1
|
Wang H, Li Y, Li X, Sun Z, Yu F, Pashang A, Kulasiri D, Li HW, Chen H, Hou H, Zhang Y. The Primary Cilia are Associated with the Axon Initial Segment in Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2407405. [PMID: 39804991 DOI: 10.1002/advs.202407405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/16/2024] [Indexed: 01/16/2025]
Abstract
The primary cilia serve as pivotal mediators of environmental signals and play crucial roles in neuronal responses. Disruption of ciliary function has been implicated in neuronal circuit disorders and aberrant neuronal excitability. However, the precise mechanisms remain elusive. To study the link between the primary cilia and neuronal excitability, manipulation of somatostatin receptor 3 (SSTR3) is investigated, as an example of how alterations in ciliary signaling may affect neuronal activity. It is found that aberrant SSTR3 expression perturbed not only ciliary morphology but also disrupted ciliary signaling cascades. Genetic deletion of SSTR3 resulted in perturbed spatial memory and synaptic plasticity. The axon initial segment (AIS) is a specialized region in the axon where action potentials are initiated. Interestingly, loss of ciliary SSTR3 led to decrease of Akt-dependent cyclic AMP-response element binding protein (CREB)-mediated transcription at the AIS, specifically downregulating AIS master organizer adaptor protein ankyrin G (AnkG) expression. In addition, alterations of other ciliary proteins serotonin 6 receptor (5-HT6R)and intraflagellar transport protein 88 (IFT88) also induced length changes of the AIS. The findings elucidate a specific interaction between the primary cilia and AIS, providing insight into the impact of the primary cilia on neuronal excitability and circuit integrity.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yu Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xin Li
- Beijing Life Science Academy, Beijing, 102200, China
| | - Zehui Sun
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Fengdan Yu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Abolghasem Pashang
- Centre for Advanced Computational Solutions (C-fACS), AGLS faculty, Lincoln University, Canterbury, 7647, New Zealand
| | - Don Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), AGLS faculty, Lincoln University, Canterbury, 7647, New Zealand
| | - Hung Wing Li
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Huan Chen
- Beijing Life Science Academy, Beijing, 102200, China
| | - Hongwei Hou
- Beijing Life Science Academy, Beijing, 102200, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Zhao R, Ren B, Xiao Y, Tian J, Zou Y, Wei J, Qi Y, Hu A, Xie X, Huang ZJ, Shu Y, He M, Lu J, Tai Y. Axo-axonic synaptic input drives homeostatic plasticity by tuning the axon initial segment structurally and functionally. SCIENCE ADVANCES 2024; 10:eadk4331. [PMID: 39093969 PMCID: PMC11296346 DOI: 10.1126/sciadv.adk4331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
Homeostatic plasticity maintains the stability of functional brain networks. The axon initial segment (AIS), where action potentials start, undergoes dynamic adjustment to exert powerful control over neuronal firing properties in response to network activity changes. However, it is poorly understood whether this plasticity involves direct synaptic input to the AIS. Here, we show that changes of GABAergic synaptic input from chandelier cells (ChCs) drive homeostatic tuning of the AIS of principal neurons (PNs) in the prelimbic (PL) region, while those from parvalbumin-positive basket cells do not. This tuning is evident in AIS morphology, voltage-gated sodium channel expression, and PN excitability. Moreover, the impact of this homeostatic plasticity can be reflected in animal behavior. Social behavior, inversely linked to PL PN activity, shows time-dependent alterations tightly coupled to changes in AIS plasticity and PN excitability. Thus, AIS-originated homeostatic plasticity in PNs may counteract deficits elicited by imbalanced ChC presynaptic input at cellular and behavioral levels.
Collapse
Affiliation(s)
- Rui Zhao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Baihui Ren
- Center for Brain Science of Shanghai Children’s Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yujie Xiao
- Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Jifeng Tian
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yi Zou
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiafan Wei
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yanqing Qi
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaoying Xie
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Z. Josh Huang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, NC 27708, USA
| | - Yousheng Shu
- Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Miao He
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiangteng Lu
- Center for Brain Science of Shanghai Children’s Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yilin Tai
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Guan F, Gao S, Sheng H, Ma Y, Chen W, Qi X, Zhang X, Gao X, Pang S, Zhang L, Zhang L. Trim46 knockout impaired neuronal architecture and caused hypoactive behavior in rats. Dev Dyn 2024; 253:659-676. [PMID: 38193537 DOI: 10.1002/dvdy.687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/16/2023] [Accepted: 12/10/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Tripartite motif (TRIM46) is a relatively novel protein that belongs to tripartite motif family. TRIM46 organizes parallel microtubule arrays on the axons, which are important for neuronal polarity and axonal function. TRIM46 is highly expressed in the brain, but its biological function in adults has not yet been determined. RESULTS Trim46 knockout (KO) rat line was established using CRISPR/cas9. Trim46 KO rats had smaller hippocampus sizes, fewer neuronal dendritic arbors and dendritic spines, and shorter and more distant axon initial segment. Furthermore, the protein interaction between endogenous TRIM46 and FK506 binding protein 5 (FKBP5) in brain tissues was determined; Trim46 KO increased hippocampal FKBP5 protein levels and decreased hippocampal protein kinase B (Akt) phosphorylation, gamma-aminobutyric acid type A receptor subunit alpha1 (GABRA1) and glutamate ionotropic receptor NMDA type subunit 1 (NMDAR1) protein levels. Trim46 KO rats exhibited hypoactive behavioral changes such as reduced spontaneous activity, social interaction, sucrose preference, impaired prepulse inhibition (PPI), and short-term reference memory. CONCLUSIONS These results demonstrate the significant impact of Trim46 KO on brain structure and behavioral function. This study revealed a novel potential association of TRIM46 with dendritic development and neuropsychiatric behavior, providing new insights into the role of TRIM46 in the brain.
Collapse
Affiliation(s)
- Feifei Guan
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shan Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hanxuan Sheng
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuanwu Ma
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Chen
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaolong Qi
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiang Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuo Pang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Zhao R, Ren B, Xiao Y, Tian J, Zou Y, Wei J, Qi Y, Hu A, Xie X, Huang ZJ, Shu Y, He M, Lu J, Tai Y. Axo-axonic synaptic input drives homeostatic plasticity by tuning the axon initial segment structurally and functionally. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589005. [PMID: 38659885 PMCID: PMC11042219 DOI: 10.1101/2024.04.11.589005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The stability of functional brain network is maintained by homeostatic plasticity, which restores equilibrium following perturbation. As the initiation site of action potentials, the axon initial segment (AIS) of glutamatergic projection neurons (PyNs) undergoes dynamic adjustment that exerts powerful control over neuronal firing properties in response to changes in network states. Although AIS plasticity has been reported to be coupled with the changes of network activity, it is poorly understood whether it involves direct synaptic input to the AIS. Here we show that changes of GABAergic synaptic input to the AIS of cortical PyNs, specifically from chandelier cells (ChCs), are sufficient to drive homeostatic tuning of the AIS within 1-2 weeks, while those from parvalbumin-positive basket cells do not. This tuning is reflected in the morphology of the AIS, the expression level of voltage-gated sodium channels, and the intrinsic neuronal excitability of PyNs. Interestingly, the timing of AIS tuning in PyNs of the prefrontal cortex corresponds to the recovery of changes in social behavior caused by alterations of ChC synaptic transmission. Thus, homeostatic plasticity of the AIS at postsynaptic PyNs may counteract deficits elicited by imbalanced ChC presynaptic input. Teaser Axon initial segment dynamically responds to changes in local input from chandelier cells to prevent abnormal neuronal functions.
Collapse
|
5
|
Wang Y, Chen Y, Chen L, Herron BJ, Chen XY, Wolpaw JR. Motor learning changes the axon initial segment of the spinal motoneuron. J Physiol 2024; 602:2107-2126. [PMID: 38568869 PMCID: PMC11196014 DOI: 10.1113/jp283875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
We are studying the mechanisms of H-reflex operant conditioning, a simple form of learning. Modelling studies in the literature and our previous data suggested that changes in the axon initial segment (AIS) might contribute. To explore this, we used blinded quantitative histological and immunohistochemical methods to study in adult rats the impact of H-reflex conditioning on the AIS of the spinal motoneuron that produces the reflex. Successful, but not unsuccessful, H-reflex up-conditioning was associated with greater AIS length and distance from soma; greater length correlated with greater H-reflex increase. Modelling studies in the literature suggest that these increases may increase motoneuron excitability, supporting the hypothesis that they may contribute to H-reflex increase. Up-conditioning did not affect AIS ankyrin G (AnkG) immunoreactivity (IR), p-p38 protein kinase IR, or GABAergic terminals. Successful, but not unsuccessful, H-reflex down-conditioning was associated with more GABAergic terminals on the AIS, weaker AnkG-IR, and stronger p-p38-IR. More GABAergic terminals and weaker AnkG-IR correlated with greater H-reflex decrease. These changes might potentially contribute to the positive shift in motoneuron firing threshold underlying H-reflex decrease; they are consistent with modelling suggesting that sodium channel change may be responsible. H-reflex down-conditioning did not affect AIS dimensions. This evidence that AIS plasticity is associated with and might contribute to H-reflex conditioning adds to evidence that motor learning involves both spinal and brain plasticity, and both neuronal and synaptic plasticity. AIS properties of spinal motoneurons are likely to reflect the combined influence of all the motor skills that share these motoneurons. KEY POINTS: Neuronal action potentials normally begin in the axon initial segment (AIS). AIS plasticity affects neuronal excitability in development and disease. Whether it does so in learning is unknown. Operant conditioning of a spinal reflex, a simple learning model, changes the rat spinal motoneuron AIS. Successful, but not unsuccessful, H-reflex up-conditioning is associated with greater AIS length and distance from soma. Successful, but not unsuccessful, down-conditioning is associated with more AIS GABAergic terminals, less ankyrin G, and more p-p38 protein kinase. The associations between AIS plasticity and successful H-reflex conditioning are consistent with those between AIS plasticity and functional changes in development and disease, and with those predicted by modelling studies in the literature. Motor learning changes neurons and synapses in spinal cord and brain. Because spinal motoneurons are the final common pathway for behaviour, their AIS properties probably reflect the combined impact of all the behaviours that use these motoneurons.
Collapse
Affiliation(s)
- Yu Wang
- National Center for Adaptive Neurotechnologies, Albany Stratton VA Medical Center, 113 Holland Ave, Albany, NY 12208
| | - Yi Chen
- National Center for Adaptive Neurotechnologies, Albany Stratton VA Medical Center, 113 Holland Ave, Albany, NY 12208
| | - Lu Chen
- National Center for Adaptive Neurotechnologies, Albany Stratton VA Medical Center, 113 Holland Ave, Albany, NY 12208
| | - Bruce J. Herron
- Wadsworth Center, New York State Department of Health, 150 New Scotland Ave, Albany, NY 12208
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York
| | - Xiang Yang Chen
- National Center for Adaptive Neurotechnologies, Albany Stratton VA Medical Center, 113 Holland Ave, Albany, NY 12208
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York
| | - Jonathan R. Wolpaw
- National Center for Adaptive Neurotechnologies, Albany Stratton VA Medical Center, 113 Holland Ave, Albany, NY 12208
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York
| |
Collapse
|
6
|
Beros JL, King ES, Clarke D, Jaeschke-Angi L, Rodger J, Tang AD. Static magnetic stimulation induces structural plasticity at the axon initial segment of inhibitory cortical neurons. Sci Rep 2024; 14:1479. [PMID: 38233493 PMCID: PMC10794225 DOI: 10.1038/s41598-024-51845-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024] Open
Abstract
Static magnetic stimulation (SMS) is a form of non-invasive brain stimulation that alters neural activity and induces neural plasticity that outlasts the period of stimulation. This can modify corticospinal excitability or motor behaviours, suggesting that SMS may alter the intrinsic excitability of neurons. In mammalian neurons, the axon initial segment (AIS) is the site of action potential initiation and undergoes structural plasticity (changes in length and position from the soma) as a homeostatic mechanism to counteract chronic changes in neuronal activity. We investigated whether the chronic application of SMS (6 and 48 h, 0.5 T) induces structural AIS plasticity in postnatally derived primary cortical neurons. Following 6 h of SMS, we observed a shortening in mean AIS length compared to control, that persisted 24 h post stimulation. In contrast, 48 h of SMS induced an immediate distal shift that persisted 24 h post-stimulation. Pharmacological blockade of voltage gated L/T-type calcium channels during stimulation did not prevent SMS-induced AIS structural plasticity. Our findings provide the foundation to expand the use of chronic SMS as a non-invasive method to promote AIS plasticity.
