1
|
Rodríguez-Aragón M, Varillas-Delgado D, Gordo-Herrera J, Fernández-Ezequiel A, Moreno-Heredero B, Valle N. Effects of global postural re-education on stress and sleep quality in health sciences female students: a randomized controlled trial pilot study. Front Psychiatry 2024; 15:1404544. [PMID: 39262580 PMCID: PMC11387948 DOI: 10.3389/fpsyt.2024.1404544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/25/2024] [Indexed: 09/13/2024] Open
Abstract
Objective The purpose of this study was to determine, for the first time, whether the application of a self-management program with global postural re-education (GPR) influences stress and sleep quality in female health science students. Methods In this randomized controlled trial pilot study, forty-one female health science students were randomized into a control group (n=21) and an intervention group (n=20). Participants underwent 8 weeks of self-management with and without GPR, after familiarization and therapy training. Outcomes included the State-Trait Anxiety Inventory (STAI) questionnaire and cortisol levels in saliva measured with the "CORTISOL Saliva ELISA SA E-6000" kit. Sleep quality was measured with the Pittsburgh Sleep Quality Index (PSQI) and a Sleep Diary; total sleep time (TST), sleep onset latency (SOL), wakefulness after sleep onset (WASO), sleep efficiency (SE), and perceived sleep quality or satisfaction were assessed using the Likert scale. Results After self-treatment with GPR, participants in the intervention group showed lower cortisol levels compared to the control group (p = 0.041). Additionally, the intervention group demonstrated statistically significant improvements in sleep quality according to their PSQI (p = 0.010), STAI (p = 0.043), SOL (p = 0.049), and SE (p = 0.002). Conclusion This study shows that self-management through GPR helps reduce stress and improve sleep quality in female health science students. Clinical Trial Registration https://clinicaltrials.gov/, identifier NCT05488015.
Collapse
Affiliation(s)
| | | | | | | | | | - Noelia Valle
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| |
Collapse
|
2
|
Mititelu M, Popovici V, Neacșu SM, Musuc AM, Busnatu ȘS, Oprea E, Boroghină SC, Mihai A, Streba CT, Lupuliasa D, Gheorghe E, Kebbewar N, Lupu CE. Assessment of Dietary and Lifestyle Quality among the Romanian Population in the Post-Pandemic Period. Healthcare (Basel) 2024; 12:1006. [PMID: 38786417 PMCID: PMC11121699 DOI: 10.3390/healthcare12101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The pandemic caused by the SARS-CoV-2 virus demonstrated the importance of prevention through a healthy diet and lifestyle, the most vulnerable people being those with severe chronic conditions, those who are overweight, and those with an unbalanced immune system. This study aims to examine the nutritional status and lifestyle behaviors of the Romanian population. METHODS The evaluation of the eating habits and lifestyle of the Romanian population in the post-pandemic period was carried out based on a cross-sectional observational study with the help of a questionnaire. RESULTS A total of 4704 valid answers were registered (3136 female and 1568 male respondents). Among the respondents, most of them belong to the young population, 2892 between the ages of 18 and 40, i.e., 61.5%. Most male respondents are overweight (1400) and obese (780). Most respondents indicated a tendency to consume 1-2 meals per day irregularly (p = 0.617). Only 974 respondents adopted a healthy diet, and 578 a healthy lifestyle. CONCLUSIONS The present study reports low adherence to a healthy diet (20.7%) and healthy lifestyle (12.28%), especially among the young population (<30 years). In the current context, it reports a reduced tendency to consume vegetables and fruits among the population, below the daily average recommended by the nutrition guidelines, a tendency towards sedentary behavior, and even deficient hydration of some of the respondents; these negative aspects can create a long-term series of nutritional and psycho-emotional imbalances. Our results evidence that complex surveys among the population are regularly required to investigate nutritional or lifestyle deficiencies; moreover, it could be helpful in further educational measures in nutrition, food, and environmental safety.
Collapse
Affiliation(s)
- Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania; (M.M.); (N.K.)
| | - Violeta Popovici
- Center for Mountain Economics, “Costin C. Kiriţescu” National Institute of Economic Research (INCE-CEMONT), Romanian Academy, 725700 Vatra-Dornei, Romania;
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Adina Magdalena Musuc
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 060021 Bucharest, Romania
| | - Ștefan Sebastian Busnatu
- Department of Cardio-Thoracic Pathology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Eliza Oprea
- Microbiology Department, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Steluța Constanța Boroghină
- Department of Complementary Sciences, History of Medicine and Medical Culture, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Andreea Mihai
- Department of Pulmonology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.M.); (C.T.S.)
| | - Costin Teodor Streba
- Department of Pulmonology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.M.); (C.T.S.)
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Emma Gheorghe
- Department of Preclinical Sciences I—Histology, Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania;
| | - Nadin Kebbewar
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania; (M.M.); (N.K.)
| | - Carmen Elena Lupu
- Department of Mathematics and Informatics, Faculty of Pharmacy, “Ovidius” University of Constanta, 900001 Constanta, Romania;
| |
Collapse
|
3
|
Schork I, Zamansky A, Farhat N, de Azevedo CS, Young RJ. Automated Observations of Dogs' Resting Behaviour Patterns Using Artificial Intelligence and Their Similarity to Behavioural Observations. Animals (Basel) 2024; 14:1109. [PMID: 38612348 PMCID: PMC11011086 DOI: 10.3390/ani14071109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Although direct behavioural observations are widely used, they are time-consuming, prone to error, require knowledge of the observed species, and depend on intra/inter-observer consistency. As a result, they pose challenges to the reliability and repeatability of studies. Automated video analysis is becoming popular for behavioural observations. Sleep is a biological metric that has the potential to become a reliable broad-spectrum metric that can indicate the quality of life and understanding sleep patterns can contribute to identifying and addressing potential welfare concerns, such as stress, discomfort, or health issues, thus promoting the overall welfare of animals; however, due to the laborious process of quantifying sleep patterns, it has been overlooked in animal welfare research. This study presents a system comparing convolutional neural networks (CNNs) with direct behavioural observation methods for the same data to detect and quantify dogs' sleeping patterns. A total of 13,688 videos were used to develop and train the model to quantify sleep duration and sleep fragmentation in dogs. To evaluate its similarity to the direct behavioural observations made by a single human observer, 6000 previously unseen frames were used. The system successfully classified 5430 frames, scoring a similarity rate of 89% when compared to the manually recorded observations. There was no significant difference in the percentage of time observed between the system and the human observer (p > 0.05). However, a significant difference was found in total sleep time recorded, where the automated system captured more hours than the observer (p < 0.05). This highlights the potential of using a CNN-based system to study animal welfare and behaviour research.
Collapse
Affiliation(s)
- Ivana Schork
- School of Sciences, Engineering & Environment, University of Salford, Manchester M5 4WT, UK;
| | - Anna Zamansky
- Information Systems Department, University of Haifa, Haifa 31905, Israel; (A.Z.)
| | - Nareed Farhat
- Information Systems Department, University of Haifa, Haifa 31905, Israel; (A.Z.)
| | - Cristiano Schetini de Azevedo
- Department of Evolution, Biodiversity and Environment, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35402-136, Brazil;
| | - Robert John Young
- School of Sciences, Engineering & Environment, University of Salford, Manchester M5 4WT, UK;
| |
Collapse
|
4
|
Suárez-Torres I, García-García F, Morales-Romero J, Melgarejo-Gutiérrez M, Demeneghi-Marini VP, Luna-Ceballos RI, Hernández-Trejo C, Carmona-Cortés DA. Poor quality of sleep in Mexican patients with type 2 diabetes and its association with lack of glycemic control. Prim Care Diabetes 2023; 17:155-160. [PMID: 36781364 DOI: 10.1016/j.pcd.2023.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/13/2023] [Accepted: 01/30/2023] [Indexed: 02/13/2023]
Abstract
AIMS To determine the association between sleep quality and lack of glycemic control in a Mexican population of type 2 diabetes patients. METHODS Cross-sectional study. Two hundred two patients between 20 and 60 years old with a previous diagnosis of diabetes were included. Sleep quality was assessed with the Pittsburgh Sleep Quality Index and lack of glycemic control as a glycated hemoglobin A1c level ≥ 7 %. Univariate and multivariate analyses using logistic regression were performed. RESULTS The study population showed poor sleep quality and a lack of glycemic control of 70.3 % and 69.8 %, respectively. The prevalence of patients with both conditions was 52.5 %. In multivariate analysis, poor sleep quality was significantly associated with a lack of glycemic control (OR = 2.3, p = 0.030). Other associated variables were napping (p = 0.015), diabetes duration (p = 0.011), insulin use (p = 0.024), and diastolic blood pressure ≥ 85 mmHg (p = 0.029). CONCLUSIONS The prevalence of lack of glycemic control in the study population is high. Poor sleep quality significantly doubles the risk of lack of glycemic control, even in the presence of other risk factors.
