1
|
Pádua MS, Guil-Guerrero JL, Lopes PA. Behaviour Hallmarks in Alzheimer's Disease 5xFAD Mouse Model. Int J Mol Sci 2024; 25:6766. [PMID: 38928472 PMCID: PMC11204382 DOI: 10.3390/ijms25126766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
The 5xFAD transgenic mouse model widely used in Alzheimer's disease (AD) research recapitulates many AD-related phenotypes with a relatively early onset and aggressive age-dependent progression. Besides developing amyloid peptide deposits alongside neuroinflammation by the age of 2 months, as well as exhibiting neuronal decline by the age of 4 months that intensifies by the age of 9 months, these mice manifest a broad spectrum of behavioural impairments. In this review, we present the extensive repertoire of behavioural dysfunctions in 5xFAD mice, organised into four categories: motor skills, sensory function, learning and memory abilities, and neuropsychiatric-like symptoms. The motor problems, associated with agility and reflex movements, as well as balance and coordination, and skeletal muscle function, typically arise by the time mice reach 9 months of age. The sensory function (such as taste, smell, hearing, and vision) starts to deteriorate when amyloid peptide buildups and neuroinflammation spread into related anatomical structures. The cognitive functions, encompassing learning and memory abilities, such as visual recognition, associative, spatial working, reference learning, and memory show signs of decline from 4 to 6 months of age. Concerning neuropsychiatric-like symptoms, comprising apathy, anxiety and depression, and the willingness for exploratory behaviour, it is believed that motivational changes emerge by approximately 6 months of age. Unfortunately, numerous studies from different laboratories are often contradictory on the conclusions drawn and the identification of onset age, making preclinical studies in rodent models not easily translatable to humans. This variability is likely due to a range of factors associated with animals themselves, housing and husbandry conditions, and experimental settings. In the forthcoming studies, greater clarity in experimental details when conducting behavioural testing in 5xFAD transgenic mice could minimise the inconsistencies and could ensure the reliability and the reproducibility of the results.
Collapse
Affiliation(s)
- Mafalda Soares Pádua
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal;
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - José L. Guil-Guerrero
- Departamento de Tecnología de Alimentos, Universidad de Almería, 04120 Almería, Spain;
| | - Paula Alexandra Lopes
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal;
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| |
Collapse
|
2
|
Lu K, Li C, Liu J, Wang J, Li Y, He B, Li J, Zhang X, Wei M, Tian Y, Zhang R, Zhang C, Zhang Y. Impairments in endogenous AMPA receptor dynamics correlates with learning deficits in Alzheimer's disease model mice. Proc Natl Acad Sci U S A 2023; 120:e2303878120. [PMID: 37748061 PMCID: PMC10556575 DOI: 10.1073/pnas.2303878120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/29/2023] [Indexed: 09/27/2023] Open
Abstract
AMPA receptors (AMPARs) play a critical role in synaptic plasticity and learning and memory, and dysfunction or dysregulation of AMPARs could lead to various neurological and psychiatric disorders, such as Alzheimer's disease (AD). However, the dynamics and/or longitudinal changes of AMPARs in vivo during AD pathogenesis remain elusive. Here, employing 5xFAD SEP-GluA1 KI mice, we investigated endogenous AMPA receptor dynamics in a whisker deflection-associated Go/No-go learning paradigm. We found a significant increase in synaptosomal AMPA receptor subunits GluA1 in WT mice after learning, while no such changes were detected in 7-mo-old 5xFAD mice. Daily training led to an increase in endogenous spine surface GluA1 in Control mice, while this increase was absent in 5xFAD-KI mice which correlates with its learning defects in Go/No-go paradigm. Furthermore, we demonstrated that the onset of abnormal AMPAR dynamics corresponds temporally with microglia and astrocyte overactivation. Our results have shown that impairments in endogenous AMPA receptor dynamics play an important role in learning deficits in 5xFAD mice and AD pathogenesis.
Collapse
Affiliation(s)
- Kongjie Lu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of the People’s Republic of China, Beijing100083, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing100871, China
| | - Chenyang Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of the People’s Republic of China, Beijing100083, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing100871, China
| | - Jiao Liu
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing100083, China
| | - Jinpeng Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of the People’s Republic of China, Beijing100083, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing100871, China
| | - Yongfeng Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of the People’s Republic of China, Beijing100083, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing100871, China
| | - Bin He
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of the People’s Republic of China, Beijing100083, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing100871, China
| | - Junzhao Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of the People’s Republic of China, Beijing100083, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing100871, China
| | - Xiaochen Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin300072, China
| | - Mengping Wei
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing100069, China
| | - Yonglu Tian
- PKU-IDG/McGovern Institute for Brain Research, Beijing100871, China
- School of Psychological and Cognitive Sciences, Peking University, Beijing100871, China
| | - Rong Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of the People’s Republic of China, Beijing100083, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing100871, China
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing100069, China
| | - Yong Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of the People’s Republic of China, Beijing100083, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing100871, China
| |
Collapse
|
3
|
Chen W, Huang Q, Lazdon EK, Gomes A, Wong M, Stephens E, Royal TG, Frenkel D, Cai W, Kahn CR. Loss of insulin signaling in astrocytes exacerbates Alzheimer-like phenotypes in a 5xFAD mouse model. Proc Natl Acad Sci U S A 2023; 120:e2220684120. [PMID: 37186836 PMCID: PMC10214134 DOI: 10.1073/pnas.2220684120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Brain insulin signaling controls peripheral energy metabolism and plays a key role in the regulation of mood and cognition. Epidemiological studies have indicated a strong connection between type 2 diabetes (T2D) and neurodegenerative disorders, especially Alzheimer's disease (AD), linked via dysregulation of insulin signaling, i.e., insulin resistance. While most studies have focused on neurons, here, we aim to understand the role of insulin signaling in astrocytes, a glial cell type highly implicated in AD pathology and AD progression. To this end, we created a mouse model by crossing 5xFAD transgenic mice, a well-recognized AD mouse model that expresses five familial AD mutations, with mice carrying a selective, inducible insulin receptor (IR) knockout in astrocytes (iGIRKO). We show that by age 6 mo, iGIRKO/5xFAD mice exhibited greater alterations in nesting, Y-maze performance, and fear response than those of mice with the 5xFAD transgenes alone. This was associated with increased Tau (T231) phosphorylation, increased Aβ plaque size, and increased association of astrocytes with plaques in the cerebral cortex as assessed using tissue CLARITY of the brain in the iGIRKO/5xFAD mice. Mechanistically, in vitro knockout of IR in primary astrocytes resulted in loss of insulin signaling, reduced ATP production and glycolic capacity, and impaired Aβ uptake both in the basal and insulin-stimulated states. Thus, insulin signaling in astrocytes plays an important role in the control of Aβ uptake, thereby contributing to AD pathology, and highlighting the potential importance of targeting insulin signaling in astrocytes as a site for therapeutics for patients with T2D and AD.
Collapse
Affiliation(s)
- Wenqiang Chen
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA02215
| | - Qian Huang
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY11568
| | - Ekaterina Katie Lazdon
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Antonio Gomes
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA02215
| | - Marisa Wong
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY11568
| | - Emily Stephens
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA02215
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX79430
| | - Tabitha Grace Royal
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv69978, Israel
| | - Dan Frenkel
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA02215
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv69978, Israel
| | - Weikang Cai
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA02215
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY11568
| | - C. Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA02215
| |
Collapse
|
4
|
Ohno M. Accelerated long-term forgetting: A sensitive paradigm for detecting subtle cognitive impairment and evaluating BACE1 inhibitor efficacy in preclinical Alzheimer's disease. FRONTIERS IN DEMENTIA 2023; 2:1161875. [PMID: 39081986 PMCID: PMC11285641 DOI: 10.3389/frdem.2023.1161875] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/27/2023] [Indexed: 08/02/2024]
Abstract
Given a long preclinical stage of Alzheimer's disease (AD) continuum before the onset of dementia, there is a growing demand for tools capable of detecting the earliest feature of subtle cognitive impairment and optimizing recruitment to clinical trials for potentially disease-modifying therapeutic interventions such as BACE1 inhibitors. Now that all BACE1 inhibitor programs in symptomatic and prodromal AD populations have ended in failure, trials need to shift to target the earlier preclinical stage. However, evaluating cognitive efficacy (if any) in asymptomatic AD individuals is a great challenge. In this context, accelerated long-term forgetting (ALF) is emerging as a sensitive cognitive measure that can discriminate between presymptomatic individuals with high risks for developing AD and healthy controls. ALF is characterized by increased forgetting rates over extended delays (e.g., days, weeks, months) despite normal learning and short-term retention on standard memory assessments that typically use around 30-min delays. This review provides an overview of recent progress in animal model and clinical studies on this topic, focusing on the utility and underlying mechanism of ALF that may be applicable to earlier diagnosis and BACE1 inhibitor efficacy evaluation at a preclinical stage of AD.
Collapse
Affiliation(s)
- Masuo Ohno
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
| |
Collapse
|
5
|
Folorunso OO, Harvey TL, Brown SE, Chelini G, Berretta S, Balu DT. The D-serine biosynthetic enzyme serine racemase is expressed by reactive astrocytes in the amygdala of human and a mouse model of Alzheimer's disease. Neurosci Lett 2023; 792:136958. [PMID: 36356820 PMCID: PMC9730428 DOI: 10.1016/j.neulet.2022.136958] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is characterized behaviorally by cognitive deterioration and emotional disruption, and neuropathologically by amyloid-β (A β) plaques, neurofibrillary tangles, and complement C3 (C3)-expressing neurotoxic, reactive astrocytes. We previously demonstrated that C3 + reactive astrocytes in the hippocampus and entorhinal cortex of AD patients express serine racemase (SR), which produces the N-methyl-D-aspartate receptor (NMDAR) co-agonist D-serine. We show here that C3 + reactive astrocytes express SR in the amygdala of AD patients and in an amyloid mouse model of familial AD (5xFAD). 5xFAD mice also have deficits in cue fear memory recall that is dependent on intact amygdala function. Our results suggest that D-serine produced by reactive astrocytes in the amygdala could contribute to glutamate excitotoxicity and neurodegeneration observed with AD progression.
Collapse
Affiliation(s)
- Oluwarotimi O Folorunso
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA
| | - Theresa L Harvey
- Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA
| | - Stephanie E Brown
- Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA
| | - Gabriele Chelini
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Translational Neuroscience Laboratory, Mclean Hospital, Belmont, MA, USA
| | - Sabina Berretta
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Translational Neuroscience Laboratory, Mclean Hospital, Belmont, MA, USA
| | - Darrick T Balu
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
6
|
Pharmacological sequestration of mitochondrial calcium uptake protects against dementia and β-amyloid neurotoxicity. Sci Rep 2022; 12:12766. [PMID: 35896565 PMCID: PMC9329451 DOI: 10.1038/s41598-022-16817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/15/2022] [Indexed: 11/08/2022] Open
Abstract
All forms of dementia including Alzheimer's disease are currently incurable. Mitochondrial dysfunction and calcium alterations are shown to be involved in the mechanism of neurodegeneration in Alzheimer's disease. Previously we have described the ability of compound Tg-2112x to protect neurons via sequestration of mitochondrial calcium uptake and we suggest that it can also be protective against neurodegeneration and development of dementia. Using primary co-culture neurons and astrocytes we studied the effect of Tg-2112x and its derivative Tg-2113x on β-amyloid-induced changes in calcium signal, mitochondrial membrane potential, mitochondrial calcium, and cell death. We have found that both compounds had no effect on β-amyloid or acetylcholine-induced calcium changes in the cytosol although Tg2113x, but not Tg2112x reduced glutamate-induced calcium signal. Both compounds were able to reduce mitochondrial calcium uptake and protected cells against β-amyloid-induced mitochondrial depolarization and cell death. Behavioral effects of Tg-2113x on learning and memory in fear conditioning were also studied in 3 mouse models of neurodegeneration: aged (16-month-old) C57Bl/6j mice, scopolamine-induced amnesia (3-month-old mice), and 9-month-old 5xFAD mice. It was found that Tg-2113x prevented age-, scopolamine- and cerebral amyloidosis-induced decrease in fear conditioning. In addition, Tg-2113x restored fear extinction of aged mice. Thus, reduction of the mitochondrial calcium uptake protects neurons and astrocytes against β-amyloid-induced cell death and contributes to protection against dementia of different ethology. These compounds could be used as background for the developing of a novel generation of disease-modifying neuroprotective agents.
