1
|
Domingos LB, Silva Júnior AFD, Diniz CRAF, Rosa J, Terzian ALB, Resstel LBM. P2X7 receptors modulate acquisition of cue fear extinction and contextual background memory generalization in male mice. Neuropharmacology 2024; 261:110177. [PMID: 39366651 DOI: 10.1016/j.neuropharm.2024.110177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
The purinergic P2X7 receptors (P2X7R) are activated by adenosine triphosphate (ATP) in several brain regions, particularly those involved with emotional control and the regulation of fear-related memories. Here, we investigate the role of P2X7R in fear learning memory, specifically in the acquisition and consolidation phases of the cued fear conditioning paradigm. C57Bl/6 wildtype (WT) male mice that received a single i.p. injection of the selective P2X7R antagonist A438079 prior the conditioning session showed generalization of cued fear memory and impaired fear extinction recall in the test session, while those treated prior the extinction session exhibited a similar behavior profile accompanied by resistance in the extinction learning. However, no effects were observed when this drug was administered immediately after the conditioning, extinction, or before the test session. Our results with P2X7R knockout (P2X7 KO) mice showed a behavioral profile that mirrored the collective effects observed across all pharmacological treatment conditions. This suggests that the P2X7R KO model effectively replicates the behavioral changes induced by the pharmacological interventions, demonstrating that we have successfully isolated the role of P2X7R in the fear and extinction phases of memory. These findings highlight the role of P2X7R in the acquisition and recall of extinction memory and supports P2X7R as a promising candidate for controlling abnormal fear processing, with potential applications for stress exposure-related disorders such as post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Luana Barreto Domingos
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | | | - Cassiano Ricardo Alves Faria Diniz
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Center for Neuroscience, University of California, Davis, CA, USA
| | | | - Ana Luisa B Terzian
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
2
|
Ventura S, Duncan S, Ainge JA. Increased flexibility of CA3 memory representations following environmental enrichment. Curr Biol 2024; 34:2011-2019.e7. [PMID: 38636511 DOI: 10.1016/j.cub.2024.03.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/16/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
Environmental enrichment (EE) improves memory, particularly the ability to discriminate similar past experiences.1,2,3,4,5,6 The hippocampus supports this ability via pattern separation, the encoding of similar events using dissimilar memory representations.7 This is carried out in the dentate gyrus (DG) and CA3 subfields.8,9,10,11,12 Upregulation of adult neurogenesis in the DG improves memory through enhanced pattern separation.1,2,3,4,5,6,11,13,14,15,16 Adult-born granule cells (abGCs) in DG are suggested to contribute to pattern separation by driving inhibition in regions such as CA3,13,14,15,16,17,18 leading to sparser, nonoverlapping representations of similar events (although a role for abGCs in driving excitation in the hippocampus has also been reported16). Place cells in the hippocampus contribute to pattern separation by remapping to spatial and contextual alterations to the environment.19,20,21,22,23,24,25,26,27 How spatial responses in CA3 are affected by EE and input from increased numbers of abGCs in DG is, however, unknown. Here, we investigate the neural mechanisms facilitating improved memory following EE using associative recognition memory tasks that model the automatic and integrative nature of episodic memory. We find that EE-dependent improvements in difficult discriminations are related to increased neurogenesis and sparser memory representations across the hippocampus. Additionally, we report for the first time that EE changes how CA3 place cells discriminate similar contexts. CA3 place cells of enriched rats show greater spatial tuning, increased firing rates, and enhanced remapping to contextual changes. These findings point to more precise and flexible CA3 memory representations in enriched rats, which provides a putative mechanism for EE-dependent improvements in fine memory discrimination.
Collapse
Affiliation(s)
- Silvia Ventura
- School of Psychology & Neuroscience, University of St. Andrews, St. Mary's Quad, South Street, St. Andrews, Fife, Scotland KY16 9JP, UK
| | - Stephen Duncan
- School of Psychology & Neuroscience, University of St. Andrews, St. Mary's Quad, South Street, St. Andrews, Fife, Scotland KY16 9JP, UK; School of Psychological & Brain Sciences, Indiana University, 1101 E 10th Street, Bloomington, IN 47405, USA
| | - James A Ainge
- School of Psychology & Neuroscience, University of St. Andrews, St. Mary's Quad, South Street, St. Andrews, Fife, Scotland KY16 9JP, UK.
| |
Collapse
|
3
|
Shirsath KR, Patil VK, Awathale SN, Goyal SN, Nakhate KT. Pathophysiological and therapeutic implications of neuropeptide S system in neurological disorders. Peptides 2024; 175:171167. [PMID: 38325715 DOI: 10.1016/j.peptides.2024.171167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Neuropeptide S (NPS) is a 20 amino acids-containing neuroactive molecule discovered by the reverse pharmacology method. NPS is detected in specific brain regions like the brainstem, amygdala, and hypothalamus, while its receptor (NPSR) is ubiquitously expressed in the central nervous system (CNS). Besides CNS, NPS and NPSR are also expressed in the peripheral nervous system. NPSR is a G-protein coupled receptor that primarily uses Gq and Gs signaling pathways to mediate the actions of NPS. In animal models of Parkinsonism and Alzheimer's disease, NPS exerts neuroprotective effects. NPS suppresses oxidative stress, anxiety, food intake, and pain, and promotes arousal. NPSR facilitates reward, reinforcement, and addiction-related behaviors. Genetic variation and single nucleotide polymorphism in NPSR are associated with depression, schizophrenia, rheumatoid arthritis, and asthma. NPS interacts with several neurotransmitters including glutamate, noradrenaline, serotonin, corticotropin-releasing factor, and gamma-aminobutyric acid. It also modulates the immune system via augmenting pro-inflammatory cytokines and plays an important role in the pathogenesis of rheumatoid arthritis and asthma. In the present review, we discussed the distribution profile of NPS and NPSR, signaling pathways, and their importance in the pathophysiology of various neurological disorders. We have also proposed the areas where further investigations on the NPS system are warranted.
Collapse
Affiliation(s)
- Kamini R Shirsath
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Vaishnavi K Patil
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sanjay N Awathale
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sameer N Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India.
| |
Collapse
|
4
|
Vasudevan K, Hassell JE, Maren S. Hippocampal Engrams and Contextual Memory. ADVANCES IN NEUROBIOLOGY 2024; 38:45-66. [PMID: 39008010 DOI: 10.1007/978-3-031-62983-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Memories are not formed in a vacuum and often include rich details about the time and place in which events occur. Contextual stimuli promote the retrieval of events that have previously occurred in the encoding context and limit the retrieval of context-inappropriate information. Contexts that are associated with traumatic or harmful events both directly elicit fear and serve as reminders of aversive events associated with trauma. It has long been appreciated that the hippocampus is involved in contextual learning and memory and is central to contextual fear conditioning. However, little is known about the underlying neuronal mechanisms underlying the encoding and retrieval of contextual fear memories. Recent advancements in neuronal labeling methods, including activity-dependent tagging of cellular ensembles encoding memory ("engrams"), provide unique insight into the neural substrates of memory in the hippocampus. Moreover, these methods allow for the selective manipulation of memory ensembles. Attenuating or erasing fear memories may have considerable therapeutic value for patients with post-traumatic stress disorder or other trauma- or stressor-related conditions. In this chapter, we review the role of the hippocampus in contextual fear conditioning in rodents and explore recent work implicating hippocampal ensembles in the encoding and retrieval of aversive memories.
Collapse
Affiliation(s)
- Krithika Vasudevan
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - James E Hassell
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
5
|
Dorst KE, Ramirez S. Engrams: From Behavior to Brain-Wide Networks. ADVANCES IN NEUROBIOLOGY 2024; 38:13-28. [PMID: 39008008 DOI: 10.1007/978-3-031-62983-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Animals utilize a repertoire of behavioral responses during everyday experiences. During a potentially dangerous encounter, defensive actions such as "fight, flight, or freeze" are selected for survival. The successful use of behavior is determined by a series of real-time computations combining an animal's internal (i.e., body) and external (i.e., environment) state. Brain-wide neural pathways are engaged throughout this process to detect stimuli, integrate information, and command behavioral output. The hippocampus, in particular, plays a role in the encoding and storing of the episodic information surrounding these encounters as putative "engram" or experience-modified cellular ensembles. Recalling a negative experience then reactivates a dedicated engram ensemble and elicits a behavioral response. How hippocampus-based engrams modulate brain-wide states and an animal's internal/external milieu to influence behavior is an exciting area of investigation for contemporary neuroscience. In this chapter, we provide an overview of recent technological advancements that allow researchers to tag, manipulate, and visualize putative engram ensembles, with an overarching goal of casually connecting their brain-wide underpinnings to behavior. We then discuss how hippocampal fear engrams alter behavior in a manner that is contingent on an environment's physical features as well as how they influence brain-wide patterns of cellular activity. Overall, we propose here that studies on memory engrams offer an exciting avenue for contemporary neuroscience to casually link the activity of cells to cognition and behavior while also offering testable theoretical and experimental frameworks for how the brain organizes experience.
Collapse
Affiliation(s)
- Kaitlyn E Dorst
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
| | - Steve Ramirez
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA.
| |
Collapse
|
6
|
Leite AKO, Farias CP, Schmidt BE, Teixeira L, Rieder AS, Furini CRG, Wyse ATS. The Post-conditioning Acute Strength Exercise Facilitates Contextual Fear Memory Consolidation Via Hippocampal N-methyl-D-aspartate-receptors. Neuroscience 2023; 535:88-98. [PMID: 37925051 DOI: 10.1016/j.neuroscience.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023]
Abstract
The benefits of aerobic exercises for memory are known, but studies of strength training on memory consolidation are still scarce. Exercise stimulates the release of metabolites and myokines that reaching the brain stimulate the activation of NMDA-receptors and associated pathways related to cognition and synaptic plasticity. The aim of the present study was to investigate whether the acute strength exercise could promote the consolidation of a weak memory. We also investigated whether the effects of strength exercise on memory consolidation and on the BDNF and synapsin I levels depends on the activation of NMDA-receptors. Male Wistar rats were submitted to strength exercise session after a weak training in contextual fear conditioning paradigm to investigate the induction of memory consolidation. To investigate the participation of NMDA-receptors animals were submitted to contextual fear training and strength exercise and infused with MK801 or saline immediately after exercise. To investigate the participation of NMDA-receptors in BDNF and synapsin I levels the animals were submitted to acute strength exercise and infused with MK801 or saline immediately after exercise (in absence of behavior experiment). Results showed that exercise induced the consolidation of a weak memory and this effect was dependent on the activation of NMDA-receptors. The hippocampal overexpression of BDNF and Synapsin I through exercise where NMDA-receptors dependent. Our findings showed that strength exercise strengthened fear memory consolidation and modulates the overexpression of BDNF and synapsin I through the activation of NMDA-receptors dependent signaling pathways.