Collapse
Affiliation(s)
- Irene Suárez-Torres
- Health Sciences Ph.D. Program, Health Sciences Institute, University of Veracruz, Mexico
| | | | | | | | | | | | - Cirenia Hernández-Trejo
- Clinical Analysis Laboratory of the University Clinic for Reproductive and Sexual Health, University of Veracruz, Mexico
| | - Diana Aurora Carmona-Cortés
- Clinical Analysis Laboratory of the University Clinic for Reproductive and Sexual Health, University of Veracruz, Mexico
| |
Collapse
|
5
|
Kroeger D, Vetrivelan R. To sleep or not to sleep - Effects on memory in normal aging and disease. AGING BRAIN 2023; 3:100068. [PMID: 36911260 PMCID: PMC9997183 DOI: 10.1016/j.nbas.2023.100068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/03/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Sleep behavior undergoes significant changes across the lifespan, and aging is associated with marked alterations in sleep amounts and quality. The primary sleep changes in healthy older adults include a shift in sleep timing, reduced slow-wave sleep, and impaired sleep maintenance. However, neurodegenerative and psychiatric disorders are more common among the elderly, which further worsen their sleep health. Irrespective of the cause, insufficient sleep adversely affects various bodily functions including energy metabolism, mood, and cognition. In this review, we will focus on the cognitive changes associated with inadequate sleep during normal aging and the underlying neural mechanisms.
Collapse
Affiliation(s)
- Daniel Kroeger
- Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, United States
| |
Collapse
|
6
|
Li X, Qin RR, Chen J, Jiang HF, Tang P, Wang YJ, Xu DW, Xu T, Yuan TF. Neuropsychiatric symptoms and altered sleep quality in cerebral small vessel disease. Front Psychiatry 2022; 13:882922. [PMID: 36051552 PMCID: PMC9424898 DOI: 10.3389/fpsyt.2022.882922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Sleep disturbance and neuropsychiatric symptoms are common clinical symptoms of cerebral small vessel disease (CSVD), but the underlying mechanism is unclear. Here, we investigated the relationship between sleep quality and neuropsychiatric performance in patients with CSVD. METHODS A total of 30 patients with CSVD and 35 healthy controls (HCs) were recruited. The 13-item Beck Depression Inventory (BDI-13), Beck Anxiety Inventory (BAI), and Symptom Check List 90 (SCL90) were used to assess depression, anxiety, and other psychological symptoms, respectively. Sleep quality was assessed using Pittsburgh Sleep Quality Index (PSQI), and cognitive function was tested using Montreal Cognitive Assessment (MoCA). RESULTS When compared to the HC group, the patients with CSVD showed increased anxiety and neuropsychiatric symptoms, worse sleep quality, and impaired cognition (p < 0.05). The prevalence of comorbid poor sleep quality in the patients with CSVD was approximately 46%. The patients with CSVD with poor sleep quality also had more severe neuropsychiatric symptoms. After controlling for demographic variables, sex and anxiety significantly predicted sleep quality. CONCLUSION This study suggests that the prevalence of CSVD with poor sleep quality is high, and that sex and anxiety are independent risk factors for CSVD comorbid sleep quality.
Collapse
Affiliation(s)
- Xi Li
- Department of Neurology, Affiliated Tongzhou Hospital of Nantong University, Nantong, China.,School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Rong-Rong Qin
- Department of Neurology, Affiliated Tongzhou Hospital of Nantong University, Nantong, China
| | - Jian Chen
- Department of Neurology, Affiliated Tongzhou Hospital of Nantong University, Nantong, China
| | - Hai-Fei Jiang
- Department of Neurology, Affiliated Tongzhou Hospital of Nantong University, Nantong, China
| | - Pan Tang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yu-Jing Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Dong-Wu Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Tao Xu
- Department of Neurology, Affiliated Tongzhou Hospital of Nantong University, Nantong, China.,Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Cerri M, Amici R. Thermoregulation and Sleep: Functional Interaction and Central Nervous Control. Compr Physiol 2021; 11:1591-1604. [PMID: 33792906 DOI: 10.1002/cphy.c140012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Each of the wake-sleep states is characterized by specific changes in autonomic activity and bodily functions. The goal of such changes is not always clear. During non-rapid eye movement (NREM) sleep, the autonomic outflow and the activity of the endocrine system, the respiratory system, the cardiovascular system, and the thermoregulatory system seem to be directed at increasing energy saving. During rapid eye movement (REM) sleep, the goal of the specific autonomic and regulatory changes is unclear, since a large instability of autonomic activity and cardiorespiratory function is observed in concomitance with thermoregulatory changes, which are apparently non-functional to thermal homeostasis. Reciprocally, the activation of thermoregulatory responses under thermal challenges interferes with sleep occurrence. Such a double-edged and reciprocal interaction between sleep and thermoregulation may be favored by the fact that the central network controlling sleep overlaps in several parts with the central network controlling thermoregulation. The understanding of the central mechanism behind the interaction between sleep and thermoregulation may help to understand the functionality of thermoregulatory sleep-related changes and, ultimately, the function(s) of sleep. © 2021 American Physiological Society. Compr Physiol 11:1591-1604, 2021.
Collapse
Affiliation(s)
- Matteo Cerri
- Department of Biomedical and Neuromotor Sciences - Physiology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Roberto Amici
- Department of Biomedical and Neuromotor Sciences - Physiology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Maywood ES, Chesham JE, Winsky-Sommerer R, Smyllie NJ, Hastings MH. Circadian Chimeric Mice Reveal an Interplay Between the Suprachiasmatic Nucleus and Local Brain Clocks in the Control of Sleep and Memory. Front Neurosci 2021; 15:639281. [PMID: 33679317 PMCID: PMC7935531 DOI: 10.3389/fnins.2021.639281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Sleep is regulated by circadian and homeostatic processes. Whereas the suprachiasmatic nucleus (SCN) is viewed as the principal mediator of circadian control, the contributions of sub-ordinate local circadian clocks distributed across the brain are unknown. To test whether the SCN and local brain clocks interact to regulate sleep, we used intersectional genetics to create temporally chimeric CK1ε Tau mice, in which dopamine 1a receptor (Drd1a)-expressing cells, a powerful pacemaking sub-population of the SCN, had a cell-autonomous circadian period of 24 h whereas the rest of the SCN and the brain had intrinsic periods of 20 h. We compared these mice with non-chimeric 24 h wild-types (WT) and 20 h CK1ε Tau mutants. The periods of the SCN ex vivo and the in vivo circadian behavior of chimeric mice were 24 h, as with WT, whereas other tissues in the chimeras had ex vivo periods of 20 h, as did all tissues from Tau mice. Nevertheless, the chimeric SCN imposed its 24 h period on the circadian patterning of sleep. When compared to 24 h WT and 20 h Tau mice, however, the sleep/wake cycle of chimeric mice under free-running conditions was disrupted, with more fragmented sleep and an increased number of short NREMS and REMS episodes. Even though the chimeras could entrain to 20 h light:dark cycles, the onset of activity and wakefulness was delayed, suggesting that SCN Drd1a-Cre cells regulate the sleep/wake transition. Chimeric mice also displayed a blunted homeostatic response to 6 h sleep deprivation (SD) with an impaired ability to recover lost sleep. Furthermore, sleep-dependent memory was compromised in chimeras, which performed significantly worse than 24 h WT and 20 h Tau mice. These results demonstrate a central role for the circadian clocks of SCN Drd1a cells in circadian sleep regulation, but they also indicate a role for extra-SCN clocks. In circumstances where the SCN and sub-ordinate local clocks are temporally mis-aligned, the SCN can maintain overall circadian control, but sleep consolidation and recovery from SD are compromised. The importance of temporal alignment between SCN and extra-SCN clocks for maintaining vigilance state, restorative sleep and memory may have relevance to circadian misalignment in humans, with environmental (e.g., shift work) causes.
Collapse
Affiliation(s)
| | | | - Raphaelle Winsky-Sommerer
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Nicola Jane Smyllie
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | |
Collapse
|
9
|
Henry M, Thomas KGF, Ross IL. Sleep, Cognition and Cortisol in Addison's Disease: A Mechanistic Relationship. Front Endocrinol (Lausanne) 2021; 12:694046. [PMID: 34512546 PMCID: PMC8429905 DOI: 10.3389/fendo.2021.694046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/02/2021] [Indexed: 11/19/2022] Open
Abstract
Sleep is a critical biological process, essential for cognitive well-being. Neuroscientific literature suggests there are mechanistic relations between sleep disruption and memory deficits, and that varying concentrations of cortisol may play an important role in mediating those relations. Patients with Addison's disease (AD) experience consistent and predictable periods of sub- and supra-physiological cortisol concentrations due to lifelong glucocorticoid replacement therapy, and they frequently report disrupted sleep and impaired memory. These disruptions and impairments may be related to the failure of replacement regimens to restore a normal circadian rhythm of cortisol secretion. Available data provides support for existing theoretical frameworks which postulate that in AD and other neuroendocrine, neurological, or psychiatric disorders, disrupted sleep is an important biological mechanism that underlies, at least partially, the memory impairments that patients frequently report experiencing. Given the literature linking sleep disruption and cognitive impairment in AD, future initiatives should aim to improve patients' cognitive performance (and, indeed, their overall quality of life) by prioritizing and optimizing sleep. This review summarizes the literature on sleep and cognition in AD, and the role that cortisol concentrations play in the relationship between the two.