Collapse
Affiliation(s)
- J L Beros
- School of Biological Sciences, The University of Western Australia, Crawley, 6009, Australia.
- The Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia.
| | - E S King
- The Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
- School of Biomedical Sciences, The University of Western Australia, Crawley, 6009, Australia
| | - D Clarke
- Département de Neurosciences, Université de Montréal, Quebec, H3C 3J7, Canada
| | - L Jaeschke-Angi
- School of Biological Sciences, The University of Western Australia, Crawley, 6009, Australia
- The Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - J Rodger
- School of Biological Sciences, The University of Western Australia, Crawley, 6009, Australia
- The Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - A D Tang
- The Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia.
- School of Biomedical Sciences, The University of Western Australia, Crawley, 6009, Australia.
| |
Collapse
|
7
|
Tamada H. Three-dimensional ultrastructure analysis of organelles in injured motor neuron. Anat Sci Int 2023; 98:360-369. [PMID: 37071350 PMCID: PMC10256651 DOI: 10.1007/s12565-023-00720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/23/2023] [Indexed: 04/19/2023]
Abstract
Morphological analysis of organelles is one of the important clues for understanding the cellular conditions and mechanisms occurring in cells. In particular, nanoscale information within crowded intracellular organelles of tissues provide more direct implications when compared to analyses of cells in culture or isolation. However, there are some difficulties in detecting individual shape using light microscopy, including super-resolution microscopy. Transmission electron microscopy (TEM), wherein the ultrastructure can be imaged at the membrane level, cannot determine the whole structure, and analyze it quantitatively. Volume EM, such as focused ion beam/scanning electron microscopy (FIB/SEM), can be a powerful tool to explore the details of three-dimensional ultrastructures even within a certain volume, and to measure several parameters from them. In this review, the advantages of FIB/SEM analysis in organelle studies are highlighted along with the introduction of mitochondrial analysis in injured motor neurons. This would aid in understanding the morphological details of mitochondria, especially those distributed in the cell bodies as well as in the axon initial segment (AIS) in mouse tissues. These regions have not been explored thus far due to the difficulties encountered in accessing their images by conditional microscopies. Some mechanisms of nerve regeneration have also been discussed with reference to the obtained findings. Finally, future perspectives on FIB/SEM are introduced. The combination of biochemical and genetic understanding of organelle structures and a nanoscale understanding of their three-dimensional distribution and morphology will help to match achievements in genomics and structural biology.
Collapse
Affiliation(s)
- Hiromi Tamada
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan.
- Anatomy, Graduate School of Medicines, University of Fukui, Matsuokashimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan.
| |
Collapse
|
8
|
Hu A, Zhao R, Ren B, Li Y, Lu J, Tai Y. Projection-Specific Heterogeneity of the Axon Initial Segment of Pyramidal Neurons in the Prelimbic Cortex. Neurosci Bull 2023; 39:1050-1068. [PMID: 36849716 PMCID: PMC10313623 DOI: 10.1007/s12264-023-01038-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/22/2022] [Indexed: 03/01/2023] Open
Abstract
The axon initial segment (AIS) is a highly specialized axonal compartment where the action potential is initiated. The heterogeneity of AISs has been suggested to occur between interneurons and pyramidal neurons (PyNs), which likely contributes to their unique spiking properties. However, whether the various characteristics of AISs can be linked to specific PyN subtypes remains unknown. Here, we report that in the prelimbic cortex (PL) of the mouse, two types of PyNs with axon projections either to the contralateral PL or to the ipsilateral basal lateral amygdala, possess distinct AIS properties reflected by morphology, ion channel expression, action potential initiation, and axo-axonic synaptic inputs from chandelier cells. Furthermore, projection-specific AIS diversity is more prominent in the superficial layer than in the deep layer. Thus, our study reveals the cortical layer- and axon projection-specific heterogeneity of PyN AISs, which may endow the spiking of various PyN types with exquisite modulation.
Collapse
Affiliation(s)
- Ankang Hu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- School of Clinical Medicine, Fudan University, Shanghai, 200032, China
| | - Rui Zhao
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Baihui Ren
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yang Li
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Jiangteng Lu
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China.
| | - Yilin Tai
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Caspi Y, Mazar M, Kushnir Y, Mazor Y, Katz B, Lev S, Binshtok AM. Structural plasticity of axon initial segment in spinal cord neurons underlies inflammatory pain. Pain 2023; 164:1388-1401. [PMID: 36645177 DOI: 10.1097/j.pain.0000000000002829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/19/2022] [Indexed: 01/17/2023]
Abstract
ABSTRACT Physiological or pathology-mediated changes in neuronal activity trigger structural plasticity of the action potential generation site-the axon initial segment (AIS). These changes affect intrinsic neuronal excitability, thus tuning neuronal and overall network output. Using behavioral, immunohistochemical, electrophysiological, and computational approaches, we characterized inflammation-related AIS plasticity in rat's superficial (lamina II) spinal cord dorsal horn (SDH) neurons and established how AIS plasticity regulates the activity of SDH neurons, thus contributing to pain hypersensitivity. We show that in naive conditions, AIS in SDH inhibitory neurons is located closer to the soma than in excitatory neurons. Shortly after inducing inflammation, when the inflammatory hyperalgesia is at its peak, AIS in inhibitory neurons is shifted distally away from the soma. The shift in AIS location is accompanied by the decrease in excitability of SDH inhibitory neurons. These AIS location and excitability changes are selective for inhibitory neurons and reversible. We show that AIS shift back close to the soma, and SDH inhibitory neurons' excitability increases to baseline levels following recovery from inflammatory hyperalgesia. The computational model of SDH inhibitory neurons predicts that the distal shift of AIS is sufficient to decrease the intrinsic excitability of these neurons. Our results provide evidence of inflammatory pain-mediated AIS plasticity in the central nervous system, which differentially affects the excitability of inhibitory SDH neurons and contributes to inflammatory hyperalgesia.
Collapse
Affiliation(s)
- Yaki Caspi
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael Mazar
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yishai Kushnir
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yoav Mazor
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel
| | - Ben Katz
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shaya Lev
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexander M Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
10
|
Lefebvre-Omar C, Liu E, Dalle C, d'Incamps BL, Bigou S, Daube C, Karpf L, Davenne M, Robil N, Jost Mousseau C, Blanchard S, Tournaire G, Nicaise C, Salachas F, Lacomblez L, Seilhean D, Lobsiger CS, Millecamps S, Boillée S, Bohl D. Neurofilament accumulations in amyotrophic lateral sclerosis patients' motor neurons impair axonal initial segment integrity. Cell Mol Life Sci 2023; 80:150. [PMID: 37184603 DOI: 10.1007/s00018-023-04797-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron (MN) disease in adults with no curative treatment. Neurofilament (NF) level in patient' fluids have recently emerged as the prime biomarker of ALS disease progression, while NF accumulation in MNs of patients is the oldest and one of the best pathological hallmarks. However, the way NF accumulations could lead to MN degeneration remains unknown. To assess NF accumulations and study the impact on MNs, we compared MNs derived from induced pluripotent stem cells (iPSC) of patients carrying mutations in C9orf72, SOD1 and TARDBP genes, the three main ALS genetic causes. We show that in all mutant MNs, light NF (NF-L) chains rapidly accumulate in MN soma, while the phosphorylated heavy/medium NF (pNF-M/H) chains pile up in axonal proximal regions of only C9orf72 and SOD1 MNs. Excitability abnormalities were also only observed in these latter MNs. We demonstrate that the integrity of the MN axonal initial segment (AIS), the region of action potential initiation and responsible for maintaining axonal integrity, is impaired in the presence of pNF-M/H accumulations in C9orf72 and SOD1 MNs. We establish a strong correlation between these pNF-M/H accumulations, an AIS distal shift, increased axonal calibers and modified repartition of sodium channels. The results expand our understanding of how NF accumulation could dysregulate components of the axonal cytoskeleton and disrupt MN homeostasis. With recent cumulative evidence that AIS alterations are implicated in different brain diseases, preserving AIS integrity could have important therapeutic implications for ALS.
Collapse
Affiliation(s)
- Cynthia Lefebvre-Omar
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Elise Liu
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Carine Dalle
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Boris Lamotte d'Incamps
- Université Paris-Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Stéphanie Bigou
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Clément Daube
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Léa Karpf
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Marc Davenne
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | | | - Coline Jost Mousseau
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Stéphane Blanchard
- Institut Pasteur, INSERM U1115, Unité Biothérapies pour les Maladies Neurodégénératives, Paris, France
| | - Guillaume Tournaire
- Institut Pasteur, INSERM U1115, Unité Biothérapies pour les Maladies Neurodégénératives, Paris, France
| | | | - François Salachas
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Département de Neurologie, Assistance Publique Hôpitaux de Paris (APHP), Centre de Référence SLA Ile de France, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Lucette Lacomblez
- Département de Neurologie, Assistance Publique Hôpitaux de Paris (APHP), Centre de Référence SLA Ile de France, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Danielle Seilhean
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Département de Neuropathologie, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Christian S Lobsiger
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Stéphanie Millecamps
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Séverine Boillée
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
11
|
Naseem MU, Gurrola-Briones G, Romero-Imbachi MR, Borrego J, Carcamo-Noriega E, Beltrán-Vidal J, Zamudio FZ, Shakeel K, Possani LD, Panyi G. Characterization and Chemical Synthesis of Cm39 (α-KTx 4.8): A Scorpion Toxin That Inhibits Voltage-Gated K + Channel K V1.2 and Small- and Intermediate-Conductance Ca 2+-Activated K + Channels K Ca2.2 and K Ca3.1. Toxins (Basel) 2023; 15:41. [PMID: 36668861 PMCID: PMC9866218 DOI: 10.3390/toxins15010041] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
A novel peptide, Cm39, was identified in the venom of the scorpion Centruroides margaritatus. Its primary structure was determined. It consists of 37 amino acid residues with a MW of 3980.2 Da. The full chemical synthesis and proper folding of Cm39 was obtained. Based on amino acid sequence alignment with different K+ channel inhibitor scorpion toxin (KTx) families and phylogenetic analysis, Cm39 belongs to the α-KTx 4 family and was registered with the systematic number of α-KTx 4.8. Synthetic Cm39 inhibits the voltage-gated K+ channel hKV1.2 with high affinity (Kd = 65 nM). The conductance-voltage relationship of KV1.2 was not altered in the presence of Cm39, and the analysis of the toxin binding kinetics was consistent with a bimolecular interaction between the peptide and the channel; therefore, the pore blocking mechanism is proposed for the toxin-channel interaction. Cm39 also inhibits the Ca2+-activated KCa2.2 and KCa3.1 channels, with Kd = 502 nM, and Kd = 58 nM, respectively. However, the peptide does not inhibit hKV1.1, hKV1.3, hKV1.4, hKV1.5, hKV1.6, hKV11.1, mKCa1.1 K+ channels or the hNaV1.5 and hNaV1.4 Na+ channels at 1 μM concentrations. Understanding the unusual selectivity profile of Cm39 motivates further experiments to reveal novel interactions with the vestibule of toxin-sensitive channels.
