments of the contributions of the sensory periphery to activity in developing somatosensory cortex.
Collapse
|
7
|
Structural and functional brain reorganisation due to blindness: The special case of bilateral congenital anophthalmia. Neurosci Biobehav Rev 2019; 107:765-774. [PMID: 31626815 DOI: 10.1016/j.neubiorev.2019.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/03/2019] [Accepted: 10/08/2019] [Indexed: 12/25/2022]
Abstract
Investigating the changes in the brain that result from a loss of sensory input has provided significant insight into the considerable capacity of the brain to reorganise. One of the difficulties in studying sensory-deprived populations is that the time and extent of sensory loss vary significantly. In this review, we consider the changes in the human brain associated with complete absence of visual input resulting from bilateral congenital anophthalmia, in which the eyes fail to develop. We describe the functional reorganisation and associated structural and connectivity changes that occur in the brain of those affected by the condition. By considering animal models of this condition, we investigate the changes that may be occurring on a scale that is not captured by human in vivo imaging techniques. Finally, we lay out a model pathway for taking auditory information to the occipital cortex that may be specific to anophthalmia.
Collapse
|
8
|
Touj S, Tokunaga R, Al Aïn S, Bronchti G, Piché M. Pain Hypersensitivity is Associated with Increased Amygdala Volume and c-Fos Immunoreactivity in Anophthalmic Mice. Neuroscience 2019; 418:37-49. [PMID: 31472214 DOI: 10.1016/j.neuroscience.2019.08.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 08/15/2019] [Accepted: 08/22/2019] [Indexed: 01/07/2023]
Abstract
It is well established that early blindness results in brain plasticity and behavioral changes in both humans and animals. However, only a few studies have examined the effects of blindness on pain perception. In these studies, pain hypersensitivity was reported in early, but not late, blind humans. The underlying mechanisms remain unclear, but considering its key role in pain perception and modulation, the amygdala may contribute to this pain hypersensitivity. The first aim of this study was to develop an animal model of early blindness to examine the effects of blindness on pain perception. A mouse cross was therefore developed (ZRDBA mice), in which half of the animals are born sighted and half are born anophthalmic, allowing comparisons between blind and sighted mice with the same genetic background. The second aim of the present study was to examine mechanical and thermal pain thresholds as well as pain behaviors and pain-related c-Fos immunoreactivity induced by the formalin test in the amygdalas of blind and sighted mice. Group differences in amygdala volume were also assessed histologically. Blind mice exhibited lower mechanical and thermal pain thresholds and more pain behaviors during the acute phase of the formalin test, compared with sighted mice. Moreover, pain hypersensitivity during the formalin test was associated with increased c-Fos immunoreactivity in the amygdala. Furthermore, amygdala volume was larger bilaterally in blind compared with sighted mice. These results indicate that congenitally blind mice show pain hypersensitivity like early blind individuals and suggest that this is due in part to plasticity in the amygdala.
Collapse
Affiliation(s)
- Sara Touj
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7; CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7
| | - Ryota Tokunaga
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7; CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7
| | - Syrina Al Aïn
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7; CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7
| | - Gilles Bronchti
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7; CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7
| | - Mathieu Piché
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7; CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7.
| |
Collapse
|
9
|
Nip E, Adcock A, Nazal B, MacLellan A, Niel L, Choleris E, Levison L, Mason G. Why are enriched mice nice? Investigating how environmental enrichment reduces agonism in female C57BL/6, DBA/2, and BALB/c mice. Appl Anim Behav Sci 2019. [DOI: 10.1016/j.applanim.2019.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Dooley JC, Krubitzer LA. Alterations in cortical and thalamic connections of somatosensory cortex following early loss of vision. J Comp Neurol 2018; 527:1675-1688. [PMID: 30444542 DOI: 10.1002/cne.24582] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/26/2018] [Accepted: 11/01/2018] [Indexed: 01/31/2023]
Abstract
Early loss of vision produces dramatic changes in the functional organization and connectivity of the neocortex in cortical areas that normally process visual inputs, such as the primary and second visual area. This loss also results in alterations in the size, functional organization, and neural response properties of the primary somatosensory area, S1. However, the anatomical substrate for these functional changes in S1 has never been described. In the present investigation, we quantified the cortical and subcortical connections of S1 in animals that were bilaterally enucleated very early in development, prior to the formation of retino-geniculate and thalamocortical pathways. We found that S1 receives dense inputs from novel cortical fields, and that the density of existing cortical and thalamocortical connections was altered. Our results demonstrate that sensory systems develop in tandem and that alterations in sensory input in one system can affect the connections and organization of other sensory systems. Thus, therapeutic intervention following early loss of vision should focus not only on restoring vision, but also on augmenting the natural plasticity of the spared systems.
Collapse
Affiliation(s)
- James C Dooley
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| | - Leah A Krubitzer
- Center for Neuroscience, University of California, Davis, California.,Department of Psychology, University of California, Davis, California
| |
Collapse
|
11
|
Voss P. Brain (re)organization following visual loss. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2018; 10:e1468. [PMID: 29878533 DOI: 10.1002/wcs.1468] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 11/10/2022]
Abstract
The study of the neural consequences of sensory loss provides a unique window into the brain's functional and organizational principles. Although the blind visual cortex has been implicated in the cross-modal processing of nonvisual inputs for quite some time, recent research has shown that certain cortical organizational principles are preserved even in the case of complete sensory loss. Furthermore, a growing body of work has shown that markers of neuroplasticity extend to neuroanatomical metrics that include cortical thickness and myelinization. Although our understanding of the mechanisms that underlie sensory deprivation-driven cross-modal plasticity is improving, several critical questions remain unanswered. The specific pathways that underlie the rerouting of nonvisual information, for instance, have not been fully elucidated. The fact that important cross-modal recruitment occurs following transient deprivation in sighted individuals suggests that significant rewiring following blindness may not be required. Furthermore, there are marked individual differences regarding the magnitude and functional relevance of the cross-modal reorganization. It is also not clear to what extent precise environmental factors may play a role in establishing the degree of reorganization across individuals, as opposed to factors that might specifically relate to the cause or the nature of the visual loss. In sum, although many unresolved questions remain, sensory deprivation continues to be an excellent model for studying the plastic nature of the brain. This article is categorized under: Psychology > Brain Function and Dysfunction Psychology > Perception and Psychophysics Neuroscience > Plasticity.