Collapse
Affiliation(s)
- Michelle Henry
- Centre for Higher Education Development, University of Cape Town, Cape Town, South Africa
- *Correspondence: Michelle Henry,
| | | | - Ian Louis Ross
- Division of Endocrinology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
Muehlroth BE, Werkle-Bergner M. Understanding the interplay of sleep and aging: Methodological challenges. Psychophysiology 2020; 57:e13523. [PMID: 31930523 DOI: 10.1111/psyp.13523] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/21/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022]
Abstract
In quest of new avenues to explain, predict, and treat pathophysiological conditions during aging, research on sleep and aging has flourished. Despite the great scientific potential to pinpoint mechanistic pathways between sleep, aging, and pathology, only little attention has been paid to the suitability of analytic procedures applied to study these interrelations. On the basis of electrophysiological sleep and structural brain data of healthy younger and older adults, we identify, illustrate, and resolve methodological core challenges in the study of sleep and aging. We demonstrate potential biases in common analytic approaches when applied to older populations. We argue that uncovering age-dependent alterations in the physiology of sleep requires the development of adjusted and individualized analytic procedures that filter out age-independent interindividual differences. Age-adapted methodological approaches are thus required to foster the development of valid and reliable biomarkers of age-associated cognitive pathologies.
Collapse
Affiliation(s)
- Beate E Muehlroth
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
11
|
Angelin TJ, Mota KR, Santos Júnior VED, Silva LC, Heimer MV. Evaluation of Sleep Quality and Daytime Sleepiness in Dentistry Students. PESQUISA BRASILEIRA EM ODONTOPEDIATRIA E CLÍNICA INTEGRADA 2020. [DOI: 10.1590/pboci.2020.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
Silva A, Narciso FV, Rosa JP, Rodrigues DF, Cruz AÂDS, Tufik S, Viana F, Bichara JJ, Pereira SRD, da Silva SC, Mello MTD. Gender differences in sleep patterns and sleep complaints of elite athletes. Sleep Sci 2019; 12:242-248. [PMID: 32318244 PMCID: PMC7159080 DOI: 10.5935/1984-0063.20190084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 09/18/2019] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE The present study aimed to investigate the gender differences for sleep complaints, patterns and disorders of elite athletes during preparation for the Rio 2016 Olympic Games. METHODS The study included 146 athletes from the Brazilian Olympic Team (male: n=86; 59%; female: n=60; 41%). The assessment of the Olympic athletes' sleep took place in 2015, during the preparation period for the Rio Olympic Games. The athletes underwent a single polysomnography (PSG) evaluation. Sleep specialists evaluated the athletes and asked about their sleep complaints during a clinical consultation. In this evaluation week, the athletes did not take part in any training or competitions. RESULTS The prevalence of sleep complaints was 53% of the athletes during the medical consultation, the most prevalent being insufficient sleep/waking up tired (32%), followed by snoring (21%) and insomnia (19.2%). In relation to the sleep pattern findings, the men had significantly higher sleep latency and wake after sleep onset than the women (p=0.004 and p=0.002, respectively). The sleep efficiency and sleep stages revealed that men had a lower percentage of sleep efficiency and slow wave sleep than the women (p=0.001 and p=0.05, respectively). CONCLUSION Most athletes reported some sleep complaints, with men reporting more sleep complaints than women in the clinical evaluation. The PSG showed that 36% of all athletes had a sleep disorder with a greater reduction in sleep quality in men than in women.
Collapse
Affiliation(s)
- Andressa Silva
- Universidade Federal de Minas Gerais, Departamento de Esportes - Belo Horizonte - Minas Gerais - Brazil
| | - Fernanda Veruska Narciso
- Universidade Federal de Minas Gerais, Departamento de Esportes - Belo Horizonte - Minas Gerais - Brazil
| | - João Paulo Rosa
- Universidade Federal de Minas Gerais, Departamento de Esportes - Belo Horizonte - Minas Gerais - Brazil
| | - Dayane Ferreira Rodrigues
- Universidade Federal de Minas Gerais, Departamento de Esportes - Belo Horizonte - Minas Gerais - Brazil
| | | | - Sérgio Tufik
- Universidade Federal de São Paulo, Departamento de Psicobiologia - São Paulo - São Paulo - Brazil
| | - Fernanda Viana
- Universidade Federal de Minas Gerais, Departamento de Esportes - Belo Horizonte - Minas Gerais - Brazil
| | - Jorge José Bichara
- Comitê Olímpico do Brasil, Comitê Olímpico do Brasil - Rio de Janeiro - Rio de Janeiro - Brazil
| | | | | | - Marco Túlio De Mello
- Universidade Federal de Minas Gerais, Departamento de Esportes - Belo Horizonte - Minas Gerais - Brazil
| |
Collapse
|
13
|
Munro Krull E, Sakata S, Toyoizumi T. Theta Oscillations Alternate With High Amplitude Neocortical Population Within Synchronized States. Front Neurosci 2019; 13:316. [PMID: 31037053 PMCID: PMC6476345 DOI: 10.3389/fnins.2019.00316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
Synchronized states are marked by large-amplitude low-frequency oscillations in the cortex. These states can be seen during quiet waking or slow-wave sleep. Within synchronized states, previous studies have noted a plethora of different types of activity, including delta oscillations (0.5-4 Hz) and slow oscillations (<1 Hz) in the neocortex and large- and small- irregular activity in the hippocampus. However, it is not still fully characterized how neural populations contribute to the synchronized state. Here we apply independent component analysis to parse which populations are involved in different kinds of neocortical activity, and find two populations that alternate throughout synchronized states. One population broadly affects neocortical deep layers, and is associated with larger amplitude slower neocortical oscillations. The other population exhibits theta-frequency oscillations that are not easily observed in raw field potential recordings. These theta oscillations apparently come from below the neocortex, suggesting hippocampal origin, and are associated with smaller amplitude faster neocortical oscillations. Relative involvement of these two alternating populations may indicate different modes of operation within synchronized states.
Collapse
Affiliation(s)
- Erin Munro Krull
- RIKEN Center for Brain Science, Tokyo, Japan
- Beloit College, Beloit, WI, United States
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | | |
Collapse
|
14
|
Quantitative phosphoproteomic analysis of the molecular substrates of sleep need. Nature 2018; 558:435-439. [PMID: 29899451 DOI: 10.1038/s41586-018-0218-8] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 05/01/2018] [Indexed: 12/25/2022]
Abstract
Sleep and wake have global effects on brain physiology, from molecular changes1-4 and neuronal activities to synaptic plasticity3-7. Sleep-wake homeostasis is maintained by the generation of a sleep need that accumulates during waking and dissipates during sleep8-11. Here we investigate the molecular basis of sleep need using quantitative phosphoproteomic analysis of the sleep-deprived and Sleepy mouse models of increased sleep need. Sleep deprivation induces cumulative phosphorylation of the brain proteome, which dissipates during sleep. Sleepy mice, owing to a gain-of-function mutation in the Sik3 gene 12 , have a constitutively high sleep need despite increased sleep amount. The brain proteome of these mice exhibits hyperphosphorylation, similar to that seen in the brain of sleep-deprived mice. Comparison of the two models identifies 80 mostly synaptic sleep-need-index phosphoproteins (SNIPPs), in which phosphorylation states closely parallel changes of sleep need. SLEEPY, the mutant SIK3 protein, preferentially associates with and phosphorylates SNIPPs. Inhibition of SIK3 activity reduces phosphorylation of SNIPPs and slow wave activity during non-rapid-eye-movement sleep, the best known measurable index of sleep need, in both Sleepy mice and sleep-deprived wild-type mice. Our results suggest that phosphorylation of SNIPPs accumulates and dissipates in relation to sleep need, and therefore SNIPP phosphorylation is a molecular signature of sleep need. Whereas waking encodes memories by potentiating synapses, sleep consolidates memories and restores synaptic homeostasis by globally downscaling excitatory synapses4-6. Thus, the phosphorylation-dephosphorylation cycle of SNIPPs may represent a major regulatory mechanism that underlies both synaptic homeostasis and sleep-wake homeostasis.