Collapse
Affiliation(s)
- Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Egyetem ter. 1, 4032 Debrecen, Hungary
| | - Georgina Gurrola-Briones
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico
| | - Margarita R. Romero-Imbachi
- Grupo de Investigaciones Herpetológicas y Toxinológicas, Centro de Investigaciones Biomédicas, Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Sector Tulcan, Calle 2 N 3N-100, Popayán 190002, Cauca, Colombia
| | - Jesus Borrego
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Egyetem ter. 1, 4032 Debrecen, Hungary
| | - Edson Carcamo-Noriega
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico
| | - José Beltrán-Vidal
- Grupo de Investigaciones Herpetológicas y Toxinológicas, Centro de Investigaciones Biomédicas, Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Sector Tulcan, Calle 2 N 3N-100, Popayán 190002, Cauca, Colombia
| | - Fernando Z. Zamudio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico
| | - Kashmala Shakeel
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Egyetem ter. 1, 4032 Debrecen, Hungary
| | - Lourival Domingos Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Egyetem ter. 1, 4032 Debrecen, Hungary
| |
Collapse
|
12
|
Senol AD, Pinto G, Beau M, Guillemot V, Dupree JL, Stadelmann C, Ranft J, Lubetzki C, Davenne M. Alterations of the axon initial segment in multiple sclerosis grey matter. Brain Commun 2022; 4:fcac284. [PMID: 36451656 PMCID: PMC9700164 DOI: 10.1093/braincomms/fcac284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/14/2022] [Accepted: 11/02/2022] [Indexed: 07/22/2023] Open
Abstract
Grey matter damage has been established as a key contributor to disability progression in multiple sclerosis. Aside from neuronal loss and axonal transections, which predominate in cortical demyelinated lesions, synaptic alterations have been detected in both demyelinated plaques and normal-appearing grey matter, resulting in functional neuronal damage. The axon initial segment is a key element of neuronal function, responsible for action potential initiation and maintenance of neuronal polarity. Despite several reports of profound axon initial segment alterations in different pathological models, among which experimental auto-immune encephalomyelitis, whether the axon initial segment is affected in multiple sclerosis is still unknown. Using immunohistochemistry, we analysed axon initial segments from control and multiple sclerosis tissue, focusing on layer 5/6 pyramidal neurons in the neocortex and Purkinje cells in the cerebellum and performed analysis on the parameters known to control neuronal excitability, i.e. axon initial segment length and position. We found that the axon initial segment length was increased only in pyramidal neurons of inactive demyelinated lesions, compared with normal appearing grey matter tissue. In contrast, in both cell types, the axon initial segment position was altered, with an increased soma-axon initial segment gap, in both active and inactive demyelinated lesions. In addition, using a computational model, we show that this increased gap between soma and axon initial segment might increase neuronal excitability. Taken together, these results show, for the first time, changes of axon initial segments in multiple sclerosis, in active as well as inactive grey matter lesions in both neocortex and cerebellum, which might alter neuronal function.
Collapse
Affiliation(s)
- Aysegul Dilsizoglu Senol
- Sorbonne University, Paris Brain Institute—ICM, Inserm, CNRS, Pitié-Salpêtrière Hospital, Paris, France
| | - Giulia Pinto
- Sorbonne University, Paris Brain Institute—ICM, Inserm, CNRS, Pitié-Salpêtrière Hospital, Paris, France
| | - Maxime Beau
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Vincent Guillemot
- Sorbonne University, Paris Brain Institute—ICM, Inserm, CNRS, Pitié-Salpêtrière Hospital, Paris, France
- Institut Pasteur, Université de Paris, Bioinformatics and Biostatistics Hub, Paris F-75015, France
| | - Jeffrey L Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
- Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Jonas Ranft
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Catherine Lubetzki
- Sorbonne University, Paris Brain Institute—ICM, Inserm, CNRS, Pitié-Salpêtrière Hospital, Paris, France
- Assistance Publique des Hôpitaux de Paris (APHP), Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France
| | - Marc Davenne
- Correspondence to: Dr Marc Davenne Paris Brain Institute, Pitié-Salpêtrière Hospital 47, bd de l’hôpital, F-75013 Paris, France E-mail:
| |
Collapse
|
13
|
Cheng H, Kao Y, Chen T, Sharma L, Yang W, Chuang Y, Huang S, Lin H, Huang Y, Kao C, Yang L, Bearon R, Cheng H, Hsia K, Lin Y. Actin filaments form a size-dependent diffusion barrier around centrosomes. EMBO Rep 2022; 24:e54935. [PMID: 36314725 PMCID: PMC9827556 DOI: 10.15252/embr.202254935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 01/10/2023] Open
Abstract
The centrosome, a non-membranous organelle, constrains various soluble molecules locally to execute its functions. As the centrosome is surrounded by various dense components, we hypothesized that it may be bordered by a putative diffusion barrier. After quantitatively measuring the trapping kinetics of soluble proteins of varying size at centrosomes by a chemically inducible diffusion trapping assay, we find that centrosomes are highly accessible to soluble molecules with a Stokes radius of less than 5.8 nm, whereas larger molecules rarely reach centrosomes, indicating the existence of a size-dependent diffusion barrier at centrosomes. The permeability of this barrier is tightly regulated by branched actin filaments outside of centrosomes and it decreases during anaphase when branched actin temporally increases. The actin-based diffusion barrier gates microtubule nucleation by interfering with γ-tubulin ring complex recruitment. We propose that actin filaments spatiotemporally constrain protein complexes at centrosomes in a size-dependent manner.
Collapse
Affiliation(s)
- Hsuan Cheng
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchuTaiwan
| | - Yu‐Lin Kao
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchuTaiwan
| | - Ting Chen
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Lohitaksh Sharma
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchuTaiwan
| | - Wen‐Ting Yang
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchuTaiwan
| | - Yi‐Chien Chuang
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchuTaiwan
| | - Shih‐Han Huang
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchuTaiwan
| | - Hong‐Rui Lin
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Yao‐Shen Huang
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchuTaiwan
| | - Chi‐Ling Kao
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchuTaiwan
| | - Lee‐Wei Yang
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan,Physics DivisionNational Center for Theoretical SciencesTaipeiTaiwan
| | - Rachel Bearon
- Department of Mathematical ScienceUniversity of LiverpoolLiverpoolUK
| | - Hui‐Chun Cheng
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | | | - Yu‐Chun Lin
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchuTaiwan,Department of Medical ScienceNational Tsing Hua UniversityHsinchuTaiwan
| |
Collapse
|
14
|
Sperandeo A, Tamburini C, Noakes Z, de la Fuente DC, Keefe F, Petter O, Plumbly W, Clifton N, Li M, Peall K. Cortical neuronal hyperexcitability and synaptic changes in SGCE mutation-positive myoclonus dystonia. Brain 2022; 146:1523-1541. [PMID: 36204995 PMCID: PMC10115238 DOI: 10.1093/brain/awac365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/17/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Myoclonus Dystonia is a childhood-onset hyperkinetic movement disorder with a combined motor and psychiatric phenotype. It represents one of the few autosomal dominant inherited dystonic disorders and is caused by mutations in the ε-sarcoglycan (SGCE) gene. Work to date suggests that dystonia is caused by disruption of neuronal networks, principally basal ganglia-cerebello-thalamo-cortical circuits. Investigation of cortical involvement has primarily focused on disruption to interneuron inhibitory activity, rather than the excitatory activity of cortical pyramidal neurons. Here, we have sought to examine excitatory cortical glutamatergic activity using two approaches; the CRISPR/Cas9 editing of a human embryonic cell line, generating an SGCE compound heterozygous mutation, and three patient-derived induced pluripotent stem cell lines (iPSC) each gene edited to generate matched wild-type SGCE control lines. Differentiation towards a cortical neuronal phenotype demonstrated no significant differences in neither early- (PAX6, FOXG1) nor late-stage (CTIP2, TBR1) neurodevelopmental markers. However, functional characterisation using Ca2+ imaging and MEA approaches identified an increase in network activity, while single-cell patch clamp studies found a greater propensity towards action potential generation with larger amplitudes and shorter half-widths associated with SGCE-mutations. Bulk-RNA-seq analysis identified gene ontological enrichment for neuron projection development, synaptic signalling, and synaptic transmission. Examination of dendritic morphology found SGCE-mutations to be associated with a significantly higher number of branches and longer branch lengths, together with longer ion-channel dense axon initial segments, particularly towards the latter stages of differentiation (D80 and D100). Gene expression and protein quantification of key synaptic proteins (synaptophysin, synapsin and PSD95), AMPA and NMDA receptor subunits found no significant differences between the SGCE-mutation and matched wild-type lines. By contrast, significant changes to synaptic adhesion molecule expression were identified, namely higher pre-synaptic neurexin-1 and lower post-synaptic neuroligin-4 levels in the SGCE mutation carrying lines. Our study demonstrates an increased intrinsic excitability of cortical glutamatergic neuronal cells in the context of SGCE mutations, coupled with a more complex neurite morphology and disruption to synaptic adhesion molecules. These changes potentially represent key components to the development of the hyperkinetic clinical phenotype observed in Myoclonus Dystonia, as well a central feature to the wider spectrum of dystonic disorders, potentially providing targets for future therapeutic development.
Collapse
Affiliation(s)
- Alessandra Sperandeo
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Claudia Tamburini
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Zoe Noakes
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Daniel Cabezas de la Fuente
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Francesca Keefe
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Olena Petter
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - William Plumbly
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Nicholas Clifton
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Meng Li
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Kathryn Peall
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| |
Collapse
|
15
|
Kumar SS, Gänswein T, Buccino AP, Xue X, Bartram J, Emmenegger V, Hierlemann A. Tracking axon initial segment plasticity using high-density microelectrode arrays: A computational study. Front Neuroinform 2022; 16:957255. [PMID: 36221258 PMCID: PMC7613690 DOI: 10.3389/fninf.2022.957255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Despite being composed of highly plastic neurons with extensive positive feedback, the nervous system maintains stable overall function. To keep activity within bounds, it relies on a set of negative feedback mechanisms that can induce stabilizing adjustments and that are collectively termed “homeostatic plasticity.” Recently, a highly excitable microdomain, located at the proximal end of the axon—the axon initial segment (AIS)—was found to exhibit structural modifications in response to activity perturbations. Though AIS plasticity appears to serve a homeostatic purpose, many aspects governing its expression and its functional role in regulating neuronal excitability remain elusive. A central challenge in studying the phenomenon is the rich heterogeneity of its expression (distal/proximal relocation, shortening, lengthening) and the variability of its functional role. A potential solution is to track AISs of a large number of neurons over time and attempt to induce structural plasticity in them. To this end, a promising approach is to use extracellular electrophysiological readouts to track a large number of neurons at high spatiotemporal resolution by means of high-density microelectrode arrays (HD-MEAs). However, an analysis framework that reliably identifies specific activity signatures that uniquely map on to underlying microstructural changes is missing. In this study, we assessed the feasibility of such a task and used the distal relocation of the AIS as an exemplary problem. We used sophisticated computational models to systematically explore the relationship between incremental changes in AIS positions and the specific consequences observed in simulated extracellular field potentials. An ensemble of feature changes in the extracellular fields that reliably characterize AIS plasticity was identified. We trained models that could detect these signatures with remarkable accuracy. Based on these findings, we propose a hybrid analysis framework that could potentially enable high-throughput experimental studies of activity-dependent AIS plasticity using HD-MEAs.
