1
|
Marcou T, Revilla TA, Křivan V. Evolutionary emergence of plant and pollinator polymorphisms in consumer-resource mutualisms. J Theor Biol 2024; 594:111911. [PMID: 39069203 DOI: 10.1016/j.jtbi.2024.111911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Mutualism is considered a major driver of biodiversity, as it enables extensive codiversification in terrestrial communities. An important case is flowering plants and their pollinators, where convergent selection on plant and pollinator traits is combined with divergent selection to minimize niche overlap within each group. In this article, we study the emergence of polymorphisms in communities structured trophically: plants are the primary producers of resources required by the primary consumers, the servicing pollinators. We model natural selection on traits affecting mutualism between plants and pollinators and competition within these two trophic levels. We show that phenotypic diversification is favored by broad plant niches, suggesting that bottom-up trophic control leads to codiversification. Mutualistic generalism, i.e., tolerance to differences in plant and pollinator traits, promotes a cascade of evolutionary branching favored by bottom-up plant competition dependent on similarity and top-down mutualistic services that broaden plant niches. Our results predict a strong positive correlation between the diversity of plant and pollinator phenotypes, which previous work has partially attributed to the trophic dependence of pollinators on plants.
Collapse
Affiliation(s)
- Thomas Marcou
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
| | - Tomás A Revilla
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic; Institute of Entomology, Biology Centre, Czech Academy of Science, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Vlastimil Křivan
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic; Institute of Entomology, Biology Centre, Czech Academy of Science, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
2
|
Barreto E, Boehm MMA, Ogutcen E, Abrahamczyk S, Kessler M, Bascompte J, Dellinger AS, Bello C, Dehling DM, Duchenne F, Kaehler M, Lagomarsino LP, Lohmann LG, Maglianesi MA, Morlon H, Muchhala N, Ornelas JF, Perret M, Salinas NR, Smith SD, Vamosi JC, Varassin IG, Graham CH. Macroevolution of the plant-hummingbird pollination system. Biol Rev Camb Philos Soc 2024; 99:1831-1847. [PMID: 38705863 DOI: 10.1111/brv.13094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
Plant-hummingbird interactions are considered a classic example of coevolution, a process in which mutually dependent species influence each other's evolution. Plants depend on hummingbirds for pollination, whereas hummingbirds rely on nectar for food. As a step towards understanding coevolution, this review focuses on the macroevolutionary consequences of plant-hummingbird interactions, a relatively underexplored area in the current literature. We synthesize prior studies, illustrating the origins and dynamics of hummingbird pollination across different angiosperm clades previously pollinated by insects (mostly bees), bats, and passerine birds. In some cases, the crown age of hummingbirds pre-dates the plants they pollinate. In other cases, plant groups transitioned to hummingbird pollination early in the establishment of this bird group in the Americas, with the build-up of both diversities coinciding temporally, and hence suggesting co-diversification. Determining what triggers shifts to and away from hummingbird pollination remains a major open challenge. The impact of hummingbirds on plant diversification is complex, with many tropical plant lineages experiencing increased diversification after acquiring flowers that attract hummingbirds, and others experiencing no change or even a decrease in diversification rates. This mixed evidence suggests that other extrinsic or intrinsic factors, such as local climate and isolation, are important covariables driving the diversification of plants adapted to hummingbird pollination. To guide future studies, we discuss the mechanisms and contexts under which hummingbirds, as a clade and as individual species (e.g. traits, foraging behaviour, degree of specialization), could influence plant evolution. We conclude by commenting on how macroevolutionary signals of the mutualism could relate to coevolution, highlighting the unbalanced focus on the plant side of the interaction, and advocating for the use of species-level interaction data in macroevolutionary studies.
Collapse
Affiliation(s)
- Elisa Barreto
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Mannfred M A Boehm
- Biodiversity Research Centre, University of British Columbia, 2212 Main Mall, Vancouver, BC, Canada
| | - Ezgi Ogutcen
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Hellbrunner Straße 34, Salzburg, 5020, Austria
| | - Stefan Abrahamczyk
- Nees Institute for Biodiversity of Plant, University of Bonn, Meckenheimer Allee 170, Bonn, 53115, Germany
- State Museum of Natural History Stuttgart, Botany Department, Rosenstein 1, Stuttgart, 70191, Germany
| | - Michael Kessler
- Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland
| | - Jordi Bascompte
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurestrasse 190, Zurich, 8057, Switzerland
| | - Agnes S Dellinger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, 1030, Austria
| | - Carolina Bello
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, Zurich, 8092, Switzerland
| | - D Matthias Dehling
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, 3800, Victoria, Australia
| | - François Duchenne
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Miriam Kaehler
- Departamento de Botânica, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos 100, Curitiba, 81531-980, Brazil
| | - Laura P Lagomarsino
- Department of Biological Sciences, Shirley C. Tucker Herbarium, Louisiana State University, Life Science Annex Building A257, Baton Rouge, 70803, LA, USA
| | - Lúcia G Lohmann
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Butantã, São Paulo, 05508-090, Brazil
- Department of Integrative Biology, University and Jepson Herbaria, University of California, Berkeley, 1001 Valley Life Sciences Building, Berkeley, 94720-2465, CA, USA
| | - María A Maglianesi
- Escuela de Ciencias Exactas y Naturales, Universidad Estatal a Distancia, San José, 474-2050, Costa Rica
| | - Hélène Morlon
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, UMR 8197, 46 rue d'Ulm, Paris, 75005, France
| | - Nathan Muchhala
- Department of Biology, University of Missouri - St. Louis, St. Louis, 63121, MO, USA
| | - Juan Francisco Ornelas
- Departamento de Biología Evolutiva, Instituto de Ecología, A.C. (INECOL), Xalapa, Veracruz, 91073, Mexico
| | - Mathieu Perret
- Department of Plant Sciences, Conservatoire et Jardin Botaniques de Genève, University of Geneva, Chem. de l'Impératrice 1, 1292 Pregny-Chambésy, Geneva, Switzerland
| | - Nelson R Salinas
- Pfizer Plant Research Laboratory, New York Botanical Garden, 2900 Southern Blvd., Bronx, New York City, 10458, NY, USA
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado-Boulder, 1900 Pleasant St, Boulder, 80302, CO, USA
| | - Jana C Vamosi
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, T2N1N4, AB, Canada
| | - Isabela G Varassin
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
- Departamento de Botânica, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos 100, Curitiba, 81531-980, Brazil
| | - Catherine H Graham
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| |
Collapse
|
3
|
Laine AL, Tylianakis JM. The coevolutionary consequences of biodiversity change. Trends Ecol Evol 2024; 39:745-756. [PMID: 38705768 DOI: 10.1016/j.tree.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024]
Abstract
Coevolutionary selection is a powerful process shaping species interactions and biodiversity. Anthropogenic global environmental change is reshaping planetary biodiversity, including by altering the structure and intensity of interspecific interactions. However, remarkably little is understood of how coevolutionary selection is changing in the process. Here, we outline three interrelated pathways - change in evolutionary potential, change in community composition, and shifts in interaction trait distributions - that are expected to redirect coevolutionary selection under biodiversity change. Assessing how both ecological and evolutionary rules governing species interactions are disrupted under anthropogenic global change is of paramount importance to understand the past, present, and future of Earth's biodiversity.
Collapse
Affiliation(s)
- Anna-Liisa Laine
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikinkaari 1 (PO Box 65), University of Helsinki, FI-00014 Helsinki, Finland.
| | - Jason M Tylianakis
- Bioprotection Aotearoa, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| |
Collapse
|
4
|
Cosmo LG, Acquaviva JN, Guimarães PR, Pires MM. Coevolutionary hotspots favour dispersal and fuel biodiversity in mutualistic landscapes under environmental changes. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230133. [PMID: 38913059 PMCID: PMC11391304 DOI: 10.1098/rstb.2023.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 06/25/2024] Open
Abstract
Mutualistic interactions are key to sustaining Earth's biodiversity. Yet, we are only beginning to understand how coevolution in mutualistic assemblages can shape the distribution and persistence of species across landscapes. Here, we combine the geographic mosaic theory of coevolution with metacommunity dynamics to understand how geographically structured selection can shape patterns of richness, dispersal, extinction and persistence of mutualistic species. In this model, species may experience strong or weak reciprocal selection imposed by mutualisms within each patch (i.e. hotspots and coldspots, respectively). Using numerical simulations, we show that mutualistic coevolution leads to a concentration of species richness at hotspots. Such an effect occurs because hotspots sustain higher rates of colonization and lower rates of extinction than coldspots, whether the environment changes or not. Importantly, under environmental changes, coldspots fail to sustain a positive colonization-to-extinction balance. Rather, species persistence within coldspots relies on hotspots acting as biodiversity sources and enhancing population dispersal across the landscape. In fact, even a few hotspots in the landscape can fuel the spatial network of dispersal of populations in the metacommunity. Our study highlights that coevolutionary hotspots can act as biodiversity sources, favouring colonization and allowing species to expand their distribution across landscapes even in changing environments. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.