Collapse
|
15
|
Matthews E, Carter P, Page M, Dean G, Berger A. Sleep-Wake Disturbance: A Systematic Review of Evidence-Based Interventions for Management in Patients With Cancer. Clin J Oncol Nurs 2018; 22:37-52. [DOI: 10.1188/18.cjon.37-52] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Reflexology and polysomnography: Changes in cerebral wave activity induced by reflexology promote N1 and N2 sleep stages. Complement Ther Clin Pract 2017; 28:54-64. [DOI: 10.1016/j.ctcp.2017.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/11/2017] [Accepted: 05/11/2017] [Indexed: 11/22/2022]
|
17
|
Hypocretin (orexin) is critical in sustaining theta/gamma-rich waking behaviors that drive sleep need. Proc Natl Acad Sci U S A 2017. [PMID: 28630298 DOI: 10.1073/pnas.1700983114] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hcrt gene inactivation in mice leads to behavioral state instability, abnormal transitions to paradoxical sleep, and cataplexy, hallmarks of narcolepsy. Sleep homeostasis is, however, considered unimpaired in patients and narcoleptic mice. We find that whereas Hcrtko/ko mice respond to 6-h sleep deprivation (SD) with a slow-wave sleep (SWS) EEG δ (1.0 to 4.0 Hz) power rebound like WT littermates, spontaneous waking fails to induce a δ power reflecting prior waking duration. This correlates with impaired θ (6.0 to 9.5 Hz) and fast-γ (55 to 80 Hz) activity in prior waking. We algorithmically identify a theta-dominated wakefulness (TDW) substate underlying motivated behaviors and typically preceding cataplexy in Hcrtko/ko mice. Hcrtko/ko mice fully implement TDW when waking is enforced, but spontaneous TDW episode duration is greatly reduced. A reformulation of the classic sleep homeostasis model, where homeostatic pressure rises exclusively in TDW rather than all waking, predicts δ power dynamics both in Hcrtko/ko and WT mouse baseline and recovery SWS. The low homeostatic impact of Hcrtko/ko mouse spontaneous waking correlates with decreased cortical expression of neuronal activity-related genes (notably Bdnf, Egr1/Zif268, and Per2). Thus, spontaneous TDW stability relies on Hcrt to sustain θ/fast-γ network activity and associated plasticity, whereas other arousal circuits sustain TDW during SD. We propose that TDW identifies a discrete global brain activity mode that is regulated by context-dependent neuromodulators and acts as a major driver of sleep homeostasis. Hcrt loss in Hcrtko/ko mice causes impaired TDW maintenance in baseline wake and blunted δ power in SWS, reproducing, respectively, narcolepsy excessive daytime sleepiness and poor sleep quality.
Collapse
|
18
|
Drakakis G, Wafford KA, Brewerton SC, Bodkin MJ, Evans DA, Bender A. Polypharmacological in Silico Bioactivity Profiling and Experimental Validation Uncovers Sedative-Hypnotic Effects of Approved and Experimental Drugs in Rat. ACS Chem Biol 2017; 12:1593-1602. [PMID: 28414209 DOI: 10.1021/acschembio.7b00209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this work, we describe the computational ("in silico") mode-of-action analysis of CNS-active drugs, which is taking both multiple simultaneous hypotheses as well as sets of protein targets for each mode-of-action into account, and which was followed by successful prospective in vitro and in vivo validation. Using sleep-related phenotypic readouts describing both efficacy and side effects for 491 compounds tested in rat, we defined an "optimal" (desirable) sleeping pattern. Compounds were subjected to in silico target prediction (which was experimentally confirmed for 21 out of 28 cases), followed by the utilization of decision trees for deriving polypharmacological bioactivity profiles. We demonstrated that predicted bioactivities improved classification performance compared to using only structural information. Moreover, DrugBank molecules were processed via the same pipeline, and compounds in many cases not annotated as sedative-hypnotic (alcaftadine, benzatropine, palonosetron, ecopipam, cyproheptadine, sertindole, and clopenthixol) were prospectively validated in vivo. Alcaftadine, ecopipam cyproheptadine, and clopenthixol were found to promote sleep as predicted, benzatropine showed only a small increase in NREM sleep, whereas sertindole promoted wakefulness. To our knowledge, the sedative-hypnotic effects of alcaftadine and ecopipam have not been previously discussed in the literature. The method described extends previous single-target, single-mode-of-action models and is applicable across disease areas.
Collapse
Affiliation(s)
- Georgios Drakakis
- Centre
for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Keith A. Wafford
- Eli Lilly U.K., Erl Wood Manor, Windlesham, Surrey GU206PH, United Kingdom
| | | | - Michael J. Bodkin
- Eli Lilly U.K., Erl Wood Manor, Windlesham, Surrey GU206PH, United Kingdom
| | - David A. Evans
- Eli Lilly U.K., Erl Wood Manor, Windlesham, Surrey GU206PH, United Kingdom
| | - Andreas Bender
- Centre
for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
19
|
Gretenkord S, Rees A, Whittington MA, Gartside SE, LeBeau FEN. Dorsal vs. ventral differences in fast Up-state-associated oscillations in the medial prefrontal cortex of the urethane-anesthetized rat. J Neurophysiol 2016; 117:1126-1142. [PMID: 28003411 PMCID: PMC5340880 DOI: 10.1152/jn.00762.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 01/08/2023] Open
Abstract
We demonstrate, in the urethane-anesthetized rat, that within the medial prefrontal cortex (mPFC) there are clear subregional differences in the fast network oscillations associated with the slow oscillation Up-state. These differences, particularly between the dorsal and ventral subregions of the mPFC, may reflect the different functions and connectivity of these subregions. Cortical slow oscillations (0.1–1 Hz), which may play a role in memory consolidation, are a hallmark of non-rapid eye movement (NREM) sleep and also occur under anesthesia. During slow oscillations the neuronal network generates faster oscillations on the active Up-states and these nested oscillations are particularly prominent in the PFC. In rodents the medial prefrontal cortex (mPFC) consists of several subregions: anterior cingulate cortex (ACC), prelimbic (PrL), infralimbic (IL), and dorsal peduncular cortices (DP). Although each region has a distinct anatomy and function, it is not known whether slow or fast network oscillations differ between subregions in vivo. We have simultaneously recorded slow and fast network oscillations in all four subregions of the rodent mPFC under urethane anesthesia. Slow oscillations were synchronous between the mPFC subregions, and across the hemispheres, with no consistent amplitude difference between subregions. Delta (2–4 Hz) activity showed only small differences between subregions. However, oscillations in the spindle (6–15 Hz)-, beta (20–30 Hz), gamma (30–80 Hz)-, and high-gamma (80–150 Hz)-frequency bands were consistently larger in the dorsal regions (ACC and PrL) compared with ventral regions (IL and DP). In dorsal regions the peak power of spindle, beta, and gamma activity occurred early after onset of the Up-state. In the ventral regions, especially the DP, the oscillatory power in the spindle-, beta-, and gamma-frequency ranges peaked later in the Up-state. These results suggest variations in fast network oscillations within the mPFC that may reflect the different functions and connectivity of these subregions. NEW & NOTEWORTHY We demonstrate, in the urethane-anesthetized rat, that within the medial prefrontal cortex (mPFC) there are clear subregional differences in the fast network oscillations associated with the slow oscillation Up-state. These differences, particularly between the dorsal and ventral subregions of the mPFC, may reflect the different functions and connectivity of these subregions.
Collapse
Affiliation(s)
- Sabine Gretenkord
- Institute of Neuroscience, Newcastle University, Medical School, Newcastle-upon-Tyne, United Kingdom.,Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and
| | - Adrian Rees
- Institute of Neuroscience, Newcastle University, Medical School, Newcastle-upon-Tyne, United Kingdom
| | - Miles A Whittington
- York-Hull Medical School, F1-Department of Biology, York University, Heslington, United Kingdom
| | - Sarah E Gartside
- Institute of Neuroscience, Newcastle University, Medical School, Newcastle-upon-Tyne, United Kingdom
| | - Fiona E N LeBeau
- Institute of Neuroscience, Newcastle University, Medical School, Newcastle-upon-Tyne, United Kingdom;
| |
Collapse
|
20
|
Skeldon AC, Derks G, Dijk DJ. Modelling changes in sleep timing and duration across the lifespan: Changes in circadian rhythmicity or sleep homeostasis? Sleep Med Rev 2016; 28:96-107. [DOI: 10.1016/j.smrv.2015.05.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 12/20/2022]
|
21
|
Wang Q, Chair SY, Wong EML, Li X. The Effects of Music Intervention on Sleep Quality in Community-Dwelling Elderly. J Altern Complement Med 2016; 22:576-84. [DOI: 10.1089/acm.2015.0304] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Qun Wang
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sek Ying Chair
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Eliza Mi Ling Wong
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiaomei Li
- Faculty of Nursing, College of Medicine, Xian Jiaotong University, Xian, Shaanxi Province, China
| |
Collapse
|
22
|
What parents want: parent preference regarding sleep for their preschool child when attending early care and education. Sleep Health 2016; 2:12-18. [DOI: 10.1016/j.sleh.2015.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/09/2015] [Accepted: 11/10/2015] [Indexed: 11/17/2022]
|
23
|
Cantor RS. The evolutionary origin of the need to sleep: an inevitable consequence of synaptic neurotransmission? Front Synaptic Neurosci 2015; 7:15. [PMID: 26441631 PMCID: PMC4585021 DOI: 10.3389/fnsyn.2015.00015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/03/2015] [Indexed: 11/13/2022] Open
Abstract
It is proposed that the evolutionary origin of the need to sleep is the removal of neurotransmitters (NTs) that escape reuptake and accumulate in brain interstitial fluid (ISF). Recent work suggests that the activity of ionotropic postsynaptic receptors, rapidly initiated by binding of NTs to extracellular sites, is modulated over longer times by adsorption of these NTs to the lipid bilayers in which the receptors are embedded. This bilayer-mediated mechanism is far less molecularly specific than binding, so bilayer adsorption of NTs that have diffused into synapses for other receptors would modulate their activity as well. Although NTs are recycled by membrane protein reuptake, the process is less than 100% efficient; a fraction escapes the region in which these specific reuptake proteins are localized and eventually diffuses throughout the ISF. It is estimated that even if only 0.1% of NTs escape reuptake, they would accumulate and adsorb to bilayers in synapses of other receptors sufficiently to affect receptor activity, the harmful consequences of which are avoided by sleep: a period of efficient convective clearance of solutes together with greatly reduced synaptic activity.