Collapse
|
16
|
Pyramidal cell axon initial segment in Alzheimer´s disease. Sci Rep 2022; 12:8722. [PMID: 35610289 PMCID: PMC9130508 DOI: 10.1038/s41598-022-12700-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 05/09/2022] [Indexed: 11/08/2022] Open
Abstract
The axon initial segment (AIS) is a region of the neuron that is critical for action potential generation as well as for the regulation of neural activity. This specialized structure-characterized by the expression of different types of ion channels as well as adhesion, scaffolding and cytoskeleton proteins-is subjected to morpho-functional plastic changes in length and position upon variations in neural activity or in pathological conditions. In the present study, using immunocytochemistry with the AT8 antibody (phospho-tau S202/T205) and 3D confocal microscopy reconstruction techniques in brain tissue from Alzheimer's disease patients, we found that around half of the cortical pyramidal neurons with hyperphosphorylated tau showed changes in AIS length and position in comparison with AT8-negative neurons from the same cortical layers. We observed a wide variety of AIS alterations in neurons with hyperphosphorylated tau, although the most common changes were a proximal shift or a lengthening of the AISs. Similar results were found in neocortical tissue from non-demented cases with neurons containing hyperphosphorylated tau. These findings support the notion that the accumulation of phospho-tau is associated with structural alterations of the AIS that are likely to have an impact on normal neuronal activity, which might contribute to neuronal dysfunction in AD.
Collapse
|
17
|
Eichel K, Shen K. The function of the axon initial segment in neuronal polarity. Dev Biol 2022; 489:47-54. [DOI: 10.1016/j.ydbio.2022.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022]
|
18
|
Tian T, Quintana-Urzainqui I, Kozić Z, Pratt T, Price DJ. Pax6 loss alters the morphological and electrophysiological development of mouse prethalamic neurons. Development 2022; 149:274738. [PMID: 35224626 PMCID: PMC8977098 DOI: 10.1242/dev.200052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/16/2022] [Indexed: 12/02/2022]
Abstract
Pax6 is a well-known regulator of early neuroepithelial progenitor development. Its constitutive loss has a particularly strong effect on the developing prethalamus, causing it to become extremely hypoplastic. To overcome this difficulty in studying the long-term consequences of Pax6 loss for prethalamic development, we used conditional mutagenesis to delete Pax6 at the onset of neurogenesis and studied the developmental potential of the mutant prethalamic neurons in vitro. We found that Pax6 loss affected their rates of neurite elongation, the location and length of their axon initial segments, and their electrophysiological properties. Our results broaden our understanding of the long-term consequences of Pax6 deletion in the developing mouse forebrain, suggesting that it can have cell-autonomous effects on the structural and functional development of some neurons. Summary: Pax6 impacts neurite extension, axon initial segment properties and the ability to fire normal action potentials in maturing neurons, revealing actions extending beyond those previously characterised in progenitors.
Collapse
Affiliation(s)
- Tian Tian
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Idoia Quintana-Urzainqui
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69012 Heidelberg, Germany
| | - Zrinko Kozić
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Thomas Pratt
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - David J. Price
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| |
Collapse
|
19
|
The Type 2 Diabetes Factor Methylglyoxal Mediates Axon Initial Segment Shortening and Alters Neuronal Function at the Cellular and Network Levels. eNeuro 2021; 8:ENEURO.0201-21.2021. [PMID: 34531281 PMCID: PMC8496204 DOI: 10.1523/eneuro.0201-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 02/02/2023] Open
Abstract
Recent evidence suggests that alteration of axon initial segment (AIS) geometry (i.e., length or location along the axon) contributes to CNS dysfunction in neurological diseases. For example, AIS length is shorter in the prefrontal cortex of type 2 diabetic mice with cognitive impairment. To determine the key type 2 diabetes-related factor that produces AIS shortening we modified levels of insulin, glucose, or the reactive glucose metabolite methylglyoxal in cultures of dissociated cortices from male and female mice and quantified AIS geometry using immunofluorescent imaging of the AIS proteins AnkyrinG and βIV spectrin. Neither insulin nor glucose modification altered AIS length. Exposure to 100 but not 1 or 10 μm methylglyoxal for 24 h resulted in accumulation of the methylglyoxal-derived advanced glycation end-product hydroimidazolone and produced reversible AIS shortening without cell death. Methylglyoxal-evoked AIS shortening occurred in both excitatory and putative inhibitory neuron populations and in the presence of tetrodotoxin (TTX). In single-cell recordings resting membrane potential was depolarized at 0.5-3 h and returned to normal at 24 h. In multielectrode array (MEA) recordings methylglyoxal produced an immediate ∼300% increase in spiking and bursting rates that returned to normal within 2 min, followed by a ∼20% reduction of network activity at 0.5-3 h and restoration of activity to baseline levels at 24 h. AIS length was unchanged at 0.5-3 h despite the presence of depolarization and network activity reduction. Nevertheless, these results suggest that methylglyoxal could be a key mediator of AIS shortening and disruptor of neuronal function during type 2 diabetes.
Collapse
|
20
|
Tamada H, Kiryu-Seo S, Sawada S, Kiyama H. Axonal injury alters the extracellular glial environment of the axon initial segment and allows substantial mitochondrial influx into axon initial segment. J Comp Neurol 2021; 529:3621-3632. [PMID: 34235750 DOI: 10.1002/cne.25212] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/22/2021] [Accepted: 07/01/2021] [Indexed: 12/23/2022]
Abstract
The axon initial segment (AIS) is structurally and functionally distinct from other regions of the axon, yet alterations in the milieu of the AIS after brain injury have not been well characterized. In this study, we have examined extracellular and intracellular changes in the AIS after hypoglossal nerve injury. Microglial adhesions to the AIS were rarely observed in healthy controls, whereas microglial adhesions to the AIS became apparent in the axonal injury model. Regarding intra-AIS morphology, we focused on mitochondria because mitochondrial flow into the injured axon appears critical for axonal regeneration. To visualize mitochondria specifically in injured axons, we used Atf3:BAC transgenic mice whose mitochondria were labeled with GFP in response to nerve injury. These mice clearly showed mitochondrial localization in the AIS after nerve injury. To precisely confirm the light microscopic observations, we performed three-dimensional ultrastructural analysis using focused ion beam/scanning electron microscopy (FIB/SEM). Although the healthy AIS was not surrounded by microglia, tight microglial adhesions with thick processes adhering to the AIS were observed after injury. FIB/SEM simultaneously allowed the observation of mitochondrial localization in the AIS. In the AIS of non-injured neurons, few mitochondria were observed, whereas mitochondria were abundantly localized in the cell body, axon hillock, and axon. Intriguingly, in the injured AIS, numerous mitochondria were observed throughout the AIS. Taken together, axonal injury changes the extracellular glial environment surrounding the AIS and intracellular mitochondrial localization in the AIS. These changes would be crucial responses, perhaps for injured neurons to regenerate after axonal injury.
Collapse
Affiliation(s)
- Hiromi Tamada
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sumiko Kiryu-Seo
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sohgo Sawada
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Kiyama
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
21
|
Jamann N, Dannehl D, Lehmann N, Wagener R, Thielemann C, Schultz C, Staiger J, Kole MHP, Engelhardt M. Sensory input drives rapid homeostatic scaling of the axon initial segment in mouse barrel cortex. Nat Commun 2021; 12:23. [PMID: 33397944 PMCID: PMC7782484 DOI: 10.1038/s41467-020-20232-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
The axon initial segment (AIS) is a critical microdomain for action potential initiation and implicated in the regulation of neuronal excitability during activity-dependent plasticity. While structural AIS plasticity has been suggested to fine-tune neuronal activity when network states change, whether it acts in vivo as a homeostatic regulatory mechanism in behaviorally relevant contexts remains poorly understood. Using the mouse whisker-to-barrel pathway as a model system in combination with immunofluorescence, confocal analysis and electrophysiological recordings, we observed bidirectional AIS plasticity in cortical pyramidal neurons. Furthermore, we find that structural and functional AIS remodeling occurs in distinct temporal domains: Long-term sensory deprivation elicits an AIS length increase, accompanied with an increase in neuronal excitability, while sensory enrichment results in a rapid AIS shortening, accompanied by a decrease in action potential generation. Our findings highlight a central role of the AIS in the homeostatic regulation of neuronal input-output relations.
Collapse
Affiliation(s)
- Nora Jamann
- Axonal Signaling Group, Netherlands Institute for Neurosciences (NIN), Royal Netherlands Academy for Arts and Sciences (KNAW), Amsterdam, The Netherlands
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dominik Dannehl
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nadja Lehmann
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Robin Wagener
- Clinic of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Corinna Thielemann
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christian Schultz
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jochen Staiger
- Institute of Neuroanatomy, University Medical Center, Georg August University of Göttingen, Göttingen, Germany
| | - Maarten H P Kole
- Axonal Signaling Group, Netherlands Institute for Neurosciences (NIN), Royal Netherlands Academy for Arts and Sciences (KNAW), Amsterdam, The Netherlands.
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| | - Maren Engelhardt
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
22
|
Bhardwaj P, Kulasiri D, Samarasinghe S. Modeling protein-protein interactions in axon initial segment to understand their potential impact on action potential initiation. Neural Regen Res 2021; 16:700-706. [PMID: 33063731 PMCID: PMC8067952 DOI: 10.4103/1673-5374.295332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The axon initial segment (AIS) region is crucial for action potential initiation due to the presence of high-density AIS protein voltage-gated sodium channels (Nav). Nav channels comprise several serine residues responsible for the recruitment of Nav channels into the structure of AIS through interactions with ankyrin-G (AnkG). In this study, a series of computational experiments are performed to understand the role of AIS proteins casein kinase 2 and AnkG on Nav channel recruitment into the AIS. The computational simulation results using Virtual cell software indicate that Nav channels with all serine sites available for phosphorylation bind to AnkG with strong affinity. At the low initial concentration of AnkG and casein kinase 2, the concentration of Nav channels reduces significantly, suggesting the importance of casein kinase 2 and AnkG in the recruitment of Nav channels.
Collapse
Affiliation(s)
- Piyush Bhardwaj
- Centre of Advanced Computational Solutions (C-fACS); Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | - Don Kulasiri
- Centre of Advanced Computational Solutions (C-fACS); Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | - Sandhya Samarasinghe
- Centre of Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand
| |
Collapse
|
23
|
Solé L, Tamkun MM. Trafficking mechanisms underlying Na v channel subcellular localization in neurons. Channels (Austin) 2020; 14:1-17. [PMID: 31841065 PMCID: PMC7039628 DOI: 10.1080/19336950.2019.1700082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 01/06/2023] Open
Abstract
Voltage gated sodium channels (Nav) play a crucial role in action potential initiation and propagation. Although the discovery of Nav channels dates back more than 65 years, and great advances in understanding their localization, biophysical properties, and links to disease have been made, there are still many questions to be answered regarding the cellular and molecular mechanisms involved in Nav channel trafficking, localization and regulation. This review summarizes the different trafficking mechanisms underlying the polarized Nav channel localization in neurons, with an emphasis on the axon initial segment (AIS), as well as discussing the latest advances regarding how neurons regulate their excitability by modifying AIS length and location. The importance of Nav channel localization is emphasized by the relationship between mutations, impaired trafficking and disease. While this review focuses on Nav1.6, other Nav isoforms are also discussed.
