1
|
Ardiles NM, Tapia-Cuevas V, Estay SF, Alcaino A, Velásquez VB, Sotomayor-Zárate R, Chávez AE, Moya PR. Increased forebrain EAAT3 expression confers resilience to chronic stress. J Neurochem 2024. [PMID: 39245629 DOI: 10.1111/jnc.16216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
Depression is a disabling and highly prevalent psychiatric illness. Multiple studies have linked glutamatergic dysfunction with the pathophysiology of depression, but the exact alterations in the glutamatergic system that contribute to depressive-like behaviors are not fully understood. Recent evidence suggests that a decreased level in neuronal glutamate transporter (EAAT3), known to control glutamate levels and limit the activation of glutamate receptors at synaptic sites, may contribute to the manifestation of a depressive phenotype. Here, we tested the possibility that increased EAAT3 expression at excitatory synapses could reduce the susceptibility of mice to develop depressive-like behaviors when challenged to a 5-week unpredictable chronic mild stress (UCMS) protocol. Mice overexpressing EAAT3 in the forebrain (EAAT3glo/CMKII) and control littermates (EAAT3glo) were assessed for depressive-like behaviors and long-term memory performance after being subjected to UCMS conditions. We found that, after UCMS, EAAT3glo/CMKII mice did not exhibit depressive-like behaviors or memory alterations observed in control mice. Moreover, we found that EAAT3glo/CMKII mice did not show alterations in phasic dopamine release in the nucleus accumbens neither in long-term synaptic plasticity in the CA1 region of the hippocampus after UCMS, as observed in control littermates. Altogether these results suggest that forebrain EAAT3 overexpression may be related to a resilient phenotype, both at behavioral and functional level, to the deleterious effect of chronic stress, highlighting the importance of neuronal EAAT3 in the pathophysiology of depressive-like behaviors.
Collapse
Affiliation(s)
- Nicolás M Ardiles
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ciencias, Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile
| | - Vissente Tapia-Cuevas
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ciencias, Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile
| | - Sebastián F Estay
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ciencias, Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Alejandro Alcaino
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ciencias, Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Victoria B Velásquez
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ciencias, Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Neurobiología y Fisipatología Integrativa (CENFI), Universidad de Valparaíso, Valparaíso, Chile
| | - Ramón Sotomayor-Zárate
- Facultad de Ciencias, Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Neurobiología y Fisipatología Integrativa (CENFI), Universidad de Valparaíso, Valparaíso, Chile
| | - Andrés E Chávez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ciencias, Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo R Moya
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ciencias, Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Estudios Traslacionales en Estrés y Salud Mental (C-ESTRES), Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
2
|
Ishola IO, Olubodun-Obadun TG, Bakre OA, Ojo ES, Adeyemi OO. Kolaviron ameliorates chronic unpredictable mild stress-induced anxiety and depression: involvement of the HPA axis, antioxidant defense system, cholinergic, and BDNF signaling. Drug Metab Pers Ther 2022; 37:277-287. [PMID: 35218172 DOI: 10.1515/dmpt-2021-0125] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/11/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES This study sought to investigate the beneficial effect of kolaviron (KV) (a biflavonoid) isolated from Garcinia kola seed on chronic unpredictable mild stress (CUMS)-induced anxiety- and depressive-like behavior. METHODS Male albino mice were randomly divided into six groups (n=8) as follows; Group I: vehicle-control unstressed; Group II: CUMS-control; Group III-V: CUMS + KV 1, 5 or 50 mg/kg, respectively, Group VI: KV (50 mg/kg, p.o.) unstressed mice. Animals were subjected to CUMS for 14 days, followed by estimation of depressive- and anxiety-like behavior from days 14-16. This was followed by biochemical assays for oxidative stress, hypothalamo-pituitary axis, cholinergic, and BDNF signaling. RESULTS CUMS caused significant reduction in time spent in open arms of elevated plus maze test (EPM) and increase in immobility time in tail suspension test (TST) and forced swim test (FST) ameliorated by KV treatments. KV administration also attenuated CUMS-induced malondialdehyde/nitrite generation and decrease in antioxidant enzymes activities in the prefrontal cortex and hippocampus. CUMS increased serum corticosterone, acetylcholinesterase activity, and reduced BDNF level in the PFC and hippocampus were attenuated by KV administration. CONCLUSIONS KV prevented CUMS induced anxiety- and depression-like behavior in mice through enhancement of antioxidant defense mechanisms, neurotrophic factors, and cholinergic systems.
Collapse
Affiliation(s)
- Ismail O Ishola
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria.,African Centre of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science, Lagos, Nigeria
| | - Taiwo G Olubodun-Obadun
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Oluwasayo A Bakre
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Emmanuel S Ojo
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria.,Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Olufunmilayo O Adeyemi
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria.,African Centre of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science, Lagos, Nigeria
| |
Collapse
|
3
|
Shrivastava K, Rosenberg T, Meiri N, Maroun M. Age-Specific Modulation of Prefrontal Cortex LTP by Glucocorticoid Receptors Following Brief Exposure to HFD. Front Synaptic Neurosci 2021; 13:722827. [PMID: 34675793 PMCID: PMC8524128 DOI: 10.3389/fnsyn.2021.722827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/17/2021] [Indexed: 11/27/2022] Open
Abstract
The corticolimbic circuits in general and the medial prefrontal cortex in particular, undergo maturation during juvenility. It is thus expected that environmental challenges in forms of obesogenic diet can exert different effects in juvenile animals compared to adults. Further, the relationship between glucocorticoids and obesity has also been demonstrated in several studies. As a result, glucocorticoid receptor (GR) antagonists are currently being tested as potential anti-obesity agents. In the present study, we examined the effects of short-term exposure to high-fat diet (HFD) on prefrontal long-term potentiation (LTP) in both juvenile and adult rats, and the role of glucocorticoid receptors (GRs) in modulating these effects. We found HFD impaired prefrontal LTP in both juveniles and adults, but the effects of GR modulation were age- and diet-dependent. Specifically, GR antagonist RU-486 reversed the impairment of LTP in juvenile animals following HFD, and had no effect on control-diet animals. In adult animals, RU-486 has no effect on HFD-impaired LTP, but abolished LTP in control-diet animals. Furthermore, impairments in the prefrontal LTP following HFD are involved with an increase in the mPFC GR levels only in the juveniles. Further, we found that in vivo application of GR agonists into adult mPFC rescued HFD-induced impairment in LTP, suggesting that these receptors might represent strategic therapeutic targets to potentially combat obesity and metabolic related disorder.
Collapse
Affiliation(s)
- Kuldeep Shrivastava
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Tali Rosenberg
- Agricultural Research Organization, The Volcani Center, Institute of Animal Science, Rishon LeZion, Israel
| | - Noam Meiri
- Agricultural Research Organization, The Volcani Center, Institute of Animal Science, Rishon LeZion, Israel
| | - Mouna Maroun
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
4
|
Sanguino‐Gómez J, Buurstede JC, Abiega O, Fitzsimons CP, Lucassen PJ, Eggen BJL, Lesuis SL, Meijer OC, Krugers HJ. An emerging role for microglia in stress‐effects on memory. Eur J Neurosci 2021; 55:2491-2518. [PMID: 33724565 PMCID: PMC9373920 DOI: 10.1111/ejn.15188] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/13/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Stressful experiences evoke, among others, a rapid increase in brain (nor)epinephrine (NE) levels and a slower increase in glucocorticoid hormones (GCs) in the brain. Microglia are key regulators of neuronal function and contain receptors for NE and GCs. These brain cells may therefore potentially be involved in modulating stress effects on neuronal function and learning and memory. In this review, we discuss that stress induces (1) an increase in microglial numbers as well as (2) a shift toward a pro‐inflammatory profile. These microglia have (3) impaired crosstalk with neurons and (4) disrupted glutamate signaling. Moreover, microglial immune responses after stress (5) alter the kynurenine pathway through metabolites that impair glutamatergic transmission. All these effects could be involved in the impairments in memory and in synaptic plasticity caused by (prolonged) stress, implicating microglia as a potential novel target in stress‐related memory impairments.
Collapse
Affiliation(s)
| | - Jacobus C. Buurstede
- Department of Medicine Division of Endocrinology Leiden University Medical Center Leiden The Netherlands
| | - Oihane Abiega
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| | - Carlos P. Fitzsimons
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| | - Paul J. Lucassen
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| | - Bart J. L. Eggen
- Department of Biomedical Sciences of Cells & Systems Section Molecular Neurobiology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Sylvie L. Lesuis
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
- Program in Neurosciences and Mental Health Hospital for Sick Children Toronto ON Canada
| | - Onno C. Meijer
- Department of Medicine Division of Endocrinology Leiden University Medical Center Leiden The Netherlands
| | - Harm J. Krugers
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
5
|
Ma H, Li C, Wang J, Zhang X, Li M, Zhang R, Huang Z, Zhang Y. Amygdala-hippocampal innervation modulates stress-induced depressive-like behaviors through AMPA receptors. Proc Natl Acad Sci U S A 2021; 118:e2019409118. [PMID: 33526688 PMCID: PMC8017726 DOI: 10.1073/pnas.2019409118] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Indexed: 01/09/2023] Open
Abstract
Chronic stress is one of the most critical factors in the onset of depressive disorders; hence, environmental factors such as psychosocial stress are commonly used to induce depressive-like traits in animal models of depression. Ventral CA1 (vCA1) in hippocampus and basal lateral amygdala (BLA) are critical sites during chronic stress-induced alterations in depressive subjects; however, the underlying neural mechanisms remain unclear. Here we employed chronic unpredictable mild stress (CUMS) to model depression in mice and found that the activity of the posterior BLA to vCA1 (pBLA-vCA1) innervation was markedly reduced. Mice subjected to CUMS showed reduction in dendritic complexity, spine density, and synaptosomal AMPA receptors (AMPARs). Stimulation of pBLA-vCA1 innervation via chemogenetics or administration of cannabidiol (CBD) could reverse CUMS-induced synaptosomal AMPAR decrease and efficiently alleviate depressive-like behaviors in mice. These findings demonstrate a critical role for AMPARs and CBD modulation of pBLA-vCA1 innervation in CUMS-induced depressive-like behaviors.
