1
|
Higashi R, Morita M, Kawaguchi SY. Cl --dependent amplification of excitatory synaptic potentials at distal dendrites revealed by voltage imaging. SCIENCE ADVANCES 2024; 10:eadj2547. [PMID: 39196927 PMCID: PMC11352850 DOI: 10.1126/sciadv.adj2547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/25/2024] [Indexed: 08/30/2024]
Abstract
The processing of synaptic signals in somatodendritic compartments determines neuronal computation. Although the amplification of excitatory signals by local voltage-dependent cation channels has been extensively studied, their spatiotemporal dynamics in elaborate dendritic branches remain obscure owing to technical limitations. Using fluorescent voltage imaging throughout dendritic arborizations in hippocampal pyramidal neurons, we demonstrate a unique chloride ion (Cl-)-dependent remote computation mechanism in the distal branches. Excitatory postsynaptic potentials triggered by local laser photolysis of caged glutamate spread along dendrites, with gradual amplification toward the distal end while attenuation toward the soma. Tour de force subcellular patch-clamp recordings from thin branches complemented by biophysical model simulations revealed that the asymmetric augmentation of excitation relies on tetrodotoxin-resistant sodium ion (Na+) channels and Cl- conductance accompanied by a more hyperpolarized dendritic resting potential. Together, this study reveals the cooperative voltage-dependent actions of cation and anion conductance for dendritic supralinear computation, which can locally decode the spatiotemporal context of synaptic inputs.
Collapse
|
2
|
Kim HR, Martina M. Bidirectional Regulation of GABA A Reversal Potential in the Adult Brain: Physiological and Pathological Implications. Life (Basel) 2024; 14:143. [PMID: 38276272 PMCID: PMC10817304 DOI: 10.3390/life14010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
In physiological conditions, the intracellular chloride concentration is much lower than the extracellular. As GABAA channels are permeable to anions, the reversal potential of GABAA is very close to that of Cl-, which is the most abundant free anion in the intra- and extracellular spaces. Intracellular chloride is regulated by the activity ratio of NKCC1 and KCC2, two chloride-cation cotransporters that import and export Cl-, respectively. Due to the closeness between GABAA reversal potential and the value of the resting membrane potential in most neurons, small changes in intracellular chloride have a major functional impact, which makes GABAA a uniquely flexible signaling system. In most neurons of the adult brain, the GABAA reversal potential is slightly more negative than the resting membrane potential, which makes GABAA hyperpolarizing. Alterations in GABAA reversal potential are a common feature in numerous conditions as they are the consequence of an imbalance in the NKCC1-KCC2 activity ratio. In most conditions (including Alzheimer's disease, schizophrenia, and Down's syndrome), GABAA becomes depolarizing, which causes network desynchronization and behavioral impairment. In other conditions (neonatal inflammation and neuropathic pain), however, GABAA reversal potential becomes hypernegative, which affects behavior through a potent circuit deactivation.
Collapse
Affiliation(s)
- Haram R. Kim
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, 300 E. Superior, Chicago, IL 60611, USA;
| | - Marco Martina
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, 300 E. Superior, Chicago, IL 60611, USA;
- Department of Psychiatry, Feinberg School of Medicine, Northwestern University, 300 E. Superior, Chicago, IL 60611, USA
| |
Collapse
|
3
|
Lipkin AM, Bender KJ. Axon Initial Segment GABA Inhibits Action Potential Generation throughout Periadolescent Development. J Neurosci 2023; 43:6357-6368. [PMID: 37596053 PMCID: PMC10500977 DOI: 10.1523/jneurosci.0605-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/04/2023] [Accepted: 08/01/2023] [Indexed: 08/20/2023] Open
Abstract
Neurons are remarkably polarized structures: dendrites spread and branch to receive synaptic inputs while a single axon extends and transmits action potentials (APs) to downstream targets. Neuronal polarity is maintained by the axon initial segment (AIS), a region between the soma and axon proper that is also the site of action potential (AP) generation. This polarization between dendrites and axons extends to inhibitory neurotransmission. In adulthood, the neurotransmitter GABA hyperpolarizes dendrites but instead depolarizes axons. These differences in function collide at the AIS. Multiple studies have shown that GABAergic signaling in this region can share properties of either the mature axon or mature dendrite, and that these properties evolve over a protracted period encompassing periadolescent development. Here, we explored how developmental changes in GABAergic signaling affect AP initiation. We show that GABA at the axon initial segment inhibits action potential initiation in layer (L)2/3 pyramidal neurons in prefrontal cortex from mice of either sex across GABA reversal potentials observed in periadolescence. These actions occur largely through current shunts generated by GABAA receptors and changes in voltage-gated channel properties that affected the number of channels that could be recruited for AP electrogenesis. These results suggest that GABAergic neurons targeting the axon initial segment provide an inhibitory "veto" across the range of GABA polarity observed in normal adolescent development, regardless of GABAergic synapse reversal potential.Significance Statement GABA receptors are a major class of neurotransmitter receptors in the brain. Typically, GABA receptors inhibit neurons by allowing influx of negatively charged chloride ions into the cell. However, there are cases where local chloride concentrations promote chloride efflux through GABA receptors. Such conditions exist early in development in neocortical pyramidal cell axon initial segments (AISs), where action potentials (APs) initiate. Here, we examined how chloride efflux in early development interacts with mechanisms that support action potential initiation. We find that this efflux, despite moving membrane potential closer to action potential threshold, is nevertheless inhibitory. Thus, GABA at the axon initial segment is likely to be inhibitory for action potential initiation independent of whether chloride flows out or into neurons via these receptors.
Collapse
Affiliation(s)
- Anna M Lipkin
- Neuroscience Graduate Program
- Center for Integrative Neuroscience Department of Neurology, University of California, San Francisco 94158, California
| | - Kevin J Bender
- Center for Integrative Neuroscience Department of Neurology, University of California, San Francisco 94158, California
| |
Collapse
|
4
|
Byvaltcev E, Behbood M, Schleimer JH, Gensch T, Semyanov A, Schreiber S, Strauss U. KCC2 reverse mode helps to clear postsynaptically released potassium at glutamatergic synapses. Cell Rep 2023; 42:112934. [PMID: 37537840 PMCID: PMC10480490 DOI: 10.1016/j.celrep.2023.112934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
Extracellular potassium [K+]o elevation during synaptic activity retrogradely modifies presynaptic release and astrocytic uptake of glutamate. Hence, local K+ clearance and replenishment mechanisms are crucial regulators of glutamatergic transmission and plasticity. Based on recordings of astrocytic inward rectifier potassium current IKir and K+-sensitive electrodes as sensors of [K+]o as well as on in silico modeling, we demonstrate that the neuronal K+-Cl- co-transporter KCC2 clears local perisynaptic [K+]o during synaptic excitation by operating in an activity-dependent reversed mode. In reverse mode, KCC2 replenishes K+ in dendritic spines and complements clearance of [K+]o, therewith attenuating presynaptic glutamate release and shortening LTP. We thus demonstrate a physiological role of KCC2 in neuron-glial interactions and regulation of synaptic signaling and plasticity through the uptake of postsynaptically released K+.
Collapse
Affiliation(s)
- Egor Byvaltcev
- Charité - Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Mahraz Behbood
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
| | - Jan-Hendrik Schleimer
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
| | - Thomas Gensch
- Institute of Biological Information Processing 1 (IBI-1, Molecular and Cellular Physiology), Forschungszentrum Jülich, Wilhem-Jonen Straße, 52428 Jülich, Germany
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, Zhejiang Pro, Jiaxing 314033, China
| | - Susanne Schreiber
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
| | - Ulf Strauss
- Charité - Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
5
|
Del Turco D, Paul MH, Schlaudraff J, Muellerleile J, Bozic F, Vuksic M, Jedlicka P, Deller T. Layer-specific changes of KCC2 and NKCC1 in the mouse dentate gyrus after entorhinal denervation. Front Mol Neurosci 2023; 16:1118746. [PMID: 37293543 PMCID: PMC10244516 DOI: 10.3389/fnmol.2023.1118746] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/25/2023] [Indexed: 06/10/2023] Open
Abstract
The cation-chloride cotransporters KCC2 and NKCC1 regulate the intracellular Cl- concentration and cell volume of neurons and/or glia. The Cl- extruder KCC2 is expressed at higher levels than the Cl- transporter NKCC1 in mature compared to immature neurons, accounting for the developmental shift from high to low Cl- concentration and from depolarizing to hyperpolarizing currents through GABA-A receptors. Previous studies have shown that KCC2 expression is downregulated following central nervous system injury, returning neurons to a more excitable state, which can be pathological or adaptive. Here, we show that deafferentation of the dendritic segments of granule cells in the outer (oml) and middle (mml) molecular layer of the dentate gyrus via entorhinal denervation in vivo leads to cell-type- and layer-specific changes in the expression of KCC2 and NKCC1. Microarray analysis validated by reverse transcription-quantitative polymerase chain reaction revealed a significant decrease in Kcc2 mRNA in the granule cell layer 7 days post-lesion. In contrast, Nkcc1 mRNA was upregulated in the oml/mml at this time point. Immunostaining revealed a selective reduction in KCC2 protein expression in the denervated dendrites of granule cells and an increase in NKCC1 expression in reactive astrocytes in the oml/mml. The NKCC1 upregulation is likely related to the increased activity of astrocytes and/or microglia in the deafferented region, while the transient KCC2 downregulation in granule cells may be associated with denervation-induced spine loss, potentially also serving a homeostatic role via boosting GABAergic depolarization. Furthermore, the delayed KCC2 recovery might be involved in the subsequent compensatory spinogenesis.
Collapse
Affiliation(s)
- Domenico Del Turco
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Mandy H. Paul
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Jessica Schlaudraff
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Julia Muellerleile
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Fran Bozic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mario Vuksic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Peter Jedlicka
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt, Germany
- Faculty of Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
6
|
Lukacs IP, Francavilla R, Field M, Hunter E, Howarth M, Horie S, Plaha P, Stacey R, Livermore L, Ansorge O, Tamas G, Somogyi P. Differential effects of group III metabotropic glutamate receptors on spontaneous inhibitory synaptic currents in spine-innervating double bouquet and parvalbumin-expressing dendrite-targeting GABAergic interneurons in human neocortex. Cereb Cortex 2023; 33:2101-2142. [PMID: 35667019 PMCID: PMC9977385 DOI: 10.1093/cercor/bhac195] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/12/2022] Open
Abstract
Diverse neocortical GABAergic neurons specialize in synaptic targeting and their effects are modulated by presynaptic metabotropic glutamate receptors (mGluRs) suppressing neurotransmitter release in rodents, but their effects in human neocortex are unknown. We tested whether activation of group III mGluRs by L-AP4 changes GABAA receptor-mediated spontaneous inhibitory postsynaptic currents (sIPSCs) in 2 distinct dendritic spine-innervating GABAergic interneurons recorded in vitro in human neocortex. Calbindin-positive double bouquet cells (DBCs) had columnar "horsetail" axons descending through layers II-V innervating dendritic spines (48%) and shafts, but not somata of pyramidal and nonpyramidal neurons. Parvalbumin-expressing dendrite-targeting cell (PV-DTC) axons extended in all directions innervating dendritic spines (22%), shafts (65%), and somata (13%). As measured, 20% of GABAergic neuropil synapses innervate spines, hence DBCs, but not PV-DTCs, preferentially select spine targets. Group III mGluR activation paradoxically increased the frequency of sIPSCs in DBCs (to median 137% of baseline) but suppressed it in PV-DTCs (median 92%), leaving the amplitude unchanged. The facilitation of sIPSCs in DBCs may result from their unique GABAergic input being disinhibited via network effect. We conclude that dendritic spines receive specialized, diverse GABAergic inputs, and group III mGluRs differentially regulate GABAergic synaptic transmission to distinct GABAergic cell types in human cortex.
