1
|
Martí-Clúa J. Methods for Inferring Cell Cycle Parameters Using Thymidine Analogues. BIOLOGY 2023; 12:885. [PMID: 37372169 DOI: 10.3390/biology12060885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
Tritiated thymidine autoradiography, 5-bromo-2'-deoxyuridine (BrdU) 5-chloro-2'-deoxyuridine (CldU), 5-iodo-2'-deoxyuridine (IdU), and 5-ethynyl-2'-deoxyiridine (EdU) labeling have been used for identifying the fraction of cells undergoing the S-phase of the cell cycle and to follow the fate of these cells during the embryonic, perinatal, and adult life in several species of vertebrate. In this current review, I will discuss the dosage and times of exposition to the aforementioned thymidine analogues to label most of the cells undergoing the S-phase of the cell cycle. I will also show how to infer, in an asynchronous cell population, the duration of the G1, S, and G2 phases, as well as the growth fraction and the span of the whole cell cycle on the base of some labeling schemes involving a single administration, continuous nucleotide analogue delivery, and double labeling with two thymidine analogues. In this context, the choice of the optimal dose of BrdU, CldU, IdU, and EdU to label S-phase cells is a pivotal aspect to produce neither cytotoxic effects nor alter cell cycle progression. I hope that the information presented in this review can be of use as a reference for researchers involved in the genesis of tissues and organs.
Collapse
Affiliation(s)
- Joaquín Martí-Clúa
- Unidad de Citología e Histología, Departament de Biologia Cel·lular, de Fisiologia i d'Immunologia, Facultad de Biociencias, Institut de Neurociències, Universidad Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
2
|
Maltsev DI, Mellanson KA, Belousov VV, Enikolopov GN, Podgorny OV. The bioavailability time of commonly used thymidine analogues after intraperitoneal delivery in mice: labeling kinetics in vivo and clearance from blood serum. Histochem Cell Biol 2022; 157:239-250. [PMID: 34757474 PMCID: PMC10411052 DOI: 10.1007/s00418-021-02048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
Detection of synthetic thymidine analogues after their incorporation into replicating DNA during the S-phase of the cell cycle is a widely exploited methodology for evaluating proliferative activity, tracing dividing and post-mitotic cells, and determining cell-cycle parameters both in vitro and in vivo. To produce valid quantitative readouts for in vivo experiments with single intraperitoneal delivery of a particular nucleotide, it is necessary to determine the time interval during which a synthetic thymidine analogue can be incorporated into newly synthesized DNA, and the time by which the nucleotide is cleared from the blood serum. To date, using a variety of methods, only the bioavailability time of tritiated thymidine and 5-bromo-2'-deoxyuridine (BrdU) have been evaluated. Recent advances in double- and triple-S-phase labeling using 5-iodo-2'-deoxyuridine (IdU), 5-chloro-2'-deoxyuridine (CldU), and 5-ethynyl-2'-deoxyuridine (EdU) have raised the question of the bioavailability time of these modified nucleotides. Here, we examined their labeling kinetics in vivo and evaluated label clearance from blood serum after single intraperitoneal delivery to mice at doses equimolar to the saturation dose of BrdU (150 mg/kg). We found that under these conditions, all the examined thymidine analogues exhibit similar labeling kinetics and clearance rates from the blood serum. Our results indicate that all thymidine analogues delivered at the indicated doses have similar bioavailability times (approximately 1 h). Our findings are significant for the practical use of multiple S-phase labeling with any combinations of BrdU, IdU, CldU, and EdU and for obtaining valid labeling readouts.
Collapse
Affiliation(s)
- Dmitry I Maltsev
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, Russia, 117997
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia, 117997
| | - Kennelia A Mellanson
- Molecular and Cellular Pharmacology Graduate Program and Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Vsevolod V Belousov
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, Russia, 117997
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia, 117997
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia, 117997
| | - Grigori N Enikolopov
- Center for Developmental Genetics and Department of Anesthesiology, Stony Brook University, Stony Brook, NY, 11794, USA
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Oleg V Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia, 117997.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia, 117997.
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia, 119334.
| |
Collapse
|
3
|
Recent advances in nucleotide analogue-based techniques for tracking dividing stem cells: An overview. J Biol Chem 2021; 297:101345. [PMID: 34717955 PMCID: PMC8592869 DOI: 10.1016/j.jbc.2021.101345] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/14/2023] Open
Abstract
Detection of thymidine analogues after their incorporation into replicating DNA represents a powerful tool for the study of cellular DNA synthesis, progression through the cell cycle, cell proliferation kinetics, chronology of cell division, and cell fate determination. Recent advances in the concurrent detection of multiple such analogues offer new avenues for the investigation of unknown features of these vital cellular processes. Combined with quantitative analysis, temporal discrimination of multiple labels enables elucidation of various aspects of stem cell life cycle in situ, such as division modes, differentiation, maintenance, and elimination. Data obtained from such experiments are critically important for creating descriptive models of tissue histogenesis and renewal in embryonic development and adult life. Despite the wide use of thymidine analogues in stem cell research, there are a number of caveats to consider for obtaining valid and reliable labeling results when marking replicating DNA with nucleotide analogues. Therefore, in this review, we describe critical points regarding dosage, delivery, and detection of nucleotide analogues in the context of single and multiple labeling, outline labeling schemes based on pulse-chase, cumulative and multilabel marking of replicating DNA for revealing stem cell proliferative behaviors, and determining cell cycle parameters, and discuss preconditions and pitfalls in conducting such experiments. The information presented in our review is important for rational design of experiments on tracking dividing stem cells by marking replicating DNA with thymidine analogues.
Collapse
|
4
|
Littlejohn EL, DeSana AJ, Williams HC, Chapman RT, Joseph B, Juras JA, Saatman KE. IGF1-Stimulated Posttraumatic Hippocampal Remodeling Is Not Dependent on mTOR. Front Cell Dev Biol 2021; 9:663456. [PMID: 34095131 PMCID: PMC8174097 DOI: 10.3389/fcell.2021.663456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/26/2021] [Indexed: 01/29/2023] Open
Abstract
Adult hippocampal neurogenesis is stimulated acutely following traumatic brain injury (TBI). However, many hippocampal neurons born after injury develop abnormally and the number that survive long-term is debated. In experimental TBI, insulin-like growth factor-1 (IGF1) promotes hippocampal neuronal differentiation, improves immature neuron dendritic arbor morphology, increases long-term survival of neurons born after TBI, and improves cognitive function. One potential downstream mediator of the neurogenic effects of IGF1 is mammalian target of rapamycin (mTOR), which regulates proliferation as well as axonal and dendritic growth in the CNS. Excessive mTOR activation is posited to contribute to aberrant plasticity related to posttraumatic epilepsy, spurring preclinical studies of mTOR inhibitors as therapeutics for TBI. The degree to which pro-neurogenic effects of IGF1 depend upon upregulation of mTOR activity is currently unknown. Using immunostaining for phosphorylated ribosomal protein S6, a commonly used surrogate for mTOR activation, we show that controlled cortical impact TBI triggers mTOR activation in the dentate gyrus in a time-, region-, and injury severity-dependent manner. Posttraumatic mTOR activation in the granule cell layer (GCL) and dentate hilus was amplified in mice with conditional overexpression of IGF1. In contrast, delayed astrocytic activation of mTOR signaling within the dentate gyrus molecular layer, closely associated with proliferation, was not affected by IGF1 overexpression. To determine whether mTOR activation is necessary for IGF1-mediated stimulation of posttraumatic hippocampal neurogenesis, wildtype and IGF1 transgenic mice received the mTOR inhibitor rapamycin daily beginning at 3 days after TBI, following pulse labeling with bromodeoxyuridine. Compared to wildtype mice, IGF1 overexpressing mice exhibited increased posttraumatic neurogenesis, with a higher density of posttrauma-born GCL neurons at 10 days after injury. Inhibition of mTOR did not abrogate IGF1-stimulated enhancement of posttraumatic neurogenesis. Rather, rapamycin treatment in IGF1 transgenic mice, but not in WT mice, increased numbers of cells labeled with BrdU at 3 days after injury that survived to 10 days, and enhanced the proportion of posttrauma-born cells that differentiated into neurons. Because beneficial effects of IGF1 on hippocampal neurogenesis were maintained or even enhanced with delayed inhibition of mTOR, combination therapy approaches may hold promise for TBI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kathryn E. Saatman
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
5
|
Kubikova L, Polomova J, Mikulaskova V, Lukacova K. Effectivity of Two Cell Proliferation Markers in Brain of a Songbird Zebra Finch. BIOLOGY 2020; 9:biology9110356. [PMID: 33113793 PMCID: PMC7694046 DOI: 10.3390/biology9110356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022]
Abstract
Simple Summary The present study compared the effectivity of two cell proliferation markers, BrdU and EdU, in the brain neurogenic zone of the songbird zebra finch. It shows their saturation doses, that BrdU labels more cells than the equimolar dose of EdU, and that both markers can be reliably detected in the same brain. Abstract There are two most heavily used markers of cell proliferation, thymidine analogues 5-bromo-2′-deoxyuridine (BrdU) and 5-ethynyl-2′-deoxyuridine (EdU) that are incorporated into the DNA during its synthesis. In neurosciences, they are often used consecutively in the same animal to detect neuronal populations arising at multiple time points, their migration and incorporation. The effectivity of these markers, however, is not well established. Here, we studied the effectivity of equimolar doses of BrdU and EdU to label new cells and looked for the dose that will label the highest number of proliferating cells in the neurogenic ventricular zone (VZ) of adult songbirds. We found that, in male zebra finches (Taeniopygia guttata), the equimolar doses of BrdU and EdU did not label the same number of cells, with BrdU being more effective than EdU. Similarly, in liver, BrdU was more effective. The saturation of the detected brain cells occurred at 50 mg/kg BrdU and above 41 mg/kg EdU. Higher dose of 225 mg/kg BrdU or the equimolar dose of EdU did not result in any further significant increases. These results show that both markers are reliable for the detection of proliferating cells in birds, but the numbers obtained with BrdU and EdU should not be compared.
Collapse
Affiliation(s)
- Lubica Kubikova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia; (J.P.); (V.M.); (K.L.)