Collapse
Affiliation(s)
- Hui Ma
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of People's Republic of China, IDG/McGovern Institute for Brain Research at Peking University, 100083 Beijing, People's Republic of China
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Chenyang Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of People's Republic of China, IDG/McGovern Institute for Brain Research at Peking University, 100083 Beijing, People's Republic of China
| | - Jinpeng Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of People's Republic of China, IDG/McGovern Institute for Brain Research at Peking University, 100083 Beijing, People's Republic of China
| | - Xiaochen Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of People's Republic of China, IDG/McGovern Institute for Brain Research at Peking University, 100083 Beijing, People's Republic of China
| | - Mingyue Li
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 100083 Beijing, People's Republic of China
| | - Rong Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of People's Republic of China, IDG/McGovern Institute for Brain Research at Peking University, 100083 Beijing, People's Republic of China
| | - Zhuo Huang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Yong Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of People's Republic of China, IDG/McGovern Institute for Brain Research at Peking University, 100083 Beijing, People's Republic of China;
| |
Collapse
|
6
|
Watermeyer T, Robb C, Gregory S, Udeh-Momoh C. Therapeutic implications of hypothalamic-pituitaryadrenal-axis modulation in Alzheimer's disease: A narrative review of pharmacological and lifestyle interventions. Front Neuroendocrinol 2021; 60:100877. [PMID: 33045258 DOI: 10.1016/j.yfrne.2020.100877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
With disease-modifying treatments for Alzheimer's disease (AD) still elusive, the search for alternative intervention strategies has intensified. Growing evidence suggests that dysfunction in hypothalamic-pituitaryadrenal-axis (HPAA) activity may contribute to the development of AD pathology. The HPAA, may therefore offer a novel target for therapeutic action. This review summarises and critically evaluates animal and human studies investigating the effects of pharmacological and non-pharmacological intervention on HPAA modulation alongside cognitive performance. The interventions discussed include glucocorticoid receptor antagonists and 11β-hydroxysteroid dehydrogenase inhibitors as well as lifestyle treatments such as physical activity, diet, sleep and contemplative practices. Pharmacological HPAA modulators improve pathology and cognitive deficit in animal AD models, but human pharmacological trials are yet to provide definitive support for such benefits. Lifestyle interventions may offer promising strategies for HPAA modification and cognitive health, but several methodological caveats across these studies were identified. Directions for future research in AD studies are proposed.
Collapse
Affiliation(s)
- Tamlyn Watermeyer
- Department of Psychology, Faculty of Health and Life Sciences, Northumbria University, Newcastle, UK; Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Catherine Robb
- Ageing Epidemiology Research Unit, School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology and Medicine, London, UK
| | - Sarah Gregory
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Chinedu Udeh-Momoh
- Ageing Epidemiology Research Unit, School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology and Medicine, London, UK; Translational Health Sciences, School of Clinical Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
7
|
Bettio LEB, Thacker JS, Rodgers SP, Brocardo PS, Christie BR, Gil-Mohapel J. Interplay between hormones and exercise on hippocampal plasticity across the lifespan. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165821. [PMID: 32376385 DOI: 10.1016/j.bbadis.2020.165821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/19/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
Abstract
The hippocampus is a brain structure known to play a central role in cognitive function (namely learning and memory) as well as mood regulation and affective behaviors due in part to its ability to undergo structural and functional changes in response to intrinsic and extrinsic stimuli. While structural changes are achieved through modulation of hippocampal neurogenesis as well as alterations in dendritic morphology and spine remodeling, functional (i.e., synaptic) changes can be noted through the strengthening (i.e., long-term potentiation) or weakening (i.e., long-term depression) of the synapses. While age, hormone homeostasis, and levels of physical activity are some of the factors known to module these forms of hippocampal plasticity, the exact mechanisms through which these factors interact with each other at a given moment in time are not completely understood. It is well known that hormonal levels vary throughout the lifespan of an individual and it is also known that physical exercise can impact hormonal homeostasis. Thus, it is reasonable to speculate that hormone modulation might be one of the various mechanisms through which physical exercise differently impacts hippocampal plasticity throughout distinct periods of an individual's life. The present review summarizes the potential relationship between physical exercise and different types of hormones (namely sex, metabolic, and stress hormones) and how this relationship may mediate the effects of physical activity during three distinct life periods, adolescence, adulthood, and senescence. Overall, the vast majority of studies support a beneficial role of exercise in maintaining hippocampal hormonal levels and consequently, hippocampal plasticity, cognition, and mood regulation.
Collapse
Affiliation(s)
- Luis E B Bettio
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
| | - Jonathan S Thacker
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
| | - Shaefali P Rodgers
- Developmental, Cognitive & Behavioral Neuroscience Program, Department of Psychology, Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, TX, USA
| | - Patricia S Brocardo
- Department of Morphological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Brian R Christie
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada; Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC, Canada
| | - Joana Gil-Mohapel
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada; Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC, Canada.
| |
Collapse
|
8
|
Papilloud A, Veenit V, Tzanoulinou S, Riccio O, Zanoletti O, Guillot de Suduiraut I, Grosse J, Sandi C. Peripubertal stress-induced heightened aggression: modulation of the glucocorticoid receptor in the central amygdala and normalization by mifepristone treatment. Neuropsychopharmacology 2019; 44:674-682. [PMID: 29941978 PMCID: PMC6372583 DOI: 10.1038/s41386-018-0110-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/03/2018] [Accepted: 05/28/2018] [Indexed: 11/09/2022]
Abstract
Despite the enormous negative impact of excessive aggression for individuals and societies, there is a paucity of treatments. Here, using a peripubertal stress model of heightened aggression in rats, we investigated the involvement of the glucocorticoid system and tested the effectiveness of antiglucocorticoid treatment to normalize behavior. We assessed peripubertal stress-induced changes in glucocorticoid (GR) and mineralocorticoid (MR) gene expression in different amygdala nuclei and hippocampus, and report a specific increase in GR mRNA expression in the central amygdala (CeA). Administration of mifepristone (10 mg/kg), a GR antagonist, before stressor exposure at peripuberty prevented the habituation of plasma corticosterone responses observed throughout the stress protocol. This treatment also prevented the increase in aggression and GR expression in the CeA observed in peripubertally stressed rats at adulthood. Viral downregulation of CeA GR expression at adulthood led to reduced aggression. Subsequently, we showed that a brief, 3-day, treatment with mifepristone at adulthood was effective to normalize the abnormal aggression phenotype in peripubertally stressed rats. Our results support a key role for GR actions during peripubertal stress for the long-term programming of heightened aggression. Strikingly, they also support the translational interest of testing the effectiveness of mifepristone treatment to diminish reactive aggression in early adversity-related human psychopathologies.
Collapse
Affiliation(s)
- Aurelie Papilloud
- 0000000121839049grid.5333.6Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Vandana Veenit
- 0000000121839049grid.5333.6Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland ,0000 0004 1937 0626grid.4714.6Present Address: Departement of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Stamatina Tzanoulinou
- 0000000121839049grid.5333.6Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland ,0000 0001 2322 4988grid.8591.5Present Address: Departement of Basic Neurosciences, University of Geneva, 1211 Geneva, Switzerland
| | - Orbicia Riccio
- 0000000121839049grid.5333.6Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Olivia Zanoletti
- 0000000121839049grid.5333.6Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Isabelle Guillot de Suduiraut
- 0000000121839049grid.5333.6Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jocelyn Grosse
- 0000000121839049grid.5333.6Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
9
|
Cheng W, Han F, Shi Y. Neonatal isolation modulates glucocorticoid-receptor function and synaptic plasticity of hippocampal and amygdala neurons in a rat model of single prolonged stress. J Affect Disord 2019; 246:682-694. [PMID: 30611912 DOI: 10.1016/j.jad.2018.12.084] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/23/2018] [Accepted: 12/24/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Early life and stressful experiences affect hippocampal and amygdala structure and function. They also increase the incidence of mental and nervous system disorders in adults. However, prospective studies have yet to show if early-life experiences affect the risk/severity of post-traumatic stress disorder (PTSD). METHODS We applied neonatal isolation (NI) alone, single prolonged stress (SPS) alone and NI + SPS to rats. We evaluated anxiety-like behavior and spatial memory of behavior using open field, elevated plus maze, and Morris water maze tests. Then, we measured expression of glucocorticoid receptors (GRs) and synaptic-related proteins by immunofluorescence, immunohistochemistry and western blotting in the hippocampus and amygdala. RESULTS NI + SPS exacerbated the increased anxiety levels and impaired spatial memory induced by NI alone or SPS alone. NI alone or SPS alone induced varying degrees of change in expression of GRs and synaptic proteins (synapsin I and postsynaptic density protein-95) in the hippocampus and amygdala. There were opposite changes in GR expression in the hippocampal dentate gyrus and basolateral amygdala. The degree of such change was exacerbated considerably by NI + SPS. In addition, neuroligin (NLG)-1 and NLG-2 were distributed in postsynaptic sites of excitatory and inhibitory synapses, respectively. NI, SPS, and NI + SPS altered the patterns of NLG-1 and NLG-2 colocalization as well as their intensity. NI + SPS strengthened the increased ratio of NLG-1/NLG-2 in the hippocampus, but decreased this ratio in the amygdala. CONCLUSIONS NI and SPS together induced greater degrees of change in anxiety and spatial memory, as well as GR and synaptic protein levels, in the hippocampus and amygdala than the changes induced by NI alone or SPS alone.
Collapse
Affiliation(s)
- Wei Cheng
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, 77, Puhe Road, Shenbei New District, 110001 Shenyang, China; Neonatal Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fan Han
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, 77, Puhe Road, Shenbei New District, 110001 Shenyang, China
| | - Yuxiu Shi
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, 77, Puhe Road, Shenbei New District, 110001 Shenyang, China.
| |
Collapse
|
10
|
Lou YX, Li J, Wang ZZ, Xia CY, Chen NH. Glucocorticoid receptor activation induces decrease of hippocampal astrocyte number in rats. Psychopharmacology (Berl) 2018; 235:2529-2540. [PMID: 30069586 DOI: 10.1007/s00213-018-4936-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 05/30/2018] [Indexed: 11/24/2022]
Abstract
RATIONALE The decrease of astrocyte number and hypothalamic-pituitary-adrenal (HPA) axis overactivity are observed in individuals with major depressive disorder. Elevated levels of glucocorticoids induced by hyperactivation of the HPA axis may result in glucocorticoid receptor (GR) activation. However, it is unclear whether there is a direct link between GR activation and the decrease of astrocyte number. METHODS Animals were exposed to chronic unpredictable stress (CUS) for 28 days and treated with continuous subcutaneous injections of vehicle or corticosterone (CORT; 40 mg/kg/day) for 21 days. We then administered mifepristone on day 21 after CUS and on day 18 after the CORT treatment. We observed behavioral deficits in the sucrose preference test, open field test, and forced swim test. Protein expression was analyzed using immunofluorescence (IF) and western blot (WB). RESULTS Animals exposed to CUS exhibited behavioral deficits in tests measuring anhedonia, anxiety, and despair state. They also had decreases in glial fibrillary acidic protein (GFAP) expression and numbers of GFAP-positive cells in the hippocampus. The behavioral and cellular alterations induced by CUS were reversed by subchronic treatment with the GR antagonist mifepristone. We also found that the subcutaneous injection of glucocorticoids may induce depression-like behavior and reduce GFAP protein expression in rats, which was similarly reversed by mifepristone. CONCLUSIONS These findings provide experimental evidence that GR activation due to elevated CORT levels induces the decrease of hippocampal astrocyte number in rats.
Collapse
Affiliation(s)
- Yu-Xia Lou
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Jing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Cong-Yuan Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Nai-Hong Chen
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China. .,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
11
|
Cittern D, Nolte T, Friston K, Edalat A. Intrinsic and extrinsic motivators of attachment under active inference. PLoS One 2018; 13:e0193955. [PMID: 29621266 PMCID: PMC5886414 DOI: 10.1371/journal.pone.0193955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/21/2018] [Indexed: 02/05/2023] Open
Abstract
This paper addresses the formation of infant attachment types within the context of active inference: a holistic account of action, perception and learning in the brain. We show how the organised forms of attachment (secure, avoidant and ambivalent) might arise in (Bayesian) infants. Specifically, we show that these distinct forms of attachment emerge from a minimisation of free energy-over interoceptive states relating to internal stress levels-when seeking proximity to caregivers who have a varying impact on these interoceptive states. In line with empirical findings in disrupted patterns of affective communication, we then demonstrate how exteroceptive cues (in the form of caregiver-mediated AMBIANCE affective communication errors, ACE) can result in disorganised forms of attachment in infants of caregivers who consistently increase stress when the infant seeks proximity, but can have an organising (towards ambivalence) effect in infants of inconsistent caregivers. In particular, we differentiate disorganised attachment from avoidance in terms of the high epistemic value of proximity seeking behaviours (resulting from the caregiver's misleading exteroceptive cues) that preclude the emergence of coherent and organised behavioural policies. Our work, the first to formulate infant attachment in terms of active inference, makes a new testable prediction with regards to the types of affective communication errors that engender ambivalent attachment.