Collapse
Affiliation(s)
- Istvan P Lukacs
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | | | - Martin Field
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Emily Hunter
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Michael Howarth
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Sawa Horie
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Puneet Plaha
- Department of Neurosurgery, John Radcliffe Hospital, OUH NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Richard Stacey
- Department of Neurosurgery, John Radcliffe Hospital, OUH NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Laurent Livermore
- Department of Neurosurgery, John Radcliffe Hospital, OUH NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Gabor Tamas
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| | - Peter Somogyi
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
7
|
Kurki SN, Uvarov P, Pospelov AS, Trontti K, Hübner AK, Srinivasan R, Watanabe M, Hovatta I, Hübner CA, Kaila K, Virtanen MA. Expression patterns of NKCC1 in neurons and non-neuronal cells during cortico-hippocampal development. Cereb Cortex 2022; 33:5906-5923. [PMID: 36573432 PMCID: PMC10183754 DOI: 10.1093/cercor/bhac470] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 12/28/2022] Open
Abstract
Abstract
The Na-K-2Cl cotransporter NKCC1 is widely expressed in cells within and outside the brain. However, our understanding of its roles in brain functions throughout development, as well as in neuropsychiatric and neurological disorders, has been severely hindered by the lack of reliable data on its developmental and (sub)cellular expression patterns. We provide here the first properly controlled analysis of NKCC1 protein expression in various cell types of the mouse brain using custom-made antibodies and an NKCC1 knock-out validated immunohistochemical procedure, with parallel data based on advanced mRNA approaches. NKCC1 protein and mRNA are expressed at remarkably high levels in oligodendrocytes. In immature neurons, NKCC1 protein was located in the somata, whereas in adult neurons, only NKCC1 mRNA could be clearly detected. NKCC1 immunoreactivity is also seen in microglia, astrocytes, developing pericytes, and in progenitor cells of the dentate gyrus. Finally, a differential expression of NKCC1 splice variants was observed, with NKCC1a predominating in non-neuronal cells and NKCC1b in neurons. Taken together, our data provide a cellular basis for understanding NKCC1 functions in the brain and enable the identification of major limitations and promises in the development of neuron-targeting NKCC1-blockers.
Collapse
Affiliation(s)
- Samu N Kurki
- University of Helsinki Molecular and Integrative Biosciences, , 00014 Helsinki , Finland
- Helsinki Institute of Life Science, University of Helsinki Neuroscience Center, , 00014 Helsinki , Finland
| | - Pavel Uvarov
- University of Helsinki Molecular and Integrative Biosciences, , 00014 Helsinki , Finland
- Helsinki Institute of Life Science, University of Helsinki Neuroscience Center, , 00014 Helsinki , Finland
| | - Alexey S Pospelov
- University of Helsinki Molecular and Integrative Biosciences, , 00014 Helsinki , Finland
- Helsinki Institute of Life Science, University of Helsinki Neuroscience Center, , 00014 Helsinki , Finland
| | - Kalevi Trontti
- Helsinki Institute of Life Science, University of Helsinki Neuroscience Center, , 00014 Helsinki , Finland
- University of Helsinki SleepWell Research Program, Faculty of Medicine, , 00014 Helsinki , Finland
- University of Helsinki Department of Psychology and Logopedics, , 00014 Helsinki , Finland
| | - Antje K Hübner
- Jena University Hospital, Friedrich Schiller Universität Institute of Human Genetics, , 07747 Jena , Germany
| | - Rakenduvadhana Srinivasan
- University of Helsinki Molecular and Integrative Biosciences, , 00014 Helsinki , Finland
- Helsinki Institute of Life Science, University of Helsinki Neuroscience Center, , 00014 Helsinki , Finland
| | - Masahiko Watanabe
- Hokkaido University Department of Anatomy, Faculty of Medicine, , Sapporo 060–8638 , Japan
| | - Iiris Hovatta
- Helsinki Institute of Life Science, University of Helsinki Neuroscience Center, , 00014 Helsinki , Finland
- University of Helsinki SleepWell Research Program, Faculty of Medicine, , 00014 Helsinki , Finland
- University of Helsinki Department of Psychology and Logopedics, , 00014 Helsinki , Finland
| | - Christian A Hübner
- Jena University Hospital, Friedrich Schiller Universität Institute of Human Genetics, , 07747 Jena , Germany
| | - Kai Kaila
- University of Helsinki Molecular and Integrative Biosciences, , 00014 Helsinki , Finland
- Helsinki Institute of Life Science, University of Helsinki Neuroscience Center, , 00014 Helsinki , Finland
| | - Mari A Virtanen
- University of Helsinki Molecular and Integrative Biosciences, , 00014 Helsinki , Finland
- Helsinki Institute of Life Science, University of Helsinki Neuroscience Center, , 00014 Helsinki , Finland
| |
Collapse
|
8
|
Proskurina EY, Zaitsev AV. Regulation of Potassium and Chloride Concentrations in Nervous Tissue as a Method of Anticonvulsant Therapy. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022050015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Under some pathological conditions, such as pharmacoresistant
epilepsy, status epilepticus or certain forms of genetic abnormalities,
spiking activity of GABAergic interneurons may enhance excitation
processes in neuronal circuits and provoke the generation of ictal
discharges. As a result, anticonvulsants acting on the GABAergic
system may be ineffective or even increase seizure activity. This
paradoxical effect of the inhibitory system is due to ionic imbalances
in nervous tissue. This review addresses the mechanisms of ictal
discharge initiation in neuronal networks due to the imbalance of
chloride and potassium ions, as well as possible ways to regulate
ionic concentrations. Both the enhancement (or attenuation) of the
activity of certain neuronal ion transporters and ion pumps and
their additional expression via gene therapy can be effective in
suppressing seizure activity caused by ionic imbalances. The Na+–K+-pump,
NKCC1 and KCC2 cotransporters are important for maintaining proper
K+ and Cl– concentrations
in nervous tissue, having been repeatedly considered as pharmacological
targets for antiepileptic exposures. Further progress in this direction
is hampered by the lack of sufficiently selective pharmacological
tools and methods for providing effective drug delivery to the epileptic
focus. The use of the gene therapy techniques, such as overexpressing
of the KCC2 transporter in the epileptic focus, seems to be a more promising
approach. Another possible direction could be the use of optogenetic
tools, namely specially designed light-activated ion pumps or ion
channels. In this case, photon energy can be used to create the
required gradients of chloride and potassium ions, although these
methods also have significant limitations which complicate their
rapid introduction into medicine.
Collapse
|
9
|
Abstract
Optogenetic actuators enable highly precise spatiotemporal interrogation of biological processes at levels ranging from the subcellular to cells, circuits and behaving organisms. Although their application in neuroscience has traditionally focused on the control of spiking activity at the somatodendritic level, the scope of optogenetic modulators for direct manipulation of presynaptic functions is growing. Presynaptically localized opsins combined with light stimulation at the terminals allow light-mediated neurotransmitter release, presynaptic inhibition, induction of synaptic plasticity and specific manipulation of individual components of the presynaptic machinery. Here, we describe presynaptic applications of optogenetic tools in the context of the unique cell biology of axonal terminals, discuss their potential shortcomings and outline future directions for this rapidly developing research area.
Collapse
|
10
|
Al Awabdh S, Donneger F, Goutierre M, Séveno M, Vigy O, Weinzettl P, Russeau M, Moutkine I, Lévi S, Marin P, Poncer JC. Gephyrin Interacts with the K-Cl Cotransporter KCC2 to Regulate Its Surface Expression and Function in Cortical Neurons. J Neurosci 2022; 42:166-182. [PMID: 34810232 PMCID: PMC8802937 DOI: 10.1523/jneurosci.2926-20.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 08/31/2021] [Accepted: 10/17/2021] [Indexed: 11/21/2022] Open
Abstract
The K+-Cl- cotransporter KCC2, encoded by the Slc12a5 gene, is a neuron-specific chloride extruder that tunes the strength and polarity of GABAA receptor-mediated transmission. In addition to its canonical ion transport function, KCC2 also regulates spinogenesis and excitatory synaptic function through interaction with a variety of molecular partners. KCC2 is enriched in the vicinity of both glutamatergic and GABAergic synapses, the activity of which in turn regulates its membrane stability and function. KCC2 interaction with the submembrane actin cytoskeleton via 4.1N is known to control its anchoring near glutamatergic synapses on dendritic spines. However, the molecular determinants of KCC2 clustering near GABAergic synapses remain unknown. Here, we used proteomics to identify novel KCC2 interacting proteins in the adult rat neocortex. We identified both known and novel candidate KCC2 partners, including some involved in neuronal development and synaptic transmission. These include gephyrin, the main scaffolding molecule at GABAergic synapses. Gephyrin interaction with endogenous KCC2 was confirmed by immunoprecipitation from rat neocortical extracts. We showed that gephyrin stabilizes plasmalemmal KCC2 and promotes its clustering in hippocampal neurons, mostly but not exclusively near GABAergic synapses, thereby controlling KCC2-mediated chloride extrusion. This study identifies gephyrin as a novel KCC2 anchoring molecule that regulates its membrane expression and function in cortical neurons.SIGNIFICANCE STATEMENT Fast synaptic inhibition in the brain is mediated by chloride-permeable GABAA receptors (GABAARs) and therefore relies on transmembrane chloride gradients. In neurons, these gradients are primarily maintained by the K/Cl cotransporter KCC2. Therefore, understanding the mechanisms controlling KCC2 expression and function is crucial to understand its physiological regulation and rescue its function in the pathology. KCC2 function depends on its membrane expression and clustering, but the underlying mechanisms remain unknown. We describe the interaction between KCC2 and gephyrin, the main scaffolding protein at inhibitory synapses. We show that gephyrin controls plasmalemmal KCC2 clustering and that loss of gephyrin compromises KCC2 function. Our data suggest functional units comprising GABAARs, gephyrin, and KCC2 act to regulate synaptic GABA signaling.
Collapse
Affiliation(s)
- Sana Al Awabdh
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Florian Donneger
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Marie Goutierre
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Martial Séveno
- BCM, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Oana Vigy
- IGF, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Pauline Weinzettl
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
- Institute of Biotechnology, University of Applied Sciences, Krems, Austria
| | - Marion Russeau
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Imane Moutkine
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Sabine Lévi
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Philippe Marin
- IGF, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Jean Christophe Poncer
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| |
Collapse
|
11
|
Hájos N. Interneuron Types and Their Circuits in the Basolateral Amygdala. Front Neural Circuits 2021; 15:687257. [PMID: 34177472 PMCID: PMC8222668 DOI: 10.3389/fncir.2021.687257] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022] Open
Abstract
The basolateral amygdala (BLA) is a cortical structure based on its cell types, connectivity features, and developmental characteristics. This part of the amygdala is considered to be the main entry site of processed and multisensory information delivered via cortical and thalamic afferents. Although GABAergic inhibitory cells in the BLA comprise only 20% of the entire neuronal population, they provide essential control over proper network operation. Previous studies have uncovered that GABAergic cells in the basolateral amygdala are as diverse as those present in other cortical regions, including the hippocampus and neocortex. To understand the role of inhibitory cells in various amygdala functions, we need to reveal the connectivity and input-output features of the different types of GABAergic cells. Here, I review the recent achievements in uncovering the diversity of GABAergic cells in the basolateral amygdala with a specific focus on the microcircuit organization of these inhibitory cells.