Collapse
Affiliation(s)
- Patrice Voss
- Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
12
|
Medial preoptic circuit induces hunting-like actions to target objects and prey. Nat Neurosci 2018; 21:364-372. [DOI: 10.1038/s41593-018-0072-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 12/09/2017] [Indexed: 12/22/2022]
|
13
|
Laramée ME, Smolders K, Hu TT, Bronchti G, Boire D, Arckens L. Congenital Anophthalmia and Binocular Neonatal Enucleation Differently Affect the Proteome of Primary and Secondary Visual Cortices in Mice. PLoS One 2016; 11:e0159320. [PMID: 27410964 PMCID: PMC4943598 DOI: 10.1371/journal.pone.0159320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/30/2016] [Indexed: 01/08/2023] Open
Abstract
In blind individuals, visually deprived occipital areas are activated by non-visual stimuli. The extent of this cross-modal activation depends on the age at onset of blindness. Cross-modal inputs have access to several anatomical pathways to reactivate deprived visual areas. Ectopic cross-modal subcortical connections have been shown in anophthalmic animals but not in animals deprived of sight at a later age. Direct and indirect cross-modal cortical connections toward visual areas could also be involved, yet the number of neurons implicated is similar between blind mice and sighted controls. Changes at the axon terminal, dendritic spine or synaptic level are therefore expected upon loss of visual inputs. Here, the proteome of V1, V2M and V2L from P0-enucleated, anophthalmic and sighted mice, sharing a common genetic background (C57BL/6J x ZRDCT/An), was investigated by 2-D DIGE and Western analyses to identify molecular adaptations to enucleation and/or anophthalmia. Few proteins were differentially expressed in enucleated or anophthalmic mice in comparison to sighted mice. The loss of sight affected three pathways: metabolism, synaptic transmission and morphogenesis. Most changes were detected in V1, followed by V2M. Overall, cross-modal adaptations could be promoted in both models of early blindness but not through the exact same molecular strategy. A lower metabolic activity observed in visual areas of blind mice suggests that even if cross-modal inputs reactivate visual areas, they could remain suboptimally processed.
Collapse
Affiliation(s)
- Marie-Eve Laramée
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Katrien Smolders
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Tjing-Tjing Hu
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Gilles Bronchti
- Département d’anatomie, Université du Québec à Trois-Rivières, Québec, Canada
| | - Denis Boire
- Département d’anatomie, Université du Québec à Trois-Rivières, Québec, Canada
- École d’optométrie, Université de Montréal, Québec, Canada
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| |
Collapse
|
14
|
Mezzera C, López-Bendito G. Cross-modal plasticity in sensory deprived animal models: From the thalamocortical development point of view. J Chem Neuroanat 2015; 75:32-40. [PMID: 26459021 DOI: 10.1016/j.jchemneu.2015.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/30/2015] [Accepted: 09/18/2015] [Indexed: 11/28/2022]
Abstract
Over recent decades, our understanding of the plasticity of the central nervous system has expanded enormously. Accordingly, it is now widely accepted that the brain can adapt to changes by reorganizing its circuitry, both in response to external stimuli and experience, as well as through intrinsic mechanisms. A clear example of this is the activation of a deprived sensory area and the expansion of spared sensory cortical regions in individuals who suffered peripheral sensory loss. Despite the efforts to understand these neuroplastic changes, the mechanisms underlying such adaptive remodeling remains poorly understood. Progress in understanding these events may be hindered by the highly varied data obtained from the distinct experimental paradigms analyzed, which include different animal models and neuronal systems, as well as studies into the onset of sensory loss. Here, we will establish the current state-of-the-art describing the principal observations made according to the time of sensory deprivation with respect to the development of the thalamocortical connectivity. We will review the experimental data obtained from animal models where sensory deprivation has been induced either before or after thalamocortical axons reach and invade their target cortical areas. The anatomical and functional effects of sensory loss on the primary sensory areas of the cortex will be presented. Indeed, we consider that the comparative approach of this review is a necessary step in order to help deciphering the processes that underlie sensory neuroplasticity, for which studies in animal models have been indispensable. Understanding these mechanisms will then help to develop restorative strategies and prostheses that will overcome the functional loss.
Collapse
Affiliation(s)
- Cecilia Mezzera
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Av Ramon y Cajal s/n, San Joan d'Alacant 03550, Alicante, Spain.
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Av Ramon y Cajal s/n, San Joan d'Alacant 03550, Alicante, Spain.
| |
Collapse
|
15
|
Nys J, Scheyltjens I, Arckens L. Visual system plasticity in mammals: the story of monocular enucleation-induced vision loss. Front Syst Neurosci 2015; 9:60. [PMID: 25972788 PMCID: PMC4412011 DOI: 10.3389/fnsys.2015.00060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/30/2015] [Indexed: 11/30/2022] Open
Abstract
The groundbreaking work of Hubel and Wiesel in the 1960’s on ocular dominance plasticity instigated many studies of the visual system of mammals, enriching our understanding of how the development of its structure and function depends on high quality visual input through both eyes. These studies have mainly employed lid suturing, dark rearing and eye patching applied to different species to reduce or impair visual input, and have created extensive knowledge on binocular vision. However, not all aspects and types of plasticity in the visual cortex have been covered in full detail. In that regard, a more drastic deprivation method like enucleation, leading to complete vision loss appears useful as it has more widespread effects on the afferent visual pathway and even on non-visual brain regions. One-eyed vision due to monocular enucleation (ME) profoundly affects the contralateral retinorecipient subcortical and cortical structures thereby creating a powerful means to investigate cortical plasticity phenomena in which binocular competition has no vote.In this review, we will present current knowledge about the specific application of ME as an experimental tool to study visual and cross-modal brain plasticity and compare early postnatal stages up into adulthood. The structural and physiological consequences of this type of extensive sensory loss as documented and studied in several animal species and human patients will be discussed. We will summarize how ME studies have been instrumental to our current understanding of the differentiation of sensory systems and how the structure and function of cortical circuits in mammals are shaped in response to such an extensive alteration in experience. In conclusion, we will highlight future perspectives and the clinical relevance of adding ME to the list of more longstanding deprivation models in visual system research.
Collapse
Affiliation(s)
- Julie Nys
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven Leuven, Belgium
| | | | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven Leuven, Belgium
| |
Collapse
|
16
|
Coullon GSL, Jiang F, Fine I, Watkins KE, Bridge H. Subcortical functional reorganization due to early blindness. J Neurophysiol 2015; 113:2889-99. [PMID: 25673746 DOI: 10.1152/jn.01031.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/09/2015] [Indexed: 11/22/2022] Open
Abstract
Lack of visual input early in life results in occipital cortical responses to auditory and tactile stimuli. However, it remains unclear whether cross-modal plasticity also occurs in subcortical pathways. With the use of functional magnetic resonance imaging, auditory responses were compared across individuals with congenital anophthalmia (absence of eyes), those with early onset (in the first few years of life) blindness, and normally sighted individuals. We find that the superior colliculus, a "visual" subcortical structure, is recruited by the auditory system in congenital and early onset blindness. Additionally, auditory subcortical responses to monaural stimuli were altered as a result of blindness. Specifically, responses in the auditory thalamus were equally strong to contralateral and ipsilateral stimulation in both groups of blind subjects, whereas sighted controls showed stronger responses to contralateral stimulation. These findings suggest that early blindness results in substantial reorganization of subcortical auditory responses.