Collapse
Affiliation(s)
- Leandro G Cosmo
- Programa de Pós-Graduação em Ecologia, Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo-USP , São Paulo, State of São Paulo, Brazil
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190 , Zurich CH-8057, Switzerland
| | - Julia N Acquaviva
- Instituto de Biologia, Programa de Pós-Graduação em Ecologia, Universidade Estadual de Campinas-UNICAMP , Campinas, State of São Paulo, Brazil
| | - Paulo R Guimarães
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo-USP , São Paulo, State of São Paulo, Brazil
| | - Mathias M Pires
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas-UNICAMP , Campinas, State of São Paulo, Brazil
| |
Collapse
|
5
|
Martins LP, Stouffer DB, Blendinger PG, Böhning-Gaese K, Costa JM, Dehling DM, Donatti CI, Emer C, Galetti M, Heleno R, Menezes Í, Morante-Filho JC, Muñoz MC, Neuschulz EL, Pizo MA, Quitián M, Ruggera RA, Saavedra F, Santillán V, Schleuning M, da Silva LP, Ribeiro da Silva F, Tobias JA, Traveset A, Vollstädt MGR, Tylianakis JM. Birds optimize fruit size consumed near their geographic range limits. Science 2024; 385:331-336. [PMID: 39024457 DOI: 10.1126/science.adj1856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 05/13/2024] [Indexed: 07/20/2024]
Abstract
Animals can adjust their diet to maximize energy or nutritional intake. For example, birds often target fruits that match their beak size because those fruits can be consumed more efficiently. We hypothesized that pressure to optimize diet-measured as matching between fruit and beak size-increases under stressful environments, such as those that determine species' range edges. Using fruit-consumption and trait information for 97 frugivorous bird and 831 plant species across six continents, we demonstrate that birds feed more frequently on closely size-matched fruits near their geographic range limits. This pattern was particularly strong for highly frugivorous birds, whereas opportunistic frugivores showed no such tendency. These findings highlight how frugivore interactions might respond to stressful conditions and reveal that trait matching may not predict resource use consistently.
Collapse
Affiliation(s)
- Lucas P Martins
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private bag 4800, Christchurch 8140, Aotearoa New Zealand
| | - Daniel B Stouffer
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private bag 4800, Christchurch 8140, Aotearoa New Zealand
| | - Pedro G Blendinger
- Instituto de Ecología Regional, Universidad Nacional de Tucumán and CONICET, CC 34, 4107 Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 2005, 4000 Tucumán, Argentina
| | - Katrin Böhning-Gaese
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60439 Frankfurt am Main, Germany
| | - José Miguel Costa
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - D Matthias Dehling
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
| | - Camila I Donatti
- Conservation International, Arlington, VA 22202, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-5640, USA
| | - Carine Emer
- Rio de Janeiro Botanical Garden Research Institute, Rua Pacheco Leão 915, Jardim Botânico, Rio de Janeiro, RJ 22460-030, Brazil
- Center for Reseach on Biodiversity and Climate Change (CBioClima), Department of Biodiversity, São Paulo State University (UNESP), Rio Claro, SP 13506-900, Brazil
| | - Mauro Galetti
- Center for Reseach on Biodiversity and Climate Change (CBioClima), Department of Biodiversity, São Paulo State University (UNESP), Rio Claro, SP 13506-900, Brazil
- Kimberly Green Latin American and Caribbean Center, Florida International University (FIU), Miami, FL 33199, USA
| | - Ruben Heleno
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ícaro Menezes
- Applied Conservation Ecology Lab, Santa Cruz State University, Rodovia Ilhéus- Itabuna, km 16, Salobrinho, Ilhéus, BA 45662-000, Brazil
| | - José Carlos Morante-Filho
- Applied Conservation Ecology Lab, Santa Cruz State University, Rodovia Ilhéus- Itabuna, km 16, Salobrinho, Ilhéus, BA 45662-000, Brazil
| | - Marcia C Muñoz
- Programa de Biología, Universidad de La Salle, Carrera 2 # 10-70, Bogotá, Colombia
| | - Eike Lena Neuschulz
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Marco Aurélio Pizo
- Center for Reseach on Biodiversity and Climate Change (CBioClima), Department of Biodiversity, São Paulo State University (UNESP), Rio Claro, SP 13506-900, Brazil
| | - Marta Quitián
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Systematic Zoology Laboratory, Tokyo Metropolitan University TMU, Tokyo, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
- Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), Miquel Marqués 21, 07190 Esporles, Mallorca, Balearic Islands, Spain
| | - Roman A Ruggera
- Instituto de Ecorregiones Andinas (Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Jujuy), Canónigo Gorriti 237, Y4600 San Salvador de Jujuy, Jujuy, Argentina
- Cátedra de Diversidad Biológica III, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, Y4600 San Salvador de Jujuy, Jujuy, Argentina
| | - Francisco Saavedra
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Instituto de Ecología, Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Vinicio Santillán
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Unidad Académica de Posgrado, Universidad Católica de Cuenca, Av. de las Américas, Cuenca, Ecuador
| | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Luís Pascoal da Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Fernanda Ribeiro da Silva
- Laboratory of Ecology and Management of Forest Ecosystems, University of Santa Catarina (UFSC), Trindade, Florianópolis, SC 88040-900, Brazil
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Anna Traveset
- Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), Miquel Marqués 21, 07190 Esporles, Mallorca, Balearic Islands, Spain
| | - Maximilian G R Vollstädt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), Miquel Marqués 21, 07190 Esporles, Mallorca, Balearic Islands, Spain
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Oester Voldgade 5-7, 1350 Copenhagen K, Denmark
| | - Jason M Tylianakis
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private bag 4800, Christchurch 8140, Aotearoa New Zealand
- Bioprotection Aotearoa, University of Canterbury, Private bag 4800, Christchurch 8140, Aotearoa New Zealand
| |
Collapse
|
6
|
Ten Caten C, Dallas T. Latitudinal specificity of plant-avian frugivore interactions. J Anim Ecol 2024; 93:958-969. [PMID: 38826033 DOI: 10.1111/1365-2656.14116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/06/2024] [Indexed: 06/04/2024]
Abstract
Broad-scale assessments of plant-frugivore interactions indicate the existence of a latitudinal gradient in interaction specialization. The specificity (i.e. the similarity of the interacting partners) of plant-frugivore interactions could also change latitudinally given that differences in resource availability could favour species to become more or less specific in their interactions across latitudes. Species occurring in the tropics could be more taxonomically, phylogenetically and functionally specific in their interactions because of a wide range of resources that are constantly available in these regions that would allow these species to become more specialized in their resource usage. We used a data set on plant-avian frugivore interactions spanning a wide latitudinal range to examine these predictions, and we evaluated the relationship between latitude and taxonomic, phylogenetic and functional specificity of plant and frugivore interactions. These relationships were assessed using data on population interactions (population level), species means (species level) and community means (community level). We found that the specificity of plant-frugivore interactions is generally not different from null models. Although statistically significant relationships were often observed between latitude and the specificity of plant-frugivore interactions, the direction of these relationships was variable and they also were generally weak and had low explanatory power. These results were consistent across the three specificity measures and levels of organization, suggesting that there might be an interplay between different mechanisms driving the interactions between plants and frugivores across latitudes.