Collapse
Affiliation(s)
- Norbert Hájos
- Laboratory of Network Neurophysiology, ELRN Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
12
|
Peerboom C, Wierenga CJ. The postnatal GABA shift: A developmental perspective. Neurosci Biobehav Rev 2021; 124:179-192. [PMID: 33549742 DOI: 10.1016/j.neubiorev.2021.01.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
GABA is the major inhibitory neurotransmitter that counterbalances excitation in the mature brain. The inhibitory action of GABA relies on the inflow of chloride ions (Cl-), which hyperpolarizes the neuron. In early development, GABA signaling induces outward Cl- currents and is depolarizing. The postnatal shift from depolarizing to hyperpolarizing GABA is a pivotal event in brain development and its timing affects brain function throughout life. Altered timing of the postnatal GABA shift is associated with several neurodevelopmental disorders. Here, we argue that the postnatal shift from depolarizing to hyperpolarizing GABA represents the final shift in a sequence of GABA shifts, regulating proliferation, migration, differentiation, and finally plasticity of developing neurons. Each developmental GABA shift ensures that the instructive role of GABA matches the circumstances of the developing network. Sensory input may be a crucial factor in determining proper timing of the postnatal GABA shift. A developmental perspective is necessary to interpret the full consequences of a mismatch between connectivity, activity and GABA signaling during brain development.
Collapse
Affiliation(s)
- Carlijn Peerboom
- Cell Biology, Neurobiology and Biophysics, Biology Department, Faculty of Science, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Corette J Wierenga
- Cell Biology, Neurobiology and Biophysics, Biology Department, Faculty of Science, Utrecht University, 3584 CH, Utrecht, the Netherlands.
| |
Collapse
|
13
|
Amini N, Azad RR, Motamedi F, Mirzapour-Delavar H, Ghasemi S, Aliakbari S, Pourbadie HG. Overexpression of protein kinase Mζ in the hippocampus mitigates Alzheimer's disease-related cognitive deficit in rats. Brain Res Bull 2020; 166:64-72. [PMID: 33188852 DOI: 10.1016/j.brainresbull.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/01/2020] [Accepted: 11/02/2020] [Indexed: 10/23/2022]
Abstract
Accumulation of amyloid beta (Aβ) soluble forms in the cerebral parenchyma is the mainstream concept underlying memory deficit in the early phase of Alzheimer's disease (AD). PKMζ plays a critical role in the maintenance of long-term memory. Yet, the role of this brain-specific enzyme has not been addressed in AD. We examined the impact of hippocampal PKMζ overexpression on AD-related memory impairment in rats. Oligomeric form of Aβ (oAβ) or vehicle was bilaterally microinjected into the dorsal hippocampus of male Wistar rats under stereotaxic surgery. One week later, 2 μl of lentiviral vector (108 T.U. / ml.) encoding PKMζ genome was microinjected into the dorsal hippocampus. Seven days later, behavioral performance was assessed using shuttle box and Morris water maze. The expression levels of GluA1, GluA2 and KCC2 were determined in the hippocampus using western blot technique. Our data showed that oAβ impairs both passive avoidance and spatial learning and memory. However, overexpression of PKMζ in the dorsal hippocampus restored the behavioral performance. This improving effect was blocked by microinjection of ZIP, a PKMζ inhibitor, into the hippocampus. oAβ or PKMζ did not significantly change GluA1 level in the hippocampus. Furthermore, PKMζ failed to restore elevated KCC2 level induced by oAβ. However, oAβ decreased GluA2 level, and overexpression of PKMζ restored its expression toward the control level. In conclusion, hippocampal overexpression of PKMζ restored memory dysfunction induced by amyloidopathy in part, through preserving hippocampal GluA2 containing AMPA receptors. PKMζ's signaling pathway could be considered as a therapeutic target to battle memory deficits in the early phase of AD.
Collapse
Affiliation(s)
- Niloufar Amini
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran; Biotechnology Group of Chemical Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Reza Roosta Azad
- Biotechnology Group of Chemical Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Soheil Ghasemi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Shayan Aliakbari
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
14
|
Lee M, Liu YC, Chen C, Lu CH, Lu ST, Huang TN, Hsu MT, Hsueh YP, Cheng PL. Ecm29-mediated proteasomal distribution modulates excitatory GABA responses in the developing brain. J Cell Biol 2020; 219:133566. [PMID: 31910261 PMCID: PMC7041676 DOI: 10.1083/jcb.201903033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 10/14/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
Neuronal GABAergic responses switch from excitatory to inhibitory at an early postnatal period in rodents. The timing of this switch is controlled by intracellular Cl− concentrations, but factors determining local levels of cation-chloride cotransporters remain elusive. Here, we report that local abundance of the chloride importer NKCC1 and timely emergence of GABAergic inhibition are modulated by proteasome distribution, which is mediated through interactions of proteasomes with the adaptor Ecm29 and the axon initial segment (AIS) scaffold protein ankyrin G. Mechanistically, both the Ecm29 N-terminal domain and an intact AIS structure are required for transport and tethering of proteasomes in the AIS region. In mice, Ecm29 knockout (KO) in neurons increases the density of NKCC1 protein in the AIS region, a change that positively correlates with a delay in the GABAergic response switch. Phenotypically, Ecm29 KO mice showed increased firing frequency of action potentials at early postnatal ages and were hypersusceptible to chemically induced convulsive seizures. Finally, Ecm29 KO neurons exhibited accelerated AIS developmental positioning, reflecting a perturbed AIS morphological plastic response to hyperexcitability arising from proteasome inhibition, a phenotype rescued by ectopic Ecm29 expression or NKCC1 inhibition. Together, our findings support the idea that neuronal maturation requires regulation of proteasomal distribution controlled by Ecm29.
Collapse
Affiliation(s)
- Min Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yen-Chen Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chen Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chi-Huan Lu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shao-Tzu Lu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Tzyy-Nan Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Meng-Tsung Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Pei-Lin Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
15
|
Currin CB, Trevelyan AJ, Akerman CJ, Raimondo JV. Chloride dynamics alter the input-output properties of neurons. PLoS Comput Biol 2020; 16:e1007932. [PMID: 32453795 PMCID: PMC7307785 DOI: 10.1371/journal.pcbi.1007932] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 06/22/2020] [Accepted: 05/06/2020] [Indexed: 12/30/2022] Open
Abstract
Fast synaptic inhibition is a critical determinant of neuronal output, with subcellular targeting of synaptic inhibition able to exert different transformations of the neuronal input-output function. At the receptor level, synaptic inhibition is primarily mediated by chloride-permeable Type A GABA receptors. Consequently, dynamics in the neuronal chloride concentration can alter the functional properties of inhibitory synapses. How differences in the spatial targeting of inhibitory synapses interact with intracellular chloride dynamics to modulate the input-output function of neurons is not well understood. To address this, we developed computational models of multi-compartment neurons that incorporate experimentally parametrised mechanisms to account for neuronal chloride influx, diffusion, and extrusion. We found that synaptic input (either excitatory, inhibitory, or both) can lead to subcellular variations in chloride concentration, despite a uniform distribution of chloride extrusion mechanisms. Accounting for chloride changes resulted in substantial alterations in the neuronal input-output function. This was particularly the case for peripherally targeted dendritic inhibition where dynamic chloride compromised the ability of inhibition to offset neuronal input-output curves. Our simulations revealed that progressive changes in chloride concentration mean that the neuronal input-output function is not static but varies significantly as a function of the duration of synaptic drive. Finally, we found that the observed effects of dynamic chloride on neuronal output were mediated by changes in the dendritic reversal potential for GABA. Our findings provide a framework for understanding the computational effects of chloride dynamics on dendritically targeted synaptic inhibition.
Collapse
Affiliation(s)
- Christopher B. Currin
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Andrew J. Trevelyan
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Colin J. Akerman
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Joseph V. Raimondo
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
16
|
Auer T, Schreppel P, Erker T, Schwarzer C. Impaired chloride homeostasis in epilepsy: Molecular basis, impact on treatment, and current treatment approaches. Pharmacol Ther 2020; 205:107422. [DOI: 10.1016/j.pharmthera.2019.107422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022]
|
17
|
Krajcovic B, Fajnerova I, Horacek J, Kelemen E, Kubik S, Svoboda J, Stuchlik A. Neural and neuronal discoordination in schizophrenia: From ensembles through networks to symptoms. Acta Physiol (Oxf) 2019; 226:e13282. [PMID: 31002202 DOI: 10.1111/apha.13282] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/27/2019] [Accepted: 04/12/2019] [Indexed: 12/22/2022]
Abstract
Despite the substantial knowledge accumulated by past research, the exact mechanisms of the pathogenesis of schizophrenia and causal treatments still remain unclear. Deficits of cognition and information processing in schizophrenia are today often viewed as the primary and core symptoms of this devastating disorder. These deficits likely result from disruptions in the coordination of neuronal and neural activity. The aim of this review is to bring together convergent evidence of discoordinated brain circuits in schizophrenia at multiple levels of resolution, ranging from principal cells and interneurons, neuronal ensembles and local circuits, to large-scale brain networks. We show how these aberrations could underlie deficits in cognitive control and other higher order cognitive-behavioural functions. Converging evidence from both animal models and patients with schizophrenia is presented in an effort to gain insight into common features of deficits in the brain information processing in this disorder, marked by disruption of several neurotransmitter and signalling systems and severe behavioural outcomes.
Collapse
Affiliation(s)
- Branislav Krajcovic
- Department of Neurophysiology of Memory Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
- Third Faculty of Medicine Charles University Prague Czech Republic
| | - Iveta Fajnerova
- Department of Neurophysiology of Memory Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
- Research Programme 3 - Applied Neurosciences and Brain Imaging National Institute of Mental Health Klecany Czech Republic
| | - Jiri Horacek
- Third Faculty of Medicine Charles University Prague Czech Republic
- Research Programme 3 - Applied Neurosciences and Brain Imaging National Institute of Mental Health Klecany Czech Republic
| | - Eduard Kelemen
- Research Programme 1 - Experimental Neurobiology National Institute of Mental Health Klecany Czech Republic
| | - Stepan Kubik
- Department of Neurophysiology of Memory Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| | - Jan Svoboda
- Department of Neurophysiology of Memory Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| | - Ales Stuchlik
- Department of Neurophysiology of Memory Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| |
Collapse
|
18
|
Tapia D, Suárez P, Arias-García MA, Garcia-Vilchis B, Serrano-Reyes M, Bargas J, Galarraga E. Localization of chloride co-transporters in striatal neurons. Neuroreport 2019; 30:457-462. [PMID: 30920433 DOI: 10.1097/wnr.0000000000001234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ionic driving force for the chloride-permeable GABAA receptor is subject to spatial control and distribution of chloride transporters. NKCC1 and KCC2 are mostly expressed in neurons in a specific manner. In the striatum, the localization of these transporters in identified neurons is unknown. In this study, the expression of these transporters was found to be different between projection neurons and interneurons. NKCC1 immunoreactivity was observed in the soma of adult BAC-D1-eGFP+ and D2-eGFP+ striatal projection neurons (SPNs). KCC2 was not expressed in either projection neuron and immunoreactivity to this transporter was observed only in the neuropile. However, NKCC1 and KCC2 co-transporters were not localized in intracellular biocytin-injected dendrites of SPNs of the direct or indirect pathways (D1-SPNs and D2-SPNs). Experiments with PV Cre transgenic mice transfected with Cre-dependent adeno-associated viruses containing tdTomato in the striatum showed a cell-type-specific distribution of KCC2 chloride transporter co-expression associated with PV interneurons. Thus, depolarizing actions of GABA responses in adult projection neurons can be explained by the expression and somatic localization of the NKCC1 transporters. A somato/dendritic distribution of KCC2 expression was observed only in striatal interneurons and corresponds to the hyperpolarizing action of GABA recorded in these cells. This correlates the different roles for GABA actions in striatal neuronal excitability with the expression of specific chloride transporters.