Collapse
Affiliation(s)
- David Cittern
- Department of Computing, Imperial College London, London, United Kingdom
- * E-mail:
| | - Tobias Nolte
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
- Anna Freud Centre, London, United Kingdom
| | - Karl Friston
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| | - Abbas Edalat
- Department of Computing, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Nyman C, Fischer S, Aubin-Horth N, Taborsky B. Evolutionary conserved neural signature of early life stress affects animal social competence. Proc Biol Sci 2018; 285:20172344. [PMID: 29386366 PMCID: PMC5805939 DOI: 10.1098/rspb.2017.2344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/05/2018] [Indexed: 11/12/2022] Open
Abstract
In vertebrates, the early social environment can persistently influence behaviour and social competence later in life. However, the molecular mechanisms underlying variation in animal social competence are largely unknown. In rats, high-quality maternal care causes an upregulation of hippocampal glucocorticoid receptors (gr) and reduces offspring stress responsiveness. This identifies gr regulation as a candidate mechanism for maintaining variation in animal social competence. We tested this hypothesis in a highly social cichlid fish, Neolamprologus pulcher, reared with or without caring parents. We find that the molecular pathway translating early social experience into later-life alterations of the stress axis is homologous across vertebrates: fish reared with parents expressed the glucocorticoid receptor gr1 more in the telencephalon. Furthermore, expression levels of the transcription factor egr-1 (early growth response 1) were associated with gr1 expression in the telencephalon and hypothalamus. When blocking glucocorticoid receptors (GR) with an antagonist, mifepristone (RU486), parent-reared individuals showed more socially appropriate, submissive behaviour when intruding on a larger conspecific's territory. Remarkably, mifepristone-treated fish were less attacked by territory owners and had a higher likelihood of territory takeover. Our results indicate that early social-environment effects on stress axis programming are mediated by an evolutionary conserved molecular pathway, which is causally involved in environmentally induced variation of animal social competence.
Collapse
Affiliation(s)
- Cecilia Nyman
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Stefan Fischer
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Nadia Aubin-Horth
- Département de Biologie and Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, Canada
| | - Barbara Taborsky
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Transient Prepubertal Mifepristone Treatment Normalizes Deficits in Contextual Memory and Neuronal Activity of Adult Male Rats Exposed to Maternal Deprivation. eNeuro 2017; 4:eN-NWR-0253-17. [PMID: 29098176 PMCID: PMC5666324 DOI: 10.1523/eneuro.0253-17.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/05/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022] Open
Abstract
Early life adversity is a well-known risk factor for behavioral dysfunction later in life, including the formation of contextual memory; it is also (transiently) accompanied by hyperactivity of the stress system. We tested whether mifepristone (MIF) treatment, which among other things blocks glucocorticoid receptors (GRs), during the prepubertal period [postnatal days (PND)26-PND28] normalizes memory deficits in adult male rats exposed to 24-h maternal deprivation (MD) at PND3. MD reduced body weight gain and increased basal corticosterone (CORT) levels during the PND26, but not in adulthood. In adulthood, contextual memory formation of MD compared to noMD (i.e., control) male rats was significantly impaired. This impairment was fully prevented by MIF treatment at PND26-PND28, whereas MIF by itself did not affect behavior. A second behavioral test, a rodent version of the Iowa Gambling Task (rIGT), revealed that flexible spatial learning rather than reward-based aspects of performance was impaired by MD; the deficit was prevented by MIF. Neuronal activity as tested by c-Fos staining in the latter task revealed changes in the right hippocampal-dorsomedial striatal pathway, but not in prefrontal areas involved in reward learning. Follow-up electrophysiological recordings measuring spontaneous glutamate transmission showed reduced frequency of miniature postsynaptic excitatory currents in adult CA1 dorsal hippocampal and enhanced frequency in dorsomedial striatal neurons from MD versus noMD rats, which was not seen in MIF-treated rats. We conclude that transient prepubertal MIF treatment normalizes hippocampus-striatal-dependent contextual memory/spatial learning deficits in male rats exposed to early life adversity, possibly by normalizing glutamatergic transmission.
Collapse
|
14
|
Walker CD, Bath KG, Joels M, Korosi A, Larauche M, Lucassen PJ, Morris MJ, Raineki C, Roth TL, Sullivan RM, Taché Y, Baram TZ. Chronic early life stress induced by limited bedding and nesting (LBN) material in rodents: critical considerations of methodology, outcomes and translational potential. Stress 2017; 20:421-448. [PMID: 28617197 PMCID: PMC5705407 DOI: 10.1080/10253890.2017.1343296] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 02/07/2023] Open
Abstract
The immediate and long-term effects of exposure to early life stress (ELS) have been documented in humans and animal models. Even relatively brief periods of stress during the first 10 days of life in rodents can impact later behavioral regulation and the vulnerability to develop adult pathologies, in particular an impairment of cognitive functions and neurogenesis, but also modified social, emotional, and conditioned fear responses. The development of preclinical models of ELS exposure allows the examination of mechanisms and testing of therapeutic approaches that are not possible in humans. Here, we describe limited bedding and nesting (LBN) procedures, with models that produce altered maternal behavior ranging from fragmentation of care to maltreatment of infants. The purpose of this paper is to discuss important issues related to the implementation of this chronic ELS procedure and to describe some of the most prominent endpoints and consequences, focusing on areas of convergence between laboratories. Effects on the hypothalamic-pituitary adrenal (HPA) axis, gut axis and metabolism are presented in addition to changes in cognitive and emotional functions. Interestingly, recent data have suggested a strong sex difference in some of the reported consequences of the LBN paradigm, with females being more resilient in general than males. As both the chronic and intermittent variants of the LBN procedure have profound consequences on the offspring with minimal external intervention from the investigator, this model is advantageous ecologically and has a large translational potential. In addition to the direct effect of ELS on neurodevelopmental outcomes, exposure to adverse early environments can also have intergenerational impacts on mental health and function in subsequent generation offspring. Thus, advancing our understanding of the effect of ELS on brain and behavioral development is of critical concern for the health and wellbeing of both the current population, and for generations to come.
Collapse
Affiliation(s)
- Claire-Dominique Walker
- Department of Psychiatry, McGill University, Douglas Mental Health University Institute, 6875 Lasalle Blvd, Montreal, QC H4H 1R3, Canada
| | - Kevin G. Bath
- Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Marian Joels
- Department Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Aniko Korosi
- Brain Plasticity group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Muriel Larauche
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, CURE: Digestive Diseases Research Center, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine and Brain Research Institute, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
| | - Paul J. Lucassen
- Brain Plasticity group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Margaret J. Morris
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney 2052, NSW, Australia
| | - Charlis Raineki
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, Department of Child and Adolescent Psychiatry, New York University Langone Medical School, New York, NY 10016, USA
| | - Tania L. Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Regina M. Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, Department of Child and Adolescent Psychiatry, New York University Langone Medical School, New York, NY 10016, USA
| | - Yvette Taché
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, CURE: Digestive Diseases Research Center, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine and Brain Research Institute, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
| | - Tallie Z. Baram
- Department of Pediatrics, of Anatomy & Neurobiology and of Neurology, University of California-Irvine, Irvine, CA 92697, USA
| |
Collapse
|
15
|
Zito JB, Hanna A, Kadoo N, Tomaszycki ML. Early life stress increases testosterone and corticosterone and alters stress physiology in zebra finches. Horm Behav 2017; 95:57-64. [PMID: 28782547 DOI: 10.1016/j.yhbeh.2017.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 01/16/2023]
Abstract
Early life stress has enduring effects on behavior and physiology. However, the effects on hormones and stress physiology remain poorly understood. In the present study, parents of zebra finches of both sexes were exposed to an increased foraging paradigm from 3 to 33days post hatching. Plasma and brains were collected from chicks at 3 developmental time points: post hatching days 25, 60 and adulthood. Plasma was assayed for testosterone (T), estradiol (E2), and corticosterone (CORT). The paraventricular nucleus of the hypothalamus was assessed for corticotrophin releasing factor (CRH) and glucocorticoid receptor (GR) expression. As expected, body mass was lower in nutritionally stressed animals compared to controls at multiple ages. Nutritionally stressed animals overall had higher levels of CORT than did control and this was particularly apparent in females at post hatching day 25. Nutritionally stressed animals also had a higher number of cells expressing CRH and GR in the paraventricular nucleus of the hypothalamus than did controls. There was an interaction, such that both measures were higher in control animals at PHD 25, but higher in NS animals by adulthood. Females, regardless of treatment, had higher circulating CORT and a higher number of cells expressing CRH than did males. Nutritionally stressed animals also had higher levels of T than did control animals, and this difference was greatest for males at post hatching day 60. There were no effects of nutritional stress on E2. These findings suggest that nutritional stress during development has long-lasting effects on testosterone and stress physiology.
Collapse
Affiliation(s)
- J Bayley Zito
- Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| | - Angy Hanna
- Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| | - Nora Kadoo
- Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| | - Michelle L Tomaszycki
- Department of Psychology, Program in Neuroscience, Lafayette College, Easton, PA 18042, USA.
| |
Collapse
|
16
|
Lee HY, Lee JS, Kim HG, Kim WY, Lee SB, Choi YH, Son CG. The ethanol extract of Aquilariae Lignum ameliorates hippocampal oxidative stress in a repeated restraint stress mouse model. Altern Ther Health Med 2017; 17:397. [PMID: 28797292 PMCID: PMC5553856 DOI: 10.1186/s12906-017-1902-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 08/02/2017] [Indexed: 12/18/2022]
Abstract
Background Chronic stress contributes to the development of brain disorders, such as neurodegenerative and psychiatric diseases. Oxidative damage is well known as a causative factor for pathogenic process in brain tissues. The aim of this study is to evaluate the neuroprotective effect of a 30% ethanol extract of Aquilariae Lignum (ALE) in repeated stress-induced hippocampal oxidative injury. Methods Fifty BALB/c male mice (12 weeks old) were randomly divided into five groups (n = 10). For 11 consecutive days, each group was orally administered with distilled water, ALE (20 or 80 mg/kg) or N-acetylcysteine (NAC; 100 mg/kg), and then all mice (except unstressed group) were subjected to restraint stress for 6 h. On the final day, brain tissues and sera were isolated, and stress hormones and hippocampal oxidative alterations were examined. We also treated lipopolysaccharide (LPS, 1 μg/mL)-stimulated BV2 microglial cells with ALE (1 and 5 μg/mL) or NAC (10 μM) to investigate the pharmacological mechanism. Results Restraint stress considerably increased the serum levels of corticosterone and adrenaline and the hippocampal levels of reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA). ALE administration significantly attenuated the above abnormalities. ALE also significantly normalized the stress-induced activation of astrocytes and microglial cells in the hippocampus as well as the elevation of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β). The in vitro assay outcome supplemented ALE could dramatically block NF-κB activation in microglia. The anti-oxidative stress effects of ALE were supported by the results of antioxidant components, 4-hydroxynonenal (4-HNE), NADPH oxidase 2 (NOX2), inducible nitric oxide synthase (iNOS) and NFE2L2 (Nrf2) in the hippocampal tissues. Conclusions We firstly demonstrated the neuroprotective potentials of A. Lignum against hippocampal oxidative injury in repeated restraint stress. The corresponding mechanisms might involve modulations in the release of ROS, pro-inflammatory cytokines and stress hormones.