Collapse
Affiliation(s)
- Cleber Ten Caten
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Tad Dallas
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
7
|
Pontarp M, Runemark A, Friberg M, Opedal ØH, Persson AS, Wang L, Smith HG. Evolutionary plant-pollinator responses to anthropogenic land-use change: impacts on ecosystem services. Biol Rev Camb Philos Soc 2024; 99:372-389. [PMID: 37866400 DOI: 10.1111/brv.13026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
Agricultural intensification at field and landscape scales, including increased use of agrochemicals and loss of semi-natural habitats, is a major driver of insect declines and other community changes. Efforts to understand and mitigate these effects have traditionally focused on ecological responses. At the same time, adaptations to pesticide use and habitat fragmentation in both insects and flowering plants show the potential for rapid evolution. Yet we lack an understanding of how such evolutionary responses may propagate within and between trophic levels with ensuing consequences for conservation of species and ecological functions in agroecosystems. Here, we review the literature on the consequences of agricultural intensification on plant and animal evolutionary responses and interactions. We present a novel conceptualization of evolutionary change induced by agricultural intensification at field and landscape scales and emphasize direct and indirect effects of rapid evolution on ecosystem services. We exemplify by focusing on economically and ecologically important interactions between plants and pollinators. We showcase available eco-evolutionary theory and plant-pollinator modelling that can improve predictions of how agricultural intensification affects interaction networks, and highlight available genetic and trait-focused methodological approaches. Specifically, we focus on how spatial genetic structure affects the probability of propagated responses, and how the structure of interaction networks modulates effects of evolutionary change in individual species. Thereby, we highlight how combined trait-based eco-evolutionary modelling, functionally explicit quantitative genetics, and genomic analyses may shed light on conditions where evolutionary responses impact important ecosystem services.
Collapse
Affiliation(s)
- Mikael Pontarp
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
| | - Anna Runemark
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
| | - Magne Friberg
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
| | - Øystein H Opedal
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
| | - Anna S Persson
- Centre for Environmental and Climate Science (CEC), Lund University, Sölvegatan 37, Lund, 22362, Sweden
| | - Lingzi Wang
- Centre for Environmental and Climate Science (CEC), Lund University, Sölvegatan 37, Lund, 22362, Sweden
- School of Mathematical Sciences, University of Southampton, 58 Salisbury Rd, Southampton, SO17 1BJ, UK
| | - Henrik G Smith
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
- Centre for Environmental and Climate Science (CEC), Lund University, Sölvegatan 37, Lund, 22362, Sweden
| |
Collapse
|
8
|
Ballarin CS, Vizentin-Bugoni J, Hachuy-Filho L, Amorim FW. Imprints of indirect interactions on a resource-mediated ant-plant network across different levels of network organization. Oecologia 2024; 204:661-673. [PMID: 38448764 DOI: 10.1007/s00442-024-05522-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
Indirect interactions are pivotal in the evolution of interacting species and the assembly of populations and communities. Nevertheless, despite recently being investigated in plant-animal mutualism at the community level, indirect interactions have not been studied in resource-mediated mutualisms involving plant individuals that share different animal species as partners within a population (i.e., individual-based networks). Here, we analyzed an individual-based ant-plant network to evaluate how resource properties affect indirect interaction patterns and how changes in indirect links leave imprints in the network across multiple levels of network organization. Using complementary analytical approaches, we described the patterns of indirect interactions at the micro-, meso-, and macro-scale. We predicted that plants offering intermediate levels of nectar quantity and quality interact with more diverse ant assemblages. The increased number of ant species would cause a higher potential for indirect interactions in all scales evaluated. We found that nectar properties modified patterns of indirect interactions of plant individuals that share mutualistic partners, leaving imprints across different network scales. To our knowledge, this is the first study tracking indirect interactions in multiple scales within an individual-based network. We show that functional traits of interacting species, such as nectar properties, may lead to changes in indirect interactions, which could be tracked across different levels of the network organization evaluated.
Collapse
Affiliation(s)
- Caio S Ballarin
- Laboratório de Ecologia da Polinização e Interações, LEPI, Departamento de Biodiversidade e Bioestatística, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Rua Prof. Dr. Antonio Celso Wagner Zanin, Botucatu, São Paulo, CEP 18618-689, Brazil.
- Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, São Paulo, CEP 18618-689, Brazil.
| | - Jeferson Vizentin-Bugoni
- Programa de Pós-Graduação Em Biodiversidade Animal, Departamento de Ecologia, Zoologia e Genética, Universidade Federal de Pelotas, Campus Universitário, Capão do Leão, RS, CEP 96010-900, Brasil
| | - Leandro Hachuy-Filho
- Laboratório de Ecologia da Polinização e Interações, LEPI, Departamento de Biodiversidade e Bioestatística, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Rua Prof. Dr. Antonio Celso Wagner Zanin, Botucatu, São Paulo, CEP 18618-689, Brazil
- Programa de Pós-Graduação Em Zoologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, São Paulo, CEP 18618-689, Brazil
| | - Felipe W Amorim
- Laboratório de Ecologia da Polinização e Interações, LEPI, Departamento de Biodiversidade e Bioestatística, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Rua Prof. Dr. Antonio Celso Wagner Zanin, Botucatu, São Paulo, CEP 18618-689, Brazil
- Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, São Paulo, CEP 18618-689, Brazil
- Programa de Pós-Graduação Em Zoologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, São Paulo, CEP 18618-689, Brazil
| |
Collapse
|
9
|
Pedraza F, Liu H, Gawecka KA, Bascompte J. The Role of Indirect Effects in Coevolution along the Mutualism-Antagonism Continuum. Am Nat 2024; 203:28-42. [PMID: 38207144 DOI: 10.1086/727472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
AbstractThe web of interactions in a community drives the coevolution of species. Yet it is unclear how the outcome of species interactions influences the coevolutionary dynamics of communities. This is a pressing matter, as changes to the outcome of interactions may become more common with human-induced global change. Here, we combine network and evolutionary theory to explore coevolutionary outcomes in communities harboring mutualistic and antagonistic interactions. We show that as the ratio of mutualistic to antagonistic interactions decreases, selection imposed by direct partners outweighs that imposed by indirect partners. This weakening of indirect effects results in communities composed of species with dissimilar traits and fast rates of adaptation. These changes are more pronounced when specialist consumers are the first species to engage in antagonistic interactions. Hence, a shift in the outcome of species interactions may reverberate across communities and alter the direction and speed of coevolution.
Collapse
|
10
|
Panahi S, Do Y, Hastings A, Lai YC. Rate-induced tipping in complex high-dimensional ecological networks. Proc Natl Acad Sci U S A 2023; 120:e2308820120. [PMID: 38091288 PMCID: PMC10743502 DOI: 10.1073/pnas.2308820120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
In an ecosystem, environmental changes as a result of natural and human processes can cause some key parameters of the system to change with time. Depending on how fast such a parameter changes, a tipping point can occur. Existing works on rate-induced tipping, or R-tipping, offered a theoretical way to study this phenomenon but from a local dynamical point of view, revealing, e.g., the existence of a critical rate for some specific initial condition above which a tipping point will occur. As ecosystems are subject to constant disturbances and can drift away from their equilibrium point, it is necessary to study R-tipping from a global perspective in terms of the initial conditions in the entire relevant phase space region. In particular, we introduce the notion of the probability of R-tipping defined for initial conditions taken from the whole relevant phase space. Using a number of real-world, complex mutualistic networks as a paradigm, we find a scaling law between this probability and the rate of parameter change and provide a geometric theory to explain the law. The real-world implication is that even a slow parameter change can lead to a system collapse with catastrophic consequences. In fact, to mitigate the environmental changes by merely slowing down the parameter drift may not always be effective: Only when the rate of parameter change is reduced to practically zero would the tipping be avoided. Our global dynamics approach offers a more complete and physically meaningful way to understand the important phenomenon of R-tipping.