Collapse
Affiliation(s)
- Dagoberto Tapia
- Neuroscience Division, Cell Physiology Institute, Autonomous National University of Mexico, Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
19
|
Côme E, Marques X, Poncer JC, Lévi S. KCC2 membrane diffusion tunes neuronal chloride homeostasis. Neuropharmacology 2019; 169:107571. [PMID: 30871970 DOI: 10.1016/j.neuropharm.2019.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/26/2019] [Accepted: 03/10/2019] [Indexed: 02/05/2023]
Abstract
Neuronal Cl- homeostasis is regulated by the activity of two cation chloride co-transporters (CCCs), the K+-Cl- cotransporter KCC2 and the Na+-K+-Cl- cotransporter NKCC1, which are primarily extruding and importing chloride in neurons, respectively. Several neurological and psychiatric disorders including epilepsy, neuropathic pain, schizophrenia and autism are associated with altered neuronal chloride (Cl-) homeostasis. A current view is that the accumulation of intracellular Cl- in neurons as a result of KCC2 down-regulation and/or NKCC1 up-regulation may weaken inhibitory GABA signaling and thereby promote the development of pathological activities. CCC activity is determined mainly by their level of expression in the plasma membrane. Furthermore, CCCs undergo "diffusion-trapping" in the membrane, a mechanism that is rapidly adjusted by activity-dependent post-translational modifications i.e. phosphorylation/dephosphorylation of key serine and threonine residues. This represents probably the most rapid cellular mechanism for adapting CCC function to changes in neuronal activity. Therefore, interfering with these mechanisms may help restoring Cl- homeostasis and inhibition under pathological conditions. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.
Collapse
Affiliation(s)
- Etienne Côme
- INSERM UMR-S 1270, 75005, Paris, France; Sorbonne Université, 75005, Paris, France; Institut du Fer à Moulin, 75005, Paris, France
| | - Xavier Marques
- INSERM UMR-S 1270, 75005, Paris, France; Sorbonne Université, 75005, Paris, France; Institut du Fer à Moulin, 75005, Paris, France
| | - Jean Christophe Poncer
- INSERM UMR-S 1270, 75005, Paris, France; Sorbonne Université, 75005, Paris, France; Institut du Fer à Moulin, 75005, Paris, France
| | - Sabine Lévi
- INSERM UMR-S 1270, 75005, Paris, France; Sorbonne Université, 75005, Paris, France; Institut du Fer à Moulin, 75005, Paris, France.
| |
Collapse
|
20
|
Côme E, Heubl M, Schwartz EJ, Poncer JC, Lévi S. Reciprocal Regulation of KCC2 Trafficking and Synaptic Activity. Front Cell Neurosci 2019; 13:48. [PMID: 30842727 PMCID: PMC6391895 DOI: 10.3389/fncel.2019.00048] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/01/2019] [Indexed: 01/05/2023] Open
Abstract
The main inhibitory neurotransmitter receptors in the adult central nervous system (CNS) are type A γ-aminobutyric acid receptors (GABAARs) and glycine receptors (GlyRs). Synaptic responses mediated by GlyR and GABAAR display a hyperpolarizing shift during development. This shift relies mainly on the developmental up-regulation of the K+-Cl- co-transporter KCC2 responsible for the extrusion of Cl-. In mature neurons, altered KCC2 function-mainly through increased endocytosis-leads to the re-emergence of depolarizing GABAergic and glycinergic signaling, which promotes hyperexcitability and pathological activities. Identifying signaling pathways and molecular partners that control KCC2 surface stability thus represents a key step in the development of novel therapeutic strategies. Here, we present our current knowledge on the cellular and molecular mechanisms governing the plasma membrane turnover rate of the transporter under resting conditions and in response to synaptic activity. We also discuss the notion that KCC2 lateral diffusion is one of the first parameters modulating the transporter membrane stability, allowing for rapid adaptation of Cl- transport to changes in neuronal activity.
Collapse
Affiliation(s)
- Etienne Côme
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Martin Heubl
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Eric J Schwartz
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Jean Christophe Poncer
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Sabine Lévi
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
21
|
Awad PN, Amegandjin CA, Szczurkowska J, Carriço JN, Fernandes do Nascimento AS, Baho E, Chattopadhyaya B, Cancedda L, Carmant L, Di Cristo G. KCC2 Regulates Dendritic Spine Formation in a Brain-Region Specific and BDNF Dependent Manner. Cereb Cortex 2018; 28:4049-4062. [PMID: 30169756 PMCID: PMC6188549 DOI: 10.1093/cercor/bhy198] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 07/17/2018] [Accepted: 07/27/2018] [Indexed: 01/17/2023] Open
Abstract
KCC2 is the major chloride extruder in neurons. The spatiotemporal regulation of KCC2 expression orchestrates the developmental shift towards inhibitory GABAergic drive and the formation of glutamatergic synapses. Whether KCC2's role in synapse formation is similar in different brain regions is unknown. First, we found that KCC2 subcellular localization, but not overall KCC2 expression levels, differed between cortex and hippocampus during the first postnatal week. We performed site-specific in utero electroporation of KCC2 cDNA to target either hippocampal CA1 or somatosensory cortical pyramidal neurons. We found that a premature expression of KCC2 significantly decreased spine density in CA1 neurons, while it had the opposite effect in cortical neurons. These effects were cell autonomous, because single-cell biolistic overexpression of KCC2 in hippocampal and cortical organotypic cultures also induced a reduction and an increase of dendritic spine density, respectively. In addition, we found that the effects of its premature expression on spine density were dependent on BDNF levels. Finally, we showed that the effects of KCC2 on dendritic spine were dependent on its chloride transporter function in the hippocampus, contrary to what was observed in cortex. Altogether, these results demonstrate that KCC2 regulation of dendritic spine development, and its underlying mechanisms, are brain-region specific.
Collapse
Affiliation(s)
- Patricia Nora Awad
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Clara Akofa Amegandjin
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Joanna Szczurkowska
- Neuroscience and Brain Technologies, Instituto Italiano di Tecnologia, Genova, Italy
| | | | | | - Elie Baho
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Bidisha Chattopadhyaya
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Laura Cancedda
- Neuroscience and Brain Technologies, Instituto Italiano di Tecnologia, Genova, Italy
- Telethon Dulbecco Institute, Italy
| | - Lionel Carmant
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Graziella Di Cristo
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| |
Collapse
|
22
|
Mahn M, Gibor L, Patil P, Cohen-Kashi Malina K, Oring S, Printz Y, Levy R, Lampl I, Yizhar O. High-efficiency optogenetic silencing with soma-targeted anion-conducting channelrhodopsins. Nat Commun 2018; 9:4125. [PMID: 30297821 PMCID: PMC6175909 DOI: 10.1038/s41467-018-06511-8] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/20/2018] [Indexed: 11/09/2022] Open
Abstract
Optogenetic silencing allows time-resolved functional interrogation of defined neuronal populations. However, the limitations of inhibitory optogenetic tools impose stringent constraints on experimental paradigms. The high light power requirement of light-driven ion pumps and their effects on intracellular ion homeostasis pose unique challenges, particularly in experiments that demand inhibition of a widespread neuronal population in vivo. Guillardia theta anion-conducting channelrhodopsins (GtACRs) are promising in this regard, due to their high single-channel conductance and favorable photon-ion stoichiometry. However, GtACRs show poor membrane targeting in mammalian cells, and the activity of such channels can cause transient excitation in the axon due to an excitatory chloride reversal potential in this compartment. Here, we address these problems by enhancing membrane targeting and subcellular compartmentalization of GtACRs. The resulting soma-targeted GtACRs show improved photocurrents, reduced axonal excitation and high light sensitivity, allowing highly efficient inhibition of neuronal activity in the mammalian brain. Current optogenetic inhibition methods like light-controlled ion pumps require high-intensity light and disrupt physiological ion gradients. Here, the authors somatically target the anion-conducting opsin GtACR to eliminate spiking in distal axons and improve photocurrents, thus enhancing its utility.
Collapse
Affiliation(s)
- Mathias Mahn
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Lihi Gibor
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Pritish Patil
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | | | - Shir Oring
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yoav Printz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Rivka Levy
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ilan Lampl
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ofer Yizhar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
23
|
Moore YE, Kelley MR, Brandon NJ, Deeb TZ, Moss SJ. Seizing Control of KCC2: A New Therapeutic Target for Epilepsy. Trends Neurosci 2017; 40:555-571. [PMID: 28803659 DOI: 10.1016/j.tins.2017.06.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 11/17/2022]
Abstract
Deficits in GABAergic inhibition result in the abnormal neuronal activation and synchronization that underlies seizures. However, the molecular mechanisms responsible for transforming a normal brain into an epileptic one remain largely unknown. Hyperpolarizing inhibition mediated by type A GABA (GABAA) receptors is dependent on chloride extrusion by the neuron-specific type 2K+-Cl- cotransporter (KCC2). Loss-of-function mutations in KCC2 are a known cause of infantile epilepsy in humans and KCC2 dysfunction is present in patients with both idiopathic and acquired epilepsy. Here we discuss the growing evidence that KCC2 dysfunction has a central role in the development and severity of the epilepsies.
Collapse
Affiliation(s)
- Yvonne E Moore
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK; Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Matt R Kelley
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nicholas J Brandon
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111, USA; AstraZeneca Neuroscience, Innovative Medicines and Early Development Biotech Unit, R&D Boston, Waltham, MA 024515, USA
| | - Tarek Z Deeb
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA; AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111, USA
| | - Stephen J Moss
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK; Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA; AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111, USA.
| |
Collapse
|
24
|
Sedmak G, Jovanov-Milošević N, Puskarjov M, Ulamec M, Krušlin B, Kaila K, Judaš M. Developmental Expression Patterns of KCC2 and Functionally Associated Molecules in the Human Brain. Cereb Cortex 2016; 26:4574-4589. [PMID: 26428952 DOI: 10.1093/cercor/bhv218] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Work on rodents demonstrated that steep upregulation of KCC2, a neuron-specific Cl- extruder of cation-chloride cotransporter (CCC) family, commences in supraspinal structures at around birth, leading to establishment of hyperpolarizing GABAergic responses. We describe spatiotemporal expression profiles of the entire CCC family in human brain. KCC2 mRNA was observed already at 10th postconceptional week (PCW) in amygdala, cerebellum, and thalamus. KCC2-immunoreactive (KCC2-ir) neurons were abundant in subplate at 18 PCW. By 25 PCW, numerous subplate and cortical plate neurons became KCC2-ir. The mRNA expression profiles of α- and β-isoforms of Na-K ATPase, which fuels cation-chloride cotransport, as well of tropomyosin receptor kinase B (TrkB), which promotes developmental upregulation of KCC2, were consistent with data from studies on rodents about their interactions with KCC2. Thus, in human brain, expression of KCC2 and its functionally associated proteins begins in early fetal period. Our work facilitates translation of results on CCC functions from animal studies to human and refutes the view that poor efficacy of anticonvulsants in the term human neonate is attributable to the lack of KCC2. We propose that perinatally low threshold for activation of Ca2+-dependent protease calpain renders neonates susceptible to downregulation of KCC2 by traumatic events, such as perinatal hypoxia ischemia.
