1
|
Serefko A, Wróbel J, Szopa A, Dobrowolski P, Kluz T, Wdowiak A, Bojar I, Poleszak E, Romejko-Wolniewicz E, Derlatka P, Grabowska-Derlatka L, Kacperczyk-Bartnik J, Gieleta AW, Bartnik P, Jakimiuk A, Misiek M, Wróbel A. The Orexin OX 2 Receptor-Dependent Pathway Is Implicated in the Development of Overactive Bladder and Depression in Rats Exposed to Corticosterone. Neurourol Urodyn 2025; 44:229-244. [PMID: 39402852 DOI: 10.1002/nau.25602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/22/2024] [Accepted: 09/24/2024] [Indexed: 12/24/2024]
Abstract
AIM In the present study, we wanted to check whether TCS OX2 29 (TCS), a potent selective antagonist of OX2 receptors, would have positive effects in an animal model of detrusor overactivity co-existed with the depression-like state in Wistar male rats. METHODS The forced swim test with the measurement of spontaneous locomotor activity, conscious cystometry, determination of c-Fos expression in central micturition areas, and a set of biochemical analyses (with the use of urine, hippocampus, bladder urothelium, and detrusor muscle of tested animals) were carried out. RESULTS The outcomes showed that a 7-day administration of TCS (3 mg/kg/day, subcutaneously) normalizes the cystometric parameters corresponding to overactivity of the detrusor and reverses the pro-depressive response. Furthermore, the antagonism of OX2 receptors restored the abnormal levels of overactive bladder markers (i.e., ATP, CGRP, OCT3, TRPV1, ROCK1, and VAChT), diminished neuronal overactivity in central micturition areas (i.e., pontine micturition center, ventrolateral periaqueductal gray, and medial preoptic area) as well as restored the altered hippocampal levels of CRF, cytokines (IL-1β, IL-6, IL-10, and TNF-α), and growth factors (BDNF and NGF) that reflected biochemical disturbances detected in depressed people. CONCLUSIONS It seems that our findings open new perspectives regarding the implication of the orexin system in the functioning of the urinary bladder and in the pathophysiology of depression.
Collapse
Affiliation(s)
- Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Jan Wróbel
- Medical Faculty, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Artur Wdowiak
- Chair of Obstetrics and Gynecology, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Iwona Bojar
- Department of Women's Health, Institute of Rural Health in Lublin, Lublin, Poland
| | - Ewa Poleszak
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Ewa Romejko-Wolniewicz
- Second Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Paweł Derlatka
- Second Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | - Paweł Bartnik
- Second Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Artur Jakimiuk
- Department of Obstetrics and Gynecology, National Medical Institute of the Ministry of Interior and Administration, Warsaw, Poland
- Center for Reproductive Health, Institute of Mother and Child, Warsaw, Poland
| | - Marcin Misiek
- Department of Women's Health, Institute of Rural Health in Lublin, Lublin, Poland
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
2
|
Ferreira A, Sousa Chambel S, Avelino A, Nascimento D, Silva N, Duarte Cruz C. Urinary dysfunction after spinal cord injury: Comparing outcomes after thoracic spinal transection and contusion in the rat. Neuroscience 2024; 557:100-115. [PMID: 39142624 DOI: 10.1016/j.neuroscience.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Spinal cord injury (SCI) above the lumbosacral spinal cord induces loss of voluntary control over micturition. Spinal cord transection (SCT) was the gold standard method to reproduce SCI in rodents, but its translational value is arguable and other experimental SCI methods need to be better investigated, including spinal cord contusion (SCC). At present, it is not fully investigated if urinary impairments arising after transection and contusion are comparable. To explore this, we studied bladder-reflex activity and lower urinary tract (LUT) and spinal cord innervation after SCT and different severities of SCC. Severe-contusion animals presented a longer spinal shock period and the tendency for higher residual volumes, followed by SCT and mild-contusion animals. Urodynamics showed that SCT animals presented higher basal and peak bladder pressures. Immunostaining against growth-associated protein-43 (GAP43) and calcitonin gene-related peptide (CGRP) at the lumbosacral spinal cord demonstrated that afferent sprouting is dependent on the injury model, reflecting the severity of the lesion, with a higher expression in SCT animals. In LUT organs, the expression of GAP43, CGRP cholinergic (vesicular acetylcholine transporter (VAChT)) and noradrenergic (tyrosine hydroxylase (TH)) markers was reduced after SCI in the LUT and lumbosacral cord, but only the lumbosacral expression of VAChT was dependent on the injury model. Overall, our findings demonstrate that changes in LUT innervation and function after contusion and transection are similar but result from distinct neuroplastic processes at the lumbosacral spinal cord. This may impact the development of new therapeutic options for urinary impairment arising after spinal cord insult.
Collapse
Affiliation(s)
- Ana Ferreira
- Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine of Porto, University of Porto, Portugal; Pain Neurobiology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| | - Sílvia Sousa Chambel
- Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine of Porto, University of Porto, Portugal; Pain Neurobiology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| | - António Avelino
- Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine of Porto, University of Porto, Portugal; Pain Neurobiology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| | - Diogo Nascimento
- Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine of Porto, University of Porto, Portugal
| | - Nuno Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal; ICVS/3B's Associate Laboratory, PT Government Associated Laboratory, Braga, Guimarães 4806-909, Portugal
| | - Célia Duarte Cruz
- Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine of Porto, University of Porto, Portugal; Pain Neurobiology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
3
|
Perkins M, Girard BM, Campbell SE, Hennig GW, Vizzard MA. Imatinib Mesylate Reduces Neurotrophic Factors and pERK and pAKT Expression in Urinary Bladder of Female Mice With Cyclophosphamide-Induced Cystitis. Front Syst Neurosci 2022; 16:884260. [PMID: 35528149 PMCID: PMC9072830 DOI: 10.3389/fnsys.2022.884260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/28/2022] [Indexed: 01/28/2023] Open
Abstract
Imatinib mesylate is a tyrosine kinase inhibitor that inhibits platelet-derived growth factor receptor (PDGFR)-α, -β, stem cell factor receptor (c-KIT), and BCR-ABL. PDGFRα is expressed in a subset of interstitial cells in the lamina propria (LP) and detrusor muscle of the urinary bladder. PDGFRα + interstitial cells may contribute to bladder dysfunction conditions such as interstitial cystitis/bladder pain syndrome (IC/BPS) or overactive bladder (OAB). We have previously demonstrated that imatinib prevention via oral gavage or treatment via intravesical infusion improves urinary bladder function in mice with acute (4 hour, h) cyclophosphamide (CYP)-induced cystitis. Here, we investigate potential underlying mechanisms mediating the bladder functional improvement by imatinib using a prevention or treatment experimental design. Using qRT-PCR and ELISAs, we examined inflammatory mediators (NGF, VEGF, BDNF, CCL2, IL-6) previously shown to affect bladder function in CYP-induced cystitis. We also examined the distribution of phosphorylated (p) ERK and pAKT expression in the LP with immunohistochemistry. Imatinib prevention significantly (0.0001 ≤ p ≤ 0.05) reduced expression for all mediators examined except NGF, whereas imatinib treatment was without effect. Imatinib prevention and treatment significantly (0.0001 ≤ p ≤ 0.05) reduced pERK and pAKT expression in the upper LP (U. LP) and deeper LP (D. LP) in female mice with 4 h CYP-induced cystitis. Although we have previously demonstrated that imatinib prevention or treatment improves bladder function in mice with cystitis, the current studies suggest that reductions in inflammatory mediators contribute to prevention benefits of imatinib but not the treatment benefits of imatinib. Differential effects of imatinib prevention or treatment on inflammatory mediators may be influenced by the route and frequency of imatinib administration and may also suggest other mechanisms (e.g., changes in transepithelial resistance of the urothelium) through which imatinib may affect urinary bladder function following CYP-induced cystitis.
Collapse
Affiliation(s)
- Megan Perkins
- Department of Neurological Sciences, The Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Beatrice M. Girard
- Department of Neurological Sciences, The Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Susan E. Campbell
- Department of Neurological Sciences, The Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Grant W. Hennig
- Department of Pharmacology, The Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Margaret A. Vizzard
- Department of Neurological Sciences, The Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| |
Collapse
|
4
|
Zhang H, Dong X, Yang Z, Zhao J, Lu Q, Zhu J, Li L, Yi S, Xu J. Inhibition of CXCR4 in Spinal Cord and DRG with AMD3100 Attenuates Colon-Bladder Cross-Organ Sensitization. Drug Des Devel Ther 2022; 16:67-81. [PMID: 35023903 PMCID: PMC8747645 DOI: 10.2147/dddt.s336242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/18/2021] [Indexed: 11/26/2022] Open
Abstract
Background Cross-sensitization of pelvic organs is one theory for why symptoms of gut sickness and interstitial cystitis/bladder pain syndrome overlap. Experimental colitis has been shown to trigger bladder hyperactivity and hyperalgesia in rats. The chemokine receptor CXCR4 plays a key role in bladder function and central sensitization. We aim to study the role of CXCR4 and its inhibitor AMD3100 in colon-bladder cross-organ sensitization. Methods The colitis model was established by rectal infusion of trinitrobenzene sulfonic acid. Western blot and immunofluorescence were used to assess the expression and distribution of CXCR4. Intrathecal injection of AMD3100 (a CXCR4 inhibitor) and PD98059 (an ERK inhibitor) were used to inhibit CXCR4 and downstream extracellular signal-regulated kinase (ERK) in the spinal cord and dorsal root ganglion (DRG). Intravesical perfusion of resiniferatoxin was performed to measure the pain behavior counts of rats, and continuous cystometry was performed to evaluate bladder voiding function. Results Compared to the control group, CXCR4 was expressed more in bladder mucosa and colon mucosa, L6-S1 dorsal root ganglion (DRG), and the corresponding segment of the spinal dorsal horn (SDH) in rats with colitis. Moreover, intrathecal injection of the AMD3100 suppressed bladder overactivity, bladder hyperalgesia, and mastocytosis symptoms caused by colitis. Furthermore, AMD3100 effectively inhibited ERK activation in the spinal cord induced by experimental colitis. Finally, treatment with PD98059 alleviated bladder overactivity and hyperalgesia caused by colitis. Conclusion Increased CXCR4 in the DRG and SDH contributes to colon inflammation-induced bladder overactivity and hyperalgesia partly via the phosphorylation of spinal ERK. Treatment targeting the CXCR4/ERK pathway might provide a potential new approach for the comorbidity between the digestive system and the urinary system.
Collapse
Affiliation(s)
- Hengshuai Zhang
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People’s Republic of China
| | - Xingyou Dong
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People’s Republic of China
| | - Zhenxing Yang
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People’s Republic of China
| | - Jiang Zhao
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People’s Republic of China
| | - Qudong Lu
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People’s Republic of China
| | - Jingzhen Zhu
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People’s Republic of China
| | - Longkun Li
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People’s Republic of China
| | - Shanhong Yi
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People’s Republic of China
| | - Jie Xu
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People’s Republic of China
- Correspondence: Jie Xu; Shanhong Yi Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People’s Republic of China Email ;
| |
Collapse
|
5
|
Wróbel A, Juszczak K, Adamowicz J, Drewa T, Dudka J. The influence of Potentilla chinensis aqueous extract on urinary bladder function in retinyl acetate-induced detrusor overactivity in rats. Biomed Pharmacother 2020; 132:110861. [PMID: 33113423 DOI: 10.1016/j.biopha.2020.110861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION & OBJECTIVES In overactive bladder (OAB) therapy several herbal medicines presented promising effects, however the results are sparse to provide their efficacy. Herbals may become a popular alternative for OAB therapy. Therefore, we investigated whether Potentilla chinensis extract (PCE) would reverse retinyl acetate (RA)-induced detrusor overactivity (DO). MATERIAL & METHODS 60 rats were divided into 4 groups, as follows: I - control, II - rats with RA-induced DO, III - rats received PCE in dose of 500 mg/kg, and IV - rats with RA-induced DO which received PCE. PCE or vehicle were administered orally for 14 days. The cystometry and bladder blood flow assessment were performed 3 days after the last dose of the PCE. Then the rats were put into the metabolic cages for 24 h. Next, urothelium thickness measurement and biochemical analyses were performed. < /p><p> Results. Intravesical infusion of RA solution induced DO. PCE had no influence on the urinary bladder function and micturition cycles in normal rats. PCE diminished the severity of RA-induced DO. In the urothelium the RA induced the elevation of ATP, CGRP, substance P, VEGF-A, OTC3, and ERK1/2. The concentration of NOS2, CDH1, and ZO1 decreased. Moreover, RA affected the concentration of SNARE proteins (increased concentration of SNAP23, SNAP25, and SV2A). Also in detrusor the elevated level of ROCK1 and VAChT were observed. In turn, PCE in RA-induced DO caused a reversal of the described biochemical changes within urothelium, detrusor muscle and urine. < /p><p> Conclusions. PCE attenuates detrusor overactivity. The potential mechanisms of action of PCE in the urinary bladder seem to be multifactorial and complex. PCE seems to become a reasonable novel OAB therapy.