Collapse
Affiliation(s)
- Ana Karla Oliveira Leite
- Postgraduate Program in Translational Neuroscience, PGNET, National Institute of Translational Neuroscience, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Clarissa Penha Farias
- Postgraduate Program in Translational Neuroscience, PGNET, National Institute of Translational Neuroscience, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Bianca Estefani Schmidt
- Postgraduate Program in Translational Neuroscience, PGNET, National Institute of Translational Neuroscience, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Lucas Teixeira
- Neuroprotection and Neurometabolic Diseases Laboratory (Wyse's Lab), Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Alessandra Schmitt Rieder
- Neuroprotection and Neurometabolic Diseases Laboratory (Wyse's Lab), Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cristiane R G Furini
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Postgraduate Program in Translational Neuroscience, PGNET, National Institute of Translational Neuroscience, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Neuroprotection and Neurometabolic Diseases Laboratory (Wyse's Lab), Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
7
|
Xu Y, Cui TL, Li JY, Chen B, Wang JH. Associative memory neurons of encoding multi-modal signals are recruited by neuroligin-3-mediated new synapse formation. eLife 2023; 12. [DOI: doi.org/10.7554/elife.87969.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
The joint storage and reciprocal retrieval of learnt associated signals are presumably encoded by associative memory cells. In the accumulation and enrichment of memory contents in lifespan, a signal often becomes a core signal associatively shared for other signals. One specific group of associative memory neurons that encode this core signal likely interconnects multiple groups of associative memory neurons that encode these other signals for their joint storage and reciprocal retrieval. We have examined this hypothesis in a mouse model of associative learning by pairing the whisker tactile signal sequentially with the olfactory signal, the gustatory signal, and the tail-heating signal. Mice experienced this associative learning show the whisker fluctuation induced by olfactory, gustatory, and tail-heating signals, or the other way around, that is, memories to multi-modal associated signals featured by their reciprocal retrievals. Barrel cortical neurons in these mice become able to encode olfactory, gustatory, and tail-heating signals alongside the whisker signal. Barrel cortical neurons interconnect piriform, S1-Tr, and gustatory cortical neurons. With the barrel cortex as the hub, the indirect activation occurs among piriform, gustatory, and S1-Tr cortices for the second-order associative memory. These associative memory neurons recruited to encode multi-modal signals in the barrel cortex for associative memory are downregulated by neuroligin-3 knockdown. Thus, associative memory neurons can be recruited as the core cellular substrate to memorize multiple associated signals for the first-order and the second-order of associative memories by neuroligin-3-mediated synapse formation, which constitutes neuronal substrates of cognitive activities in the field of memoriology.
Collapse
Affiliation(s)
- Yang Xu
- College of Life Science, University of Chinese Academy of Sciences
| | - Tian-liang Cui
- College of Life Science, University of Chinese Academy of Sciences
| | - Jia-yi Li
- College of Life Science, University of Chinese Academy of Sciences
| | - Bingchen Chen
- College of Life Science, University of Chinese Academy of Sciences
| | - Jin-Hui Wang
- College of Life Science, University of Chinese Academy of Sciences
| |
Collapse
|
8
|
Xu Y, Cui TL, Li JY, Chen B, Wang JH. Associative memory neurons of encoding multi-modal signals are recruited by neuroligin-3-mediated new synapse formation. eLife 2023; 12:RP87969. [PMID: 38047770 PMCID: PMC10695560 DOI: 10.7554/elife.87969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
The joint storage and reciprocal retrieval of learnt associated signals are presumably encoded by associative memory cells. In the accumulation and enrichment of memory contents in lifespan, a signal often becomes a core signal associatively shared for other signals. One specific group of associative memory neurons that encode this core signal likely interconnects multiple groups of associative memory neurons that encode these other signals for their joint storage and reciprocal retrieval. We have examined this hypothesis in a mouse model of associative learning by pairing the whisker tactile signal sequentially with the olfactory signal, the gustatory signal, and the tail-heating signal. Mice experienced this associative learning show the whisker fluctuation induced by olfactory, gustatory, and tail-heating signals, or the other way around, that is, memories to multi-modal associated signals featured by their reciprocal retrievals. Barrel cortical neurons in these mice become able to encode olfactory, gustatory, and tail-heating signals alongside the whisker signal. Barrel cortical neurons interconnect piriform, S1-Tr, and gustatory cortical neurons. With the barrel cortex as the hub, the indirect activation occurs among piriform, gustatory, and S1-Tr cortices for the second-order associative memory. These associative memory neurons recruited to encode multi-modal signals in the barrel cortex for associative memory are downregulated by neuroligin-3 knockdown. Thus, associative memory neurons can be recruited as the core cellular substrate to memorize multiple associated signals for the first-order and the second-order of associative memories by neuroligin-3-mediated synapse formation, which constitutes neuronal substrates of cognitive activities in the field of memoriology.
Collapse
Affiliation(s)
- Yang Xu
- College of Life Science, University of Chinese Academy of SciencesBeijingChina
| | - Tian-liang Cui
- College of Life Science, University of Chinese Academy of SciencesBeijingChina
| | - Jia-yi Li
- College of Life Science, University of Chinese Academy of SciencesBeijingChina
| | - Bingchen Chen
- College of Life Science, University of Chinese Academy of SciencesBeijingChina
| | - Jin-Hui Wang
- College of Life Science, University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
9
|
Weber BL, Nicodemus MM, Hite AK, Spalding IR, Beaver JN, Scrimshaw LR, Kassis SK, Reichert JM, Ford MT, Russell CN, Hallal EM, Gilman TL. Heterotypic Stressors Unmask Behavioral Influences of PMAT Deficiency in Mice. Int J Mol Sci 2023; 24:16494. [PMID: 38003684 PMCID: PMC10671398 DOI: 10.3390/ijms242216494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Certain life stressors having enduring physiological and behavioral consequences, in part by eliciting dramatic signaling shifts in monoamine neurotransmitters. High monoamine levels can overwhelm selective transporters like the serotonin transporter. This is when polyspecific transporters like plasma membrane monoamine transporter (PMAT, Slc29a4) are hypothesized to contribute most to monoaminergic signaling regulation. Here, we employed two distinct counterbalanced stressors-fear conditioning and swim stress-in mice to systematically determine how reductions in PMAT function affect heterotypic stressor responsivity. We hypothesized that male heterozygotes would exhibit augmented stressor responses relative to female heterozygotes. Decreased PMAT function enhanced context fear expression, an effect unexpectedly obscured by a sham stress condition. Impaired cued fear extinction retention and enhanced context fear expression in males were conversely unmasked by a sham swim condition. Abrogated corticosterone levels in male heterozygotes that underwent swim stress after context fear conditioning did not map onto any measured behaviors. In sum, male heterozygous mouse fear behaviors proved malleable in response to preceding stressor or sham stress exposure. Combined, these data indicate that reduced male PMAT function elicits a form of stress-responsive plasticity. Future studies should assess how PMAT is differentially affected across sexes and identify downstream consequences of the stress-shifted corticosterone dynamics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - T. Lee Gilman
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH 44240, USA
| |
Collapse
|
10
|
Weber BL, Nicodemus MM, Hite AK, Spalding IR, Beaver JN, Scrimshaw LR, Kassis SK, Reichert JM, Ford MT, Russell CN, Hallal EM, Gilman TL. Heterotypic stressors unmask behavioral influences of PMAT deficiency in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555632. [PMID: 37693400 PMCID: PMC10491137 DOI: 10.1101/2023.08.30.555632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Certain life stressors having enduring physiological and behavioral consequences, in part by eliciting dramatic signaling shifts in monoamine neurotransmitters. High monoamine levels can overwhelm selective transporters like the serotonin transporter. This is when polyspecific transporters like plasma membrane monoamine transporter (PMAT, Slc29a4) are hypothesized to contribute most to monoaminergic signaling regulation. Here, we employed two distinct counterbalanced stressors - fear conditioning, and swim stress - in mice to systematically determine how reductions in PMAT function affect heterotypic stressor responsivity. We hypothesized male heterozygotes would exhibit augmented stressor responses relative to female heterozygotes. Decreased PMAT function enhanced context fear expression, an effect unexpectedly obscured by a sham stress condition. Impaired cued fear extinction retention and enhanced context fear expression in males were conversely unmasked by a sham swim condition. Abrogated corticosterone levels in male heterozygotes that underwent swim stress after context fear conditioning did not map on to any measured behaviors. In sum, male heterozygous mouse fear behaviors proved malleable in response to preceding stressor or sham stress exposure. Combined, these data indicate reduced male PMAT function elicits a form of stress-responsive plasticity. Future studies should assess how PMAT is differentially affected across sexes and identify downstream consequences of the stress-shifted corticosterone dynamics.
Collapse
Affiliation(s)
- Brady L Weber
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Marissa M Nicodemus
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Allianna K Hite
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Isabella R Spalding
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Jasmin N Beaver
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Lauren R Scrimshaw
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Sarah K Kassis
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Julie M Reichert
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Matthew T Ford
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Cameron N Russell
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Elayna M Hallal
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - T Lee Gilman
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| |
Collapse
|
11
|
Crestani AP, Cicvaric A, Yiu AP. Editorial: New insights into synaptic plasticity in fear conditioning. Front Synaptic Neurosci 2023; 15:1270701. [PMID: 37779862 PMCID: PMC10535560 DOI: 10.3389/fnsyn.2023.1270701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Affiliation(s)
- Ana P. Crestani
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Ana Cicvaric
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | | |
Collapse
|
12
|
Hill A, Johnston C, Agranoff I, Gavade S, Spencer-Segal J. Corticosterone enhances formation of non-fear but not fear memory during infectious illness. Front Behav Neurosci 2023; 17:1144173. [PMID: 37091592 PMCID: PMC10118046 DOI: 10.3389/fnbeh.2023.1144173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction Survivors of critical illness are at high risk of developing post-traumatic stress disorder (PTSD) but administration of glucocorticoids during the illness can lower that risk. The mechanism is not known but may involve glucocorticoid modulation of hippocampal- and amygdala-dependent memory formation. In this study, we sought to determine whether glucocorticoids given during an acute illness influence the formation and persistence of fear and non-fear memories from the time of the illness. Methods We performed cecal ligation and puncture in male and female mice to induce an acute infectious illness. During the illness, mice were introduced to a neutral object in their home cage and separately underwent contextual fear conditioning. We then tested the persistence of object and fear memories after recovery. Results Glucocorticoid treatment enhanced object discrimination but did not alter the expression of contextual fear memory. During context re-exposure, neural activity was elevated in the dentate gyrus irrespective of fear conditioning. Conclusions Our results suggest that glucocorticoids given during illness enhance hippocampal-dependent non-fear memory processes. This indicates that PTSD outcomes in critically ill patients may be improved by enhancing non-fear memories from the time of their illness.