Collapse
Affiliation(s)
| | | | - Martin Puskarjov
- Department of Biosciences and Neuroscience Center, University of Helsinki, Viikinkaari 1, Helsinki FI-00014, Finland
| | - Monika Ulamec
- Department of Pathology, Clinical Hospital Center Sisters of Mercy, University of Zagreb School of Medicine, Zagreb 10 000, Croatia
| | - Božo Krušlin
- Department of Pathology, Clinical Hospital Center Sisters of Mercy, University of Zagreb School of Medicine, Zagreb 10 000, Croatia
| | - Kai Kaila
- Department of Biosciences and Neuroscience Center, University of Helsinki, Viikinkaari 1, Helsinki FI-00014, Finland
| | | |
Collapse
|
25
|
Activation of GABA A receptors controls mesiotemporal lobe epilepsy despite changes in chloride transporters expression: In vivo and in silico approach. Exp Neurol 2016; 284:11-28. [DOI: 10.1016/j.expneurol.2016.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 12/16/2022]
|
26
|
Gödde K, Gschwend O, Puchkov D, Pfeffer CK, Carleton A, Jentsch TJ. Disruption of Kcc2-dependent inhibition of olfactory bulb output neurons suggests its importance in odour discrimination. Nat Commun 2016; 7:12043. [PMID: 27389623 PMCID: PMC4941119 DOI: 10.1038/ncomms12043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 05/20/2016] [Indexed: 11/08/2022] Open
Abstract
Synaptic inhibition in the olfactory bulb (OB), the first relay station of olfactory information, is believed to be important for odour discrimination. We interfered with GABAergic inhibition of mitral and tufted cells (M/T cells), the principal neurons of the OB, by disrupting their potassium-chloride cotransporter 2 (Kcc2). Roughly, 70% of mice died around 3 weeks, but surviving mice appeared normal. In these mice, the resulting increase in the intracellular Cl(-) concentration nearly abolished GABA-induced hyperpolarization of mitral cells (MCs) and unexpectedly increased the number of perisomatic synapses on MCs. In vivo analysis of odorant-induced OB electrical activity revealed increased M/T cell firing rate, altered phasing of action potentials in the breath cycle and disrupted separation of odour-induced M/T cell activity patterns. Mice also demonstrated a severely impaired ability to discriminate chemically similar odorants or odorant mixtures. Our work suggests that precisely tuned GABAergic inhibition onto M/T cells is crucial for M/T cell spike pattern separation needed to distinguish closely similar odours.
Collapse
Affiliation(s)
- Kathrin Gödde
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, 13125 Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Roessle Str. 10, 13125 Berlin, Germany
| | - Olivier Gschwend
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| | - Dmytro Puchkov
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, 13125 Berlin, Germany
| | - Carsten K. Pfeffer
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, 13125 Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Roessle Str. 10, 13125 Berlin, Germany
| | - Alan Carleton
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| | - Thomas J. Jentsch
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, 13125 Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Roessle Str. 10, 13125 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
27
|
Wang Y, Zhang P, Wyskiel DR. Chandelier Cells in Functional and Dysfunctional Neural Circuits. Front Neural Circuits 2016; 10:33. [PMID: 27199673 PMCID: PMC4854894 DOI: 10.3389/fncir.2016.00033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/08/2016] [Indexed: 01/08/2023] Open
Abstract
Chandelier cells (ChCs; also called axo-axonic cells) are a specialized GABAergic interneuron subtype that selectively innervates pyramidal neurons at the axon initial segment (AIS), the site of action potential generation. ChC connectivity allows for powerful yet precise modulation of large populations of pyramidal cells, suggesting ChCs have a critical role in brain functions. Dysfunctions in ChC connectivity are associated with brain disorders such as epilepsy and schizophrenia; however, whether this is causative, contributory or compensatory is not known. A likely stumbling block toward mechanistic discoveries and uncovering potential therapeutic targets is the apparent lack of rudimentary understanding of ChCs. For example, whether cortical ChCs are inhibitory or excitatory remains unresolved, and thus whether altered ChC activity results in altered inhibition or excitation is not clear. Recent studies have shed some light onto this excitation-inhibition controversy. In addition, new findings have identified preferential cell-type connectivities established by cortical ChCs, greatly expanding our understanding of the role of ChCs in the cortical microcircuit. Here we aim to bring more attention to ChC connectivity to better understand its role in neural circuits, address whether ChCs are inhibitory or excitatory in light of recent findings and discuss ChC dysfunctions in brain disorders.
Collapse
Affiliation(s)
- Yiqing Wang
- Department of Pharmacology, University of VirginiaCharlottesville, VA, USA; Department of Chemistry, University of VirginiaCharlottesville, VA, USA
| | - Peng Zhang
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Daniel R Wyskiel
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| |
Collapse
|
28
|
Kubota Y, Karube F, Nomura M, Kawaguchi Y. The Diversity of Cortical Inhibitory Synapses. Front Neural Circuits 2016; 10:27. [PMID: 27199670 PMCID: PMC4842771 DOI: 10.3389/fncir.2016.00027] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/29/2016] [Indexed: 12/03/2022] Open
Abstract
The most typical and well known inhibitory action in the cortical microcircuit is a strong inhibition on the target neuron by axo-somatic synapses. However, it has become clear that synaptic inhibition in the cortex is much more diverse and complicated. Firstly, at least ten or more inhibitory non-pyramidal cell subtypes engage in diverse inhibitory functions to produce the elaborate activity characteristic of the different cortical states. Each distinct non-pyramidal cell subtype has its own independent inhibitory function. Secondly, the inhibitory synapses innervate different neuronal domains, such as axons, spines, dendrites and soma, and their inhibitory postsynaptic potential (IPSP) size is not uniform. Thus, cortical inhibition is highly complex, with a wide variety of anatomical and physiological modes. Moreover, the functional significance of the various inhibitory synapse innervation styles and their unique structural dynamic behaviors differ from those of excitatory synapses. In this review, we summarize our current understanding of the inhibitory mechanisms of the cortical microcircuit.
Collapse
Affiliation(s)
- Yoshiyuki Kubota
- Division of Cerebral Circuitry, National Institute for Physiological SciencesOkazaki, Japan; Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI)Okazaki, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyTokyo, Japan
| | - Fuyuki Karube
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University Kyoto, Japan
| | - Masaki Nomura
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyTokyo, Japan; Department of Mathematics, Kyoto UniversityKyoto, Japan
| | - Yasuo Kawaguchi
- Division of Cerebral Circuitry, National Institute for Physiological SciencesOkazaki, Japan; Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI)Okazaki, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyTokyo, Japan
| |
Collapse
|
29
|
Villette V, Guigue P, Picardo MA, Sousa VH, Leprince E, Lachamp P, Malvache A, Tressard T, Cossart R, Baude A. Development of early-born γ-Aminobutyric acid hub neurons in mouse hippocampus from embryogenesis to adulthood. J Comp Neurol 2016; 524:2440-61. [PMID: 26779909 PMCID: PMC4949683 DOI: 10.1002/cne.23961] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/04/2015] [Accepted: 01/03/2016] [Indexed: 02/02/2023]
Abstract
Early‐born γ‐aminobutyric acid (GABA) neurons (EBGNs) are major components of the hippocampal circuit because at early postnatal stages they form a subpopulation of “hub cells” transiently supporting CA3 network synchronization (Picardo et al. [2011] Neuron 71:695–709). It is therefore essential to determine when these cells acquire the remarkable morphofunctional attributes supporting their network function and whether they develop into a specific subtype of interneuron into adulthood. Inducible genetic fate mapping conveniently allows for the labeling of EBGNs throughout their life. EBGNs were first analyzed during the perinatal week. We observed that EBGNs acquired mature characteristics at the time when the first synapse‐driven synchronous activities appeared in the form of giant depolarizing potentials. The fate of EBGNs was next analyzed in the adult hippocampus by using anatomical characterization. Adult EBGNs included a significant proportion of cells projecting selectively to the septum; in turn, EBGNs were targeted by septal and entorhinal inputs. In addition, most EBGNs were strongly targeted by cholinergic and monoaminergic terminals, suggesting significant subcortical innervation. Finally, we found that some EBGNs located in the septum or the entorhinal cortex also displayed a long‐range projection that we traced to the hippocampus. Therefore, this study shows that the maturation of the morphophysiological properties of EBGNs mirrors the evolution of early network dynamics, suggesting that both phenomena may be causally linked. We propose that a subpopulation of EBGNs forms into adulthood a scaffold of GABAergic projection neurons linking the hippocampus to distant structures. J. Comp. Neurol. 524:2440–2461, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vincent Villette
- INSERM U901, Marseille, 13009, France.,Aix-Marseille University, UMR 901, Marseille, 13009, France.,INMED, Marseille, 13009, France
| | - Philippe Guigue
- INSERM U901, Marseille, 13009, France.,Aix-Marseille University, UMR 901, Marseille, 13009, France.,INMED, Marseille, 13009, France
| | - Michel Aimé Picardo
- INSERM U901, Marseille, 13009, France.,Aix-Marseille University, UMR 901, Marseille, 13009, France.,INMED, Marseille, 13009, France
| | - Vitor Hugo Sousa
- INSERM U901, Marseille, 13009, France.,Aix-Marseille University, UMR 901, Marseille, 13009, France.,INMED, Marseille, 13009, France
| | - Erwan Leprince
- INSERM U901, Marseille, 13009, France.,Aix-Marseille University, UMR 901, Marseille, 13009, France.,INMED, Marseille, 13009, France
| | - Philippe Lachamp
- INSERM U901, Marseille, 13009, France.,Aix-Marseille University, UMR 901, Marseille, 13009, France.,INMED, Marseille, 13009, France
| | - Arnaud Malvache
- INSERM U901, Marseille, 13009, France.,Aix-Marseille University, UMR 901, Marseille, 13009, France.,INMED, Marseille, 13009, France
| | - Thomas Tressard
- INSERM U901, Marseille, 13009, France.,Aix-Marseille University, UMR 901, Marseille, 13009, France.,INMED, Marseille, 13009, France
| | - Rosa Cossart
- INSERM U901, Marseille, 13009, France.,Aix-Marseille University, UMR 901, Marseille, 13009, France.,INMED, Marseille, 13009, France
| | - Agnès Baude
- INSERM U901, Marseille, 13009, France.,Aix-Marseille University, UMR 901, Marseille, 13009, France.,INMED, Marseille, 13009, France
| |
Collapse
|
30
|
Kahle KT, Delpire E. Kinase-KCC2 coupling: Cl- rheostasis, disease susceptibility, therapeutic target. J Neurophysiol 2016; 115:8-18. [PMID: 26510764 PMCID: PMC4760510 DOI: 10.1152/jn.00865.2015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/25/2015] [Indexed: 01/06/2023] Open
Abstract
The intracellular concentration of Cl(-) ([Cl(-)]i) in neurons is a highly regulated variable that is established and modulated by the finely tuned activity of the KCC2 cotransporter. Despite the importance of KCC2 for neurophysiology and its role in multiple neuropsychiatric diseases, our knowledge of the transporter's regulatory mechanisms is incomplete. Recent studies suggest that the phosphorylation state of KCC2 at specific residues in its cytoplasmic COOH terminus, such as Ser940 and Thr906/Thr1007, encodes discrete levels of transporter activity that elicit graded changes in neuronal Cl(-) extrusion to modulate the strength of synaptic inhibition via Cl(-)-permeable GABAA receptors. In this review, we propose that the functional and physical coupling of KCC2 to Cl(-)-sensitive kinase(s), such as the WNK1-SPAK kinase complex, constitutes a molecular "rheostat" that regulates [Cl(-)]i and thereby influences the functional plasticity of GABA. The rapid reversibility of (de)phosphorylation facilitates regulatory precision, and multisite phosphorylation allows for the control of KCC2 activity by different inputs via distinct or partially overlapping upstream signaling cascades that may become more or less important depending on the physiological context. While this adaptation mechanism is highly suited to maintaining homeostasis, its adjustable set points may render it vulnerable to perturbation and dysregulation. Finally, we suggest that pharmacological modulation of this kinase-KCC2 rheostat might be a particularly efficacious strategy to enhance Cl(-) extrusion and therapeutically restore GABA inhibition.