Collapse
Affiliation(s)
- Andrzej Wróbel
- Second Department of Gynaecology, Medical University of Lublin, Lublin, Poland.
| | - Kajetan Juszczak
- Department of General and Oncologic Urology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.
| | - Jan Adamowicz
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Drewa
- Department of General and Oncologic Urology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland; Department of General and Oncological Urology, Nicolaus Copernicus Hospital, Torun, Poland
| | - Jarosław Dudka
- Chair and Department of Toxicology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
6
|
A Novel Alternative in the Treatment of Detrusor Overactivity? In Vivo Activity of O-1602, the Newly Synthesized Agonist of GPR55 and GPR18 Cannabinoid Receptors. Molecules 2020; 25:molecules25061384. [PMID: 32197469 PMCID: PMC7144400 DOI: 10.3390/molecules25061384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of the research was to assess the impact of O-1602—novel GPR55 and GPR18 agonist—in the rat model of detrusor overactivity (DO). Additionally, its effect on the level of specific biomarkers was examined. To stimulate DO, 0.75% retinyl acetate (RA) was administered to female rats’ bladders. O-1602, at a single dose of 0.25 mg/kg, was injected intra-arterially during conscious cystometry. Furthermore, heart rate, blood pressure, and urine production were monitored for 24 h, and the impact of O-1602 on the levels of specific biomarkers was evaluated. An exposure of the urothelium to RA changed cystometric parameters and enhanced the biomarker levels. O-1602 did not affect any of the examined cystometric parameters or levels of biomarkers in control rats. However, the O-1602 injection into animals with RA-induced DO ameliorated the symptoms of DO and caused a reversal in the described changes in the concentration of CGRP, OCT3, BDNF, and NGF to the levels observed in the control, while the values of ERK1/2 and VAChT were significantly lowered compared with the RA-induced DO group, but were still statistically higher than in the control. O-1602 can improve DO, and may serve as a promising novel substance for the pharmacotherapy of bladder diseases.
Collapse
|
7
|
Ovarian Hormone-dependent and Spinal ERK Activation-regulated Nociceptive Hypersensitivity in Female Rats with Acid Injection-induced Chronic Widespread Muscle Pain. Sci Rep 2019; 9:3077. [PMID: 30816240 PMCID: PMC6395742 DOI: 10.1038/s41598-019-39472-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 01/18/2019] [Indexed: 11/18/2022] Open
Abstract
Symptoms of chronic widespread muscle pain (CWP) meet most of the diagnostic criteria for fibromyalgia syndrome, which is prevalent in females. We used an acid injection-induced muscle pain (AIMP) model to mimic CWP. After female rats received an ovariectomy (OVX), acid saline solution was injected into the left gastrocnemius muscle. Time courses of changes in pain behaviours and p-ERK in the spinal cord were compared between groups. Intrathecal injections of oestradiol (E2) to the OVX group before two acid injections and E2 or progesterone (P4) injections in male rats were compared to evaluate hormone effects. We found that repeated acid injections produced mechanical hypersensitivity and enhanced p-ERK expression in the spinal dorsal horn. OVX rats exhibited significantly less tactile allodynia than did the rats in the other groups. The ERK inhibitor U0126 alleviated mechanical allodynia with lower p-ERK expression in the sham females but did not affect the OVX rats. Intrathecal E2 reversed the attenuated mechanical hypersensitivity in the OVX group, and E2 or P4 induced transient hyperalgesia in male rats. Accordingly, our results suggested that ovarian hormones contribute to AIMP through a spinal p-ERK-mediated pathway. These findings may partially explain the higher prevalence of fibromyalgia in females than males.
Collapse
|
8
|
Ma F, Kouzoukas DE, Meyer-Siegler KL, Hunt DE, Leng L, Bucala R, Vera PL. MIF mediates bladder pain, not inflammation, in cyclophosphamide cystitis. Cytokine X 2019; 1. [PMID: 31289792 PMCID: PMC6615480 DOI: 10.1016/j.cytox.2019.100003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MIF mediates bladder pain but not bladder inflammation induced by CYP. ISO-1 blocks CYP induced bladder inflammation independent of MIF. MIF may mediate bladder pain by promoting bladder ERK phosphorylation.
Macrophage migration inhibitory factor (MIF), a proinflammatory mediator, is recognized as a player in inflammatory and neuropathic pain. Cyclophosphamide (CYP) results in bladder inflammation and pain and it’s a frequently used animal model of interstitial cystitis/bladder pain syndrome (IC/BPS). Because pretreatment with a MIF inhibitor (ISO-1) prevented both CYP-induced bladder pain and inflammation we used genetic MIF knockout (KO) mice to further investigate MIF’s role in CYP-induced bladder pain and inflammation. Abdominal mechanical threshold measured bladder pain induced by CYP in wild type (WT) and MIF KO mice at several time points (0–48 h). End-point (48 h) changes in micturition parameters and histological signs of bladder inflammation were also evaluated. Abdominal mechanical hypersensitivity developed within 4 h after CYP injection (and lasted for the entire observation period: 48 h) in WT mice. MIF KO mice, on the other hand, did not develop abdominal mechanical hypersensitivity suggesting that MIF is a pivotal molecule in mediating CYP-induced bladder pain. Both WT and MIF KO mice treated with CYP showed histological signs of marked bladder inflammation and showed a significant decrease in micturition volume and increase in frequency. Since both changes were blocked in MIF KO mice by pretreatment with a MIF inhibitor (ISO-1) it is likely these are non-specific effects of ISO-1. MIF mediates CYP-induced bladder pain but not CYP-induced bladder inflammation. The locus of effect (bladder) or central (spinal) for MIF mediation of bladder pain remains to be determined.
Collapse
Affiliation(s)
- Fei Ma
- Research and Development, Lexington Veterans Affairs Health Care System, Lexington, Kentucky, United States of America.,Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Dimitrios E Kouzoukas
- Research and Development, Lexington Veterans Affairs Health Care System, Lexington, Kentucky, United States of America
| | - Katherine L Meyer-Siegler
- Department of Natural Sciences, St. Petersburg College, St. Petersburg, Florida, United States of America
| | - David E Hunt
- Research and Development, Lexington Veterans Affairs Health Care System, Lexington, Kentucky, United States of America
| | - Lin Leng
- Department of Internal Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Richard Bucala
- Department of Internal Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Pedro L Vera
- Research and Development, Lexington Veterans Affairs Health Care System, Lexington, Kentucky, United States of America.,Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America.,Department of Surgery, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
9
|
Coelho A, Oliveira R, Antunes-Lopes T, Cruz CD. Partners in Crime: NGF and BDNF in Visceral Dysfunction. Curr Neuropharmacol 2019; 17:1021-1038. [PMID: 31204623 PMCID: PMC7052822 DOI: 10.2174/1570159x17666190617095844] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/23/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
Neurotrophins (NTs), particularly Nerve Growth Factor (NGF) and Brain-Derived Neurotrophic Factor (BDNF), have attracted increasing attention in the context of visceral function for some years. Here, we examined the current literature and presented a thorough review of the subject. After initial studies linking of NGF to cystitis, it is now well-established that this neurotrophin (NT) is a key modulator of bladder pathologies, including Bladder Pain Syndrome/Interstitial Cystitis (BPS/IC) and Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS. NGF is upregulated in bladder tissue and its blockade results in major improvements on urodynamic parameters and pain. Further studies expanded showed that NGF is also an intervenient in other visceral dysfunctions such as endometriosis and Irritable Bowel Syndrome (IBS). More recently, BDNF was also shown to play an important role in the same visceral dysfunctions, suggesting that both NTs are determinant factors in visceral pathophysiological mechanisms. Manipulation of NGF and BDNF improves visceral function and reduce pain, suggesting that clinical modulation of these NTs may be important; however, much is still to be investigated before this step is taken. Another active area of research is centered on urinary NGF and BDNF. Several studies show that both NTs can be found in the urine of patients with visceral dysfunction in much higher concentration than in healthy individuals, suggesting that they could be used as potential biomarkers. However, there are still technical difficulties to be overcome, including the lack of a large multicentre placebo-controlled studies to prove the relevance of urinary NTs as clinical biomarkers.
Collapse
Affiliation(s)
| | | | | | - Célia Duarte Cruz
- Address correspondence to this author at the Department of Experimental Biology, Experimental Biology Unit, Faculty of Medicine of the University of Porto, Alameda Hernâni Monteiro; Tel: 351 220426740; Fax: +351 225513655; E-mail:
| |
Collapse
|
10
|
Ma F, Kouzoukas DE, Meyer-Siegler KL, Hunt DE, Leng L, Bucala R, Vera PL. Macrophage migration inhibitory factor mediates protease-activated receptor 4-induced bladder pain through urothelial high mobility group box 1. Physiol Rep 2018; 5:5/24/e13549. [PMID: 29263120 PMCID: PMC5742707 DOI: 10.14814/phy2.13549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 12/15/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) mediates pain although the mechanisms are not well understood. Urothelial activation of protease activated receptor 4 (PAR4) results in urothelial MIF release, urothelial high mobility group box 1 (HMGB1) release and bladder pain in mice without bladder inflammation. All three effects are prevented by MIF inhibition while intravesical disulfide HMGB1 alone can induce bladder pain. This study utilizes genetic MIF deletion to determine whether MIF mediates PAR4‐induced bladder pain and is upstream of HMGB1‐induced bladder pain. Wild type (C57/BL6) and MIF knockout (KO) mice were treated with intravesical PAR4 activating peptide or disulfide HMGB1 and tested for abdominal mechanical hypersensitivity at baseline (before treatment) and 24 h after injection. Micturition parameters and bladder histology were examined after behavioral test. Real‐time PCR and western blotting measured HMGB1 mRNA and protein levels in the bladders of naïve wild type and MIF KO mice, while immunofluorescence measured HMGB1 protein levels in the urothelium of both strains. Intravesical PAR4 activation resulted in abdominal mechanical hypersensitivity in wild‐type mice but not MIF KO mice. Intravesical disulfide HMGB1 induced abdominal mechanical hypersensitivity in both strains. Neither treatment resulted in significant changes in micturition or bladder histology in either strain. HMGB1 mRNA and protein levels were higher in MIF KO mouse bladders and the urothelium of MIF KO bladder had greater immunostaining than the wild‐type strain. MIF is a pivotal molecule mediating PAR4‐induced bladder pain and regulating urothelial HMGB1 production and release to elicit bladder pain.