Collapse
|
7
|
Nehra G, Bauer B, Hartz AMS. Blood-brain barrier leakage in Alzheimer's disease: From discovery to clinical relevance. Pharmacol Ther 2022; 234:108119. [PMID: 35108575 PMCID: PMC9107516 DOI: 10.1016/j.pharmthera.2022.108119] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. AD brain pathology starts decades before the onset of clinical symptoms. One early pathological hallmark is blood-brain barrier dysfunction characterized by barrier leakage and associated with cognitive decline. In this review, we summarize the existing literature on the extent and clinical relevance of barrier leakage in AD. First, we focus on AD animal models and their susceptibility to barrier leakage based on age and genetic background. Second, we re-examine barrier dysfunction in clinical and postmortem studies, summarize changes that lead to barrier leakage in patients and highlight the clinical relevance of barrier leakage in AD. Third, we summarize signaling mechanisms that link barrier leakage to neurodegeneration and cognitive decline in AD. Finally, we discuss clinical relevance and potential therapeutic strategies and provide future perspectives on investigating barrier leakage in AD. Identifying mechanistic steps underlying barrier leakage has the potential to unravel new targets that can be used to develop novel therapeutic strategies to repair barrier leakage and slow cognitive decline in AD and AD-related dementias.
Collapse
Affiliation(s)
- Geetika Nehra
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Bjoern Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
8
|
O'Leary TP, Brown RE. Visuo-spatial learning and memory impairments in the 5xFAD mouse model of Alzheimer's disease: Effects of age, sex, albinism, and motor impairments. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12794. [PMID: 35238473 PMCID: PMC9744519 DOI: 10.1111/gbb.12794] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022]
Abstract
The 5xFAD mouse model of Alzheimer's disease (AD) rapidly develops AD-related neuro-behavioral pathology. Learning and memory impairments in 5xFAD mice, however, are not always replicated and the size of impairments varies considerably across studies. To examine possible sources of this variability, we analyzed the effects of age, sex, albinism due to background genes (Tyrc , Oca2p ) and motor impairment on learning and memory performance of wild type and 5xFAD mice on the Morris water maze, from 3 to 15 months of age. The 5xFAD mice showed impaired learning at 6-9 months of age, but memory impairments were not detected with the test procedure used in this study. Performance of 5xFAD mice was profoundly impaired at 12-15 months of age, but was accompanied by slower swim speeds than wild-type mice and a frequent failure to locate the escape platform. Overall female mice performed worse than males, and reversal learning impairments in 5xFAD mice were more pronounced in females than males. Albino mice performed worse than pigmented mice, confirming that albinism can impair performance of 5xFAD mice independently of AD-related transgenes. Overall, these results show that 5xFAD mice have impaired learning performance at 6-9 months of age, but learning and memory performance at 12-15 months is confounded with motor impairments. Furthermore, sex and albinism should be controlled to provide an accurate assessment of AD-related transgenes on learning and memory. These results will help reduce variability across pre-clinical experiments with 5xFAD mice, and thus enhance the reliability of studies developing new therapeutics for AD.
Collapse
Affiliation(s)
- Timothy P. O'Leary
- Department of Psychology and NeuroscienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Richard E. Brown
- Department of Psychology and NeuroscienceDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
9
|
Gourmaud S, Stewart DA, Irwin DJ, Roberts N, Barbour AJ, Eberwine G, O’Brien WT, Vassar R, Talos DM, Jensen FE. The role of mTORC1 activation in seizure-induced exacerbation of Alzheimer's disease. Brain 2022; 145:324-339. [PMID: 34264340 PMCID: PMC9126019 DOI: 10.1093/brain/awab268] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
The risk of seizures is 10-fold higher in patients with Alzheimer's disease than the general population, yet the mechanisms underlying this susceptibility and the effects of these seizures are poorly understood. To elucidate the proposed bidirectional relationship between Alzheimer's disease and seizures, we studied human brain samples (n = 34) from patients with Alzheimer's disease and found that those with a history of seizures (n = 14) had increased amyloid-β and tau pathology, with upregulation of the mechanistic target of rapamycin (mTOR) pathway, compared with patients without a known history of seizures (n = 20). To establish whether seizures accelerate the progression of Alzheimer's disease, we induced chronic hyperexcitability in the five times familial Alzheimer's disease mouse model by kindling with the chemoconvulsant pentylenetetrazol and observed that the mouse model exhibited more severe seizures than the wild-type. Furthermore, kindled seizures exacerbated later cognitive impairment, Alzheimer's disease neuropathology and mTOR complex 1 activation. Finally, we demonstrated that the administration of the mTOR inhibitor rapamycin following kindled seizures rescued enhanced remote and long-term memory deficits associated with earlier kindling and prevented seizure-induced increases in Alzheimer's disease neuropathology. These data demonstrated an important link between chronic hyperexcitability and progressive Alzheimer's disease pathology and suggest a mechanism whereby rapamycin may serve as an adjunct therapy to attenuate progression of the disease.
Collapse
Affiliation(s)
- Sarah Gourmaud
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David A Stewart
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Duke University School of Medicine, Durham, NC 27708, USA
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Roberts
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron J Barbour
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Grace Eberwine
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William T O’Brien
- Neurobehavior Testing Core, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert Vassar
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Delia M Talos
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frances E Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Gupta V, Chitranshi N, Gupta V, You Y, Rajput R, Paulo JA, Mirzaei M, van den Buuse M, Graham SL. TrkB receptor agonist 7,8 dihydroxyflavone is protective against the inner retinal deficits induced by experimental glaucoma. Neuroscience 2022; 490:36-48. [PMID: 35217121 PMCID: PMC9142859 DOI: 10.1016/j.neuroscience.2022.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 12/31/2022]
Abstract
Glaucoma is an age-related neurodegenerative disorder characterized by retinal ganglion cell (RGC) degeneration and excavation of the optic nerve head (ONH). It is associated with an increase in intraocular pressure (IOP) and progressive decline in the visual field. Reduction in the retrograde axonal transport of neurotrophic factors such as brain-derived neurotrophic factor (BDNF) from the brain to the neuronal cell bodies in retina, has been suggested as one of the key mechanisms underlying selective degeneration of ganglion cells and optic nerve in glaucoma. Multiple studies have indicated that BDNF and its high affinity receptor Tropomyosin receptor kinase B (TrkB) play crucial roles in survival of RGCs and that upregulating BDNF/TrkB signalling using gene therapy can protect the ganglion cells against degeneration. This study corroborates previous findings and demonstrates that glaucoma is associated with downregulation of TrkB downstream signalling and enhanced levels of amyloid β (Aβ 1-42) accumulation in the retina. 7,8 dihydroxyflavone (7,8 DHF) is a TrkB agonist and regular administration of this compound imparted significant protection against loss of GCL density and preserved inner retinal function in experimental glaucoma models. 7,8 DHF treatment stimulated activation of TrkB intracellular signalling as well as ameliorated the increase in the levels of soluble Aβ (1-42) in the retinas of rats and mice exposed to high IOP. The protective effects of 7,8 DHF were also evident in BDNF+/- mice indicating that TrkB agonist mediated activation of TrkB signalling was not altered upon BDNF allelic impairment. These data support BDNF/TrkB axis as a promising therapeutic target in glaucoma and highlight that the detrimental effects of high IOP exposure can be compensated by the exogenous administration of a TrkB agonist.
Collapse
Affiliation(s)
- Vivek Gupta
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie university, NSW, Australia.
| | - Nitin Chitranshi
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie university, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, VIC, Australia
| | - Yuyi You
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie university, NSW, Australia; Save Sight Institute, University of Sydney, NSW, Australia
| | - Rashi Rajput
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie university, NSW, Australia
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, United States
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie university, NSW, Australia
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia; College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia; Department of Pharmacology, University of Melbourne, Melbourne, VIC, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie university, NSW, Australia; Save Sight Institute, University of Sydney, NSW, Australia
| |
Collapse
|
11
|
Chen L, Dar NJ, Na R, McLane KD, Yoo K, Han X, Ran Q. Enhanced defense against ferroptosis ameliorates cognitive impairment and reduces neurodegeneration in 5xFAD mice. Free Radic Biol Med 2022; 180:1-12. [PMID: 34998934 PMCID: PMC8840972 DOI: 10.1016/j.freeradbiomed.2022.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/11/2022]
Abstract
Oxidative damage including lipid peroxidation is widely reported in Alzheimer's disease (AD) with the peroxidation of phospholipids in membranes being the driver of ferroptosis, an iron-dependent oxidative form of cell death. However, the importance of ferroptosis in AD remains unclear. This study tested whether ferroptosis inhibition ameliorates AD. 5xFAD mice, a widely used AD mouse model with cognitive impairment and robust neurodegeneration, exhibit markers of ferroptosis including increased lipid peroxidation, elevated lyso-phospholipids, and reduced level of Gpx4, the master defender against ferroptosis. To determine if enhanced defense against ferroptosis retards disease development, we generated 5xFAD mice that overexpress Gpx4, i.e., 5xFAD/GPX4 mice. Consistent with enhanced defense against ferroptosis, neurons from 5xFAD/GPX4 mice showed an augmented capacity to reduce lipid reactive oxygen species. In addition, compared with control 5xFAD mice, 5xFAD/GPX4 mice showed significantly improved learning and memory abilities and had reduced neurodegeneration. Moreover, 5xFAD/GPX4 mice exhibited attenuated markers of ferroptosis. Our results indicate that enhanced defense against ferroptosis is effective in ameliorating cognitive impairment and decreasing neurodegeneration of 5xFAD mice. The findings support the notion that ferroptosis is a key contributor to AD pathogenesis.
Collapse
Affiliation(s)
- Liuji Chen
- Department of Cell Systems & Anatomy, USA.
| | | | - Ren Na
- Department of Cell Systems & Anatomy, USA.
| | | | | | - Xianlin Han
- Department of Medicine - Diabetes, USA; Barshop Institute on Longevity and Aging, University of Texas Health San Antonio, San Antonio, TX, USA.
| | - Qitao Ran
- Department of Cell Systems & Anatomy, USA; Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
12
|
Thomas DC, Chablani D, Parekh S, Pichammal RC, Shanmugasundaram K, Pitchumani PK. Dysgeusia: A review in the context of COVID-19. J Am Dent Assoc 2021; 153:251-264. [PMID: 34799014 PMCID: PMC8595926 DOI: 10.1016/j.adaj.2021.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/07/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022]
Abstract
Background Taste disorders in general, and dysgeusia in particular, are relatively common disorders that may be a sign of a more complex acute or chronic medical condition. During the COVID-19 pandemic, taste disorders have found their way into the realm of general as well as specialty dentistry, with significance in screening for patients who potentially may have the virus. Types of Studies Reviewed The authors searched electronic databases (PubMed, Embase, Web of Science, Google Scholar) for studies focused on dysgeusia, ageusia, and other taste disorders and their relationship to local and systemic causes. Results The authors found pertinent literature explaining the normal physiology of taste sensation, proposals for suggested new tastes, presence of gustatory receptors in remote tissues of the body, and etiology and pathophysiology of taste disorders, in addition to the valuable knowledge gained about gustatory disorders in the context of COVID-19. Along with olfactory disorders, taste disorders are one of the earliest suggestive symptoms of COVID-19 infection. Conclusions Gustatory disorders are the result of local or systemic etiology or both. Newer taste sensations, such as calcium and fat tastes, have been discovered, as well as taste receptors that are remote from the oropharyngeal area. Literature published during the COVID-19 pandemic to date reinforces the significance of early detection of potential patients with COVID-19 by means of screening for recent-onset taste disorders. Practical Implications Timely screening and identification of potential gustatory disorders are paramount for the dental care practitioner to aid in the early diagnosis of COVID-19 and other serious systemic disorders.