Collapse
Affiliation(s)
- Alice Hill
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Colin Johnston
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Isaac Agranoff
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Swapnil Gavade
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Joanna Spencer-Segal
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
13
|
Parsons MH, Stryjek R, Bebas P, Fendt M, Blumstein DT, Kiyokawa Y, Chrzanowski MM, Munshi-South J. Why are predator cues in the field not more evocative? A ‘real world’ assay elicits subtle, but meaningful, responses by wild rodents to predator scents. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1054568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mismatches between highly-standardized laboratory predatory assays and more realistic environmental conditions may lead to different outcomes. Understanding rodents’ natural responses to predator scents is important. Thus, field studies on the same and related species are essential to corroborate laboratory findings to better understand the contexts and motivational drives that affect laboratory responses to predator scents. However, there are too few field assays to enable researchers to study factors that influence these responses in genetically variable populations of wild rodents. Therefore, we placed laboratory-style chambers and remote-sensing devices near multiple colonies of two species of wild mice (Apodemus agrarius and Apodemus flavicollis) to test dual-motivational drives (appetitive and aversive) in a ‘familiar’, yet natural environment. A highly-palatable food reward was offered daily alongside scents from coyotes, lions, rabbits, and both wet and dry controls. In all but two instances (n = 264), animals entered chambers and remained inside for several minutes. Animals initiated flight twice, but they never froze. Rather, they visited chambers more often and stayed inside longer when predatory scents were deployed. The total time spent inside was highest for lion urine (380% longer than the dry control), followed by coyote scent (75% longer), dry control and lastly, herbivore scents (no difference). Once inside the chamber, animals spent more time physically interacting with predatory scents than the herbivore scent or controls. Our findings support the common assumption that rodents fail to respond as overtly to predatory scents in the field compared to what has been observed in the laboratory, possibly due to their varying motivational levels to obtain food. More time spent interacting with scents in the field was likely a function of ‘predator inspection’ (risk assessment) once subjects were in a presumed safe enclosure. We conclude this sort of chamber assay can be useful in understanding the contexts and motivational drives inherent to field studies, and may help interpret laboratory results. Our results also suggest more attention should be given to subtle behaviors such as scent inspection in order to better understand how, and when, environmental stimuli evoke fear in rodents.
Collapse
|
14
|
Newsome P, Ruiz SG, Gold AL, Pine DS, Abend R. Fear-potentiated startle reveals diminished threat extinction in pathological anxiety. Int J Psychophysiol 2023; 183:81-91. [PMID: 36442665 PMCID: PMC9812922 DOI: 10.1016/j.ijpsycho.2022.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 10/13/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Major theories propose that perturbed threat learning is central to pathological anxiety, but empirical support is inconsistent. Failures to detect associations with anxiety may reflect limitations in quantifying conditioned responses to anticipated threat, and hinder translation of theory into empirical work. In prior work, we could not detect threat-specific anxiety effects on states of conditioned threat using psychophysiology in a large sample of patients and healthy comparisons. Here, we examine the utility of an alternative fear potentiated startle (FPS) scoring in revealing associations between anxiety and threat conditioning and extinction in this dataset. Secondary analyses further explored associations among conditioned threat responses, subcortical morphometry, and treatment outcomes. METHODS Youths and adults with anxiety disorders and healthy comparisons (n = 306; 178 female participants; 8-50 years) previously completed a well-validated differential threat learning paradigm. FPS and skin conductance response (SCR) quantified psychophysiological responses during threat conditioning and extinction. In this report, we examined normalizing raw FPS scores to intertrial intervals (ITI) to address challenges in more common approaches to FPS scoring which could mask group effects. Secondary analyses examined associations between FPS and subcortical morphometry and with response to exposure-based cognitive behavioral therapy in a subsample of patients. RESULTS Patients and comparisons showed comparable differential threat conditioning using FPS and SCR. While SCR suggested comparable extinction between groups, FPS revealed stronger retention of threat contingency during extinction in individuals with anxiety disorders. Extinction indexed with FPS was not associated with age, morphometry, or anxiety treatment outcome. CONCLUSION ITI-normalized FPS may have utility in detecting difficulties in extinguishing conditioned threat responses in anxiety. These findings provide support for extinction theories of anxiety and encourage continued research on aberrant extinction in pathological anxiety.
Collapse
Affiliation(s)
- Philip Newsome
- Emotion and Development Branch, National Institute of Mental Health (NIMH), National Institutes of Health, Bethesda, MD, USA
| | - Sonia G Ruiz
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Andrea L Gold
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Daniel S Pine
- Emotion and Development Branch, National Institute of Mental Health (NIMH), National Institutes of Health, Bethesda, MD, USA
| | - Rany Abend
- Baruch Ivcher School of Psychology, Reichman University, Israel.
| |
Collapse
|
15
|
Adkins JM, Halcomb CJ, Rogers D, Jasnow AM. Stress and sex-dependent effects on conditioned inhibition of fear. Learn Mem 2022; 29:246-255. [PMID: 36206391 PMCID: PMC9488025 DOI: 10.1101/lm.053508.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/10/2022] [Indexed: 10/14/2022]
Abstract
Anxiety and stress-related disorders are highly prevalent and are characterized by excessive fear to threatening and nonthreatening stimuli. Moreover, there is a large sex bias in vulnerability to anxiety and stress-related disorders-women make up a disproportionately larger number of affected individuals compared with men. Growing evidence suggests that an impaired ability to suppress fear in the presence of safety signals may in part contribute to the development and maintenance of many anxiety and stress-related disorders. However, the sex-dependent impact of stress on conditioned inhibition of fear remains unclear. The present study investigated sex differences in the acquisition and recall of conditioned inhibition in male and female mice with a focus on understanding how stress impacts fear suppression. In these experiments, the training context served as the "fear" cue and an explicit tone served as the "safety" cue. Here, we found a possible sex difference in the training requirements for safety learning, although this effect was not consistent across experiments. Reductions in freezing to the safety cue in female mice were also not due to alternative fear behavior expression such as darting. Next, using footshock as a stressor, we found that males were impaired in conditioned inhibition of freezing when the stress was experienced before, but not after, conditioned inhibition training. Females were unaffected by footshock stress when it was administered at either time. Extended conditioned inhibition training in males eliminated the deficit produced by footshock stress. Finally, exposing male and female mice to swim stress impaired safety learning in male mice only. Thus, we found sex × stress interactions in the learning of conditioned inhibition and sex-dependent effects of stress modality. The present study adds to the growing literature on sex differences in safety learning, which will be critical for developing sex-specific therapies for a variety of fear-related disorders that involve excessive fear and/or impaired fear inhibition.
Collapse
Affiliation(s)
- Jordan M Adkins
- Department of Psychological Sciences, Brain Health Research Institute, Kent State University, Kent, Ohio 44242, USA
| | - Carly J Halcomb
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29209, USA
| | - Danielle Rogers
- Department of Psychological Sciences, Brain Health Research Institute, Kent State University, Kent, Ohio 44242, USA
| | - Aaron M Jasnow
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29209, USA
| |
Collapse
|
16
|
|
17
|
Sachella TE, Ihidoype MR, Proulx CD, Pafundo DE, Medina JH, Mendez P, Piriz J. A novel role for the lateral habenula in fear learning. Neuropsychopharmacology 2022; 47:1210-1219. [PMID: 35217797 PMCID: PMC9018839 DOI: 10.1038/s41386-022-01294-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 02/02/2023]
Abstract
Fear is an extreme form of aversion that underlies pathological conditions such as panic or phobias. Fear conditioning (FC) is the best-understood model of fear learning. In FC the context and a cue are independently associated with a threatening unconditioned stimulus (US). The lateral habenula (LHb) is a general encoder of aversion. However, its role in fear learning remains poorly understood. Here we studied in rats the role of the LHb in FC using optogenetics and pharmacological tools. We found that inhibition or activation of the LHb during entire FC training impaired both cued and contextual FC. In contrast, optogenetic inhibition of the LHb restricted to cue and US presentation impaired cued but not contextual FC. In either case, simultaneous activation of contextual and cued components of FC, by the presentation of the cue in the training context, recovered the conditioned fear response. Our results support the notion that the LHb is required for the formation of independent contextual and cued fear memories, a previously uncharacterized function for this structure, that could be critical in fear generalization.
Collapse
Affiliation(s)
- Tomas E. Sachella
- grid.423606.50000 0001 1945 2152Instituto de Fisiología y Biofísica “Bernardo Houssay” (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marina R. Ihidoype
- grid.423606.50000 0001 1945 2152Instituto de Fisiología y Biofísica “Bernardo Houssay” (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Christophe D. Proulx
- grid.23856.3a0000 0004 1936 8390CERVO Brain Research Center, Department of Psychiatry and Neurosciences, Université Laval, Quebec City, Quebec Canada
| | - Diego E. Pafundo
- grid.423606.50000 0001 1945 2152Instituto de Fisiología y Biofísica “Bernardo Houssay” (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jorge H. Medina
- grid.423606.50000 0001 1945 2152Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina ,grid.441574.70000000090137393Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| | - Pablo Mendez
- grid.419043.b0000 0001 2177 5516Instituto Cajal, CSIC, Madrid, España
| | - Joaquin Piriz
- Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina. .,Instituto de Fisiología Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
18
|
Narvaes RF, Nachtigall EG, Marcondes LA, Izquierdo I, Myskiw JDC, Furini CR. Involvement of medial prefrontal cortex canonical Wnt/β-catenin and non-canonical Wnt/Ca2+ signaling pathways in contextual fear memory in male rats. Behav Brain Res 2022; 430:113948. [DOI: 10.1016/j.bbr.2022.113948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 04/25/2022] [Accepted: 05/24/2022] [Indexed: 11/02/2022]
|
19
|
Abstract
SignificanceAnxiety disorders are among the most prevalent mental illnesses worldwide. Despite significant advances in their treatment, many patients remain treatment resistant. Thus, new treatment modalities and targets are much needed. Therefore, we developed a deep brain stimulation therapy that targets a recently identified anxiety center in the lateral hypothalamus. We show that this therapy rapidly silences anxiety-implicated neurons and immediately relieves diverse anxiety symptoms in a variety of stressful situations. This therapeutic effect occurs without acute or chronic side effects that are typical of many existing treatments, such as physical sedation or memory deficits. These findings identify a clinically applicable new therapeutic strategy for helping patients to manage treatment-resistant anxiety.
Collapse
|
20
|
O'Leary TP, Brown RE. Visuo-spatial learning and memory impairments in the 5xFAD mouse model of Alzheimer's disease: Effects of age, sex, albinism, and motor impairments. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12794. [PMID: 35238473 PMCID: PMC9744519 DOI: 10.1111/gbb.12794] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022]
Abstract
The 5xFAD mouse model of Alzheimer's disease (AD) rapidly develops AD-related neuro-behavioral pathology. Learning and memory impairments in 5xFAD mice, however, are not always replicated and the size of impairments varies considerably across studies. To examine possible sources of this variability, we analyzed the effects of age, sex, albinism due to background genes (Tyrc , Oca2p ) and motor impairment on learning and memory performance of wild type and 5xFAD mice on the Morris water maze, from 3 to 15 months of age. The 5xFAD mice showed impaired learning at 6-9 months of age, but memory impairments were not detected with the test procedure used in this study. Performance of 5xFAD mice was profoundly impaired at 12-15 months of age, but was accompanied by slower swim speeds than wild-type mice and a frequent failure to locate the escape platform. Overall female mice performed worse than males, and reversal learning impairments in 5xFAD mice were more pronounced in females than males. Albino mice performed worse than pigmented mice, confirming that albinism can impair performance of 5xFAD mice independently of AD-related transgenes. Overall, these results show that 5xFAD mice have impaired learning performance at 6-9 months of age, but learning and memory performance at 12-15 months is confounded with motor impairments. Furthermore, sex and albinism should be controlled to provide an accurate assessment of AD-related transgenes on learning and memory. These results will help reduce variability across pre-clinical experiments with 5xFAD mice, and thus enhance the reliability of studies developing new therapeutics for AD.