Collapse
Affiliation(s)
- Kristopher T Kahle
- Departments of Neurosurgery and Pediatrics, Yale School of Medicine, New Haven, Connecticut; Yale Neurogenetics Program, Yale School of Medicine, New Haven, Connecticut; and
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
31
|
Kang SK, Johnston MV, Kadam SD. Acute TrkB inhibition rescues phenobarbital-resistant seizures in a mouse model of neonatal ischemia. Eur J Neurosci 2015; 42:2792-804. [PMID: 26452067 PMCID: PMC4715496 DOI: 10.1111/ejn.13094] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/17/2015] [Accepted: 09/29/2015] [Indexed: 02/04/2023]
Abstract
Neonatal seizures are commonly associated with hypoxic-ischemic encephalopathy. Phenobarbital (PB) resistance is common and poses a serious challenge in clinical management. Using a newly characterized neonatal mouse model of ischemic seizures, this study investigated a novel strategy for rescuing PB resistance. A small-molecule TrkB antagonist, ANA12, used to selectively and transiently block post-ischemic BDNF-TrkB signaling in vivo, determined whether rescuing TrkB-mediated post-ischemic degradation of the K(+)-Cl(-) co-transporter (KCC2) rescued PB-resistant seizures. The anti-seizure efficacy of ANA12 + PB was quantified by (i) electrographic seizure burden using acute continuous video-electroencephalograms and (ii) post-treatment expression levels of KCC2 and NKCC1 using Western blot analysis in postnatal day (P)7 and P10 CD1 pups with unilateral carotid ligation. ANA12 significantly rescued PB-resistant seizures at P7 and improved PB efficacy at P10. A single dose of ANA12 + PB prevented the post-ischemic degradation of KCC2 for up to 24 h. As anticipated, ANA12 by itself had no anti-seizure properties and was unable to prevent KCC2 degradation at 24 h without follow-on PB. This indicates that unsubdued seizures can independently lead to KCC2 degradation via non-TrkB-dependent pathways. This study, for the first time as a proof-of-concept, reports the potential therapeutic value of KCC2 modulation for the management of PB-resistant seizures in neonates. Future investigations are required to establish the mechanistic link between ANA12 and the prevention of KCC2 degradation.
Collapse
Affiliation(s)
- S K Kang
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, 716 North Broadway, Baltimore, MD, 21205, USA
| | - M V Johnston
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, 716 North Broadway, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S D Kadam
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, 716 North Broadway, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
32
|
Enhanced expression of potassium-chloride cotransporter KCC2 in human temporal lobe epilepsy. Brain Struct Funct 2015; 221:3601-15. [PMID: 26427846 DOI: 10.1007/s00429-015-1122-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/23/2015] [Indexed: 12/19/2022]
Abstract
Synaptic reorganization in the epileptic hippocampus involves altered excitatory and inhibitory transmission besides the rearrangement of dendritic spines, resulting in altered excitability, ion homeostasis, and cell swelling. The potassium-chloride cotransporter-2 (KCC2) is the main chloride extruder in neurons and hence will play a prominent role in determining the polarity of GABAA receptor-mediated chloride currents. In addition, KCC2 also interacts with the actin cytoskeleton which is critical for dendritic spine morphogenesis, and for the maintenance of glutamatergic synapses and cell volume. Using immunocytochemistry, we examined the cellular and subcellular levels of KCC2 in surgically removed hippocampi of temporal lobe epilepsy (TLE) patients and compared them to control human tissue. We also studied the distribution of KCC2 in a pilocarpine mouse model of epilepsy. An overall increase in KCC2-expression was found in epilepsy and confirmed by Western blots. The cellular and subcellular distributions in control mouse and human samples were largely similar; moreover, changes affecting KCC2-expression were also alike in chronic epileptic human and mouse hippocampi. At the subcellular level, we determined the neuronal elements exhibiting enhanced KCC2 expression. In epileptic tissue, staining became more intense in the immunopositive elements detected in control tissue, and profiles with subthreshold expression of KCC2 in control samples became labelled. Positive interneuron somata and dendrites were more numerous in epileptic hippocampi, despite severe interneuron loss. Whether the elevation of KCC2-expression is ultimately a pro- or anticonvulsive change, or both-behaving differently during ictal and interictal states in a context-dependent manner-remains to be established.
Collapse
|
33
|
Javdani F, Holló K, Hegedűs K, Kis G, Hegyi Z, Dócs K, Kasugai Y, Fukazawa Y, Shigemoto R, Antal M. Differential expression patterns of K(+) /Cl(-) cotransporter 2 in neurons within the superficial spinal dorsal horn of rats. J Comp Neurol 2015; 523:1967-83. [PMID: 25764511 DOI: 10.1002/cne.23774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 01/21/2023]
Abstract
γ-Aminobutyric acid (GABA)- and glycine-mediated hyperpolarizing inhibition is associated with a chloride influx that depends on the inwardly directed chloride electrochemical gradient. In neurons, the extrusion of chloride from the cytosol primarily depends on the expression of an isoform of potassium-chloride cotransporters (KCC2s). KCC2 is crucial in the regulation of the inhibitory tone of neural circuits, including pain processing neural assemblies. Thus we investigated the cellular distribution of KCC2 in neurons underlying pain processing in the superficial spinal dorsal horn of rats by using high-resolution immunocytochemical methods. We demonstrated that perikarya and dendrites widely expressed KCC2, but axon terminals proved to be negative for KCC2. In single ultrathin sections, silver deposits labeling KCC2 molecules showed different densities on the surface of dendritic profiles, some of which were negative for KCC2. In freeze fracture replicas and tissue sections double stained for the β3-subunit of GABAA receptors and KCC2, GABAA receptors were revealed on dendritic segments with high and also with low KCC2 densities. By measuring the distances between spots immunoreactive for gephyrin (a scaffolding protein of GABAA and glycine receptors) and KCC2 on the surface of neurokinin 1 (NK1) receptor-immunoreactive dendrites, we found that gephyrin-immunoreactive spots were located at various distances from KCC2 cotransporters; 5.7 % of them were recovered in the middle of 4-10-µm-long dendritic segments that were free of KCC2 immunostaining. The variable local densities of KCC2 may result in variable postsynaptic potentials evoked by the activation of GABAA and glycine receptors along the dendrites of spinal neurons.
Collapse
Affiliation(s)
- Fariba Javdani
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen 4012, Hungary
| | - Krisztina Holló
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen 4012, Hungary
| | - Krisztina Hegedűs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen 4012, Hungary
| | - Gréta Kis
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen 4012, Hungary
| | - Zoltán Hegyi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen 4012, Hungary
| | - Klaudia Dócs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen 4012, Hungary
| | - Yu Kasugai
- Department of Pharmacology, Innsbruck Medical University, Innsbruck 6020, Austria
| | - Yugo Fukazawa
- Division of Cell Biology and Neuroscience, Faculty of Medical Sciences, University of Fukui, Yoshida, 910-1193, Japan
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| | - Miklós Antal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen 4012, Hungary
- MTA-DE Neuroscience Research Group, Debrecen, 4012, Hungary
| |
Collapse
|
34
|
Kaila K, Price TJ, Payne JA, Puskarjov M, Voipio J. Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat Rev Neurosci 2014; 15:637-54. [PMID: 25234263 DOI: 10.1038/nrn3819] [Citation(s) in RCA: 505] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electrical activity in neurons requires a seamless functional coupling between plasmalemmal ion channels and ion transporters. Although ion channels have been studied intensively for several decades, research on ion transporters is in its infancy. In recent years, it has become evident that one family of ion transporters, cation-chloride cotransporters (CCCs), and in particular K(+)-Cl(-) cotransporter 2 (KCC2), have seminal roles in shaping GABAergic signalling and neuronal connectivity. Studying the functions of these transporters may lead to major paradigm shifts in our understanding of the mechanisms underlying brain development and plasticity in health and disease.
Collapse
Affiliation(s)
- Kai Kaila
- 1] Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland. [2] Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | - Theodore J Price
- University of Texas at Dallas, School of Behavior and Brain Sciences, Dallas, Texas 75093, USA
| | - John A Payne
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, California 95616, USA
| | - Martin Puskarjov
- 1] Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland. [2] Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | - Juha Voipio
- Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
35
|
Muir J, Kittler JT. Plasticity of GABAA receptor diffusion dynamics at the axon initial segment. Front Cell Neurosci 2014; 8:151. [PMID: 24959118 PMCID: PMC4051194 DOI: 10.3389/fncel.2014.00151] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/11/2014] [Indexed: 11/13/2022] Open
Abstract
The axon initial segment (AIS), a site of action potential initiation, undergoes activity-dependent homeostatic repositioning to fine-tune neuronal activity. However, little is known about the behavior of GABAA receptors (GABAARs) at synapses made onto the axon and especially the AIS. Here, we study the clustering and lateral diffusion of GABAARs in the AIS under baseline conditions, and find that GABAAR lateral mobility is lower in the AIS than dendrites. We find differences in axonal clustering and lateral mobility between GABAARs containing the α1 or α2 subunits, which are known to localize differentially to the AIS. Interestingly, we find that chronic activity driving AIS repositioning does not alter GABAergic synapse location along the axon, but decreases GABAAR cluster size at the AIS. Moreover, in response to chronic depolarization, GABAAR diffusion is strikingly increased in the AIS, and not in dendrites, and this is coupled with a decrease in synaptic residency time of GABAARs at the AIS. We also demonstrate that activation of L-type voltage-gated calcium channels is important for regulating GABAAR lateral mobility at the AIS during chronic depolarization. Modulation of GABAAR diffusion dynamics at the AIS in response to prolonged activity may be a novel mechanism for regulating GABAergic control of information processing.
Collapse
Affiliation(s)
- James Muir
- Department of Neuroscience, Physiology and Pharmacology, University College London London, UK
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London London, UK
| |
Collapse
|
36
|
Intracellular bicarbonate regulates action potential generation via KCNQ channel modulation. J Neurosci 2014; 34:4409-17. [PMID: 24647960 DOI: 10.1523/jneurosci.3836-13.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Bicarbonate (HCO3(-)) is an abundant anion that regulates extracellular and intracellular pH. Here, we use patch-clamp techniques to assess regulation of hippocampal CA3 pyramidal cell excitability by HCO3(-) in acute brain slices from C57BL/6 mice. We found that increasing HCO3(-) levels enhances action potential (AP) generation in both the soma and axon initial segment (AIS) by reducing Kv7/KCNQ channel activity, independent of pH (i.e., at a constant pH of 7.3). Conversely, decreasing intracellular HCO3(-) leads to attenuation of AP firing. We show that HCO3(-) interferes with Kv7/KCNQ channel activation by phosphatidylinositol-4,5-biphosphate. Consequently, we propose that, even in the presence of a local depolarizing Cl(-) gradient, HCO3(-) efflux through GABAA receptors may ensure the inhibitory effect of axoaxonic cells at the AIS due to activation of Kv7/KCNQ channels.