Collapse
Affiliation(s)
- Fei Ma
- Research and Development, Lexington Veterans Affairs Medical Center, Lexington, Kentucky.,Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Dimitrios E Kouzoukas
- Research and Development, Lexington Veterans Affairs Medical Center, Lexington, Kentucky.,Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
| | | | - David E Hunt
- Research and Development, Lexington Veterans Affairs Medical Center, Lexington, Kentucky
| | - Lin Leng
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Richard Bucala
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Pedro L Vera
- Research and Development, Lexington Veterans Affairs Medical Center, Lexington, Kentucky .,Department of Physiology, University of Kentucky, Lexington, Kentucky.,Department of Surgery, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
11
|
Striatal-enriched protein tyrosine phosphatase modulates nociception: evidence from genetic deletion and pharmacological inhibition. Pain 2016; 157:377-386. [PMID: 26270590 DOI: 10.1097/j.pain.0000000000000329] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The information from nociceptors is processed in the dorsal horn of the spinal cord by complex circuits involving excitatory and inhibitory interneurons. It is well documented that GluN2B and ERK1/2 phosphorylation contributes to central sensitization. Striatal-enriched protein tyrosine phosphatase (STEP) dephosphorylates GluN2B and ERK1/2, promoting internalization of GluN2B and inactivation of ERK1/2. The activity of STEP was modulated by genetic (STEP knockout mice) and pharmacological (recently synthesized STEP inhibitor, TC-2153) approaches. STEP(61) protein levels in the lumbar spinal cord were determined in male and female mice of different ages. Inflammatory pain was induced by complete Freund's adjuvant injection. Behavioral tests, immunoblotting, and electrophysiology were used to analyze the effect of STEP on nociception. Our results show that both genetic deletion and pharmacological inhibition of STEP induced thermal hyperalgesia and mechanical allodynia, which were accompanied by increased pGluN2B(Tyr1472) and pERK1/2(Thr202/Tyr204)levels in the lumbar spinal cord. Striatal-enriched protein tyrosine phosphatase heterozygous and knockout mice presented a similar phenotype. Furthermore, electrophysiological experiments showed that TC-2153 increased C fiber-evoked spinal field potentials. Interestingly, we found that STEP(61) protein levels in the lumbar spinal cord inversely correlated with thermal hyperalgesia associated with age and female gender in mice. Consistently, STEP knockout mice failed to show age-related thermal hyperalgesia, although gender-related differences were preserved. Moreover, in a model of inflammatory pain, hyperalgesia was associated with increased phosphorylation-mediated STEP(61) inactivation and increased pGluN2B(Tyr1472) and pERK1/2(Thr202/Tyr204)levels in the lumbar spinal cord. Collectively, the present results underscore an important role of spinal STEP activity in the modulation of nociception.
Collapse
|
12
|
Roberts NA, Hilton EN, Woolf AS. From gene discovery to new biological mechanisms: heparanases and congenital urinary bladder disease. Nephrol Dial Transplant 2015; 31:534-40. [PMID: 26315301 PMCID: PMC4805131 DOI: 10.1093/ndt/gfv309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/29/2015] [Indexed: 12/29/2022] Open
Abstract
We present a scientific investigation into the pathogenesis of a urinary bladder disease. The disease in question is called urofacial syndrome (UFS), a congenital condition inherited in an autosomal recessive manner. UFS features incomplete urinary bladder emptying and vesicoureteric reflux, with a high risk of recurrent urosepsis and end-stage renal disease. The story starts from a human genomic perspective, then proceeds through experiments that seek to determine the roles of the implicated molecules in embryonic frogs and newborn mice. A future aim would be to use such biological knowledge to intelligently choose novel therapies for UFS. We focus on heparanase proteins and the peripheral nervous system, molecules and tissues that appear to be key players in the pathogenesis of UFS and therefore must also be critical for functional differentiation of healthy bladders. These considerations allow the envisioning of novel biological treatments, although the potential difficulties of targeting the developing bladder in vivo should not be underestimated.
Collapse
Affiliation(s)
- Neil A Roberts
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK Royal Manchester Children's Hospital, Manchester, UK
| | - Emma N Hilton
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK Royal Manchester Children's Hospital, Manchester, UK
| | - Adrian S Woolf
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK Royal Manchester Children's Hospital, Manchester, UK
| |
Collapse
|
13
|
Borges G, Berrocoso E, Mico JA, Neto F. ERK1/2: Function, signaling and implication in pain and pain-related anxio-depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2015; 60:77-92. [PMID: 25708652 DOI: 10.1016/j.pnpbp.2015.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/31/2015] [Accepted: 02/15/2015] [Indexed: 12/15/2022]
Abstract
Despite the increasing knowledge regarding pain modulation, the understanding of the mechanisms behind a complex and pathologic chronic pain condition is still insufficient. These knowledge gaps might result in ineffective therapeutic approaches to relieve painful sensations. As a result, severe untreated chronic pain frequently triggers the onset of new disorders such as depression and/or anxiety, and therefore, both the diagnosis and treatment of patients suffering from chronic pain become seriously compromised, prompting a self-perpetuating cycle of symptomatology. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) are molecules strongly implicated in the somatic component of pain at the spinal cord level and have been emerging as mediators of the emotional-affective component as well. Although these molecules might represent good biomarkers, their use as pharmacological targets is still open to discussion as paradoxical information has been obtained. Here we review the current scientific literature regarding ERK1/2 signaling in the modulation of pain, depression and anxiety, including the emotional-affective spheres of the pain experience.
Collapse
Affiliation(s)
- Gisela Borges
- Neuropsycopharmacology and Psychobiology Research Group, Department of Neuroscience (Pharmacology and Psychiatry), University of Cádiz, 11003 Cádiz, Spain; Departamento de Biologia Experimental, Centro de Investigação Médica da Faculdade de Medicina da Universidade do Porto (CIM-FMUP), 4200-319 Porto, Portugal; Grupo de Morfofisiologia do Sistema Nervoso, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
| | - Esther Berrocoso
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, University of Cádiz, 11510 Cádiz, Spain
| | - Juan Antonio Mico
- Neuropsycopharmacology and Psychobiology Research Group, Department of Neuroscience (Pharmacology and Psychiatry), University of Cádiz, 11003 Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Fani Neto
- Departamento de Biologia Experimental, Centro de Investigação Médica da Faculdade de Medicina da Universidade do Porto (CIM-FMUP), 4200-319 Porto, Portugal; Grupo de Morfofisiologia do Sistema Nervoso, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal.
| |
Collapse
|
14
|
Frias B, Santos J, Morgado M, Sousa MM, Gray SMY, McCloskey KD, Allen S, Cruz F, Cruz CD. The role of brain-derived neurotrophic factor (BDNF) in the development of neurogenic detrusor overactivity (NDO). J Neurosci 2015; 35:2146-60. [PMID: 25653370 PMCID: PMC4315839 DOI: 10.1523/jneurosci.0373-14.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 11/21/2014] [Accepted: 11/27/2014] [Indexed: 12/24/2022] Open
Abstract
Neurogenic detrusor overactivity (NDO) is a well known consequence of spinal cord injury (SCI), recognizable after spinal shock, during which the bladder is areflexic. NDO emergence and maintenance depend on profound plastic changes of the spinal neuronal pathways regulating bladder function. It is well known that neurotrophins (NTs) are major regulators of such changes. NGF is the best-studied NT in the bladder and its role in NDO has already been established. Another very abundant neurotrophin is BDNF. Despite being shown that, acting at the spinal cord level, BDNF is a key mediator of bladder dysfunction and pain during cystitis, it is presently unclear if it is also important for NDO. This study aimed to clarify this issue. Results obtained pinpoint BDNF as an important regulator of NDO appearance and maintenance. Spinal BDNF expression increased in a time-dependent manner together with NDO emergence. In chronic SCI rats, BDNF sequestration improved bladder function, indicating that, at later stages, BDNF contributes NDO maintenance. During spinal shock, BDNF sequestration resulted in early development of bladder hyperactivity, accompanied by increased axonal growth of calcitonin gene-related peptide-labeled fibers in the dorsal horn. Chronic BDNF administration inhibited the emergence of NDO, together with reduction of axonal growth, suggesting that BDNF may have a crucial role in bladder function after SCI via inhibition of neuronal sprouting. These findings highlight the role of BDNF in NDO and may provide a significant contribution to create more efficient therapies to manage SCI patients.
Collapse
Affiliation(s)
- Bárbara Frias
- Department of Experimental Biology, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal, Translational NeuroUrology and
| | - João Santos
- Department of Experimental Biology, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
| | - Marlene Morgado
- Nerve Regeneration Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | - Mónica Mendes Sousa
- Nerve Regeneration Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | - Susannah M Y Gray
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT7 1 NN Belfast, United Kingdom
| | - Karen D McCloskey
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT7 1 NN Belfast, United Kingdom
| | - Shelley Allen
- Molecular Neurobiology Unit, University of Bristol, School of Clinical Sciences, BS10 5NB Bristol, United Kingdom
| | - Francisco Cruz
- Translational NeuroUrology and Department of Urology, Hospital de S. João, 4200-319 Porto, Portugal, and
| | - Célia Duarte Cruz
- Department of Experimental Biology, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal, Translational NeuroUrology and
| |
Collapse
|
15
|
Fang JQ, Fang JF, Liang Y, Du JY. Electroacupuncture mediates extracellular signal-regulated kinase 1/2 pathways in the spinal cord of rats with inflammatory pain. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:285. [PMID: 25091495 PMCID: PMC4131029 DOI: 10.1186/1472-6882-14-285] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/25/2014] [Indexed: 12/31/2022]
Abstract
Background Activation of extracellular signal-regulated kinase1/2 (ERK1/2) in dorsal horn of the spinal cord by peripheral inflammation is contributed to inflammatory pain hypersensitivity. Although electroacupuncture (EA) has been widely used to alleviate various kinds of pain, the underlying mechanism of EA analgesia requires further investigation. This study investigated the relationship between EA-induced analgesia and ERK signaling involved in pain hypersensitivity. Methods The rats were randomly divided into control, model, EA and sham EA groups. Inflammatory pain model was induced by injecting of 100 μl Complete Freund’s adjuvant (CFA) into the plantar surface of a hind paw. Rats in the EA group were treatment with EA (constant aquare wave, 2 Hz and 100 Hz alternating frequencies, intensities ranging from 1-2 mA) at 5.5 h, 24.5 h and 48.5 h. Paw withdrawal thresholds (PWTs) were measured before modeling and at 5 h, 6 h, 25 h and 49 h after CFA injection. Rats were killed and ipsilateral side of the lumbar spinal cords were harvested for detecting the expressions of p-ERK1/2, Elk1, COX-2, NK-1 and CREB by immunohistochemistry, real-time PCR, western blot analysis and EMSA. Finally, the analgesic effect of EA plus U0126, a MEK (ERK kinase) inhibitor, on CFA rats was examined. Results Inflammatory pain was induced in rats by hindpaw injection of CFA and significantly increased phospho-ERK1/2 positive cells and protein levels of p-ERK1/2 in the ipsilateral spinal cord dorsal horn (SCDH). CFA up-regulated of cyclooxygenase-2 (COX-2) mRNA and protein expression at 6 h after injection and neurokinin-1 receptor (NK-1) expression at 49 h post-injection, in the SCDH. EA, applied to Zusanli (ST36) and Kunlun (BL60), remarkably increased the pain thresholds of CFA injected rats, significantly suppressed ERK1/2 activation and COX-2 protein expression after a single treatment, and decreased NK-1 mRNA and protein expression at 49 h. EA decreased the DNA binding activity of cAMP response element binding protein (CREB), a downstream transcription factor of ERK1/2, at 49 h after CFA injection. Moreover, EA and U0126 synergistically inhibited CFA-induced allodynia. Conclusions The present study suggests that EA produces analgesic effect by preventing the activation of ERK1/2-COX-2 pathway and ERK1/2-CREB-NK-1 pathway in CFA rats.