Collapse
Affiliation(s)
- Timothy P. O'Leary
- Department of Psychology and NeuroscienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Richard E. Brown
- Department of Psychology and NeuroscienceDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
21
|
Lyon KA, Allen NJ. From Synapses to Circuits, Astrocytes Regulate Behavior. Front Neural Circuits 2022; 15:786293. [PMID: 35069124 PMCID: PMC8772456 DOI: 10.3389/fncir.2021.786293] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/05/2021] [Indexed: 12/21/2022] Open
Abstract
Astrocytes are non-neuronal cells that regulate synapses, neuronal circuits, and behavior. Astrocytes ensheath neuronal synapses to form the tripartite synapse where astrocytes influence synapse formation, function, and plasticity. Beyond the synapse, recent research has revealed that astrocyte influences on the nervous system extend to the modulation of neuronal circuitry and behavior. Here we review recent findings on the active role of astrocytes in behavioral modulation with a focus on in vivo studies, primarily in mice. Using tools to acutely manipulate astrocytes, such as optogenetics or chemogenetics, studies reviewed here have demonstrated a causal role for astrocytes in sleep, memory, sensorimotor behaviors, feeding, fear, anxiety, and cognitive processes like attention and behavioral flexibility. Current tools and future directions for astrocyte-specific manipulation, including methods for probing astrocyte heterogeneity, are discussed. Understanding the contribution of astrocytes to neuronal circuit activity and organismal behavior will be critical toward understanding how nervous system function gives rise to behavior.
Collapse
Affiliation(s)
- Krissy A Lyon
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Nicola J Allen
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
22
|
Pantoni MM, Kim JL, Van Alstyne KR, Anagnostaras SG. MDMA and memory, addiction, and depression: dose-effect analysis. Psychopharmacology (Berl) 2022; 239:935-949. [PMID: 35179622 PMCID: PMC8891111 DOI: 10.1007/s00213-022-06086-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/07/2022] [Indexed: 12/17/2022]
Abstract
RATIONALE ±3,4-Methylenedioxymethamphetamine (MDMA) is a recreational drug that shows substantial promise as a psychotherapeutic agent. Still, there is some concern regarding its behavioral toxicity, and its dose-effect relationship is poorly understood. We previously explored the role of dose in the cognitive effects of MDMA in a systematic review of existing literature and found no evidence in animals that MDMA impairs memory at low doses (< 3 mg/kg) but mixed results at high doses (≥ 3 mg/kg). Since this review comprised mostly of single-dose studies and an assortment of methodologies, an empirical dose-ranging study on this topic is warranted. OBJECTIVES The current study aims to evaluate the conclusion from our systematic review that 3 mg/kg may be the threshold for MDMA-induced amnesia, and to further understand the dose-effect relationship of MDMA on behavioral assays of memory, addiction, and depression. METHODS We systematically examined the effects of 0.01 to 10 mg/kg MDMA on Pavlovian fear conditioning; behavioral sensitization, conditioned place preference, and conditioned responding; and the Porsolt forced swim test in mice. RESULTS High doses of MDMA (≥ 3 mg/kg) produced amnesia of fear conditioning memory, some evidence of an addictive potential, and antidepressant effects, while low doses of MDMA (≤ 1 mg/kg) had no effect on these behaviors. CONCLUSIONS The present dose-ranging study provides further evidence that 3 mg/kg is the threshold for MDMA-induced amnesia. These findings, in addition to our systematic review, demonstrate that careful selection of MDMA dose is critical. High doses (≥ 3 mg/kg) should likely be avoided due to evidence that they can produce amnesia and addiction. Conversely, there is little evidence to suggest that low doses, which are usually administered in clinical studies (approximately 1-2 mg/kg), will lead to these same adverse effects. Ultra-low doses (< 1 mg/kg) are likely even safer and should be investigated for therapeutic effects in future studies.
Collapse
Affiliation(s)
- Madeline M. Pantoni
- grid.266100.30000 0001 2107 4242Molecular Cognition Laboratory, Department of Psychology, University of California San Diego, La Jolla, CA USA ,grid.266102.10000 0001 2297 6811Translational Psychedelic Research Program, Department of Psychiatry and Behavioral Sciences, University of California San Francisco, CA San Francisco, USA
| | - Jinah L. Kim
- grid.266100.30000 0001 2107 4242Molecular Cognition Laboratory, Department of Psychology, University of California San Diego, La Jolla, CA USA
| | - Kaitlin R. Van Alstyne
- grid.266100.30000 0001 2107 4242Molecular Cognition Laboratory, Department of Psychology, University of California San Diego, La Jolla, CA USA
| | - Stephan G. Anagnostaras
- grid.266100.30000 0001 2107 4242Molecular Cognition Laboratory, Department of Psychology, University of California San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Molecular Cognition Laboratory, Program in Neurosciences, University of California San Diego, La Jolla, CA USA
| |
Collapse
|
23
|
Differential Effects of Lateral and Medial Entorhinal Cortex Lesions on Trace, Delay and Contextual Fear Memories. Brain Sci 2021; 12:brainsci12010034. [PMID: 35053778 PMCID: PMC8773659 DOI: 10.3390/brainsci12010034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 11/20/2022] Open
Abstract
The entorhinal cortex (EC), with connections to the hippocampus, amygdala, and neocortex, is a critical, yet still underexplored, contributor to fear memory. Previous research suggests possible heterogeneity of function among its lateral (LEC) and medial (MEC) subregions. However, it is not well established what unique roles these subregions serve as the literature has shown mixed results depending on target of manipulation and type of conditioning used. Few studies have manipulated both the LEC and MEC within the same experiment. The present experiment systematically manipulated LEC and MEC function to examine their potential roles in fear memory expression. Long-Evans rats were trained using either trace or delay fear conditioning. The following day, rats received an N-methyl-D-aspartate (NMDA)-induced lesion to the LEC or MEC or received a sham surgery. Following recovery, rats were given an 8-min context test in the original context. The next day, rats were tested for tone freezing in a novel context with three discrete tone presentations. Further, rats were tested for hyperactivity in an open field under both dark and bright light gradient conditions. Results: Following either LEC or MEC lesion, freezing to context was significantly reduced in both trace and delay conditioned rats. LEC-lesioned rats consistently showed significantly less freezing following tone-offset (trace interval, or equivalent, and intertrial interval) in both trace and delay fear conditioned rats. Conclusions: These data suggest that the LEC may play a role in the expression of a conjunctive representation between the tone and context that mediates the maintenance of post-tone freezing.
Collapse
|
24
|
Prati JM, Guilherme EM, de Russo TL, Gianlorenço ACL. Neuronal activation of cerebellum functional circuits in motor and non-motor functions in mice. Neurosci Lett 2021; 765:136271. [PMID: 34597707 DOI: 10.1016/j.neulet.2021.136271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
The cerebellum is involved in the control of balance, movement and the acquisition of motor skills. Scientific and technological advances have shown that the cerebellum also participates in non-motor functions, such as emotional control, memory and language. However, which cerebellar areas and functional circuits are predominantly activated in these different functions is not known. The current study analyzed the neuronal activation of cerebellar areas and other brain structures (e.g., hippocampus, amygdala, prelimbic cortex and infralimbic cortex) after exposure to rotarod and inhibitory avoidance behavioral models to establish possible neuronal circuits for motor and non-motor functions. Naïve male Swiss albino mice weighing 25 to 35 g were used. The animals were subjected to three conditions for behavioral evaluation: inhibitory avoidance, which is a model used to infer emotional memory; rotarod, which assesses motor performance and motor learning; and housing box/control. The mice remained in their housing box in Condition 1. Mice in Condition 2 were exposed to the inhibitory avoidance box for 2 days, and mice in Condition 3 were exposed to the rotarod for 3 days. The animals were euthanized after the last exposure to the apparatus then perfused with paraformaldehyde. Brains were extracted and sectioned for immunofluorescence analysis of c-Fos protein in pre-established structures. Images of the brain structures were obtained, and neuronal activation was analyzed microscopically. One-way analysis of variance was used, followed by Tukey's post-hoc test. There was no significant difference in c-Fos expression in lobe VI of the cerebellum between the different conditions. Differences in c-Fos expression were observed in the basolateral amygdala, infralimbic cortex and prelimbic cortex, which are relevant to emotional processes, after exposure to the evaluation apparatuses. Pearson's r correlation coefficient test showed a positive correlation between the variables of structures related to emotional processes. We concluded that there was no significant difference in c-Fos expression in lobe VI of the cerebellum after exposure of the animals to the evaluation apparatus. However, there was a difference in c-Fos expression in other brain structures related to emotional processes after exposure of animals to the apparatus.
Collapse
Affiliation(s)
- José Mário Prati
- Laboratory of Neuroscience, Department of Physiotherapy, Federal University of São Carlos, Brazil.
| | - Evelyn Maria Guilherme
- Laboratory of Neuroscience, Department of Physiotherapy, Federal University of São Carlos, Brazil.
| | - Thiago Luiz de Russo
- Laboratory of Neurological Physiotherapy, Department of Physiotherapy, Federal University of São Carlos, Brazil.
| | | |
Collapse
|
25
|
Torres ERS, Stanojlovic M, Zelikowsky M, Bonsberger J, Hean S, Mulligan C, Baldauf L, Fleming S, Masliah E, Chesselet MF, Fanselow MS, Richter F. Alpha-synuclein pathology, microgliosis, and parvalbumin neuron loss in the amygdala associated with enhanced fear in the Thy1-aSyn model of Parkinson's disease. Neurobiol Dis 2021; 158:105478. [PMID: 34390837 PMCID: PMC8447919 DOI: 10.1016/j.nbd.2021.105478] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/20/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
In Parkinson's disease (PD), the second most common neurodegenerative disorder, non-motor symptoms often precede the development of debilitating motor symptoms and present a severe impact on the quality of life. Lewy bodies containing misfolded α-synuclein progressively develop in neurons throughout the peripheral and central nervous system, which may be correlated with the early development of non-motor symptoms. Among those, increased fear and anxiety is frequent in PD and thought to result from pathology outside the dopaminergic system, which has been the focus of symptomatic treatment to alleviate motor symptoms. Alpha-synuclein accumulation has been reported in the amygdala of PD patients, a brain region critically involved in fear and anxiety. Here we asked whether α-synuclein overexpression alone is sufficient to induce an enhanced fear phenotype in vivo and which pathological mechanisms are involved. Transgenic mice expressing human wild-type α-synuclein (Thy1-aSyn), a well-established model of PD, were subjected to fear conditioning followed by extinction and then tested for extinction memory retention followed by histopathological analysis. Thy1-aSyn mice showed enhanced tone fear across acquisition and extinction compared to wild-type littermates, as well as a trend to less retention of fear extinction. Immunohistochemical analysis of the basolateral nucleus of the amygdala, a nucleus critically involved in tone fear learning, revealed extensive α-synuclein pathology, with accumulation, phosphorylation, and aggregation of α-synuclein in transgenic mice. This pathology was accompanied by microgliosis and parvalbumin neuron loss in this nucleus, which could explain the enhanced fear phenotype. Importantly, this non-motor phenotype was detected in the pre-clinical phase, prior to dopamine loss in Thy1-aSyn mice, thus replicating observations in patients. Results obtained in this study suggest a possible mechanism by which increased anxiety and maladaptive fear processing may occur in PD, opening a door for therapeutic options and further early biomarker research.