Collapse
Affiliation(s)
- Gaelle S L Coullon
- Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom;
| | - Fang Jiang
- Department of Psychology, University of Nevada, Reno, Nevada; and Department of Psychology, University of Washington, Seattle, Washington
| | - Ione Fine
- Department of Psychology, University of Washington, Seattle, Washington
| | - Kate E Watkins
- Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom; Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Holly Bridge
- Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| |
Collapse
|
17
|
Massé IO, Guillemette S, Laramée ME, Bronchti G, Boire D. Strain differences of the effect of enucleation and anophthalmia on the size and growth of sensory cortices in mice. Brain Res 2014; 1588:113-26. [PMID: 25242615 DOI: 10.1016/j.brainres.2014.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/05/2014] [Accepted: 09/10/2014] [Indexed: 11/27/2022]
Abstract
Anophthalmia is a condition in which the eye does not develop from the early embryonic period. Early blindness induces cross-modal plastic modifications in the brain such as auditory and haptic activations of the visual cortex and also leads to a greater solicitation of the somatosensory and auditory cortices. The visual cortex is activated by auditory stimuli in anophthalmic mice and activity is known to alter the growth pattern of the cerebral cortex. The size of the primary visual, auditory and somatosensory cortices and of the corresponding specific sensory thalamic nuclei were measured in intact and enucleated C57Bl/6J mice and in ZRDCT anophthalmic mice (ZRDCT/An) to evaluate the contribution of cross-modal activity on the growth of the cerebral cortex. In addition, the size of these structures were compared in intact, enucleated and anophthalmic fourth generation backcrossed hybrid C57Bl/6J×ZRDCT/An mice to parse out the effects of mouse strains and of the different visual deprivations. The visual cortex was smaller in the anophthalmic ZRDCT/An than in the intact and enucleated C57Bl/6J mice. Also the auditory cortex was larger and the somatosensory cortex smaller in the ZRDCT/An than in the intact and enucleated C57Bl/6J mice. The size differences of sensory cortices between the enucleated and anophthalmic mice were no longer present in the hybrid mice, showing specific genetic differences between C57Bl/6J and ZRDCT mice. The post natal size increase of the visual cortex was less in the enucleated than in the anophthalmic and intact hybrid mice. This suggests differences in the activity of the visual cortex between enucleated and anophthalmic mice and that early in-utero spontaneous neural activity in the visual system contributes to the shaping of functional properties of cortical networks.
Collapse
Affiliation(s)
- Ian O Massé
- Département d׳anatomie, Université du Québec à Trois-Rivières, Québec, Canada G9A 5H7.
| | - Sonia Guillemette
- Département d׳anatomie, Université du Québec à Trois-Rivières, Québec, Canada G9A 5H7.
| | - Marie-Eve Laramée
- Département d׳anatomie, Université du Québec à Trois-Rivières, Québec, Canada G9A 5H7.
| | - Gilles Bronchti
- Département d׳anatomie, Université du Québec à Trois-Rivières, Québec, Canada G9A 5H7.
| | - Denis Boire
- Département d׳anatomie, Université du Québec à Trois-Rivières, Québec, Canada G9A 5H7; École d׳optométrie, Université de Montréal, Québec, Canada H3C 3J7.
| |
Collapse
|
18
|
Singhal G, Jaehne EJ, Corrigan F, Baune BT. Cellular and molecular mechanisms of immunomodulation in the brain through environmental enrichment. Front Cell Neurosci 2014; 8:97. [PMID: 24772064 PMCID: PMC3982075 DOI: 10.3389/fncel.2014.00097] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/14/2014] [Indexed: 11/17/2022] Open
Abstract
Recent studies on environmental enrichment (EE) have shown cytokines, cellular immune components [e.g., T lymphocytes, natural killer (NK) cells], and glial cells in causal relationship to EE in bringing out changes to neurobiology and behavior. The purpose of this review is to evaluate these neuroimmune mechanisms associated with neurobiological and behavioral changes in response to different EE methods. We systematically reviewed common research databases. After applying all inclusion and exclusion criteria, 328 articles remained for this review. Physical exercise (PE), a form of EE, elicits anti-inflammatory and neuromodulatory effects through interaction with several immune pathways including interleukin (IL)-6 secretion from muscle fibers, reduced expression of Toll-like receptors on monocytes and macrophages, reduced secretion of adipokines, modulation of hippocampal T cells, priming of microglia, and upregulation of mitogen-activated protein kinase phosphatase-1 in central nervous system. In contrast, immunomodulatory roles of other enrichment methods are not studied extensively. Nonetheless, studies showing reduction in the expression of IL-1β and tumor necrosis factor-α in response to enrichment with novel objects and accessories suggest anti-inflammatory effects of novel environment. Likewise, social enrichment, though considered a necessity for healthy behavior, results in immunosuppression in socially defeated animals. This has been attributed to reduction in T lymphocytes, NK cells and IL-10 in subordinate animals. EE through sensory stimuli has been investigated to a lesser extent and the effect on immune factors has not been evaluated yet. Discovery of this multidimensional relationship between immune system, brain functioning, and EE has paved a way toward formulating environ-immuno therapies for treating psychiatric illnesses with minimal use of pharmacotherapy. While the immunomodulatory role of PE has been evaluated extensively, more research is required to investigate neuroimmune changes associated with other enrichment methods.
Collapse
Affiliation(s)
- Gaurav Singhal
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, School of Medicine, University of AdelaideAdelaide, SA, Australia
| | - Emily J. Jaehne
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, School of Medicine, University of AdelaideAdelaide, SA, Australia
| | - Frances Corrigan
- Discipline of Anatomy and Physiology, School of Medical Sciences, University of AdelaideAdelaide, SA, Australia
| | - Bernhard T. Baune
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, School of Medicine, University of AdelaideAdelaide, SA, Australia
| |
Collapse
|
19
|
Neural pathways conveying novisual information to the visual cortex. Neural Plast 2013; 2013:864920. [PMID: 23840972 PMCID: PMC3690246 DOI: 10.1155/2013/864920] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 05/22/2013] [Indexed: 11/18/2022] Open
Abstract
The visual cortex has been traditionally considered as a stimulus-driven, unimodal system with a hierarchical organization. However, recent animal and human studies have shown that the visual cortex responds to non-visual stimuli, especially in individuals with visual deprivation congenitally, indicating the supramodal nature of the functional representation in the visual cortex. To understand the neural substrates of the cross-modal processing of the non-visual signals in the visual cortex, we firstly showed the supramodal nature of the visual cortex. We then reviewed how the nonvisual signals reach the visual cortex. Moreover, we discussed if these non-visual pathways are reshaped by early visual deprivation. Finally, the open question about the nature (stimulus-driven or top-down) of non-visual signals is also discussed.