- Correspondence:
| | - Justina Polomova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia; (J.P.); (V.M.); (K.L.)
| | - Viktoria Mikulaskova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia; (J.P.); (V.M.); (K.L.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Kristina Lukacova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovakia; (J.P.); (V.M.); (K.L.)
| |
Collapse
|
6
|
Bertoldi ML, Zalosnik MI, Fabio MC, Aja S, Roth GA, Ronnett GV, Degano AL. MeCP2 Deficiency Disrupts Kainate-Induced Presynaptic Plasticity in the Mossy Fiber Projections in the Hippocampus. Front Cell Neurosci 2019; 13:286. [PMID: 31333414 PMCID: PMC6619486 DOI: 10.3389/fncel.2019.00286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/13/2019] [Indexed: 01/19/2023] Open
Abstract
Methyl cytosine binding protein 2 (MeCP2) is a structural chromosomal protein involved in the regulation of gene expression. Mutations in the gene encoding MeCP2 result in Rett Syndrome (RTT), a pervasive neurodevelopmental disorder. RTT is one of few autism spectrum disorders whose cause was identified as a single gene mutation. Remarkably, abnormal levels of MeCP2 have been associated to other neurodevelopmental disorders, as well as neuropsychiatric disorders. Therefore, many studies have been oriented to investigate the role of MeCP2 in the nervous system. In the present work, we explore cellular and molecular mechanisms affecting synaptic plasticity events in vivo in the hippocampus of MeCP2 mutant mice. While most studies addressed postsynaptic defects in the absence of MeCP2, we took advantage of an in vivo activity-paradigm (seizures), two models of MeCP2 deficiency, and neurobiological assays to reveal novel defects in presynaptic structural plasticity in the hippocampus in RTT rodent models. These approaches allowed us to determine that MeCP2 mutations alter presynaptic components, i.e., disrupts the plastic response of mossy fibers to synaptic activity and results in reduced axonal growth which is correlated with imbalanced trophic and guidance support, associated with aberrant expression of brain-derived neurotrophic factor and semaphorin 3F. Our results also revealed that adult-born granule cells recapitulate maturational defects that have been only shown at early postnatal ages. As these cells do not mature timely, they may not integrate properly into the adult hippocampal circuitry. Finally, we performed a hippocampal-dependent test that revealed defective spatial memory in these mice. Altogether, our studies establish a model that allows us to evaluate the effect of the manipulation of specific pathways involved in axonal guidance, synaptogenesis, or maturation in specific circuits and correlate it with changes in behavior. Understanding the mechanisms underlying the neuronal compromise caused by mutations in MeCP2 could provide information on the pathogenic mechanism of autistic spectrum disorders and improve our understanding of brain development and molecular basis of behavior.
Collapse
Affiliation(s)
- Maria Laura Bertoldi
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Córdoba, Argentina.,Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria Ines Zalosnik
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Córdoba, Argentina.,Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria Carolina Fabio
- Instituto de Investigaciones Médicas Mercedes y Martin Ferreyra (INIMEC), CONICET, Córdoba, Argentina
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins Medicine, Baltimore, MD, United States
| | - German A Roth
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Córdoba, Argentina.,Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gabriele V Ronnett
- Center for Metabolism and Obesity Research, Johns Hopkins Medicine, Baltimore, MD, United States.,Department of Neuroscience, The Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Alicia L Degano
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Córdoba, Argentina.,Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
7
|
Leibowitz JA, Natarajan G, Zhou J, Carney PR, Ormerod BK. Sustained somatostatin gene expression reverses kindling-induced increases in the number of dividing Type-1 neural stem cells in the hippocampi of behaviorally responsive rats. Epilepsy Res 2019; 150:78-94. [PMID: 30735971 DOI: 10.1016/j.eplepsyres.2019.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/18/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022]
Abstract
Neurogenesis persists throughout life in the hippocampi of all mammals, including humans. In the healthy hippocampus, relatively quiescent Type-1 neural stem cells (NSCs) can give rise to more proliferative Type-2a neural progenitor cells (NPCs), which generate neuronal-committed Type-2b NPCs that mature into Type-3 neuroblasts. Many Type-3 neuroblasts survive and mature into functionally integrated granule neurons over several weeks. In kindling models of epilepsy, neurogenesis is drastically upregulated and many new neurons form aberrant connections that could support epileptogenesis and/or seizures. We have shown that sustained vector-mediated hippocampal somatostatin (SST) expression can both block epileptogenesis and reverse seizure susceptibility in fully kindled rats. Here we test whether adeno-associated virus (AAV) vector-mediated sustained SST expression modulates hippocampal neurogenesis and microglial activation in fully kindled rats. We found significantly more dividing Type-1 NSCs and a corresponding increased number of surviving new neurons in the hippocampi of kindled versus sham-kindled rats. Increased numbers of activated microglia were found in the granule cell layer and hilus of kindled rats at both time points. After intrahippocampal injection with either eGFP or SST-eGFP vector, we found similar numbers of dividing Type-1 NSCs and -2 NPCs and surviving BrdU+ neurons and glia in the hippocampi of kindled rats. Upon observed variability in responses to SST-eGFP (2/4 rats exhibited Grade 0 seizures in the test session), we conducted an additional experiment. We found significantly fewer dividing Type-1 NSCs in the hippocampi of SST-eGFP vector-treated responder rats (5/13 rats) relative to SST-eGFP vector-treated non-responders and eGFP vector-treated controls that exhibited high-grade seizures on the test session. The number of activated microglia was upregulated in the GCL and hilus of kindled rats, regardless of vector treatment. These data support the hypothesis that sustained SST expression exerts antiepileptic effects potentially through normalization of neurogenesis and suggests that abnormally high proliferating Type-1 NSC numbers may be a cellular mechanism of epilepsy.
Collapse
Affiliation(s)
| | - Gowri Natarajan
- Department of Neurology and Pediatrics, USA; Neuroscience Program, USA
| | - Junli Zhou
- Department of Neurology and Pediatrics, USA; Neuroscience Program, USA
| | - Paul R Carney
- Department of Neurology and Pediatrics, USA; Neuroscience Program, USA; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brandi K Ormerod
- J. Crayton Pruitt Family Department of Biomedical Engineering, USA; Department of Neuroscience, USA; McKnight Brain Institute, USA.
| |
Collapse
|
8
|
Chikama K, Yamada H, Tsukamoto T, Kajitani K, Nakabeppu Y, Uchimura N. Chronic atypical antipsychotics, but not haloperidol, increase neurogenesis in the hippocampus of adult mouse. Brain Res 2017; 1676:77-82. [DOI: 10.1016/j.brainres.2017.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 11/28/2022]
|
9
|
Overall RW, Walker TL, Fischer TJ, Brandt MD, Kempermann G. Different Mechanisms Must Be Considered to Explain the Increase in Hippocampal Neural Precursor Cell Proliferation by Physical Activity. Front Neurosci 2016; 10:362. [PMID: 27536215 PMCID: PMC4971098 DOI: 10.3389/fnins.2016.00362] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/20/2016] [Indexed: 11/25/2022] Open
Abstract
The number of proliferating neural precursor cells in the adult hippocampus is strongly increased by physical activity. The mechanisms through which this behavioral stimulus induces cell proliferation, however, are not yet understood. In fact, even the mode of proliferation of the stem and progenitor cells is not exactly known. Evidence exists for several mechanisms including cell cycle shortening, reduced cell death and stem cell recruitment, but as yet no model can account for all observations. An appreciation of how the cells proliferate, however, is crucial to our ability to model the neurogenic process and predict its behavior in response to pro-neurogenic stimuli. In a recent study, we addressed modulation of the cell cycle length as one possible mode of regulation of precursor cell proliferation in running mice. Our results indicated that the observed increase in number of proliferating cells could not be explained through a shortening of the cell cycle. We must therefore consider other mechanisms by which physical activity leads to enhanced precursor cell proliferation. Here we review the evidence for and against several different hypotheses and discuss the implications for future research in the field.
Collapse
Affiliation(s)
- Rupert W Overall
- Genomics of Regeneration, Center for Regenerative Therapies Dresden (CRTD), Technische Universität DresdenDresden, Germany; Genomics of Regeneration, German Center for Neurodegenerative Diseases (DZNE) DresdenDresden, Germany
| | - Tara L Walker
- Genomics of Regeneration, Center for Regenerative Therapies Dresden (CRTD), Technische Universität DresdenDresden, Germany; Genomics of Regeneration, German Center for Neurodegenerative Diseases (DZNE) DresdenDresden, Germany
| | - Tim J Fischer
- Genomics of Regeneration, Center for Regenerative Therapies Dresden (CRTD), Technische Universität DresdenDresden, Germany; Genomics of Regeneration, German Center for Neurodegenerative Diseases (DZNE) DresdenDresden, Germany
| | - Moritz D Brandt
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden Dresden, Germany
| | - Gerd Kempermann
- Genomics of Regeneration, Center for Regenerative Therapies Dresden (CRTD), Technische Universität DresdenDresden, Germany; Genomics of Regeneration, German Center for Neurodegenerative Diseases (DZNE) DresdenDresden, Germany
| |
Collapse
|
10
|
Kuhn HG, Eisch AJ, Spalding K, Peterson DA. Detection and Phenotypic Characterization of Adult Neurogenesis. Cold Spring Harb Perspect Biol 2016; 8:a025981. [PMID: 26931327 PMCID: PMC4772100 DOI: 10.1101/cshperspect.a025981] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Studies of adult neurogenesis have greatly expanded in the last decade, largely as a result of improved tools for detecting and quantifying neurogenesis. In this review, we summarize and critically evaluate detection methods for neurogenesis in mammalian and human brain tissue. Besides thymidine analog labeling, cell-cycle markers are discussed, as well as cell stage and lineage commitment markers. Use of these histological tools is critically evaluated in terms of their strengths and limitations, as well as possible artifacts. Finally, we discuss the method of radiocarbon dating for determining cell and tissue turnover in humans.