Collapse
Affiliation(s)
- Eileen Ruth S Torres
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Milos Stanojlovic
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Moriel Zelikowsky
- Department of Psychology, Staglin Center for Brain and Behavioral Health, UCLA, Los Angeles, CA 90095, USA; Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Jana Bonsberger
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Sindalana Hean
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Caitlin Mulligan
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Leonie Baldauf
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Sheila Fleming
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Eliezer Masliah
- Department of Neurosciences, UCSD School of Medicine, La Jolla, CA 92093, USA
| | | | - Michael S Fanselow
- Department of Psychology, Staglin Center for Brain and Behavioral Health, UCLA, Los Angeles, CA 90095, USA
| | - Franziska Richter
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, Hanover, Germany.
| |
Collapse
|
26
|
Scheidwasser N, Faggella M, Kozlova E, Sandi C. Commentary: The Risky Closed Economy: A Holistic, Longitudinal Approach to Studying Fear and Anxiety in Rodents. Front Behav Neurosci 2021; 15:664941. [PMID: 33841112 PMCID: PMC8026869 DOI: 10.3389/fnbeh.2021.664941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | | | - Carmen Sandi
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
27
|
Matsuda VDV, Tejada MB, Motta-Teixeira LC, Ikebara JM, Cardoso DS, Machado-Nils AV, Lee VY, Diccini I, Arruda BP, Martins PP, Dias NMM, Tessarotto RP, Raeisossadati R, Bruno M, Takase LF, Kihara AH, Nogueira MI, Xavier GF, Takada SH. Impact of neonatal anoxia and hypothermic treatment on development and memory of rats. Exp Neurol 2021; 340:113691. [PMID: 33713657 DOI: 10.1016/j.expneurol.2021.113691] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/18/2021] [Accepted: 03/07/2021] [Indexed: 01/02/2023]
Abstract
Therapeutic hypothermia (TH) is well established as a standard treatment for term and near-term infants. However, therapeutic effects of hypothermia following neonatal anoxia in very premature babies remains inconclusive. The present rodent model of preterm neonatal anoxia has been shown to alter developmental milestones and hippocampal neurogenesis, and to disrupt spatial learning and memory in adulthood. These effects seem to be reduced by post-insult hypothermia. Epigenetic-related mechanisms have been postulated as valuable tools for developing new therapies. Dentate gyrus neurogenesis is regulated by epigenetic factors. This study evaluated whether TH effects in a rodent model of preterm oxygen deprivation are based on epigenetic alterations. The effects of TH on both developmental features (somatic growth, maturation of physical characteristics and early neurological reflexes) and performance of behavioral tasks at adulthood (spatial reference and working memory, and fear conditioning) were investigated in association with the possible involvement of the epigenetic operator Enhancer of zeste homolog 2 (Ezh2), possibly related to long-lasting effects on hippocampal neurogenesis. Results showed that TH reduced both anoxia-induced hippocampal neurodegeneration and anoxia-induced impairments on risk assessment behavior, acquisition of spatial memory, and extinction of auditory and contextual fear conditioning. In contrast, TH did not prevent developmental alterations caused by neonatal anoxia and did not restore hippocampal neurogenesis or cause changes in EZH2 levels. In conclusion, despite the beneficial effects of TH in hippocampal neurodegeneration and in reversing disruption of performance of behavioral tasks following oxygen deprivation in prematurity, these effects seem not related to developmental alterations and hippocampal neurogenesis and, apparently, is not caused by Ezh2-mediated epigenetic alteration.
Collapse
Affiliation(s)
- Victor Daniel Vasquez Matsuda
- Neuroscience and Behaviour Laboratory, Department of Physiology, Institute of Biosciences, Universidade de São Paulo, São Paulo, SP, Brazil; Neuroscience Laboratory, Department of Anatomy, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Martin Bustelo Tejada
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands; Experimental Neuropathology Laboratory, Institute of Cellular Biology and Neuroscience "Prof. E. De Robertis" (IBCN), Faculty of Medicine, University of Buenos Aires, CONICET, Buenos Aires, Argentina; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands; Biomedical Sciences Institute, Faculty of Medical Sciences, Catholic University of Cuyo, San Juan, Argentina; Neurogenetics Laboratory, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Lívia Clemente Motta-Teixeira
- Neuroscience and Behaviour Laboratory, Department of Physiology, Institute of Biosciences, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Juliane Midori Ikebara
- Neurogenetics Laboratory, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | | | - Aline Vilar Machado-Nils
- Neuroscience and Behaviour Laboratory, Department of Physiology, Institute of Biosciences, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vitor Yonamine Lee
- Neuroscience Laboratory, Department of Anatomy, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Isabelle Diccini
- Neuroscience Laboratory, Department of Anatomy, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Bruna Petrucelli Arruda
- Neuroscience Laboratory, Department of Anatomy, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, SP, Brazil; Neurogenetics Laboratory, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | | | | | | | - Reza Raeisossadati
- Neurogenetics Laboratory, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Martin Bruno
- Biomedical Sciences Institute, Faculty of Medical Sciences, Catholic University of Cuyo, San Juan, Argentina; National Council of Scientific and Technical Research (CONICET), Argentina
| | - Luiz Fernando Takase
- Department of Morphology and Pathology, Biological Sciences and Health Center, Universidade Federal de São Carlos, São Carlos, Brazil
| | | | - Maria Inês Nogueira
- Neuroscience Laboratory, Department of Anatomy, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Gilberto Fernando Xavier
- Neuroscience and Behaviour Laboratory, Department of Physiology, Institute of Biosciences, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Silvia Honda Takada
- Neurogenetics Laboratory, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil.
| |
Collapse
|
28
|
Chen L, Ke Y, Ma H, Gao L, Zhou Y, Zhu H, Liu H, Zhang F, Zhou W. Fluoxetine and Ketamine Reverse the Depressive but Not Anxiety Behavior Induced by Lesion of Cholinergic Neurons in the Horizontal Limb of the Diagonal Band of Broca in Male Rat. Front Behav Neurosci 2021; 15:602708. [PMID: 33679340 PMCID: PMC7930217 DOI: 10.3389/fnbeh.2021.602708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/27/2021] [Indexed: 12/18/2022] Open
Abstract
The basal forebrain cholinergic system is involved in cognitive processes, but the role of the basal forebrain cholinergic system in depression is unknown. We investigated whether a lesion of cholinergic neurons in the horizontal limb of the diagonal band of Broca (HDB) produces depressive-like behavior and whether fluoxetine or ketamine inhibits such depressive-like behaviors. Here, in rats, we used 192 IgG-saporin to eliminate the cholinergic neurons of the HDB and evaluated depressive-like behaviors using a preference test for sucrose solution and the forced swimming test. Fourteen days after the injection of 192 IgG-saporin into the HDB, the rats exhibited a significantly fewer number of choline acetyltransferase positive cell density in HDB, accompanied with neuronal loss in the entire hippocampus. Meanwhile, these rats significantly reduced preference for sucrose solution, increased immobility time in the forced swimming test, reduced locomotor activity, decreased context dependent memory in fear conditioning and the time spent in the open arms of the plus-maze. A single dose of ketamine (10 mg/kg) increased the sucrose solution consumption, reduced the immobility time in the forced swim test (FST), and increased locomotor activity compared to vehicle-treated rats. Moreover, in rats that were continuously treated with fluoxetine (10 mg/kg/day for 11 days), the sucrose solution consumption increased, the immobility time in the FST decreased, and locomotor activity increased compared to vehicle-treated rats. The present results demonstrate that a lesion of HDB cholinergic neurons results in depressive-like and anxiety-like behaviors and that antidepressants such as fluoxetine or ketamine, can reverse these depressive-like behaviors but not anxiety-like behaviors, and suggest that a lesion of HDB cholinergic neurons and followed hippocampus damage may be involved in the pathogenesis of depression.
Collapse
Affiliation(s)
- Linghong Chen
- Zhejiang Provincial Key Laboratory of Addiction, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, China.,Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo, China
| | - Yuting Ke
- Zhejiang Provincial Key Laboratory of Addiction, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, China.,School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Hong Ma
- Zhejiang Provincial Key Laboratory of Addiction, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, China.,Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo, China
| | - Lei Gao
- Zhejiang Provincial Key Laboratory of Addiction, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, China
| | - Yiying Zhou
- Zhejiang Provincial Key Laboratory of Addiction, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, China
| | - Huaqiang Zhu
- Zhejiang Provincial Key Laboratory of Addiction, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, China
| | - Huifen Liu
- Zhejiang Provincial Key Laboratory of Addiction, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, China
| | - Fuqiang Zhang
- Zhejiang Provincial Key Laboratory of Addiction, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, China
| | - Wenhua Zhou
- Zhejiang Provincial Key Laboratory of Addiction, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, China.,Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo, China
| |
Collapse
|
29
|
Saha R, Kriebel M, Anunu R, Volkmer H, Richter-Levin G. Intra-amygdala metaplasticity modulation of fear extinction learning. Eur J Neurosci 2020; 55:2455-2463. [PMID: 33305403 DOI: 10.1111/ejn.15080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/22/2022]
Abstract
The amygdala is a key brain region involved in emotional memory formation. It is also responsible for memory modulation in other brain areas. Under extreme conditions, amygdala modulation may lead to the generation of abnormal plasticity and trauma-related psychopathologies. However, the amygdala itself is a dynamic brain region, which is amenable to long-term plasticity and is affected by emotional experiences. These alterations may modify the way the amygdala modulates activity and plasticity in other related brain regions, which in turn may alter the animal's response to subsequent challenges in what could be termed as "Behavioral metaplasticity."Because of the reciprocal interactions between the amygdala and other emotion processing regions, such as the medial prefrontal cortex (mPFC) or the hippocampus, experience-induced intra-amygdala metaplasticity could lead to alterations in mPFC-dependent or hippocampus-dependent behaviors. While initiated by alterations within the basolateral amygdala (BLA), such alterations in other brain regions may come to be independent of BLA modulation, thus establishing what may be termed "Trans-regional metaplasticity." In this article, we review evidence supporting the notions of intra-BLA metaplasticity and how this may develop into "Trans-regional metaplasticity." Future research is needed to understand how such dynamic metaplastic alterations contribute to developing psychopathologies, and how this knowledge may be translated into promoting novel interventions in psychopathologies associated with fear, stress, and trauma.