Collapse
|
13
|
Ohno M. Accelerated long-term forgetting is a BACE1 inhibitor-reversible incipient cognitive phenotype in Alzheimer's disease model mice. Neuropsychopharmacol Rep 2021; 41:255-259. [PMID: 33749160 PMCID: PMC8340838 DOI: 10.1002/npr2.12174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 11/27/2022] Open
Abstract
AIM After the continued failure of β-secretase (BACE1) inhibitor clinical trials in prodromal as well as mild-to-moderate Alzheimer's disease (AD), they are shifting to further earlier or asymptomatic stages. The aim of this study is to explore a cognitive paradigm that allows us to more sensitively detect beneficial effects of BACE1 inhibitors in presymptomatic AD. METHODS GRL-8234 (33.4 mg/kg, ip), a small-molecule BACE1 inhibitor, was administered once daily for 28 days to the 5XAFD transgenic mouse model of AD. The contextual fear conditioning was used to evaluate the effects of GRL-8234 on memory deficits in 5XFAD mice at different ages. RESULTS Chronic administration of GRL-8234 to 5XFAD mice rescued their contextual memory deficits, when tested 1 day after training at 6-8 months but not at 12 months of age. Importantly, 4-month-old 5XFAD mice retain the ability to form contextual memory equivalent to wild-type controls, demonstrating that the standard method of 1-day memory assessment is not suitable for evaluating BACE1 inhibitor efficacy in ameliorating cognitive declines during earlier disease stages. Despite normal contextual memory formation, young 5XFAD mice showed faster forgetting when a longer delay (28 days) intervened between training and memory testing. Notably, GRL-8234 administered to 4-month-old 5XFAD mice during the 28-day delay reversed accelerated long-term forgetting almost completely back to wild-type control levels. CONCLUSION The results provide experimental evidence that accelerated long-term forgetting represents more sensitive memory testing that can help evaluate BACE1 inhibitor therapy in presymptomatic AD populations.
Collapse
Affiliation(s)
- Masuo Ohno
- Center for Dementia ResearchNathan Kline InstituteOrangeburgNYUSA
- Department of PsychiatryNew York University School of MedicineNew YorkNYUSA
| |
Collapse
|
14
|
Weible AP, Stebritz AJ, Wehr M. 5XFAD mice show early-onset gap encoding deficits in the auditory cortex. Neurobiol Aging 2020; 94:101-110. [PMID: 32599514 DOI: 10.1016/j.neurobiolaging.2020.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 12/26/2022]
Abstract
Early detection will be crucial for effective treatment or prevention of Alzheimer's disease. The identification and validation of early, noninvasive biomarkers is therefore key to avoiding the most devastating aspects of Alzheimer's disease. Measures of central auditory processing such as gap detection have recently emerged as potential biomarkers in both human patients and the 5XFAD mouse model of Alzheimer's disease. Full validation of gap detection deficits as a biomarker will require detailed understanding of the underlying neuropathology, including which brain structures are involved and how the operation of neural circuits is affected. Here we show that 5XFAD mice exhibit gap detection deficits as early as 2 months of age, well before development of Alzheimer's disease-associated pathology. We then examined responses of neurons in the auditory cortex to gaps in white noise. Both gap responses and baseline firing rates were robustly and progressively degraded in 5XFAD mice compared to littermate controls. These impairments were first evident at 2-4 months of age in males, and 4-6 months in females. This demonstrates early-onset impairments to the central auditory system, which could be due to damage in the auditory cortex, upstream subcortical structures, or both.
Collapse
Affiliation(s)
- Aldis P Weible
- Department of Psychology, Institute of Neuroscience, Eugene, OR, USA
| | - Amanda J Stebritz
- Department of Psychology, Institute of Neuroscience, Eugene, OR, USA
| | - Michael Wehr
- Department of Psychology, Institute of Neuroscience, Eugene, OR, USA.
| |
Collapse
|
15
|
Transient upregulation of translational efficiency in prodromal and early symptomatic Tg2576 mice contributes to Aβ pathology. Neurobiol Dis 2020; 139:104787. [PMID: 32032729 DOI: 10.1016/j.nbd.2020.104787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/14/2020] [Accepted: 01/31/2020] [Indexed: 12/20/2022] Open
Abstract
TG2576 mice show highest levels of the full length mutant Swedish Human Amyloid Precursor Protein (APPKM670/671LN) during prodromal and early sympotomatic stages. Interestingly, this occurs in association with the unbalanced expression of two of its RNA Binding proteins (RBPs) opposite regulators, the Fragile-X Mental Retardation Protein (FMRP) and the heteronuclear Ribonucleoprotein C (hnRNP C). Whether an augmentation in overall translational efficiency also contributes to the elevation of APP levels at those early developmental stages is currently unknown. We investigated this possibility by performing a longitudinal polyribosome profiling analysis of APP mRNA and protein in total hippocampal extracts from Tg2576 mice. Results showed that protein polysomal signals were exclusively detected in pre-symptomatic (1 months) and early symptomatic (3 months) mutant mice. Differently, hAPP mRNA polysomal signals were detected at any age, but a peak of expression was found when mice were 3-month old. Consistent with an early but transient rise of translational efficiency, the phosphorylated form of the initial translation factor eIF2α (p-eIF2α) was reduced at pre-symptomatic and early symptomatic stages, whereas it was increased at the fully symptomatic stage. Pharmacological downregulation of overall translation in early symptomatic mutants was then found to reduce hippocampal levels of full length APP, Aβspecies, BACE1 and Caspase-3, to rescue predominant LTD at hippocampal synapses, to revert dendritic spine loss and memory alterations, and to reinstate memory-induced c-fosactivation. Altogether, our findings demonstrate that overall translation is upregulated in prodromal and early symptomatic Tg2576 mice, and that restoring proper translational control at the onset of AD-like symptoms blocks the emergence of the AD-like phenotype.
Collapse
|
16
|
Matthews DG, Caruso M, Murchison CF, Zhu JY, Wright KM, Harris CJ, Gray NE, Quinn JF, Soumyanath A. Centella Asiatica Improves Memory and Promotes Antioxidative Signaling in 5XFAD Mice. Antioxidants (Basel) 2019; 8:antiox8120630. [PMID: 31817977 PMCID: PMC6943631 DOI: 10.3390/antiox8120630] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022] Open
Abstract
Centella asiatica (CA) herb is a traditional medicine, long reputed to provide cognitive benefits. We have reported that CA water extract (CAW) treatment improves cognitive function of aged Alzheimer’s disease (AD) model Tg2576 and wild-type (WT) mice, and induces an NRF2-regulated antioxidant response in aged WT mice. Here, CAW was administered to AD model 5XFAD female and male mice and WT littermates (age: 7.6 +/− 0.6 months), and object recall and contextual fear memory were tested after three weeks treatment. CAW’s impact on amyloid-β plaque burden, and markers of neuronal oxidative stress and synaptic density, was assessed after five weeks treatment. CAW antioxidant activity was evaluated via nuclear transcription factor (erythroid-derived 2)-like 2 (NRF2) and NRF2-regulated antioxidant response element gene expression. Memory improvement in both genders and genotypes was associated with dose-dependent CAW treatment without affecting plaque burden, and marginally increased synaptic density markers in the hippocampus and prefrontal cortex. CAW treatment increased Nrf2 in hippocampus and other NRF2 targets (heme oxygenase-1, NAD(P)H quinone dehydrogenase 1, glutamate-cysteine ligase catalytic subunit). Reduced plaque-associated SOD1, an indicator of oxidative stress, was observed in the hippocampi and cortices of CAW-treated 5XFAD mice. We postulate that CAW treatment leads to reduced oxidative stress, contributing to improved neuronal health and cognition.
Collapse
Affiliation(s)
- Donald G Matthews
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
| | - Maya Caruso
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
| | - Charles F Murchison
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer Y Zhu
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
| | - Kirsten M Wright
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
| | - Christopher J Harris
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
- Parkinson’s Disease Research Education and Clinical Care Center, Veterans’ Administration Portland Health Care System, Portland, OR 97239, USA
| | - Nora E Gray
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
| | - Joseph F Quinn
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
- Parkinson’s Disease Research Education and Clinical Care Center, Veterans’ Administration Portland Health Care System, Portland, OR 97239, USA
| | - Amala Soumyanath
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
- Correspondence: ; Tel.: +1-503-494-6878
| |
Collapse
|
17
|
Griñán-Ferré C, Marsal-García L, Bellver-Sanchis A, Kondengaden SM, Turga RC, Vázquez S, Pallàs M. Pharmacological inhibition of G9a/GLP restores cognition and reduces oxidative stress, neuroinflammation and β-Amyloid plaques in an early-onset Alzheimer's disease mouse model. Aging (Albany NY) 2019; 11:11591-11608. [PMID: 31804189 PMCID: PMC6932909 DOI: 10.18632/aging.102558] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/20/2019] [Indexed: 05/08/2023]
Abstract
The implication of epigenetic mechanisms in Alzheimer's disease (AD) has been demonstrated in several studies. UNC0642, a specific and potent inhibitor of methyltransferase activity G9a/GLP (G9a-like) complex, was evaluated in the 5XFAD mouse model. UNC0642 treatment rescued 5XFAD cognition impairment, reduced DNA-methylation (5-mC), increased hydroxymethylation (5-hmC), and decreased the di-methylation of lysine 9 of histone H3 (H3K9me2) levels in the hippocampus. Increases in the Nuclear Factor erythroid-2-Related Factor 2 (NRF2), Heme oxygenase decycling 1 (Hmox1) gene expression, and diminution in Reactive Oxygen Species (ROS) were also reported. Moreover, neuroinflammatory markers, such as Interleukin 6 (Il-6), Tumor necrosis factor-alpha (Tnf-α) gene expression, and Glial fibrillary acidic protein (GFAP) immunofluorescence were reduced by UNC0642 treatment. An increase in Nerve growth factor (Ngf), Nerve growth factor inducible (Vgf) gene expression, Brain-derived neurotrophic factor (BDNF), and Synaptophysin (SYN) were found after UNC0642 treatment. Importantly, a reduction in β-amyloid plaques was also observed. In conclusion, our work demonstrates that the inhibition of the G9a/GLP complex by UNC0642 delivered significant neuroprotective effects in 5XFAD mice, point out G9a/GLP as a new target for AD.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Barcelona 08028, Spain
| | - Laura Marsal-García
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Barcelona 08028, Spain
| | - Aina Bellver-Sanchis
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Barcelona 08028, Spain
| | | | - Ravi Chakra Turga
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Department de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Barcelona E-08028, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Barcelona 08028, Spain
| |
Collapse
|
18
|
Taniguchi K, Yamamoto F, Arai T, Yang J, Sakai Y, Itoh M, Mamada N, Sekiguchi M, Yamada D, Saitoh A, Kametani F, Tamaoka A, Araki YM, Wada K, Mizusawa H, Araki W. Tyrosol Reduces Amyloid-β Oligomer Neurotoxicity and Alleviates Synaptic, Oxidative, and Cognitive Disturbances in Alzheimer’s Disease Model Mice. J Alzheimers Dis 2019; 70:937-952. [DOI: 10.3233/jad-190098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Kaori Taniguchi
- Department of Demyelinating Disease and Aging, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan
| | - Fumiko Yamamoto
- Department of Demyelinating Disease and Aging, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takuya Arai
- Department of Demyelinating Disease and Aging, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan
| | - Jinwei Yang
- Tokiwa Phytochemical Co., Ltd, Sakura, Chiba, Japan
| | - Yusuke Sakai
- Tokiwa Phytochemical Co., Ltd, Sakura, Chiba, Japan
| | - Masayuki Itoh
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan
| | - Naomi Mamada
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masayuki Sekiguchi
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan
| | - Daisuke Yamada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Fuyuki Kametani
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Akira Tamaoka
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yumiko M. Araki
- Department of Psychiatry and Behavioral Science, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan
| | - Hidehiro Mizusawa
- National Center Hospital, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan
| | - Wataru Araki
- Department of Demyelinating Disease and Aging, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan
| |
Collapse
|
19
|
Shin SJ, Jeon SG, Kim JI, Jeong YO, Kim S, Park YH, Lee SK, Park HH, Hong SB, Oh S, Hwang JY, Kim HS, Park H, Nam Y, Lee YY, Kim JJ, Park SH, Kim JS, Moon M. Red Ginseng Attenuates Aβ-Induced Mitochondrial Dysfunction and Aβ-mediated Pathology in an Animal Model of Alzheimer's Disease. Int J Mol Sci 2019; 20:E3030. [PMID: 31234321 PMCID: PMC6627470 DOI: 10.3390/ijms20123030] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/05/2019] [Accepted: 06/19/2019] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and is characterized by neurodegeneration and cognitive deficits. Amyloid beta (Aβ) peptide is known to be a major cause of AD pathogenesis. However, recent studies have clarified that mitochondrial deficiency is also a mediator or trigger for AD development. Interestingly, red ginseng (RG) has been demonstrated to have beneficial effects on AD pathology. However, there is no evidence showing whether RG extract (RGE) can inhibit the mitochondrial deficit-mediated pathology in the experimental models of AD. The effects of RGE on Aβ-mediated mitochondrial deficiency were investigated in both HT22 mouse hippocampal neuronal cells and the brains of 5XFAD Aβ-overexpressing transgenic mice. To examine whether RGE can affect mitochondria-related pathology, we used immunohistostaining to study the effects of RGE on Aβ accumulation, neuroinflammation, neurodegeneration, and impaired adult hippocampal neurogenesis in hippocampal formation of 5XFAD mice. In vitro and in vivo findings indicated that RGE significantly improves Aβ-induced mitochondrial pathology. In addition, RGE significantly ameliorated AD-related pathology, such as Aβ deposition, gliosis, and neuronal loss, and deficits in adult hippocampal neurogenesis in brains with AD. Our results suggest that RGE may be a mitochondria-targeting agent for the treatment of AD.