Collapse
Affiliation(s)
- Laura Solé
- Molecular, Cellular and Integrative Neurosciences Graduate Program, Colorado State University, Fort Collins, CO, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Michael M. Tamkun
- Molecular, Cellular and Integrative Neurosciences Graduate Program, Colorado State University, Fort Collins, CO, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
24
|
Wadsworth PA, Singh AK, Nguyen N, Dvorak NM, Tapia CM, Russell WK, Stephan C, Laezza F. JAK2 regulates Nav1.6 channel function via FGF14 Y158 phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118786. [PMID: 32599005 PMCID: PMC7984254 DOI: 10.1016/j.bbamcr.2020.118786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Protein interactions between voltage-gated sodium (Nav) channels and accessory proteins play an essential role in neuronal firing and plasticity. However, a surprisingly limited number of kinases have been identified as regulators of these molecular complexes. We hypothesized that numerous as-of-yet unidentified kinases indirectly regulate the Nav channel via modulation of the intracellular fibroblast growth factor 14 (FGF14), an accessory protein with numerous unexplored phosphomotifs and required for channel function in neurons. METHODS Here we present results from an in-cell high-throughput screening (HTS) against the FGF14: Nav1.6 complex using >3000 diverse compounds targeting an extensive range of signaling pathways. Regulation by top kinase targets was then explored using in vitro phosphorylation, biophysics, mass-spectrometry and patch-clamp electrophysiology. RESULTS Compounds targeting Janus kinase 2 (JAK2) were over-represented among HTS hits. Phosphomotif scans supported by mass spectrometry revealed FGF14Y158, a site previously shown to mediate both FGF14 homodimerization and interactions with Nav1.6, as a JAK2 phosphorylation site. Following inhibition of JAK2, FGF14 homodimerization increased in a manner directly inverse to FGF14:Nav1.6 complex formation, but not in the presence of the FGF14Y158A mutant. Patch-clamp electrophysiology revealed that through Y158, JAK2 controls FGF14-dependent modulation of Nav1.6 channels. In hippocampal CA1 pyramidal neurons, the JAK2 inhibitor Fedratinib reduced firing by a mechanism that is dependent upon expression of FGF14. CONCLUSIONS These studies point toward a novel mechanism by which levels of JAK2 in neurons could directly influence firing and plasticity by controlling the FGF14 dimerization equilibrium, and thereby the availability of monomeric species for interaction with Nav1.6.
Collapse
Affiliation(s)
- Paul A Wadsworth
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Aditya K Singh
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Nghi Nguyen
- HTS Screening Core, Center for Translational Cancer Research, Texas A&M Health Science Center: Institute of Biosciences and Technology, Houston, TX, USA
| | - Nolan M Dvorak
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Cynthia M Tapia
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Clifford Stephan
- HTS Screening Core, Center for Translational Cancer Research, Texas A&M Health Science Center: Institute of Biosciences and Technology, Houston, TX, USA
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA; Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
25
|
Lee M, Liu YC, Chen C, Lu CH, Lu ST, Huang TN, Hsu MT, Hsueh YP, Cheng PL. Ecm29-mediated proteasomal distribution modulates excitatory GABA responses in the developing brain. J Cell Biol 2020; 219:133566. [PMID: 31910261 PMCID: PMC7041676 DOI: 10.1083/jcb.201903033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 10/14/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
Neuronal GABAergic responses switch from excitatory to inhibitory at an early postnatal period in rodents. The timing of this switch is controlled by intracellular Cl− concentrations, but factors determining local levels of cation-chloride cotransporters remain elusive. Here, we report that local abundance of the chloride importer NKCC1 and timely emergence of GABAergic inhibition are modulated by proteasome distribution, which is mediated through interactions of proteasomes with the adaptor Ecm29 and the axon initial segment (AIS) scaffold protein ankyrin G. Mechanistically, both the Ecm29 N-terminal domain and an intact AIS structure are required for transport and tethering of proteasomes in the AIS region. In mice, Ecm29 knockout (KO) in neurons increases the density of NKCC1 protein in the AIS region, a change that positively correlates with a delay in the GABAergic response switch. Phenotypically, Ecm29 KO mice showed increased firing frequency of action potentials at early postnatal ages and were hypersusceptible to chemically induced convulsive seizures. Finally, Ecm29 KO neurons exhibited accelerated AIS developmental positioning, reflecting a perturbed AIS morphological plastic response to hyperexcitability arising from proteasome inhibition, a phenotype rescued by ectopic Ecm29 expression or NKCC1 inhibition. Together, our findings support the idea that neuronal maturation requires regulation of proteasomal distribution controlled by Ecm29.
Collapse
Affiliation(s)
- Min Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yen-Chen Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chen Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chi-Huan Lu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shao-Tzu Lu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Tzyy-Nan Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Meng-Tsung Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Pei-Lin Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
26
|
Nathanson AJ, Zhang Y, Smalley JL, Ollerhead TA, Rodriguez Santos MA, Andrews PM, Wobst HJ, Moore YE, Brandon NJ, Hines RM, Davies PA, Moss SJ. Identification of a Core Amino Acid Motif within the α Subunit of GABA ARs that Promotes Inhibitory Synaptogenesis and Resilience to Seizures. Cell Rep 2020; 28:670-681.e8. [PMID: 31315046 PMCID: PMC8283774 DOI: 10.1016/j.celrep.2019.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/08/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
SUMMARY The fidelity of inhibitory neurotransmission is dependent on the accumulation of γ-aminobutyric acid type A receptors (GABAARs) at the appropriate synaptic sites. Synaptic GABAARs are constructed from α(1–3), β(1–3), and γ2 subunits, and neurons can target these subtypes to specific synapses. Here, we identify a 15-amino acid inhibitory synapse targeting motif (ISTM) within the α2 subunit that promotes the association between GABAARs and the inhibitory scaffold proteins collybistin and gephyrin. Using mice in which the ISTM has been introduced into the α1 subunit (Gabra1–2 mice), we show that the ISTM is critical for axo-axonic synapse formation, the efficacy of GABAergic neurotransmission, and seizure sensitivity. The Gabra1–2 mutation rescues seizure-induced lethality in Gabra2–1 mice, which lack axo-axonic synapses due to the deletion of the ISTM from the α2 subunit. Taken together, our data demonstrate that the ISTM plays a critical role in promoting inhibitory synapse formation, both in the axonic and somatodendritic compartments. In Brief Molecular mechanisms regulating specific synaptic GABAAR accumulation are critical for the fidelity of inhibitory neurotransmission. Nathanson et al. show that strengthening the interaction between α1-GABAARs and collybistin via genetic manipulation results in augmented synaptic targeting of these receptors, enhanced inhibitory neurotransmission, and seizure resilience.
Collapse
Affiliation(s)
- Anna J Nathanson
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Yihui Zhang
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Joshua L Smalley
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Thomas A Ollerhead
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | - Peter M Andrews
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Heike J Wobst
- AstraZeneca Neuroscience, IMED Biotech Unit, R&D, Boston, MA 02451, USA
| | - Yvonne E Moore
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nicholas J Brandon
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111, USA; AstraZeneca Neuroscience, IMED Biotech Unit, R&D, Boston, MA 02451, USA
| | - Rochelle M Hines
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Paul A Davies
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA; AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111, USA; Department of Neuroscience, Physiology and Pharmacology, University College, London WC1E 6BT, UK.
| |
Collapse
|
27
|
Conventional and Non-Conventional Roles of Non-Muscle Myosin II-Actin in Neuronal Development and Degeneration. Cells 2020; 9:cells9091926. [PMID: 32825197 PMCID: PMC7566000 DOI: 10.3390/cells9091926] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
Myosins are motor proteins that use chemical energy to produce mechanical forces driving actin cytoskeletal dynamics. In the brain, the conventional non-muscle myosin II (NMII) regulates actin filament cytoskeletal assembly and contractile forces during structural remodeling of axons and dendrites, contributing to morphology, polarization, and migration of neurons during brain development. NMII isoforms also participate in neurotransmission and synaptic plasticity by driving actin cytoskeletal dynamics during synaptic vesicle release and retrieval, and formation, maturation, and remodeling of dendritic spines. NMIIs are expressed differentially in cerebral non-neuronal cells, such as microglia, astrocytes, and endothelial cells, wherein they play key functions in inflammation, myelination, and repair. Besides major efforts to understand the physiological functions and regulatory mechanisms of NMIIs in the nervous system, their contributions to brain pathologies are still largely unclear. Nonetheless, genetic mutations or deregulation of NMII and its regulatory effectors are linked to autism, schizophrenia, intellectual disability, and neurodegeneration, indicating non-conventional roles of NMIIs in cellular mechanisms underlying neurodevelopmental and neurodegenerative disorders. Here, we summarize the emerging biological roles of NMIIs in the brain, and discuss how actomyosin signaling contributes to dysfunction of neurons and glial cells in the context of neurological disorders. This knowledge is relevant for a deep understanding of NMIIs on the pathogenesis and therapeutics of neuropsychiatric and neurodegenerative diseases.
Collapse
|
28
|
Structural basis of the potency and selectivity of Urotoxin, a potent Kv1 blocker from scorpion venom. Biochem Pharmacol 2020; 174:113782. [DOI: 10.1016/j.bcp.2019.113782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022]
|
29
|
Goethals S, Brette R. Theoretical relation between axon initial segment geometry and excitability. eLife 2020; 9:53432. [PMID: 32223890 PMCID: PMC7170651 DOI: 10.7554/elife.53432] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/30/2020] [Indexed: 12/29/2022] Open
Abstract
In most vertebrate neurons, action potentials are triggered at the distal end of the axon initial segment (AIS). Both position and length of the AIS vary across and within neuron types, with activity, development and pathology. What is the impact of AIS geometry on excitability? Direct empirical assessment has proven difficult because of the many potential confounding factors. Here, we carried a principled theoretical analysis to answer this question. We provide a simple formula relating AIS geometry and sodium conductance density to the somatic voltage threshold. A distal shift of the AIS normally produces a (modest) increase in excitability, but we explain how this pattern can reverse if a hyperpolarizing current is present at the AIS, due to resistive coupling with the soma. This work provides a theoretical tool to assess the significance of structural AIS plasticity for electrical function.
Collapse
Affiliation(s)
- Sarah Goethals
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Romain Brette
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
30
|
Abstract
Microglia dynamically interact with neurons influencing the development, structure, and function of neuronal networks. Recent studies suggest microglia may also influence neuronal activity by physically interacting with axonal domains responsible for action potential initiation and propagation. However, the nature of these microglial process interactions is not well understood. Microglial-axonal contacts are present early in development and persist through adulthood, implicating microglial interactions in the regulation of axonal integrity in both the developing and mature central nervous system. Moreover, changes in microglial-axonal contact have been described in disease states such as multiple sclerosis (MS) and traumatic brain injury (TBI). Depending on the disease state, there are increased associations with specific axonal segments. In MS, there is enhanced contact with the axon initial segment and node of Ranvier, while, in TBI, microglia alter interactions with axons at the site of injury, as well as at the axon initial segment. In this article, we review the interactions of microglial processes with axonal segments, analyzing their associations with various axonal domains and how these interactions may differ between MS and TBI. Furthermore, we discuss potential functional consequences and molecular mechanisms of these interactions and how these may differ among various types of microglial-axonal interactions.
Collapse
Affiliation(s)
- Savannah D Benusa
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Audrey D Lafrenaye
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
31
|
Montanino A, Saeedimasine M, Villa A, Kleiven S. Localized Axolemma Deformations Suggest Mechanoporation as Axonal Injury Trigger. Front Neurol 2020; 11:25. [PMID: 32082244 PMCID: PMC7005088 DOI: 10.3389/fneur.2020.00025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/09/2020] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injuries are a leading cause of morbidity and mortality worldwide. With almost 50% of traumatic brain injuries being related to axonal damage, understanding the nature of cellular level impairment is crucial. Experimental observations have so far led to the formulation of conflicting theories regarding the cellular primary injury mechanism. Disruption of the axolemma, or alternatively cytoskeletal damage has been suggested mainly as injury trigger. However, mechanoporation thresholds of generic membranes seem not to overlap with the axonal injury deformation range and microtubules appear too stiff and too weakly connected to undergo mechanical breaking. Here, we aim to shed a light on the mechanism of primary axonal injury, bridging finite element and molecular dynamics simulations. Despite the necessary level of approximation, our models can accurately describe the mechanical behavior of the unmyelinated axon and its membrane. More importantly, they give access to quantities that would be inaccessible with an experimental approach. We show that in a typical injury scenario, the axonal cortex sustains deformations large enough to entail pore formation in the adjoining lipid bilayer. The observed axonal deformation of 10–12% agree well with the thresholds proposed in the literature for axonal injury and, above all, allow us to provide quantitative evidences that do not exclude pore formation in the membrane as a result of trauma. Our findings bring to an increased knowledge of axonal injury mechanism that will have positive implications for the prevention and treatment of brain injuries.