Collapse
|
16
|
Coelho A, Oliveira R, Rossetto O, Cruz C, Cruz F, Avelino A. Intrathecal administration of botulinum toxin type A improves urinary bladder function and reduces pain in rats with cystitis. Eur J Pain 2014; 18:1480-9. [DOI: 10.1002/ejp.513] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2014] [Indexed: 11/06/2022]
Affiliation(s)
- A. Coelho
- Department of Experimental Biology; Faculty of Medicine; University of Porto; Portugal
- IBMC; Instituto for Molecular and Cell Biology; University of Porto; Portugal
| | - R. Oliveira
- Department of Experimental Biology; Faculty of Medicine; University of Porto; Portugal
| | - O. Rossetto
- Department of Biomedical Sciences; University of Padova; Italy
| | - C.D. Cruz
- Department of Experimental Biology; Faculty of Medicine; University of Porto; Portugal
- IBMC; Instituto for Molecular and Cell Biology; University of Porto; Portugal
| | - F. Cruz
- IBMC; Instituto for Molecular and Cell Biology; University of Porto; Portugal
- Department of Urology; Hospital de São João; Porto Portugal
| | - A. Avelino
- Department of Experimental Biology; Faculty of Medicine; University of Porto; Portugal
- IBMC; Instituto for Molecular and Cell Biology; University of Porto; Portugal
| |
Collapse
|
17
|
IMAMURA T, ISHIZUKA O, OGAWA T, YAMAGISHI T, YOKOYAMA H, MINAGAWA T, NAKAZAWA M, NISHIZAWA O. Pathways Involving Beta-3 Adrenergic Receptors Modulate Cold Stress-Induced Detrusor Overactivity in Conscious Rats. Low Urin Tract Symptoms 2014; 7:50-5. [DOI: 10.1111/luts.12050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 12/10/2013] [Accepted: 12/20/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Tetsuya IMAMURA
- Department of Lower Urinary Tract Medicine; Shinshu University School of Medicine; Matsumoto Japan
| | - Osamu ISHIZUKA
- Department of Lower Urinary Tract Medicine; Shinshu University School of Medicine; Matsumoto Japan
- Department of Urology; Shinshu University School of Medicine; Matsumoto Japan
| | - Teruyuki OGAWA
- Department of Urology; Shinshu University School of Medicine; Matsumoto Japan
| | - Takahiro YAMAGISHI
- Department of Urology; Shinshu University School of Medicine; Matsumoto Japan
| | - Hitoshi YOKOYAMA
- Department of Urology; Shinshu University School of Medicine; Matsumoto Japan
| | - Tomonori MINAGAWA
- Department of Urology; Shinshu University School of Medicine; Matsumoto Japan
| | - Masaki NAKAZAWA
- Department of Urology; Shinshu University School of Medicine; Matsumoto Japan
| | - Osamu NISHIZAWA
- Department of Lower Urinary Tract Medicine; Shinshu University School of Medicine; Matsumoto Japan
- Department of Urology; Shinshu University School of Medicine; Matsumoto Japan
| |
Collapse
|
18
|
Qiao LY, Yu SJ, Kay JC, Xia CM. In vivo regulation of brain-derived neurotrophic factor in dorsal root ganglia is mediated by nerve growth factor-triggered Akt activation during cystitis. PLoS One 2013; 8:e81547. [PMID: 24303055 PMCID: PMC3841217 DOI: 10.1371/journal.pone.0081547] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/24/2013] [Indexed: 12/18/2022] Open
Abstract
The role of brain-derived neurotrophic factor (BDNF) in sensory hypersensitivity has been suggested; however the molecular mechanisms and signal transduction that regulate BDNF expression in primary afferent neurons during visceral inflammation are not clear. Here we used a rat model of cystitis and found that the mRNA and protein levels of BDNF were increased in the L6 dorsal root ganglia (DRG) in response to bladder inflammation. BDNF up-regulation in the L6 DRG was triggered by endogenous nerve growth factor (NGF) because neutralization of NGF with a specific NGF antibody reduced BDNF levels during cystitis. The neutralizing NGF antibody also subsequently reduced cystitis-induced up-regulation of the serine/threonine kinase Akt activity in L6 DRG. To examine whether the NGF-induced Akt activation led to BDNF up-regulation in DRG in cystitis, we found that in cystitis the phospho-Akt immunoreactivity was co-localized with BDNF in L6 DRG, and prevention of the endogenous Akt activity in the L6 DRG by inhibition of phosphoinositide 3-kinase (PI3K) with a potent inhibitor LY294002 reversed cystitis-induced BDNF up-regulation. Further study showed that application of NGF to the nerve terminals of the ganglion-nerve two-compartmented preparation enhanced BDNF expression in the DRG neuronal soma; which was reduced by pre-treatment of the ganglia with the PI3K inhibitor LY294002 and wortmannin. These in vivo and in vitro experiments indicated that NGF played an important role in the activation of Akt and subsequent up-regulation of BDNF in the sensory neurons in visceral inflammation such as cystitis.
Collapse
Affiliation(s)
- Li-Ya Qiao
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
- * E-mail:
| | - Sharon J. Yu
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Jarren C. Kay
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Chun-Mei Xia
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| |
Collapse
|
19
|
Cruz CD. Neurotrophins in bladder function: what do we know and where do we go from here? Neurourol Urodyn 2013; 33:39-45. [PMID: 23775873 DOI: 10.1002/nau.22438] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/30/2013] [Indexed: 12/19/2022]
Abstract
AIMS Neurotrophins (NTs) have attracted considerable attention in the urologic community. The reason for this resides in the recognition of their ability to induce plastic changes of the neuronal circuits that govern bladder function. In many pathologic states, urinary symptoms, including urgency and urinary frequency, reflect abnormal activity of bladder sensory afferents that results from neuroplastic changes. Accordingly, in pathologies associated with increased sensory input, such as the overactive bladder syndrome (OAB) or bladder pain syndrome/interstitial cystitis (BPS/IC), significant amounts of NTs have been found in the bladder wall. METHODS Here, current knowledge about the importance of NTs in bladder function will be reviewed, with a focus on the most well-studied NTs, nerve growth factor (NGF), and brain-derived neurotrophic factor (BDNF). RESULTS Both NTs are present in the bladder and regulate bladder sensory afferents and urothelial cells. Experimental models of bladder dysfunction show that upregulation of these NTs is strongly linked to bladder hyperactivity and, in some cases, pain. NT manipulation has been tested in animal models of bladder dysfunction, and recently, NGF downregulation, achieved by administration of a monoclonal antibody, has also been tested in patients with BPS/IC and chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). NTs have also been found in high quantities in the urine of OAB and BPS/IC patients, raising the possibility of NTs serving as biomarkers. CONCLUSIONS Available data show that our knowledge of NTs has greatly increased in recent years and that some results may have future clinical application.
Collapse
Affiliation(s)
- Célia Duarte Cruz
- Department of Experimental Biology, Faculty of Medicine of Porto, University of Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
20
|
Fang JF, Liang Y, Du JY, Fang JQ. Transcutaneous electrical nerve stimulation attenuates CFA-induced hyperalgesia and inhibits spinal ERK1/2-COX-2 pathway activation in rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:134. [PMID: 23768044 PMCID: PMC3689089 DOI: 10.1186/1472-6882-13-134] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 06/11/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Transcutaneous electrical nerve stimulation (TENS) is a non-pharmacologic treatment for pain relief. In previous animal studies, TENS effectively alleviated Complete Freund's Adjuvant (CFA)- or carrageenan-induced inflammatory pain. Although TENS is known to produce analgesia via opioid activation in the brain and at the spinal level, few reports have investigated the signal transduction pathways mediated by TENS. Prior studies have verified the importance of the activation of extracellular signal-regulated kinase (ERK) signal transduction pathway in the spinal cord dorsal horn (SCDH) in acute and persistent inflammatory pains. Here, by using CFA rat model, we tested the efficacy of TENS on inhibiting the expressions of p-ERK1/2 and of its downstream cyclooxygenase-2 (COX-2) and the level of prostaglandin E2 (PGE2) at spinal level. METHODS Rats were randomly divided into control, model and TENS groups, and injected subcutaneously with 100 μl CFA or saline in the plantar surface of right hind paw. Rats in the TENS group were treated with TENS (constant aquare wave, 2 Hz and 100 Hz alternating frequencies, intensities ranging from 1 to 2 mA, lasting for 30 min each time) at 5 h and 24 h after injection. Paw withdrawal thresholds (PWTs) were measured with dynamic plantar aesthesiometer at 3d before modeling and 5 h, 6 h, and 25 h after CFA injection. The ipsilateral sides of the lumbar spinal cord dosral horns were harvested for detecting the expressions of p-ERK1/2 and COX-2 by western blot analysis and qPCR, and PGE2 by ELISA. RESULTS CFA-induced periphery inflammation decreased PWTs and increased paw volume of rats. TENS treatment significantly alleviated mechanical hyperalgesia caused by CFA. However, no anti-inflammatory effect of TENS was observed. Expression of p-ERK1/2 protein and COX-2 mRNA was significantly up-regualted at 5 h and 6 h after CFA injection, while COX-2 and PGE2 protein level only increased at 6 h after modeling. Furthermore, the high expression of p-ERK1/2 and COX-2, and over-production of PGE2 induced by CFA, were suppressed by TENS administration. CONCLUSIONS TENS may be an effective therapy in controlling inflammatory pain induced by CFA. Its analgesic effect may be associated with the inhibition of activation of the spinal ERK1/2-COX-2 pathway.
Collapse
Affiliation(s)
- Jun-Fan Fang
- Department of Neurobiology & Acupuncture Research, the Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Liang
- Department of Neurobiology & Acupuncture Research, the Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun-Ying Du
- Department of Neurobiology & Acupuncture Research, the Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jian-Qiao Fang
- Department of Neurobiology & Acupuncture Research, the Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
21
|
Song J, Liu L, Li L, Liu J, Song E, Song Y. Protective effects of lipoic acid and mesna on cyclophosphamide-induced haemorrhagic cystitis in mice. Cell Biochem Funct 2013; 32:125-32. [PMID: 23650119 DOI: 10.1002/cbf.2978] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/30/2013] [Accepted: 04/02/2013] [Indexed: 11/09/2022]
Abstract
The protective roles of lipoic acid (LA)/vitamin C (VC) and mesna on preventing cyclophosphamide (CYP)-induced haemorrhagic cystitis (HC) were investigated. Swiss mice were divided into five groups randomly. HC was induced by a single dose of CYP injection (150-mg kg(-1) bodyweight). Group I was injected with saline (four times in total) throughout as control group. Group II received CYP and three equal doses of saline. Group III received CYP and three doses of mesna, whereas Group IV (or Group V) received CYP, mesna + two doses of VC (or LA). All injections were performed intraperitoneally. After 24 h of cystitis induction, the bladders were collected for all the experiments. Histological characterization showed that CYP injection resulted in severe HC. Reactive oxygen species (ROS) and thiobarbituric acid reactive substances' levels were increased in CYP group. The activities of antioxidant enzymes, e.g. superoxide dismutase, catalase, glutathione S-transferase and glutathione peroxidase, were inhibited significantly in CYP groups, respectively. In addition, activation of c-jun N-terminal kinases (JNK) and p38 mitogen-activated protein kinase (MAPK) may be involved in the mechanism of CYP-induced HC but not extracellular signal regulated kinases (ERK). Significant suppression of p38 phosphorylation on Group V suggests that LA and mesna may have synergistic beneficial effect. In Groups III-V, all the parameters of HC and oxidative stress were inhibited significantly. Taking together, we found that these results illustrated that ROS play an important role on CYP-induced HC and the administration of LA/VC with mesna may have therapeutic potential against CYP-induced bladder HC.
Collapse
Affiliation(s)
- Jianbo Song
- Key Laboratory of Luminescence and Real-Time Analysis, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
22
|
Antagonism of the transient receptor potential ankyrin 1 (TRPA1) attenuates hyperalgesia and urinary bladder overactivity in cyclophosphamide-induced haemorrhagic cystitis. Chem Biol Interact 2013; 203:440-7. [PMID: 23523557 DOI: 10.1016/j.cbi.2013.03.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 02/27/2013] [Accepted: 03/12/2013] [Indexed: 11/21/2022]
Abstract
The aim of this study was to investigate the involvement of the transient receptor potential ankyrin 1 (TRPA1) in haemorrhagic cystitis, the main side effect of cyclophosphamide-based chemotherapy. Hannover female rats received intraperitoneal (i.p.) injection of cyclophosphamide (three doses of 100 mg/kg, every other day, in a total of five days). This treatment was followed by the treatment with TRPA1 antagonist HC 030031 (50 mg/kg, p.o.). The threshold for hindpaw withdrawal or abdominal retraction to von Frey Hair and the locomotor activity were measured. The treatment with the TRPA1 antagonist HC 030031 significantly decreased mechanical hyperalgesia induced by cyclophosphamide without interfere with locomotor activity. Urodynamic parameters were performed by cystometry 24 h after a single treatment with cyclophosphamide (200 mg/kg, i.p.) in control and HC 030031 treated rats. Analyses of the urodynamic parameters showed that a single dose of cyclophosphamide was enough to significantly increase the number and amplitude of non-voiding contractions and to decrease the voided volume and voiding efficiency, without significantly altering basal, threshold or maximum pressure. The treatment with HC 030031 either before (100 mg/kg, p.o.) or after (30 mg/kg, i.v.) cyclophosphamide inhibited the non-voiding contractions but failed to counteract the loss in voiding efficiency. Our data demonstrates that nociceptive symptoms and urinary bladder overactivity caused by cyclophosphamide, in part, are dependent upon the activation of TRPA1. In this context, the antagonism of the receptor may be an alternative to minimise the urotoxic symptoms caused by this chemotherapeutic agent.