Collapse
Affiliation(s)
- Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Jin-Il Kim
- Department of Nursing, College of Nursing, Jeju National University, Jeju-si 63243, Korea.
| | - Yu-On Jeong
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Seong-Kyung Lee
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Hyun Ha Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Sang Bum Hong
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Sua Oh
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Ji-Young Hwang
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Hyeon Soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - HyunHee Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Yong Yook Lee
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon 34128, Korea.
| | - Jwa-Jin Kim
- Department of Nephrology, School of Medicine, Chungnam National University, Daejeon 35015, Korea.
| | - Sun-Hyun Park
- R&D center for Advanced Pharmaceuticals & Evaluation, Korea Institute of toxicology, 141, Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea.
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| |
Collapse
|
20
|
Eremenko E, Mittal K, Berner O, Kamenetsky N, Nemirovsky A, Elyahu Y, Monsonego A. BDNF-producing, amyloid β-specific CD4 T cells as targeted drug-delivery vehicles in Alzheimer's disease. EBioMedicine 2019; 43:424-434. [PMID: 31085101 PMCID: PMC6557914 DOI: 10.1016/j.ebiom.2019.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The delivery of therapeutic proteins to selected sites within the central nervous system (CNS) parenchyma is a major challenge in the treatment of various neurodegenerative disorders. As brain-derived neurotrophic factor (BDNF) is reduced in the brain of people with Alzheimer's disease (AD) and its administration has shown promising therapeutic effects in mouse model of the disease, we generated a novel platform for T cell-based BDNF delivery into the brain parenchyma. METHODS We generated amyloid beta-protein (Aβ)-specific CD4 T cells (Aβ-T cells), genetically engineered to express BDNF, and injected them intracerebroventricularly into the 5XFAD mouse model of AD. FINDINGS The BDNF-secreting Aβ-T cells migrated efficiently to amyloid plaques, where they significantly increased the levels of BDNF, its receptor TrkB, and various synaptic proteins known to be reduced in AD. Furthermore, the injected mice demonstrated reduced levels of beta-secretase 1 (BACE1)-a protease essential in the cleavage process of the amyloid precursor protein-and ameliorated amyloid pathology and inflammation within the brain parenchyma. INTERPRETATION A T cell-based delivery of proteins into the brain can serve as a platform to modulate neurotoxic inflammation and to promote neuronal repair in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ekaterina Eremenko
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Kritika Mittal
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Omer Berner
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Nikita Kamenetsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Anna Nemirovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Yehezqel Elyahu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Alon Monsonego
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
21
|
Kim DH, Jang YS, Jeon WK, Han JS. Assessment of Cognitive Phenotyping in Inbred, Genetically Modified Mice, and Transgenic Mouse Models of Alzheimer's Disease. Exp Neurobiol 2019; 28:146-157. [PMID: 31138986 PMCID: PMC6526110 DOI: 10.5607/en.2019.28.2.146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 01/03/2023] Open
Abstract
Genetically modified mouse models are being used predominantly to understand brain functions and diseases. Well-designed and controlled behavioral analyses of genetically modified mice have successfully led to the identification of gene functions, understanding of brain diseases, and development of treatments. Recently, complex and higher cognitive functions have been examined in mice with genetic mutations. Therefore, research strategies for cognitive phenotyping should be sophisticated and evolve to convey the exact meaning of the findings and provide robust translational tools for testing hypotheses and developing treatments. This review addresses issues of experimental design and discusses studies that have examined cognitive function using mouse strain differences, genetically modified mice, and transgenic mice for Alzheimer's disease.
Collapse
Affiliation(s)
- Dong-Hee Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Yoon-Sun Jang
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Won Kyung Jeon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.,Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Jung-Soo Han
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
22
|
Uncaria rhynchophylla ameliorates amyloid beta deposition and amyloid beta-mediated pathology in 5XFAD mice. Neurochem Int 2018; 121:114-124. [PMID: 30291956 DOI: 10.1016/j.neuint.2018.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/21/2018] [Accepted: 10/01/2018] [Indexed: 01/31/2023]
Abstract
One of the pathological hallmarks of Alzheimer's disease (AD) is the abnormal aggregation of amyloid beta (Aβ) peptides. Uncaria rhynchophylla (UR), one of the Uncaria species, has long been used to treat neurodegenerative disease. In particular, it has been reported that UR inhibits aggregation of Aβ in vitro. However, little is known about the histological effects of UR treatment on Aβ pathology in AD animal models. In the present study, we investigated the effect of UR on Aβ aggregation, Aβ-mediated pathologies and adult hippocampal neurogenesis in the brain of 5XFAD mice. First, using the thioflavin T assay and amyloid staining, we demonstrated that UR treatment effectively inhibited Aβ aggregation and accumulation in the cortex and subiculum. Second, immunofluorescence staining showed that administration of UR attenuated gliosis and neurodegeneration in the subiculum and cortex. Third, UR treatment ameliorated impaired adult hippocampal neurogenesis. The present results indicate that UR significantly alleviates Aβ deposition and Aβ-mediated neuropathology in the brain in 5XFAD mice, suggesting the potency of UR as a preventive and therapeutic agent for AD.
Collapse
|
23
|
Wang YB, Xie JQ, Liu W, Zhang RZ, Huang SH, Xing YH. BACE1 gene silencing alleviates isoflurane anesthesia‑induced postoperative cognitive dysfunction in immature rats by activating the PI3K/Akt signaling pathway. Mol Med Rep 2018; 18:4259-4270. [PMID: 30221701 PMCID: PMC6172366 DOI: 10.3892/mmr.2018.9453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 08/01/2018] [Indexed: 12/29/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a severe complication characterized by cognitive dysfunction following anesthesia and surgery. The aim of the present study was to investigate the effects of β-site amyloid precursor protein cleavage enzyme 1 (BACE1) gene silencing on isoflurane anesthesia-induced POCD in immature rats via the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. Rat models were established and then transfected with BACE1 small interfering RNA and wortmannin (an inhibitor of PI3K). Blood gas analysis was performed, and a series of behavioral experiments were conducted to evaluate the cognitive function, learning ability and locomotor activity of rats. Reverse transcription quantitative polymerase chain reaction and western blot analysis were employed to determine the mRNA and protein expression of the associated genes. An ELISA was used to detect the inflammatory indicators and the content of amyloid precursor protein (APP) and amyloid-β (Aβ). Apoptosis of the hippocampal CA1 region was observed by terminal deoxynucleotidyl transferase dUTP nick-end labeling staining. Initially, it was revealed that the percentage of stagnation time in rats was increased by BACE1 gene silencing; the escape latency and swimming distance were markedly reduced from the 4th to the 6th day, the time the rats spent in first passing the target area was shortened, and the times of passing the target area were increased by BACE1 gene silencing, demonstrating that BACE1 gene silencing enhanced the spatial memory ability of rats. Additionally, it was determined that silencing BACE1 improved the pathological state induced by isoflurane anesthesia in immature rats, and attenuated the inflammatory response and the levels of APP and Aβ in hippocampal tissues. Furthermore, it was suggested that silencing BACE1 may have promoted the activation of the PI3K/Akt signaling pathway, thereby inhibiting the apoptosis of the hippocampal CA1 region. Taken together, these results indicated that BACE1 gene silencing may improve isoflurane anesthesia-induced POCD in immature rats by activating the PI3K/Akt signaling pathway and inhibiting the Aβ generated by APP.
Collapse
Affiliation(s)
- Ying-Bin Wang
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Jian-Qin Xie
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Wei Liu
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Rong-Zhi Zhang
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Sheng-Hui Huang
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Yan-Hong Xing
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
24
|
Griñán-Ferré C, Izquierdo V, Otero E, Puigoriol-Illamola D, Corpas R, Sanfeliu C, Ortuño-Sahagún D, Pallàs M. Environmental Enrichment Improves Cognitive Deficits, AD Hallmarks and Epigenetic Alterations Presented in 5xFAD Mouse Model. Front Cell Neurosci 2018; 12:224. [PMID: 30158856 PMCID: PMC6104164 DOI: 10.3389/fncel.2018.00224] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 07/10/2018] [Indexed: 01/05/2023] Open
Abstract
Cumulative evidence shows that modifications in lifestyle factors constitute an effective strategy to modulate molecular events related to neurodegenerative diseases, confirming the relevant role of epigenetics. Accordingly, Environmental Enrichment (EE) represents an approach to ameliorate cognitive decline and neuroprotection in Alzheimer’s disease (AD). AD is characterized by specific neuropathological hallmarks, such as β-amyloid plaques and Neurofibrillary Tangles, which severely affect the areas of the brain responsible for learning and memory. We evaluated EE neuroprotective influence on 5xFAD mice. We found a better cognitive performance on EE vs. Control (Ct) 5xFAD mice, until being similar to Wild-Type (Wt) mice group. Neurodegenerative markers as β-CTF and tau hyperphosphorylation, reduced protein levels whiles APPα, postsynaptic density 95 (PSD95) and synaptophysin (SYN) protein levels increased protein levels in the hippocampus of 5xFAD-EE mice group. Furthermore, a reduction in gene expression of Il-6, Gfap, Hmox1 and Aox1 was determined. However, no changes were found in the gene expression of neurotrophins, such as Brain-derived neurotrophic factor (Bdnf), Nerve growth factor (Ngf), Tumor growth factor (Tgf) and Nerve growth factor inducible (Vgf) in mice with EE. Specifically, we found a reduced DNA-methylation level (5-mC) and an increased hydroxymethylation level (5-hmC), as well as an increased histone H3 and H4 acetylation level. Likewise, we found changes in the hippocampal gene expression of some chromatin-modifying enzyme, such as Dnmt3a/b, Hdac1, and Tet2. Extensive molecular analysis revealed a correlation between neuronal function and changes in epigenetic marks after EE that explain the cognitive improvement in 5xFAD.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Vanesa Izquierdo
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Eduard Otero
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Dolors Puigoriol-Illamola
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Rubén Corpas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunomodulación Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de las Salud (CUCS), Universidad de Guadalajara, Guadalajara, Mexico
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències, University of Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
MK-0677, a Ghrelin Agonist, Alleviates Amyloid Beta-Related Pathology in 5XFAD Mice, an Animal Model of Alzheimer's Disease. Int J Mol Sci 2018; 19:ijms19061800. [PMID: 29912176 PMCID: PMC6032329 DOI: 10.3390/ijms19061800] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive deficits, neuroinflammation, and neuronal death. The primary pathogenic cause is believed to be the accumulation of pathogenic amyloid beta (Aβ) assemblies in the brain. Ghrelin, which is a peptide hormone predominantly secreted from the stomach, is an endogenous ligand for the growth hormone secretagogue-receptor type 1a (GHS-R1a). MK-0677 is a ghrelin agonist that potently stimulates the GHS-R1a ghrelin receptor. Interestingly, previous studies have shown that ghrelin improves cognitive impairments and attenuates neuronal death and neuroinflammation in several neurological disorders. However, it is unknown whether MK-0677 can affect Aβ accumulation or Aβ-mediated pathology in the brains of patients with AD. Therefore, we examined the effects of MK-0677 administration on AD-related pathology in 5XFAD mice, an Aβ-overexpressing transgenic mouse model of AD. MK-0677 was intraperitoneally administered to three-month-old 5XFAD mice. To visualize Aβ accumulation, neuroinflammation, and neurodegeneration, thioflavin-S staining and immunostaining with antibodies against Aβ (4G8), ionized calcium-binding adaptor molecule 1 (Iba-1), glial fibrillary acidic protein (GFAP), neuronal nuclear antigen (NeuN), and synaptophysin were conducted in the neocortex of 5XFAD and wild-type mice, and to evaluate changes of phosphorylated cyclic adenosine monophosphate (cAMP) response element binding protein (pCREB) levels, immunostaining with antibody against pCREB was performed in dentate gyrus of the hippocampus of 5XFAD and wild-type mice. The histological analyses indicated that MK-0677-treated 5XFAD mice showed reduced Aβ deposition, gliosis, and neuronal and synaptic loss in the deep cortical layers, and inhibited the decrement of pCREB levels in dentate gyrus of the hippocampus compared to vehicle-treated 5XFAD mice. Our results showed that activation of the ghrelin receptor with MK-0677 inhibited the Aβ burden, neuroinflammation, and neurodegeneration, which suggested that MK-0677 might have potential as a treatment of the early phase of AD.