Collapse
Affiliation(s)
- Robert S Cantor
- Burke Laboratory, Department of Chemistry, Dartmouth College Hanover, NH, USA ; Memphys Center for Biomembrane Physics, University of Southern Denmark Odense, Denmark
| |
Collapse
|
24
|
Feld GB, Diekelmann S. Sleep smart-optimizing sleep for declarative learning and memory. Front Psychol 2015; 6:622. [PMID: 26029150 PMCID: PMC4428077 DOI: 10.3389/fpsyg.2015.00622] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 04/27/2015] [Indexed: 02/05/2023] Open
Abstract
The last decade has witnessed a spurt of new publications documenting sleep's essential contribution to the brains ability to form lasting memories. For the declarative memory domain, slow wave sleep (the deepest sleep stage) has the greatest beneficial effect on the consolidation of memories acquired during preceding wakefulness. The finding that newly encoded memories become reactivated during subsequent sleep fostered the idea that reactivation leads to the strengthening and transformation of the memory trace. According to the active system consolidation account, trace reactivation leads to the redistribution of the transient memory representations from the hippocampus to the long-lasting knowledge networks of the cortex. Apart from consolidating previously learned information, sleep also facilitates the encoding of new memories after sleep, which probably relies on the renormalization of synaptic weights during sleep as suggested by the synaptic homeostasis theory. During wakefulness overshooting potentiation causes an imbalance in synaptic weights that is countered by synaptic downscaling during subsequent sleep. This review briefly introduces the basic concepts and central findings of the research on sleep and memory, and discusses implications of this lab-based work for everyday applications to make the best possible use of sleep's beneficial effect on learning and memory.
Collapse
Affiliation(s)
- Gordon B Feld
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany
| | - Susanne Diekelmann
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany
| |
Collapse
|
25
|
Tempaku PF, Mazzotti DR, Tufik S. Telomere length as a marker of sleep loss and sleep disturbances: a potential link between sleep and cellular senescence. Sleep Med 2015; 16:559-63. [DOI: 10.1016/j.sleep.2015.02.519] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/04/2015] [Accepted: 02/10/2015] [Indexed: 10/24/2022]
|
26
|
Bolhuis JJ, Moorman S. Birdsong memory and the brain: In search of the template. Neurosci Biobehav Rev 2015; 50:41-55. [DOI: 10.1016/j.neubiorev.2014.11.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/07/2014] [Accepted: 11/21/2014] [Indexed: 11/26/2022]
|
27
|
Abstract
A commonly held view is that extended wakefulness is causal for a broad spectrum of deleterious effects at molecular, cellular, network, physiological, psychological, and behavioral levels. Consequently, it is often presumed that sleep plays an active role in providing renormalization of the changes incurred during preceding waking. Not surprisingly, unequivocal empirical evidence supporting such a simple bi-directional interaction between waking and sleep is often limited or controversial. One difficulty is that, invariably, a constellation of many intricately interrelated factors, including the time of day, specific activities or behaviors during preceding waking, metabolic status and stress are present at the time of measurement, shaping the overall effect observed. In addition to this, although insufficient or disrupted sleep is thought to prevent efficient recovery of specific physiological variables, it is also often difficult to attribute specific changes to the lack of sleep proper. Furthermore, sleep is a complex phenomenon characterized by a multitude of processes, whose unique and distinct contributions to the purported functions of sleep are difficult to determine, because they are interrelated. Intensive research effort over the last decades has greatly progressed current understanding of the cellular and physiological processes underlying the regulation of vigilance states. Notably, it also highlighted the infinite complexity within both waking and sleep, and revealed a number of fundamental conceptual and technical obstacles that need to be overcome in order to fully understand these processes. A promising approach could be to view sleep not as an entity, which has specific function(s) and is subject to direct regulation, but as a manifestation of the process of metaregulation, which enables efficient moment-to-moment integration between internal and external factors, preceding history and current homeostatic needs.
Collapse
|
28
|
Hodor A, Palchykova S, Baracchi F, Noain D, Bassetti CL. Baclofen facilitates sleep, neuroplasticity, and recovery after stroke in rats. Ann Clin Transl Neurol 2014; 1:765-77. [PMID: 25493268 PMCID: PMC4241804 DOI: 10.1002/acn3.115] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/22/2014] [Accepted: 08/15/2014] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Sleep disruption in the acute phase after stroke has detrimental effects on recovery in both humans and animals. Conversely, the effect of sleep promotion remains unclear. Baclofen (Bac) is a known non-rapid eye movement (NREM) sleep-promoting drug in both humans and animals. The aim of this study was to investigate the effect of Bac on stroke recovery in a rat model of focal cerebral ischemia (isch). METHODS Rats, assigned to three experimental groups (Bac/isch, saline/isch, or Bac/sham), were injected twice daily for 10 consecutive days with Bac or saline, starting 24 h after induction of stroke. The sleep-wake cycle was assessed by EEG recordings and functional motor recovery by single pellet reaching test (SPR). In order to identify potential neuroplasticity mechanisms, axonal sprouting and neurogenesis were evaluated. Brain damage was assessed by Nissl staining. RESULTS Repeated Bac treatment after ischemia affected sleep, motor function, and neuroplasticity, but not the size of brain damage. NREM sleep amount was increased significantly during the dark phase in Bac/isch compared to the saline/isch group. SPR performance dropped to 0 immediately after stroke and was recovered slowly thereafter in both ischemic groups. However, Bac-treated ischemic rats performed significantly better than saline-treated animals. Axonal sprouting in the ipsilesional motor cortex and striatum, and neurogenesis in the peri-infarct region were significantly increased in Bac/isch group. CONCLUSION Delayed repeated Bac treatment after stroke increased NREM sleep and promoted both neuroplasticity and functional outcome. These data support the hypothesis of the role of sleep as a modulator of poststroke recovery.
Collapse
Affiliation(s)
- Aleksandra Hodor
- Center for Experimental Neurology (ZEN), Department of Neurology, Inselspital, Bern University Hospital 3010, Bern, Switzerland
| | - Svitlana Palchykova
- Center for Experimental Neurology (ZEN), Department of Neurology, Inselspital, Bern University Hospital 3010, Bern, Switzerland
| | - Francesca Baracchi
- Center for Experimental Neurology (ZEN), Department of Neurology, Inselspital, Bern University Hospital 3010, Bern, Switzerland
| | - Daniela Noain
- Department of Neurology, University Hospital Zürich 8091, Zürich, Switzerland
| | - Claudio L Bassetti
- Center for Experimental Neurology (ZEN), Department of Neurology, Inselspital, Bern University Hospital 3010, Bern, Switzerland
| |
Collapse
|
29
|
Larson-Prior LJ, Ju YE, Galvin JE. Cortical-subcortical interactions in hypersomnia disorders: mechanisms underlying cognitive and behavioral aspects of the sleep-wake cycle. Front Neurol 2014; 5:165. [PMID: 25309500 PMCID: PMC4160996 DOI: 10.3389/fneur.2014.00165] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/18/2014] [Indexed: 01/01/2023] Open
Abstract
Subcortical circuits mediating sleep–wake functions have been well characterized in animal models, and corroborated by more recent human studies. Disruptions in these circuits have been identified in hypersomnia disorders (HDs) such as narcolepsy and Kleine–Levin Syndrome, as well as in neurodegenerative disorders expressing excessive daytime sleepiness. However, the behavioral expression of sleep–wake functions is not a simple on-or-off state determined by subcortical circuits, but encompasses a complex range of behaviors determined by the interaction between cortical networks and subcortical circuits. While conceived as disorders of sleep, HDs are equally disorders of wake, representing a fundamental instability in neural state characterized by lapses of alertness during wake. These episodic lapses in alertness and wakefulness are also frequently seen in neurodegenerative disorders where electroencephalogram demonstrates abnormal function in cortical regions associated with cognitive fluctuations (CFs). Moreover, functional connectivity MRI shows instability of cortical networks in individuals with CFs. We propose that the inability to stabilize neural state due to disruptions in the sleep–wake control networks is common to the sleep and cognitive dysfunctions seen in hypersomnia and neurodegenerative disorders.