Collapse
|
20
|
Affiliation(s)
- Patrice Voss
- Montreal Neurological Institute, McGill University, Montreal, Canada, 3801 rue University, Montréal, Québec, Canada, H3A 2B4.
| | | |
Collapse
|
21
|
Compromise of auditory cortical tuning and topography after cross-modal invasion by visual inputs. J Neurosci 2012; 32:10338-51. [PMID: 22836267 DOI: 10.1523/jneurosci.6524-11.2012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brain damage resulting in loss of sensory stimulation can induce reorganization of sensory maps in cerebral cortex. Previous research on recovery from brain damage has focused primarily on adaptive plasticity within the affected modality. Less attention has been paid to maladaptive plasticity that may arise as a result of ectopic innervation from other modalities. Using ferrets in which neonatal midbrain damage results in diversion of retinal projections to the auditory thalamus, we investigated how auditory cortical function is impacted by the resulting ectopic visual activation. We found that, although auditory neurons in cross-modal auditory cortex (XMAC) retained sound frequency tuning, their thresholds were increased, their tuning was broader, and tonotopic order in their frequency maps was disturbed. Multisensory neurons in XMAC also exhibited frequency tuning, but they had longer latencies than normal auditory neurons, suggesting they arise from multisynaptic, non-geniculocortical sources. In a control group of animals with neonatal deafferentation of auditory thalamus but without redirection of retinal axons, tonotopic order and sharp tuning curves were seen, indicating that this aspect of auditory function had developed normally. This result shows that the compromised auditory function in XMAC results from invasion by ectopic visual inputs and not from deafferentation. These findings suggest that the cross-modal plasticity that commonly occurs after loss of sensory input can significantly interfere with recovery from brain damage and that mitigation of maladaptive effects is critical to maximizing the potential for recovery.
Collapse
|
22
|
Charbonneau V, Laramée ME, Boucher V, Bronchti G, Boire D. Cortical and subcortical projections to primary visual cortex in anophthalmic, enucleated and sighted mice. Eur J Neurosci 2012; 36:2949-63. [PMID: 22780435 DOI: 10.1111/j.1460-9568.2012.08215.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to identify and compare the afferent projections to the primary visual cortex in intact and enucleated C57BL/6 mice and in ZRDCT/An anophthalmic mice. Early loss of sensory-driven activity in blind subjects can lead to activations of the primary visual cortex by haptic or auditory stimuli. This intermodal activation following the onset of blindness is believed to arise through either unmasking of already present cortical connections, sprouting of novel cortical connections or enhancement of intermodal cortical connections. Studies in humans have similarly demonstrated heteromodal activation of visual cortex following relatively short periods of blindfolding. This suggests that the primary visual cortex in normal sighted subjects receives afferents, either from multisensory association cortices or from primary sensory cortices dedicated to other modalities. Here cortical afferents to the primary visual cortex were investigated to determine whether the visual cortex receives sensory input from other modalities, and whether differences exist in the quantity and/or the structure of projections found in sighted, enucleated and anophthalmic mice. This study demonstrates extensive direct connections between the primary visual cortex and auditory and somatosensory areas, as well as with motor and association cortices in all three animal groups. This suggests that information from different sensory modalities can be integrated at early cortical stages and that visual cortex activations following visual deprivations can partly be explained by already present intermodal corticocortical connections.
Collapse
Affiliation(s)
- Valérie Charbonneau
- Groupe de Recherche en Neurosciences, Département de chimie-biologie, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | | | | | | | | |
Collapse
|
23
|
Enriched and deprived sensory experience induces structural changes and rewires connectivity during the postnatal development of the brain. Neural Plast 2012; 2012:305693. [PMID: 22848849 PMCID: PMC3400395 DOI: 10.1155/2012/305693] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/20/2012] [Accepted: 06/13/2012] [Indexed: 11/17/2022] Open
Abstract
During postnatal development, sensory experience modulates cortical development, inducing numerous changes in all of the components of the cortex. Most of the cortical changes thus induced occur during the critical period, when the functional and structural properties of cortical neurons are particularly susceptible to alterations. Although the time course for experience-mediated sensory development is specific for each system, postnatal development acts as a whole, and if one cortical area is deprived of its normal sensory inputs during early stages, it will be reorganized by the nondeprived senses in a process of cross-modal plasticity that not only increases performance in the remaining senses when one is deprived, but also rewires the brain allowing the deprived cortex to process inputs from other senses and cortices, maintaining the modular configuration. This paper summarizes our current understanding of sensory systems development, focused specially in the visual system. It delineates sensory enhancement and sensory deprivation effects at both physiological and anatomical levels and describes the use of enriched environment as a tool to rewire loss of brain areas to enhance other active senses. Finally, strategies to apply restorative features in human-deprived senses are studied, discussing the beneficial and detrimental effects of cross-modal plasticity in prostheses and sensory substitution devices implantation.
Collapse
|
24
|
Cortical GABAergic interneurons in cross-modal plasticity following early blindness. Neural Plast 2012; 2012:590725. [PMID: 22720175 PMCID: PMC3377178 DOI: 10.1155/2012/590725] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/04/2012] [Indexed: 11/30/2022] Open
Abstract
Early loss of a given sensory input in mammals causes anatomical and functional modifications in the brain via a process called cross-modal plasticity. In the past four decades, several animal models have illuminated our understanding of the biological substrates involved in cross-modal plasticity. Progressively, studies are now starting to emphasise on cell-specific mechanisms that may be responsible for this intermodal sensory plasticity. Inhibitory interneurons expressing γ-aminobutyric acid (GABA) play an important role in maintaining the appropriate dynamic range of cortical excitation, in critical periods of developmental plasticity, in receptive field refinement, and in treatment of sensory information reaching the cerebral cortex. The diverse interneuron population is very sensitive to sensory experience during development. GABAergic neurons are therefore well suited to act as a gate for mediating cross-modal plasticity. This paper attempts to highlight the links between early sensory deprivation, cortical GABAergic interneuron alterations, and cross-modal plasticity, discuss its implications, and further provide insights for future research in the field.