Collapse
|
37
|
Cho CH. Star players sidelined in chloride homeostasis in neurons. Front Cell Neurosci 2014; 8:114. [PMID: 24795569 PMCID: PMC4006059 DOI: 10.3389/fncel.2014.00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 04/07/2014] [Indexed: 11/24/2022] Open
Affiliation(s)
- Chang-Hoon Cho
- Graduate School of Life Science, Institute of Biotechnology, Korea University Seoul, Korea
| |
Collapse
|
38
|
Fenrich KK, Zhao EY, Wei Y, Garg A, Rose PK. Isolating specific cell and tissue compartments from 3D images for quantitative regional distribution analysis using novel computer algorithms. J Neurosci Methods 2014; 226:42-56. [PMID: 24487018 DOI: 10.1016/j.jneumeth.2014.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/08/2014] [Accepted: 01/13/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Isolating specific cellular and tissue compartments from 3D image stacks for quantitative distribution analysis is crucial for understanding cellular and tissue physiology under normal and pathological conditions. Current approaches are limited because they are designed to map the distributions of synapses onto the dendrites of stained neurons and/or require specific proprietary software packages for their implementation. NEW METHOD To overcome these obstacles, we developed algorithms to Grow and Shrink Volumes of Interest (GSVI) to isolate specific cellular and tissue compartments from 3D image stacks for quantitative analysis and incorporated these algorithms into a user-friendly computer program that is open source and downloadable at no cost. RESULTS The GSVI algorithm was used to isolate perivascular regions in the cortex of live animals and cell membrane regions of stained spinal motoneurons in histological sections. We tracked the real-time, intravital biodistribution of injected fluorophores with sub-cellular resolution from the vascular lumen to the perivascular and parenchymal space following a vascular microlesion, and mapped the precise distributions of membrane-associated KCC2 and gephyrin immunolabeling in dendritic and somatic regions of spinal motoneurons. COMPARISON WITH EXISTING METHODS Compared to existing approaches, the GSVI approach is specifically designed for isolating perivascular regions and membrane-associated regions for quantitative analysis, is user-friendly, and free. CONCLUSIONS The GSVI algorithm is useful to quantify regional differences of stained biomarkers (e.g., cell membrane-associated channels) in relation to cell functions, and the effects of therapeutic strategies on the redistributions of biomolecules, drugs, and cells in diseased or injured tissues.
Collapse
Affiliation(s)
- Keith K Fenrich
- CIHR Group in Sensory-Motor Integration, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada K7L 3N6; Center for Neuroscience Studies, Queen's University, Kingston, ON, Canada K7L 3N6; Aix Marseille University, Developmental Biology Institute of Marseille-Luminy (IBDML), CNRS 7288, Case 907 - Parc Scientifique de Luminy, 13009 Marseille, France; Faculty of Rehabilitation Medicine, University of Alberta, 3-88 Corbett Hall, Edmonton, AB, Canada T6G 2G4.
| | - Ethan Y Zhao
- CIHR Group in Sensory-Motor Integration, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada K7L 3N6; Center for Neuroscience Studies, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Yuan Wei
- CIHR Group in Sensory-Motor Integration, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada K7L 3N6; Center for Neuroscience Studies, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Anirudh Garg
- CIHR Group in Sensory-Motor Integration, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada K7L 3N6; Center for Neuroscience Studies, Queen's University, Kingston, ON, Canada K7L 3N6
| | - P Ken Rose
- CIHR Group in Sensory-Motor Integration, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada K7L 3N6; Center for Neuroscience Studies, Queen's University, Kingston, ON, Canada K7L 3N6.
| |
Collapse
|
39
|
Kovács K, Basu K, Rouiller I, Sík A. Regional differences in the expression of K(+)-Cl(-) 2 cotransporter in the developing rat cortex. Brain Struct Funct 2014; 219:527-38. [PMID: 23420348 PMCID: PMC3933751 DOI: 10.1007/s00429-013-0515-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/31/2013] [Indexed: 12/12/2022]
Abstract
The type 2 potassium-chloride cotransporter (KCC2) is the main regulator of intracellular chloride concentration in CNS neurons, and plays a crucial role in spine development that is independent of its ion cotransport function. The expression pattern of KCC2 is upregulated during postnatal development showing area and layer-specific differences in distinct brain areas. We examined the regional and ultrastructural localisation of KCC2 in various areas of developing neocortex and paleocortex during the first two postnatal weeks. Light-microscopy examination revealed diffuse neuropil and discrete funnel-shaped dendritic labelling in the piriform and entorhinal cortices at birth. Subsequently, during the beginning of the first postnatal week, diffuse KCC2 labelling gradually started to appear in the superficial layers of the neocortex while the punctate-like labelling of dendrites in the piriform, entorhinal and perirhinal cortices become more pronounced. By the end of the first postnatal week, discrete dendritic expression of KCC2 was visible in all neocortical and paleocortical areas. The expression level did not change during the second postnatal week suggesting that, in contrast to hippocampus, adult pattern of KCC2 in the cortical cells is already established by the end of the first postnatal week. Quantitative electron microscopy examination revealed that in superficial layers of both neo- and paleocortex, the majority of KCC2 signal was plasma membrane associated but the number of transport vesicle-associated immunosignal increased with development. In deep layers, KCC2 immunolabeling was evenly distributed in plasma membrane and transport vesicles showing no obvious change with maturation. The number of KCC2 immunogold particles increased in dendritic spines with no association with synapses. This observation points to the dual role of KCC2 in spine genesis and ion cotransport.
Collapse
Affiliation(s)
- Krisztina Kovács
- Neuroscience Networks Group, Neurobiology and Neuropharmacology, College of Medical and Dental Sciences, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, B15 2TT UK
| | - Kaustuv Basu
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7 Canada
| | - Isabelle Rouiller
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7 Canada
| | - Attila Sík
- Neuroscience Networks Group, Neurobiology and Neuropharmacology, College of Medical and Dental Sciences, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, B15 2TT UK
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7 Canada
| |
Collapse
|
40
|
Activity-dependent regulation of the K/Cl transporter KCC2 membrane diffusion, clustering, and function in hippocampal neurons. J Neurosci 2013; 33:15488-503. [PMID: 24068817 DOI: 10.1523/jneurosci.5889-12.2013] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neuronal K/Cl transporter KCC2 exports chloride ions and thereby influences the efficacy and polarity of GABA signaling in the brain. KCC2 is also critical for dendritic spine morphogenesis and the maintenance of glutamatergic transmission in cortical neurons. Because KCC2 plays a pivotal role in the function of central synapses, it is of particular importance to understand the cellular and molecular mechanisms underlying its regulation. Here, we studied the impact of membrane diffusion and clustering on KCC2 function. KCC2 forms clusters in the vicinity of both excitatory and inhibitory synapses. Using quantum-dot-based single-particle tracking on rat primary hippocampal neurons, we show that KCC2 is slowed down and confined at excitatory and inhibitory synapses compared with extrasynaptic regions. However, KCC2 escapes inhibitory synapses faster than excitatory synapses, reflecting stronger molecular constraints at the latter. Interfering with KCC2-actin interactions or inhibiting F-actin polymerization releases diffusion constraints on KCC2 at excitatory but not inhibitory synapses. Thus, F-actin constrains KCC2 diffusion at excitatory synapses, whereas KCC2 is confined at inhibitory synapses by a distinct mechanism. Finally, increased neuronal activity rapidly increases the diffusion coefficient and decreases the dwell time of KCC2 at excitatory synapses. This effect involves NMDAR activation, Ca(2+) influx, KCC2 S940 dephosphorylation and calpain protease cleavage of KCC2 and is accompanied by reduced KCC2 clustering and ion transport function. Thus, activity-dependent regulation of KCC2 lateral diffusion and clustering allows for a rapid regulation of chloride homeostasis in neurons.
Collapse
|
41
|
Kubota Y. Untangling GABAergic wiring in the cortical microcircuit. Curr Opin Neurobiol 2013; 26:7-14. [PMID: 24650498 DOI: 10.1016/j.conb.2013.10.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 01/07/2023]
Abstract
The cerebral cortical microcircuit is composed of pyramidal and non-pyramidal cells and subcortical and cortico-cortical afferents. These constitute a complex wiring structure that remains poorly understood. At least ten non-pyramidal cell subtypes are known. These innervate different target neuronal domains, and have a key role in regulating cortical neuronal activity. Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the cerebral cortex, and most cortical inhibitory synapses originate from non-pyramidal cells. Therefore, investigating the morphological and functional wiring properties of GABAergic non-pyramidal cells is critical to understanding the functional architecture of the cortical microcircuitry. This review focuses on current understanding of the different roles of inhibitory GABAergic non-pyramidal cell subtypes in cortical functions.
Collapse
Affiliation(s)
- Yoshiyuki Kubota
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki, Japan; Department of Physiological Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan.
| |
Collapse
|
42
|
Fiumelli H, Briner A, Puskarjov M, Blaesse P, Belem BJ, Dayer AG, Kaila K, Martin JL, Vutskits L. An ion transport-independent role for the cation-chloride cotransporter KCC2 in dendritic spinogenesis in vivo. Cereb Cortex 2013; 23:378-88. [PMID: 22345354 DOI: 10.1093/cercor/bhs027] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The neuron-specific K-Cl cotransporter, KCC2, is highly expressed in the vicinity of excitatory synapses in pyramidal neurons, and recent in vitro data suggest that this protein plays a role in the development of dendritic spines. The in vivo relevance of these observations is, however, unknown. Using in utero electroporation combined with post hoc iontophoretic injection of Lucifer Yellow, we show that premature expression of KCC2 induces a highly significant and permanent increase in dendritic spine density of layer 2/3 pyramidal neurons in the somatosensory cortex. Whole-cell recordings revealed that this increased spine density is correlated with an enhanced spontaneous excitatory activity in KCC2-transfected neurons. Precocious expression of the N-terminal deleted form of KCC2, which lacks the chloride transporter function, also increased spine density. In contrast, no effect on spine density was observed following in utero electroporation of a point mutant of KCC2 (KCC2-C568A) where both the cotransporter function and the interaction with the cytoskeleton are disrupted. Transfection of the C-terminal domain of KCC2, a region involved in the interaction with the dendritic cytoskeleton, also increased spine density. Collectively, these results demonstrate a role for KCC2 in excitatory synaptogenesis in vivo through a mechanism that is independent of its ion transport function.
Collapse
Affiliation(s)
- Hubert Fiumelli
- Center for Psychiatric Neurosciences, Department of Psychiatry, Lausanne University Hospital, 1008 Prilly-Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kawakita I, Uchigashima M, Konno K, Miyazaki T, Yamasaki M, Watanabe M. Type 2 K+ -Cl- cotransporter is preferentially recruited to climbing fiber synapses during development and the stellate cell-targeting dendritic zone at adulthood in cerebellar Purkinje cells. Eur J Neurosci 2013; 37:532-43. [PMID: 23216656 DOI: 10.1111/ejn.12076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/01/2012] [Accepted: 11/02/2012] [Indexed: 11/26/2022]
Abstract
Postnatal expression of the type 2 K(+) -Cl(-) cotransporter (KCC2) in neurons lowers the Cl(-) equilibrium potential to values that are more negative than the resting potential, thereby converting the action of Cl(-) -permeable GABA(A) and glycine receptors from excitatory to inhibitory. In the present study, we investigated the spatiotemporal expression of KCC2 in mouse cerebella, particularly focusing on Purkinje cells (PCs). First, we confirmed the fundamental expression profiles of KCC2 in the cerebellum, i.e. neuron-specific expression, somatodendritic distribution, and postnatal upregulation. We also found preferential recruitment to climbing fiber (CF) synapses during the second and third postnatal weeks, when perisomatic innervation in PCs switches from CFs to basket cell axons (BAs) and also when single winner CFs translocate from somata to dendrites. In parallel with this synaptic recruitment, the intracellular distribution shifted from a diffuse cytoplasmic to a predominantly cell surface pattern. In adult PCs, CF synapse-associated accumulation was obscured. Instead, significantly high expression was noted on the surface of PC dendrites in the superficial two-thirds of the molecular layer, in which stellate cells reside and project axons to innervate PC dendrites. Thus, the somatodendritic distribution in PCs is regulated in relation to particular inputs or input zones. During development, timed recruitment of KCC2 to CF synapses will augment inhibitory GABAergic actions by incoming BAs, promoting the CF-to-BA switchover in perisomatic PC innervation. In adulthood, enriched KCC2 expression at the stellate cell-targeting territory of PC dendrites might help in maintaining intracellular Cl(-) homeostasis and the polarity of GABA(A) receptor-mediated responses upon sustained activity of this interneuron.