Collapse
Affiliation(s)
- Rinki Saha
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Martin Kriebel
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Tübingen, Germany
| | - Rachel Anunu
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Hansjuergen Volkmer
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Tübingen, Germany
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,Department of Psychology, University of Haifa, Haifa, Israel.,The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| |
Collapse
|
30
|
Gomes JI, Farinha-Ferreira M, Rei N, Gonçalves-Ribeiro J, Ribeiro JA, Sebastião AM, Vaz SH. Of adenosine and the blues: The adenosinergic system in the pathophysiology and treatment of major depressive disorder. Pharmacol Res 2020; 163:105363. [PMID: 33285234 DOI: 10.1016/j.phrs.2020.105363] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
Major depressive disorder (MDD) is the foremost cause of global disability, being responsible for enormous personal, societal, and economical costs. Importantly, existing pharmacological treatments for MDD are partially or totally ineffective in a large segment of patients. As such, the search for novel antidepressant drug targets, anchored on a clear understanding of the etiological and pathophysiological mechanisms underpinning MDD, becomes of the utmost importance. The adenosinergic system, a highly conserved neuromodulatory system, appears as a promising novel target, given both its regulatory actions over many MDD-affected systems and processes. With this goal in mind, we herein review the evidence concerning the role of adenosine as a potential player in pathophysiology and treatment of MDD, combining data from both human and animal studies. Altogether, evidence supports the assertions that the adenosinergic system is altered in both MDD patients and animal models, and that drugs targeting this system have considerable potential as putative antidepressants. Furthermore, evidence also suggests that modifications in adenosine signaling may have a key role in the effects of several pharmacological and non-pharmacological antidepressant treatments with demonstrated efficacy, such as electroconvulsive shock, sleep deprivation, and deep brain stimulation. Lastly, it becomes clear from the available literature that there is yet much to study regarding the role of the adenosinergic system in the pathophysiology and treatment of MDD, and we suggest several avenues of research that are likely to prove fruitful.
Collapse
Affiliation(s)
- Joana I Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Farinha-Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Nádia Rei
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Gonçalves-Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim A Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
31
|
Hessel M, Pape HC, Seidenbecher T. Stimulation of 5-HT receptors in anterodorsal BNST guides fear to predictable and unpredictable threat. Eur Neuropsychopharmacol 2020; 39:56-69. [PMID: 32873441 DOI: 10.1016/j.euroneuro.2020.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 01/31/2023]
Abstract
Through pharmacological manipulation of the serotonergic (5-Hydroxytryptamin, 5-HT) system, combined with behavioral analysis, we tested the hypothesis that fear responses to predictable and unpredictable threat are regulated through stimulation of 5-HT receptors (5-HT-R) in the anterodorsal section of the bed nucleus of the stria terminalis (adBNST). Local adBNST application of 5-HT1A-R antagonist WAY100635 and 5-HT1B-R antagonist NAS-181 before fear retrieval enhanced freezing, 24 h after predictable fear conditioning. In contrast, increased fear responses to unpredictable threat were blocked by 5-HT1A-R agonist Buspirone (given before conditioning or retrieval) and 5-HT1B-R agonist CP-94253 (applied before training). Prolonged fear responses were also blocked by local application of the 5-HT2A-R antagonist R-96544 before fear retrieval, and conversely, local application of the 5-HT2A-R agonist NBOH-2C-CN hydrochloride before fear retrieval enhanced freezing 24 h after predictable conditioning, indicating augmented fear responses. Activation of inhibitory 5-HT1A- or 5-HT1B-Rs and the blockade of the excitatory 5-HT2A-R before unpredictable fear conditioning significantly reduced freezing during retrieval. The results from this study suggest that modulation of inhibitory 5-HT1A/1B-R and/or excitatory 5-HT2A-R activity in the adBNST may represent potential targets for the development of new treatment strategies in anxiety disorders. In addition, this study supports the validity and reliability of the mouse model of modulated fear to predictable and unpredictable threats to study mechanisms of fear and anxiety in combination with pharmacological manipulations.
Collapse
Affiliation(s)
- Margarita Hessel
- Institute of Physiology I, Westfälische Wilhelms-University Münster, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| | - Hans-Christian Pape
- Institute of Physiology I, Westfälische Wilhelms-University Münster, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| | - Thomas Seidenbecher
- Institute of Physiology I, Westfälische Wilhelms-University Münster, Robert-Koch-Str. 27a, D-48149 Münster, Germany.
| |
Collapse
|
32
|
Rafiq S, Batool Z, Liaquat L, Haider S. Blockade of muscarinic receptors impairs reconsolidation of older fear memory by decreasing cholinergic neurotransmission: A study in rat model of PTSD. Life Sci 2020; 256:118014. [DOI: 10.1016/j.lfs.2020.118014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/25/2022]
|
33
|
Kornhuber J, Zoicas I. Neuropeptide Y prolongs non-social memory in a brain region- and receptor-specific way in male mice. Neuropharmacology 2020; 175:108199. [PMID: 32535011 DOI: 10.1016/j.neuropharm.2020.108199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/05/2020] [Accepted: 06/10/2020] [Indexed: 11/16/2022]
Abstract
Neuropeptide Y (NPY) and its receptors are highly expressed in brain regions involved in learning and memory processes. We have previously shown that intracerebroventricular administration of NPY prolongs the retention of non-social memory in the object discrimination test. Here, we aimed to identify the brain regions which mediate these memory-enhancing effects of NPY. We show that NPY (0.1 nmol/0.2 μl/side) prolongs retention of non-social memory when administered into the dorsolateral septum (DLS) and medial amygdala (MeA), but not when administered into the dorsal hippocampus, central amygdala and basolateral amygdala. In the DLS, the effects of NPY were blocked by the Y1 receptor antagonist BIBO3304 trifluoroacetate (0.2 nmol/0.2 μl/side), but not by the Y2 receptor antagonist BIIE0246 (0.2 nmol/0.2 μl/side). In the MeA, on the other hand, BIIE0246, but not BIBO3304 trifluoroacetate blocked the effects of NPY. This study demonstrates that NPY exerts Y1 receptor-mediated memory-enhancing effects in the DLS and Y2 receptor-mediated memory-enhancing effects in the MeA, and suggests that distinct brain regions and receptor subtypes are recruited to mediate the effects of NPY on non-social memory.
Collapse
Affiliation(s)
- Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.
| | - Iulia Zoicas
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
34
|
Lee J, Song Y, Won E, Bang M, Lee SH. Higher Rightward Laterality of the Hippocampal Tail and Its Association with Early Trauma in Panic Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2020; 18:311-321. [PMID: 32329311 PMCID: PMC7242112 DOI: 10.9758/cpn.2020.18.2.311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/23/2019] [Accepted: 02/17/2020] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Early trauma (ET) is widely recognized as a contributing factor to the development of panic disorder (PD) in patients. However, there is a dearth of research on the specific volumes of hippocampal subregions and their laterality with respect to ET and PD. METHODS A total of 30 subjects with PD and 30 age- and sex-matched healthy controls (HCs) were included in this study. All the subjects were evaluated by 3T-magnetic resonance imaging. FreeSurfer version 6.0 was used for volumetric analysis of the hippocampal subregions and their laterality. A shortened version of the Early Trauma Inventory Self Report (ETISR) as well as Anxiety Sensitivity Inventory-Revised (ASI-R), and Panic Disorder Severity Scale were utilized for analysis. RESULTS Multivariate analysis of variance showed that the volume of the right hippocampal tail and laterality indices (LIs) of the hippocampal body and tail were significantly larger in subjects with PD relative to HCs. The significance of the observations remained unchanged after multivariate analysis of covariance, controlling for age, sex, years of education, medication, depressive symptoms, and intracranial volume as covariates. The LIs of the hippocampal tails that showed a significant correlation to ETISR emotional and physical subscales were also associated with ASI-R for cardiovascular symptoms in PD. CONCLUSION Our study displayed an increased rightward lateralization of the hippocampal tails in subjects with PD compared with HCs. This alteration in the brain, which was associated with early emotional and physical trauma, would negatively affect anxiety sensitivity to cardiovascular symptoms in subjects with PD.
Collapse
Affiliation(s)
- Joonho Lee
- Departments of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Yoonsu Song
- Departments of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Eunsoo Won
- Departments of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Minji Bang
- Departments of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Sang-Hyuk Lee
- Departments of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
- Clinical Pharmacology and Therapeutics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| |
Collapse
|
35
|
Wu R, Cui S, Wang JH. miRNA-324/-133a essential for recruiting new synapse innervations and associative memory cells in coactivated sensory cortices. Neurobiol Learn Mem 2020; 172:107246. [PMID: 32387677 DOI: 10.1016/j.nlm.2020.107246] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/28/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
After the integrative storage of associated signals, a signal induces the recollection of its associated signal, or the other way around. This associative memory is essential to associative thinking, logical reasoning, imagination and computation. In terms of cellular mechanisms underlying associative memory, new mutual synapse innervations are formed among those coactivated neurons, so that they are recruited to be associative memory cells or associative memory neurons. These associative memory cells receive new synapse innervations alongside innate synapse inputs and encode signals carried by these inputs. We proposed to examine microRNAs as initiative factors for recruiting new synapse innervations and associative memory cells. In a mouse model of associative memory characterized as the reciprocal retrieval of associated whisker and odor signals, barrel and piriform cortical neurons gain their ability to encode whisker and odorant signals based on the newly formed synapse innervations between these coactivated cortices besides innate synapse inputs. miRNA-324 and miRNA-133a are required for recruiting these new synapse innervations and associative memory cells as well as sufficient for facilitating their recruitments, but not for innate synapse inputs. Therefore, the coactivation of sensory cortices through microRNA as initiative factor to recruit new mutual synapse innervations and associative memory cells for associative memory.