Collapse
Affiliation(s)
- Annaclaudia Montanino
- Division of Neuronic Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Marzieh Saeedimasine
- Department of Biosciences and Nutrition, Karolinska Institutet (KI), Stockholm, Sweden
| | - Alessandra Villa
- Department of Biosciences and Nutrition, Karolinska Institutet (KI), Stockholm, Sweden
| | - Svein Kleiven
- Division of Neuronic Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden
| |
Collapse
|
32
|
Dumenieu M, Senkov O, Mironov A, Bourinet E, Kreutz MR, Dityatev A, Heine M, Bikbaev A, Lopez-Rojas J. The Low-Threshold Calcium Channel Cav3.2 Mediates Burst Firing of Mature Dentate Granule Cells. Cereb Cortex 2019; 28:2594-2609. [PMID: 29790938 PMCID: PMC5998957 DOI: 10.1093/cercor/bhy084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Indexed: 12/11/2022] Open
Abstract
Mature granule cells are poorly excitable neurons that were recently shown to fire action potentials, preferentially in bursts. It is believed that the particularly pronounced short-term facilitation of mossy fiber synapses makes granule cell bursting a very effective means of properly transferring information to CA3. However, the mechanism underlying the unique bursting behavior of mature granule cells is currently unknown. Here, we show that Cav3.2 T-type channels at the axon initial segment are responsible for burst firing of mature granule cells in rats and mice. Accordingly, Cav3.2 knockout mice fire tonic spikes and exhibit impaired bursting, synaptic plasticity and dentate-to-CA3 communication. The data show that Cav3.2 channels are strong modulators of bursting and can be considered a critical molecular switch that enables effective information transfer from mature granule cells to the CA3 pyramids.
Collapse
Affiliation(s)
- Mael Dumenieu
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Brenneckestr. 6, Magdeburg, Germany
| | - Oleg Senkov
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Andrey Mironov
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Emmanuel Bourinet
- Calcium Channel Dynamics & Nociception Group, Institute of Functional Genomics, Montpellier, France
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Brenneckestr. 6, Magdeburg, Germany.,Leibniz Group "Dendritic Organelles and Synaptic Function," University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology (ZMNH), Hamburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Martin Heine
- Research Group Molecular Physiology, Leibniz Institute for Neurobiology, Brenneckestr. 6, Magdeburg, Germany
| | - Arthur Bikbaev
- Research Group Molecular Physiology, Leibniz Institute for Neurobiology, Brenneckestr. 6, Magdeburg, Germany
| | - Jeffrey Lopez-Rojas
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Brenneckestr. 6, Magdeburg, Germany
| |
Collapse
|
33
|
Hansson JHS. A hypothesis regarding how sleep can calibrate neuronal excitability in the central nervous system and thereby offer stability, sensitivity and the best possible cognitive function. Med Hypotheses 2019; 131:109307. [PMID: 31443755 DOI: 10.1016/j.mehy.2019.109307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/20/2019] [Accepted: 07/08/2019] [Indexed: 11/17/2022]
Abstract
The function of sleep in mammal and other vertebrates is one of the great mysteries of biology. Many hypotheses have been proposed, but few of these have made even the slightest attempt to explain the essence of sleep - the uncompromising need for reversible unconsciousness. During sleep, epiphenomena - often of a somatic character - occur, but these cannot explain the core function of sleep. One answer could be hidden in the observations made for long periods of time of the function of the central nervous system (CNS). The CNS is faced with conflicting requirements on stability and excitability. A high level of excitability is desirable, and is also a prerequisite for sensitivity and quick reaction times; however, it can also lead to instability and the risk of feedback, with life-threatening epileptic seizures. Activity-dependent negative feedback in neuronal excitability improves stability in the short term, but not to the degree that is required. A hypothesis is presented here demonstrating how calibration of individual neurons - an activity which occurs only during sleep - can establish the balanced and highest possible excitability while also preserving stability in the CNS. One example of a possible mechanism is the observation of slow oscillations in EEGs made on birds and mammals during slow wave sleep. Calibration to a genetically determined level of excitability could take place in individual neurons during the slow oscillation. This is only possible offline, which explains the need for sleep. The hypothesis can explain phenomena such as the need for unconsciousness during sleep, with the disconnection of sensory stimuli, slow EEG oscillations, the relationship of sleep and epilepsy, age, the effects of sleep on neuronal firing rate and the effects of sleep deprivation and sleep homeostasis. This is with regard primarily to mammals, including humans, but also all other vertebrates.
Collapse
|
34
|
van der Peet PL, Sandanayake S, Jarrott B, Williams SJ. Discovery of N-Aryloxypropylbenzylamines as Voltage-Gated Sodium Channel Na V 1.2-Subtype-Selective Inhibitors. ChemMedChem 2019; 14:570-582. [PMID: 30676691 DOI: 10.1002/cmdc.201800781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/22/2019] [Indexed: 11/07/2022]
Abstract
We previously reported that a lipophilic N-(4'-hydroxy-3',5'-di-tert-butylbenzyl) derivative (1) of the voltage-gated sodium channel blocker mexiletine, was a more potent sodium channel blocker in vitro and in vivo. We demonstrate that replacing the chiral methylethylene linker between the amine and di-tert-butylphenol with an achiral 1,3-propylene linker (to give (2)) maintains potency in vitro. We synthesized 25 analogues bearing the 1,3-propylene linker and found that minor structural changes resulted in pronounced changes in state dependence of blocking human NaV 1.2 and 1.6 channels by high-throughput patch-clamp analysis. Compared to mexiletine, compounds 1 and 2 are highly selective NaV 1.2 inhibitors and >500 times less potent in inhibiting NaV 1.6 channels. On the other hand, a derivative (compound 4) bearing 2,6-dimethoxy groups in place of the 2,6-dimethyl groups found in mexiletine was found to be the most potent inhibitor, but is nonselective against both channels in the tonic, frequency-dependent and inactivated states. In a kindled mouse model of refractory epilepsy, compound 2 inhibited seizures induced by 6 Hz 44 mA electrical stimulation with an IC50 value of 49.9±1.6 mg kg-1 . As established sodium channel blockers do not suppress seizures in this mouse model, this indicates that 2 could be a promising candidate for treating pharmaco-resistant epilepsy.
Collapse
Affiliation(s)
- Phillip L van der Peet
- School of Chemistry and Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Saman Sandanayake
- School of Chemistry and Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Bevyn Jarrott
- Florey Institute of Neuroscience & Mental Health, Parkville, Victoria, 3010, Australia
| | - Spencer J Williams
- School of Chemistry and Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
35
|
Lebowitz JJ, Pino JA, Mackie PM, Lin M, Hurst C, Divita K, Collins AT, Koutzoumis DN, Torres GE, Khoshbouei H. Clustered Kv2.1 decreases dopamine transporter activity and internalization. J Biol Chem 2019; 294:6957-6971. [PMID: 30824538 DOI: 10.1074/jbc.ra119.007441] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/26/2019] [Indexed: 01/16/2023] Open
Abstract
The dopamine transporter (DAT) regulates dopamine neurotransmission via reuptake of dopamine released into the extracellular space. Interactions with partner proteins alter DAT function and thereby dynamically shape dopaminergic tone important for normal brain function. However, the extent and nature of these interactions are incompletely understood. Here, we describe a novel physical and functional interaction between DAT and the voltage-gated K+ channel Kv2.1 (potassium voltage-gated channel subfamily B member 1 or KCNB1). To examine the functional consequences of this interaction, we employed a combination of immunohistochemistry, immunofluorescence live-cell microscopy, co-immunoprecipitation, and electrophysiological approaches. Consistent with previous reports, we found Kv2.1 is trafficked to membrane-bound clusters observed both in vivo and in vitro in rodent dopamine neurons. Our data provide evidence that clustered Kv2.1 channels decrease DAT's lateral mobility and inhibit its internalization, while also decreasing canonical transporter activity by altering DAT's conformational equilibrium. These results suggest that Kv2.1 clusters exert a spatially discrete homeostatic braking mechanism on DAT by inducing a relative increase in inward-facing transporters. Given recent reports of Kv2.1 dysregulation in neurological disorders, it is possible that alterations in the functional interaction between DAT and Kv2.1 affect dopamine neuron activity.
Collapse
Affiliation(s)
- Joseph J Lebowitz
- From the Departments of Neuroscience and.,T32 in Movement Disorders and Neurorestoration, Fixel Center for Neurological Diseases, UF Health, Gainesville, Florida 32610
| | - Jose A Pino
- Pharmacology and Experimental Therapeutics, College of Medicine, University of Florida, Gainesville, Florida 32610 and
| | | | - Min Lin
- From the Departments of Neuroscience and
| | | | | | | | - Dimitri N Koutzoumis
- Pharmacology and Experimental Therapeutics, College of Medicine, University of Florida, Gainesville, Florida 32610 and
| | - Gonzalo E Torres
- Pharmacology and Experimental Therapeutics, College of Medicine, University of Florida, Gainesville, Florida 32610 and
| | - Habibeh Khoshbouei
- From the Departments of Neuroscience and .,T32 in Movement Disorders and Neurorestoration, Fixel Center for Neurological Diseases, UF Health, Gainesville, Florida 32610
| |
Collapse
|
36
|
Moutal A, Kalinin S, Kowal K, Marangoni N, Dupree J, Lin SX, Lis K, Lisi L, Hensley K, Khanna R, Feinstein DL. Neuronal Conditional Knockout of Collapsin Response Mediator Protein 2 Ameliorates Disease Severity in a Mouse Model of Multiple Sclerosis. ASN Neuro 2019; 11:1759091419892090. [PMID: 31795726 PMCID: PMC6893573 DOI: 10.1177/1759091419892090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/23/2019] [Accepted: 11/02/2019] [Indexed: 01/17/2023] Open
Abstract
We previously showed that treatment with lanthionine ketimine ethyl ester (LKE) reduced disease severity and axonal damage in an experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis and increased neuronal maturation and survival in vitro . A major target of LKE is collapsin response mediator protein 2 (CRMP2), suggesting this protein may mediate LKE actions. We now show that conditional knockout of CRMP2 from neurons using a CamK2a promoter to drive Cre recombinase expression reduces disease severity in the myelin oligodendrocyte glycoprotein (MOG)35–55 EAE model, associated with decreased spinal cord axonal damage, and less glial activation in the cerebellum, but not the spinal cord. Immunohistochemical staining and quantitative polymerase chain reaction show CRMP2 depletion from descending motor neurons in the motor cortex, but not from spinal cord neurons, suggesting that the benefits of CRMP2 depletion on EAE may stem from effects on upper motor neurons. In addition, mice in which CRMP2 S522 phosphorylation was prevented by substitution for an alanine residue also showed reduced EAE severity. These results show that modification of CRMP2 expression and phosphorylation can influence the course of EAE and suggests that treatment with CRMP2 modulators such as LKE act in part by reducing CRMP2 S522 phosphorylation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kinga Lis
- University of Illinois, Chicago, IL, USA
| | - Lucia Lisi
- Universita Cattolica del Sacro Cuore, Rome,
Italy
| | - Kenneth Hensley
- Arkansas College of Osteopathic Medicine, Fort Smith,
AR, USA
| | | | - Douglas L. Feinstein
- University of Illinois, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
37
|
Yermakov LM, Hong LA, Drouet DE, Griggs RB, Susuki K. Functional Domains in Myelinated Axons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:65-83. [PMID: 31760639 DOI: 10.1007/978-981-32-9636-7_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Propagation of action potentials along axons is optimized through interactions between neurons and myelinating glial cells. Myelination drives division of the axons into distinct molecular domains including nodes of Ranvier. The high density of voltage-gated sodium channels at nodes generates action potentials allowing for rapid and efficient saltatory nerve conduction. At paranodes flanking both sides of the nodes, myelinating glial cells interact with axons, forming junctions that are essential for node formation and maintenance. Recent studies indicate that the disruption of these specialized axonal domains is involved in the pathophysiology of various neurological diseases. Loss of paranodal axoglial junctions due to genetic mutations or autoimmune attack against the paranodal proteins leads to nerve conduction failure and neurological symptoms. Breakdown of nodal and paranodal proteins by calpains, the calcium-dependent cysteine proteases, may be a common mechanism involved in various nervous system diseases and injuries. This chapter reviews recent progress in neurobiology and pathophysiology of specialized axonal domains along myelinated nerve fibers.