Collapse
|
26
|
Tai LM, Balu D, Avila-Munoz E, Abdullah L, Thomas R, Collins N, Valencia-Olvera AC, LaDu MJ. EFAD transgenic mice as a human APOE relevant preclinical model of Alzheimer's disease. J Lipid Res 2017; 58:1733-1755. [PMID: 28389477 PMCID: PMC5580905 DOI: 10.1194/jlr.r076315] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/06/2017] [Indexed: 01/12/2023] Open
Abstract
Identified in 1993, APOE4 is the greatest genetic risk factor for sporadic Alzheimer's disease (AD), increasing risk up to 15-fold compared with APOE3, with APOE2 decreasing AD risk. However, the functional effects of APOE4 on AD pathology remain unclear and, in some cases, controversial. In vivo progress to understand how the human (h)-APOE genotypes affect AD pathology has been limited by the lack of a tractable familial AD-transgenic (FAD-Tg) mouse model expressing h-APOE rather than mouse (m)-APOE. The disparity between m- and h-apoE is relevant for virtually every AD-relevant pathway, including amyloid-β (Aβ) deposition and clearance, neuroinflammation, tau pathology, neural plasticity and cerebrovascular deficits. EFAD mice were designed as a temporally useful preclinical FAD-Tg-mouse model expressing the h-APOE genotypes for identifying mechanisms underlying APOE-modulated symptoms of AD pathology. From their first description in 2012, EFAD mice have enabled critical basic and therapeutic research. Here we review insights gleaned from the EFAD mice and summarize future directions.
Collapse
Affiliation(s)
- Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | - Deebika Balu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | - Evangelina Avila-Munoz
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | | | - Riya Thomas
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | - Nicole Collins
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | | | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612.
| |
Collapse
|
27
|
Neuronal p38α mediates synaptic and cognitive dysfunction in an Alzheimer's mouse model by controlling β-amyloid production. Sci Rep 2017; 7:45306. [PMID: 28361984 PMCID: PMC5374488 DOI: 10.1038/srep45306] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/23/2017] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by a severe and progressive neuronal loss leading to cognitive dysfunctions. Previous reports, based on the use of chemical inhibitors, have connected the stress kinase p38α to neuroinflammation, neuronal death and synaptic dysfunction. To explore the specific role of neuronal p38α signalling in the appearance of pathological symptoms, we have generated mice that combine expression of the 5XFAD transgenes to induce AD symptoms with the downregulation of p38α only in neurons (5XFAD/p38α∆-N). We found that the neuronal-specific deletion of p38α improves the memory loss and long-term potentiation impairment induced by 5XFAD transgenes. Furthermore, 5XFAD/p38α∆-N mice display reduced amyloid-β accumulation, improved neurogenesis, and important changes in brain cytokine expression compared with 5XFAD mice. Our results implicate neuronal p38α signalling in the synaptic plasticity dysfunction and memory impairment observed in 5XFAD mice, by regulating both amyloid-β deposition in the brain and the relay of this accumulation to mount an inflammatory response, which leads to the cognitive deficits.
Collapse
|
28
|
Moreno-Castilla P, Rodriguez-Duran LF, Guzman-Ramos K, Barcenas-Femat A, Escobar ML, Bermudez-Rattoni F. Dopaminergic neurotransmission dysfunction induced by amyloid-β transforms cortical long-term potentiation into long-term depression and produces memory impairment. Neurobiol Aging 2016; 41:187-199. [DOI: 10.1016/j.neurobiolaging.2016.02.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 02/18/2016] [Accepted: 02/21/2016] [Indexed: 01/03/2023]
|
29
|
Cognitive benefits of memantine in Alzheimer's 5XFAD model mice decline during advanced disease stages. Pharmacol Biochem Behav 2016; 144:60-6. [DOI: 10.1016/j.pbb.2016.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/11/2016] [Accepted: 03/02/2016] [Indexed: 01/05/2023]
|
30
|
Ohno M. Alzheimer's therapy targeting the β-secretase enzyme BACE1: Benefits and potential limitations from the perspective of animal model studies. Brain Res Bull 2016; 126:183-198. [PMID: 27093940 DOI: 10.1016/j.brainresbull.2016.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/05/2016] [Accepted: 04/10/2016] [Indexed: 01/18/2023]
Abstract
Accumulating evidence points to the amyloid-β (Aβ) peptide as the culprit in the pathogenesis of Alzheimer's disease (AD). β-Site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) is a protease that is responsible for initiating Aβ production. Although precise mechanisms that trigger Aβ accumulation remain unclear, BACE1 inhibition undoubtedly represents an important intervention that may prevent and/or cure AD. Remarkably, animal model studies with knockouts, virus-delivered small interfering RNAs, immunization and bioavailable small-molecule agents that specifically inhibit BACE1 activity strongly support the idea for the therapeutic BACE1 inhibition. Meanwhile, a growing number of BACE1 substrates besides APP uncover new physiological roles of this protease, raising some concern regarding the safety of BACE1 inhibition. Here, I review recent progress in preclinical studies that have evaluated the efficacies and potential limitations of genetic/pharmacological inhibition of BACE1, with special focus on AD-associated phenotypes including synaptic dysfunction, neuron loss and memory deficits in animal models.
Collapse
Affiliation(s)
- Masuo Ohno
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA; Departments of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
31
|
Devi L, Ohno M. Effects of BACE1 haploinsufficiency on APP processing and Aβ concentrations in male and female 5XFAD Alzheimer mice at different disease stages. Neuroscience 2015; 307:128-37. [PMID: 26314636 DOI: 10.1016/j.neuroscience.2015.08.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/14/2015] [Accepted: 08/18/2015] [Indexed: 11/28/2022]
Abstract
β-Site APP-cleaving enzyme 1 (BACE1) initiates the generation of amyloid-β (Aβ), thus representing a prime therapeutic target for Alzheimer's disease (AD). Previous work including ours has used BACE1 haploinsufficiency (BACE1(+/-); i.e., 50% reduction) as a therapeutic relevant model to evaluate the efficacy of partial β-secretase inhibition. However, it is unclear whether the extent of Aβ reductions in amyloid precursor protein (APP) transgenic mice with BACE1(+/-) gene ablation may vary with sex or disease progression. Here, we compared the impacts of BACE1 haploinsufficiency on Aβ concentrations and APP processing in 5XFAD Alzheimer mice (1) between males and females and (2) between different stages with moderate and robust Aβ accumulation. First, male and female 5XFAD mice at 6-7 months of age showed equivalent levels of Aβ, BACE1, full-length APP and its metabolites. BACE1 haploinsufficiency significantly lowered soluble Aβ oligomers, total Aβ42 levels and plaque burden in 5XFAD mouse brains irrespective of sex. Furthermore, there was no sex difference in reductions of β-cleavage products of APP (C99 and sAPPβ) found in BACE1(+/-)·5XFAD mice relative to BACE1(+/+)·5XFAD controls. Meanwhile, APP and sAPPα levels in BACE1(+/-)·5XFAD mice were higher than those of 5XFAD controls regardless of sex. Based on these observations, we next combined male and female data to examine the effects of BACE1 haploinsufficiency in 5XFAD mice at 12-14 months of age, as compared with those in 6-7-month-old 5XFAD mice. Oligomeric Aβ and C99 levels were dramatically elevated in older 5XFAD mice. Although the β-metabolites of APP were significantly reduced by BACE1 haploinsufficiency in both age groups, high levels of these toxic amyloidogenic fragments remained in 12-14-month-old BACE1(+/-)·5XFAD mice. The present findings are consistent with our previous behavioral data showing that BACE1 haploinsufficiency rescues memory deficits in 5XFAD mice irrespective of sex but only in the younger age group.
Collapse
Affiliation(s)
- L Devi
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - M Ohno
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
32
|
Mu JS, Lin H, Ye JX, Lin M, Cui XP. Rg1 exhibits neuroprotective effects by inhibiting the endoplasmic reticulum stress-mediated c-Jun N-terminal protein kinase apoptotic pathway in a rat model of Alzheimer's disease. Mol Med Rep 2015; 12:3862-3868. [PMID: 26016457 DOI: 10.3892/mmr.2015.3853] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 12/17/2014] [Indexed: 11/05/2022] Open
Abstract
The neuroprotective agents currently used to treat Alzheimer's disease (AD) often only target one aspect of the disease process. Therefore, identifying effective drug targets associated with the pathogenesis of AD is critical for the production of novel AD therapeutic strategies. The present study aimed to investigate the underlying mechanisms of the neuroprotective effects of Rg1 on a rat model of AD. A double transgenic β‑amyloid (Aβ) precursor protein/PS1 rat model was established, which co‑expressed mutations associated with AD. Aβ plaques and neurofibrillary tangles (NFTs) were detected by immunohistochemistry. The detection of the protein expression levels of caspase‑3 and terminal deoxynucleotidyl‑transferase‑mediated dUTP nick end labeling (TUNEL) staining were used to determine the level of apoptosis in the brain tissue. The expression levels of the endoplasmic reticulum (ER) stress biomarker, glucose‑regulated protein 78 (Grp78), and the mitochondrial apoptosis biomarkers, B‑cell lymphoma 2 (Bcl‑2) and Bcl‑2‑associated X protein (Bax), were analyzed by western blotting. Furthermore, the expression of the proteins associated with the ER stress unfolded protein response (UPR) was determined, in order to examine the levels of ER stress. The mRNA expression of downstream genes of UPR were also detected by reverse transcription‑polymerase chain reaction. The protein expression levels of the apoptosis‑associated phosphorylated‑c‑Jun N‑terminal protein kinase (p‑JNK), caspase‑12 and cAMP response element‑binding transcription factor homologous protein were determined by western blotting. The results of the present study indicated that the accumulation of NFTs and Aβ plaques was significantly decreased in the Rg1‑treated AD rats, compared with untreated AD rats. The expression of caspase‑3 and the number of TUNEL‑positive cells were also significantly decreased in the Rg1‑treated rats, as compared with the AD rats. Furthermore, treatment with Rg1 significantly reduced the expression of Grp78, and triggered inositol‑requiring enzyme‑1 (IRE‑1) and phosphorylated protein kinase RNA‑like ER kinase‑associated ER stress. The IRE‑1 UPR pathway downstream gene, tumor necrosis factor receptor‑associated factor 2, was significantly decreased in rats treated with Rg1, compared with untreated AD rats. Furthermore, the activation of p‑JNK was also inhibited when AD rats were treated with Rg1. In conclusion, Rg1 was shown to function as an important factor that inhibits the accumulation of NFTs and Aβ via inhibition of the ER stress‑mediated pathway. Blocking of this pathway was triggered by the IRE‑1 and TRAF2 pathway, as a result of inhibition of the expression of p‑JNK.