Collapse
Affiliation(s)
- Linda J Larson-Prior
- Department of Radiology, Washington University School of Medicine , St. Louis, MO , USA ; Department of Neurology, Washington University School of Medicine , St. Louis, MO , USA
| | - Yo-El Ju
- Department of Neurology, Washington University School of Medicine , St. Louis, MO , USA
| | - James E Galvin
- Departments of Neurology, New York University Langone School of Medicine , New York, NY , USA ; Department of Psychiatry, New York University Langone School of Medicine , New York, NY , USA ; Department of Population Health, New York University Langone School of Medicine , New York, NY , USA
| |
Collapse
|
30
|
Assessment of SOMNOwatch plus EEG for sleep monitoring in healthy individuals. Physiol Behav 2014; 132:73-8. [DOI: 10.1016/j.physbeh.2014.04.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/09/2014] [Accepted: 04/29/2014] [Indexed: 01/30/2023]
|
31
|
Akerstedt T, Axelsson J, Lekander M, Orsini N, Kecklund G. Do sleep, stress, and illness explain daily variations in fatigue? A prospective study. J Psychosom Res 2014; 76:280-5. [PMID: 24630177 DOI: 10.1016/j.jpsychores.2014.01.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Fatigue is related to a number of serious diseases, as well as to general well-being. It is also a major cause of sickness absence and use of health facilities. Still, the determinants of variations in fatigue are little investigated. The purpose of present study was to investigate the relationships between the daily variations of fatigue with sleep during the previous night, stress or disease symptoms during the same day - across 42 consecutive days of normal life. METHODS 50 individuals participated and gave diary reports and used an actigraph across the 42days. The data was analyzed using a multilevel approach with mixed model regression. RESULTS The analyses showed that the day-to-day variation in fatigue was related to (poor) sleep quality (p<.001) and (reduced) sleep duration (p<.01) the previous night, as well as to higher stress (p<.05), and to the occurrence of a cold or fever (p<.001) during the same day as the fatigue rating. Fatigue was also strongly related to poorer subjective health (p<.001) and sleepiness (p<.001) during the same day. CONCLUSION The results indicate that prior sleep (and sleepiness) as well as stress and illness are consistently connected to how fatigue is experienced during normal living conditions.
Collapse
Affiliation(s)
- Torbjörn Akerstedt
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
| | - John Axelsson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Mats Lekander
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Nicola Orsini
- Institute for Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Göran Kecklund
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
32
|
A neocortical delta rhythm facilitates reciprocal interlaminar interactions via nested theta rhythms. J Neurosci 2013; 33:10750-61. [PMID: 23804097 DOI: 10.1523/jneurosci.0735-13.2013] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Delta oscillations (1-4 Hz) associate with deep sleep and are implicated in memory consolidation and replay of cortical responses elicited during wake states. A potent local generator has been characterized in thalamus, and local generators in neocortex have been suggested. Here we demonstrate that isolated rat neocortex generates delta rhythms in conditions mimicking the neuromodulatory state during deep sleep (low cholinergic and dopaminergic tone). The rhythm originated in an NMDA receptor-driven network of intrinsic bursting (IB) neurons in layer 5, activating a source of GABAB receptor-mediated inhibition. In contrast, regular spiking (RS) neurons in layer 5 generated theta-frequency outputs. In layer 2/3 principal cells, outputs from IB cells associated with IPSPs, whereas those from layer 5 RS neurons related to nested bursts of theta-frequency EPSPs. Both interlaminar spike and field correlations revealed a sequence of events whereby sparse spiking in layer 2/3 was partially reflected back from layer 5 on each delta period. We suggest that these reciprocal, interlaminar interactions may represent a "Helmholtz machine"-like process to control synaptic rescaling during deep sleep.
Collapse
|
33
|
Vyazovskiy VV, Harris KD. Sleep and the single neuron: the role of global slow oscillations in individual cell rest. Nat Rev Neurosci 2013; 14:443-51. [PMID: 23635871 PMCID: PMC3972489 DOI: 10.1038/nrn3494] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sleep is universal in animals, but its specific functions remain elusive. We propose that sleep's primary function is to allow individual neurons to perform prophylactic cellular maintenance. Just as muscle cells must rest after strenuous exercise to prevent long-term damage, brain cells must rest after intense synaptic activity. We suggest that periods of reduced synaptic input ('off periods' or 'down states') are necessary for such maintenance. This in turn requires a state of globally synchronized neuronal activity, reduced sensory input and behavioural immobility - the well-known manifestations of sleep.
Collapse
Affiliation(s)
- Vladyslav V. Vyazovskiy
- University of Surrey, Faculty of Health and Medical Sciences, Department of Biochemistry and Physiology, Guildford, GU2 7XH, UK
| | - Kenneth D. Harris
- University College London (UCL) Institute of Neurology, UCL Department of Neuroscience, Physiology, and Pharmacology, London, WC1E 6DE, UK
| |
Collapse
|
34
|
Huster RJ, Enriquez-Geppert S, Lavallee CF, Falkenstein M, Herrmann CS. Electroencephalography of response inhibition tasks: Functional networks and cognitive contributions. Int J Psychophysiol 2013; 87:217-33. [DOI: 10.1016/j.ijpsycho.2012.08.001] [Citation(s) in RCA: 445] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 07/27/2012] [Accepted: 08/03/2012] [Indexed: 11/29/2022]
|
35
|
Proctor A, Bianchi MT. Clinical pharmacology in sleep medicine. ISRN PHARMACOLOGY 2012; 2012:914168. [PMID: 23213564 PMCID: PMC3504423 DOI: 10.5402/2012/914168] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 06/07/2012] [Indexed: 11/23/2022]
Abstract
The basic treatment goals of pharmacological therapies in sleep medicine are to improve waking function by either improving sleep or by increasing energy during wakefulness. Stimulants to improve waking function include amphetamine derivatives, modafinil, and caffeine. Sleep aids encompass several classes, from benzodiazepine hypnotics to over-the-counter antihistamines. Other medications used in sleep medicine include those initially used in other disorders, such as epilepsy, Parkinson's disease, and psychiatric disorders. As these medications are prescribed or encountered by providers in diverse fields of medicine, it is important to recognize the distribution of adverse effects, drug interaction profiles, metabolism, and cytochrome substrate activity. In this paper, we review the pharmacological armamentarium in the field of sleep medicine to provide a framework for risk-benefit considerations in clinical practice.
Collapse
Affiliation(s)
- Ashley Proctor
- Sleep Division, Neurology Department, Massachusetts General Hospital, Wang 720, Boston, MA 02114, USA
| | | |
Collapse
|
36
|
Pellegrino R, Sunaga DY, Guindalini C, Martins RCS, Mazzotti DR, Wei Z, Daye ZJ, Andersen ML, Tufik S. Whole blood genome-wide gene expression profile in males after prolonged wakefulness and sleep recovery. Physiol Genomics 2012; 44:1003-12. [DOI: 10.1152/physiolgenomics.00058.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although the specific functions of sleep have not been completely elucidated, the literature has suggested that sleep is essential for proper homeostasis. Sleep loss is associated with changes in behavioral, neurochemical, cellular, and metabolic function as well as impaired immune response. Using high-resolution microarrays we evaluated the gene expression profiles of healthy male volunteers who underwent 60 h of prolonged wakefulness (PW) followed by 12 h of sleep recovery (SR). Peripheral whole blood was collected at 8 am in the morning before the initiation of PW (Baseline), after the second night of PW, and one night after SR. We identified over 500 genes that were differentially expressed. Notably, these genes were related to DNA damage and repair and stress response, as well as diverse immune system responses, such as natural killer pathways including killer cell lectin-like receptors family, as well as granzymes and T-cell receptors, which play important roles in host defense. These results support the idea that sleep loss can lead to alterations in molecular processes that result in perturbation of cellular immunity, induction of inflammatory responses, and homeostatic imbalance. Moreover, expression of multiple genes was downregulated following PW and upregulated after SR compared with PW, suggesting an attempt of the body to re-establish internal homeostasis. In silico validation of alterations in the expression of CETN3, DNAJC, and CEACAM genes confirmed previous findings related to the molecular effects of sleep deprivation. Thus, the present findings confirm that the effects of sleep loss are not restricted to the brain and can occur intensely in peripheral tissues.