Collapse
|
25
|
Collignon O, Champoux F, Voss P, Lepore F. Sensory rehabilitation in the plastic brain. PROGRESS IN BRAIN RESEARCH 2011; 191:211-31. [PMID: 21741554 DOI: 10.1016/b978-0-444-53752-2.00003-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The purpose of this review is to consider new sensory rehabilitation avenues in the context of the brain's remarkable ability to reorganize itself following sensory deprivation. Here, deafness and blindness are taken as two illustrative models. Mainly, two promising rehabilitative strategies based on opposing theoretical principles will be considered: sensory substitution and neuroprostheses. Sensory substitution makes use of the remaining intact senses to provide blind or deaf individuals with coded information of the lost sensory system. This technique thus benefits from added neural resources in the processing of the remaining senses resulting from crossmodal plasticity, which is thought to be coupled with behavioral enhancements in the intact senses. On the other hand, neuroprostheses represent an invasive approach aimed at stimulating the deprived sensory system directly in order to restore, at least partially, its functioning. This technique therefore relies on the neuronal integrity of the brain areas normally dedicated to the deprived sense and is rather hindered by the compensatory reorganization observed in the deprived cortex. Here, we stress that our understanding of the neuroplastic changes that occur in sensory-deprived individuals may help guide the design and the implementation of such rehabilitative methods.
Collapse
Affiliation(s)
- Olivier Collignon
- Centre de Recherche en Neuropsychologie et Cognition, CERNEC, Université de Montréal, Montréal, Québec, Canada.
| | | | | | | |
Collapse
|
26
|
Laramée ME, Kurotani T, Rockland KS, Bronchti G, Boire D. Indirect pathway between the primary auditory and visual cortices through layer V pyramidal neurons in V2L in mouse and the effects of bilateral enucleation. Eur J Neurosci 2011; 34:65-78. [PMID: 21676038 DOI: 10.1111/j.1460-9568.2011.07732.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Visual cortical areas are activated by auditory stimuli in blind mice. Direct heteromodal cortical connections have been shown between the primary auditory cortex (A1) and primary visual cortex (V1), and between A1 and secondary visual cortex (V2). Auditory afferents to V2 terminate in close proximity to neurons that project to V1, and potentially constitute an effective indirect pathway between A1 and V1. In this study, we injected a retrograde adenoviral vector that expresses enhanced green fluorescent protein under a synapsin promotor in V1 and biotinylated dextran amine as an anterograde tracer in A1 to determine: (i) whether A1 axon terminals establish synaptic contacts onto the lateral part of V2 (V2L) neurons that project to V1; and (ii) if this indirect cortical pathway is altered by a neonatal enucleation in mice. Complete dendritic arbors of layer V pyramidal neurons were reconstructed in 3D, and putative contacts between pre-synaptic auditory inputs and postsynaptic visual neurons were analysed using a laser-scanning confocal microscope. Putative synaptic contacts were classified as high-confidence and low-confidence contacts, and charted onto dendritic trees. As all reconstructed layer V pyramidal neurons received auditory inputs by these criteria, we conclude that V2L acts as an important relay between A1 and V1. Auditory inputs are preferentially located onto lower branch order dendrites in enucleated mice. Also, V2L neurons are subject to morphological reorganizations in both apical and basal dendrites after the loss of vision. The A1-V2L-V1 pathway could be involved in multisensory processing and contribute to the auditory activation of the occipital cortex in the blind rodent.
Collapse
Affiliation(s)
- M E Laramée
- Groupe de Recherche en Neurosciences, Département de Chimie-Biologie, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | | | | | | | | |
Collapse
|
27
|
Van Brussel L, Gerits A, Arckens L. Evidence for cross-modal plasticity in adult mouse visual cortex following monocular enucleation. Cereb Cortex 2011; 21:2133-46. [PMID: 21310780 DOI: 10.1093/cercor/bhq286] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The goal of this study was to assess cortical reorganization in the visual system of adult mice in detail. A combination of deprivation of one eye and stimulation of the remaining eye previously led to the identification of input-specific subdivisions in mouse visual cortex. Using this information as a reference map, we established to what extent each of these functional subdivisions take part in cortical reactivation and reorganization upon unilateral enucleation. A recovery experiment revealed a differential laminar and temporal reactivation profile. Initiation of infragranular recovery of molecular activity near the border with nonvisual cortex and simultaneous hyperactivation of this adjacent cortex implied a partial nonvisual contribution to this plasticity. The strong effect of somatosensory deprivation as well as stimulation on infragranular visual cortex activation in long-term enucleated animals support this view. Furthermore, targeted tracer injections in visual cortex of control and enucleated animals revealed preexisting connections between the visual and somatosensory cortices of adult mice as possible mediators. In conclusion, this study supports an important cross-modal component in reorganization of adult mouse visual cortex upon monocular enucleation.
Collapse
Affiliation(s)
- Leen Van Brussel
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
28
|
Larsen DD, Luu JD, Burns ME, Krubitzer L. What are the Effects of Severe Visual Impairment on the Cortical Organization and Connectivity of Primary Visual Cortex? Front Neuroanat 2009; 3:30. [PMID: 20057935 PMCID: PMC2802552 DOI: 10.3389/neuro.05.030.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 12/04/2009] [Indexed: 11/13/2022] Open
Abstract
The organization and connections of the primary visual area (V1) were examined in mice that lacked functional rods (Gnat−/−), but had normal cone function. Because mice are nocturnal and rely almost exclusively on rod vision for normal behaviors, the Gnat−/− mice used in the present study are considered functionally blind. Our goal was to determine if visual cortex is reorganized in these mice, and to examine the neuroanatomical connections that may subserve reorganization. We found that most neurons in V1 responded to auditory, or some combination of auditory, somatosensory, and/or visual stimulation. We also determined that cortical connections of V1 in Gnat−/− mice were similar to those in normal animals, but even in normal animals, there is sparse input from auditory cortex (AC) to V1. An important observation was that most of the subcortical inputs to V1 were from thalamic nuclei that normally project to V1 such as the lateral geniculate (LG), lateral posterior (LP), and lateral dorsal (LD) nuclei. However, V1 also received some abnormal subcortical inputs from the anterior thalamic nuclei, the ventral posterior, the ventral lateral and the posterior nuclei. While the vision generated from the small number of cones appears to be sufficient to maintain most of the patterns of normal connectivity, the sparse abnormal thalamic inputs to VI, existing inputs from AC, and possibly abnormal inputs to LG and LP may be responsible for generating the alterations in the functional organization of V1.