Collapse
Affiliation(s)
- H Georg Kuhn
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, SE-405 30, Sweden
| | - Amelia J Eisch
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070
| | - Kirsty Spalding
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm SE-171 77, Sweden
| | - Daniel A Peterson
- Center for Stem Cell and Regenerative Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| |
Collapse
|
11
|
Kuipers SD, Trentani A, Tiron A, Mao X, Kuhl D, Bramham CR. BDNF-induced LTP is associated with rapid Arc/Arg3.1-dependent enhancement in adult hippocampal neurogenesis. Sci Rep 2016; 6:21222. [PMID: 26888068 PMCID: PMC4758047 DOI: 10.1038/srep21222] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/12/2016] [Indexed: 11/10/2022] Open
Abstract
Adult neurogenesis in the hippocampus is a remarkable phenomenon involved in various aspects of learning and memory as well as disease pathophysiology. Brain-derived neurotrophic factor (BDNF) represents a major player in the regulation of this unique form of neuroplasticity, yet the mechanisms underlying its pro-neurogenic actions remain unclear. Here, we examined the effects associated with brief (25 min), unilateral infusion of BDNF in the rat dentate gyrus. Acute BDNF infusion induced long-term potentiation (LTP) of medial perforant path-evoked synaptic transmission and, concomitantly, enhanced hippocampal neurogenesis bilaterally, reflected by increased dentate gyrus BrdU + cell numbers. Importantly, inhibition of activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) translation through local, unilateral infusion of anti-sense oligodeoxynucleotides (ArcAS) prior to BDNF infusion blocked both BDNF-LTP induction and the associated pro-neurogenic effects. Notably, basal rates of proliferation and newborn cell survival were unaltered in homozygous Arc/Arg3.1 knockout mice. Taken together these findings link the pro-neurogenic effects of acute BDNF infusion to induction of Arc/Arg3.1-dependent LTP in the adult rodent dentate gyrus.
Collapse
Affiliation(s)
- Sjoukje D Kuipers
- Department of Biomedicine and KG Jebsen Centre for Research on Neuropsychiatric Disorders, Jonas Lies vei 91, University of Bergen, 5009 Bergen, Norway
| | - Andrea Trentani
- Department of Biomedicine and KG Jebsen Centre for Research on Neuropsychiatric Disorders, Jonas Lies vei 91, University of Bergen, 5009 Bergen, Norway
| | - Adrian Tiron
- Department of Biomedicine and KG Jebsen Centre for Research on Neuropsychiatric Disorders, Jonas Lies vei 91, University of Bergen, 5009 Bergen, Norway
| | - Xiaosong Mao
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology (ZMNH) University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Dietmar Kuhl
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology (ZMNH) University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Clive R Bramham
- Department of Biomedicine and KG Jebsen Centre for Research on Neuropsychiatric Disorders, Jonas Lies vei 91, University of Bergen, 5009 Bergen, Norway
| |
Collapse
|
12
|
Ciudad-Roberts A, Duart-Castells L, Camarasa J, Pubill D, Escubedo E. The combination of ethanol with mephedrone increases the signs of neurotoxicity and impairs neurogenesis and learning in adolescent CD-1 mice. Toxicol Appl Pharmacol 2015; 293:10-20. [PMID: 26747301 DOI: 10.1016/j.taap.2015.12.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 12/29/2022]
Abstract
A new family of psychostimulants, under the name of cathinones, has broken into the market in the last decade. In light of the fact that around 95% of cathinone consumers have been reported to combine them with alcoholic drinks, we sought to study the consequences of the concomitant administration of ethanol on mephedrone -induced neurotoxicity. Adolescent male Swiss-CD1 mice were administered four times in one day, every 2h, with saline, mephedrone (25mg/kg), ethanol (2; 1.5; 1.5; 1g/kg) and their combination at a room temperature of 26±2°C. The combination with ethanol impaired mephedrone-induced decreases in dopamine transporter and tyrosine hydroxylase in the frontal cortex; and in serotonin transporter and tryptophan hydroxylase in the hippocampus by approximately 2-fold, 7days post-treatment. Furthermore, these decreases correlated with a 2-fold increase in lipid peroxidation, measured as concentration of malondialdehyde (MDA), 24h post-treatment, and were accompanied by changes in oxidative stress-related enzymes. Ethanol also notably potentiated mephedrone-induced negative effects on learning and memory, as well as hippocampal neurogenesis, measured through the Morris water maze (MWM) and 5-bromo-2'-deoxyuridine staining, respectively. These results are of special significance, since alcohol is widely co-abused with amphetamine derivatives such as mephedrone, especially during adolescence, a crucial stage in brain maturation. Given that the hippocampus is greatly involved in learning and memory processes, normal brain development in young adults could be affected with permanent behavioral consequences after this type of drug co-abuse.
Collapse
Affiliation(s)
- Andrés Ciudad-Roberts
- Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section); Institute of Biomedicine (IBUB), Faculty of Pharmacy, Universitat de Barcelona, Barcelona, Spain
| | - Leticia Duart-Castells
- Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section); Institute of Biomedicine (IBUB), Faculty of Pharmacy, Universitat de Barcelona, Barcelona, Spain
| | - Jorge Camarasa
- Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section); Institute of Biomedicine (IBUB), Faculty of Pharmacy, Universitat de Barcelona, Barcelona, Spain
| | - David Pubill
- Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section); Institute of Biomedicine (IBUB), Faculty of Pharmacy, Universitat de Barcelona, Barcelona, Spain.
| | - Elena Escubedo
- Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section); Institute of Biomedicine (IBUB), Faculty of Pharmacy, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Long-term treatment with l-DOPA or pramipexole affects adult neurogenesis and corresponding non-motor behavior in a mouse model of Parkinson's disease. Neuropharmacology 2015; 95:367-76. [DOI: 10.1016/j.neuropharm.2015.03.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 03/22/2015] [Accepted: 03/23/2015] [Indexed: 12/21/2022]
|
14
|
Kanda K, Sato H, Miyakoshi T, Kitano T, Kanebako H, Adachi K. Friction control of mechanical seals in a ventricular assist device. BIOSURFACE AND BIOTRIBOLOGY 2015. [DOI: 10.1016/j.bsbt.2015.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
15
|
Ansorg A, Bornkessel K, Witte OW, Urbach A. Immunohistochemistry and multiple labeling with antibodies from the same host species to study adult hippocampal neurogenesis. J Vis Exp 2015:52551. [PMID: 25938720 PMCID: PMC4541582 DOI: 10.3791/52551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Adult neurogenesis is a highly regulated, multi-stage process in which new neurons are generated from an activated neural stem cell via increasingly committed intermediate progenitor subtypes. Each of these subtypes expresses a set of specific molecular markers that, together with specific morphological criteria, can be used for their identification. Typically, immunofluorescent techniques are applied involving subtype-specific antibodies in combination with exo- or endogenous proliferation markers. We herein describe immunolabeling methods for the detection and quantification of all stages of adult hippocampal neurogenesis. These comprise the application of thymidine analogs, transcardial perfusion, tissue processing, heat-induced epitope retrieval, ABC immunohistochemistry, multiple indirect immunofluorescence, confocal microscopy and cell quantification. Furthermore we present a sequential multiple immunofluorescence protocol which circumvents problems usually arising from the need of using primary antibodies raised in the same host species. It allows an accurate identification of all hippocampal progenitor subtypes together with a proliferation marker within a single section. These techniques are a powerful tool to study the regulation of different progenitor subtypes in parallel, their involvement in brain pathologies and their role in specific brain functions.
Collapse
Affiliation(s)
- Anne Ansorg
- Hans Berger Department of Neurology, Jena University Hospital
| | | | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital
| | - Anja Urbach
- Hans Berger Department of Neurology, Jena University Hospital;
| |
Collapse
|
16
|
The cell birth marker BrdU does not affect recruitment of subsequent cell divisions in the adult avian brain. BIOMED RESEARCH INTERNATIONAL 2015; 2015:126078. [PMID: 25759813 PMCID: PMC4339786 DOI: 10.1155/2015/126078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/26/2014] [Indexed: 11/17/2022]
Abstract
BrdU is commonly used to quantify neurogenesis but also causes mutation and has mitogenic, transcriptional, and translational effects. In mammalian studies, attention had been given to its dosage, but in birds such examination was not conducted. Our previous study suggested that BrdU might affect subsequent cell divisions and neuronal recruitment in the brain. Furthermore, this effect seemed to increase with time from treatment. Accordingly, we examined whether BrdU might alter neurogenesis in the adult avian brain. We compared recruitment of [(3)H]-thymidine(+) neurons in brains of zebra finches (Taeniopygia guttata) when no BrdU was involved and when BrdU was given 1 or 3 months prior to [(3)H]-thymidine. In nidopallium caudale, HVC, and hippocampus, no differences were found between groups in densities and percentages of [(3)H]-thymidine(+) neurons. The number of silver grains per [(3)H]-thymidine(+) neuronal nucleus and their distribution were similar across groups. Additionally, time did not affect the results. The results indicate that the commonly used dosage of BrdU in birds has no long-term effects on subsequent cell divisions and neuronal recruitment. This conclusion is also important in neuronal replacement experiments, where BrdU and another cell birth marker are given, with relatively long intervals between them.
Collapse
|
17
|
Fischer TJ, Walker TL, Overall RW, Brandt MD, Kempermann G. Acute effects of wheel running on adult hippocampal precursor cells in mice are not caused by changes in cell cycle length or S phase length. Front Neurosci 2014; 8:314. [PMID: 25339861 PMCID: PMC4186268 DOI: 10.3389/fnins.2014.00314] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/17/2014] [Indexed: 12/29/2022] Open
Abstract
Exercise stimulates cellular brain plasticity by extending the pool of proliferating neural precursor cells in the adult hippocampus. This effect has been investigated extensively, but the most immediate cellular effect induced by exercise that results in this acute increase in the number of cycling cells remained unclear. In the developing brain as well as adult pathological models, cell cycle alterations have a major influence on the balance between proliferative and neurogenic divisions. In this study we investigated whether this might also apply to the acute physiological pro-neurogenic stimulus of physical exercise in adulthood. Do changes in cell cycle precede the measurable increase in proliferation? After 5 days of voluntary wheel running, however, we measured only a very small, statistically not significant acceleration in cell cycle, which could not quantitatively explain the observed increase in proliferating cells after exercise. Thus, at this acute stage, changes at the level of cell cycle control is not the primary causal mechanism for the expansion of the precursor cell population, although with time after the stimulus changes in cell cycle of the entire population of labeled cells might be the result of the expanded pool of cells that have progressed to the advanced neurogenic stages with shorter cell cycle length.