Collapse
Affiliation(s)
- Jun-Shan Mu
- Department of Neurology, Fuzhou General Hospital and Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350025 P.R. China
| | - Hang Lin
- Department of Neurology, Fuzhou General Hospital and Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350025 P.R. China
| | - Jian-Xin Ye
- Department of Neurology, Fuzhou General Hospital and Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350025 P.R. China
| | - Min Lin
- Department of Neurology, Fuzhou General Hospital and Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350025 P.R. China
| | - Xiao-Ping Cui
- Department of Neurology, Fuzhou General Hospital and Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350025 P.R. China
| |
Collapse
|
33
|
TrkB reduction exacerbates Alzheimer's disease-like signaling aberrations and memory deficits without affecting β-amyloidosis in 5XFAD mice. Transl Psychiatry 2015; 5:e562. [PMID: 25942043 PMCID: PMC4471286 DOI: 10.1038/tp.2015.55] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 03/06/2015] [Accepted: 03/24/2015] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence shows that brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-related kinase B (TrkB) significantly decrease early in Alzheimer's disease (AD). However, it remains unclear whether BDNF/TrkB reductions may be mechanistically involved in the pathogenesis of AD. To address this question, we generated 5XFAD transgenic mice with heterozygous TrkB knockout (TrkB(+/-)·5XFAD), and tested the effects of TrkB reduction on AD-like features in this mouse model during an incipient stage that shows only modest amyloid-β (Aβ) pathology and retains normal mnemonic function. TrkB(+/-) reduction exacerbated memory declines in 5XFAD mice at 4-5 months of age as assessed by the hippocampus-dependent spontaneous alternation Y-maze task, while the memory performance was not affected in TrkB(+/-) mice. Meanwhile, TrkB(+/-)·5XFAD mice were normal in nest building, a widely used measure for social behavior, suggesting the memory-specific aggravation of AD-associated behavioral impairments. We found no difference between TrkB(+/-)·5XFAD and 5XFAD control mice in cerebral plaque loads, Aβ concentrations including total Aβ42 and soluble oligomers and β-amyloidogenic processing of amyloid precursor protein. Interestingly, reductions in hippocampal expression of AMPA/NMDA glutamate receptor subunits as well as impaired signaling pathways downstream to TrkB such as CREB (cAMP response element-binding protein) and Akt/GSK-3β (glycogen synthase kinase-3β) were observed in TrkB(+/-)·5XFAD mice but not in 5XFAD mice. Among these signaling aberrations, only Akt/GSK-3β dysfunction occurred in TrkB(+/-) mice, while others were synergistic consequences between TrkB reduction and subthreshold levels of Aβ in TrkB(+/-)·5XFAD mice. Collectively, our results indicate that reduced TrkB does not affect β-amyloidosis but exacerbates the manifestation of hippocampal mnemonic and signaling dysfunctions in early AD.
Collapse
|
34
|
Devi L, Ohno M. A combination Alzheimer's therapy targeting BACE1 and neprilysin in 5XFAD transgenic mice. Mol Brain 2015; 8:19. [PMID: 25884928 PMCID: PMC4397831 DOI: 10.1186/s13041-015-0110-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/11/2015] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Accumulating evidence indicates that partial inhibition of β-site APP-cleaving enzyme 1 (BACE1), which initiates amyloid-β (Aβ) production, mitigates Alzheimer's disease (AD)-like pathologies and memory deficits in a battery of transgenic mouse models. However, our previous investigations suggest that therapeutic BACE1 suppression may be beneficial only if targeted on earlier stages of AD and encounter dramatic reductions in efficacy during disease progression. This study was designed to test the possibility that a combination approach, aimed at inhibiting BACE1 and boosting neprilysin (a major Aβ-degrading enzyme) activities, may be able to mechanistically overcome the limited efficacy of anti-Aβ therapy in advanced AD. RESULTS After crossbreeding between BACE1 heterozygous knockout (BACE1(+/-)), neprilysin transgenic (NEP) and 5XFAD mice, we analyzed the resultant mice at 12 months of age when 5XFAD controls showed robust amyloid-β (Aβ) accumulation and elevation of BACE1 expression (~2 folds). Although haploinsufficiency lowered BACE1 expression by ~50% in concordance with reduction in gene copy number, profound β-amyloidosis, memory deficits and cholinergic neuron death were no longer rescued in BACE1(+/-) · 5XFAD mice concomitant with their persistently upregulated BACE1 (i.e., equivalent to wild-type control levels). Notably, neprilysin overexpression not only prevented Aβ accumulation but also suppressed the translation initiation factor eIF2α-associated elevation of BACE1 and lowered levels of the β-secretase-cleaved C-terminal fragment of APP (C99) in NEP · 5XFAD mice. Interestingly, these markers for β-amyloidogenesis in BACE1(+/-) · NEP · 5XFAD mice were further reduced to the levels reflecting a combination of single BACE1 allele ablation and the abolishment of translational BACE1 upregulation. However, since neprilysin overexpression was striking (~8-fold relative to wild-type controls), memory impairments, cholinergic neuronal loss and β-amyloidosis were similarly prevented in NEP · 5XFAD and BACE1(+/-) · NEP · 5XFAD mice. CONCLUSIONS Our findings indicate that robust overexpression of neprilysin is sufficient to ameliorate AD-like phenotypes in aged 5XFAD mice. We also found that Aβ-degrading effects of overexpressed neprilysin can block deleterious BACE1-elevating mechanisms that accelerate Aβ production, warranting further study to test whether interventions moderately activating neprilysin may be useful for boosting the limited efficacy of therapeutic BACE1 inhibition in treating AD with established Aβ pathology.
Collapse
Affiliation(s)
- Latha Devi
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA.
| | - Masuo Ohno
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA. .,Department of Psychiatry, New York University Langone Medical Center, New York, NY, 10016, USA.
| |
Collapse
|
35
|
Sethi M, Joshi SS, Webb RL, Beckett TL, Donohue KD, Murphy MP, O'Hara BF, Duncan MJ. Increased fragmentation of sleep-wake cycles in the 5XFAD mouse model of Alzheimer's disease. Neuroscience 2015; 290:80-9. [PMID: 25637807 PMCID: PMC4361816 DOI: 10.1016/j.neuroscience.2015.01.035] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 01/19/2023]
Abstract
Sleep perturbations including fragmented sleep with frequent night-time awakenings and daytime naps are common in patients with Alzheimer's disease (AD), and these daily disruptions are a major factor for institutionalization. The objective of this study was to investigate if sleep-wake patterns are altered in 5XFAD mice, a well-characterized double transgenic mouse model of AD which exhibits an early onset of robust AD pathology and memory deficits. These mice have five distinct human mutations in two genes, the amyloid precursor protein (APP) and Presenilin1 (PS1) engineered into two transgenes driven by a neuron-specific promoter (Thy1), and thus develop severe amyloid deposition by 4 months of age. Age-matched (4-6.5 months old) male and female 5XFAD mice were monitored and compared to wild-type littermate controls for multiple sleep traits using a non-invasive, high throughput, automated piezoelectric system which detects breathing and gross body movements to characterize sleep and wake. Sleep-wake patterns were recorded continuously under baseline conditions (undisturbed) for 3 days and after sleep deprivation of 4h, which in mice produces a significant sleep debt and challenge to sleep homeostasis. Under baseline conditions, 5XFAD mice exhibited shorter bout lengths (14% lower values for males and 26% for females) as compared to controls (p<0.001). In females, the 5XFAD mice also showed 12% less total sleep than WT (p<0.01). Bout length reductions were greater during the night (the active phase for mice) than during the day, which does not model the human condition of disrupted sleep at night (the inactive period). However, the overall decrease in bout length suggests increased fragmentation and disruption in sleep consolidation that may be relevant to human sleep. The 5XFAD mice may serve as a useful model for testing therapeutic strategies to improve sleep consolidation in AD patients.
Collapse
Affiliation(s)
- M Sethi
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - S S Joshi
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - R L Webb
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Sanders-Brown Center on Aging and Alzheimer's Disease Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - T L Beckett
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Sanders-Brown Center on Aging and Alzheimer's Disease Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - K D Donohue
- Department of Electrical and Computer Engineering, University of Kentucky, KY 40506, USA
| | - M P Murphy
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Sanders-Brown Center on Aging and Alzheimer's Disease Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - B F O'Hara
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - M J Duncan
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
36
|
Sadleir KR, Eimer WA, Cole SL, Vassar R. Aβ reduction in BACE1 heterozygous null 5XFAD mice is associated with transgenic APP level. Mol Neurodegener 2015; 10:1. [PMID: 25567526 PMCID: PMC4297413 DOI: 10.1186/1750-1326-10-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/21/2014] [Indexed: 11/10/2022] Open
Abstract
Background The β-secretase, BACE1, cleaves APP to initiate generation of the β-amyloid peptide, Aβ, that comprises amyloid plaques in Alzheimer’s disease (AD). Reducing BACE1 activity is an attractive therapeutic approach to AD, but complete inhibition of BACE1 could have mechanism-based side-effects as BACE1−/− mice show deficits in axon guidance, myelination, memory, and other neurological processes. Since BACE1+/− mice appear normal there is interest in determining whether 50% reduction in BACE1 is potentially effective in preventing or treating AD. APP transgenic mice heterozygous for BACE1 have decreased Aβ but the extent of reduction varies greatly from study to study. Here we assess the effects of 50% BACE1 reduction on the widely used 5XFAD mouse model of AD. Results 50% BACE1 reduction reduces Aβ42, plaques, and BACE1-cleaved APP fragments in female, but not in male, 5XFAD/BACE1+/− mice. 5XFAD/BACE1+/+ females have higher levels of Aβ42 and steady-state transgenic APP than males, likely caused by an estrogen response element in the transgene Thy-1 promoter. We hypothesize that higher transgenic APP level in female 5XFAD mice causes BACE1 to no longer be in excess over APP so that 50% BACE1 reduction has a significant Aβ42 lowering effect. In contrast, the lower APP level in 5XFAD males allows BACE1 to be in excess over APP even at 50% BACE1 reduction, preventing lowering of Aβ42 in 5XFAD/BACE1+/− males. We also developed and validated a dot blot assay with an Aβ42-selective antibody as an accurate and cost-effective alternative to ELISA for measuring cerebral Aβ42 levels. Conclusions 50% BACE1 reduction lowers Aβ42 in female 5XFAD mice only, potentially because BACE1 is not in excess over APP in 5XFAD females with higher transgene expression, while BACE1 is in excess over APP in 5XFAD males with lower transgene expression. Our results suggest that greater than 50% BACE1 inhibition might be necessary to significantly lower Aβ, given that BACE1 is likely to be in excess over APP in the human brain. Additionally, in experiments using the 5XFAD mouse model, or other Thy-1 promoter transgenic mice, equal numbers of male and female mice should be used, in order to avoid artifactual gender-related differences.