Collapse
Affiliation(s)
- Shirin Panahi
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ85287
| | - Younghae Do
- Department of Mathematics, Nonlinear Dynamics Mathematical Application Center, Kyungpook National University, Daegu41566, Republic of Korea
| | - Alan Hastings
- Department of Environmental Science and Policy, University of California, Davis, CA95616
- Santa Fe Institute, Santa Fe, NM87501
| | - Ying-Cheng Lai
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ85287
- Department of Physics, Arizona State University, Tempe, AZ85287
| |
Collapse
|
11
|
Wang Z, Jiang Y, Zhang M, Chu C, Chen Y, Fang S, Jin G, Jiang M, Lian JY, Li Y, Liu Y, Ma K, Mi X, Qiao X, Wang X, Wang X, Xu H, Ye W, Zhu L, Zhu Y, He F, Kembel SW. Diversity and biogeography of plant phyllosphere bacteria are governed by latitude-dependent mechanisms. THE NEW PHYTOLOGIST 2023; 240:1534-1547. [PMID: 37649282 DOI: 10.1111/nph.19235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023]
Abstract
Predicting and managing the structure and function of plant microbiomes requires quantitative understanding of community assembly and predictive models of spatial distributions at broad geographic scales. Here, we quantified the relative contribution of abiotic and biotic factors to the assembly of phyllosphere bacterial communities, and developed spatial distribution models for keystone bacterial taxa along a latitudinal gradient, by analyzing 16S rRNA gene sequences from 1453 leaf samples taken from 329 plant species in China. We demonstrated a latitudinal gradient in phyllosphere bacterial diversity and community composition, which was mostly explained by climate and host plant factors. We found that host-related factors were increasingly important in explaining bacterial assembly at higher latitudes while nonhost factors including abiotic environments, spatial proximity and plant neighbors were more important at lower latitudes. We further showed that local plant-bacteria associations were interconnected by hub bacteria taxa to form metacommunity-level networks, and the spatial distribution of these hub taxa was controlled by hosts and spatial factors with varying importance across latitudes. For the first time, we documented a latitude-dependent importance in the driving factors of phyllosphere bacteria assembly and distribution, serving as a baseline for predicting future changes in plant phyllosphere microbiomes under global change and human activities.
Collapse
Affiliation(s)
- Zihui Wang
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, H2X 1Y4, Canada
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuan Jiang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Minhua Zhang
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Chengjin Chu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yongfa Chen
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shuai Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Guangze Jin
- Center for Ecological Research, Northeast Forestry University, Harbin, 150040, China
| | - Mingxi Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Ju-Yu Lian
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yanpeng Li
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Yu Liu
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiangcheng Mi
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiujuan Qiao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xihua Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Xugao Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Han Xu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Wanhui Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Li Zhu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yan Zhu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Fangliang He
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2H1, Canada
| | - Steven W Kembel
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, H2X 1Y4, Canada
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
12
|
Cosmo LG, Assis APA, de Aguiar MAM, Pires MM, Valido A, Jordano P, Thompson JN, Bascompte J, Guimarães PR. Indirect effects shape species fitness in coevolved mutualistic networks. Nature 2023:10.1038/s41586-023-06319-7. [PMID: 37468625 DOI: 10.1038/s41586-023-06319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/13/2023] [Indexed: 07/21/2023]
Abstract
Ecological interactions are one of the main forces that sustain Earth's biodiversity. A major challenge for studies of ecology and evolution is to determine how these interactions affect the fitness of species when we expand from studying isolated, pairwise interactions to include networks of interacting species1-4. In networks, chains of effects caused by a range of species have an indirect effect on other species they do not interact with directly, potentially affecting the fitness outcomes of a variety of ecological interactions (such as mutualism)5-7. Here we apply analytical techniques and numerical simulations to 186 empirical mutualistic networks and show how both direct and indirect effects alter the fitness of species coevolving in these networks. Although the fitness of species usually increased with the number of mutualistic partners, most of the fitness variation across species was driven by indirect effects. We found that these indirect effects prevent coevolving species from adapting to their mutualistic partners and to other sources of selection pressure in the environment, thereby decreasing their fitness. Such decreases are distributed in a predictable way within networks: peripheral species receive more indirect effects and experience higher reductions in fitness than central species. This topological effect was also evident when we analysed an empirical study of an invasion of pollination networks by honeybees. As honeybees became integrated as a central species within networks, they increased the contribution of indirect effects on several other species, reducing their fitness. Our study shows how and why indirect effects can govern the adaptive landscape of species-rich mutualistic assemblages.
Collapse
Affiliation(s)
- Leandro G Cosmo
- Programa de Pós-Graduação em Ecologia, Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| | - Ana Paula A Assis
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Marcus A M de Aguiar
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, Campinas, Brazil
| | - Mathias M Pires
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Alfredo Valido
- Island Ecology and Evolution Research Group, Institute of Natural Products and Agrobiology (IPNA-CSIC), San Cristóbal de La Laguna, Spain
| | - Pedro Jordano
- Estación Biológica de Doñana, CSIC, Sevilla, Spain
- Departamento de Biologia Vegetal y Ecologia, Universidad de Sevilla, Sevilla, Spain
| | - John N Thompson
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Jordi Bascompte
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Paulo R Guimarães
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Doré M, Willmott K, Lavergne S, Chazot N, Freitas AVL, Fontaine C, Elias M. Mutualistic interactions shape global spatial congruence and climatic niche evolution in Neotropical mimetic butterflies. Ecol Lett 2023; 26:843-857. [PMID: 36929564 DOI: 10.1111/ele.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 03/18/2023]
Abstract
Understanding the mechanisms underlying species distributions and coexistence is both a priority and a challenge for biodiversity hotspots such as the Neotropics. Here, we highlight that Müllerian mimicry, where defended prey species display similar warning signals, is key to the maintenance of biodiversity in the c. 400 species of the Neotropical butterfly tribe Ithomiini (Nymphalidae: Danainae). We show that mimicry drives large-scale spatial association among phenotypically similar species, providing new empirical evidence for the validity of Müller's model at a macroecological scale. Additionally, we show that mimetic interactions drive the evolutionary convergence of species climatic niche, thereby strengthening the co-occurrence of co-mimetic species. This study provides new insights into the importance of mutualistic interactions in shaping both niche evolution and species assemblages at large spatial scales. Critically, in the context of climate change, our results highlight the vulnerability to extinction cascades of such adaptively assembled communities tied by positive interactions.
Collapse
Affiliation(s)
- Maël Doré
- Institut de Systématique, Evolution, Biodiversité, MNHN-CNRS-Sorbonne Université-EPHE-Université des Antilles, Muséum national d'Histoire naturelle, Paris, France.,Centre d'Ecologie et des Sciences de la Conservation, UMR 7204 MNHN-CNRS-Sorbonne Université, Muséum national d'Histoire naturelle, Paris, France
| | - Keith Willmott
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Sebastien Lavergne
- Laboratoire d'Ecologie Alpine, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Grenoble, France
| | - Nicolas Chazot
- Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - André V L Freitas
- Departamento de Biologia Animal and Museu de Diversidade Biológica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Colin Fontaine
- Centre d'Ecologie et des Sciences de la Conservation, UMR 7204 MNHN-CNRS-Sorbonne Université, Muséum national d'Histoire naturelle, Paris, France
| | - Marianne Elias
- Institut de Systématique, Evolution, Biodiversité, MNHN-CNRS-Sorbonne Université-EPHE-Université des Antilles, Muséum national d'Histoire naturelle, Paris, France.,Smithsonian Tropical Research Institute, Panama, Panama
| |
Collapse
|
14
|
Fernández M, Kaur J, Sharma J. Co-occurring epiphytic orchids have specialized mycorrhizal fungal niches that are also linked to ontogeny. MYCORRHIZA 2023; 33:87-105. [PMID: 36651985 DOI: 10.1007/s00572-022-01099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Mycorrhizal symbiosis has been related to the coexistence and community assembly of coexisting orchids in few studies despite their obligate dependence on mycorrhizal partners to establish and survive. In hyper-diverse environments like tropical rain forests, coexistence of epiphytic orchids may be facilitated through mycorrhizal fungal specialization (i.e., sets of unique and dominant mycorrhizal fungi associated with a particular host species). However, information on the role of orchid mycorrhizal fungi (OMF) in niche differentiation and coexistence of epiphytic orchids is still scarce. In this study, we sought to identify the variation in fungal preferences of four co-occurring epiphytic orchids in a tropical rainforest in Costa Rica by addressing the identity and composition of their endophytic fungal and OMF communities across species and life stages. We show that the endophytic fungal communities are formed mainly of previously recognized OMF taxa, and that the four coexisting orchid species have both a set of shared mycorrhizal fungi and a group of fungi unique to an orchid species. We also found that adult plants keep the OMF of the juvenile stage while adding new mycobionts over time. This study provides evidence for the utilization of specific OMF that may be involved in niche segregation, and for an aggregation mechanism where adult orchids keep initial fungal mycobionts of the juvenile stage while adding others.