Collapse
Affiliation(s)
- Ruixiang Wu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Cui
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Hui Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
36
|
Activation of medial orbitofrontal cortex abolishes fear extinction and interferes with fear expression in rats. Neurobiol Learn Mem 2020; 169:107170. [DOI: 10.1016/j.nlm.2020.107170] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/27/2019] [Accepted: 01/19/2020] [Indexed: 11/18/2022]
|
37
|
Jacob A, Wang P. Alcohol Intoxication and Cognition: Implications on Mechanisms and Therapeutic Strategies. Front Neurosci 2020; 14:102. [PMID: 32116535 PMCID: PMC7029710 DOI: 10.3389/fnins.2020.00102] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/27/2020] [Indexed: 12/23/2022] Open
Abstract
Binge alcohol drinking is highly prevalent in young adults and results in 30% deaths per year in young males. Binge alcohol drinking or acute alcohol intoxication is a risk factor for developing alcohol use disorder (AUD). Three FDA approved drugs are currently in use as therapy for AUD; however, all of them have contra-indications and limitations. Structural brain imaging studies in alcoholics have shown defects in the brain regions involved in memory, cognition and emotional processing. Positron emission tomography (PET) using radiotracers (e.g., 18FDG) and measuring brain glucose metabolism have demonstrated diagnostic and prognostic utility in evaluating patients with cognitive impairment. Using PET imaging, only a few exclusive human studies have addressed the relationship between alcohol intoxication and cognition. Those studies indicate that alcohol intoxication causes reduction in brain activity. Consistent with prior findings, a recent study by us showed that acute alcohol intoxication reduced brain activity in the cortical and subcortical regions including the temporal lobe consisting the hippocampus. Additionally, we have observed a strong correlation between reduction in metabolic activity and spatial cognition impairment in the hippocampus after binge alcohol exposure. We have also demonstrated the involvement of a stress response protein, cold inducible RNA binding protein (CIRP), as a potential mechanistic mediator in acute alcohol intoxication. In this review, we will first discuss in detail prior human PET imaging studies on alcohol intoxication as well as our recent study on acute alcohol intoxication, and review the existing literature on potential mechanisms of acute alcohol intoxication-induced cognitive impairment and therapeutic strategies to mitigate these impairments. Finally, we will highlight the importance of studying brain regions as part of a brain network in delineating the mechanism of acute alcohol intoxication-induced cognitive impairment to aid in the development of therapeutics for such indication.
Collapse
Affiliation(s)
- Asha Jacob
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
38
|
Burkhouse KL, Jagan Jimmy, Defelice N, Klumpp H, Ajilore O, Hosseini B, Fitzgerald KD, Monk CS, Phan KL. Nucleus accumbens volume as a predictor of anxiety symptom improvement following CBT and SSRI treatment in two independent samples. Neuropsychopharmacology 2020; 45:561-569. [PMID: 31756730 PMCID: PMC6969163 DOI: 10.1038/s41386-019-0575-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/01/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022]
Abstract
Structural variations of neural regions implicated in fear responses have been well documented in the pathophysiology of anxiety and may play an important role in treatment response. We examined whether gray matter volume of three neural regions supporting fear and avoidance responses [bilateral amygdala, nucleus accumbens (NAcc), and ventromedial prefrontal cortex (PFC)] predicted cognitive-behavioral therapy (CBT) and selective serotonin reuptake inhibitor (SSRI) treatment outcome in two independent samples of patients with anxiety disorders. Study 1 consisted of 81 adults with anxiety disorders and Study 2 included 55 children and adolescents with anxiety disorders. In both studies, patients completed baseline structural MRI scans and received either CBT or SSRI treatment. Clinician-rated interviews of anxiety symptoms were assessed at baseline and posttreatment. Among the adult sample, greater pre-treatment bilateral NAcc volume was associated with a greater reduction in clinician-rated anxiety symptoms pre-to-post CBT and SSRI treatment. Greater left NAcc volume also predicted greater decreases in clinician-rated anxiety symptoms pre-to-post CBT and SSRI treatment among youth with current anxiety. Across studies, results were similar across treatments, and findings were maintained when adjusting for patient's age, sex, and total intracranial brain volume. We found no evidence for baseline amygdala or ventromedial PFC volume serving as treatment predictors across the two samples. Together, these findings provide promising support for the role of NAcc volume as an objective marker of anxiety treatment improvement that spans across development. Future studies should clarify the specific mechanisms through which NAcc volume exerts its therapeutic effects.
Collapse
Affiliation(s)
- Katie L Burkhouse
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Jagan Jimmy
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Nicholas Defelice
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Heide Klumpp
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Bobby Hosseini
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Kate D Fitzgerald
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Christopher S Monk
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - K Luan Phan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
39
|
Brandão ML, Lovick TA. Role of the dorsal periaqueductal gray in posttraumatic stress disorder: mediation by dopamine and neurokinin. Transl Psychiatry 2019; 9:232. [PMID: 31530797 PMCID: PMC6748916 DOI: 10.1038/s41398-019-0565-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/09/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
In susceptible individuals, exposure to intensely traumatic life events can lead to the development of posttraumatic stress disorder (PTSD), including long-term dysregulation of the contextual processing of aversive stimuli, the overgeneralization of learned fear, and impairments in the ability to learn or respond to safety signals. The neuropathophysiological changes that underlie PTSD remain incompletely understood. Attention has focused on forebrain structures associated with fear processing. Here we consider evidence from human and animal studies that long-lasting changes in functional connectivity between the midbrain periaqueductal gray (dPAG) and amygdala may be one of the precipitating events that contribute to PTSD. Long-lasting neuroplastic changes in the dPAG can persist after a single aversive stimulation and are pharmacologically labile. The early stage (at least up to 24 h post-stimulation) involves neurokinin-1 receptor-mediated events in the PAG and amygdala and is also regulated by dopamine, both of which are mainly involved in transferring ascending aversive information from the dPAG to higher brain structures, mainly the amygdala. Changes in the functional connectivity within the dPAG-amygdala circuit have been reported in PTSD patients. We suggest that further investigations of plasticity and pharmacology of the PAG-amygdala network provide a promising target for understanding pathophysiological circuitry that underlies PTSD in humans and that dopaminergic and neurokininergic drugs may have a potential for the treatment of psychiatric disorders that are associated with a dysfunctional dPAG.
Collapse
Affiliation(s)
- M. L. Brandão
- grid.456657.3Instituto de Neurociências e Comportamento, Avenida do Café, 2450, 14050-220 Ribeirão Preto, SP Brazil ,0000 0004 1937 0722grid.11899.38NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900 Brazil
| | - T. A. Lovick
- 0000 0004 1937 0722grid.11899.38NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900 Brazil ,0000 0004 1936 7603grid.5337.2School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, B15 2TT UK
| |
Collapse
|
40
|
Li KX, He M, Ye W, Simms J, Gill M, Xiang X, Jan YN, Jan LY. TMEM16B regulates anxiety-related behavior and GABAergic neuronal signaling in the central lateral amygdala. eLife 2019; 8:47106. [PMID: 31482844 PMCID: PMC6746550 DOI: 10.7554/elife.47106] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022] Open
Abstract
TMEM16B (ANO2) is the Ca2+-activated chloride channel expressed in multiple brain regions, including the amygdala. Here we report that Ano2 knockout mice exhibit impaired anxiety-related behaviors and context-independent fear memory, thus implicating TMEM16B in anxiety modulation. We found that TMEM16B is expressed in somatostatin-positive (SOM+) GABAergic neurons of the central lateral amygdala (CeL), and its activity modulates action potential duration and inhibitory postsynaptic current (IPSC). We further provide evidence for TMEM16B actions not only in the soma but also in the presynaptic nerve terminals of GABAergic neurons. Our study reveals an intriguing role for TMEM16B in context-independent but not context-dependent fear memory, and supports the notion that dysfunction of the amygdala contributes to anxiety-related behaviors.
Collapse
Affiliation(s)
- Ke-Xin Li
- Department of Physiology, University of California, San Francisco, San Francisco, United States.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Mu He
- Department of Physiology, University of California, San Francisco, San Francisco, United States.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Wenlei Ye
- Department of Physiology, University of California, San Francisco, San Francisco, United States.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Jeffrey Simms
- Gladstone Institute of Neurological Disease, San Francisco, United States
| | - Michael Gill
- Gladstone Institute of Neurological Disease, San Francisco, United States
| | - Xuaner Xiang
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, United States
| | - Yuh Nung Jan
- Department of Physiology, University of California, San Francisco, San Francisco, United States.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Lily Yeh Jan
- Department of Physiology, University of California, San Francisco, San Francisco, United States.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
41
|
Van Skike CE, Goodlett C, Matthews DB. Acute alcohol and cognition: Remembering what it causes us to forget. Alcohol 2019; 79:105-125. [PMID: 30981807 DOI: 10.1016/j.alcohol.2019.03.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/17/2022]
Abstract
Addiction has been conceptualized as a specific form of memory that appropriates typically adaptive neural mechanisms of learning to produce the progressive spiral of drug-seeking and drug-taking behavior, perpetuating the path to addiction through aberrant processes of drug-related learning and memory. From that perspective, to understand the development of alcohol use disorders, it is critical to identify how a single exposure to alcohol enters into or alters the processes of learning and memory, so that involvement of and changes in neuroplasticity processes responsible for learning and memory can be identified early. This review characterizes the effects produced by acute alcohol intoxication as a function of brain region and memory neurocircuitry. In general, exposure to ethanol doses that produce intoxicating effects causes consistent impairments in learning and memory processes mediated by specific brain circuitry, whereas lower doses either have no effect or produce a facilitation of memory under certain task conditions. Therefore, acute ethanol does not produce a global impairment of learning and memory, and can actually facilitate particular types of memory, perhaps particular types of memory that facilitate the development of excessive alcohol use. In addition, the effects on cognition are dependent on brain region, task demands, dose received, pharmacokinetics, and tolerance. Additionally, we explore the underlying alterations in neurophysiology produced by acute alcohol exposure that help to explain these changes in cognition and highlight future directions for research. Through understanding the impact that acute alcohol intoxication has on cognition, the preliminary changes potentially causing a problematic addiction memory can better be identified.
Collapse
Affiliation(s)
- Candice E Van Skike
- Department of Cellular and Integrative Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78245, United States
| | - Charles Goodlett
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, United States
| | - Douglas B Matthews
- Division of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, 54702, United States.
| |
Collapse
|
42
|
Artur de la Villarmois E, Pérez MF. Cognitive interference as a possible therapeutic strategy to prevent expression of benzodiazepine withdrawal. Eur J Neurosci 2019; 50:3843-3854. [PMID: 31299121 DOI: 10.1111/ejn.14515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/01/2019] [Accepted: 07/05/2019] [Indexed: 01/04/2023]
Abstract
Benzodiazepines are usually prescribed for anxiety and sleep disorders in long-term schedules that may cause drug dependence. Discontinuation after prolonged administration may lead to withdrawal expression, being anxiety the most predominant sign. The context-dependent associative learning process that underlies diazepam dependence can be interfered by pre-exposure to the drug administration context, an effect known as latent inhibition. Considering this background, the primary aim of the present investigation is to develop a therapeutic strategy to prevent diazepam withdrawal in male Wistar rats by interfering with this learning process. Nitric oxide is a crucial player in learning and memory, hippocampal synaptic transmission and in diazepam withdrawal. Then, a secondary goal is to determine how latent inhibition could alter functional plasticity and neuronal nitric oxide synthase enzyme (NOS-1) expression within the hippocampus, by using multi-unitary cell recordings and Western blot, respectively. Our results indicate that chronic diazepam treated animals under latent inhibition did not show anxiety, or changes in hippocampal synaptic transmission, but a significant reduction in NOS-1 expression was observed. Accordingly, pharmacological NOS-1 inhibition resembles behavioral and electrophysiological changes induced by latent inhibition. Contrary, diazepam treated animals under Control protocol expressed anxiety and evidenced an increased hippocampal-plasticity, without alterations in NOS-1 expression. In conclusion, manipulation of the contextual cues presented during diazepam administration may be considered as an effective non-pharmacological tool to prevent the withdrawal syndrome. This behavioral strategy may influence hippocampal synaptic transmission, probably by alterations in nitric oxide signaling pathways in this structure.