Collapse
Affiliation(s)
| | | | | | - Robert Vassar
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60605, USA.
| |
Collapse
|
37
|
Cho WH, Park JC, Chung C, Jeon WK, Han JS. Learning strategy preference of 5XFAD transgenic mice depends on the sequence of place/spatial and cued training in the water maze task. Behav Brain Res 2014; 273:116-22. [DOI: 10.1016/j.bbr.2014.07.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/20/2014] [Accepted: 07/21/2014] [Indexed: 12/18/2022]
|
38
|
Landel V, Baranger K, Virard I, Loriod B, Khrestchatisky M, Rivera S, Benech P, Féron F. Temporal gene profiling of the 5XFAD transgenic mouse model highlights the importance of microglial activation in Alzheimer's disease. Mol Neurodegener 2014; 9:33. [PMID: 25213090 PMCID: PMC4237952 DOI: 10.1186/1750-1326-9-33] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/27/2014] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The 5XFAD early onset mouse model of Alzheimer's disease (AD) is gaining momentum. Behavioral, electrophysiological and anatomical studies have identified age-dependent alterations that can be reminiscent of human AD. However, transcriptional changes during disease progression have not yet been investigated. To this end, we carried out a transcriptomic analysis on RNAs from the neocortex and the hippocampus of 5XFAD female mice at the ages of one, four, six and nine months (M1, M4, M6, M9). RESULTS Our results show a clear shift in gene expression patterns between M1 and M4. At M1, 5XFAD animals exhibit region-specific variations in gene expression patterns whereas M4 to M9 mice share a larger proportion of differentially expressed genes (DEGs) that are common to both regions. Analysis of DEGs from M4 to M9 underlines the predominance of inflammatory and immune processes in this AD mouse model. The rise in inflammation, sustained by the overexpression of genes from the complement and integrin families, is accompanied by an increased expression of transcripts involved in the NADPH oxidase complex, phagocytic processes and IFN-γ related pathways. CONCLUSIONS Overall, our data suggest that, from M4 to M9, sustained microglial activation becomes the predominant feature and point out that both detrimental and neuroprotective mechanisms appear to be at play in this model. Furthermore, our study identifies a number of genes already known to be altered in human AD, thus confirming the use of the 5XFAD strain as a valid model for understanding AD pathogenesis and for screening potential therapeutic molecules.
Collapse
Affiliation(s)
- Véréna Landel
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - Kévin Baranger
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
- APHM, Hôpitaux de la Timone, Service de Neurologie et Neuropsychologie, 13385 Marseille, France
| | - Isabelle Virard
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - Béatrice Loriod
- Aix Marseille Université, TAGC UMR 1090, 13288 Marseille, France
- INSERM, TAGC UMR 1090, 13288 Marseille, France
| | | | - Santiago Rivera
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - Philippe Benech
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - François Féron
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| |
Collapse
|
39
|
Roddick KM, Schellinck HM, Brown RE. Olfactory delayed matching to sample performance in mice: Sex differences in the 5XFAD mouse model of Alzheimer's disease. Behav Brain Res 2014; 270:165-70. [DOI: 10.1016/j.bbr.2014.04.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/17/2014] [Accepted: 04/21/2014] [Indexed: 02/06/2023]
|
40
|
Nava-Mesa MO, Jiménez-Díaz L, Yajeya J, Navarro-Lopez JD. GABAergic neurotransmission and new strategies of neuromodulation to compensate synaptic dysfunction in early stages of Alzheimer's disease. Front Cell Neurosci 2014; 8:167. [PMID: 24987334 PMCID: PMC4070063 DOI: 10.3389/fncel.2014.00167] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/02/2014] [Indexed: 01/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline, brain atrophy due to neuronal and synapse loss, and formation of two pathological lesions: extracellular amyloid plaques, composed largely of amyloid-beta peptide (Aβ), and neurofibrillary tangles formed by intracellular aggregates of hyperphosphorylated tau protein. Lesions mainly accumulate in brain regions that modulate cognitive functions such as the hippocampus, septum or amygdala. These brain structures have dense reciprocal glutamatergic, cholinergic, and GABAergic connections and their relationships directly affect learning and memory processes, so they have been proposed as highly susceptible regions to suffer damage by Aβ during AD course. Last findings support the emerging concept that soluble Aβ peptides, inducing an initial stage of synaptic dysfunction which probably starts 20–30 years before the clinical onset of AD, can perturb the excitatory–inhibitory balance of neural circuitries. In turn, neurotransmission imbalance will result in altered network activity that might be responsible of cognitive deficits in AD. Therefore, Aβ interactions on neurotransmission systems in memory-related brain regions such as amygdaloid complex, medial septum or hippocampus are critical in cognitive functions and appear as a pivotal target for drug design to improve learning and dysfunctions that manifest with age. Since treatments based on glutamatergic and cholinergic pharmacology in AD have shown limited success, therapies combining modulators of different neurotransmission systems including recent findings regarding the GABAergic system, emerge as a more useful tool for the treatment, and overall prevention, of this dementia. In this review, focused on inhibitory systems, we will analyze pharmacological strategies to compensate neurotransmission imbalance that might be considered as potential therapeutic interventions in AD.
Collapse
Affiliation(s)
| | - Lydia Jiménez-Díaz
- Neurophysiology and Behavior Lab, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha Ciudad Real, Spain
| | - Javier Yajeya
- Department of Physiology and Pharmacology, University of Salamanca Salamanca, Spain
| | - Juan D Navarro-Lopez
- Neurophysiology and Behavior Lab, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha Ciudad Real, Spain
| |
Collapse
|
41
|
Schneider F, Baldauf K, Wetzel W, Reymann KG. Behavioral and EEG changes in male 5xFAD mice. Physiol Behav 2014; 135:25-33. [PMID: 24907698 DOI: 10.1016/j.physbeh.2014.05.041] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/23/2014] [Accepted: 05/28/2014] [Indexed: 11/18/2022]
Abstract
Transgenic animal models of Alzheimer's disease (AD) are widely used to investigate mechanisms of pathophysiology and cognitive dysfunctions. A model with a very early development of parenchymal plaque load at the age of 2months is the 5xFAD mouse (Tg6799, Oakley et al. 2006). These 5xFAD mice over-express both human amyloid precursor protein (APP) and human presenilin 1 (PS1). Mice from this line have a high APP expression correlating with a high burden and an accelerated accumulation of the 42 amino acid species of amyloid-β (Aβ). The aim of this study was the behavioral and functional investigations of 5xFAD males because in most studies females of this strain were characterized. In comparison to literature of transgenic 5xFAD females, transgenic 5xFAD males showed decreased anxiety in the elevated plus maze, reduced locomotion and exploration in the open field and disturbances in learning performance in the Morris water maze starting at 9months of age. Electroencephalogram (EEG) recordings on 6month old transgenic mice revealed a decrease of delta, theta, alpha, beta and gamma frequency bands whereas the subdelta frequency was increased. EEG recordings during sleep showed a reduction of rapid eye movement sleep in relation to the amount of total sleep. Thus, 5xFAD males develop early functional disturbances and subsequently behavioral deficits and therefore they are a good mouse model for studying Alzheimer's disease.
Collapse
Affiliation(s)
- F Schneider
- German Centre for Neurodegenerative Diseases (DZNE), D-39120 Magdeburg, Germany.
| | - K Baldauf
- German Centre for Neurodegenerative Diseases (DZNE), D-39120 Magdeburg, Germany.
| | - W Wetzel
- Leibniz Institute for Neurobiology, Brenneckestr. 6, D-39118 Magdeburg, Germany.
| | - K G Reymann
- German Centre for Neurodegenerative Diseases (DZNE), D-39120 Magdeburg, Germany; Leibniz Institute for Neurobiology, Brenneckestr. 6, D-39118 Magdeburg, Germany.
| |
Collapse
|
42
|
Devi L, Ohno M. PERK mediates eIF2α phosphorylation responsible for BACE1 elevation, CREB dysfunction and neurodegeneration in a mouse model of Alzheimer's disease. Neurobiol Aging 2014; 35:2272-81. [PMID: 24889041 DOI: 10.1016/j.neurobiolaging.2014.04.031] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/28/2014] [Accepted: 04/27/2014] [Indexed: 01/06/2023]
Abstract
Emerging evidence suggests that aberrant phosphorylation of eukaryotic initiation factor-2α (eIF2α) may induce synaptic failure and neurodegeneration through persistent translational inhibition of global protein synthesis. However, elevated phospho-eIF2α also paradoxically causes translational activation of a subset of messenger RNAs such as the β-secretase enzyme, β-site APP-cleaving enzyme 1 (BACE1) and cAMP response element binding protein (CREB) repressor, activating transcription factor 4 (ATF4). Therefore, we tested whether genetic reduction of the eIF2α kinase PERK may prevent these deleterious events and mitigate Alzheimer's disease (AD)-like neuropathology and cognitive impairments in the 5XFAD mouse model. PERK haploinsufficiency blocked overactivation of the PERK-eIF2α pathway, as evidenced by significant reductions in phosphorylation of PERK and eIF2α, in 5XFAD mice. PERK haploinsufficiency was sufficient to rescue memory deficits and cholinergic neurodegeneration in this AD model. Notably, PERK haploinsufficiency also prevented BACE1 elevations, resulting in reduced levels of amyloid-β peptides and plaque burden in 5XFAD mice. Moreover, CREB dysfunction was restored in PERK(+/-)·5XFAD mice concomitant with reversal of ATF4 upregulation. Together, these findings suggest that PERK may be a disease-modifying therapeutic target to prevent multiple memory-disrupting mechanisms associated with AD.
Collapse
Affiliation(s)
- Latha Devi
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - Masuo Ohno
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
43
|
Webster SJ, Bachstetter AD, Nelson PT, Schmitt FA, Van Eldik LJ. Using mice to model Alzheimer's dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front Genet 2014; 5:88. [PMID: 24795750 PMCID: PMC4005958 DOI: 10.3389/fgene.2014.00088] [Citation(s) in RCA: 494] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/01/2014] [Indexed: 01/17/2023] Open
Abstract
The goal of this review is to discuss how behavioral tests in mice relate to the pathological and neuropsychological features seen in human Alzheimer's disease (AD), and present a comprehensive analysis of the temporal progression of behavioral impairments in commonly used AD mouse models that contain mutations in amyloid precursor protein (APP). We begin with a brief overview of the neuropathological changes seen in the AD brain and an outline of some of the clinical neuropsychological assessments used to measure cognitive deficits associated with the disease. This is followed by a critical assessment of behavioral tasks that are used in AD mice to model the cognitive changes seen in the human disease. Behavioral tests discussed include spatial memory tests [Morris water maze (MWM), radial arm water maze (RAWM), Barnes maze], associative learning tasks (passive avoidance, fear conditioning), alternation tasks (Y-Maze/T-Maze), recognition memory tasks (Novel Object Recognition), attentional tasks (3 and 5 choice serial reaction time), set-shifting tasks, and reversal learning tasks. We discuss the strengths and weaknesses of each of these behavioral tasks, and how they may correlate with clinical assessments in humans. Finally, the temporal progression of both cognitive and non-cognitive deficits in 10 AD mouse models (PDAPP, TG2576, APP23, TgCRND8, J20, APP/PS1, TG2576 + PS1 (M146L), APP/PS1 KI, 5×FAD, and 3×Tg-AD) are discussed in detail. Mouse models of AD and the behavioral tasks used in conjunction with those models are immensely important in contributing to our knowledge of disease progression and are a useful tool to study AD pathophysiology and the resulting cognitive deficits. However, investigators need to be aware of the potential weaknesses of the available preclinical models in terms of their ability to model cognitive changes observed in human AD. It is our hope that this review will assist investigators in selecting an appropriate mouse model, and accompanying behavioral paradigms to investigate different aspects of AD pathology and disease progression.