Collapse
Affiliation(s)
- Tim J Fischer
- Genomics of Regeneration, CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden Dresden, Germany
| | - Tara L Walker
- Genomics of Regeneration, CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden Dresden, Germany
| | - Rupert W Overall
- Genomics of Regeneration, CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden Dresden, Germany
| | - Moritz D Brandt
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden Dresden, Germany
| | - Gerd Kempermann
- Genomics of Regeneration, CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden Dresden, Germany ; Genomics of Regeneration, German Center for Neurodegenerative Diseases (DZNE) Dresden Dresden, Germany
| |
Collapse
|
18
|
Alcohol exposure inhibits adult neural stem cell proliferation. Exp Brain Res 2014; 232:2775-84. [PMID: 24770860 DOI: 10.1007/s00221-014-3958-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 04/08/2014] [Indexed: 01/03/2023]
Abstract
Alcohol exposure can reduce adult proliferation and/or neurogenesis, but its impact on the ultimate neurogenic precursors, neural stem cells (NSCs), has been poorly addressed. Accordingly, the impact of voluntary consumption of alcohol on NSCs in the subventricular zone (SVZ) of the lateral ventricle was examined in this study. The NSC population in adult male C57BL/6J mice was measured after voluntary alcohol exposure in a two-bottle choice task using the neurosphere assay, while the number of NSCs that had proliferated 2 weeks prior to tissue collection was indexed using bromodeoxyuridine (BrdU) retention. There was a significant decrease in the number of BrdU-retaining cells in alcohol-consuming mice compared with controls, but no difference in the number of neurosphere-forming cells that could be derived from the SVZ of alcohol-consuming mice compared with controls. Additionally, PCNA-labeled cells in the SVZ tended to be lower, but there was no difference in BrdU labeling in the dentate gyrus following alcohol exposure. To determine alcohol's direct impact on NSCs and their progeny, neurospheres derived from naïve mice were treated with alcohol in vitro. Neurosphere formation was reduced by 100 mM alcohol without reducing cell viability. These findings are the first to assess the impact of moderate voluntary alcohol consumption on selective measures of adult NSCs and indicate that such exposure alters NSC proliferation dynamics in vivo and alcohol has direct but dissociable effects on the expansion and viability on NSCs and their progeny in vitro.
Collapse
|
19
|
Kim A, Zamora-Martinez ER, Edwards S, Mandyam CD. Structural reorganization of pyramidal neurons in the medial prefrontal cortex of alcohol dependent rats is associated with altered glial plasticity. Brain Struct Funct 2014; 220:1705-20. [PMID: 24667898 PMCID: PMC4177030 DOI: 10.1007/s00429-014-0755-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 03/10/2014] [Indexed: 12/22/2022]
Abstract
In rodents, chronic intermittent ethanol vapor exposure (CIE) produces alcohol dependence, alters the activity of pyramidal neurons and decreases the number of glial progenitors in the medial prefrontal cortex (mPFC). Adult male Wistar rats were exposed to CIE and were injected with mitotic markers to label and phenotype proliferating cells to test the hypothesis that CIE produces concurrent alterations in the structure of pyramidal neurons and the cell cycle kinetics and developmental stages of glial progenitors in the mPFC. Medial prefrontal cortical tissue was processed for Golgi-Cox staining, immunohistochemistry and Western blotting analysis. CIE increased dendritic arborization and spine densities within basal and apical dendrites of pyramidal neurons via aberrant reorganization of actin cytoskeleton-associated molecules. CIE concomitantly increased the expression of total NR2B subunits without affecting phosphorylation of NR2B at Tyr-1472 or levels of PSD-95. CIE reduced the length of S-phase of the cell cycle of glial progenitors and reduced proliferation and differentiation of progenitors into bHLH transcription factor Olig2-expressing premyelinating oligodendrocyte progenitor cells (OPCs). CIE also produced a corresponding hyperphosphorylation of Olig2, and reduced expression of myelin basic protein. Our findings demonstrate that CIE-induced alterations in OPCs and myelin-related proteins are associated with profound alterations in the structure of pyramidal neurons. In sum, our results not only provide evidence that alcohol dependence leads to pathological changes in the mPFC, which may in part define a cellular basis for cognitive impairments associated with alcoholism, but also show dependence-associated morphological changes in the PFC at the single neuron level.
Collapse
Affiliation(s)
- Airee Kim
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Eva R. Zamora-Martinez
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Scott Edwards
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, LSU Health Sciences Center, New Orleans, LA, USA
| | - Chitra D. Mandyam
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
- Skaggs School of Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
20
|
Lavado A, Oliver G. Jagged1 is necessary for postnatal and adult neurogenesis in the dentate gyrus. Dev Biol 2014; 388:11-21. [PMID: 24530424 DOI: 10.1016/j.ydbio.2014.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 11/17/2022]
Abstract
Understanding the mechanisms that control the maintenance of neural stem cells is crucial for the study of neurogenesis. In the brain, granule cell neurogenesis occurs during development and adulthood, and the generation of new neurons in the adult subgranular zone of the dentate gyrus contributes to learning. Notch signaling plays an important role during postnatal and adult subgranular zone neurogenesis, and it has been suggested as a potential candidate to couple cell proliferation with stem cell maintenance. Here we show that conditional inactivation of Jagged1 affects neural stem cell maintenance and proliferation during postnatal and adult neurogenesis of the subgranular zone. As a result, granule cell production is severely impaired. Our results provide additional support to the proposal that Notch/Jagged1 activity is required for neural stem cell maintenance during granule cell neurogenesis and suggest a link between maintenance and proliferation of these cells during the early stages of neurogenesis.
Collapse
Affiliation(s)
- Alfonso Lavado
- Department of Genetics, St. Jude Children׳s Research Hospital, Memphis, TN 38105, USA.
| | - Guillermo Oliver
- Department of Genetics, St. Jude Children׳s Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
21
|
Klimova L, Kozmik Z. Stage-dependent requirement of neuroretinal Pax6 for lens and retina development. Development 2014; 141:1292-302. [PMID: 24523460 DOI: 10.1242/dev.098822] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The physical contact of optic vesicle with head surface ectoderm is an initial event triggering eye morphogenesis. This interaction leads to lens specification followed by coordinated invagination of the lens placode and optic vesicle, resulting in formation of the lens, retina and retinal pigmented epithelium. Although the role of Pax6 in early lens development has been well documented, its role in optic vesicle neuroepithelium and early retinal progenitors is poorly understood. Here we show that conditional inactivation of Pax6 at distinct time points of mouse neuroretina development has a different impact on early eye morphogenesis. When Pax6 is eliminated in the retina at E10.5 using an mRx-Cre transgene, after a sufficient contact between the optic vesicle and surface ectoderm has occurred, the lens develops normally but the pool of retinal progenitor cells gradually fails to expand. Furthermore, a normal differentiation program is not initiated, leading to almost complete disappearance of the retina after birth. By contrast, when Pax6 was inactivated at the onset of contact between the optic vesicle and surface ectoderm in Pax6(Sey/flox) embryos, expression of lens-specific genes was not initiated and neither the lens nor the retina formed. Our data show that Pax6 in the optic vesicle is important not only for proper retina development, but also for lens formation in a non-cell-autonomous manner.
Collapse
Affiliation(s)
- Lucie Klimova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 14420 Prague 4, Czech Republic
| | | |
Collapse
|
22
|
Sousa-Ferreira L, de Almeida LP, Cavadas C. Role of hypothalamic neurogenesis in feeding regulation. Trends Endocrinol Metab 2014; 25:80-8. [PMID: 24231724 DOI: 10.1016/j.tem.2013.10.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/09/2013] [Accepted: 10/11/2013] [Indexed: 01/10/2023]
Abstract
The recently described generation of new neurons in the adult hypothalamus, the center for energy regulation, suggests that hypothalamic neurogenesis is a crucial part of the mechanisms that regulate food intake. Accordingly, neurogenesis in both the adult and embryonic hypothalamus is affected by nutritional cues and metabolic disorders such as obesity, with consequent effects on energy-balance. This review critically discusses recent findings on the contribution of adult hypothalamic neurogenesis to feeding regulation, the impact of energy-balance disorders on adult hypothalamic neurogenesis, and the influence of embryonic hypothalamic neurogenesis upon feeding regulation in the adult. Understanding how hypothalamic neurogenesis contributes to food intake control will change the paradigm on how we perceive energy-balance regulation.
Collapse
Affiliation(s)
- Lígia Sousa-Ferreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517 Coimbra, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Cláudia Cavadas
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|
23
|
Bjornson ZB, Nolan GP, Fantl WJ. Single-cell mass cytometry for analysis of immune system functional states. Curr Opin Immunol 2013; 25:484-94. [PMID: 23999316 DOI: 10.1016/j.coi.2013.07.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/05/2013] [Accepted: 07/08/2013] [Indexed: 01/11/2023]
Abstract
Mass cytometry facilitates high-dimensional, quantitative analysis of the effects of bioactive molecules on cell populations at single-cell resolution. Datasets are generated with panels of up to 45 antibodies. Each antibody is conjugated to a polymer chelated with a stable metal isotope, usually in the lanthanide series of the periodic table. Antibody panels recognize surface markers to delineate cell types simultaneously with intracellular signaling molecules to measure biological functions, such as metabolism, survival, DNA damage, cell cycle and apoptosis, to provide an overall determination of the network state of an individual cell. This review will cover the basics of mass cytometry as well as outline assays developed for the platform that enhance the immunologist's analytical arsenal.
Collapse
Affiliation(s)
- Zach B Bjornson
- Stanford University School of Medicine, Department of Microbiology & Immunology, Baxter Laboratory for Stem Cell Biology, 269 Campus Drive, Stanford, CA 94305-5175, USA
| | | | | |
Collapse
|
24
|
Mithal DS, Ren D, Miller RJ. CXCR4 signaling regulates radial glial morphology and cell fate during embryonic spinal cord development. Glia 2013; 61:1288-305. [PMID: 23828719 DOI: 10.1002/glia.22515] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 03/04/2013] [Accepted: 04/01/2013] [Indexed: 12/20/2022]
Abstract
Embryonic meninges secrete the chemokine SDF-1/CXCL12 as a chemotactic guide for migrating neural stem cells, but SDF-1 is not known to directly regulate the functions of radial glia. Recently, the developing meninges have been shown to regulate radial glial function, yet the mechanisms and signals responsible for this phenomenon remain unclear. Moreover, as a nonmigratory cell type, radial glia do not conform to traditional models associated with chemokine signaling in the central nervous system. Using fluorescent transgenes, in vivo genetic manipulations and pharmacological techniques, we demonstrate that SDF-1 derived from the meninges exerts a CXCR4-dependent effect on radial glia. Deletion of CXCR4 expression by radial glia influences their morphology, mitosis, and progression through both oligodendroglial and astroglial lineages. Additionally, disruption of CXCR4 signaling in radial glia has a transient effect on the migration of oligodendrocyte progenitors. These data indicate that a specific chemokine signal derived from the meninges has multiple regulatory effects on radial glia.