Collapse
Affiliation(s)
- Melania Fernández
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.
- Lankester Botanical Garden, University of Costa Rica, Cartago, 30109, Costa Rica.
- Herbarium UCH, Universidad Autónoma de Chiriquí, David, Chiriquí, Panama.
| | - Jaspreet Kaur
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jyotsna Sharma
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
15
|
Hu Y, Wang X, Xu Y, Yang H, Tong Z, Tian R, Xu S, Yu L, Guo Y, Shi P, Huang S, Yang G, Shi S, Wei F. Molecular mechanisms of adaptive evolution in wild animals and plants. SCIENCE CHINA. LIFE SCIENCES 2023; 66:453-495. [PMID: 36648611 PMCID: PMC9843154 DOI: 10.1007/s11427-022-2233-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023]
Abstract
Wild animals and plants have developed a variety of adaptive traits driven by adaptive evolution, an important strategy for species survival and persistence. Uncovering the molecular mechanisms of adaptive evolution is the key to understanding species diversification, phenotypic convergence, and inter-species interaction. As the genome sequences of more and more non-model organisms are becoming available, the focus of studies on molecular mechanisms of adaptive evolution has shifted from the candidate gene method to genetic mapping based on genome-wide scanning. In this study, we reviewed the latest research advances in wild animals and plants, focusing on adaptive traits, convergent evolution, and coevolution. Firstly, we focused on the adaptive evolution of morphological, behavioral, and physiological traits. Secondly, we reviewed the phenotypic convergences of life history traits and responding to environmental pressures, and the underlying molecular convergence mechanisms. Thirdly, we summarized the advances of coevolution, including the four main types: mutualism, parasitism, predation and competition. Overall, these latest advances greatly increase our understanding of the underlying molecular mechanisms for diverse adaptive traits and species interaction, demonstrating that the development of evolutionary biology has been greatly accelerated by multi-omics technologies. Finally, we highlighted the emerging trends and future prospects around the above three aspects of adaptive evolution.
Collapse
Affiliation(s)
- Yibo Hu
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaoping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Yongchao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hui Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zeyu Tong
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ran Tian
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Yalong Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Shuangquan Huang
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| | - Guang Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Fuwen Wei
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
16
|
Terrestrial food web of the Malpelo Fauna and Flora Sanctuary, Colombia: An analysis from a topological approach. ECOL INFORM 2023. [DOI: 10.1016/j.ecoinf.2023.102074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
17
|
Cosmo LG, Sales LP, Guimarães PR, Pires MM. Mutualistic coevolution and community diversity favour persistence in metacommunities under environmental changes. Proc Biol Sci 2023; 290:20221909. [PMID: 36629106 PMCID: PMC9832548 DOI: 10.1098/rspb.2022.1909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023] Open
Abstract
Linking local to regional ecological and evolutionary processes is key to understand the response of Earth's biodiversity to environmental changes. Here we integrate evolution and mutualistic coevolution in a model of metacommunity dynamics and use numerical simulations to understand how coevolution can shape species distribution and persistence in landscapes varying in space and time. Our simulations show that coevolution and species richness can synergistically shape distribution patterns by increasing colonization and reducing extinction of populations in metacommunities. Although conflicting selective pressures emerging from mutualisms may increase mismatches with the local environment and the rate of local extinctions, coevolution increases trait matching among mutualists at the landscape scale, counteracting local maladaptation and favouring colonization and range expansions. Our results show that by facilitating colonization, coevolution can also buffer the effects of environmental changes, preventing species extinctions and the collapse of metacommunities. Our findings reveal the mechanisms whereby coevolution can favour persistence under environmental changes and highlight that these positive effects are greater in more diverse systems that retain landscape connectivity.
Collapse
Affiliation(s)
- Leandro G. Cosmo
- Programa de Pós-Graduação em Ecologia, Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo - USP, São Paulo, SP, Brazil
| | - Lilian P. Sales
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, SP, Brazil
- Biology Department, Faculty of Arts and Science, Concordia University, Montreal, Canada
| | - Paulo R. Guimarães
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo - USP, São Paulo, SP, Brazil
| | - Mathias M. Pires
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
18
|
Quintero E, Rodríguez-Sánchez F, Jordano P. Reciprocity and interaction effectiveness in generalised mutualisms among free-living species. Ecol Lett 2023; 26:132-146. [PMID: 36450595 PMCID: PMC10099531 DOI: 10.1111/ele.14141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/12/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2022]
Abstract
Mutualistic interactions among free-living species generally involve low-frequency interactions and highly asymmetric dependence among partners, yet our understanding of factors behind their emergence is still limited. Using individual-based interactions of a super-generalist fleshy-fruited plant with its frugivore assemblage, we estimated the Resource Provisioning Effectiveness (RPE) and Seed Dispersal Effectiveness (SDE) to assess the balance in the exchange of resources. Plants were highly dependent on a few frugivore species, while frugivores interacted with most individual plants, resulting in strong asymmetries of mutual dependence. Interaction effectiveness was mainly driven by interaction frequency. Despite highly asymmetric dependences, the strong reliance on quantity of fruit consumed determined high reciprocity in rewards between partners (i.e. higher energy provided by the plant, more seedlings recruited), which was not obscured by minor variations in the quality of animal or plant service. We anticipate reciprocity will emerge in low-intimacy mutualisms where the mutualistic outcome largely relies upon interaction frequency.
Collapse
Affiliation(s)
- Elena Quintero
- Integrative Ecology Group, Estación Biológica de Doñana, Sevilla, Spain
| | - Francisco Rodríguez-Sánchez
- Integrative Ecology Group, Estación Biológica de Doñana, Sevilla, Spain.,Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Pedro Jordano
- Integrative Ecology Group, Estación Biológica de Doñana, Sevilla, Spain.,Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
19
|
Camacho LA, de Andreazzi CS, Medeiros LP, Birskis‐Barros I, Emer C, Reigada C, Guimarães PR. Cheating interactions favor modularity in mutualistic networks. OIKOS 2022. [DOI: 10.1111/oik.09176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Lucas A. Camacho
- Programa de Pós‐graduação em Ecologia, Depto de Ecologia – Inst. de Biociências, USP São Paulo SP Brasil
| | - Cecilia Siliansky de Andreazzi
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Inst. Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos Rio de Janeiro RJ Brasil
| | | | | | - Carine Emer
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro. Rua Pacheco Leão, 915. Jardim Botânico Rio de Janeiro CEP 22460‐000 RJ Brasil
| | - Carolina Reigada
- Centro de Ciências Biológicas e da Saúde, Depto de Ecologia e Biologia Evolutiva, Univ. Federal de São Carlos, UFSCAR São Carlos SP Brasil
| | - Paulo R. Guimarães
- Depto de Ecologia – Inst. de Biociências, USP, Rua do Matão São Paulo SP Brasil
| |
Collapse
|
20
|
Marcelino J, Braese C, Christmon K, Evans JD, Gilligan T, Giray T, Nearman A, Niño EL, Rose R, Sheppard WS, vanEngelsdorp D, Ellis JD. The Movement of Western Honey Bees (Apis mellifera L.) Among United States and Territories: History, Benefits, Risks, and Mitigation Strategies. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.850600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Beekeeping is a cornerstone activity that has led to the human-mediated, global spread of western honey bees (Apis mellifera L.) outside their native range of Europe, western Asia, and Africa. The exportation/importation of honey bees (i.e., transfer of honey bees or germplasm between countries) is regulated at the national level in many countries. Honey bees were first imported into the United States in the early 1600’s. Today, honey bee movement (i.e., transport of honey bees among states and territories) is regulated within the United States at the state, territory, and federal levels. At the federal level, honey bees present in the country (in any state or territory) can be moved among states and territories without federal restriction, with the exception of movement to Hawaii. In contrast, regulations at the state and territory levels vary substantially, ranging from no additional regulations beyond those stipulated at the federal level, to strict regulations for the introduction of live colonies, packaged bees, or queens. This variability can lead to inconsistencies in the application of regulations regarding the movement of honey bees among states and territories. In November 2020, we convened a technical working group (TWG), composed of academic and USDA personnel, to review and summarize the (1) history of honey bee importation into/movement within the United States, (2) current regulations regarding honey bee movement and case studies on the application of those regulations, (3) benefits associated with moving honey bees within the United States, (4) risks associated with moving honey bees within the United States, and (5) risk mitigation strategies. This review will be helpful for developing standardized best practices for the safe movement of honey bees between the 48 contiguous states and other states/territories within the United States.