Collapse
|
17
|
Tripathi SJ, Chakraborty S, Srikumar B, Raju T, Shankaranarayana Rao B. Inactivation of basolateral amygdala prevents chronic immobilization stress-induced memory impairment and associated changes in corticosterone levels. Neurobiol Learn Mem 2017; 142:218-229. [DOI: 10.1016/j.nlm.2017.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 04/09/2017] [Accepted: 05/06/2017] [Indexed: 01/02/2023]
|
18
|
Bekhbat M, Rowson SA, Neigh GN. Checks and balances: The glucocorticoid receptor and NFĸB in good times and bad. Front Neuroendocrinol 2017; 46:15-31. [PMID: 28502781 PMCID: PMC5523465 DOI: 10.1016/j.yfrne.2017.05.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/21/2017] [Accepted: 05/09/2017] [Indexed: 01/23/2023]
Abstract
Mutual regulation and balance between the endocrine and immune systems facilitate an organism's stress response and are impaired following chronic stress or prolonged immune activation. Concurrent alterations in stress physiology and immunity are increasingly recognized as contributing factors to several stress-linked neuropsychiatric disorders including depression, anxiety, and post-traumatic stress disorder. Accumulating evidence suggests that impaired balance and crosstalk between the glucocorticoid receptor (GR) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) - effectors of the stress and immune axes, respectively - may play a key role in mediating the harmful effects of chronic stress on mood and behavior. Here, we first review the molecular mechanisms of GR and NFκB interactions in health, then describe potential shifts in the GR-NFκB dynamics in chronic stress conditions within the context of brain circuitry relevant to neuropsychiatric diseases. Furthermore, we discuss developmental influences and sex differences in the regulation of these two transcription factors.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- Emory University, Graduate Division of Biological Sciences, Neuroscience Graduate Program, United States
| | - Sydney A Rowson
- Emory University, Graduate Division of Biological Sciences, Molecular and Systems Pharmacology Graduate Studies Program, United States
| | - Gretchen N Neigh
- Virginia Commonwealth University, Department of Anatomy & Neurobiology, United States.
| |
Collapse
|
19
|
Brossaud J, Roumes H, Helbling JC, Moisan MP, Pallet V, Ferreira G, Biyong EF, Redonnet A, Corcuff JB. Retinoic acid increases glucocorticoid receptor phosphorylation via cyclin-dependent kinase 5. Mol Cell Neurosci 2017; 82:96-104. [PMID: 28477983 DOI: 10.1016/j.mcn.2017.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/25/2017] [Accepted: 05/01/2017] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoid receptor (GR) function is modulated by phosphorylation. As retinoic acid (RA) can activate some cytoplasmic kinases able to phosphorylate GR, we investigated whether RA could modulate GR phosphorylation in neuronal cells in a context of long-term glucocorticoid exposure. A 4-day treatment of dexamethasone (Dex) plus RA, showed that RA potentiated the (Dex)-induced phosphorylation on GR Serine 220 (pSer220GR) in the nucleus of a hippocampal HT22 cell line. This treatment increased the cytoplasmic ratio of p35/p25 proteins, which are major CDK5 cofactors. Roscovitine, a pharmacological CDK5 inhibitor, or a siRNA against CDK5 prevented RA potentiation of GR phosphorylation. Furthermore, roscovitine counter-acted the effect of RA on GR sensitive target proteins such as BDNF or tissue-transglutaminase. These data help understanding the interaction between RA- and glucocorticoid-signalling pathways, both of which have strong influences on the adult brain.
Collapse
Affiliation(s)
- Julie Brossaud
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, F-33076 Bordeaux, France; Departments of Nuclear Medicine University Hospital and University of Bordeaux, France.
| | - Hélène Roumes
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, F-33076 Bordeaux, France
| | | | - Marie-Pierre Moisan
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, F-33076 Bordeaux, France
| | - Véronique Pallet
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, F-33076 Bordeaux, France
| | - Guillaume Ferreira
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, F-33076 Bordeaux, France
| | - Essi-Fanny Biyong
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, F-33076 Bordeaux, France
| | - Anabelle Redonnet
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, F-33076 Bordeaux, France
| | - Jean-Benoît Corcuff
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, F-33076 Bordeaux, France; Departments of Nuclear Medicine University Hospital and University of Bordeaux, France
| |
Collapse
|
20
|
Bettio LEB, Rajendran L, Gil-Mohapel J. The effects of aging in the hippocampus and cognitive decline. Neurosci Biobehav Rev 2017; 79:66-86. [PMID: 28476525 DOI: 10.1016/j.neubiorev.2017.04.030] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/15/2017] [Accepted: 04/10/2017] [Indexed: 02/06/2023]
Abstract
Aging is a natural process that is associated with cognitive decline as well as functional and social impairments. One structure of particular interest when considering aging and cognitive decline is the hippocampus, a brain region known to play an important role in learning and memory consolidation as well as in affective behaviours and mood regulation, and where both functional and structural plasticity (e.g., neurogenesis) occur well into adulthood. Neurobiological alterations seen in the aging hippocampus including increased oxidative stress and neuroinflammation, altered intracellular signalling and gene expression, as well as reduced neurogenesis and synaptic plasticity, are thought to be associated with age-related cognitive decline. Non-invasive strategies such as caloric restriction, physical exercise, and environmental enrichment have been shown to counteract many of the age-induced alterations in hippocampal signalling, structure, and function. Thus, such approaches may have therapeutic value in counteracting the deleterious effects of aging and protecting the brain against age-associated neurodegenerative processes.
Collapse
Affiliation(s)
- Luis E B Bettio
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Luckshi Rajendran
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Joana Gil-Mohapel
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; UBC Island Medical program, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
21
|
Bhagya VR, Srikumar BN, Veena J, Shankaranarayana Rao BS. Short-term exposure to enriched environment rescues chronic stress-induced impaired hippocampal synaptic plasticity, anxiety, and memory deficits. J Neurosci Res 2016; 95:1602-1610. [DOI: 10.1002/jnr.23992] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Venkanna Rao Bhagya
- Department of Neurophysiology; National Institute of Mental Health and Neuro Sciences (NIMHANS); Bengaluru India
| | - Bettadapura N. Srikumar
- Department of Neurophysiology; National Institute of Mental Health and Neuro Sciences (NIMHANS); Bengaluru India
| | - Jayagopalan Veena
- Department of Neurophysiology; National Institute of Mental Health and Neuro Sciences (NIMHANS); Bengaluru India
| | | |
Collapse
|
22
|
|
23
|
Ioannou CI, Furuya S, Altenmüller E. The impact of stress on motor performance in skilled musicians suffering from focal dystonia: Physiological and psychological characteristics. Neuropsychologia 2016; 85:226-36. [DOI: 10.1016/j.neuropsychologia.2016.03.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 02/19/2016] [Accepted: 03/23/2016] [Indexed: 01/21/2023]
|
24
|
Hu P, Wang Y, Liu J, Meng FT, Qi XR, Chen L, van Dam AM, Joëls M, Lucassen PJ, Zhou JN. Chronic retinoic acid treatment suppresses adult hippocampal neurogenesis, in close correlation with depressive-like behavior. Hippocampus 2016; 26:911-23. [PMID: 26860546 DOI: 10.1002/hipo.22574] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2016] [Indexed: 12/18/2022]
Abstract
Clinical studies have highlighted an association between retinoid treatment and depressive symptoms. As we had shown before that chronic application of all-trans retinoic acid (RA) potently activated the hypothalamus-pituitary-adrenal (HPA) stress axis, we here questioned whether RA also induced changes in adult hippocampal neurogenesis, a form of structural plasticity sensitive to stress and implicated in aspects of depression and hippocampal function. RA was applied intracerebroventricularly (i.c.v.) to adult rats for 19 days after which animals were subjected to tests for depressive-like behavior (sucrose preference) and spatial learning and memory (water maze) performance. On day 27, adult hippocampal neurogenesis and astrogliosis was quantified using BrdU (newborn cell survival), PCNA (proliferation), doublecortin (DCX; neuronal differentiation), and GFAP (astrocytes) as markers. RA was found to increase retinoic acid receptor-α (RAR-α) protein expression in the hippocampus, suggesting an activation of RA-induced signaling mechanisms. RA further potently suppressed cell proliferation, newborn cell survival as well as neurogenesis, but not astrogliosis. These structural plasticity changes were significantly correlated with scores for anhedonia, a core symptom of depression, but not with water maze performance. Our results suggest that RA-induced impairments in hippocampal neurogenesis correlate with depression-like symptoms but not with spatial learning and memory in this design. Thus, manipulations aimed to enhance neurogenesis may help ameliorate emotional aspects of RA-associated mood disorders. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pu Hu
- Department of Neurobiology and Biophysics, CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Yu Wang
- Department of Neurobiology and Biophysics, CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Ji Liu
- Department of Neurobiology and Biophysics, CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Fan-Tao Meng
- Department of Neurobiology and Biophysics, CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Xin-Rui Qi
- Department of Neurobiology and Biophysics, CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Lin Chen
- Department of Neurobiology and Biophysics, CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Anne-Marie van Dam
- Department of Anatomy & Neurosciences, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Marian Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul J Lucassen
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jiang-Ning Zhou
- Department of Neurobiology and Biophysics, CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
25
|
Pierce AN, Di Silvestro ER, Eller OC, Wang R, Ryals JM, Christianson JA. Urinary bladder hypersensitivity and dysfunction in female mice following early life and adult stress. Brain Res 2016; 1639:58-73. [PMID: 26940840 DOI: 10.1016/j.brainres.2016.02.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/12/2016] [Accepted: 02/22/2016] [Indexed: 02/07/2023]
Abstract
Early adverse events have been shown to increase the incidence of interstitial cystitis/painful bladder syndrome in adulthood. Despite high clinical relevance and reports of stress-related symptom exacerbation, animal models investigating the contribution of early life stress to female urological pain are lacking. We examined the impact of neonatal maternal separation (NMS) on bladder sensitivity and visceral neuroimmune status both prior-to, and following, water avoidance stress (WAS) in adult female mice. The visceromotor response to urinary bladder distension was increased at baseline and 8d post-WAS in NMS mice, while colorectal sensitivity was transiently increased 1d post-WAS only in naïve mice. Bladder micturition rate and output, but not fecal output, were also significantly increased following WAS in NMS mice. Changes in gene expression involved in regulating the stress response system were observed at baseline and following WAS in NMS mice, and WAS reduced serum corticosterone levels. Cytokine and growth factor mRNA levels in the bladder, and to a lesser extent in the colon, were significantly impacted by NMS and WAS. Peripheral mRNA levels of stress-responsive receptors were differentially influenced by early life and adult stress in bladder, but not colon, of naïve and NMS mice. Histological evidence of mast cell degranulation was increased in NMS bladder, while protein levels of protease activated receptor 2 (PAR2) and transient receptor potential ankyrin 1 (TRPA1) were increased by WAS. Together, this study provides new insight into mechanisms contributing to stress associated symptom onset or exacerbation in patients exposed to early life stress.