Collapse
|
29
|
Goldshmit Y, Galley S, Foo D, Sernagor E, Bourne JA. Anatomical changes in the primary visual cortex of the congenitally blind Crx-/- mouse. Neuroscience 2009; 166:886-98. [PMID: 20034544 DOI: 10.1016/j.neuroscience.2009.12.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/09/2009] [Accepted: 12/15/2009] [Indexed: 10/20/2022]
Abstract
Mutations in the human cone-rod homeobox (Crx) gene are associated with retinal dystrophies such as Leber Congenital Amaurosis (LCA), characterized by complete or near complete absence of vision from birth. The photoreceptors of Crx-/- mice lack outer segments, and therefore cannot capture light signals through rods and cones, thus resulting in a lack of normal retinal ganglion cell activity from birth. Using specific antibodies to subsets of neurons and markers of activity, we examined the impact of this absence of sensory input on the development of the primary visual cortex (V1) in early postnatal Crx-/- mice, before wiring of the visual system is complete, and in adulthood. We revealed that Crx-/- mice did not exhibit gross anatomical differences in V1; however, they exhibited significantly fewer calcium-binding protein (parvalbumin and calbindin-D28k) expressing interneurons, as well as reduced nonphosphorylated neurofilament expression in V1. These results reveal that the Crx mutation and lack of light stimulation through the photoreceptor pathway regulate the development and phenotype of different neuronal populations in V1 but not its general morphology. We conclude, therefore, that photoreceptor-mediated visual input during development is crucial for the normal postnatal development and maturation of subsets of cortical neurons.
Collapse
Affiliation(s)
- Y Goldshmit
- Australian Regenerative Medicine Institute, Monash University, VIC, 3800 Australia
| | | | | | | | | |
Collapse
|
30
|
Abstract
The neocortex is the part of the brain that is involved in perception, cognition, and volitional motor control. In mammals it is a highly dynamic structure that has been dramatically altered in different lineages, and these alterations account for the remarkable variations in behavior that species exhibit. When we consider how this structure changes and becomes more complex in some mammals such as humans, we must also consider how the alterations that occur at macro levels of organization, such as the level of the individual and social system, as well as micro levels of organization, such as the level of neurons, synapses and molecules, impact the neocortex. It is also important to consider the constraints imposed on the evolution of the neocortex. Observations of highly conserved features of cortical organization that all mammals share, as well as the convergent evolution of similar features of organization, indicate that the constraints imposed on the neocortex are pervasive and restrict the avenues along which evolution can proceed. Although both genes and the laws of physics place formidable constraints on the evolution of all animals, humans have evolved a number of mechanisms that allow them to loosen these constraints and often alter the course of their own evolution. While this cortical plasticity is a defining feature of mammalian neocortex, it appears to be exaggerated in humans and could be considered a unique derivation of our species.
Collapse
Affiliation(s)
- Leah Krubitzer
- Center for Neuroscience and Department of Psychology, University of California-Davis, Davis, California 95618, USA.
| |
Collapse
|
31
|
Park HJ, Lee JD, Kim EY, Park B, Oh MK, Lee S, Kim JJ. Morphological alterations in the congenital blind based on the analysis of cortical thickness and surface area. Neuroimage 2009; 47:98-106. [PMID: 19361567 DOI: 10.1016/j.neuroimage.2009.03.076] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Revised: 03/26/2009] [Accepted: 03/27/2009] [Indexed: 10/20/2022] Open
Abstract
To explore the morphological aspects of the functional reorganization of the blind's visual cortex, we analyzed the regional cortical thickness and cortical surface area in the congenitally blind subjects (CB) compared to the late-onset blind (LB) and sighted controls (SC). Cortical thickness was calculated from high-resolution T1-weighted magnetic resonance images of 21 young CB (blind from birth, mean age=27.1 yr), 12 LB, and 35 young SC. Analysis of covariance of cortical layer thickness with global thickness, age, and gender as covariates was done node-by-node on the entire cortical surface. Further analysis of mean thickness and surface area was performed for 33 automatically parceled cortical regions. Voxel-based morphometry was also conducted to compare results with cortical thickness and surface area. We found increased cortical thickness in the regions involved in vision and eye movement, such as the pericalcarine sulcus, cingulate cortex, and right frontal eye field, but cortical thinning in the left somatosensory cortex and right auditory cortex of CB compared to SC. CB had significantly reduced surface extent in the primary and associated visual areas, which explains volumetric atrophies in the visual cortex of CB despite increased cortical thickness. Conversely, LB tended to have cortical thinning in the primary visual cortex with a slight or no significant reduction in the surface extent. These morphological alterations in CB may indicate cortical reorganization at the visual cortex in connection with other sensory cortices.
Collapse
Affiliation(s)
- Hae-Jeong Park
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Collignon O, Voss P, Lassonde M, Lepore F. Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects. Exp Brain Res 2008; 192:343-58. [DOI: 10.1007/s00221-008-1553-z] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 08/15/2008] [Indexed: 11/28/2022]
|
33
|
Stevens AA, Weaver KE. Functional characteristics of auditory cortex in the blind. Behav Brain Res 2008; 196:134-8. [PMID: 18805443 DOI: 10.1016/j.bbr.2008.07.041] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 07/24/2008] [Accepted: 07/29/2008] [Indexed: 10/21/2022]
Abstract
We used functional magnetic resonance imaging (fMRI) to examine responses within auditory cortical fields during the passive listening of pure tone (PT) and frequency modulated (FM) stimuli in seven early blind (EB), five late blind (LB) and six sighted control (SC) individuals. Subjects were scanned using a "sparse sampling" imaging technique while listening to PT and FM sounds presented at either low (400 Hz) or high (4 kHz) center frequencies. When high tones were directly compared to low tones, the resulting activation maps showed a general tonotopic organization within the superior and middle temporal lobes at statistically significant thresholds for the SC and LB groups while the EB group showed a comparable tonotopic organization but only at statistically non-significance thresholds. A contrast of all tonal stimuli to a quiet baseline similarly revealed significantly less signal volume in the EB than in either the LB or SC groups. These results suggest that EB does not alter inherent patterns of tonotopic organization but rather, under low-demand listening conditions, results in a more efficient processing of simple auditory stimuli within the early stages of the auditory hierarchy. While these effects must be interpreted cautiously due to the small sample sizes, they indicate that functional responses in auditory cortical areas are altered by visual deprivation and that intramodal auditory plasticity may underlie previously reported auditory advantages observed in the blind.