Collapse
|
23
|
Brain-derived neurotrophic factor, acting at the spinal cord level, participates in bladder hyperactivity and referred pain during chronic bladder inflammation. Neuroscience 2013; 234:88-102. [PMID: 23313710 DOI: 10.1016/j.neuroscience.2012.12.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 01/04/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin (NT) known to participate in chronic somatic pain. A recent study has indicated that BDNF may participate in chronic cystitis at the peripheral level. However, the principal site of action for this NT is the central nervous system, most notably the spinal cord. The effects of centrally-acting BDNF on bladder function in normal animals and its central role during chronic cystitis are presently unknown. The present study was undertaken to clarify this issue. For that purpose, control non-inflamed animals were intrathecally injected with BDNF, after which bladder function was evaluated. This treatment caused short-lasting bladder hyperactivity; whereas chronic intrathecal administration of BDNF did not elicit this effect. Cutaneous sensitivity was assessed by mechanical allodynia as an internal control of BDNF action. To ascertain the role of BDNF in bladder inflammation, animals with cyclophosphamide-induced cystitis received intrathecal injections of either a general Trk receptor antagonist or a BDNF scavenger. Blockade of Trk receptors or BDNF sequestration notably improved bladder function. In addition, these treatments also reduced referred pain, typically observed in rats with chronic cystitis. Reduction of referred pain was accompanied by a decrease in the spinal levels of extracellular signal-regulated kinase (ERK) phosphorylation, a marker of increased sensory barrage in the lumbosacral spinal cord, and spinal BDNF expression. Results obtained here indicate that BDNF, acting at the spinal cord level, contributes to bladder hyperactivity and referred pain, important hallmarks of chronic cystitis. In addition, these data also support the development of BDNF modulators as putative therapeutic options for the treatment of chronic bladder inflammation.
Collapse
|
24
|
Yu SJ, Xia CM, Kay JC, Qiao LY. Activation of extracellular signal-regulated protein kinase 5 is essential for cystitis- and nerve growth factor-induced calcitonin gene-related peptide expression in sensory neurons. Mol Pain 2012; 8:48. [PMID: 22742729 PMCID: PMC3502118 DOI: 10.1186/1744-8069-8-48] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/24/2012] [Indexed: 11/23/2022] Open
Abstract
Background Cystitis causes considerable neuronal plasticity in the primary afferent pathways. The molecular mechanism and signal transduction underlying cross talk between the inflamed urinary bladder and sensory sensitization has not been investigated. Results In a rat cystitis model induced by cyclophosphamide (CYP) for 48 h, the mRNA and protein levels of the excitatory neurotransmitter calcitonin gene-related peptide (CGRP) are increased in the L6 dorsal root ganglia (DRG) in response to bladder inflammation. Cystitis-induced CGRP expression in L6 DRG is triggered by endogenous nerve growth factor (NGF) because neutralization of NGF with a specific NGF antibody reverses CGRP up-regulation during cystitis. CGRP expression in the L6 DRG neurons is also enhanced by retrograde NGF signaling when NGF is applied to the nerve terminals of the ganglion-nerve two-compartmented preparation. Characterization of the signaling pathways in cystitis- or NGF-induced CGRP expression reveals that the activation (phosphorylation) of extracellular signal-regulated protein kinase (ERK)5 but not Akt is involved. In L6 DRG during cystitis, CGRP is co-localized with phospho-ERK5 but not phospho-Akt. NGF-evoked CGRP up-regulation is also blocked by inhibition of the MEK/ERK pathway with specific MEK inhibitors U0126 and PD98059, but not by inhibition of the PI3K/Akt pathway with inhibitor LY294002. Further examination shows that cystitis-induced cAMP-responsive element binding protein (CREB) activity is expressed in CGRP bladder afferent neurons and is co-localized with phospho-ERK5 but not phospho-Akt. Blockade of NGF action in vivo reduces the number of DRG neurons co-expressing CGRP and phospho-CREB, and reverses cystitis-induced increases in micturition frequency. Conclusions A specific pathway involving NGF-ERK5-CREB axis plays an essential role in cystitis-induced sensory activation.
Collapse
Affiliation(s)
- Sharon J Yu
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | | | | | | |
Collapse
|
25
|
Frias B, Charrua A, Avelino A, Michel MC, Cruz F, Cruz CD. Transient receptor potential vanilloid 1 mediates nerve growth factor-induced bladder hyperactivity and noxious input. BJU Int 2012; 110:E422-8. [DOI: 10.1111/j.1464-410x.2012.11187.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Effects of surgery and/or remifentanil administration on the expression of pERK1/2, c-Fos and dynorphin in the dorsal root ganglia in mice. Naunyn Schmiedebergs Arch Pharmacol 2011; 385:397-409. [DOI: 10.1007/s00210-011-0721-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/12/2011] [Indexed: 12/20/2022]
|
27
|
Lai HH, Qiu CS, Crock LW, Morales MEP, Ness TJ, Gereau RW. Activation of spinal extracellular signal-regulated kinases (ERK) 1/2 is associated with the development of visceral hyperalgesia of the bladder. Pain 2011; 152:2117-2124. [PMID: 21705143 PMCID: PMC3157542 DOI: 10.1016/j.pain.2011.05.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/03/2011] [Accepted: 05/17/2011] [Indexed: 12/24/2022]
Abstract
Activation of extracellular signal-regulated kinases (ERK) 1/2 in dorsal horn neurons is important for the development of somatic hypersensitivity and spinal central sensitization after peripheral inflammation. However, data regarding the roles of spinal ERK1/2 in the development of visceral hyperalgesia are sparse. Here we studied the activation of ERK1/2 in the lumbosacral spinal cord after innocuous and noxious distention of the inflamed (cyclophosphamide-treated) and noninflamed urinary bladder in mice. We also correlated the spinal ERK1/2 activation to distention-evoked bladder nociception as quantified by the abdominal visceromotor response (VMR). Cyclophosphamide treatment (bladder inflammation) evoked increased bladder hyperalgesia and allodynia to bladder distention, as evident from an upward and leftward shift of the VMR stimulus-response curve compared with that of noninflamed mice. Development of bladder hyperalgesia was associated with robust enhancement of ERK1/2 activation in the dorsal horn and deeper laminae bilaterally in the L6-S1 spinal cord. Functional blockade of spinal ERK1/2 activity via intrathecal administration of the upstream MEK inhibitor U0126 attenuated distention-evoked bladder nociception and caused a significant downward shift of the VMR stimulus-response curve. In summary, we have provided functional and immunohistochemical evidence that activation of lumbosacral spinal ERK1/2 is associated with the development of primary visceral (bladder) hyperalgesia. Our results suggest that aberrant processing of visceral nociceptive information at the level of the lumbosacral spinal cord via activation of ERK1/2 signaling may contribute to chronic bladder pain in the context of inflammation.
Collapse
Affiliation(s)
- H. Henry Lai
- Department of Surgery, Division of Urologic Surgery, Washington University School of Medicine, St Louis, MO
- Department of Surgery, St Louis Veterans Affairs Medical Center, St Louis, MO
| | - Chang-Shen Qiu
- Department of Surgery, Division of Urologic Surgery, Washington University School of Medicine, St Louis, MO
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St Louis, MO
| | - Lara W. Crock
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St Louis, MO
| | - Maria Elena P. Morales
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St Louis, MO
| | - Tim J. Ness
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL
| | - Robert W. Gereau
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St Louis, MO
| |
Collapse
|
28
|
Miki T, Matsunami M, Nakamura S, Okada H, Matsuya H, Kawabata A. ONO-8130, a selective prostanoid EP1 receptor antagonist, relieves bladder pain in mice with cyclophosphamide-induced cystitis. Pain 2011; 152:1373-1381. [PMID: 21396778 DOI: 10.1016/j.pain.2011.02.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 01/31/2011] [Accepted: 02/07/2011] [Indexed: 01/09/2023]
Abstract
Given the previous evidence for involvement of prostanoid EP1 receptors in facilitation of the bladder afferent nerve activity and micturition reflex, the present study investigated the effect of ONO-8130, a selective EP1 receptor antagonist, on cystitis-related bladder pain in mice. Cystitis in mice was produced by intraperitoneal administration of cyclophosphamide at 300mg/kg. Bladder pain-like nociceptive behavior and referred hyperalgesia were assessed in conscious mice. Phosphorylation of extracellular signal-regulated kinase (ERK) in the L6 spinal cord was determined by immunohistochemistry in anesthetized mice. Cyclophosphamide treatment caused bladder pain-like nociceptive behavior and referred hyperalgesia accompanying cystitis symptoms, including increased bladder weight and vascular permeability and upregulation of cyclooxygenase-2 in the bladder tissue. Oral preadministration of ONO-8130 at 0.3-30 mg/kg strongly prevented both the bladder pain-like behavior and referred hyperalgesia in a dose-dependent manner, but had slight effect on the increased bladder weight and vascular permeability. Oral ONO-8130 at 30 mg/kg also reversed the established cystitis-related bladder pain. Intravesical administration of prostaglandin E2 caused prompt phosphorylation of ERK in the L6 spinal cord, an effect blocked by ONO-8130. Our findings strongly suggest that the prostaglandin E2/EP1 system participates in processing of cystitis-related bladder pain, and that EP1 antagonists including ONO-8130 are useful for treatment of bladder pain, particularly in interstitial cystitis. Prostaglandin E2 contributes to cystitis-related bladder pain via EP1 receptors in mice, indicating possible therapeutic usefulness of selective EP1 antagonists.
Collapse
Affiliation(s)
- Takahiro Miki
- Division of Pharmacology and Pathophysiology, Kinki University School of Pharmacy, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan Pharmacological Research Laboratories, Ono Pharmaceutical Co, Ltd, Osaka 618-8585, Japan
| | | | | | | | | | | |
Collapse
|
29
|
White JPM, Ko CW, Fidalgo AR, Cibelli M, Paule CC, Anderson PJ, Cruz C, Gomba S, Matesz K, Veress G, Avelino A, Nagy I. Severe burn injury induces a characteristic activation of extracellular signal-regulated kinase 1/2 in spinal dorsal horn neurons. Eur J Pain 2011; 15:683-90. [PMID: 21371920 DOI: 10.1016/j.ejpain.2010.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 12/02/2010] [Accepted: 12/21/2010] [Indexed: 01/18/2023]
Abstract
We have studied scalding-type burn injury-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2) in the spinal dorsal horn, which is a recognised marker for spinal nociceptive processing. At 5min after severe scalding injury to mouse hind-paw, a substantial number of phosphorylated ERK1/2 (pERK1/2) immunopositive neurons were found in the ipsilateral dorsal horn. At 1h post-injury, the number of pERK1/2-labelled neurons remained substantially the same. However, at 3h post-injury, a further increase in the number of labelled neurons was found on the ipsilateral side, while a remarkable increase in the number of labelled neurons on the contralateral side resulted in there being no significant difference between the extent of the labelling on both sides. By 6h post-injury, the number of labelled neurons was reduced on both sides without there being significant difference between the two sides. A similar pattern of severe scalding injury-induced activation of ERK1/2 in spinal dorsal horn neurons over the same time-course was found in mice which lacked the transient receptor potential type 1 receptor (TRPV1) except that the extent to which ERK1/2 was activated in the ipsilateral dorsal horn at 5 min post-injury was significantly greater in wild-type animals when compared to TRPV1 null animals. This difference in activation of ERK1/2 in spinal dorsal horn neurons was abolished within 1h after injury, demonstrating that TRPV1 is not essential for the maintenance of ongoing spinal nociceptive processing in inflammatory pain conditions in mouse resulting from at least certain types of severe burn injury.