Collapse
Affiliation(s)
- Angela N Pierce
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 3038, Kansas City, KS 66160, USA
| | - Elizabeth R Di Silvestro
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 3038, Kansas City, KS 66160, USA
| | - Olivia C Eller
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 3038, Kansas City, KS 66160, USA
| | - Ruipeng Wang
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 3038, Kansas City, KS 66160, USA
| | - Janelle M Ryals
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 3038, Kansas City, KS 66160, USA
| | - Julie A Christianson
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 3038, Kansas City, KS 66160, USA
| |
Collapse
|
26
|
Roumes H, Brossaud J, Lemelletier A, Moisan MP, Pallet V, Redonnet A, Corcuff JB. Retinoids and glucocorticoids have opposite effects on actin cytoskeleton rearrangement in hippocampal HT22 cells. Int J Biochem Cell Biol 2015; 71:102-110. [PMID: 26748244 DOI: 10.1016/j.biocel.2015.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/18/2015] [Accepted: 12/28/2015] [Indexed: 12/12/2022]
Abstract
A chronic excess of glucocorticoids elicits deleterious effects in the hippocampus. Conversely, retinoic acid plays a major role in aging brain plasticity. As synaptic plasticity depends on mechanisms related to cell morphology, we investigated the involvement of retinoic acid and glucocorticoids in the remodelling of the HT22 neurons actin cytoskeleton. Cells exhibited a significantly more elongated shape with retinoic acid and a rounder shape with dexamethasone; retinoic acid reversed the effects of dexamethasone. Actin expression and abundance were unchanged by retinoic acid or dexamethasone but F-actin organization was dramatically modified. Indeed, retinoic acid and dexamethasone increased (70 ± 7% and 176 ± 5%) cortical actin while retinoic acid suppressed the effect of dexamethasone (90 ± 6%). Retinoic acid decreased (-22 ± 9%) and dexamethasone increased (134 ± 16%) actin stress fibres. Retinoic acid also suppressed the effect of dexamethasone (-21 ± 7%). Spectrin is a key protein in the actin network remodelling. Its abundance was decreased by retinoic acid and increased by dexamethasone (-21 ± 11% and 52 ± 10%). However, retinoic acid did not modify the effect of dexamethasone (48 ± 7%). Calpain activity on spectrin was increased by retinoic acid and decreased by dexamethasone (26 ± 14% and -57 ± 5%); retinoic acid mildly but significantly modified the effect of dexamethasone (-44 ± 7%). The calpain inhibitor calpeptin suppressed the effects of retinoic acid and dexamethasone on cell shape and actin stress fibres remodelling but did not modify the effects on cortical actin. Retinoic acid and dexamethasone have a dramatic but mainly opposite effect on actin cytoskeleton remodelling. These effects originate, at least partly, from calpain activity.
Collapse
Affiliation(s)
- Hélène Roumes
- INRA, Nutrition et neurobiologie intégrée, UMR 1286, 33076 Bordeaux, France; University Bordeaux, Nutrition et neurobiologie intégrée, UMR 1286, 33076 Bordeaux, France
| | - Julie Brossaud
- University Bordeaux, Nutrition et neurobiologie intégrée, UMR 1286, 33076 Bordeaux, France; Laboratoire d'Hormonologie, Service de médecine nucléaire, CHU Bordeaux, 33604 Pessac, France
| | - Aloïs Lemelletier
- INRA, Nutrition et neurobiologie intégrée, UMR 1286, 33076 Bordeaux, France; University Bordeaux, Nutrition et neurobiologie intégrée, UMR 1286, 33076 Bordeaux, France
| | - Marie-Pierre Moisan
- INRA, Nutrition et neurobiologie intégrée, UMR 1286, 33076 Bordeaux, France; University Bordeaux, Nutrition et neurobiologie intégrée, UMR 1286, 33076 Bordeaux, France
| | - Véronique Pallet
- University Bordeaux, Nutrition et neurobiologie intégrée, UMR 1286, 33076 Bordeaux, France; IPB, Nutrition et neurobiologie intégrée, UMR 1286, 33076 Bordeaux, France
| | - Anabelle Redonnet
- INRA, Nutrition et neurobiologie intégrée, UMR 1286, 33076 Bordeaux, France; University Bordeaux, Nutrition et neurobiologie intégrée, UMR 1286, 33076 Bordeaux, France
| | - Jean-Benoît Corcuff
- University Bordeaux, Nutrition et neurobiologie intégrée, UMR 1286, 33076 Bordeaux, France; Laboratoire d'Hormonologie, Service de médecine nucléaire, CHU Bordeaux, 33604 Pessac, France.
| |
Collapse
|
27
|
Lee SY, Park SH, Chung C, Kim JJ, Choi SY, Han JS. Oxytocin Protects Hippocampal Memory and Plasticity from Uncontrollable Stress. Sci Rep 2015; 5:18540. [PMID: 26688325 PMCID: PMC4685249 DOI: 10.1038/srep18540] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/20/2015] [Indexed: 11/24/2022] Open
Abstract
The hippocampus is vulnerable to uncontrollable stress and is enriched with oxytocin receptors, but their interactive influences on hippocampal functioning are unknown. This study aimed to determine the effects of intranasal oxytocin administration on stress-induced alterations in synaptic plasticity and spatial memory in male rats. While vehicle-administered stressed rats showed impairment in long-term potentiation, enhancement in long-term depression, and weakened spatial memory, these changes were not observed in oxytocin-administered stressed rats. To reveal the potential signaling mechanism mediating these effects, levels of phosphorylated extracellular signal-regulated kinases (pERK) in the hippocampus was examined. Western blotting showed that oxytocin treatment blocked stress-induced alterations of pERK. Additionally, the oxytocin receptor antagonist L-368,899 inhibited the oxytocin’s protective effects on hippocampal memory to stress. Thus, intranasal administration of oxytocin reduced stress effects on hippocampal synaptic plasticity and memory in rats via acting on oxytocin receptors and regulating ERK activity. This study suggests that exogenous oxytocin may be a therapeutically effective means to counter the detrimental neurocognitive effects of stress.
Collapse
Affiliation(s)
- Sun-Young Lee
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seong-Hae Park
- Department of Physiology and Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jeansok J Kim
- Department of Psychology, University of Washington, Seattle, WA 98195-1525, USA
| | - Se-Young Choi
- Department of Physiology and Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Jung-Soo Han
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
28
|
Basolateral amygdala bidirectionally modulates stress-induced hippocampal learning and memory deficits through a p25/Cdk5-dependent pathway. Proc Natl Acad Sci U S A 2015; 112:7291-6. [PMID: 25995364 PMCID: PMC4466741 DOI: 10.1073/pnas.1415845112] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Repeated stress has been suggested to underlie learning and memory deficits via the basolateral amygdala (BLA) and the hippocampus; however, the functional contribution of BLA inputs to the hippocampus and their molecular repercussions are not well understood. Here we show that repeated stress is accompanied by generation of the Cdk5 (cyclin-dependent kinase 5)-activator p25, up-regulation and phosphorylation of glucocorticoid receptors, increased HDAC2 expression, and reduced expression of memory-related genes in the hippocampus. A combination of optogenetic and pharmacosynthetic approaches shows that BLA activation is both necessary and sufficient for stress-associated molecular changes and memory impairments. Furthermore, we show that this effect relies on direct glutamatergic projections from the BLA to the dorsal hippocampus. Finally, we show that p25 generation is necessary for the stress-induced memory dysfunction. Taken together, our data provide a neural circuit model for stress-induced hippocampal memory deficits through BLA activity-dependent p25 generation.
Collapse
|
29
|
Park HJ, Lee S, Jung JW, Kim BC, Ryu JH, Kim DH. Glucocorticoid- and long-term stress-induced aberrant synaptic plasticity are mediated by activation of the glucocorticoid receptor. Arch Pharm Res 2015; 38:1204-12. [DOI: 10.1007/s12272-015-0548-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/01/2015] [Indexed: 01/05/2023]
|
30
|
Rico AM, Mendoza AL, Durán DAB, Torres HDLL, Mendoza GA, Gómez ABS. The effects of chronic restraint on the morphology of ventral CA1 neurons in female Long Evans rats. Stress 2015; 18:67-75. [PMID: 25287136 DOI: 10.3109/10253890.2014.974029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Women are more likely than men to develop psychopathology as a result of stress, but there is little research regarding the effects of a stressful condition and its treatment in female non-human animals, perhaps because of inherent hormonal activity. Recent studies have demonstrated that there are structural and functional differences between the dorsal and ventral hippocampus, but the effects of stress on the morphology of CA1 and CA3 neurons have been studied primarily in the dorsal hippocampus. This study assessed the effects of stress induced by restricted movement on the morphology of ventral hippocampal CA1 neurons in male and female rats. Male and female Long Evans (LE) rats were subjected to restraint stress for 6 h every day for 25 days. One group of rats was used to study the dendritic morphology of CA1 ventral hippocampal neurons using the Golgi-Cox stain. A second group of rats was used to analyze learning and memory using the Morris water maze. Stressed female rats exhibited a decrease in the density of basilar dendritic spines, an increase in the number of apical dendritic intersections and deficits in spatial memory. There were no apparent effects of stress on male rats. Our data support previous findings of a dimorphic response to chronic stress and indicate that the ventral hippocampus is not particularly susceptible to the effects of stress.
Collapse
Affiliation(s)
- Alexander Morales Rico
- Laboratorio de Neurofisiología Experimental, Escuela de Biología, Universidad Autónoma de Puebla , Puebla , Mexico
| | | | | | | | | | | |
Collapse
|
31
|
Boulle F, Massart R, Stragier E, Païzanis E, Zaidan L, Marday S, Gabriel C, Mocaer E, Mongeau R, Lanfumey L. Hippocampal and behavioral dysfunctions in a mouse model of environmental stress: normalization by agomelatine. Transl Psychiatry 2014; 4:e485. [PMID: 25423137 PMCID: PMC4259995 DOI: 10.1038/tp.2014.125] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/16/2014] [Accepted: 10/19/2014] [Indexed: 12/30/2022] Open
Abstract
Stress-induced alterations in neuronal plasticity and in hippocampal functions have been suggested to be involved in the development of mood disorders. In this context, we investigated in the hippocampus the activation of intracellular signaling cascades, the expression of epigenetic markers and plasticity-related genes in a mouse model of stress-induced hyperactivity and of mixed affective disorders. We also determined whether the antidepressant drug agomelatine, a MT1/MT2 melatonergic receptor agonist/5-HT2C receptor antagonist, could prevent some neurobiological and behavioral alterations produced by stress. C57BL/6J mice, exposed for 3 weeks to daily unpredictable socio-environmental stressors of mild intensity, were treated during the whole procedure with agomelatine (50 mg kg(-1) per day, intraperitoneal). Stressed mice displayed robust increases in emotional arousal, vigilance and motor activity, together with a reward deficit and a reduction in anxiety-like behavior. Neurobiological investigations showed an increased phosphorylation of intracellular signaling proteins, including Atf1, Creb and p38, in the hippocampus of stressed mice. Decreased hippocampal level of the repressive epigenetic marks HDAC2 and H3K9me2, as well as increased level of the permissive mark H3K9/14ac suggested that chronic mild stress was associated with increased gene transcription, and clear-cut evidence was further indicated by changes in neuroplasticity-related genes, including Arc, Bcl2, Bdnf, Gdnf, Igf1 and Neurod1. Together with other findings, the present data suggest that chronic ultra-mild stress can model the hyperactivity or psychomotor agitation, as well as the mixed affective behaviors often observed during the manic state of bipolar disorder patients. Interestingly, agomelatine could normalize both the behavioral and the molecular alterations induced by stress, providing further insights into the mechanism of action of this new generation antidepressant drug.