Collapse
Affiliation(s)
- Alexander A Stevens
- Deptartment of Psychiatry, Oregon Health & Science University, CR 139, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | |
Collapse
|
34
|
Hirokawa J, Bosch M, Sakata S, Sakurai Y, Yamamori T. Functional role of the secondary visual cortex in multisensory facilitation in rats. Neuroscience 2008; 153:1402-17. [PMID: 18440715 DOI: 10.1016/j.neuroscience.2008.01.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Revised: 12/20/2007] [Accepted: 01/07/2008] [Indexed: 11/15/2022]
Abstract
Recent studies reveal that multisensory convergence can occur in early sensory cortical areas. However, the behavioral importance of the multisensory integration in such early cortical areas is unknown. Here, we used c-Fos immunohistochemistry to explore neuronal populations specifically activated during the facilitation of reaction time induced by the temporally congruent audiovisual stimuli in rats. Our newly developed analytical method for c-Fos mapping revealed a pronounced up-regulation of c-Fos expression particularly in layer 4 of the lateral secondary visual area (V2L). A local injection of a GABA A receptor agonist, muscimol, into V2L completely suppressed the audiovisual facilitation of reaction time without affecting responses to unimodal stimuli. Such a selective suppression was not found following the injection of muscimol into the primary auditory and visual areas. To examine whether or not the rats might have shown the facilitated responses because of increment of stimulus intensity caused by the two modal stimuli, the behavioral facilitation induced by the high-intensity unimodal stimuli was tested by the injection of muscimol into V2L, which turned out not to affect the facilitation. These results suggest that V2L, an early visual area, is critically involved in the multisensory facilitation of reaction time induced by the combination of auditory and visual stimuli.
Collapse
Affiliation(s)
- J Hirokawa
- Division of Brain Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Japan
| | | | | | | | | |
Collapse
|
35
|
Subcortical auditory input to the primary visual cortex in anophthalmic mice. Neurosci Lett 2008; 433:129-34. [PMID: 18276073 DOI: 10.1016/j.neulet.2008.01.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 11/28/2007] [Accepted: 01/01/2008] [Indexed: 11/20/2022]
Abstract
Anatomical and imaging studies show ample evidence for auditory activation of the visual cortex following early onset of blindness in both humans and animal models. Anatomical studies in animal models of early blindness clearly show intermodal pathways through which auditory information can reach the primary visual cortex. There is clear evidence for intermodal corticocortical pathways linking auditory and visual cortex and also novel connections between the inferior colliculus and the visual thalamus. A recent publication [L.K. Laemle, N.L. Strominger, D.O. Carpenter, Cross-modal innervation of primary visual cortex by auditory fibers in congenitally anophthalmic mice, Neurosci. Lett. 396 (2006) 108-112] suggested the presence of a direct reciprocal connection between the inferior colliculus and the primary visual cortex (V1) in congenitally anophthalmic ZRDCT/An mice. This implies that this mutant mouse would be the only known vertebrate having a direct tectal connection with a primary sensory cortex. The presence of this peculiar pathway was reinvestigated in the ZRDCT/An mouse with highly sensitive neuronal tracers. We found the connections normally described in the ZRDCT/An mouse between: (i) the inferior colliculus and the dorsal lateral geniculate nucleus, (ii) V1 and the superior colliculus, (iii) the lateral posterior nucleus and V1 and between (iv) the inferior colliculus and the medial geniculate nucleus. We also show unambiguously that the auditory subcortical structures do not connect the primary visual cortex in the anophthalmic mouse. In particular, we find no evidence of a direct projection from the auditory mesencephalon to the cortex in this animal model of blindness.
Collapse
|
36
|
Chabot N, Robert S, Tremblay R, Miceli D, Boire D, Bronchti G. Audition differently activates the visual system in neonatally enucleated mice compared with anophthalmic mutants. Eur J Neurosci 2007; 26:2334-48. [DOI: 10.1111/j.1460-9568.2007.05854.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
McOmish CE, Hannan AJ. Enviromimetics: exploring gene environment interactions to identify therapeutic targets for brain disorders. Expert Opin Ther Targets 2007; 11:899-913. [PMID: 17614759 DOI: 10.1517/14728222.11.7.899] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There is a growing awareness of the central role played by environmental factors in many of the most debilitating neural disorders. Epidemiological studies have suggested a complex balance between genetic and environmental factors in the pathogenesis of neurological and psychiatric conditions. The use of accurate animal models, combined with experimental manipulations such as environmental enrichment, has shown that increased sensory, cognitive and motor stimulation has beneficial effects in a range of CNS disorders, including Huntington's, Alzheimer's, Parkinson's and other neurodegenerative diseases. Various studies have identified molecular, structural and functional correlates of this experience-dependent plasticity. The authors propose that the molecular systems which mediate the therapeutic effects of environmental enrichment may provide novel targets for pharmacotherapies. More specifically, they elaborate a theoretical framework for the development of 'enviromimetics', therapeutics that mimic or enhance the beneficial effects of environmental stimulation, targeted towards a wide range of nervous system disorders.
Collapse
Affiliation(s)
- Caitlin E McOmish
- Howard Florey Institute, University of Melbourne, VIC 3010, Australia
| | | |
Collapse
|
38
|
Piché M, Chabot N, Bronchti G, Miceli D, Lepore F, Guillemot JP. Auditory responses in the visual cortex of neonatally enucleated rats. Neuroscience 2007; 145:1144-56. [PMID: 17276013 DOI: 10.1016/j.neuroscience.2006.12.050] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 12/18/2006] [Accepted: 12/23/2006] [Indexed: 11/29/2022]
Abstract
A number of studies on humans and animals have demonstrated better auditory abilities in blind with respect to sighted subjects and have tried to define the mechanisms through which this compensation occurs. The aim of the present study, therefore, was to examine the participation of primary visual cortex (V1) to auditory processing in early enucleated rats. Here we show, using gaussian noise bursts, that about a third of the cells in V1 responded to auditory stimulation in blind rats and most of these (78%) had ON-type responses and low spontaneous activity. Moreover, they were distributed throughout visual cortex without any apparent tonotopic organization. Optimal frequencies determined using pure tones were rather high but comparable to those found in auditory cortex of blind and sighted rats. On the other hand, sensory thresholds determined at these frequencies were higher and bandwidths were wider in V1 of the blind animals. Blind and sighted rats were also stimulated for 60 min with gaussian noise, their brains removed and processed for c-Fos immunohistochemistry. Results revealed that c-Fos positive cells were not only present in auditory cortex of both groups of rats but there was a 10-fold increase in labeled cells in V1 and a fivefold increase in secondary visual cortex (V2) of early enucleated rats in comparisons to sighted ones. Also, the pattern of distribution of these labeled cells across layers suggests that the recruitment of V1 could originate at least in part through inputs arising from the thalamus. The ensemble of results appears to indicate that cross-modal compensation leading to improved performance in the blind depends on cell recruitment in V1 but probably also plastic changes in lower- and higher-order visual structures and possibly in the auditory system.