Collapse
Affiliation(s)
- John P M White
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, 369, Fulham Road, London SW10 9NH, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Athanasopoulos A, Cruz F. The medical treatment of overactive bladder, including current and future treatments. Expert Opin Pharmacother 2011; 12:1041-55. [PMID: 21299469 DOI: 10.1517/14656566.2011.554399] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Klinger M, Sacks S, Cervero F. A role for extracellular signal-regulated kinases 1 and 2 in the maintenance of persistent mechanical hyperalgesia in ovariectomized mice. Neuroscience 2011; 172:483-93. [DOI: 10.1016/j.neuroscience.2010.10.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/14/2010] [Accepted: 10/15/2010] [Indexed: 12/13/2022]
|
32
|
Extracellular signal-regulated kinases in pain of peripheral origin. Eur J Pharmacol 2010; 650:8-17. [PMID: 20950608 DOI: 10.1016/j.ejphar.2010.09.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 09/01/2010] [Accepted: 09/23/2010] [Indexed: 12/17/2022]
Abstract
Activation of members of the family of enzymes known as extracellular signal-regulated kinases (ERKs) is now known to be involved in the development and/or maintenance of the pain associated with many inflammatory conditions, such as herniated spinal disc pain, chronic inflammatory articular pain, and the pain associated with bladder inflammation. Moreover, ERKs are implicated in the development of neuropathic pain signs in animals which are subjected to the lumbar 5 spinal nerve ligation model and the chronic constriction injury model of neuropathic pain. The position has now been reached where all scientists working on pain subjects ought to be aware of the importance of ERKs, if only because certain of these enzymes are increasingly employed as experimental markers of nociceptive processing. Here, we introduce the reader, first, to the intracellular context in which these enzymes function. Thereafter, we consider the involvement of ERKs in mediating nociceptive signalling to the brain resulting from noxious stimuli at the periphery which will be interpreted by the brain as pain of peripheral origin.
Collapse
|
33
|
Cruz CD, Cruz F. The ERK 1 and 2 pathway in the nervous system: from basic aspects to possible clinical applications in pain and visceral dysfunction. Curr Neuropharmacol 2010; 5:244-52. [PMID: 19305741 PMCID: PMC2644492 DOI: 10.2174/157015907782793630] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 07/09/2007] [Accepted: 07/19/2007] [Indexed: 12/16/2022] Open
Abstract
The extracellular signal-regulated kinases 1 and 2 (ERK) cascade, member of the mitogen-activated protein kinases superfamily of signalling pathways, is one of the best characterized pathways as many protein interactions and phosphorylation events have been systematically studied. Traditionally, ERK are associated with the regulation of proliferation and differentiation as well as survival of various cell types. Their activity is controlled by phosphorylation on specific aminoacidic residues, which is induced by a variety of external cues, including growth-promoting factors. In the nervous system, ERK phosphorylation is induced by binding of neurotrophins to their specific tyrosine kinase receptors or by neuronal activity leading to glutamate release and binding to its ionotropic and metabotropic receptors. Some studies have provided evidence of its importance in neuroplastic events. In particular, ERK phosphorylation in the spinal cord was shown to be nociceptive-specific and its upregulation, occurring in cases of chronic inflammatory and neuropathic pain, seems to be of the utmost importance to behavioural changes observed in those conditions. In fact, experiments using specific inhibitors of ERK phosphorylation have proved that ERK directly contributes to allodynia and hyperalgesia caused by spinal cord injury or chronic pain. Additionally, spinal ERK phosphorylation regulates the micturition reflex in experimental models of bladder inflammation and chronic spinal cord transection. In this review we will address the main findings that suggest that ERK might be a future therapeutic target to treat pain and other complications arising from chronic pain or neuronal injury.
Collapse
Affiliation(s)
- Célia D Cruz
- Institute of Histology and Embryology, Faculty of Medicine and IBMC, University of Porto, Portugal.
| | | |
Collapse
|
34
|
Endogenous purinergic control of bladder activity via presynaptic P2X3 and P2X2/3 receptors in the spinal cord. J Neurosci 2010; 30:4503-7. [PMID: 20335487 DOI: 10.1523/jneurosci.6132-09.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
P2X(3) and P2X(2/3) receptors are localized on sensory afferents both peripherally and centrally and have been implicated in various sensory functions. However, the physiological role of these receptors expressed presynaptically in the spinal cord in regulating sensory transmission remains to be elucidated. Here, a novel selective P2X(3) and P2X(2/3) antagonist, AF-792 [5-(5-ethynyl-2-isopropyl-4-methoxy-phenoxy)-pyrimidine-2,4-diamine, previously known as RO-5], in addition to less selective purinoceptor ligands, was applied intrathecally in vivo. Cystometry recordings were made to assess changes in the micturition reflex contractions after drug treatments. We found that AF-792 inhibited micturition reflex activity significantly (300 nmol; from baseline contraction intervals of 1.18 +/- 0.07 to 9.33 +/- 2.50 min). Furthermore, inhibition of P2X(3) and P2X(2/3) receptors in the spinal cord significantly attenuated spinal activation of extracellular-signal regulated kinases induced by acute peripheral stimulation of the bladder with 1% acetic acid by 46.4 +/- 12.0% on average. Hence, the data suggest that afferent signals originating from the bladder are regulated by spinal P2X(3) and P2X(2/3) receptors and establish directly an endogenous central presynaptic purinergic mechanism to regulate visceral sensory transmission. Identification of this spinal purinergic control in visceral activities may help the development of P2X(3) and P2X(2/3) antagonist to treat urological dysfunction, such as overactive bladder, and possibly other debilitating sensory disorders, including chronic pain states.
Collapse
|
35
|
Pinto R, Frias B, Allen S, Dawbarn D, McMahon SB, Cruz F, Cruz CD. Sequestration of brain derived nerve factor by intravenous delivery of TrkB-Ig2 reduces bladder overactivity and noxious input in animals with chronic cystitis. Neuroscience 2010; 166:907-16. [PMID: 20079809 DOI: 10.1016/j.neuroscience.2010.01.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 11/18/2009] [Accepted: 01/08/2010] [Indexed: 01/20/2023]
Abstract
Brain derived nerve factor (BDNF) is a trophic factor belonging to the neurotrophin family. It is upregulated in various inflammatory conditions, where it may contribute to altered pain states. In cystitis, little is known about the relevance of BDNF in bladder-generated noxious input and bladder overactivity, a matter we investigated in the present study. Female rats were intraperitoneally (i.p.) injected with cyclophosphamide (CYP; 200 mg/kg). They received saline or TrkB-Ig(2) via intravenously (i.v.) or intravesical administration. Three days after CYP-injection, animals were anaesthetized and cystometries performed. All animals were perfusion-fixed and the spinal cord segments L6 collected, post-fixed and processed for c-Fos and phosphoERK immunoreactivity. BDNF expression in the bladder, as well as bladder histology, was also assessed. Intravesical TrkB-Ig(2) did not change bladder reflex activity of CYP-injected rats. In CYP-animals treated with i.v. TrkB-Ig(2) a decrease in the frequency of bladder reflex contractions, in comparison with saline-treated animals, was observed. In spinal sections from the latter group of animals, the number of phosphoERK and c-Fos immunoreactive neurons was lower than in sections from saline-treated CYP-animals. BDNF immunoreactivity was higher during cystitis but was not changed by TrkB-Ig(2) i.v. treatment. Evaluation of the bladder histology showed similar inflammatory signs in the bladders of inflamed animals, irrespective of the treatment. Data show that i.v. but not intravesical administration of TrkB-Ig(2) reduced bladder hyperactivity in animals with cystitis to levels comparable to those observed in unirritated rats. Since i.v. TrkB-Ig(2) also reduced spinal extracellular signal-regulated kinase (ERK) activation, it is possible that BDNF contribution to inflammation-induced bladder hyperactivity is via spinal activation of the ERK pathway. Finally, the reduction in c-Fos expression indicates that TrkB-Ig(2) also reduced bladder-generated noxious input. Our results show that sequestration of BDNF may be considered a new therapeutic strategy to treat chronic cystitis.
Collapse
Affiliation(s)
- R Pinto
- Instituto de Biologia Celular e Molecular, Porto, Portugal; Department of Urology, Hospital de S João, Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
36
|
Vera PL, Iczkowski KA, Howard DJ, Jiang L, Meyer-Siegler KL. Antagonism of macrophage migration inhibitory factor decreases cyclophosphamide cystitis in mice. Neurourol Urodyn 2010; 29:1451-7. [DOI: 10.1002/nau.20878] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Cheng Y, Keast JR. Effects of estrogens and bladder inflammation on mitogen-activated protein kinases in lumbosacral dorsal root ganglia from adult female rats. BMC Neurosci 2009; 10:156. [PMID: 20035635 PMCID: PMC2806406 DOI: 10.1186/1471-2202-10-156] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 12/28/2009] [Indexed: 01/07/2023] Open
Abstract
Background Interstitial cystitis is a chronic condition associated with bladder inflammation and, like a number of other chronic pain states, symptoms associated with interstitial cystitis are more common in females and fluctuate during the menstrual cycle. The aim of this study was to determine if estrogens could directly modulate signalling pathways within bladder sensory neurons, such as extracellular signal-related kinase (ERK) and p38 mitogen-activated protein (MAP) kinases. These signalling pathways have been implicated in neuronal plasticity underlying development of inflammatory somatic pain but have not been as extensively investigated in visceral nociceptors. We have focused on lumbosacral dorsal root ganglion (DRG) neurons projecting to pelvic viscera (L1, L2, L6, S1) of adult female Sprague-Dawley rats and performed both in vitro and in vivo manipulations to compare the effects of short- and long-term changes in estrogen levels on MAPK expression and activation. We have also investigated if prolonged estrogen deprivation influences the effects of lower urinary tract inflammation on MAPK signalling. Results In studies of isolated DRG neurons in short-term (overnight) culture, we found that estradiol and estrogen receptor (ER) agonists rapidly stimulated ER-dependent p38 phosphorylation relative to total p38. Examination of DRGs following chronic estrogen deprivation in vivo (ovariectomy) showed a parallel increase in total and phosphorylated p38 (relative to β-tubulin). We also observed an increase in ERK1 phosphorylation (relative to total ERK1), but no change in ERK1 expression (relative to β-tubulin). We observed no change in ERK2 expression or phosphorylation. Although ovariectomy increased the level of phosphorylated ERK1 (vs. total ERK1), cyclophosphamide-induced lower urinary tract inflammation did not cause a net increase of either ERK1 or ERK2, or their phosphorylation. Inflammation did, however, cause an increase in p38 protein levels, relative to β-tubulin. Prior ovariectomy did not alter the response to inflammation. Conclusions These results provide new insights into the complex effects of estrogens on bladder nociceptor signalling. The diversity of estrogen actions in these ganglia raises the possibility of developing new ways to modulate their function in pelvic hyperactivity or pain states.
Collapse
Affiliation(s)
- Ying Cheng
- Pain Management Research Institute, Kolling Institute of Medical Research, University of Sydney at Royal North Shore Hospital, St Leonards NSW 2065, Australia.
| | | |
Collapse
|
38
|
Phosphorylation of extracellular signal-regulated kinases in bladder afferent pathways with cyclophosphamide-induced cystitis. Neuroscience 2009; 163:1353-62. [PMID: 19638304 DOI: 10.1016/j.neuroscience.2009.07.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 07/01/2009] [Accepted: 07/21/2009] [Indexed: 11/22/2022]
Abstract
Extracellular signal-regulated kinases (ERK1 and ERK2) are phosphorylated in the nervous system after somatic or visceral stimulation or inflammation and play roles in central sensitization and pain hypersensitivity. ERK1/2 activation with cyclophosphamide (CYP)-induced cystitis has been demonstrated in urinary bladder and inhibitors of ERK1/2 phosphorylation reduce CYP-induced bladder hyperreflexia. In this study, we determined pERK1/2 expression and regulation in lumbosacral dorsal root ganglia (DRG) and spinal cord with CYP-induced cystitis (4 h, 48 h, chronic) using Western blotting and immunohistochemical techniques. Phosphorylated extracellular signal-regulated kinases (pERK1/2) expression was significantly (P< or =0.01) upregulated in L6 and S1 DRG with CYP-induced cystitis with the greatest upregulation occurring at 4 h. No changes in pERK1/2 expression were observed in L1, L2 or L5 DRG or in any spinal cord segment examined (L1, L2, L5-S1) with CYP-induced cystitis. Cytoplasmic pERK1/2-immunoreactivity (IR) and pericellular pERK1/2-IR was observed in all DRG examined from control rats and cytoplasmic pERK1/2-IR was significantly (P< or =0.01) increased in L6 and S1 DRG with 4 and 48 h CYP-induced cystitis. In contrast, pericellular pERK1/2-IR in DRG was not regulated by CYP-induced cystitis. A small percentage of bladder afferent cells in lumbosacral DRG expressed pERK1/2-IR in control rats; however, CYP-induced cystitis (48 h) significantly (P< or =0.01) increased the percentage of bladder afferent cells in the L6 and S1 DRG exhibiting pERK1/2-IR. These studies suggest that activation of the ERK pathway in lumbosacral DRG may play a role in neuroplasticity in micturition reflexes with CYP-induced cystitis.