Collapse
Affiliation(s)
- Leonid M Yermakov
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Lulu A Hong
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Domenica E Drouet
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Ryan B Griggs
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Keiichiro Susuki
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA.
| |
Collapse
|
38
|
Mechanisms of Axonal Sorting of Tau and Influence of the Axon Initial Segment on Tau Cell Polarity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:69-77. [DOI: 10.1007/978-981-32-9358-8_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
39
|
Dehghani R, Rahmani F, Rezaei N. MicroRNA in Alzheimer's disease revisited: implications for major neuropathological mechanisms. Rev Neurosci 2018; 29:161-182. [PMID: 28941357 DOI: 10.1515/revneuro-2017-0042] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/09/2017] [Indexed: 12/28/2022]
Abstract
Pathology of Alzheimer's disease (AD) goes far beyond neurotoxicity resulting from extracellular deposition of amyloid β (Aβ) plaques. Aberrant cleavage of amyloid precursor protein and accumulation of Aβ in the form of the plaque or neurofibrillary tangles are the known primary culprits of AD pathogenesis and target for various regulatory mechanisms. Hyper-phosphorylation of tau, a major component of neurofibrillary tangles, precipitates its aggregation and prevents its clearance. Lipid particles, apolipoproteins and lipoprotein receptors can act in favor or against Aβ and tau accumulation by altering neural membrane characteristics or dynamics of transport across the blood-brain barrier. Lipids also alter the oxidative/anti-oxidative milieu of the central nervous system (CNS). Irregular cell cycle regulation, mitochondrial stress and apoptosis, which follow both, are also implicated in AD-related neuronal loss. Dysfunction in synaptic transmission and loss of neural plasticity contribute to AD. Neuroinflammation is a final trail for many of the pathologic mechanisms while playing an active role in initiation of AD pathology. Alterations in the expression of microRNAs (miRNAs) in AD and their relevance to AD pathology have long been a focus of interest. Herein we focused on the precise pathomechanisms of AD in which miRNAs were implicated. We performed literature search through PubMed and Scopus using the search term: ('Alzheimer Disease') OR ('Alzheimer's Disease') AND ('microRNAs' OR 'miRNA' OR 'MiR') to reach for relevant articles. We show how a limited number of common dysregulated pathways and abnormal mechanisms are affected by various types of miRNAs in AD brain.
Collapse
Affiliation(s)
- Reihaneh Dehghani
- Molecular Immunology Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran 1419783151, Iran
| | - Farzaneh Rahmani
- Students Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Molecular Immunology Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran 1419783151, Iran
| |
Collapse
|
40
|
León-Espinosa G, Antón-Fernández A, Tapia-González S, DeFelipe J, Muñoz A. Modifications of the axon initial segment during the hibernation of the Syrian hamster. Brain Struct Funct 2018; 223:4307-4321. [PMID: 30219944 DOI: 10.1007/s00429-018-1753-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 09/09/2018] [Indexed: 02/07/2023]
Abstract
Mammalian hibernation is a natural process in which the brain undergoes profound adaptive changes that appear to protect the brain from extreme hypoxia and hypothermia. In addition to a virtual cessation of neural and metabolic activity, these changes include a decrease in adult neurogenesis; the retraction of neuronal dendritic trees; changes in dendritic spines and synaptic connections; fragmentation of the Golgi apparatus; and the phosphorylation of the microtubule-associated protein tau. Furthermore, alterations of microglial cells also occur in torpor. Importantly, all of these changes are rapidly and fully reversed when the animals arouse from torpor state, with no apparent brain damage occurring. Thus, hibernating animals are excellent natural models to study different aspects of brain plasticity. The axon initial segment (AIS) is critical for the initiation of action potentials in neurons and is an efficient site for the regulation of neural activity. This specialized structure-characterized by the expression of different types of ion channels and adhesion, scaffolding and cytoskeleton proteins-is subjected to morpho-functional plastic changes upon variations in neural activity or in pathological conditions. Here, we used immunocytochemistry and 3D confocal microscopy reconstruction techniques to measure the possible morphological differences in the AIS of neocortical (layers II-III and V) and hippocampal (CA1) neurons during the hibernation of the Syrian hamster. Our results indicate that the general integrity of the AIS is resistant to the ischemia/hypoxia conditions that are characteristic of the torpor phase of hibernation. In addition, the length of the AIS significantly increased in all the regions studied-by about 16-20% in torpor animals compared to controls, suggesting the existence of compensatory mechanisms in response to a decrease in neuronal activity during the torpor phase of hibernation. Furthermore, in double-labeling experiment, we found that the AIS in layer V of torpid animals was longer in neurons expressing phospho-tau than in those not labeled for phospho-tau. This suggests that AIS plastic changes were more marked in phospho-tau accumulating neurons. Overall, the results further emphasize that mammalian hibernation is a good physiological model to study AIS plasticity mechanisms in non-pathological conditions.
Collapse
Affiliation(s)
- Gonzalo León-Espinosa
- Instituto Cajal, CSIC, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain.,Facultad de Farmacia, Universidad San Pablo CEU, Madrid, Spain
| | - Alejandro Antón-Fernández
- Instituto Cajal, CSIC, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Silvia Tapia-González
- Instituto Cajal, CSIC, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Javier DeFelipe
- Instituto Cajal, CSIC, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| | - Alberto Muñoz
- Instituto Cajal, CSIC, Madrid, Spain. .,Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain. .,Departamento de Biología Celular, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
41
|
Klinman E, Tokito M, Holzbaur ELF. CDK5-dependent activation of dynein in the axon initial segment regulates polarized cargo transport in neurons. Traffic 2018; 18:808-824. [PMID: 28941293 DOI: 10.1111/tra.12529] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 02/03/2023]
Abstract
The unique polarization of neurons depends on selective sorting of axonal and somatodendritic cargos to their correct compartments. Axodendritic sorting and filtering occurs within the axon initial segment (AIS). However, the underlying molecular mechanisms responsible for this filter are not well understood. Here, we show that local activation of the neuronal-specific kinase cyclin-dependent kinase 5 (CDK5) is required to maintain AIS integrity, as depletion or inhibition of CDK5 induces disordered microtubule polarity and loss of AIS cytoskeletal structure. Furthermore, CDK5-dependent phosphorylation of the dynein regulator Ndel1 is required for proper re-routing of mislocalized somatodendritic cargo out of the AIS; inhibition of this pathway induces profound mis-sorting defects. While inhibition of the CDK5-Ndel1-Lis1-dynein pathway alters both axonal microtubule polarity and axodendritic sorting, we found that these defects occur on distinct timescales; brief inhibition of dynein disrupts axonal cargo sorting before loss of microtubule polarity becomes evident. Together, these studies identify CDK5 as a master upstream regulator of trafficking in vertebrate neurons, required for both AIS microtubule organization and polarized dynein-dependent sorting of axodendritic cargos, and support an ongoing and essential role for dynein at the AIS.
Collapse
Affiliation(s)
- Eva Klinman
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mariko Tokito
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Erika L F Holzbaur
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
42
|
Abstract
The axon initial segment (AIS), the domain responsible for action potential initiation and maintenance of neuronal polarity, is targeted for disruption in a variety of central nervous system pathological insults. Previous work in our laboratory implicates oxidative stress as a potential mediator of structural AIS alterations in two separate mouse models of central nervous system inflammation, as these effects were attenuated following reactive oxygen species scavenging and NADPH oxidase-2 ablation. While these studies suggest a role for oxidative stress in modulation of the AIS, the direct effects of reactive oxygen and nitrogen species (ROS/RNS) on the stability of this domain remain unclear. Here, we demonstrate that oxidative stress, as induced through treatment with 3-morpholinosydnonimine (SIN-1), a spontaneous ROS/RNS generator, drives a reversible loss of AIS protein clustering in primary cortical neurons in vitro. Pharmacological inhibition of both voltage-dependent and intracellular calcium (Ca2+) channels suggests that this mechanism of AIS disruption involves Ca2+ entry specifically through L-type voltage-dependent Ca2+ channels and its release from IP3-gated intracellular stores. Furthermore, ROS/RNS-induced AIS disruption is dependent upon activation of calpain, a Ca2+-activated protease previously shown to drive AIS modulation. Overall, we demonstrate for the first time that oxidative stress, as induced through exogenously applied ROS/RNS, is capable of driving structural alterations in the AIS complex.
Collapse
Affiliation(s)
- Kareem Clark
- 1 Department of Anatomy and Neurobiology, 72054 Virginia Commonwealth University , Richmond, VA, USA.,2 Neuroscience Curriculum, 72054 Virginia Commonwealth University , Richmond, VA, USA
| | - Brooke A Sword
- 3 20125 Hunter Holmes McGuire VA Medical Center , Richmond, VA, USA
| | - Jeffrey L Dupree
- 1 Department of Anatomy and Neurobiology, 72054 Virginia Commonwealth University , Richmond, VA, USA.,3 20125 Hunter Holmes McGuire VA Medical Center , Richmond, VA, USA
| |
Collapse
|
43
|
Pletto D, Capra S, Finardi A, Colciaghi F, Nobili P, Battaglia GS, Locatelli D, Cagnoli C. Axon outgrowth and neuronal differentiation defects after a-SMN and FL-SMN silencing in primary hippocampal cultures. PLoS One 2018; 13:e0199105. [PMID: 29902268 PMCID: PMC6001960 DOI: 10.1371/journal.pone.0199105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/31/2018] [Indexed: 12/30/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is a severe autosomal recessive disease characterized by selective motor neuron degeneration, caused by disruptions of the Survival of Motor Neuron 1 (Smn1) gene. The main product of SMN1 is the full-length SMN protein (FL-SMN), that plays an established role in mRNA splicing. FL-SMN is also involved in neurite outgrowth and axonal transport. A shorter SMN isoform, axonal-SMN or a-SMN, displays a more specific axonal localization and has remarkable axonogenic properties in NSC-34. Introduction of known SMA mutations into the a-SMN transcript leads to impairment of axon growth and morphological defects similar to those observed in SMA patients and animal models. Although there is increasing evidence for the relevance of SMN axonal functions in SMA pathogenesis, the specific contributions of FL-SMN and a-SMN are not known yet. This work aimed to analyze the differential roles of FL-SMN and a-SMN in axon outgrowth and in neuronal homeostasis during differentiation of neurons into a mature phenotype. We employed primary cultures of hippocampal neurons as a well-defined model of polarization and differentiation. By analyzing subcellular localization, we showed that a-SMN is preferentially localized in the growing axonal compartment. By specifically silencing FL-SMN or a-SMN proteins, we demonstrated that both proteins play a role in axon growth, as their selective down-regulation reduces axon length without affecting dendritic arborization. a-SMN silencing, and in minor extent FL-SMN silencing, resulted in the growth of multi-neuritic neurons, impaired in the differentiation process of selecting a single axon out of multiple neurites. In these neurons, neurites often display mixed axonal and dendritic markers and abnormal distribution of the axonal initial segment protein Ankirin G, suggesting loss of neuronal polarity. Our results indicate that a-SMN and FL-SMN are needed for neuronal polarization and organization of axonal and dendritic compartments, processes that are fundamental for neuronal function and survival.