Collapse
Affiliation(s)
- Emilce Artur de la Villarmois
- Departamento de Farmacología, Facultad de Ciencias Químicas, IFEC-CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Mariela Fernanda Pérez
- Departamento de Farmacología, Facultad de Ciencias Químicas, IFEC-CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| |
Collapse
|
43
|
Gao Z, Wu R, Chen C, Wen B, Liu Y, Lu W, Chen N, Feng J, Fan R, Wang D, Cui S, Wang JH. Coactivations of barrel and piriform cortices induce their mutual synapse innervations and recruit associative memory cells. Brain Res 2019; 1721:146333. [PMID: 31302097 DOI: 10.1016/j.brainres.2019.146333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/19/2019] [Accepted: 07/10/2019] [Indexed: 01/23/2023]
Abstract
After associative learning, a signal induces the recall of its associated signal, or the other way around. This reciprocal retrieval of associated signals is essential for associative thinking and logical reasoning. For the cellular mechanism underlying this associative memory, we hypothesized that the formation of synapse innervations among coactivated sensory cortices and the recruitment of associative memory cells were involved in the integrative storage and reciprocal retrieval of associated signals. Our study indicated that the paired whisker and olfaction stimulations led to an odorant-induced whisker motion and a whisker-induced olfaction response, a reciprocal form of associative memory retrieval. In mice that showed the reciprocal retrieval of associated signals, their barrel and piriform cortical neurons became mutually innervated through their axon projection and new synapse formation. These piriform and barrel cortical neurons gained the ability to encode both whisker and olfaction signals based on synapse innervations from the innate input and the newly formed input. Therefore, the associated activation of sensory cortices by pairing input signals initiates their mutual synapse innervations, and the neurons innervated by new and innate synapses are recruited to be associative memory cells that encode these associated signals. Mutual synapse innervations among sensory cortices to recruit associative memory cells may compose the primary foundation for the integrative storage and reciprocal retrieval of associated signals. Our study also reveals that new synapses onto the neurons enable these neurons to encode memories to new specific signals.
Collapse
Affiliation(s)
- Zilong Gao
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruixiang Wu
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Changfeng Chen
- Department of Pathophysiology, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Bo Wen
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yahui Liu
- Department of Pathophysiology, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Wei Lu
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Chen
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Feng
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruichen Fan
- Department of Pathophysiology, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Dangui Wang
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Cui
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Hui Wang
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
44
|
Cuadrado-Tejedor M, Pérez-González M, García-Muñoz C, Muruzabal D, García-Barroso C, Rabal O, Segura V, Sánchez-Arias JA, Oyarzabal J, Garcia-Osta A. Taking Advantage of the Selectivity of Histone Deacetylases and Phosphodiesterase Inhibitors to Design Better Therapeutic Strategies to Treat Alzheimer's Disease. Front Aging Neurosci 2019; 11:149. [PMID: 31281249 PMCID: PMC6597953 DOI: 10.3389/fnagi.2019.00149] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/06/2019] [Indexed: 12/19/2022] Open
Abstract
The discouraging results with therapies for Alzheimer’s disease (AD) in clinical trials, highlights the urgent need to adopt new approaches. Like other complex diseases, it is becoming clear that AD therapies should focus on the simultaneous modulation of several targets implicated in the disease. Recently, using reference compounds and the first-in class CM-414, we demonstrated that the simultaneous inhibition of histone deacetylases [class I histone deacetylases (HDACs) and HDAC6] and phosphodiesterase 5 (PDE5) has a synergistic therapeutic effect in AD models. To identify the best inhibitory balance of HDAC isoforms and PDEs that provides a safe and efficient therapy to combat AD, we tested the compound CM-695 in the Tg2576 mouse model of this disease. CM-695 selectively inhibits HDAC6 over class I HDAC isoforms, which largely overcomes the toxicity associated with HDAC class 1 inhibition. Furthermore, CM-695 inhibits PDE9, which is expressed strongly in the brain and has been proposed as a therapeutic target for AD. Chronic treatment of aged Tg2576 mice with CM-695 ameliorates memory impairment and diminishes brain Aβ, although its therapeutic effect was no longer apparent 4 weeks after the treatment was interrupted. An increase in the presence of 78-KDa glucose regulated protein (GRP78) and heat shock protein 70 (Hsp70) chaperones may underlie the therapeutic effect of CM-695. In summary, chronic treatment with CM-695 appears to reverse the AD phenotype in a safe and effective manner. Taking into account that AD is a multifactorial disorder, the multimodal action of these compounds and the different events they affect may open new avenues to combat AD.
Collapse
Affiliation(s)
- Mar Cuadrado-Tejedor
- Neurobiology of Alzheimer's Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain.,Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| | - Marta Pérez-González
- Neurobiology of Alzheimer's Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain.,Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| | - Cristina García-Muñoz
- Neurobiology of Alzheimer's Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Damián Muruzabal
- Neurobiology of Alzheimer's Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Carolina García-Barroso
- Neurobiology of Alzheimer's Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Obdulia Rabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Víctor Segura
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain.,Bioinformatics Unit, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Juan A Sánchez-Arias
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Julen Oyarzabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Ana Garcia-Osta
- Neurobiology of Alzheimer's Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| |
Collapse
|
45
|
Abstract
The acquisition of associated signals is commonly seen in life. The integrative storage of these exogenous and endogenous signals is essential for cognition, emotion and behaviors. In terms of basic units of memory traces or engrams, associative memory cells are recruited in the brain during learning, cognition and emotional reactions. The recruitment and refinement of associative memory cells facilitate the retrieval of memory-relevant events and the learning of reorganized unitary signals that have been acquired. The recruitment of associative memory cells is fulfilled by generating mutual synapse innervations among them in coactivated brain regions. Their axons innervate downstream neurons convergently and divergently to recruit secondary associative memory cells. Mutual synapse innervations among associative memory cells confer the integrative storage and reciprocal retrieval of associated signals. Their convergent synapse innervations to secondary associative memory cells endorse integrative cognition. Their divergent innervations to secondary associative memory cells grant multiple applications of associated signals. Associative memory cells in memory traces are defined to be nerve cells that are able to encode multiple learned signals and receive synapse innervations carrying these signals. An impairment in the recruitment and refinement of associative memory cells will lead to the memory deficit associated with neurological diseases and psychological disorders. This review presents a comprehensive diagram for the recruitment and refinement of associative memory cells for memory-relevant events in a lifetime.
Collapse
Affiliation(s)
- Jin-Hui Wang
- College of Life Sciences, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
46
|
Angilletta MJ, Youngblood JP, Neel LK, VandenBrooks JM. The neuroscience of adaptive thermoregulation. Neurosci Lett 2019; 692:127-136. [DOI: 10.1016/j.neulet.2018.10.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 01/05/2023]
|
47
|
Social isolation impairs active avoidance performance and decreases neurogenesis in the dorsomedial telencephalon of rainbow trout. Physiol Behav 2019; 198:1-10. [DOI: 10.1016/j.physbeh.2018.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 11/22/2022]
|
48
|
Hua J, Chen Y, Luo X(R. Are we ready for cyberterrorist attacks?—Examining the role of individual resilience. INFORMATION & MANAGEMENT 2018. [DOI: 10.1016/j.im.2018.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Liu H, Zhang C, Ji Y, Yang L. Biological and Psychological Perspectives of Resilience: Is It Possible to Improve Stress Resistance? Front Hum Neurosci 2018; 12:326. [PMID: 30186127 PMCID: PMC6110926 DOI: 10.3389/fnhum.2018.00326] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 07/25/2018] [Indexed: 12/23/2022] Open
Abstract
The term “resilience” refers to the ability to adapt successfully to stress, trauma and adversity, enabling individuals to avoid stress-induced mental disorders such as depression, posttraumatic stress disorder (PTSD) and anxiety. Here, we review evidence from both animal models and humans that is increasingly revealing the neurophysiological and neuropsychological mechanisms that underlie stress susceptibility, as well as active mechanisms underlying the resilience phenotype. Ultimately, this growing understanding of the neurobiological mechanisms of resilience should result in the development of novel interventions that specifically target neural circuitry and brain areas that enhance resilience and lead to more effective treatments for stress-induced disorders. Stress resilience can be improved, but the outcomes and effects depend on the type of intervention and the species treated.
Collapse
Affiliation(s)
- Haoran Liu
- School of Psychology, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Chenfeng Zhang
- School of Psychology, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Yannan Ji
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Li Yang
- School of Psychology, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| |
Collapse
|
50
|
Neonatal Sevoflurane Exposure Induces Adulthood Fear-induced Learning Disability and Decreases Glutamatergic Neurons in the Basolateral Amygdala. J Neurosurg Anesthesiol 2018; 30:59-64. [PMID: 27820300 DOI: 10.1097/ana.0000000000000387] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Neonatal mice exposed to sevoflurane show certain cognitive and behavioral impairments in adulthood. However, the mechanisms underlying long-term cognitive deficits induced by sevoflurane exposure remain unknown. The present study was performed to investigate whether there is differential neuronal activation between naive mice and sevoflurane-exposed neonates in fear-conditioning tests based on immediate early gene (c-Fos) expression. METHODS Male mice were exposed to 3% sevoflurane (SEVO group) or carrier gas alone (no anesthesia, NA group) for 6 hours on postnatal day 6. The mice were allowed to mature before performing the contextual fear-conditioning test. A reduced freezing response was confirmed in the SEVO group. Neural activation in the regions of the medial prefrontal cortex, hippocampus, and amygdala was investigated using c-Fos immunostaining 2 hours after the test. The types of neurons activated were also identified. RESULTS The number of c-Fos-positive cells decreased by 27% in the basolateral amygdala in the SEVO group, while no significant changes were observed in other regions. Furthermore, glutamatergic, but not γ-aminobutyric acid (GABA)ergic, neurons expressed c-Fos after the contextual fear-conditioning test in both groups. The number of glutamatergic neurons in the basolateral amygdala in the SEVO group was reduced by 27%. CONCLUSIONS Decreased neural activation in the basolateral amygdala may be associated with reduced freezing time in neonatal sevoflurane-exposed mice. Fewer glutamatergic neurons responding to fear stimuli in the basolateral amygdala may contribute to decreased neural activation and learning deficits in mice exposed to sevoflurane as neonates.
Collapse
|