Collapse
|
39
|
Cheppudira BP, Girard BM, Malley SE, Dattilio A, Schutz KC, May V, Vizzard MA. Involvement of JAK-STAT signaling/function after cyclophosphamide-induced bladder inflammation in female rats. Am J Physiol Renal Physiol 2009; 297:F1038-44. [PMID: 19625377 DOI: 10.1152/ajprenal.00110.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cytokines are upregulated in a variety of inflammatory conditions and cytokine/receptor interactions can activate JAK-STAT signaling. Previous studies demonstrated upregulation of numerous cytokines in the urinary bladder following cyclophosphamide (CYP)-induced cystitis. The role of JAK-STAT signaling in urinary bladder inflammation and referred somatic sensitivity has not been addressed. The contribution of JAK-STAT signaling pathways in CYP-induced bladder hyperreflexia and referred somatic hypersensitivity was determined in CYP-treated rats using a JAK2 inhibitor, AG490. Acute (4 h; 150 mg/kg ip), intermediate (48 h; 150 mg/kg ip), or chronic (75 mg/kg ip, once every 3 days for 10 days) cystitis was induced in adult, female Wistar rats with CYP treatment. Phosphorylation status of STAT-3 was increased in urinary bladder after CYP-induced cystitis (4 h, 48 h, chronic). Blockade of JAK2 with AG490 (5-15 mg/kg ip or intravesical) significantly (P < or = 0.05) reduced bladder hyperreflexia and hind paw sensitivity in CYP-treated rats. These studies demonstrate a potential role for JAK-STAT signaling pathways in bladder hyperreflexia and referred pain induced by CYP-induced bladder inflammation.
Collapse
Affiliation(s)
- Bopaiah P Cheppudira
- Dept. of Neurology, Univ. of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Cruz CD, Ferreira D, McMahon SB, Cruz F. The activation of the ERK pathway contributes to the spinal c-fosexpression observed after noxious bladder stimulation. Somatosens Mot Res 2009; 24:15-20. [PMID: 17558919 DOI: 10.1080/08990220601143265] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
C-fos is an immediate-early gene whose expression in the spinal cord has been extensively used as a marker of peripheral noxious stimulation. The Fos protein accumulates in the nuclei of spinal neurons, reaching detectable levels 2 h after stimulation. The ERK pathway is an important signalling pathway in spinal cord neurons. ERK is activated upon phosphorylation on specific amino acid residues. Its activation in the spinal cord, following noxious stimulation, has been shown to contribute to the establishment and maintenance of long-term neuronal alterations associated with chronic pain. Phosphorylated ERK can target several cellular elements, including transcription factors, which indicates that ERK participates in the regulation of gene expression. The relation between ERK and c-fos is at present still unclear. Some in vitro studies have reached the conclusion that ERK contributes to c-fos regulation whereas others have provided evidence of ERK-independent c-fos expression. In fact, in the spinal cord the occurrence of c-fos expression in the absence of ERK phosphorylation has been reported. In this study we investigated in vivo the contribution of ERK to c-fos expression in the spinal cord. By inhibiting spinal ERK activation with intrathecal administration of PD98059, we verified that ERK phosphorylation does contribute to regulate c-fos expression upon noxious bladder stimulation.
Collapse
Affiliation(s)
- Célia D Cruz
- Faculty of Medicine, Institute of Histology and Embryology, University of Porto and IBMC, Portugal.
| | | | | | | |
Collapse
|
41
|
Cao H, Gao YJ, Ren WH, Li TT, Duan KZ, Cui YH, Cao XH, Zhao ZQ, Ji RR, Zhang YQ. Activation of extracellular signal-regulated kinase in the anterior cingulate cortex contributes to the induction and expression of affective pain. J Neurosci 2009; 29:3307-21. [PMID: 19279268 PMCID: PMC2682784 DOI: 10.1523/jneurosci.4300-08.2009] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 01/11/2009] [Accepted: 02/12/2009] [Indexed: 02/03/2023] Open
Abstract
The anterior cingulate cortex (ACC) is implicated in the affective response to noxious stimuli. However, little is known about the molecular mechanisms involved. The present study demonstrated that extracellular signal-regulated kinase (ERK) activation in the ACC plays a crucial role in pain-related negative emotion. Intraplantar formalin injection produced a transient ERK activation in laminae V-VI and a persistent ERK activation in laminae II-III of the rostral ACC (rACC) bilaterally. Using formalin-induced conditioned place avoidance (F-CPA) in rats, which is believed to reflect the pain-related negative emotion, we found that blockade of ERK activation in the rACC with MEK inhibitors prevented the induction of F-CPA. Interestingly, this blockade did not affect formalin-induced two-phase spontaneous nociceptive responses and CPA acquisition induced by electric foot-shock or U69,593, an innocuous aversive agent. Upstream, NMDA receptor, adenylyl cyclase (AC) and phosphokinase A (PKA) activators activated ERK in rACC slices. Consistently, intra-rACC microinjection of AC or PKA inhibitors prevented F-CPA induction. Downstream, phosphorylation of cAMP response element binding protein (CREB) was induced in the rACC by formalin injection and by NMDA, AC and PKA activators in brain slices, which was suppressed by MEK inhibitors. Furthermore, ERK also contributed to the expression of pain-related negative emotion. Thus, when rats were re-exposed to the conditioning context for retrieval of pain experience, ERK and CREB were reactivated in the rACC, and inhibiting ERK activation blocked the expression of F-CPA. All together, our results demonstrate that ERK activation in the rACC is required for the induction and expression of pain-related negative affect.
Collapse
Affiliation(s)
- Hong Cao
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Yong-Jing Gao
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
- Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Wen-Hua Ren
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Ting-Ting Li
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Kai-Zheng Duan
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Yi-Hui Cui
- Shanghai Institute of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics, Ministry of Education, and Science and Technology Commission of Shanghai Municipality, East China Normal University, Shanghai 200062, China
| | - Xiao-Hua Cao
- Shanghai Institute of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics, Ministry of Education, and Science and Technology Commission of Shanghai Municipality, East China Normal University, Shanghai 200062, China
| | - Zhi-Qi Zhao
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Ru-Rong Ji
- Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Yu-Qiu Zhang
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| |
Collapse
|
42
|
Bradesi S, Martinez V, Lao L, Larsson H, Mayer EA. Involvement of vasopressin 3 receptors in chronic psychological stress-induced visceral hyperalgesia in rats. Am J Physiol Gastrointest Liver Physiol 2009; 296:G302-9. [PMID: 19033533 DOI: 10.1152/ajpgi.90557.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Visceral hypersensitivity and stress have been implicated in the pathophysiology of functional gastrointestinal disorders. We used a selective vasopressin 3 (V(3)) receptor antagonist SSR149415 to investigate the involvement of the vasopressin (AVP)/V(3) signaling system in the development of stress-induced visceral hyperalgesia in rats. Rats were exposed to a daily 1-h session of water avoidance stress (WAS) or sham WAS for 10 consecutive days. The visceromotor response to phasic colorectal distension (CRD, 10-60 mmHg) was assessed before and after stress. Animals were treated daily with SSR149415 (0.3, 1, or 3 mg/kg ip 30 min before each WAS or sham WAS session), with a single dose of SSR149415 (1 mg/kg ip), or the selective corticotropin-releasing factor 1 (CRF(1)) antagonist DMP-696 (30 mg/kg po) before CRD at day 11. Effects of a single dose of SSR149415 (10 mg/kg iv) on acute mechanical sensitization during repetitive CRD (12 distensions at 80 mmHg) were also assessed. In vehicle-treated rats, repeated WAS increased the response to CRD, indicating visceral hypersensitivity. Repeated administration of SSR149415 at 1 or 3 mg/kg completely prevented stress-induced visceral hyperalgesia. Similarly, a single dose of DMP-696 or SSR149415 completely blocked hyperalgesic responses during CRD. In contrast, a single dose of SSR149415 did not affect the acute hyperalgesic responses induced by repeated, noxious distension. These data support a major role for V(3) receptors in repeated psychological stress-induced visceral hyperalgesia and suggest that pharmacological manipulation of the AVP/V(3) pathway might represent an attractive alternative to the CRF/CRF(1) pathway for the treatment of chronic stress-related gastrointestinal disorders.
Collapse
Affiliation(s)
- Sylvie Bradesi
- University of California Los Angeles Center for Neurobiology of Stress, Departments of Medicine, Physiology, and Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90073.
| | | | | | | | | |
Collapse
|
43
|
Tsujimura T, Kondo M, Kitagawa J, Tsuboi Y, Saito K, Tohara H, Ueda K, Sessle BJ, Iwata K. Involvement of ERK phosphorylation in brainstem neurons in modulation of swallowing reflex in rats. J Physiol 2009; 587:805-17. [PMID: 19124539 DOI: 10.1113/jphysiol.2008.165324] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In order to evaluate the neuronal mechanisms underlying functional abnormalities of swallowing in orofacial pain patients, this study investigated the effects of noxious orofacial stimulation on the swallowing reflex, phosphorylated extracellular signal-regulated kinase (pERK) and gamma-aminobutyric acid (GABA) immunohistochemical features in brainstem neurons, and also analysed the effects of brainstem lesioning and of microinjection of GABA receptor agonist or antagonist into the nucleus tractus solitarii (NTS) on the swallowing reflex in anaesthetized rats. The swallowing reflex elicited by topical administration of distilled water to the pharyngolaryngeal region was inhibited after capsaicin injection into the facial (whisker pad) skin or lingual muscle. The capsaicin-induced inhibitory effect on the swallowing reflex was itself depressed after the intrathecal administration of MAPK kinase (MEK) inhibitor. No change in the capsaicin-induced inhibitory effect was observed after trigeminal spinal subnucleus caudalis lesioning, but the inhibitory effect was diminished by paratrigeminal nucleus (Pa5) lesioning. Many pERK-like immunoreactive neurons in the NTS showed GABA immunoreactivity. The local microinjection of the GABA(A) receptor agonist muscimol into the NTS produced a significant reduction in swallowing reflex, and the capsaicin-induced depression of the swallowing reflex was abolished by microinjection of the GABA(A) receptor antagonist bicuculline into the NTS. The present findings suggest that facial skin-NTS, lingual muscle-NTS and lingual muscle-Pa5-NTS pathways are involved in the modulation of swallowing reflex by facial and lingual pain, respectively, and that the activation of GABAergic NTS neurons is involved in the inhibition of the swallowing reflex following noxious stimulation of facial and intraoral structures.