Collapse
|
21
|
Pardo‐De la Hoz CJ, Medeiros ID, Gibert JP, Chagnon P, Magain N, Miadlikowska J, Lutzoni F. Phylogenetic structure of specialization: A new approach that integrates partner availability and phylogenetic diversity to quantify biotic specialization in ecological networks. Ecol Evol 2022; 12:e8649. [PMID: 35261742 PMCID: PMC8888259 DOI: 10.1002/ece3.8649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/25/2021] [Accepted: 01/28/2022] [Indexed: 01/02/2023] Open
Abstract
Biotic specialization holds information about the assembly, evolution, and stability of biological communities. Partner availabilities can play an important role in enabling species interactions, where uneven partner availabilities can bias estimates of biotic specialization when using phylogenetic diversity indices. It is therefore important to account for partner availability when characterizing biotic specialization using phylogenies. We developed an index, phylogenetic structure of specialization (PSS), that avoids bias from uneven partner availabilities by uncoupling the null models for interaction frequency and phylogenetic distance. We incorporate the deviation between observed and random interaction frequencies as weights into the calculation of partner phylogenetic α‐diversity. To calculate the PSS index, we then compare observed partner phylogenetic α‐diversity to a null distribution generated by randomizing phylogenetic distances among the same number of partners. PSS quantifies the phylogenetic structure (i.e., clustered, overdispersed, or random) of the partners of a focal species. We show with simulations that the PSS index is not correlated with network properties, which allows comparisons across multiple systems. We also implemented PSS on empirical networks of host–parasite, avian seed‐dispersal, lichenized fungi–cyanobacteria, and hummingbird pollination interactions. Across these systems, a large proportion of taxa interact with phylogenetically random partners according to PSS, sometimes to a larger extent than detected with an existing method that does not account for partner availability. We also found that many taxa interact with phylogenetically clustered partners, while taxa with overdispersed partners were rare. We argue that species with phylogenetically overdispersed partners have often been misinterpreted as generalists when they should be considered specialists. Our results highlight the important role of randomness in shaping interaction networks, even in highly intimate symbioses, and provide a much‐needed quantitative framework to assess the role that evolutionary history and symbiotic specialization play in shaping patterns of biodiversity. PSS is available as an R package at https://github.com/cjpardodelahoz/pss.
Collapse
Affiliation(s)
| | | | - Jean P. Gibert
- Department of BiologyDuke UniversityDurhamNorth CarolinaUSA
| | - Pierre‐Luc Chagnon
- Département des Sciences BiologiquesUniversité de MontréalMontréalQuébecCanada
| | - Nicolas Magain
- Biologie de l’évolution et de la ConservationUniversité de LiègeLiègeBelgium
| | | | | |
Collapse
|
22
|
Fuzessy L, Silveira FAO, Culot L, Jordano P, Verdú M. Phylogenetic congruence between Neotropical primates and plants is driven by frugivory. Ecol Lett 2021; 25:320-329. [PMID: 34775664 DOI: 10.1111/ele.13918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/27/2022]
Abstract
Seed dispersal benefits plants and frugivores, and potentially drives co-evolution, with consequences to diversification evidenced for, e.g., primates. Evidence for macro-coevolutionary patterns in multi-specific, plant-animal mutualisms is scarce, and the mechanisms driving them remain unexplored. We tested for phylogenetic congruences in primate-plant interactions and showed strong co-phylogenetic signals across Neotropical forests, suggesting that both primates and plants share evolutionary history. Phylogenetic congruence between Platyrrhini and Angiosperms was driven by the most generalist primates, modulated by their functional traits, interacting with a wide-range of Angiosperms. Consistently similar eco-evolutionary dynamics seem to be operating irrespective of local assemblages, since co-phylogenetic signal emerged independently across three Neotropical regions. Our analysis supports the idea that macroevolutionary, coevolved patterns among interacting mutualistic partners are driven by super-generalist taxa. Trait convergence among multiple partners within multi-specific assemblages appears as a mechanism favouring these likely coevolved outcomes.
Collapse
Affiliation(s)
- Lisieux Fuzessy
- Department of Biodiversity, Universidade Estadual Paulista, UNESP campus Rio Claro, São Paulo, Brazil.,CREAF, Centre de Recerca Ecològica i Aplicacions Foresta, Universitat Autònoma de Barcelona, Catalunya, Spain.,Estación Biológica de Doñana, EBD-CSIC, Sevilla, Spain
| | - Fernando A O Silveira
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Laurence Culot
- Department of Biodiversity, Universidade Estadual Paulista, UNESP campus Rio Claro, São Paulo, Brazil
| | - Pedro Jordano
- Estación Biológica de Doñana, EBD-CSIC, Sevilla, Spain.,Facultad de Biología, Department Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - Miguel Verdú
- Centro de Investigaciones sobre Desertificación, CSIC-UV-GV, Moncada, Valencia, Spain
| |
Collapse
|
23
|
Luna P, Villalobos F, Escobar F, Neves FS, Dáttilo W. Global trends in the trophic specialisation of flower-visitor networks are explained by current and historical climate. Ecol Lett 2021; 25:113-124. [PMID: 34761496 DOI: 10.1111/ele.13910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/15/2021] [Indexed: 11/28/2022]
Abstract
Trophic specialisation is known to vary across space, but the environmental factors explaining such variation remain elusive. Here we used a global dataset of flower-visitor networks to evaluate how trophic specialisation varies between latitudinal zones (tropical and temperate) and across elevation gradients, while considering the environmental variation inherent in these spatial gradients. Specifically, we assessed the role of current (i.e., net primary productivity, temperature, and precipitation) and historical (i.e., temperature and precipitation stability) environmental factors in structuring the trophic specialisation of floral visitors. Spatial variations in trophic specialisation were not explained by latitudinal zones or elevation. Moreover, regardless of network location on the spatial gradient, there was a tendency for higher trophic specialisation in sites with high productivity and precipitation, whereas historical temperature stability was related to lower trophic specialisation. We highlight that both energetic constraints in animal foraging imposed by climate and resource availability may drive the global variation in trophic specialisation.
Collapse
Affiliation(s)
- Pedro Luna
- Red de Ecoetología, Instituto de Ecología A.C., Xalapa, Veracruz, Mexico
| | - Fabricio Villalobos
- Red de Biología Evolutiva, Instituto de Ecología A.C., Xalapa, Veracruz, Mexico
| | - Federico Escobar
- Red de Ecoetología, Instituto de Ecología A.C., Xalapa, Veracruz, Mexico
| | - Frederico S Neves
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Wesley Dáttilo
- Red de Ecoetología, Instituto de Ecología A.C., Xalapa, Veracruz, Mexico
| |
Collapse
|
24
|
de Alvarenga AMSB, Borges ME, Jorge LR, Varassin IG, Araújo SBL. Consumers' active choice behaviour promotes coevolutionary units in antagonistic networks. J Evol Biol 2021; 35:134-145. [PMID: 34758181 DOI: 10.1111/jeb.13956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022]
Abstract
Individual behaviour and local context can influence the evolution of ecological interactions and how they structure into networks. In trophic interactions, consumers can increase their fitness by actively choosing resources that they are more likely to explore successfully. Mathematical modelling is often employed in theoretical studies to understand the coevolutionary dynamics between consumers and resources. However, they often disregard the individual consumer behaviour since the complexity of these systems usually requires simplifying assumptions about interaction details. Using an individual-based model, we model a community of several species that interact antagonistically. Each individual has a trait (attack or defence) that is explicitly modelled and the probability of the interaction to occur successfully increases with increased trait-matching. In addition, consumers can actively choose resources that guarantee greater fitness. We show that active consumer choice can generate coevolutionary units over time. It means that the traits of both consumers and resources converge into multiple groups with similar traits and the species interactions stay restricted to these groups over time. We also observed that network structure is more dependent on the parameter that delimits active consumer choice than on the intensity of selective pressure. Thus, our results support the idea that consumer active choice behaviour plays an important role in the ecological and evolutionary processes that structure interacting communities.