Collapse
Affiliation(s)
- Daniela Pletto
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Silvia Capra
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Adele Finardi
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Francesca Colciaghi
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Paola Nobili
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Giorgio Stefano Battaglia
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Denise Locatelli
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Cinzia Cagnoli
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
- * E-mail:
| |
Collapse
|
44
|
Huang CYM, Rasband MN. Axon initial segments: structure, function, and disease. Ann N Y Acad Sci 2018; 1420:46-61. [PMID: 29749636 DOI: 10.1111/nyas.13718] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/13/2018] [Accepted: 03/17/2018] [Indexed: 11/28/2022]
Abstract
The axon initial segment (AIS) is located at the proximal axon and is the site of action potential initiation. This reflects the high density of ion channels found at the AIS. Adaptive changes to the location and length of the AIS can fine-tune the excitability of neurons and modulate plasticity in response to activity. The AIS plays an important role in maintaining neuronal polarity by regulating the trafficking and distribution of proteins that function in somatodendritic or axonal compartments of the neuron. In this review, we provide an overview of the AIS cytoarchitecture, mechanism of assembly, and recent studies revealing mechanisms of differential transport at the AIS that maintain axon and dendrite identities. We further discuss how genetic mutations in AIS components (i.e., ankyrins, ion channels, and spectrins) and injuries may cause neurological disorders.
Collapse
Affiliation(s)
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
45
|
Hu W, Bean BP. Differential Control of Axonal and Somatic Resting Potential by Voltage-Dependent Conductances in Cortical Layer 5 Pyramidal Neurons. Neuron 2018. [PMID: 29526554 DOI: 10.1016/j.neuron.2018.02.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Voltage-dependent conductances not only drive action potentials but also help regulate neuronal resting potential. We found differential regulation of resting potential in the proximal axon of layer 5 pyramidal neurons compared to the soma. Axonal resting potential was more negative than the soma, reflecting differential control by multiple voltage-dependent channels, including sodium channels, Cav3 channels, Kv7 channels, and HCN channels. Kv7 current is highly localized to the axon and HCN current to the soma and dendrite. Because of impedance asymmetry between the soma and axon, axonal Kv7 current has little effect on somatic resting potential, while somatodendritic HCN current strongly influences the proximal axon. In fact, depolarizing somatodendritic HCN current is critical for resting activation of all the other voltage-dependent conductances, including Kv7 in the axon. These experiments reveal complex interactions among voltage-dependent conductances to control region-specific resting potential, with somatodendritic HCN channels playing a critical enabling role.
Collapse
Affiliation(s)
- Wenqin Hu
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
46
|
Berger SL, Leo-Macias A, Yuen S, Khatri L, Pfennig S, Zhang Y, Agullo-Pascual E, Caillol G, Zhu MS, Rothenberg E, Melendez-Vasquez CV, Delmar M, Leterrier C, Salzer JL. Localized Myosin II Activity Regulates Assembly and Plasticity of the Axon Initial Segment. Neuron 2018; 97:555-570.e6. [PMID: 29395909 PMCID: PMC5805619 DOI: 10.1016/j.neuron.2017.12.039] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/24/2017] [Accepted: 12/22/2017] [Indexed: 01/08/2023]
Abstract
The axon initial segment (AIS) is the site of action potential generation and a locus of activity-dependent homeostatic plasticity. A multimeric complex of sodium channels, linked via a cytoskeletal scaffold of ankyrin G and beta IV spectrin to submembranous actin rings, mediates these functions. The mechanisms that specify the AIS complex to the proximal axon and underlie its plasticity remain poorly understood. Here we show phosphorylated myosin light chain (pMLC), an activator of contractile myosin II, is highly enriched in the assembling and mature AIS, where it associates with actin rings. MLC phosphorylation and myosin II contractile activity are required for AIS assembly, and they regulate the distribution of AIS components along the axon. pMLC is rapidly lost during depolarization, destabilizing actin and thereby providing a mechanism for activity-dependent structural plasticity of the AIS. Together, these results identify pMLC/myosin II activity as a common link between AIS assembly and plasticity.
Collapse
Affiliation(s)
- Stephen L Berger
- Neuroscience Institute and Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | | | - Stephanie Yuen
- Neuroscience Institute and Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Latika Khatri
- Neuroscience Institute and Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Sylvia Pfennig
- Neuroscience Institute and Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Yanqing Zhang
- Neuroscience Institute and Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | | | - Ghislaine Caillol
- Aix Marseille Université, CNRS, INP UMR7051, 13344 Cedex 15, Marseille, France
| | - Min-Sheng Zhu
- Model Animal Research Center and MOE Key Laboratory of Model Animal and Disease Study, Nanjing University, Nanjing 210061, China
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Carmen V Melendez-Vasquez
- Department of Biological Sciences, Hunter College, New York, NY 10065, USA; Department of Molecular, Cellular, and Developmental Biology, The Graduate Center, The City University of New York, NY 10016, USA
| | - Mario Delmar
- Division of Cardiology, NYU School of Medicine, New York, NY 10016, USA
| | | | - James L Salzer
- Neuroscience Institute and Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
47
|
The Axon Initial Segment: An Updated Viewpoint. J Neurosci 2018; 38:2135-2145. [PMID: 29378864 DOI: 10.1523/jneurosci.1922-17.2018] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/20/2018] [Accepted: 01/25/2018] [Indexed: 12/20/2022] Open
Abstract
At the base of axons sits a unique compartment called the axon initial segment (AIS). The AIS generates and shapes the action potential before it is propagated along the axon. Neuronal excitability thus depends crucially on the AIS composition and position, and these adapt to developmental and physiological conditions. The AIS also demarcates the boundary between the somatodendritic and axonal compartments. Recent studies have brought insights into the molecular architecture of the AIS and how it regulates protein trafficking. This Viewpoints article summarizes current knowledge about the AIS and highlights future challenges in understanding this key actor of neuronal physiology.
Collapse
|
48
|
Luarte A, Cornejo VH, Bertin F, Gallardo J, Couve A. The axonal endoplasmic reticulum: One organelle-many functions in development, maintenance, and plasticity. Dev Neurobiol 2017; 78:181-208. [PMID: 29134778 DOI: 10.1002/dneu.22560] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is highly conserved in eukaryotes and neurons. Indeed, the localization of the organelle in axons has been known for nearly half a century. However, the relevance of the axonal ER is only beginning to emerge. In this review, we discuss the structure of the ER in axons, examining the role of ER-shaping proteins and highlighting reticulons. We analyze the multiple functions of the ER and their potential contribution to axonal physiology. First, we examine the emerging roles of the axonal ER in lipid synthesis, protein translation, processing, quality control, and secretory trafficking of transmembrane proteins. We also review the impact of the ER on calcium dynamics, focusing on intracellular mechanisms and functions. We describe the interactions between the ER and endosomes, mitochondria, and synaptic vesicles. Finally, we analyze available proteomic data of axonal preparations to reveal the dynamic functionality of the ER in axons during development. We suggest that the dynamic proteome and a validated axonal interactome, together with state-of-the-art methodologies, may provide interesting research avenues in axon physiology that may extend to pathology and regeneration. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 181-208, 2018.
Collapse
Affiliation(s)
- Alejandro Luarte
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Víctor Hugo Cornejo
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Francisca Bertin
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Javiera Gallardo
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrés Couve
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
49
|
Trafficking of Kv2.1 Channels to the Axon Initial Segment by a Novel Nonconventional Secretory Pathway. J Neurosci 2017; 37:11523-11536. [PMID: 29042434 DOI: 10.1523/jneurosci.3510-16.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 09/09/2017] [Indexed: 02/07/2023] Open
Abstract
Kv2.1 is a major delayed-rectifier voltage-gated potassium channel widely expressed in neurons of the CNS. Kv2.1 localizes in high-density cell-surface clusters in the soma and proximal dendrites as well as in the axon initial segment (AIS). Given the crucial roles of both of these compartments in integrating signal input and then generating output, this localization of Kv2.1 is ideal for regulating the overall excitability of neurons. Here we used fluorescence recovery after photobleaching imaging, mutagenesis, and pharmacological interventions to investigate the molecular mechanisms that control the localization of Kv2.1 in these two different membrane compartments in cultured rat hippocampal neurons of mixed sex. Our data uncover a unique ability of Kv2.1 channels to use two molecularly distinct trafficking pathways to accomplish this. Somatodendritic Kv2.1 channels are targeted by the conventional secretory pathway, whereas axonal Kv2.1 channels are targeted by a nonconventional trafficking pathway independent of the Golgi apparatus. We further identified a new AIS trafficking motif in the C-terminus of Kv2.1, and show that putative phosphorylation sites in this region are critical for the restricted and clustered localization in the AIS. These results indicate that neurons can regulate the expression and clustering of Kv2.1 in different membrane domains independently by using two distinct localization mechanisms, which would allow neurons to precisely control local membrane excitability.SIGNIFICANCE STATEMENT Our study uncovered a novel mechanism that targets the Kv2.1 voltage-gated potassium channel to two distinct trafficking pathways and two distinct subcellular destinations: the somatodendritic plasma membrane and that of the axon initial segment. We also identified a distinct motif, including putative phosphorylation sites, that is important for the AIS localization. This raises the possibility that the destination of a channel protein can be dynamically regulated via changes in post-translational modification, which would impact the excitability of specific membrane compartments.
Collapse
|
50
|
Jamann N, Jordan M, Engelhardt M. Activity-dependent axonal plasticity in sensory systems. Neuroscience 2017; 368:268-282. [PMID: 28739523 DOI: 10.1016/j.neuroscience.2017.07.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/23/2017] [Accepted: 07/14/2017] [Indexed: 12/21/2022]
Abstract
The rodent whisker-to-barrel cortex pathway is a classic model to study the effects of sensory experience and deprivation on neuronal circuit formation, not only during development but also in the adult. Decades of research have produced a vast body of evidence highlighting the fundamental role of neuronal activity (spontaneous and/or sensory-evoked) for circuit formation and function. In this context, it has become clear that neuronal adaptation and plasticity is not just a function of the neonatal brain, but persists into adulthood, especially after experience-driven modulation of network status. Mechanisms for structural remodeling of the somatodendritic or axonal domain include microscale alterations of neurites or synapses. At the same time, functional alterations at the nanoscale such as expression or activation changes of channels and receptors contribute to the modulation of intrinsic excitability or input-output relationships. However, it remains elusive how these forms of structural and functional plasticity come together to shape neuronal network formation and function. While specifically somatodendritic plasticity has been studied in great detail, the role of axonal plasticity, (e.g. at presynaptic boutons, branches or axonal microdomains), is rather poorly understood. Therefore, this review will only briefly highlight somatodendritic plasticity and instead focus on axonal plasticity. We discuss (i) the role of spontaneous and sensory-evoked plasticity during critical periods, (ii) the assembly of axonal presynaptic sites, (iii) axonal plasticity in the mature brain under baseline and sensory manipulation conditions, and finally (iv) plasticity of electrogenic axonal microdomains, namely the axon initial segment, during development and in the mature CNS.
Collapse
Affiliation(s)
- Nora Jamann
- Institute of Neuroanatomy, Medical Faculty Mannheim, CBTM, Heidelberg University, Germany
| | - Merryn Jordan
- Institute of Neuroanatomy, Medical Faculty Mannheim, CBTM, Heidelberg University, Germany
| | - Maren Engelhardt
- Institute of Neuroanatomy, Medical Faculty Mannheim, CBTM, Heidelberg University, Germany.
| |
Collapse
|