Collapse
Affiliation(s)
- Takanori Tsujimura
- Department of Dysphagia Rehabilitation, Nihon University School of Dentistry, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Mitogen-activated protein kinases (MAPKs) are important for intracellular signal transduction and play critical roles in regulating neural plasticity and inflammatory responses. The MAPK family consists of three major members: extracellular signal-regulated kinases (ERK), p38, and c-Jun N-terminal kinase (JNK), which represent three separate signaling pathways. Accumulating evidence shows that all three MAPK pathways contribute to pain sensitization after tissue and nerve injury via distinct molecular and cellular mechanisms. Activation (phosphorylation) of MAPKs under different persistent pain conditions results in the induction and maintenance of pain hypersensitivity via non-transcriptional and transcriptional regulation. In particular, ERK activation in spinal cord dorsal horn neurons by nociceptive activity, via multiple neurotransmitter receptors, and using different second messenger pathways plays a critical role in central sensitization by regulating the activity of glutamate receptors and potassium channels and inducing gene transcription. ERK activation in amygdala neurons is also required for inflammatory pain sensitization. After nerve injury, ERK, p38, and JNK are differentially activated in spinal glial cells (microglia vs astrocytes), leading to the synthesis of proinflammatory/pronociceptive mediators, thereby enhancing and prolonging pain. Inhibition of all three MAPK pathways has been shown to attenuate inflammatory and neuropathic pain in different animal models. Development of specific inhibitors for MAPK pathways to target neurons and glial cells may lead to new therapies for pain management. Although it is well documented that MAPK pathways can increase pain sensitivity via peripheral mechanisms, this review will focus on central mechanisms of MAPKs, especially ERK.
Collapse
Affiliation(s)
- Ru-Rong Ji
- Pain Research Center, Department of Anesthesiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, MRB 604, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
45
|
Intrathecal delivery of resiniferatoxin (RTX) reduces detrusor overactivity and spinal expression of TRPV1 in spinal cord injured animals. Exp Neurol 2008; 214:301-8. [DOI: 10.1016/j.expneurol.2008.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 08/20/2008] [Accepted: 08/22/2008] [Indexed: 12/29/2022]
|
46
|
Qiao LY, Gulick MA, Bowers J, Kuemmerle JF, Grider JR. Differential changes in brain-derived neurotrophic factor and extracellular signal-regulated kinase in rat primary afferent pathways with colitis. Neurogastroenterol Motil 2008; 20:928-38. [PMID: 18373519 DOI: 10.1111/j.1365-2982.2008.01119.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has been postulated to participate in inflammation-induced visceral hypersensitivity by modulating the sensitivity of visceral afferents through the activation of intracellular signalling pathways such as the extracellular signal-regulated kinase (ERK) pathway. In the current study, we assessed the expression levels of BDNF and phospho-ERK in lumbosacral dorsal root ganglia (DRG) and spinal cord before and during tri-nitrobenzene sulfonic acid (TNBS)-induced colitis in rats with real-time PCR, ELISA, western blot and immunohistochemical techniques. BDNF mRNA and protein levels were increased in L1 and S1 but not L6 DRG when compared with control (L1: two- to five-fold increases, P < 0.05; S1: two- to three-fold increases, P < 0.05); however, BDNF protein but not mRNA level was increased in L1 and S1 spinal cord when compared with control. In parallel, TNBS colitis significantly induced phospho-ERK1/2 expression in L1 (four- to five-fold, P < 0.05) and S1 (two- to three-fold, P < 0.05) but not in L6 spinal cord levels. Immunohistochemistry results showed that the increase in phospho-ERK1/2 expression occurred at the region of the superficial dorsal horn and grey commisure of the spinal cord. In contrast, there was no change in phospho-ERK5 in any level of the spinal cord examined during colitis. The regional and time-specific changes in the levels of BDNF mRNA, protein and phospho-ERK with colitis may be a result of increased transcription of BDNF in DRG and anterograde transport of BDNF from DRG to spinal cord where it activates intracellular signalling molecules such as ERK1/2.
Collapse
Affiliation(s)
- L-Y Qiao
- Department of Physiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0551, USA.
| | | | | | | | | |
Collapse
|
47
|
Chuang YC, Yoshimura N, Huang CC, Wu M, Chiang PH, Chancellor MB. Intraprostatic botulinum toxin a injection inhibits cyclooxygenase-2 expression and suppresses prostatic pain on capsaicin induced prostatitis model in rat. J Urol 2008; 180:742-8. [PMID: 18554636 DOI: 10.1016/j.juro.2007.07.120] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Indexed: 11/30/2022]
Abstract
PURPOSE Cyclooxygenase-2 is a key enzyme in the conversion of arachidonic acid to prostaglandins, which are important mediators of inflammation and pain. We investigated the effect of intraprostatic botulinum toxin A administration on pain reaction and cyclooxygenase-2 expression in a capsaicin induced prostatitis model in rats. MATERIALS AND METHODS Adult male Sprague-Dawley rats were injected with vehicle or capsaicin (10 mM, 0.1 cc) into the prostate. The nociceptive effects of capsaicin were evaluated for 30 minutes using a behavior approach. The prostate and L6 spinal cord were then removed for histology and cyclooxygenase-2 expression using Western blotting or immunostaining. A second set of animals was injected with botulinum toxin A (5 to 20 U) into the prostate 1 week before intraprostatic injection of capsaicin. RESULTS Capsaicin induced increased pain behavior and inflammatory reaction. Botulinum toxin A 1 week before treatment dose dependently decreased inflammatory cell accumulation, cyclooxygenase-2 expression and prostatic pain. Botulinum toxin A (20 U) significantly decreased inflammatory cell accumulation, and cyclooxygenase-2 expression in the prostate, ventral horn and dorsal horn of the L6 spinal cord (93.5%, 89.4%, 90.5% and 77.5%, respectively). It decreased pain behavior for eye and locomotion scores (59.5% and 40.0%, respectively). CONCLUSIONS Intraprostatic capsaicin injection activates cyclooxygenase-2 expression in the prostate, and spinal sensory and motor neurons, and it induces prostatic pain. Botulinum toxin A pretreatment could inhibit capsaicin induced cyclooxygenase-2 expression from the peripheral organ to the L6 spinal cord and inhibit prostatic pain and inflammation. This finding suggests a potential clinical benefit of botulinum toxin A for the treatment of nonbacterial prostatitis.
Collapse
Affiliation(s)
- Yao-Chi Chuang
- Department of Urology, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
48
|
Chuang YC, Yoshimura N, Huang CC, Wu M, Chiang PH, Chancellor MB. Intravesical botulinum toxin A administration inhibits COX-2 and EP4 expression and suppresses bladder hyperactivity in cyclophosphamide-induced cystitis in rats. Eur Urol 2008; 56:159-66. [PMID: 18514386 DOI: 10.1016/j.eururo.2008.05.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 05/06/2008] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cyclooxygenase 2 (COX-2) elevation and subsequent prostaglandin E(2) (PGE(2)) production play a major role in bladder inflammation and hyperactivity. EP4 receptor, a subtype of PGE(2) receptors, mediates tissue inflammation and hypersensitivity. OBJECTIVE To investigate the effect of intravesical botulinum toxin A (BoNT-A) on COX-2 and EP4 expression in cyclophosphamide (CYP)-induced cystitis in rats. DESIGN, SETTING, AND PARTICIPANTS Experimental (N=40) and control animals (N=20) were injected with CYP (75 mg/kg intraperitoneally) or saline on days 1, 4, and 7. BoNT-A (1 ml, 20 unit/ml) or saline were administered into the bladder and retained for 1 h on day 2. INTERVENTION Waking cystometrograms (CMGs) were performed. Bladder and L6 and S1 spinal cord were harvested on day 8. MEASUREMENTS CMG parameters, histology, and COX-2 and EP4 expression by immunostaining or western blotting were measured. RESULTS AND LIMITATIONS CYP induced increased bladder inflammatory reaction, bladder hyperactivity, and COX-2 and EP4 expression in the bladder and spinal cord. The CYP effects were suppressed by BoNT-A treatment. BoNT-A treatment decreased inflammatory reaction (56.5% decrease), COX-2 expression (77.8%, 61.7%, and 54.8% decrease for bladder, L6, and S1 spinal cord, respectively), EP4 expression (56.8%, 26.9%, and 84.2% decrease for bladder, L6, and S1 spinal cord, respectively), and suppressed bladder hyperactivity (intercontraction interval, 107% increase and contraction amplitude, 43% decrease). CONCLUSIONS CYP injection activated COX2 and EP4 expression in the bladder and spinal cord and induced bladder inflammation and hyperactivity, which effects were suppressed by BoNT-A treatment. These findings suggest a potential benefit of EP4-targeted pharmacotherapy and BoNT-A treatment for bladder inflammatory conditions.
Collapse
Affiliation(s)
- Yao-Chi Chuang
- Department of Urology, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | | | | | | | | | | |
Collapse
|
49
|
Corrow KA, Vizzard MA. Phosphorylation of extracellular signal-regulated kinases in urinary bladder in rats with cyclophosphamide-induced cystitis. Am J Physiol Regul Integr Comp Physiol 2007; 293:R125-34. [PMID: 17409261 DOI: 10.1152/ajpregu.00857.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phosphorylated ERK expression has been demonstrated in the central and peripheral nervous system after various stimuli, including visceral stimulation. Changes in the activation (i.e., phosphorylation) of extracellular signal-regulated kinases (pERK) were examined in the urinary bladder after 4 h (acute), 48 h (intermediate), or chronic (10 day) cyclophosphamide (CYP) treatment. CYP-induced cystitis significantly ( P ≤ 0.01) increased pERK expression in the urinary bladder with intermediate (48 h) and chronic CYP treatment. Immunohistochemistry for pERK immunoreactivity revealed little pERK-IR in control or acute (4 h) CYP-treated rat urinary bladders. However, pERK expression was significantly ( P ≤ 0.01) upregulated in the urothelium after 48 h or chronic CYP treatment. Whole mount preparations of urothelium/lamina propria or detrusor smooth muscle from control (noninflamed) rats showed no pERK-IR in PGP9.5-labeled nerve fibers in the suburothelial plexus. However, with CYP-treatment (48 h, chronic), a few pERK-IR nerve fibers in the suburothelial plexus of whole mount preparations of bladder and at the serosal edge of urinary bladder sections were observed. pERK-IR cells expressing the CD86 antigen were also observed in urinary bladder from CYP-treated rats (48 h, chronic). Treatment with the upstream inhibitor of ERK phosphorylation, U0126, significantly ( P ≤ 0.01) increased bladder capacity in CYP-treated rats (48 h). These studies suggest that therapies targeted at pERK pathways may improve urinary bladder function in CYP-treated rats.
Collapse
Affiliation(s)
- Kimberly A Corrow
- Department of Neurology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | |
Collapse
|
50
|
Qiao LY, Gulick MA. Region-specific changes in the phosphorylation of ERK1/2 and ERK5 in rat micturition pathways following cyclophosphamide-induced cystitis. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1368-75. [PMID: 17110531 DOI: 10.1152/ajpregu.00570.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chronic inflammation of the urinary bladder generates hyperalgesia and allodynia. Growing evidence suggests a role of ERK in mediating somatic and visceral pain processing. In the present studies, we characterized and compared the activation of two ERK isoforms, ERK1/2 and ERK5, in micturition pathways, including the urinary bladder, lumbosacral dorsal root ganglia (DRG), and spinal cord in adult female and male rats before and after cyclophosphamide (CYP)-induced bladder inflammation. Results showed differential activation of ERK1/2 and ERK5 in these regions following cystitis. The level of phospho-ERK1/2 but not phospho-ERK5 was increased in the urinary bladder; the level of phospho-ERK5 but not phospho-ERK1/2 was increased in DRG; and the level of phospho-ERK1/2 but not phospho-ERK5 was increased in lumbar spinal cord following cystitis compared with control. Cystitis-induced upregulation of phospho-ERK1/2 and phospho-ERK5 was time dependent and showed similar patterns in female and male rats. The level of phospho-ERK1/2 in bladder was increased at 2 and 8 h after CYP injection; the level of phospho-ERK5 in DRG was increased at 8 and 48 h after CYP injection; and the level of phospho-ERK1/2 in lumbar spinal cord was increased at 48 h after CYP injection. The result that phospho-ERK5 was exclusively increased in DRG neurons, while phospho-ERK1/2 was increased in the spinal cord and the urinary bladder after cystitis, suggests a region-specific effect of neurotrophins on micturition pathways following bladder inflammation.
Collapse
Affiliation(s)
- Li-Ya Qiao
- Department of Physiology, Box 980551, Virginia Commonwealth University, Richmond, VA 23298-0551, USA.
| | | |
Collapse
|