Collapse
Affiliation(s)
| | | | - Leonardo Ré Jorge
- Department of Ecology, Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Isabela Galarda Varassin
- Laboratório de Interações e Biologia Reprodutiva, Departamento de Botânica, Universidade Federal do Paraná, Curitiba, Brazil
| | - Sabrina Borges Lino Araújo
- Laboratório de Interações Biológicas, Universidade Federal do Paraná, Curitiba, Brazil.,Departamento de Física, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
25
|
Baruah G. The impact of individual variation on abrupt collapses in mutualistic networks. Ecol Lett 2021; 25:26-37. [PMID: 34672068 PMCID: PMC9297894 DOI: 10.1111/ele.13895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/16/2021] [Accepted: 09/08/2021] [Indexed: 12/01/2022]
Abstract
Individual variation is central to species involved in complex interactions with others in an ecological system. Such ecological systems could exhibit tipping points in response to changes in the environment, consequently leading to abrupt transitions to alternative, often less desirable states. However, little is known about how individual trait variation could influence the timing and occurrence of abrupt transitions. Using 101 empirical mutualistic networks, I model the eco‐evolutionary dynamics of such networks in response to gradual changes in strength of co‐evolutionary interactions. Results indicated that individual variation facilitates the timing of transition in such networks, albeit slightly. In addition, individual variation significantly increases the occurrence of large abrupt transitions. Furthermore, topological network features also positively influence the occurrence of such abrupt transitions. These findings argue for understanding tipping points using an eco‐evolutionary perspective to better forecast abrupt transitions in ecological systems.
Collapse
Affiliation(s)
- Gaurav Baruah
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology, Eawag,, Kastanienbaum, CH, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, CH, Switzerland
| |
Collapse
|
26
|
Vitali A, Sasal Y, Vázquez DP, Miguel MF, Rodríguez-Cabal MA. The disruption of a keystone interaction erodes pollination and seed dispersal networks. Ecology 2021; 103:e03547. [PMID: 34618911 DOI: 10.1002/ecy.3547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/17/2021] [Accepted: 07/20/2021] [Indexed: 11/08/2022]
Abstract
Understanding the impacts of global change on ecological communities is a major challenge in modern ecology. The gain or loss of particular species and the disruption of key interactions are both consequences and drivers of global change that can lead to the disassembly of ecological networks. We examined whether the disruption of a hummingbird-mistletoe-marsupial mutualism by the invasion of non-native species can have cascading effects on both pollination and seed dispersal networks in the temperate forest of Patagonia, Argentina. We focused on network motifs, subnetworks composed of a small number of species exhibiting particular patterns of interaction, to examine the structure and diversity of mutualistic networks. We found that the hummingbird-mistletoe-marsupial mutualism plays a critical role in the community by increasing the complexity of pollination and seed dispersal networks through supporting a high diversity of interactions. Moreover, we found that the disruption of this tripartite mutualism by non-native ungulates resulted in diverse indirect effects that led to less complex pollination and seed dispersal networks. Our results demonstrate that the gains and losses of particular species and the alteration of key interactions can lead to cascading effects in the community through the disassembly of mutualistic networks.
Collapse
Affiliation(s)
- Agustin Vitali
- Grupo de Ecología de Invasiones, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA) - CONICET - Universidad Nacional del Comahue, Bariloche, Argentina
| | - Yamila Sasal
- Laboratorio Ecotono, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA) - CONICET - Universidad Nacional del Comahue, Bariloche, Argentina
| | - Diego P Vázquez
- Instituto Argentino de Investigaciones de las Zonas Áridas, CONICET & Universidad Nacional de Cuyo, Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - M Florencia Miguel
- Instituto Argentino de Investigaciones de las Zonas Áridas, CONICET & Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Mariano A Rodríguez-Cabal
- Grupo de Ecología de Invasiones, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA) - CONICET - Universidad Nacional del Comahue, Bariloche, Argentina.,Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, 05405, USA
| |
Collapse
|
27
|
Chen L, Segar ST, Chantarasuwan B, Wong DM, Wang R, Chen X, Yu H. Adaptation of Fig Wasps (Agaodinae) to Their Host Revealed by Large-Scale Transcriptomic Data. INSECTS 2021; 12:insects12090815. [PMID: 34564255 PMCID: PMC8471397 DOI: 10.3390/insects12090815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/11/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023]
Abstract
Simple Summary Research on fig wasps has made a considerable contribution to the understanding of insect–plant interactions. However, the molecular mechanisms underlying fig wasp host specificity are poorly understood. This study reports on a relatively large-scale transcriptomic dataset of 25 fig wasp species. We outline potential genetic mechanisms underlying the specific host adaptation by investigating changes in a gene family, in evolutionary rates, and in genes under positive selection. The transcriptome datasets reported here (1) provide new insights into the evolutionary diversification and host specificity of fig wasps and (2) contribute to a growing dataset on fig wasp genomics. Abstract Figs and fig wasps are highly species-specific and comprise a model system for studying co-evolution and co-speciation. The evolutionary relationships and molecular adaptations of fig wasps to their fig hosts are poorly understood, and this is in part due to limited sequence data. Here, we present large-scale transcriptomic datasets of 25 fig wasp species with the aim of uncovering the genetic basis for host specificity. Our phylogenetic results support the monophyly of all genera associated with dioecious figs, and two genera associated with monoecious figs, Eupristina and Platyscapa, were revealed to be close relatives. We identified gene loss and gain, potentially rapidly evolving genes, and genes under positive selection. Potentially functional changes were documented and we hypothesize as to how these may determine host specificity. Overall, our study provides new insights into the evolutionary diversification of fig wasps and contributes to our understanding of adaptation in this group.
Collapse
Affiliation(s)
- Lianfu Chen
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou 510650, China; (L.C.); (D.-M.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Simon T. Segar
- Department of Crop and Environment Sciences, Harper Adams University, Newport, Shropshire TF10 8NB, UK;
| | - Bhanumas Chantarasuwan
- Thailand Natural History Museum, National Science Museum, PtthumThani 12120, Thailand; (B.C.); (R.W.)
| | - Da-Mien Wong
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou 510650, China; (L.C.); (D.-M.W.)
| | - Rong Wang
- Thailand Natural History Museum, National Science Museum, PtthumThani 12120, Thailand; (B.C.); (R.W.)
| | - Xiaoyong Chen
- School of Ecological and Environmental Sciences, Tiantong National Station for Forest Ecosystem Research, East China Normal University, Shanghai 200241, China
- Correspondence: (X.C.); (H.Y.); Tel.: +886-021-54345469 (X.C.); +886-020-37252759 (H.Y.)
| | - Hui Yu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou 510650, China; (L.C.); (D.-M.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Correspondence: (X.C.); (H.Y.); Tel.: +886-021-54345469 (X.C.); +886-020-37252759 (H.Y.)
| |
Collapse
|
28
|
Pedraza F, Bascompte J. The joint role of coevolutionary selection and network structure in shaping trait matching in mutualisms. Proc Biol Sci 2021; 288:20211291. [PMID: 34403630 DOI: 10.1098/rspb.2021.1291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Coevolution can sculpt remarkable trait similarity between mutualistic partners. Yet, it remains unclear which network topologies and selection regimes enhance trait matching. To address this, we simulate coevolution in topologically distinct networks under a gradient of mutualistic selection strength. We describe three main insights. First, trait matching is jointly influenced by the strength of mutualistic selection and the structural properties of the network where coevolution is unfolding. Second, the strength of mutualistic selection determines the network descriptors better correlated with higher trait matching. While network modularity enhances trait matching when coevolution is weak, network connectance does so when coevolution is strong. Third, the structural properties of networks outrank those of modules or species in determining the degree of trait matching. Our findings suggest networks can both enhance or constrain trait matching, depending on the strength of mutualistic selection.