Collapse
Affiliation(s)
- F Boulle
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France,Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands,European Graduate School for Neuroscience (EURON), Maastricht, The Netherlands,Université Paris Descartes Paris 5, Paris, France
| | - R Massart
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - E Stragier
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France,UPMC, Université Paris 6, UMR S677, Paris, France
| | - E Païzanis
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France,UPMC, Université Paris 6, UMR S677, Paris, France
| | - L Zaidan
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France,UPMC, Université Paris 6, UMR S677, Paris, France
| | - S Marday
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France,UPMC, Université Paris 6, UMR S677, Paris, France
| | | | | | - R Mongeau
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France,Université Paris Descartes Paris 5, Paris, France
| | - L Lanfumey
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France,UPMC, Université Paris 6, UMR S677, Paris, France,Faculté de Médecine Pierre et Marie Curie, Site Pitié-Salpêtrière, 91, Boulevard de l'Hôpital, INSERM UMR 894, 75634 Paris, France. E-mail:
| |
Collapse
|
32
|
Yau JLW, Wheelan N, Noble J, Walker BR, Webster SP, Kenyon CJ, Ludwig M, Seckl JR. Intrahippocampal glucocorticoids generated by 11β-HSD1 affect memory in aged mice. Neurobiol Aging 2014; 36:334-43. [PMID: 25109766 PMCID: PMC4706164 DOI: 10.1016/j.neurobiolaging.2014.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/30/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022]
Abstract
11Beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) locally amplifies active glucocorticoids within specific tissues including in brain. In the hippocampus, 11β-HSD1 messenger RNA increases with aging. Here, we report significantly greater increases in intrahippocampal corticosterone (CORT) levels in aged wild-type (WT) mice during the acquisition and retrieval trials in a Y-maze than age-matched 11β-HSD1−/− mice, corresponding to impaired and intact spatial memory, respectively. Acute stress applied to young WT mice led to increases in intrahippocampal CORT levels similar to the effects of aging and impaired retrieval of spatial memory. 11β-HSD1−/− mice resisted the stress-induced memory impairment. Pharmacologic inhibition of 11β-HSD1 abolished increases in intrahippocampal CORT levels during the Y-maze trials and prevented spatial memory impairments in aged WT mice. These data provide the first in vivo evidence that dynamic increases in hippocampal 11β-HSD1 regenerated CORT levels during learning and retrieval play a key role in age- and stress-associated impairments of spatial memory. We followed intrahippocampal corticosterone (CORT) levels in mice during memory testing in a Y-maze. Aged 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1−/−) mice resists age-related spatial memory decline in the Y-maze. A lower dynamic rise in intrahippocampal CORT levels associates with better memory. Acute stress increases intrahippocampal CORT and impairs memory in young mice. 11β-HSD1 inhibition reduces intrahippocampal CORT and improves memory in aged mice.
Collapse
Affiliation(s)
- Joyce L W Yau
- Centre for Cognitive Aging and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Endocrinology Unit, British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| | - Nicola Wheelan
- Centre for Cognitive Aging and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Endocrinology Unit, British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - June Noble
- Endocrinology Unit, British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Brian R Walker
- Endocrinology Unit, British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Scott P Webster
- Endocrinology Unit, British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Christopher J Kenyon
- Endocrinology Unit, British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Mike Ludwig
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Jonathan R Seckl
- Centre for Cognitive Aging and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Endocrinology Unit, British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
33
|
Myers B, McKlveen JM, Herman JP. Glucocorticoid actions on synapses, circuits, and behavior: implications for the energetics of stress. Front Neuroendocrinol 2014; 35:180-196. [PMID: 24361584 PMCID: PMC4422101 DOI: 10.1016/j.yfrne.2013.12.003] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 12/02/2013] [Accepted: 12/06/2013] [Indexed: 01/11/2023]
Abstract
Environmental stimuli that signal real or potential threats to homeostasis lead to glucocorticoid secretion by the hypothalamic-pituitary-adrenocortical (HPA) axis. Glucocorticoids promote energy redistribution and are critical for survival and adaptation. This adaptation requires the integration of multiple systems and engages key limbic-neuroendocrine circuits. Consequently, glucocorticoids have profound effects on synaptic physiology, circuit regulation of stress responsiveness, and, ultimately, behavior. While glucocorticoids initiate adaptive processes that generate energy for coping, prolonged or inappropriate glucocorticoid secretion becomes deleterious. Inappropriate processing of stressful information may lead to energetic drive that does not match environmental demand, resulting in risk factors for pathology. Thus, dysregulation of the HPA axis may promote stress-related illnesses (e.g. depression, PTSD). This review summarizes the latest developments in central glucocorticoid actions on synaptic, neuroendocrine, and behavioral regulation. Additionally, these findings will be discussed in terms of the energetic integration of stress and the importance of context-specific regulation of glucocorticoids.
Collapse
Affiliation(s)
- Brent Myers
- Department of Psychiatry and Behavioral Neuroscience University of Cincinnati, Cincinnati, OH
| | - Jessica M McKlveen
- Department of Psychiatry and Behavioral Neuroscience University of Cincinnati, Cincinnati, OH
| | - James P Herman
- Department of Psychiatry and Behavioral Neuroscience University of Cincinnati, Cincinnati, OH
| |
Collapse
|
34
|
Grønli J, Soulé J, Bramham CR. Sleep and protein synthesis-dependent synaptic plasticity: impacts of sleep loss and stress. Front Behav Neurosci 2014; 7:224. [PMID: 24478645 PMCID: PMC3896837 DOI: 10.3389/fnbeh.2013.00224] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 12/23/2013] [Indexed: 01/08/2023] Open
Abstract
Sleep has been ascribed a critical role in cognitive functioning. Several lines of evidence implicate sleep in the consolidation of synaptic plasticity and long-term memory. Stress disrupts sleep while impairing synaptic plasticity and cognitive performance. Here, we discuss evidence linking sleep to mechanisms of protein synthesis-dependent synaptic plasticity and synaptic scaling. We then consider how disruption of sleep by acute and chronic stress may impair these mechanisms and degrade sleep function.
Collapse
Affiliation(s)
- Janne Grønli
- Department of Biological and Medical Psychology, University of Bergen Bergen, Norway ; Norwegian Competence Center for Sleep Disorders, Haukeland University Hospital Bergen, Norway
| | - Jonathan Soulé
- Department of Biological and Medical Psychology, University of Bergen Bergen, Norway
| | - Clive R Bramham
- Department of Biomedicine and KG Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| |
Collapse
|
35
|
Hennebelle M, Champeil-Potokar G, Lavialle M, Vancassel S, Denis I. Omega-3 polyunsaturated fatty acids and chronic stress-induced modulations of glutamatergic neurotransmission in the hippocampus. Nutr Rev 2014; 72:99-112. [DOI: 10.1111/nure.12088] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Marie Hennebelle
- Department of Physiology and Biophysics; University of Sherbrooke; Sherbrooke Quebec Canada
| | - Gaëlle Champeil-Potokar
- INRA; Unité de Nutrition et Régulation Lipidiques des Fonctions Cérébrales; NuRéLiCe; UR909; Jouy en Josas France
| | - Monique Lavialle
- INRA; Unité de Nutrition et Régulation Lipidiques des Fonctions Cérébrales; NuRéLiCe; UR909; Jouy en Josas France
| | - Sylvie Vancassel
- INRA; Unité de Nutrition et Neurobiologie Intégrée; UMR1286; Bordeaux France
| | - Isabelle Denis
- INRA; Unité de Nutrition et Régulation Lipidiques des Fonctions Cérébrales; NuRéLiCe; UR909; Jouy en Josas France
| |
Collapse
|
36
|
Kamal A, Ramakers GMJ, Altinbilek B, Kas MJH. Social isolation stress reduces hippocampal long-term potentiation: effect of animal strain and involvement of glucocorticoid receptors. Neuroscience 2013; 256:262-70. [PMID: 24161282 DOI: 10.1016/j.neuroscience.2013.10.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/09/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND Depressive patients show cognitive impairments that are strongly associated with cortisol levels and hippocampus functioning that interact via unknown mechanisms. In addition, a relation between depression and hippocampal synaptic plasticity was described. METHODS In the first experiment, strain-dependent effects of 72-h social isolation on long-term potentiation (LTP) in the CA1 area of the in vitro hippocampus, was determined. Extracellular field excitatory postsynaptic potentials were recorded and a brief high-frequency stimulation (100 Hz, 1s) was applied and recording resumed after the high frequency stimulation (HFS) for 30 min to determine the effect of HFS. In the second experiment we investigated the effect of 72 h of corticosterone treatment and the involvement of glucocorticoid receptors (GRs) in the effect of 72 h of social isolation on LTP in the CA1 area of hippocampus, in vitro. RESULTS Genetic background has a major effect on the level of hippocampal LTP impairment in mice following social isolation. Data showed that the potentiation levels in socially housed (SH) A/J mice were significantly higher than the SH C57BL/6J mice (224.88 ± 16.65, 131.56 ± 6.25% of the baseline values, t(9)=2.648, p=0.026). However, both strains showed depressed induction of potentiation when reared in an isolated environment for 72 h, and no significant difference was recorded between the two (112.88 ± 16.65%, and 117.91 ± 3.23% of the baseline values, respectively, t(10)=0.618, p=0.551). Social isolation increased corticosterone levels significantly and chronic corticosterone infusion in SH phenocopied the LTP impairments observed in socially isolated mice. Infusion of the GR antagonist RU38486 rescued the LTP-impairments following social isolation. CONCLUSIONS These findings support the notion that increased levels of stress hormone act via the GR on hippocampal functioning and that, in this way, the cognitive deficits in mood disorders may be restored.