Collapse
Affiliation(s)
- Divakar S Mithal
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | | | | |
Collapse
|
25
|
Barker JM, Charlier TD, Ball GF, Balthazart J. A new method for in vitro detection of bromodeoxyuridine in serum: a proof of concept in a songbird species, the canary. PLoS One 2013; 8:e63692. [PMID: 23691086 PMCID: PMC3653834 DOI: 10.1371/journal.pone.0063692] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/06/2013] [Indexed: 01/03/2023] Open
Abstract
Systemic injection of a thymidine analogue such as bromodeoxyuridine (BrdU) in vertebrates is commonly used to detect and study cell production during development, adulthood, and pathology, particularly in studies of adult neurogenesis. Although researchers are applying this technique to multiple species in various physiological conditions, the rate of BrdU clearance from the serum remains unknown in most cases. Changes in this clearance rate as a function of the species, sex or endocrine condition could however profoundly affect the interpretation of the results. We describe a rapid, sensitive, but simple bioassay for post-injection detection and quantification of BrdU in serum. This procedure was shown to be suitable for determining the length of time a thymidine analogue remains in the bloodstream of one avian species and seems applicable to any vertebrate provided sufficiently large blood samples can be collected. This technique was used to demonstrate that, in canaries, BrdU injected at a dose of 100 mg/kg is no longer available for incorporation into DNA between 30 and 60 min post-injection, a delay shorter than anticipated based on the available literature. Preliminary data suggest a similar fast clearance in Japanese quail and mice.
Collapse
Affiliation(s)
- Jennifer M Barker
- GIGA Neurosciences, Research Group in Behavioral Neuroendocrinology, University of Liege, Liege, Belgium
| | | | | | | |
Collapse
|
26
|
Measurement of S-phase duration of adult stem cells in the flatworm Macrostomum lignano by double replication labelling and quantitative colocalization analysis. Cell Biol Int 2013; 36:1251-9. [PMID: 23005924 DOI: 10.1042/cbi20120187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Platyhelminthes are highly attractive models for addressing fundamental aspects of stem cell biology in vivo. These organisms possess a unique stem cell system comprised of neoblasts that are the only proliferating cells during adulthood. We have investigated Ts (S-phase duration) of neoblasts during homoeostasis and regeneration in the flatworm, Macrostomum lignano. A double immunohistochemical technique was used, performing sequential pulses with the thymidine analogues CldU (chlorodeoxyuridine) and IdU (iododeoxyuridine), separated by variable chase times in the presence of colchicine. Owing to the localized nature of the fluorescent signals (cell nuclei) and variable levels of autofluorescence, standard intensity-based colocalization analyses could not be applied to accurately determine the colocalization. Therefore, an object-based colocalization approach was devised to score the relative number of double-positive cells. Using this approach, Ts (S-phase duration) in the main population of neoblasts was ∼13 h. During early regeneration, no significant change in Ts was observed.
Collapse
|
27
|
Liang H, Xiao G, Yin H, Hippenmeyer S, Horowitz JM, Ghashghaei HT. Neural development is dependent on the function of specificity protein 2 in cell cycle progression. Development 2013; 140:552-61. [PMID: 23293287 DOI: 10.1242/dev.085621] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Faithful progression through the cell cycle is crucial to the maintenance and developmental potential of stem cells. Here, we demonstrate that neural stem cells (NSCs) and intermediate neural progenitor cells (NPCs) employ a zinc-finger transcription factor specificity protein 2 (Sp2) as a cell cycle regulator in two temporally and spatially distinct progenitor domains. Differential conditional deletion of Sp2 in early embryonic cerebral cortical progenitors, and perinatal olfactory bulb progenitors disrupted transitions through G1, G2 and M phases, whereas DNA synthesis appeared intact. Cell-autonomous function of Sp2 was identified by deletion of Sp2 using mosaic analysis with double markers, which clearly established that conditional Sp2-null NSCs and NPCs are M phase arrested in vivo. Importantly, conditional deletion of Sp2 led to a decline in the generation of NPCs and neurons in the developing and postnatal brains. Our findings implicate Sp2-dependent mechanisms as novel regulators of cell cycle progression, the absence of which disrupts neurogenesis in the embryonic and postnatal brain.
Collapse
Affiliation(s)
- Huixuan Liang
- Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | | | | | | | | | | |
Collapse
|
28
|
Veena J, Rao BSS, Srikumar BN. Regulation of adult neurogenesis in the hippocampus by stress, acetylcholine and dopamine. J Nat Sci Biol Med 2012; 2:26-37. [PMID: 22470231 PMCID: PMC3312696 DOI: 10.4103/0976-9668.82312] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neurogenesis is well-established to occur during adulthood in two regions of the brain, the subventricular zone (SVZ) and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. Research for more than two decades has implicated a role for adult neurogenesis in several brain functions including learning and effects of antidepressants and antipsychotics. Clear understanding of the players involved in the regulation of adult neurogenesis is emerging. We review evidence for the role of stress, dopamine (DA) and acetylcholine (ACh) as regulators of neurogenesis in the SGZ. Largely, stress decreases neurogenesis, while the effects of ACh and DA depend on the type of receptors mediating their action. Increasingly, the new neurons formed in adulthood are potentially linked to crucial brain processes such as learning and memory. In brain disorders like Alzheimer and Parkinson disease, stress-induced cognitive dysfunction, depression and age-associated dementia, the necessity to restore brain functions is enormous. Activation of the resident stem cells in the adult brain to treat neuropsychiatric disorders has immense potential and understanding the mechanisms of regulation of adult neurogenesis by endogenous and exogenous factors holds the key to develop therapeutic strategies for the debilitating neurological and psychiatric disorders.
Collapse
Affiliation(s)
- J Veena
- Laboratoire Psynugen, Université Bordeaux 2, Bordeaux, France
| | | | | |
Collapse
|
29
|
Cell lineage tracing techniques for the study of brain development and regeneration. Int J Dev Neurosci 2012; 30:560-9. [PMID: 22944528 DOI: 10.1016/j.ijdevneu.2012.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/12/2012] [Accepted: 08/12/2012] [Indexed: 11/22/2022] Open
Abstract
Characterization of the means by which cells are generated and organized to make an organ as complex as the brain is a formidable task. Understanding how adult stem cells give rise to progeny that integrate into the existing structures during regeneration or in response to injury is equally challenging. Lineage tracing techniques are essential to studying cell behaviors such as proliferation, migration and differentiation, since they allow stem or precursor cells to be marked and their descendants followed and characterized over time. Here, we describe some of the key lineage tracing techniques available to date, highlighting advantages and drawbacks and focusing on their application in neural fate mapping. The more traditional methods are now joined by exciting new approaches to provide a vast array of tools at the disposal of neurobiologists.
Collapse
|
30
|
Li S, Sun G, Murai K, Ye P, Shi Y. Characterization of TLX expression in neural stem cells and progenitor cells in adult brains. PLoS One 2012; 7:e43324. [PMID: 22952666 PMCID: PMC3431389 DOI: 10.1371/journal.pone.0043324] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 07/19/2012] [Indexed: 01/12/2023] Open
Abstract
TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ) of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression. Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells.
Collapse
Affiliation(s)
- Shengxiu Li
- Department of Neurosciences, Cancer Center, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Guoqiang Sun
- Department of Neurosciences, Cancer Center, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Kiyohito Murai
- Department of Neurosciences, Cancer Center, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Peng Ye
- Department of Neurosciences, Cancer Center, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Yanhong Shi
- Department of Neurosciences, Cancer Center, Beckman Research Institute of City of Hope, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Dicer is required for proliferation, viability, migration and differentiation in corticoneurogenesis. Neuroscience 2012; 223:285-95. [PMID: 22898830 DOI: 10.1016/j.neuroscience.2012.08.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/17/2012] [Accepted: 08/04/2012] [Indexed: 11/21/2022]
Abstract
In mice, microRNAs (miRNAs) are required for embryonic viability, and previous reports implicate miRNA participation in brain cortical neurogenesis. Here, we provide a more comprehensive analysis of miRNA involvement in cortical brain development. To accomplish this we used mice in which Dicer, the RNase III enzyme necessary for canonical miRNA biogenesis, is depleted from Nestin-expressing progenitors and progeny cells. We systematically assessed how Dicer depletion impacts proliferation, cell death, migration and differentiation in the developing brain. Using markers for proliferation and in vivo labeling with thymidine analogs, we found reduced numbers of proliferating cells, and altered cell cycle kinetics from embryonic day 15.5 (E15.5). Progenitor cells were distributed aberrantly throughout the cortex rather than restricted to the ventricular and subventricular zones. Activated Caspase3 was elevated, reflecting increased cortical cell death as early as E15.5. Cajal-Retzius-positive cells were more numerous at E15.5 and were dysmorphic relative to control cortices. Consistent with this, Reelin levels were enhanced. Doublecortin and Rnd2 were also increased and showed altered distribution, supporting a strong regulatory role for miRNAs in both early and late neuronal migration. In addition, GFAP staining at E15.5 was more intense and disorganized throughout the cortex with Dicer depletion. These results significantly extend earlier works, and emphasize the impact of miRNAs on neural progenitor cell proliferation, apoptosis, migration, and differentiation in the developing mammalian brain.