Collapse
Affiliation(s)
- M Piché
- Centre de Recherche en Neuropsychologie et Cognition, Université de Montréal, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Horng SH, Sur M. Visual activity and cortical rewiring: activity-dependent plasticity of cortical networks. PROGRESS IN BRAIN RESEARCH 2007; 157:3-11. [PMID: 17167899 DOI: 10.1016/s0079-6123(06)57001-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The mammalian cortex is organized anatomically into discrete areas, which receive, process, and transmit neural signals along functional pathways. These pathways form a system of complex networks that wire up through development and refine their connections into adulthood. Understanding the processes of cortical-pathway formation, maintenance, and experience-dependent plasticity has been among the major goals of contemporary neurobiology. In this chapter, we will discuss an experimental model used to investigate the role of activity in the patterning of cortical networks during development. This model involves the "rewiring" of visual inputs into the auditory thalamus and subsequent remodeling of the auditory cortex to process visual information. We review the molecular, cellular, and physiological mechanisms of visual "rewiring" and activity-dependent shaping of cortical networks.
Collapse
Affiliation(s)
- Sam H Horng
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
40
|
Karlen SJ, Kahn DM, Krubitzer L. Early blindness results in abnormal corticocortical and thalamocortical connections. Neuroscience 2006; 142:843-58. [PMID: 16934941 DOI: 10.1016/j.neuroscience.2006.06.055] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 06/10/2006] [Accepted: 06/19/2006] [Indexed: 11/21/2022]
Abstract
Studies in congenitally blind and bilaterally enucleated individuals show that an early loss of sensory driven activity can lead to massive functional reorganization. However, the anatomical substrate for this functional reorganization is unknown. In the present study, we examined patterns of corticocortical and thalamocortical connections in adult opossums that had been bilaterally enucleated neonatally, prior to the formation of retinogeniculate and geniculocortical connections. We show that in addition to normal thalamocortical projection patterns from visual nuclei, enucleated animals also receive input from nuclei associated with the somatosensory (ventral posterior nucleus, VP), auditory (medial geniculate nucleus, MGN), motor (ventrolateral nucleus, VL), and limbic/hippocampal systems (anterior dorsal nucleus, AD; and anterior ventral nucleus, AV). Likewise, in addition to normal corticocortical projections to area 17, bilaterally enucleated opossums also receive input from auditory, somatosensory, and multimodal cortex. These aberrant patterns of thalamocortical and corticocortical connections can account for alterations in functional organization observed in the visual cortex of bilateral enucleated animals, and indicate that factors extrinsic to the cortex play a large role in cortical field development and evolution. On the other hand, the maintenance of normal patterns of connections in the absence of visual input suggests that there are formidable constraints imposed on the developing cortex that highly restrict the types of evolutionary change possible.
Collapse
Affiliation(s)
- S J Karlen
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, USA
| | | | | |
Collapse
|
41
|
Rema V, Armstrong-James M, Jenkinson N, Ebner FF. Short exposure to an enriched environment accelerates plasticity in the barrel cortex of adult rats. Neuroscience 2006; 140:659-72. [PMID: 16616426 PMCID: PMC2860223 DOI: 10.1016/j.neuroscience.2006.02.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 01/11/2006] [Accepted: 02/22/2006] [Indexed: 12/02/2022]
Abstract
Cortical sensory neurons adapt their response properties to use and disuse of peripheral receptors in their receptive field. Changes in synaptic strength can be generated in cortex by simply altering the balance of input activity, so that a persistent bias in activity levels modifies cortical receptive field properties. Such activity-dependent plasticity in cortical cell responses occurs in rat cortex when all but two whiskers are trimmed for a period of time at any age. The up-regulation of evoked responses to the intact whiskers is first seen within 24 h in the supragranular layers [Laminar comparison of somatosensory cortical plasticity. Science 265(5180):1885-1888] and continues until a new stable state is achieved [Experience-dependent plasticity in adult rat barrel cortex. Proc Natl Acad Sci U S A 90(5):2082-2086; Armstrong-James M, Diamond ME, Ebner FF (1994) An innocuous bias in whisker use in adult rat modifies receptive fields of barrel cortex neurons. J Neurosci 14:6978-6991]. These and many other results suggest that activity-dependent changes in cortical cell responses have an accumulation threshold that can be achieved more quickly by increasing the spike rate arising from the active region of the receptive field. Here we test the hypothesis that the rate of neuronal response change can be accelerated by placing the animals in a high activity environment after whisker trimming. Test stimuli reveal an highly significant receptive field bias in response to intact and trimmed whiskers in layer IV as well as in layers II-III neurons in only 15 h after whisker trimming. Layer IV barrel cells fail to show plasticity after 15-24 h in a standard cage environment, but produce a response bias when activity is elevated by the enriched environment. We conclude that elevated activity achieves the threshold for response modification more quickly, and this, in turn, accelerates the rate of receptive field plasticity.
Collapse
Key Words
- experience-dependent modifications
- use-dependent plasticity
- enriched environment
- whisker-pairing
- deprivation
- receptive field changes
- dc, d cut whisker
- dp, d paired whisker
- ee, enriched environment
- eewp, enriched environment whisker-paired
- ld, light/dark
- ltd, long-term depression
- ltp, long-term potentiation
- nmda, n-methyl-d-aspartate
- psths, post-stimulus time histograms
- sc, standard cage
- scwp, standard cage whisker-paired
- s.e.m., standard error of the mean
- sg, supragranular layer
- mwu, mann-whitney u
- wmpsr, wilcoxon matched pair sign rank
- wp, whisker-pairing
Collapse
Affiliation(s)
- V Rema
- National Brain Research Centre, Nainwal Mode, Manesar, Haryana 122050, India.
| | | | | | | |
Collapse
|
42
|
Laemle LK, Strominger NL, Carpenter DO. Cross-modal innervation of primary visual cortex by auditory fibers in congenitally anophthalmic mice. Neurosci Lett 2005; 396:108-12. [PMID: 16377089 DOI: 10.1016/j.neulet.2005.11.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 11/03/2005] [Accepted: 11/08/2005] [Indexed: 11/19/2022]
Abstract
Auditory-visual cross-modal innervation was examined in control (sighted, ZRDCT-N) and congenitally anophthalmic (eyeless, ZRDCT-AN) mice using electrophysiological recording and pathway tracing with carbocyanine dyes. Electrophysiological data demonstrate that the primary visual cortex of congenitally eyeless, blind, mice receives auditory stimuli. Neuroanatomical data demonstrate a direct connection between the inferior colliculus (IC) and visual cortex. Our experiments provide new information about how the brain adapts to the loss of sight.
Collapse
Affiliation(s)
- L K Laemle
- Department of Ophthalmology, UMDNJ-New Jersey Medical School, 30 Bergen Street, Rm. 1409, Newark, NJ 07103, USA.
| | | | | |
Collapse
|