Collapse
Affiliation(s)
- R. Pellegrino
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - D. Y. Sunaga
- Human Genome Research Center, Biosciences Institute of University of Sao Paulo, São Paulo, Brazil
| | - C. Guindalini
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - R. C. S. Martins
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - D. R. Mazzotti
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Z. Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey; and
| | - Z. J. Daye
- Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - M. L. Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - S. Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
37
|
Broussard JL, Ehrmann DA, Van Cauter E, Tasali E, Brady MJ. Impaired insulin signaling in human adipocytes after experimental sleep restriction: a randomized, crossover study. Ann Intern Med 2012; 157:549-57. [PMID: 23070488 PMCID: PMC4435718 DOI: 10.7326/0003-4819-157-8-201210160-00005] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Insufficient sleep increases the risk for insulin resistance, type 2 diabetes, and obesity, suggesting that sleep restriction may impair peripheral metabolic pathways. Yet, a direct link between sleep restriction and alterations in molecular metabolic pathways in any peripheral human tissue has not been shown. OBJECTIVE To determine whether sleep restriction results in reduced insulin sensitivity in subcutaneous fat, a peripheral tissue that plays a pivotal role in energy metabolism and balance. DESIGN Randomized, 2-period, 2-condition, crossover clinical study. SETTING University of Chicago Clinical Resource Center. PARTICIPANTS Seven healthy adults (1 woman, 6 men) with a mean age of 23.7 years (SD, 3.8) and mean body mass index of 22.8 kg/m(2) (SD, 1.6). INTERVENTION Four days of 4.5 hours in bed or 8.5 hours in bed under controlled conditions of caloric intake and physical activity. MEASUREMENTS Adipocytes collected from subcutaneous fat biopsy samples after normal and restricted sleep conditions were exposed to incremental insulin concentrations. The ability of insulin to increase levels of phosphorylated Akt (pAkt), a crucial step in the insulin-signaling pathway, was assessed. Total Akt (tAkt) served as a loading control. The insulin concentration for the half-maximal stimulation of the pAkt-tAkt ratio was used as a measure of cellular insulin sensitivity. Total body insulin sensitivity was assessed using a frequently sampled intravenous glucose tolerance test. RESULTS The insulin concentration for the half-maximal pAkt-tAkt response was nearly 3-fold higher (mean, 0.71 nM [SD, 0.27] vs. 0.24 nM [SD, 0.24]; P = 0.01; mean difference, 0.47 nM [SD, 0.33]; P = 0.01), and the total area under the receiver-operating characteristic curve of the pAkt-tAkt response was 30% lower (P = 0.01) during sleep restriction than during normal sleep. A reduction in total body insulin sensitivity (P = 0.02) paralleled this impaired cellular insulin sensitivity. LIMITATION This was a single-center study with a small sample size. CONCLUSION Sleep restriction results in an insulin-resistant state in human adipocytes. Sleep may be an important regulator of energy metabolism in peripheral tissues. PRIMARY FUNDING SOURCE National Institutes of Health.
Collapse
|
38
|
Bianchi MT, Wang W, Klerman EB. Sleep misperception in healthy adults: implications for insomnia diagnosis. J Clin Sleep Med 2012; 8:547-54. [PMID: 23066367 PMCID: PMC3459201 DOI: 10.5664/jcsm.2154] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES Time estimation is a complex cognitive task that is especially challenging when the time period includes sleep. To determine the accuracy of sleep duration perception, we investigated 44 healthy subjects participating in multi-day inpatient sleep protocols during which they had extended nighttime and short daytime sleep opportunities but no time cues or knowledge of time of day. METHODS The first sleep opportunity was at habitual sleep time and duration. The subsequent 3, 4, or 11 days had 12-h nighttime sleep opportunities and 4-h daytime nap opportunities, potentially creating an experimentally induced "insomnia" with substantial time awake during scheduled sleep. RESULTS Subjective sleep duration estimates were accurate for the first (habitual) sleep opportunity. The subjective reports following nighttime 12-h sleep opportunities significantly underestimated objective sleep duration, while those following daytime 4-h sleep opportunities significantly overestimated objective sleep duration. Misperception errors were not explained by poor sleep efficiency, which was lower during 4-h (~39%) than 12-h opportunities (~71%). Subjective sleep estimates after 4-h opportunities correlated with the percentage of REM and N3 sleep. Subjective sleep estimates following 12-h opportunities were, unexpectedly, negatively correlated with NREM stage 2 sleep. CONCLUSION The estimation of sleep duration in the absence of time cues may depend on length of sleep opportunity and/or time of day. The results have implications for understanding sleep state misperception, which is an important consideration in patients with insomnia.
Collapse
Affiliation(s)
- Matt T Bianchi
- Sleep Division, Neurology Department, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | |
Collapse
|
39
|
Jan JE, Bax MCO, Owens JA, Ipsiroglu OS, Wasdell MB. Neurophysiology of circadian rhythm sleep disorders of children with neurodevelopmental disabilities. Eur J Paediatr Neurol 2012; 16:403-12. [PMID: 22264650 DOI: 10.1016/j.ejpn.2012.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 12/28/2011] [Accepted: 01/01/2012] [Indexed: 01/18/2023]
Abstract
This article reviews circadian rhythm sleep disorders (CRSDs) of children with neurodevelopmental disabilities. These sleep disturbances frequently occur in this population but they are misunderstood and under diagnosed. The causes and features of CRSD in children with brain disorders differ in many ways from those seen in typically developing children. It is the brain, including the eyes, which regulates sleep and circadian rhythmicity by modulating pineal melatonin production/secretion and when there is significant brain damage, the sleep/wake patterns may be modified. In most instances CRSD are not disorders of the suprachiasmatic nuclei because these small hypothalamic structures only adjust their functions to the changing photic and non-photic modulatory influences. Each form of CRSD is accompanied by characteristic changes in serum melatonin levels and clinical features. When nocturnal melatonin production/secretion is inappropriately timed or impaired in relation to the environment, timed melatonin replacement therapy will often be beneficial. In this review an attempt is made to clarify the neurophysiological mechanisms underlying the various forms of CRSD because without understanding the photic and non-photic influences on sleep, these sleep disorders can not be fully characterized, defined or even appropriately treated. In the future, the existing definitions for the different forms of CRSD should be modified by experts in pediatric sleep medicine in order to include children with neurodevelopmental disabilities.
Collapse
Affiliation(s)
- James E Jan
- Pediatric Neurology, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | | |
Collapse
|
40
|
Abstract
Sleep is now considered as a new frontier in performance enhancement. This article presents background content on sleep function, sleep needs and methods of sleep investigation along with data on the potential effects of Ramadan fasting on sleep in normal individuals and athletes. Accumulated sleep loss has negative impacts on cognitive function, mood, daytime sleepiness and performance. Sleep studies in athletes fasting during Ramadan are very rare. Most of them have demonstrated that during this month, sleep duration decreased and sleep timing shifted. But the direct relation between sleep changes and performance during Ramadan is not yet elucidated. Objective sleep patterns can be investigated using polysomnography, actigraphy, and standardised questionnaires and recorded in daily journals or sleep logs. The available data on sleep indicate that team doctors and coaches should consider planning sleep schedule and napping; implementing educational programmes focusing on the need for healthy sleep; and consider routine screening for sleep loss in athletes of all age groups and genders.
Collapse
Affiliation(s)
- Rachida Roky
- University of Hassan II Ain Chock, Laboratory of Physiology and Molecular Genetics, Km 8 Route d'El Jadida, B.P 5366 Maarif, Casablanca, 20100, Morocco.
| | | | | |
Collapse
|
41
|
Brodbeck V, Kuhn A, von Wegner F, Morzelewski A, Tagliazucchi E, Borisov S, Michel CM, Laufs H. EEG microstates of wakefulness and NREM sleep. Neuroimage 2012; 62:2129-39. [PMID: 22658975 DOI: 10.1016/j.neuroimage.2012.05.060] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 05/11/2012] [Accepted: 05/15/2012] [Indexed: 11/16/2022] Open
Abstract
EEG-microstates exploit spatio-temporal EEG features to characterize the spontaneous EEG as a sequence of a finite number of quasi-stable scalp potential field maps. So far, EEG-microstates have been studied mainly in wakeful rest and are thought to correspond to functionally relevant brain-states. Four typical microstate maps have been identified and labeled arbitrarily with the letters A, B, C and D. We addressed the question whether EEG-microstate features are altered in different stages of NREM sleep compared to wakefulness. 32-channel EEG of 32 subjects in relaxed wakefulness and NREM sleep was analyzed using a clustering algorithm, identifying the most dominant amplitude topography maps typical of each vigilance state. Fitting back these maps into the sleep-scored EEG resulted in a temporal sequence of maps for each sleep stage. All 32 subjects reached sleep stage N2, 19 also N3, for at least 1 min and 45 s. As in wakeful rest we found four microstate maps to be optimal in all NREM sleep stages. The wake maps were highly similar to those described in the literature for wakefulness. The sleep stage specific map topographies of N1 and N3 sleep showed a variable but overall relatively high degree of spatial correlation to the wake maps (Mean: N1 92%; N3 87%). The N2 maps were the least similar to wake (mean: 83%). Mean duration, total time covered, global explained variance and transition probabilities per subject, map and sleep stage were very similar in wake and N1. In wake, N1 and N3, microstate map C was most dominant w.r.t. global explained variance and temporal presence (ratio total time), whereas in N2 microstate map B was most prominent. In N3, the mean duration of all microstate maps increased significantly, expressed also as an increase in transition probabilities of all maps to themselves in N3. This duration increase was partly--but not entirely--explained by the occurrence of slow waves in the EEG. The persistence of exactly four main microstate classes in all NREM sleep stages might speak in favor of an in principle maintained large scale spatial brain organization from wakeful rest to NREM sleep. In N1 and N3 sleep, despite spectral EEG differences, the microstate maps and characteristics were surprisingly close to wakefulness. This supports the notion that EEG microstates might reflect a large scale resting state network architecture similar to preserved fMRI resting state connectivity. We speculate that the incisive functional alterations which can be observed during the transition to deep sleep might be driven by changes in the level and timing of activity within this architecture.