Collapse
|
32
|
Rowell JJ, Ragsdale CW. BrdU birth dating can produce errors in cell fate specification in chick brain development. J Histochem Cytochem 2012; 60:801-10. [PMID: 22859704 DOI: 10.1369/0022155412458588] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Birth dating neurons with bromodeoxyuridine (BrdU) labeling is an established method widely employed by neurobiologists to study cell proliferation in embryonic, postnatal, and adult brain. Birth dating studies in the chick dorsal telencephalon and the mammalian striatum have suggested that these structures develop in a strikingly similar manner, in which neurons with the same birth date aggregate to form "isochronic clusters." Here we show that isochronic cluster formation in the chick dorsal telencephalon is an artifact. In embryos given standardly employed doses of BrdU, we observed isochronic clusters but found that clusters were absent with BrdU doses close to the limits of detection. In addition, in situ hybridization experiments established that neurons in the clusters display errors in cell type specification: BrdU cell clusters in nidopallium adopted a mesopallial neuronal fate, mesopallial clusters were misspecified as nidopallial cells, and in some instances, the BrdU clusters failed to express neuronal differentiation markers characteristic of the dorsal telencephalon. These results demonstrate that the chick dorsal telencephalon does not develop by isochronic cluster formation and highlight the need to test the integrity of BrdU-treated tissue with gene expression markers of regional and cell type identity.
Collapse
Affiliation(s)
- Joanna J Rowell
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
33
|
Mori T, Wakabayashi T, Hirahara Y, Takamori Y, Koike T, Kurokawa K, Yamada H. Differential responses of endogenous adult mouse neural precursors to excess neuronal excitation. Eur J Neurosci 2012; 36:3184-93. [PMID: 22845807 DOI: 10.1111/j.1460-9568.2012.08244.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Adult neurogenesis in the subgranular zone of the hippocampus (SGZ) is enhanced by excess as well as mild neuronal excitation, such as chemoconvulsant-induced brief seizures. Because most studies of neurogenesis after seizures have focused on the SGZ, the threshold of neuronal excitation required to enhance neurogenesis in the subventricular zone (SVZ) is not clear. Therefore, we examined the responses of SVZ precursors to brief generalized clonic seizures induced by a single administration of the chemoconvulsant pentylenetetrazole (PTZ). Cell cycle progression of precursors was analysed by systemic administration of thymidine analogues. We found that brief seizures immediately resulted in cell cycle retardation in the SVZ. However, the same effect was not seen in the SGZ. This initial cell cycle retardation in the SVZ was followed by enhanced cell cycle re-entry after the first round of mitosis, leading to precursor pool expansion, but the cell cycle retardation and expansion of the precursor pool were transient. Cell cycle progression in the PTZ-treated group returned to normal after one cell cycle. The numbers of precursors in the SVZ and new neurons in the olfactory bulb, which are descendants of SVZ precursors, were not significantly different from those in control mice more than 2 days after seizures. Because similar effects were observed following electroconvulsive seizures, these responses are likely to be general effects of brief seizures. These results suggest that neurogenesis in the SVZ is more tightly regulated and requires stronger stimuli to be modified than that in the SGZ.
Collapse
Affiliation(s)
- Tetsuji Mori
- Department of Anatomy & Cell Science, Kansai Medical University, Moriguchi, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Beynon SB, Walker FR. Microglial activation in the injured and healthy brain: what are we really talking about? Practical and theoretical issues associated with the measurement of changes in microglial morphology. Neuroscience 2012; 225:162-71. [PMID: 22824429 DOI: 10.1016/j.neuroscience.2012.07.029] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 12/14/2022]
Abstract
Recently it has become apparent that microglia play a role not only in responding to insults within the central nervous system but also in responding to changes in synaptic activity and potentially modulating synaptic function. This has led to an enormous expansion of interest in how microglia respond to both pathological and nonpathological challenges, with activities that are associated with unique morphological transformations. Examining changes in microglial morphology can provide direct insight into the cells' functional activities, as morphological status is recognized to be tightly coupled with function. Despite these advances in knowledge, many of the image-based morphometric procedures used to investigate changes in microglial morphology have not kept pace. This has created a situation in which morphometric approaches that have been extensively employed in the past can no longer provide accurate information on the complex transformations that microglia can undergo, particularly under non-pathological conditions. This review critically examines the strengths and weaknesses of existing morphometric analysis procedures. This review further examines efforts to improve the utility of existing approaches and discusses new developments, such as digital reconstruction, that yield more accurate and specific information on how microglia remodel themselves. Ultimately, an improved understanding of the strengths and limitations of existing, and emerging, morphometric approaches will greatly facilitate efforts to understand how microglia remodel themselves in response to the full spectrum of challenges that they are known to encounter.
Collapse
Affiliation(s)
- S B Beynon
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | | |
Collapse
|
35
|
Coquery N, Blesch A, Stroh A, Fernández-Klett F, Klein J, Winter C, Priller J. Intrahippocampal transplantation of mesenchymal stromal cells promotes neuroplasticity. Cytotherapy 2012; 14:1041-53. [PMID: 22762522 DOI: 10.3109/14653249.2012.694418] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND AIMS Multipotent mesenchymal stromal cells (MSC) secrete soluble factors that stimulate the surrounding microenvironment. Such paracrine effects might underlie the potential benefits of many stem cell therapies. We tested the hypothesis that MSC are able to enhance intrinsic cellular plasticity in the adult rat hippocampus. METHODS Rat bone marrow-derived MSC were labeled with very small superparamagnetic iron oxide particles (VSOP), which allowed for non-invasive graft localization by magnetic resonance imaging (MRI). Moreover, MSC were transduced with lentiviral vectors to express the green fluorescent protein (GFP). The effects of bilateral MSC transplantation on hippocampal cellular plasticity were assessed using the thymidine analogs 5-bromo-2'-deoxyuridine (BrdU) and 5-iodo-2'-deoxyuridine (IdU). Behavioral testing was performed to examine the consequences of intrahippocampal MSC transplantation on locomotion, learning and memory, and anxiety-like and depression-like behavior. RESULTS We found that intrahippocampal transplantation of MSC resulted in enhanced neurogenesis despite short-term graft survival. In contrast, systemic administration of the selective serotonin re-uptake inhibitor citalopram increased cell survival but did not affect cell proliferation. Intrahippocampal transplantation of MSC did not impair behavioral functions in rats, but only citalopram exerted anti-depressant effects. CONCLUSIONS This is the first study to examine the effects of intrahippocampal transplantation of allogeneic MSC on hippocampal structural plasticity and behavioral functions in rats combined with non-invasive cell tracking by MRI. We found that iron oxide nanoparticles can be used to detect transplanted MSC in the brain. Although graft survival was short, intrahippocampal transplantation of MSC resulted in long-term changes in hippocampal plasticity. Our results suggest that MSC can be used to stimulate adult neurogenesis.
Collapse
Affiliation(s)
- Nicolas Coquery
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Modulatory role of sensory innervation on hair follicle stem cell progeny during wound healing of the rat skin. PLoS One 2012; 7:e36421. [PMID: 22574159 PMCID: PMC3344885 DOI: 10.1371/journal.pone.0036421] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 03/31/2012] [Indexed: 11/19/2022] Open
Abstract
Background The bulge region of the hair follicle contains resident epithelial stem cells (SCs) that are activated and mobilized during hair growth and after epidermal wounding. However, little is known about the signals that modulate these processes. Clinical and experimental observations show that a reduced supply of sensory innervation is associated with delayed wound healing. Since axon terminals of sensory neurons are among the components of the bulge SC niche, we investigated whether these neurons are involved in the activation and mobilization of the hair stem cells during wound healing. Methodology/Principal Findings We used neonatal capsaicin treatment to reduce sensory terminals in the rat skin and performed morphometric analyses using design-based stereological methods. Epithelial proliferation was analyzed by quantifying the number of bromodeoxyuridine-labeled (BrdU+) nuclei in the epidermis and hair follicles. After wounding, the epidermis of capsaicin-treated rats presented fewer BrdU+ nuclei than in control rats. To assess SC progeny migration, we employed a double labeling protocol with iododeoxyuridine and chlorodeoxyuridine (IdU+/CldU+). The proportion of double-labeled cells was similar in the hair follicles of both groups at 32 h postwounding. IdU+/CldU+ cell proportion increased in the epidermis of control rats and decreased in treated rats at 61 h postwounding. The epidermal volume immunostained for keratin 6 was greater in treated rats at 61 h. Confocal microscopy analysis revealed that substance P (SP) and calcitonin gene-related peptide (CGRP) receptor immunoreactivity were both present in CD34+ and BrdU-retaining cells of the hair follicles. Conclusions/Significance Our results suggest that capsaicin denervation impairs SC progeny egress from the hair follicles, a circumstance associated with a greater epidermal activation. Altogether, these phenomena would explain the longer times for healing in denervated skin. Thus, sensory innervation may play a functional role in the modulation of hair SC physiology during wound healing.
Collapse
|
37
|
Chen J, Gao X. Assessment of Neurogenesis by BrdU Labeling After Traumatic Brain Injury. SPRINGER PROTOCOLS HANDBOOKS 2012. [DOI: 10.1007/978-1-61779-782-8_29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Quantitative assessment of new cell proliferation in the dentate gyrus and learning after isoflurane or propofol anesthesia in young and aged rats. Brain Res 2011; 1441:38-46. [PMID: 22297171 DOI: 10.1016/j.brainres.2011.11.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 11/08/2011] [Accepted: 11/08/2011] [Indexed: 01/26/2023]
Abstract
There is a growing body of evidence showing that a statistically significant number of people experience long-term changes in cognition after anesthesia. We hypothesize that this cognitive impairment may result from an anesthetic-induced alteration of postnatal hippocampal cell proliferation. To test this hypothesis, we investigated the effects of isoflurane and propofol on new cell proliferation and cognition of young (4 month-old) and aged (21 month-old). All rats were injected intraperitoneally (IP) with 50 mg/kg of 5-bromo-2-deoxyuridine (BrdU) immediately after anesthesia. A novel appetitive olfactory learning test was used to assess learning and memory two days after anesthesia. One week after anesthesia, rats were euthanized and the brains analyzed for new cell proliferation in the dentate gyrus, and proliferation and migration of newly formed cells in the subventricular zone to the olfactory bulb. We found that exposure to either isoflurane (p=0.017) or propofol (p=0.006) decreased hippocampal cell proliferation in young, but not in aged rats. This anesthetic-induced decrease was specific to new cell proliferation in the hippocampus, as new cell proliferation and migration to the olfactory bulb was unaffected. Isoflurane anesthesia produced learning impairment in aged rats (p=0.044), but not in young rats. Conversely, propofol anesthesia resulted in learning impairment in young (p=0.01), but not in aged rats. These results indicate that isoflurane and propofol anesthesia affect postnatal hippocampal cell proliferation and learning in an age dependent manner.