Collapse
Affiliation(s)
- Issei Kawakita
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Drexler B, Zinser S, Huang S, Poe MM, Rudolph U, Cook JM, Antkowiak B. Enhancing the function of alpha5-subunit-containing GABAA receptors promotes action potential firing of neocortical neurons during up-states. Eur J Pharmacol 2013; 703:18-24. [PMID: 23380687 DOI: 10.1016/j.ejphar.2013.01.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 01/12/2013] [Accepted: 01/16/2013] [Indexed: 11/27/2022]
Abstract
Neocortical neurons mediate the sedative and anticonvulsant properties of benzodiazepines. These agents enhance synaptic inhibition via positive modulation of γ-aminobutyric acid (GABAA) receptors harboring α1-, α2-, α3- or α5-protein subunits. Benzodiazepine-sensitive GABAA receptors containing the α5-subunit are abundant in the neocortex, but their impact in controlling neuronal firing patterns is unknown. Here we studied how the discharge rates of cortical neurons are modified by a positive (SH-053-2'F-R-CH3) and a negative (L 655,708) α5-subunit-preferring allosteric modulator in comparison to diazepam, the classical non-selective benzodiazepine. Drug actions were characterized in slice cultures from wild-type and α5(H105R) knock-in mice by performing extracellular multi-unit-recordings. In knock-in mice, receptors containing the α5 subunit are insensitive to benzodiazepines. The non-selective positive allosteric modulator diazepam decreased the discharge rates of neocortical neurons during episodes of ongoing neuronal activity (up states). In contrast to diazepam, the α5-preferring positive modulator SH-053-2'F-R-CH3 accelerated action potential firing during up states. This promoting action was absent in slices from α5(H105R) mice, confirming that it is mediated by the α5-subunit. Consistent with these observations, the negative α5-selective modulator L 655,708 inhibited up state action potential activity in slices from wild-type mice. The opposing actions of diazepam and SH-053-2'F-R-CH3, which both enhance GABAA receptor function but differ in subtype-selectivity, uncovers contrasting roles of GABAA receptor subtypes in controlling the firing rates of cortical neurons. These findings may have important implications for the design of novel anaesthetic and anticonvulsant benzodiazepines displaying an improved efficacy and fewer side effects.
Collapse
Affiliation(s)
- Berthold Drexler
- Experimental Anaesthesiology Section, Department of Anaesthesiology and Intensive Care Medicine, Eberhard-Karls-University, 72072 Tuebingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
45
|
Yu J, Proddutur A, Elgammal FS, Ito T, Santhakumar V. Status epilepticus enhances tonic GABA currents and depolarizes GABA reversal potential in dentate fast-spiking basket cells. J Neurophysiol 2013; 109:1746-63. [PMID: 23324316 DOI: 10.1152/jn.00891.2012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Temporal lobe epilepsy is associated with loss of interneurons and inhibitory dysfunction in the dentate gyrus. While status epilepticus (SE) leads to changes in granule cell inhibition, whether dentate basket cells critical for regulating granule cell feedforward and feedback inhibition express tonic GABA currents (I(GABA)) and undergo changes in inhibition after SE is not known. We find that interneurons immunoreactive for parvalbumin in the hilar-subgranular region express GABAA receptor (GABA(A)R) δ-subunits, which are known to underlie tonic I(GABA). Dentate fast-spiking basket cells (FS-BCs) demonstrate baseline tonic I(GABA) blocked by GABA(A)R antagonists. In morphologically and physiologically identified FS-BCs, tonic I(GABA) is enhanced 1 wk after pilocarpine-induced SE, despite simultaneous reduction in spontaneous inhibitory postsynaptic current (sIPSC) frequency. Amplitude of tonic I(GABA) in control and post-SE FS-BCs is enhanced by 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), demonstrating the contribution of GABA(A)R δ-subunits. Whereas FS-BC resting membrane potential is unchanged after SE, perforated-patch recordings from FS-BCs show that the reversal potential for GABA currents (E(GABA)) is depolarized after SE. In model FS-BCs, increasing tonic GABA conductance decreased excitability when E(GABA) was shunting and increased excitability when E(GABA) was depolarizing. Although simulated focal afferent activation evoked seizurelike activity in model dentate networks with FS-BC tonic GABA conductance and shunting E(GABA), excitability of identical networks with depolarizing FS-BC E(GABA) showed lower activity levels. Thus, together, post-SE changes in tonic I(GABA) and E(GABA) maintain homeostasis of FS-BC activity and limit increases in dentate excitability. These findings have implications for normal FS-BC function and can inform studies examining comorbidities and therapeutics following SE.
Collapse
Affiliation(s)
- Jiandong Yu
- Department of Neurology and Neurosciences, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | | | | | | | | |
Collapse
|
46
|
Quantitative regional and ultrastructural localization of the Ca(v)2.3 subunit of R-type calcium channel in mouse brain. J Neurosci 2012; 32:13555-67. [PMID: 23015445 DOI: 10.1523/jneurosci.1142-12.2012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
R-type calcium channels (RTCCs) are well known for their role in synaptic plasticity, but little is known about their subcellular distribution across various neuronal compartments. Using subtype-specific antibodies, we characterized the regional and subcellular localization of Ca(v)2.3 in mice and rats at both light and electron microscopic levels. Ca(v)2.3 immunogold particles were found to be predominantly presynaptic in the interpeduncular nucleus, but postsynaptic in other brain regions. Serial section analysis of electron microscopic images from the hippocampal CA1 revealed a higher density of immunogold particles in the dendritic shaft plasma membrane compared with the pyramidal cell somata. However, the labeling densities were not significantly different among the apical, oblique, or basal dendrites. Immunogold particles were also observed over the plasma membrane of dendritic spines, including both synaptic and extrasynaptic sites. Individual spine heads contained <20 immunogold particles, with an average density of ∼260 immunoparticles per μm(3) spine head volume, in accordance with the density of RTCCs estimated using calcium imaging (Sabatini and Svoboda, 2000). The Ca(v)2.3 density was variable among similar-sized spine heads and did not correlate with the density in the parent dendrite, implying that spines are individual calcium compartments operating autonomously from their parent dendrites.
Collapse
|
47
|
Lewin N, Aksay E, Clancy CE. Computational modeling reveals dendritic origins of GABA(A)-mediated excitation in CA1 pyramidal neurons. PLoS One 2012; 7:e47250. [PMID: 23071770 PMCID: PMC3470566 DOI: 10.1371/journal.pone.0047250] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/11/2012] [Indexed: 12/16/2022] Open
Abstract
GABA is the key inhibitory neurotransmitter in the adult central nervous system, but in some circumstances can lead to a paradoxical excitation that has been causally implicated in diverse pathologies from endocrine stress responses to diseases of excitability including neuropathic pain and temporal lobe epilepsy. We undertook a computational modeling approach to determine plausible ionic mechanisms of GABA(A)-dependent excitation in isolated post-synaptic CA1 hippocampal neurons because it may constitute a trigger for pathological synchronous epileptiform discharge. In particular, the interplay intracellular chloride accumulation via the GABA(A) receptor and extracellular potassium accumulation via the K/Cl co-transporter KCC2 in promoting GABA(A)-mediated excitation is complex. Experimentally it is difficult to determine the ionic mechanisms of depolarizing current since potassium transients are challenging to isolate pharmacologically and much GABA signaling occurs in small, difficult to measure, dendritic compartments. To address this problem and determine plausible ionic mechanisms of GABA(A)-mediated excitation, we built a detailed biophysically realistic model of the CA1 pyramidal neuron that includes processes critical for ion homeostasis. Our results suggest that in dendritic compartments, but not in the somatic compartments, chloride buildup is sufficient to cause dramatic depolarization of the GABA(A) reversal potential and dominating bicarbonate currents that provide a substantial current source to drive whole-cell depolarization. The model simulations predict that extracellular K(+) transients can augment GABA(A)-mediated excitation, but not cause it. Our model also suggests the potential for GABA(A)-mediated excitation to promote network synchrony depending on interneuron synapse location - excitatory positive-feedback can occur when interneurons synapse onto distal dendritic compartments, while interneurons projecting to the perisomatic region will cause inhibition.
Collapse
Affiliation(s)
- Naomi Lewin
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York, United States of America
- Tri-Institutional MD-PhD Program, Physiology, Biophysics and Systems Biology Graduate Program, Department of Pharmacology, University of California Davis, Davis, California, United States of America
| | - Emre Aksay
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Colleen E. Clancy
- Tri-Institutional MD-PhD Program, Physiology, Biophysics and Systems Biology Graduate Program, Department of Pharmacology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
48
|
Chamma I, Chevy Q, Poncer JC, Lévi S. Role of the neuronal K-Cl co-transporter KCC2 in inhibitory and excitatory neurotransmission. Front Cell Neurosci 2012; 6:5. [PMID: 22363264 PMCID: PMC3282916 DOI: 10.3389/fncel.2012.00005] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 01/30/2012] [Indexed: 01/06/2023] Open
Abstract
The K-Cl co-transporter KCC2 plays multiple roles in the physiology of central neurons and alterations of its function and/or expression are associated with several neurological conditions. By regulating intraneuronal chloride homeostasis, KCC2 strongly influences the efficacy and polarity of the chloride-permeable γ-aminobutyric acid (GABA) type A and glycine receptor (GlyR) mediated synaptic transmission. This appears particularly critical for the development of neuronal circuits as well as for the dynamic control of GABA and glycine signaling in mature networks. The activity of the transporter is also associated with transmembrane water fluxes which compensate solute fluxes associated with synaptic activity. Finally, KCC2 interaction with the actin cytoskeleton appears critical both for dendritic spine morphogenesis and the maintenance of glutamatergic synapses. In light of the pivotal role of KCC2 in the maturation and function of central synapses, it is of particular importance to understand the cellular and molecular mechanisms underlying its regulation. These include development and activity-dependent modifications both at the transcriptional and post-translational levels. We emphasize the importance of post-translational mechanisms such as phosphorylation and dephosphorylation, oligomerization, cell surface stability, clustering and membrane diffusion for the rapid and dynamic regulation of KCC2 function.
Collapse
|
49
|
Jin Z, Choi MJ, Park CS, Park YS, Jin YH. Propofol facilitated excitatory postsynaptic currents frequency on nucleus tractus solitarii (NTS) neurons. Brain Res 2012; 1432:1-6. [DOI: 10.1016/j.brainres.2011.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/12/2011] [Accepted: 11/04/2011] [Indexed: 12/01/2022]
|
50
|
Lewis DA, Curley AA, Glausier JR, Volk DW. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci 2011; 35:57-67. [PMID: 22154068 DOI: 10.1016/j.tins.2011.10.004] [Citation(s) in RCA: 798] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/07/2011] [Accepted: 10/24/2011] [Indexed: 12/21/2022]
Abstract
Deficits in cognitive control, a core disturbance of schizophrenia, appear to emerge from impaired prefrontal gamma oscillations. Cortical gamma oscillations require strong inhibitory inputs to pyramidal neurons from the parvalbumin basket cell (PVBC) class of GABAergic neurons. Recent findings indicate that schizophrenia is associated with multiple pre- and postsynaptic abnormalities in PVBCs, each of which weakens their inhibitory control of pyramidal cells. These findings suggest a new model of cortical dysfunction in schizophrenia in which PVBC inhibition is decreased to compensate for an upstream deficit in pyramidal cell excitation. This compensation is thought to rebalance cortical excitation and inhibition, but at a level insufficient to generate the gamma oscillation power required for high levels of cognitive control.
Collapse
Affiliation(s)
- David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|