Collapse
Affiliation(s)
- Verena Brodbeck
- Brain Imaging Center, Department of Neurology, University of Frankfurt, a.M., Germany.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
de Andrés I, Garzón M, Reinoso-Suárez F. Functional Anatomy of Non-REM Sleep. Front Neurol 2011; 2:70. [PMID: 22110467 PMCID: PMC3215999 DOI: 10.3389/fneur.2011.00070] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/26/2011] [Indexed: 11/16/2022] Open
Abstract
The state of non-REM sleep (NREM), or slow wave sleep, is associated with a synchronized EEG pattern in which sleep spindles and/or K complexes and high-voltage slow wave activity (SWA) can be recorded over the entire cortical surface. In humans, NREM is subdivided into stages 2 and 3-4 (presently named N3) depending on the proportions of each of these polygraphic events. NREM is necessary for normal physical and intellectual performance and behavior. An overview of the brain structures involved in NREM generation shows that the thalamus and the cerebral cortex are absolutely necessary for the most significant bioelectric and behavioral events of NREM to be expressed; other structures like the basal forebrain, anterior hypothalamus, cerebellum, caudal brain stem, spinal cord and peripheral nerves contribute to NREM regulation and modulation. In NREM stage 2, sustained hyperpolarized membrane potential levels resulting from interaction between thalamic reticular and projection neurons gives rise to spindle oscillations in the membrane potential; the initiation and termination of individual spindle sequences depends on corticothalamic activities. Cortical and thalamic mechanisms are also involved in the generation of EEG delta SWA that appears in deep stage 3-4 (N3) NREM; the cortex has classically been considered to be the structure that generates this activity, but delta oscillations can also be generated in thalamocortical neurons. NREM is probably necessary to normalize synapses to a sustainable basal condition that can ensure cellular homeostasis. Sleep homeostasis depends not only on the duration of prior wakefulness but also on its intensity, and sleep need increases when wakefulness is associated with learning. NREM seems to ensure cell homeostasis by reducing the number of synaptic connections to a basic level; based on simple energy demands, cerebral energy economizing during NREM sleep is one of the prevalent hypotheses to explain NREM homeostasis.
Collapse
Affiliation(s)
- Isabel de Andrés
- Departamento de Anatomía Histología y Neurociencia, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La PazMadrid, Spain
| | - Miguel Garzón
- Departamento de Anatomía Histología y Neurociencia, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La PazMadrid, Spain
| | - Fernando Reinoso-Suárez
- Departamento de Anatomía Histología y Neurociencia, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La PazMadrid, Spain
| |
Collapse
|
43
|
EEG delta oscillations as a correlate of basic homeostatic and motivational processes. Neurosci Biobehav Rev 2011; 36:677-95. [PMID: 22020231 DOI: 10.1016/j.neubiorev.2011.10.002] [Citation(s) in RCA: 424] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 09/23/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
Abstract
Functional significance of delta oscillations is not fully understood. One way to approach this question would be from an evolutionary perspective. Delta oscillations dominate the EEG of waking reptiles. In humans, they are prominent only in early developmental stages and during slow-wave sleep. Increase of delta power has been documented in a wide array of developmental disorders and pathological conditions. Considerable evidence on the association between delta waves and autonomic and metabolic processes hints that they may be involved in integration of cerebral activity with homeostatic processes. Much evidence suggests the involvement of delta oscillations in motivation. They increase during hunger, sexual arousal, and in substance users. They also increase during panic attacks and sustained pain. In cognitive domain, they are implicated in attention, salience detection, and subliminal perception. This evidence shows that delta oscillations are associated with evolutionary old basic processes, which in waking adults are overshadowed by more advanced processes associated with higher frequency oscillations. The former processes rise in activity, however, when the latter are dysfunctional.
Collapse
|
44
|
A before and after comparison of the effects of forest walking on the sleep of a community-based sample of people with sleep complaints. Biopsychosoc Med 2011; 5:13. [PMID: 21999605 PMCID: PMC3216244 DOI: 10.1186/1751-0759-5-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 10/14/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Sleep disturbance is a major health issue in Japan. This before-after study aimed to evaluate the immediate effects of forest walking in a community-based population with sleep complaints. METHODS Participants were 71 healthy volunteers (43 men and 28 women). Two-hour forest-walking sessions were conducted on 8 different weekend days from September through December 2005. Sleep conditions were compared between the nights before and after walking in a forest by self-administered questionnaire and actigraphy data. RESULTS Two hours of forest walking improved sleep characteristics; impacting actual sleep time, immobile minutes, self-rated depth of sleep, and sleep quality. Mean actual sleep time estimated by actigraphy on the night after forest walking was 419.8 ± 128.7 (S.D.) minutes whereas that the night before was 365.9 ± 89.4 minutes (n = 42). Forest walking in the afternoon improved actual sleep time and immobile minutes compared with forest walking in the forenoon. Mean actual sleep times did not increase after forenoon walks (n = 26) (the night before and after forenoon walks, 380.0 ± 99.6 and 385.6 ± 101.7 minutes, respectively), whereas afternoon walks (n = 16) increased mean actual sleep times from 342.9 ± 66.2 to 475.4 ± 150.5 minutes. The trend of mean immobile minutes was similar to the abovementioned trend of mean actual sleep times. CONCLUSIONS Forest walking improved nocturnal sleep conditions for individuals with sleep complaints, possibly as a result of exercise and emotional improvement. Furthermore, extension of sleep duration was greater after an afternoon walk compared to a forenoon walk. Further study of a forest-walking program in a randomized controlled trial is warranted to clarify its effect on people with insomnia.
Collapse
|
45
|
Zunzunegui C, Gao B, Cam E, Hodor A, Bassetti CL. Sleep disturbance impairs stroke recovery in the rat. Sleep 2011; 34:1261-9. [PMID: 21886364 DOI: 10.5665/sleep.1252] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
STUDY OBJECTIVES There is a lack of experimental evidence to support the hypothesis that sleep may modulate stroke outcome as suggested by clinical observations. We have previously shown that sleep disturbance (SDis) over 3 days aggravates brain damage in a rat model of focal cerebral ischemia. The aim of this study is to further investigate effects of SDis on long-term stroke recovery and neuroplasticity as assessed by axonal sprouting, neurogenesis, and angiogenesis. DESIGN Focal cerebral ischemia was induced by permanent occlusion of the distal branches of middle cerebral artery. Twelve hours after initiation of ischemia, SDis was performed over 3 consecutive days (deprivation of 80% sleep during the 12-h light phase). Weekly assessments on sensorimotor function by the single pellet reaching test (SPR) were performed for 5 weeks after surgery. Axonal sprouting was evaluated by anterograde tracing with biotinylated dextran amine (BDA) and neurogenesis/angiogenesis by bromodeoxyuridine (BrdU) labelling along with cell-type markers. Control groups included ischemia without SDis, sham with SDis, and sham without SDis. SETTING Basic sleep research laboratory. MEASUREMENTS AND RESULTS Rats subjected to SDis after ischemia showed significantly less recovery of forearm motor skills during the post-stroke period of 5 weeks. This effect was accompanied by a substantial reduction in axonal sprouting, expression of synaptophysin, and the ischemia-stimulated neural and vascular cell proliferation. CONCLUSION SDis has detrimental effects on functional and morphological/structural outcomes after stroke, suggesting a role of sleep in the modulation of recovery processes and neuroplasticity.
Collapse
|
46
|
|
47
|
|
48
|
Abstract
The electrophysiological properties of the sleeping brain profoundly influence memory function in various species, yet the molecular nature by which sleep and memory interact remains unclear. We summarize work that has established the cAMP-PKA-CREB intracellular signaling pathway as a major mechanism involved in the wakeful consolidation of memory in many organisms while highlighting newer evidence that this pathway has a role in sleep regulation, sleep deprivation and potentially sleep-memory interactions. We explore the possibility that sleep might influence memory processing by reactivating the same molecular cascades first recruited during learning during a sort of "molecular replay". Lastly, we discuss how new approaches together with established techniques will aid in our understanding of the nature of sleep-memory interactions.
Collapse
Affiliation(s)
- Pepe J Hernandez
- Department of Biology, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
49
|
Steinmeyer C, Schielzeth H, Mueller JC, Kempenaers B. Variation in sleep behaviour in free-living blue tits, Cyanistes caeruleus: effects of sex, age and environment. Anim Behav 2010. [DOI: 10.1016/j.anbehav.2010.08.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
LEGAULT GLENN, DELAY SAOIRSE, MADORE ALEX. Identification of a rapid eye movement sleep window for learning of the win-shift radial arm maze task for male Sprague-Dawley rats. J Sleep Res 2010; 19:508-15. [DOI: 10.1111/j.1365-2869.2010.00842.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|