Collapse
|
39
|
Barnea A, Pravosudov V. Birds as a model to study adult neurogenesis: bridging evolutionary, comparative and neuroethological approaches. Eur J Neurosci 2011; 34:884-907. [PMID: 21929623 PMCID: PMC3177424 DOI: 10.1111/j.1460-9568.2011.07851.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the last few decades, evidence has demonstrated that adult neurogenesis is a well-preserved feature throughout the animal kingdom. In birds, ongoing neuronal addition occurs rather broadly, to a number of brain regions. This review describes adult avian neurogenesis and neuronal recruitment, discusses factors that regulate these processes, and touches upon the question of their genetic control. Several attributes make birds an extremely advantageous model to study neurogenesis. First, song learning exhibits seasonal variation that is associated with seasonal variation in neuronal turnover in some song control brain nuclei, which seems to be regulated via adult neurogenesis. Second, food-caching birds naturally use memory-dependent behavior in learning the locations of thousands of food caches scattered over their home ranges. In comparison with other birds, food-caching species have relatively enlarged hippocampi with more neurons and intense neurogenesis, which appears to be related to spatial learning. Finally, migratory behavior and naturally occurring social systems in birds also provide opportunities to investigate neurogenesis. This diversity of naturally occurring memory-based behaviors, combined with the fact that birds can be studied both in the wild and in the laboratory, make them ideal for investigation of neural processes underlying learning. This can be done by using various approaches, from evolutionary and comparative to neuroethological and molecular. Finally, we connect the avian arena to a broader view by providing a brief comparative and evolutionary overview of adult neurogenesis and by discussing the possible functional role of the new neurons. We conclude by indicating future directions and possible medical applications.
Collapse
Affiliation(s)
- Anat Barnea
- Department of Natural and Life Sciences, The Open University of Israel, PO Box 808, Ra'anana 43107, Israel.
| | | |
Collapse
|
40
|
Yuan CJ, Quiocho JMD, Kim A, Wee S, Mandyam CD. Extended access methamphetamine decreases immature neurons in the hippocampus which results from loss and altered development of neural progenitors without altered dynamics of the S-phase of the cell cycle. Pharmacol Biochem Behav 2011; 100:98-108. [PMID: 21855565 DOI: 10.1016/j.pbb.2011.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/13/2011] [Accepted: 08/05/2011] [Indexed: 01/07/2023]
Abstract
Methamphetamine addicts demonstrate impaired hippocampal-dependent cognitive function that could result from methamphetamine-induced maladaptive plasticity in the hippocampus. Reduced adult hippocampal neurogenesis observed in a rodent model of compulsive methamphetamine self-administration partially contributes to the maladaptive plasticity in the hippocampus. The potential mechanisms underlying methamphetamine-induced inhibition of hippocampal neurogenesis were identified in the present study. Key aspects of the cell cycle dynamics of hippocampal progenitors, including proliferation and neuronal development, were studied in rats that intravenously self-administered methamphetamine in a limited access (1h/day: short access (ShA)-4 days and ShA-13 days) or extended access (6h/day: long access (LgA)-4 days and LgA-13 days) paradigm. Immunohistochemical analysis of Ki-67 cells with 5-chloro-2'-deoxyuridine (CldU) demonstrated that LgA methamphetamine inhibited hippocampal proliferation by decreasing the proliferating pool of progenitors that are in the synthesis (S)-phase of the cell cycle. Double S-phase labeling with CldU and 5-iodo-2'-deoxyuridine (IdU) revealed that reduced S-phase cells were not due to alterations in the length of the S-phase. Further systematic analysis of Ki-67 cells with GFAP, Sox2, and DCX revealed that LgA methamphetamine-induced inhibition of hippocampal neurogenesis was attributable to impairment in the development of neuronal progenitors from preneuronal progenitors to immature neurons. Methamphetamine concomitantly increased hippocampal apoptosis, changes that were evident during the earlier days of self-administration. These findings demonstrate that methamphetamine self-administration initiates allostatic changes in adult neuroplasticity maintained by the hippocampus, including increased apoptosis, and altered dynamics of hippocampal neural progenitors. These data suggest that altered hippocampal plasticity by methamphetamine could partially contribute to methamphetamine-induced impairments in hippocampal function.
Collapse
Affiliation(s)
- Clara J Yuan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
Regulation of organ growth is critical during embryogenesis. At the cellular level, mechanisms controlling the size of individual embryonic organs include cell proliferation, differentiation, migration, and attrition through cell death. All these mechanisms play a role in cardiac morphogenesis, but experimental studies have shown that the major determinant of cardiac size during prenatal development is myocyte proliferation. As this proliferative capacity becomes severely restricted after birth, the number of cell divisions that occur during embryogenesis limits the growth potential of the postnatal heart. We summarize here current knowledge concerning regional control of myocyte proliferation as related to cardiac morphogenesis and dysmorphogenesis. There are significant spatial and temporal differences in rates of cell division, peaking during the preseptation period and then gradually decreasing toward birth. Analysis of regional rates of proliferation helps to explain the mechanics of ventricular septation, chamber morphogenesis, and the development of the cardiac conduction system. Proliferation rates are influenced by hemodynamic loading, and transduced by autocrine and paracrine signaling by means of growth factors. Understanding the biological response of the developing heart to such factors and physical forces will further our progress in engineering artificial myocardial tissues for heart repair and designing optimal treatment strategies for congenital heart disease.
Collapse
Affiliation(s)
- David Sedmera
- Charles University in Prague, First Faculty of Medicine, Institute of Anatomy, Prague, Czech Republic.
| | | |
Collapse
|
42
|
Llorens-Martín M, Trejo JL. Multiple birthdating analyses in adult neurogenesis: a line-up of the usual suspects. Front Neurosci 2011; 5:76. [PMID: 21660291 PMCID: PMC3107564 DOI: 10.3389/fnins.2011.00076] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 05/17/2011] [Indexed: 01/17/2023] Open
Abstract
Analyzing the variation in different subpopulations of newborn neurons is central to the study of adult hippocampal neurogenesis. The acclaimed working hypothesis that different subpopulations of newborn, differentiating neurons could be playing different roles arouses great interest. Therefore, the physiological and quantitative analysis of neuronal subpopulations at different ages is critical to studies of neurogenesis. Such approaches allow cells of different ages to be identified by labeling them according to their probable date of birth. Until very recently, only neurons born at one specific time point could be identified in each experimental animal. However the introduction of different immunohistochemically compatible markers now enables multiple subpopulations of newborn neurons to be analyzed in the same animal as in a line-up, revealing the relationships between these subpopulations in response to specific influences or conditions. This review summarizes the current research carried out using these techniques and outlines some of the key applications.
Collapse
Affiliation(s)
- María Llorens-Martín
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute Madrid, Spain
| | | |
Collapse
|
43
|
Mathews EA, Morgenstern NA, Piatti VC, Zhao C, Jessberger S, Schinder AF, Gage FH. A distinctive layering pattern of mouse dentate granule cells is generated by developmental and adult neurogenesis. J Comp Neurol 2011; 518:4479-90. [PMID: 20886617 DOI: 10.1002/cne.22489] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
New neurons are continuously added throughout life to the dentate gyrus of the mammalian hippocampus. During embryonic and early postnatal development, the dentate gyrus is formed in an outside-in layering pattern that may extend through adulthood. In this work, we sought to quantify systematically the relative position of dentate granule cells generated at different ages. We used 5'-bromo-2'-deoxyuridine (BrdU) and retroviral methodologies to birth date cells born in the embryonic, early postnatal, and adult hippocampus and assessed their final position in the adult mouse granule cell layer. We also quantified both developmental and adult-born cohorts of neural progenitor cells that contribute to the pool of adult progenitor cells. Our data confirm that the outside-in layering of the dentate gyrus continues through adulthood and that early-born cells constitute most of the adult dentate gyrus. We also found that substantial numbers of the dividing cells in the adult dentate gyrus were derived from early-dividing cells and retained BrdU, suggesting that a subpopulation of hippocampal progenitors divides infrequently from early development onward.
Collapse
Affiliation(s)
- Emily A Mathews
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Sullivan JM, Borecki AA, Oleskevich S. Stem and progenitor cell compartments within adult mouse taste buds. Eur J Neurosci 2010; 31:1549-60. [PMID: 20525068 DOI: 10.1111/j.1460-9568.2010.07184.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Adult taste buds are maintained by the lifelong proliferation of epithelial stem and progenitor cells, the identities of which have remained elusive. It has been proposed that these cells reside either within the taste bud (intragemmal) or in the surrounding epithelium (perigemmal). Here, we apply three different in vivo approaches enabling single-cell resolution of proliferative history to identify putative stem and progenitor cells associated with adult mouse taste buds. Experiments were performed across the circadian peak in oral epithelial proliferation (04:00 h), a time period in which mitotic activity in taste buds has not yet been detailed. Using double label pulse-chase experiments, we show that defined intragemmal cells (taste and basal) and perigemmal cells undergo rapid, sequential cell divisions and thus represent potential progenitor cells. Strikingly, mitotic activity was observed in taste cells previously thought to be postmitotic (labelled cells occur in 30% of palatal taste buds after 1 h of BrdU exposure). Basal cells showed expression of the transcription factor p63, required for maintaining the self-renewal potential of various epithelial stem cell types. Candidate taste stem cells were identified almost exclusively as basal cells using the label-retaining cell approach to localize slow-cycling cells (0.06 +/- 0.01 cells per taste bud; n = 436 taste buds). Together, these results indicate that both stem- and progenitor-like cells reside within the mammalian taste bud.