Collapse
Affiliation(s)
- Scott J Webster
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA
| | - Adam D Bachstetter
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA ; Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Kentucky Lexington, KY, USA
| | - Frederick A Schmitt
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA ; Department of Neurology, University of Kentucky Lexington, KY, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA ; Department of Anatomy and Neurobiology, University of Kentucky Lexington, KY, USA
| |
Collapse
|
44
|
Girard SD, Jacquet M, Baranger K, Migliorati M, Escoffier G, Bernard A, Khrestchatisky M, Féron F, Rivera S, Roman FS, Marchetti E. Onset of hippocampus-dependent memory impairments in 5XFAD transgenic mouse model of Alzheimer's disease. Hippocampus 2014; 24:762-72. [DOI: 10.1002/hipo.22267] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 02/17/2014] [Accepted: 02/25/2014] [Indexed: 12/15/2022]
Affiliation(s)
| | - Marlyse Jacquet
- Aix Marseille Université, CNRS, NICN, UMR7259; Marseille France
| | - Kévin Baranger
- Aix Marseille Université, CNRS, NICN, UMR7259; Marseille France
- APHM; CHU La Timone; Département de Neurologie et de Neuropsychologie; Marseille France
| | | | - Guy Escoffier
- Aix Marseille Université, CNRS, NICN, UMR7259; Marseille France
| | - Anne Bernard
- Aix Marseille Université, CNRS, NICN, UMR7259; Marseille France
| | | | - François Féron
- Aix Marseille Université, CNRS, NICN, UMR7259; Marseille France
| | - Santiago Rivera
- Aix Marseille Université, CNRS, NICN, UMR7259; Marseille France
| | | | | |
Collapse
|
45
|
Toyn JH, Ahlijanian MK. Interpreting Alzheimer's disease clinical trials in light of the effects on amyloid-β. ALZHEIMERS RESEARCH & THERAPY 2014; 6:14. [PMID: 25031632 PMCID: PMC4014014 DOI: 10.1186/alzrt244] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The failure of several potential Alzheimer’s disease therapeutics in mid- to late-stage clinical development has provoked significant discussion regarding the validity of the amyloid hypothesis. In this review, we propose a minimum criterion of 25% for amyloid-β (Aβ) lowering to achieve clinically meaningful slowing of disease progression. This criterion is based on genetic, risk factor, clinical and preclinical studies. We then compare this minimum criterion with the degree of Aβ lowering produced by the potential therapies that have failed in clinical trials. If the proposed minimum Aβ lowering criterion is used, then the amyloid hypothesis has yet to be adequately tested in the clinic. Therefore, we believe that the amyloid hypothesis remains valid and remains to be confirmed or refuted in future clinical trials.
Collapse
Affiliation(s)
- Jeremy H Toyn
- Bristol-Myers Squibb Research and Development, Neuroscience Biology, 5 Research Parkway, Wallingford, Connecticut 06492, USA
| | - Michael K Ahlijanian
- Bristol-Myers Squibb Research and Development, Neuroscience Biology, 5 Research Parkway, Wallingford, Connecticut 06492, USA
| |
Collapse
|
46
|
He Y, Zhao H, Su G. Ginsenoside Rg1 decreases neurofibrillary tangles accumulation in retina by regulating activities of neprilysin and PKA in retinal cells of AD mice model. J Mol Neurosci 2013; 52:101-6. [PMID: 24287922 DOI: 10.1007/s12031-013-0173-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022]
Abstract
Neurofibrillary tangles (NFTs) are the major component of senile plaques in the brains of patients with Alzheimer's disease (AD). However, the mechanism causing NFTs accumulation in AD patients' retina is also elusive. Thus, we investigated the effects of ginsenoside Rg1 on NFTs accumulation in retinal pigment epithelial (RPE) cells isolated form double transgenic APP/PS1 mice model. NFTs amounts in culture supernatants were examined by enzyme-linked immunosorbent assay. Activity and mRNA transcription of enzymes and proteins that regulate NFTs accumulation were examined by activity assay and reverse transcription PCR. The expression of neprilysin (NEP) and neutral endopeptidase (PKA) were detected by western blot assay. Rg1 significantly decreased NFTs accumulation in isolated RPE cells. Activity of NEP was significantly increased, and activity of PKA was significantly decreased in cell lysates of Rg1-feeding APP/PS1 mice compared with non-Rg1-feeding mice. mRNA level of NEP was significantly higher and mRNA level of PKA was significantly lower in cells of Rg1-feeding mice than nonfeeding mice. The phosphorylation of tau at Thr231, Thr205, and Ser396 were significantly decreased in RPE of Rg1-feeding APP/PS1 mice compared with the non-Rg1-feeding mice. Rg1 decreased the NFTs production in RPE cell of APP/PS1 mice by modulating the expression and activity of NEP and PKA, which perform the function through downregulating the phosphorylation of tau protein.
Collapse
Affiliation(s)
- Yanhui He
- Department of Ophthalmology, Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin, 130041, China
| | | | | |
Collapse
|
47
|
Maarouf CL, Kokjohn TA, Whiteside CM, Macias MP, Kalback WM, Sabbagh MN, Beach TG, Vassar R, Roher AE. Molecular Differences and Similarities Between Alzheimer's Disease and the 5XFAD Transgenic Mouse Model of Amyloidosis. BIOCHEMISTRY INSIGHTS 2013; 6:1-10. [PMID: 25210460 PMCID: PMC4154482 DOI: 10.4137/bci.s13025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transgenic (Tg) mouse models of Alzheimer’s disease (AD) have been extensively used to study the pathophysiology of this dementia and to test the efficacy of drugs to treat AD. The 5XFAD Tg mouse, which contains two presenilin-1 and three amyloid precursor protein (APP) mutations, was designed to rapidly recapitulate a portion of the pathologic alterations present in human AD. APP and its proteolytic peptides, as well as apolipoprotein E and endogenous mouse tau, were investigated in the 5XFAD mice at 3 months, 6 months, and 9 months. AD and nondemented subjects were used as a frame of reference. APP, amyloid-beta (Aβ) peptides, APP C-terminal fragments (CT99, CT83, AICD), β-site APP-cleaving enzyme, and APLP1 substantially increased with age in the brains of 5XFAD mice. Endogenous mouse tau did not show age-related differences. The rapid synthesis of Aβ and its impact on neuronal loss and neuroinflammation make the 5XFAD mice a desirable paradigm to model AD.
Collapse
Affiliation(s)
- Chera L Maarouf
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute Sun City, AZ, USA
| | - Tyler A Kokjohn
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute Sun City, AZ, USA. ; Department of Microbiology, Midwestern University School of Medicine, Glendale, AZ, USA
| | - Charisse M Whiteside
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute Sun City, AZ, USA
| | - MiMi P Macias
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute Sun City, AZ, USA
| | - Walter M Kalback
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute Sun City, AZ, USA
| | - Marwan N Sabbagh
- Roberts Clinical Center, Banner Sun Health Research Institute Sun City, AZ, USA. ; University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Thomas G Beach
- Harold Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Robert Vassar
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alex E Roher
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute Sun City, AZ, USA
| |
Collapse
|
48
|
Crowe SE, Ellis-Davies GCR. In vivo characterization of a bigenic fluorescent mouse model of Alzheimer's disease with neurodegeneration. J Comp Neurol 2013; 521:2181-94. [PMID: 23348594 DOI: 10.1002/cne.23306] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/14/2012] [Accepted: 01/17/2013] [Indexed: 11/11/2022]
Abstract
The loss of cognitive function in Alzheimer's disease (AD) patients is strongly correlated with the loss of neurons in various regions of the brain. We have created a new fluorescent bigenic mouse model of AD by crossing "H-line" yellow fluorescent protein (YFP) mice with the 5xFAD mouse model, which we call the 5XY mouse model. The 5xFAD mouse has been shown to have significant loss of L5 pyramidal neurons by 12 months of age. These neurons are transgenically labeled with YFP in the 5XY mouse, which enable longitudinal imaging of structural changes. In the 5XY mice, we observed an appearance of axonal dystrophies, with two distinct morphologies in the early stages of the disease progression. Simple swelling dystrophies are transient in nature and are not directly associated with amyloid plaques. Rosette dystrophies are more complex structures that remained stable throughout all imaging sessions, and always surrounded an amyloid plaque. Plaque growth was followed over 4 weeks, and significant growth was seen between weekly imaging sessions. In addition to axonal dystrophy appearance and plaque growth, we were able to follow spine stability in 4-month old 5XY mice, which revealed no significant loss of spines. 5XY mice also showed a striking shrinkage of the neocortex at older ages (12-14 months). The 5XY mouse model may be a valuable tool for studying specific events in the degeneration of the neocortex, and may suggest new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Sarah E Crowe
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
49
|
Deletion of the eIF2α Kinase GCN2 fails to rescue the memory decline associated with Alzheimer's disease. PLoS One 2013; 8:e77335. [PMID: 24146979 PMCID: PMC3795630 DOI: 10.1371/journal.pone.0077335] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/30/2013] [Indexed: 01/31/2023] Open
Abstract
Emerging evidence suggests that dysregulated translation through phosphorylation of eukaryotic initiation factor-2α (eIF2α) may contribute to Alzheimer's disease (AD) and related memory impairments. However, the underlying mechanisms remain unclear. Here, we crossed knockout mice for an eIF2α kinase (GCN2: general control nonderepressible-2 kinase) with 5XFAD transgenic mice, and investigated whether GCN2 deletion affects AD-like traits in this model. As observed in AD brains, 5XFAD mice recapitulated significant elevations in the β-secretase enzyme BACE1 and the CREB repressor ATF4 concomitant with a dramatic increase of eIF2α phosphorylation. Contrary to expectation, we found that GCN2(-/-) and GCN2(+/-) deficiencies aggravate rather than suppress hippocampal BACE1 and ATF4 elevations in 5XFAD mice, failing to rescue memory deficits as tested by the contextual fear conditioning. The facilitation of these deleterious events resulted in exacerbated β-amyloid accumulation, plaque pathology and CREB dysfunction in 5XFAD mice with GCN2 mutations. Notably, GCN2 deletion caused overactivation of the PKR-endoplasmic reticulum-related kinase (PERK)-dependent eIF2α phosphorylation pathway in 5XFAD mice in the absence of changes in the PKR pathway. Moreover, PERK activation in response to GCN2 deficiency was specific to 5XFAD mice, since phosphorylated PERK levels were equivalent between GCN2(-/-) and wild-type control mice. Our findings suggest that GCN2 may be an important eIF2α kinase under the physiological condition, whereas blocking the GCN2 pathway under exposure to significant β-amyloidosis rather aggravates eIF2α phosphorylation leading to BACE1 and ATF4 elevations in AD.
Collapse
|
50
|
Buskila Y, Crowe SE, Ellis-Davies GCR. Synaptic deficits in layer 5 neurons precede overt structural decay in 5xFAD mice. Neuroscience 2013; 254:152-9. [PMID: 24055684 DOI: 10.1016/j.neuroscience.2013.09.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/20/2013] [Accepted: 09/06/2013] [Indexed: 12/15/2022]
Abstract
Synaptic decay and neurodegeneration are hallmarks of Alzheimer's disease that are thought to precede dementia. Recently, we have reported that the first signs of neuritic dystrophy in a new transgenic mouse model of familial Alzheimer's disease (FAD) called the "5xFAD" are axonal dystrophy followed by loss of spines on basal dendrites. The 5xFAD mouse has profound loss of layer 5 neurons by 12months, and these initial structural insults appear between 4 and 6months of age. Here, we test, for the first time, if synaptic failure of layer 5 neurons in the 5xFAD mouse precedes these structural changes. We used longitudinal, in vivo two-photon fluorescence imaging of bigenic 5xFAD/YFP mice to assess the overall structural stability of layer 5 neurons in young mice (age less than 14weeks). We found these neurons to be structurally and morphologically sound. In parallel, we used in vitro, whole-cell patch clamp electrophysiology of layer 5 pyramidal neurons, from mice aged 8-12weeks, to reveal significant pre- and postsynaptic defects in these cells. Thus our data suggest that layer 5 neurons in the 5xFAD mouse model have synaptic deficits at an early time point, before any overt structural dystrophy, and that such synaptic failure, with co-temporal biochemical changes, may be an early step in neuronal loss.
Collapse
Affiliation(s)
- Y Buskila
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA; Bioelectronics and Neuroscience Group, The MARCS Institute, University of Western Sydney, NSW 2560, Australia
| | | | | |
Collapse
|