Collapse
Affiliation(s)
- A Kamal
- Rudolf Magnus Institute of Neurosciences, Department of Neuroscience and Pharmacology, UMC Utrecht, Utrecht, The Netherlands; Arabian Gulf University, College of Medicine and Medical Sciences, Department of Physiology, Manama, Bahrain.
| | - G M J Ramakers
- Rudolf Magnus Institute of Neurosciences, Department of Neuroscience and Pharmacology, UMC Utrecht, Utrecht, The Netherlands
| | - B Altinbilek
- Rudolf Magnus Institute of Neurosciences, Department of Neuroscience and Pharmacology, UMC Utrecht, Utrecht, The Netherlands
| | - M J H Kas
- Rudolf Magnus Institute of Neurosciences, Department of Neuroscience and Pharmacology, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
37
|
Datson NA, van den Oever JME, Korobko OB, Magarinos AM, de Kloet ER, McEwen BS. Previous history of chronic stress changes the transcriptional response to glucocorticoid challenge in the dentate gyrus region of the male rat hippocampus. Endocrinology 2013; 154:3261-72. [PMID: 23633533 PMCID: PMC3749472 DOI: 10.1210/en.2012-2233] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic stress is a risk factor for several neuropsychiatric diseases, such as depression and psychosis. In response to stress glucocorticoids (GCs) are secreted that bind to mineralocorticoid and glucocorticoid receptors, ligand-activated transcription factors that regulate the transcription of gene networks in the brain necessary for coping with stress, recovery, and adaptation. Chronic stress particularly affects the dentate gyrus (DG) subregion of the hippocampus, causing several functional and morphological changes with consequences for learning and memory, which are likely adaptive but at the same time make DG neurons more vulnerable to subsequent challenges. The aim of this study was to investigate the transcriptional response of DG neurons to a GC challenge in male rats previously exposed to chronic restraint stress (CRS). An intriguing finding of the current study was that having a history of CRS had profound consequences for the subsequent response to acute GC challenge, differentially affecting the expression of several hundreds of genes in the DG compared with challenged nonstressed control animals. This enduring effect of previous stress exposure suggests that epigenetic processes may be involved. In line with this, CRS indeed affected the expression of several genes involved in chromatin structure and epigenetic processes, including Asf1, Ash1l, Hist1h3f, and Tp63. The data presented here indicate that CRS alters the transcriptional response to a subsequent GC injection. We propose that this altered transcriptional potential forms part of the molecular mechanism underlying the enhanced vulnerability for stress-related disorders like depression caused by chronic stress.
Collapse
Affiliation(s)
- Nicole A Datson
- Division of Medical Pharmacology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands.
| | | | | | | | | | | |
Collapse
|
38
|
Marsden WN. Synaptic plasticity in depression: molecular, cellular and functional correlates. Prog Neuropsychopharmacol Biol Psychiatry 2013; 43:168-84. [PMID: 23268191 DOI: 10.1016/j.pnpbp.2012.12.012] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 12/14/2012] [Accepted: 12/15/2012] [Indexed: 12/31/2022]
Abstract
Synaptic plasticity confers environmental adaptability through modification of the connectivity between neurons and neuronal circuits. This is achieved through changes to synapse-associated signaling systems and supported by complementary changes to cellular morphology and metabolism within the tripartite synapse. Mounting evidence suggests region-specific changes to synaptic form and function occur as a result of chronic stress and in depression. Within subregions of the prefrontal cortex (PFC) and hippocampus structural and synapse-related findings seem consistent with a deficit in long-term potentiation (LTP) and facilitation of long-term depression (LTD), particularly at excitatory pyramidal synapses. Other brain regions are less well-studied; however the amygdala may feature a somewhat opposite synaptic pathology including reduced inhibitory tone. Changes to synaptic plasticity in stress and depression may correlate those to several signal transduction pathways (e.g. NOS-NO, cAMP-PKA, Ras-ERK, PI3K-Akt, GSK-3, mTOR and CREB) and upstream receptors (e.g. NMDAR, TrkB and p75NTR). Deficits in synaptic plasticity may further correlate disrupted brain redox and bioenergetics. Finally, at a functional level region-specific changes to synaptic plasticity in depression may relate to maladapted neurocircuitry and parallel reduced cognitive control over negative emotion.
Collapse
Affiliation(s)
- W N Marsden
- Highclere Court, Woking, Surrey, GU21 2QP, UK.
| |
Collapse
|
39
|
Stress and excitatory synapses: from health to disease. Neuroscience 2013; 248:626-36. [PMID: 23727506 DOI: 10.1016/j.neuroscience.2013.05.043] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 05/01/2013] [Accepted: 05/21/2013] [Indexed: 01/20/2023]
Abstract
Individuals are exposed to stressful events in their daily life. The effects of stress on brain function ranges from highly adaptive to increasing the risk to develop psychopathology. For example, stressful experiences are remembered well which can be seen as a highly appropriate behavioral adaptation. On the other hand, stress is an important risk factor, in susceptible individuals, for depression and anxiety. An important question that remains to be addressed is how stress regulates brain function and what determines the threshold between adaptive and maladaptive responses. Excitatory synapses play a crucial role in synaptic transmission, synaptic plasticity and behavioral adaptation. In this review we discuss how brief and prolonged exposure to stress, in adulthood and early life, regulate the function of these synapses, and how these effects may contribute to behavioral adaptation and psychopathology.
Collapse
|
40
|
Polman JAE, de Kloet ER, Datson NA. Two populations of glucocorticoid receptor-binding sites in the male rat hippocampal genome. Endocrinology 2013; 154:1832-44. [PMID: 23525215 DOI: 10.1210/en.2012-2187] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the present study, genomic binding sites of glucocorticoid receptors (GR) were identified in vivo in the rat hippocampus applying chromatin immunoprecipitation followed by next-generation sequencing. We identified 2470 significant GR-binding sites (GBS) and were able to confirm GR binding to a random selection of these GBS covering a wide range of P values. Analysis of the genomic distribution of the significant GBS revealed a high prevalence of intragenic GBS. Gene ontology clusters involved in neuronal plasticity and other essential neuronal processes were overrepresented among the genes harboring a GBS or located in the vicinity of a GBS. Male adrenalectomized rats were challenged with increasing doses of the GR agonist corticosterone (CORT) ranging from 3 to 3000 μg/kg, resulting in clear differences in the GR-binding profile to individual GBS. Two groups of GBS could be distinguished: a low-CORT group that displayed GR binding across the full range of CORT concentrations, and a second high-CORT group that displayed significant GR binding only after administering the highest concentration of CORT. All validated GBS, in both the low-CORT and high-CORT groups, displayed mineralocorticoid receptor binding, which remained relatively constant from 30 μg/kg CORT upward. Motif analysis revealed that almost all GBS contained a glucocorticoid response element resembling the consensus motif in literature. In addition, motifs corresponding with new potential GR-interacting proteins were identified, such as zinc finger and BTB domain containing 3 (Zbtb3) and CUP (CG11181 gene product from transcript CG11181-RB), which may be involved in GR-dependent transactivation and transrepression, respectively. In conclusion, our results highlight the existence of 2 populations of GBS in the rat hippocampal genome.
Collapse
Affiliation(s)
- J Annelies E Polman
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | |
Collapse
|
41
|
Brossaud J, Roumes H, Moisan MP, Pallet V, Redonnet A, Corcuff JB. Retinoids and glucocorticoids target common genes in hippocampal HT22 cells. J Neurochem 2013; 125:518-31. [PMID: 23398290 DOI: 10.1111/jnc.12192] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/11/2013] [Accepted: 01/14/2013] [Indexed: 11/29/2022]
Abstract
Vitamin A metabolite retinoic acid (RA) plays a major role in the aging adult brain plasticity. Conversely, chronic excess of glucocorticoids (GC) elicits some deleterious effects in the hippocampus. We questioned here the involvement of RA and GC in the expression of target proteins in hippocampal neurons. We investigated proteins involved either in the signaling pathways [RA receptor β (RARβ) and glucocorticoid receptor (GR)] or in neuron differentiation and plasticity [tissue transglutaminase 2 (tTG) and brain-derived neurotrophic factor (BDNF)] in a hippocampal cell line, HT22. We applied RA and/or dexamethasone (Dex) as activators of the pathways and investigated mRNA and protein expression of their receptors and of tTG and BDNF as well as tTG activity and BDNF secretion. Our results confirm the involvement of RA- and GC-dependent pathways and their interaction in our neuronal cell model. First, both pathways regulate the transcription and expression of own and reciprocal receptors: RA and Dex increased RARβ and decreased GR expressions. Second, Dex reduces the expression of tTG when associated with RA despite stimulating its expression when used alone. Importantly, when they are combined, RA counteracts the deleterious effect of glucocorticoids on BDNF regulation and thus may improve neuronal plasticity under stress conditions. In conclusion, GC and RA both interact through regulations of the two receptors, RARβ and GR. Furthermore, they both act, synergistically or oppositely, on other target proteins critical for neuronal plasticity, tTG and BDNF.
Collapse
Affiliation(s)
- Julie Brossaud
- INRA, Nutrition et Neurobiologie Intégrée, UMR1286, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
42
|
Joëls M, Sarabdjitsingh RA, Karst H. Unraveling the Time Domains of Corticosteroid Hormone Influences on Brain Activity: Rapid, Slow, and Chronic Modes. Pharmacol Rev 2012; 64:901-38. [DOI: 10.1124/pr.112.005892] [Citation(s) in RCA: 305] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
43
|
Hu P, Oomen C, van Dam AM, Wester J, Zhou JN, Joëls M, Lucassen PJ. A single-day treatment with mifepristone is sufficient to normalize chronic glucocorticoid induced suppression of hippocampal cell proliferation. PLoS One 2012; 7:e46224. [PMID: 23049985 PMCID: PMC3458013 DOI: 10.1371/journal.pone.0046224] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/28/2012] [Indexed: 01/06/2023] Open
Abstract
Background Chronic stress or prolonged administration of glucocorticoids suppresses proliferation and/or survival of newborn cells in adult rat dentate gyrus. Earlier we showed that administration of the glucocorticoid receptor antagonist mifepristone during the final 4 days of a 21 days period of corticosterone treatment fully normalized the number of newborn cells. Here we aimed to better understand how mifepristone achieves this effect and questioned whether an even shorter (single day) mifepristone treatment (instead of 4 days) also suffices to normalize neurogenesis. Methods We investigated various steps of the neurogenic process, using the immunohistochemical markers BrdU, doublecortin, proliferating cell nuclear antigen as well as glial fibrillary acidic protein, after 17 or 21 days of corticosterone (versus vehicle) treatment. Results Corticosterone primarily attenuates the proliferation of cells which subsequently develop into neurons; this is fully reversed by mifepristone. Surprisingly, the corticosteroid effects on neurogenesis can even be fully re-set by a single-day treatment with mifepristone (on day 18), despite the continued corticosterone exposure on subsequent days. Conclusions Our results emphasize that studies into the therapeutical efficacy of new antidepressants, especially those targeting HPA-activity or the glucocorticoid receptor, should explore the possibility to reduce treatment duration.