Collapse
Affiliation(s)
- Jeremy M Sullivan
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia.
| | | | | |
Collapse
|
45
|
Nguyen HM, Barlow LA. Differential expression of a BMP4 reporter allele in anterior fungiform versus posterior circumvallate taste buds of mice. BMC Neurosci 2010; 11:129. [PMID: 20942907 PMCID: PMC2966460 DOI: 10.1186/1471-2202-11-129] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 10/13/2010] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Bone Morphogenetic Protein 4 (BMP4) is a diffusible factor which regulates embryonic taste organ development. However, the role of BMP4 in taste buds of adult mice is unknown. We utilized transgenic mice with LacZ under the control of the BMP4 promoter to reveal the expression of BMP4 in the tongues of adult mice. Further we evaluate the pattern of BMP4 expression with that of markers of specific taste bud cell types and cell proliferation to define and compare the cell populations expressing BMP4 in anterior (fungiform papillae) and posterior (circumvallate papilla) tongue. RESULTS BMP4 is expressed in adult fungiform and circumvallate papillae, i.e., lingual structures composed of non-taste epithelium and taste buds. Unexpectedly, we find both differences and similarities with respect to expression of BMP4-driven ß-galactosidase. In circumvallate papillae, many fusiform cells within taste buds are BMP4-ß-gal positive. Further, a low percentage of BMP4-expressing cells within circumvallate taste buds is immunopositive for markers of each of the three differentiated taste cell types (I, II and III). BMP4-positive intragemmal cells also expressed a putative marker of immature taste cells, Sox2, and consistent with this finding, intragemmal cells expressed BMP4-ß-gal within 24 hours after their final mitosis, as determined by BrdU birthdating. By contrast, in fungiform papillae, BMP4-ß-gal positive cells are never encountered within taste buds. However, in both circumvallate and fungiform papillae, BMP4-ß-gal expressing cells are located in the perigemmal region, comprising basal and edge epithelial cells adjacent to taste buds proper. This region houses the proliferative cell population that gives rise to adult taste cells. However, perigemmal BMP4-ß-gal cells appear mitotically silent in both fungiform and circumvallate taste papillae, as we do not find evidence of their active proliferation using cell cycle immunomarkers and BrdU birthdating. CONCLUSION Our data suggest that intragemmal BMP4-ß-gal cells in circumvallate papillae are immature taste cells which eventually differentiate into each of the 3 taste cell types, whereas perigemmal BMP4-ß-gal cells in both circumvallate and fungiform papillae may be slow cycling stem cells, or belong to the stem cell niche to regulate taste cell renewal from the proliferative cell population.
Collapse
Affiliation(s)
- Ha M Nguyen
- Rocky Mountain Taste and Smell Center, Department of Cell and Developmental Biology, University of Colorado Denver, School of Medicine, Aurora, Colorado 80045, USA
| | | |
Collapse
|
46
|
Stone SSD, Teixeira CM, Zaslavsky K, Wheeler AL, Martinez-Canabal A, Wang AH, Sakaguchi M, Lozano AM, Frankland PW. Functional convergence of developmentally and adult-generated granule cells in dentate gyrus circuits supporting hippocampus-dependent memory. Hippocampus 2010; 21:1348-62. [PMID: 20824726 DOI: 10.1002/hipo.20845] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2010] [Indexed: 12/16/2022]
Abstract
In the hippocampus, the production of dentate granule cells (DGCs) persists into adulthood. As adult-generated neurons are thought to contribute to hippocampal memory processing, promoting adult neurogenesis therefore offers the potential for restoring mnemonic function in the aged or diseased brain. Within this regenerative context, one key issue is whether developmentally generated and adult-generated DGCs represent functionally equivalent or distinct neuronal populations. To address this, we labeled separate cohorts of developmentally generated and adult-generated DGCs and used immunohistochemical approaches to compare their integration into circuits supporting hippocampus-dependent memory in intact mice. First, in the water maze task, rates of integration of adult-generated DGCs were regulated by maturation, with maximal integration not occurring until DGCs were five or more weeks in age. Second, these rates of integration were equivalent for embryonically, postnatally, and adult-generated DGCs. Third, these findings generalized to another hippocampus-dependent task, contextual fear conditioning. Together, these experiments indicate that developmentally generated and adult-generated DGCs are integrated into hippocampal memory networks at similar rates, and suggest a functional equivalence between DGCs generated at different developmental stages.
Collapse
Affiliation(s)
- Scellig S D Stone
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ito Y, Tanaka H, Okamoto H, Ohshima T. Characterization of neural stem cells and their progeny in the adult zebrafish optic tectum. Dev Biol 2010; 342:26-38. [PMID: 20346355 DOI: 10.1016/j.ydbio.2010.03.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 03/11/2010] [Accepted: 03/15/2010] [Indexed: 01/11/2023]
Abstract
In the adult teleost brain, proliferating cells are observed in a broad area, while these cells have a restricted distribution in adult mammalian brains. In the adult teleost optic tectum, most of the proliferating cells are distributed in the caudal margin of the periventricular gray zone (PGZ). We found that the PGZ is largely divided into 3 regions: 1 mitotic region and 2 post-mitotic regions-the superficial and deep layers. These regions are distinguished by the differential expression of several marker genes: pcna, sox2, msi1, elavl3, gfap, fabp7a, and s100beta. Using transgenic zebrafish Tg (gfap:GFP), we found that the deep layer cells specifically express gfap:GFP and have a radial glial morphology. We noted that bromodeoxyuridine (BrdU)-positive cells in the mitotic region did not exhibit glial properties, but maintained neuroepithelial characteristics. Pulse chase experiments with BrdU-positive cells revealed the presence of self-renewing stem cells within the mitotic region. BrdU-positive cells differentiate into glutamatergic or GABAergic neurons and oligodendrocytes in the superficial layer and into radial glial cells in the deep layer. These results demonstrate that the proliferating cells in the PGZ contribute to neuronal and glial lineages to maintain the structure of the optic tectum in adult zebrafish.
Collapse
Affiliation(s)
- Yoko Ito
- Department of Life Science and Medical Bio-Science, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | | | | | | |
Collapse
|
48
|
Abstract
The hippocampus is a region of the mammalian brain that shows an impressive capacity for structural reorganization. Preexisting neural circuits undergo modifications in dendritic complexity and synapse number, and entirely novel neural connections are formed through the process of neurogenesis. These types of structural change were once thought to be restricted to development. However, it is now generally accepted that the hippocampus remains structurally plastic throughout life. This article reviews structural plasticity in the hippocampus over the lifespan, including how it is investigated experimentally. The modulation of structural plasticity by various experiential factors as well as the possible role it may have in hippocampal functions such as learning and memory, anxiety, and stress regulation are also considered. Although significant progress has been made in many of these areas, we highlight some of the outstanding issues that remain.
Collapse
Affiliation(s)
- Benedetta Leuner
- Department of Psychology, Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
49
|
Zeng C, Pan F, Jones LA, Lim MM, Griffin EA, Sheline YI, Mintun MA, Holtzman DM, Mach RH. Evaluation of 5-ethynyl-2'-deoxyuridine staining as a sensitive and reliable method for studying cell proliferation in the adult nervous system. Brain Res 2010; 1319:21-32. [PMID: 20064490 DOI: 10.1016/j.brainres.2009.12.092] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 12/18/2009] [Accepted: 12/30/2009] [Indexed: 12/27/2022]
Abstract
Recently, a novel method for detection of DNA synthesis has been developed based on the incorporation of 5-ethynyl-2'-deoxyuridine (EdU), a thymidine analogue, into cellular DNA and the subsequent reaction of EdU with a fluorescent azide in a copper-catalyzed [3+2] cycloaddition ("Click" reaction). In the present study, we evaluated this method for studying cell proliferation in the adult central nervous system in comparison with the "gold standard" method of 5-bromo-2'-deoxyuridine (BrdU) staining using two behavioral paradigms, voluntary exercise and restraint stress. Our data demonstrate that the number of EdU-positive cells in the dentate gyrus of the hippocampus (DG) slightly increased in an EdU dose-dependent manner in both the control and voluntary exercise (running) mouse groups. The number of EdU-labeled cells was comparable to the number of BrdU-labeled cells in both the control and running mice. Furthermore, EdU and BrdU co-localized to the same cells within the DG. Voluntary exercise significantly increased the number of EdU- and BrdU-positive cells in the DG. In contrast, restraint stress significantly decreased the number of EdU-positive cells. The EdU-positive cells differentiated into mature neurons. EdU staining is compatible with immunohistochemical staining of other antigens. Moreover, our data demonstrated EdU staining can be combined with BrdU staining, providing a valuable tool of double labeling DNA synthesis, e.g., for tracking the two populations of neurons generated at different time points. In conclusion, our results suggest that EdU staining is a fast, sensitive and reproducible method to study cell proliferation in the central nervous system.
Collapse
Affiliation(s)
- Chenbo Zeng
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Leuner B, Glasper ER, Gould E. Thymidine analog methods for studies of adult neurogenesis are not equally sensitive. J Comp Neurol 2009; 517:123-33. [PMID: 19731267 DOI: 10.1002/cne.22107] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Adult neurogenesis is often studied by labeling new cells with the thymidine analog bromodeoxyuridine (BrdU) and using immunohistochemical methods for their visualization. Using this approach, considerable variability has been reported in the number of new cells produced in the dentate gyrus of adult rodents. We examined whether immunohistochemical methods, including BrdU antibodies from different vendors (Vector, BD, Roche, Dako, Novocastra, and Accurate) and DNA denaturation pretreatments alter the quantitative and qualitative patterns of BrdU labeling. We also compared the sensitivity and specificity of BrdU with two other thymidine analogs, iododeoxyuridine (IdU) and chlorodeoxyuridine (CldU). We found that the number of BrdU-labeled cells in the dentate gyrus of adult rats was dependent on the BrdU antibody used but was unrelated to differences in antibody penetration. Even at a higher concentration, some antibodies (Vector and Novocastra) stained fewer cells. A sensitive BrdU antibody (BD) was specific for dividing cells; all BrdU-labeled cells stained for Ki67, an endogenous marker of cell proliferation. We also observed that DNA denaturation pretreatments affected the number of BrdU-labeled cells and staining intensity for a marker of neuronal differentiation, NeuN. Finally, we found that IdU and CldU, when used at molarities comparable to those that label the maximal number of cells with BrdU, are less sensitive. These data suggest that antibody and thymidine analog selection, as well as the staining procedure employed, can affect the number of newly generated neurons detected in the adult brain, thus providing a potential explanation for some of the variability in the adult neurogenesis literature.
Collapse
Affiliation(s)
- Benedetta Leuner
- Department of Psychology, Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|