Collapse
Affiliation(s)
- Pu Hu
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Charlotte Oomen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne-Marie van Dam
- VU University Medical Center, Neuroscience Campus Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, The Netherlands
| | - Jordi Wester
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Jiang-Ning Zhou
- CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Marian Joëls
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- Rudolf Magnus Institute for Neurosciences, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul J. Lucassen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
44
|
Polman JAE, Hunter RG, Speksnijder N, van den Oever JME, Korobko OB, McEwen BS, de Kloet ER, Datson NA. Glucocorticoids modulate the mTOR pathway in the hippocampus: differential effects depending on stress history. Endocrinology 2012; 153:4317-27. [PMID: 22778218 DOI: 10.1210/en.2012-1255] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glucocorticoid (GC) hormones, released by the adrenals in response to stress, are key regulators of neuronal plasticity. In the brain, the hippocampus is a major target of GC, with abundant expression of the GC receptor. GC differentially affect the hippocampal transcriptome and consequently neuronal plasticity in a subregion-specific manner, with consequences for hippocampal information flow and memory formation. Here, we show that GC directly affect the mammalian target of rapamycin (mTOR) signaling pathway, which plays a central role in translational control and has long-lasting effects on the plasticity of specific brain circuits. We demonstrate that regulators of the mTOR pathway, DNA damage-induced transcript (DDIT)4 and FK506-binding protein 51 are transcriptionally up-regulated by an acute GC challenge in the dentate gyrus (DG) subregion of the rat hippocampus, most likely via a GC-response element-driven mechanism. Furthermore, two other mTOR pathway members, the mTOR regulator DDIT4-like and the mTOR target DDIT3, are down-regulated by GC in the rat DG. Interestingly, the GC responsiveness of DDIT4 and DDIT3 was lost in animals with a recent history of chronic stress. Basal hippocampal mTOR protein levels were higher in animals exposed to chronic stress than in controls. Moreover, an acute GC challenge significantly reduced mTOR protein levels in the hippocampus of animals with a chronic stress history but not in unstressed controls. Based on these findings, we propose that direct regulation of the mTOR pathway by GC represents an important mechanism regulating neuronal plasticity in the rat DG, which changes after exposure to chronic stress.
Collapse
Affiliation(s)
- J Annelies E Polman
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University Medical Center, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Liao MJ, Lin LF, Zhou X, Zhou XW, Xu X, Cheng X, Gao Q, Luo HM. Daphnetin prevents chronic unpredictable stress-induced cognitive deficits. Fundam Clin Pharmacol 2012; 27:510-6. [PMID: 22715971 DOI: 10.1111/j.1472-8206.2012.01049.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 04/06/2012] [Accepted: 05/10/2012] [Indexed: 12/25/2022]
Abstract
Chronic exposure to stress hormones might impair cognitive functions such as learning and memory, which were associated with many mood disorders and neurodegenerative diseases. In this study, we aimed to screen for effective compounds to prevent cognitive deficits induced by chronic stress. Daphnetin was found to protect the cortical neurons against dexamethasone-induced reduction of cell viability in a dose-dependent manner in vitro. We further evaluated its effects on chronic unpredictable stress (CUS) mice in vivo. Two and 8 mg/kg administration of daphnetin could improve the performance of stress mice in Morris water maze tests and forced swimming tests. The results suggested that daphnetin might be a potent compound to treat cognitive deficits induced by CUS.
Collapse
Affiliation(s)
- Min-Jing Liao
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhao Y, Wang Z, Dai J, Chen L, Huang Y, Zhan Z. Beneficial effects of benzodiazepine diazepam on chronic stress-induced impairment of hippocampal structural plasticity and depression-like behavior in mice. Behav Brain Res 2011; 228:339-50. [PMID: 22198054 DOI: 10.1016/j.bbr.2011.12.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 12/03/2011] [Accepted: 12/06/2011] [Indexed: 01/20/2023]
Abstract
Whether benzodiazepines (BZDs) have beneficial effects on the progress of chronic stress-induced impairment of hippocampal structural plasticity and major depression is uncertain. The present study designed four preclinical experiments to determine the effects of BZDs using chronic unpredictable stress model. In Experiment 1, several time course studies on behavior and hippocampus response to stress were conducted using the forced swim and tail suspension tests (FST and TST) as well as hippocampal structural plasticity markers. Chronic stress induced depression-like behavior in the FST and TST as well as decreased hippocampal structural plasticity that returned to normal within 3 wk. In Experiment 2, mice received p.o. administration of three diazepam dosages prior to each variate stress session for 4 wk. This treatment significantly antagonized the elevation of stress-induced corticosterone levels. Only low- (0.5mg/kg) and medium-dose (1mg/kg) diazepam blocked the detrimental effects of chronic stress. In Experiment 3, after 7 wk of stress sessions, daily p.o. diazepam administration during 1 wk recovery phase dose-dependently accelerated the recovery of stressed mice. In Experiment 4, 1 wk diazepam administration to control mice enhanced significantly hippocampal structural plasticity and induced an antidepressant-like behavioral effect, whereas 4 wk diazepam administration produced opposite effects. Hence, diazepam can slow the progress of chronic stress-induced detrimental consequences by normalizing glucocorticoid hormones. Considering the adverse effect of long-term diazepam administration on hippocampal plasticity, the preventive effects of diazepam may depend on the proper dose. Short-term diazepam treatment enhances hippocampal structural plasticity and is beneficial to recovery following chronic stress.
Collapse
Affiliation(s)
- Yunan Zhao
- Key Laboratory of Brain Research, Basic Medical College, Nanjing University of Traditional Chinese Medicine, Nanjing, China.
| | | | | | | | | | | |
Collapse
|
47
|
Shahbazi M, Schmidt M, Carruth LL. Distribution and subcellular localization of glucocorticoid receptor-immunoreactive neurons in the developing and adult male zebra finch brain. Gen Comp Endocrinol 2011; 174:354-61. [PMID: 21986090 DOI: 10.1016/j.ygcen.2011.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 09/12/2011] [Accepted: 09/25/2011] [Indexed: 01/14/2023]
Abstract
Stress has long lasting effects on physiology, development, behavior, reproductive success and the survival of an individual. These effects are mediated by glucocorticoids, such as corticosterone, via glucocorticoid receptors (GR), however the exact mechanisms underlying these effects are unknown. GR have been widely studied in mammals but little is known about GR in other vertebrate groups, especially songbirds. We investigated the distribution, quantity, and subcellular-localization of GR-immunoreactive (GRir) neurons in the brains of male zebra finches on P10 (post-hatch day 10, song nuclei formed), and in adulthood (post-hatch day 90 or older) using immunohistochemistry. GRir neurons were widely distributed in the brains of male zebra finches including two song nuclei HVC (acronym is a proper name) and RA (nucleus robustus arcopallii) and brain regions including HP (hippocampal formation), BSTl (lateral part of the bed nucleus of the stria terminalis), POM (nucleus preopticus medialis), PVN (nucleus paraventricularis magnocellularis), TeO (optic tectum), S (nucleus of the solitary tract), LoC (Locus coeruleus). Distribution did not vary at the two age points examined, however there were significant differences in staining intensity. Subcellular GR-immunoreactivity patterns were classified as cytoplasmic, nuclear, or both (cytoplasmic and nuclear) and there were significant differences in the overall number of GRir neurons and neurons with both nuclear and cytoplasmic staining in P10 and adult brains. However, there were no significant differences in the percentage of subcellular GR immunoreactivity patterns between P10 and adults. Our study of GRir neuronal distribution in the zebra finch brain may contribute towards understanding of the complex and adverse effects of stress on brain during two different stages of life history.
Collapse
Affiliation(s)
- Mahin Shahbazi
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, P.O. Box 5030, Atlanta, GA 30302-5030, USA
| | | | | |
Collapse
|
48
|
Impact of glucocorticoids on brain function: relevance for mood disorders. Psychoneuroendocrinology 2011; 36:406-14. [PMID: 20382481 DOI: 10.1016/j.psyneuen.2010.03.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/10/2010] [Accepted: 03/10/2010] [Indexed: 01/13/2023]
Abstract
Exposure to stressful situations activates two hormonal systems that help the organism to adapt. On the one hand stress hormones achieve adaptation by affecting peripheral organs, on the other hand by altering brain function such that appropriate behavioral strategies are selected for optimal performance at the short term, while relevant information is stored for reference in the future. In this chapter we describe how cellular effects induced by stress hormones--in particular by glucocorticoids--may contribute to the behavioral outcome after a single stressor. In addition to situations of acute stress, chronic uncontrollable and unpredictable stress also exerts profound effects on structure and function of limbic neurons. The impact of chronic stress is not a mere cumulative effect of what is seen after acute stress exposure. Dendritic trees are expanded in some regions but reduced in others. In general, cells are exposed to a higher calcium load upon depolarization, but show attenuated responses to serotonin. Synaptic strengthening is largely impaired. In this viewpoint we speculate how cellular effects after chronic stress may be maladaptive and could contribute to the development of psychopathology in genetically vulnerable individuals.
Collapse
|
49
|
Goncharova ND, Marenin VY, Oganyan TE. Aging of the hypothalamic-pituitary-adrenal axis in nonhuman primates with depression-like and aggressive behavior. Aging (Albany NY) 2011; 2:854-66. [PMID: 21098884 PMCID: PMC3006027 DOI: 10.18632/aging.100227] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have investigated aging of the hypothalamic-pituitary-adrenal (HPA) axis in female rhesus monkeys that differ in adaptive behavior. Plasma cortisol (F) and dehydroepiandrosterone sulfate (DHEA-S) concentrations under basal conditions and under acute psycho-emotional stress were evaluated in blood plasma of young (6-8 years) and old (20-27 years) female rhesus monkeys with various types of adaptive behavior (aggressive, depression-like, and average). We have found that the age-related changes in the HPA axis of monkeys with depression-like behavior were accompanied by the maximal absolute and relative hypercortisolemia under both basal conditions and stress. Moreover, young aggressive monkeys, in comparison with young monkeys of other behavior groups, demonstrated the highest plasma levels of DHEA-S and the lowest molar ratios between F and DHEA-S. Thus, age-related dysfunctions of the HPA axis are associated with adaptive behavior of animals.
Collapse
Affiliation(s)
- Nadezhda D Goncharova
- Laboratory of Endocrinology, Research Institute of Medical Primatology of the Russian Academy of Medical Sciences, Sochi, Adler, Veseloye 1, 354376, Russian Federation.
| | | | | |
Collapse
|
50
|
Park HJ, Shim HS, Kim H, Kim KS, Lee H, Hahm DH, Shim I. Effects of Glycyrrhizae Radix on Repeated Restraint Stress-induced Neurochemical and Behavioral Responses. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:371-6. [PMID: 21311677 DOI: 10.4196/kjpp.2010.14.6.371] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 10/14/2010] [Accepted: 11/25/2010] [Indexed: 11/15/2022]
Abstract
Glycyrrhizae radix (GR) is an herbal medicine that is commonly used in the East Asia for treating a variety of diseases, including stomach disorders. The objective of the present study was to examine the anti-stress effects of GR on repeated stress-induced alterations of anxiety, learning and memory in rats. Restraint stress was administered for 14 days (2 h/day) to the rats in the Control and GR groups (400 mg/kg/day, PO). Starting on the eighth day, the rats were tested for spatial memory on the Morris water maze test (MW) and for anxiety on the elevated plus maze (EPM). We studied the changes of the expressions of cholineacetyl transferase (ChAT) and tyrosine hydroxylase (TH) in the locus coerleus (LC) using immunohistochemistry. The results showed that the rats treated with GR had significantly reduced stress-induced deficits on their learning and memory on the spatial memory tasks. In addition, the ChAT immunoreactivities were increased. Gor the EPM, treatment with GR increased the time spent in the open arms (p<0.001) as compared to that of the control group. Moreover, GR treatment also normalized the increases of the TH expression in the LC (p<0.001). In conclusion, administration of GR improved spatial learning and memory and reduced stress-induced anxiety. Thus, the present results suggest that GR has the potential to attenuate the behavioral and neurochemical impairments caused by stress.
Collapse
Affiliation(s)
- Hyun-Jung Park
- Department of Integrative Medicine and the Research Center of Behavioral Medicine, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | | | | | | | | | | | | |
Collapse
|