Collapse
Affiliation(s)
- Fernando Pedraza
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse, 190, Zurich CH-8057, Switzerland
| | - Jordi Bascompte
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse, 190, Zurich CH-8057, Switzerland
| |
Collapse
|
29
|
Ong L, Campos‐Arceiz A, Loke VPW, Pura PB, Tunil CMTB, Din HSA, Angah RB, Amirrudin NAB, Tan WH, Lily O, Solana‐Mena A, McConkey KR. Building ecological networks with local ecological knowledge in hyper‐diverse and logistically challenging ecosystems. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lisa Ong
- Southeast Asia Biodiversity Research Institute Chinese Academy of Sciences & Center for Integrative Conservation Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Yunnan China
- School of Environmental and Geographical Sciences University of Nottingham Malaysia Semenyih Malaysia
| | - Ahimsa Campos‐Arceiz
- Southeast Asia Biodiversity Research Institute Chinese Academy of Sciences & Center for Integrative Conservation Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Yunnan China
- School of Environmental and Geographical Sciences University of Nottingham Malaysia Semenyih Malaysia
| | - Vivienne P. W. Loke
- School of Environmental and Geographical Sciences University of Nottingham Malaysia Semenyih Malaysia
| | - Param bin Pura
- School of Environmental and Geographical Sciences University of Nottingham Malaysia Semenyih Malaysia
| | | | - Husin Sudin A/L Din
- School of Environmental and Geographical Sciences University of Nottingham Malaysia Semenyih Malaysia
| | - Rizuan bin Angah
- School of Environmental and Geographical Sciences University of Nottingham Malaysia Semenyih Malaysia
| | - Nurul Ain binti Amirrudin
- School of Environmental and Geographical Sciences University of Nottingham Malaysia Semenyih Malaysia
| | - Wei Harn Tan
- Southeast Asia Biodiversity Research Institute Chinese Academy of Sciences & Center for Integrative Conservation Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Yunnan China
- School of Environmental and Geographical Sciences University of Nottingham Malaysia Semenyih Malaysia
| | - Ong Lily
- School of Environmental and Geographical Sciences University of Nottingham Malaysia Semenyih Malaysia
| | - Alicia Solana‐Mena
- School of Environmental and Geographical Sciences University of Nottingham Malaysia Semenyih Malaysia
| | - Kim R. McConkey
- School of Environmental and Geographical Sciences University of Nottingham Malaysia Semenyih Malaysia
| |
Collapse
|
30
|
Niche partitioning between hummingbirds and well-matched flowers is independent of hummingbird traits. JOURNAL OF TROPICAL ECOLOGY 2021. [DOI: 10.1017/s026646742100033x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractAmong nectarivorous birds, the highest niche partitioning occurs between hummingbirds and plants. Although hummingbirds tend to visit morphologically well-matched resources, as ornithophilous species, they can also visit flowers with other traits. Here, we investigated whether the niche partitioning in hummingbird-plant interactions is also observed with ornithophilous species only. We also explored if hummingbird traits predicted resources use. We recorded a plant-ornithophilous species network in a semi-deciduous forest in Brazil. We quantified interaction partitioning through network connectance, complementary specialisation, and modularity. The influence of hummingbirds’ traits into their visits was investigated through methods of functional ecology and ecological networks. We recorded 948 interactions between nine hummingbirds and seven ornithophilous plants. We detected similar patterns of niche partitioning between hummingbirds and ornithophilous plants in comparison to networks considering the entire plant community. However, hummingbird species with the most specialised interactions are different from those when the whole system is evaluated. Therefore, we cannot downscale the patterns from one scale to the other. The pattern of interaction with ornithophilous plants was not related to hummingbirds’ traits. Therefore, the coexistence of species with shared traits might be occurring through facilitative and competitive processes, leading to trait mismatching and maintaining niche partitioning among ornithophilous plants.
Collapse
|
31
|
Raiol RL, Gastauer M, Campbell AJ, Borges RC, Awade M, Giannini TC. Specialist Bee Species Are Larger and Less Phylogenetically Distinct Than Generalists in Tropical Plant–Bee Interaction Networks. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.699649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bee pollinators are key components of terrestrial ecosystems. Evidence is mounting that bees are globally in decline, and species with a higher degree of specialization are the most vulnerable to local extinction. However, ecological features that could explain bee specialization remain poorly tested, especially in tropical species. Here, we aim to determine the most specialized bee species and their associated ecological traits in tropical plant–bee interaction networks, answering three questions: (1) Which bees in the interaction networks are specialists? (2) Is body size related to their role as specialists in interaction networks? (3) Are there phylogenetic relationships between the bee species identified as specialists? We used fifteen quantitative plant–bee interaction networks from different Brazilian biomes covering 1,702 interactions (386 bee and 717 plant species). We used the normalized degree (standardized number of partners) as a metric to determine trophic specialization of bee species. Body size was estimated by measuring intertegular distance (ITD), i.e., the distance between the bases of the wings on the thorax. Evolutionary distinctiveness (ED) was used to quantify species uniqueness, i.e., the singularity of species in the phylogenetic tree. Relationships between dietary specialism, ITD and ED were assessed using generalized linear models. We detected 34 specialist bee species (9% of total species), distributed in 13 genera, and four families. ITD and ED were important variables explaining the specialization of tropical bee species. Specialists were larger and less phylogenetically distinct than expected by chance. Based on a large data set covering some of the main tropical biomes, our results suggest that loss of specialist bees from Brazilian plant–bee networks could have deleterious consequences for native plant species preferentially pollinated by large-bodied bees. Moreover, by affecting more evolutionarily distinct species, i.e., those with fewer extant relatives, the loss of specialist bees will likely affect few clades but can result on considerable loss of evolutionary history and phylogenetic diversity in the Brazilian bee communities. The results are important for decision-making concerning conservation measures for these species and may also encourage the development of sustainable management techniques for bees.
Collapse
|
32
|
Hastings A, Abbott KC, Cuddington K, Francis TB, Lai YC, Morozov A, Petrovskii S, Zeeman ML. Effects of stochasticity on the length and behaviour of ecological transients. J R Soc Interface 2021; 18:20210257. [PMID: 34229460 DOI: 10.1098/rsif.2021.0257] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is a growing recognition that ecological systems can spend extended periods of time far away from an asymptotic state, and that ecological understanding will therefore require a deeper appreciation for how long ecological transients arise. Recent work has defined classes of deterministic mechanisms that can lead to long transients. Given the ubiquity of stochasticity in ecological systems, a similar systematic treatment of transients that includes the influence of stochasticity is important. Stochasticity can of course promote the appearance of transient dynamics by preventing systems from settling permanently near their asymptotic state, but stochasticity also interacts with deterministic features to create qualitatively new dynamics. As such, stochasticity may shorten, extend or fundamentally change a system's transient dynamics. Here, we describe a general framework that is developing for understanding the range of possible outcomes when random processes impact the dynamics of ecological systems over realistic time scales. We emphasize that we can understand the ways in which stochasticity can either extend or reduce the lifetime of transients by studying the interactions between the stochastic and deterministic processes present, and we summarize both the current state of knowledge and avenues for future advances.
Collapse
Affiliation(s)
- Alan Hastings
- Department of Environmental Science and Policy, University of California, Davis, CA 95616, USA.,Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Karen C Abbott
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kim Cuddington
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Tessa B Francis
- Puget Sound Institute, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Ying-Cheng Lai
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Andrew Morozov
- School of Mathematics and Actuarial Science, University of Leicester, Leicester LE1 7RH, UK.,Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky pr. 33, Moscow 117071, Russia
| | - Sergei Petrovskii
- School of Mathematics and Actuarial Science, University of Leicester, Leicester LE1 7RH, UK.,Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., Moscow 117198, Russia
| | - Mary Lou Zeeman
- Department of Mathematics, Bowdoin College, Brunswick, ME 04011, USA
| |
Collapse
|
33
|
Barbour MA, Gibert JP. Genetic and plastic rewiring of food webs under climate change. J Anim Ecol 2021; 90:1814-1830. [PMID: 34028791 PMCID: PMC8453762 DOI: 10.1111/1365-2656.13541] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022]
Abstract
Climate change is altering ecological and evolutionary processes across biological scales. These simultaneous effects of climate change pose a major challenge for predicting the future state of populations, communities and ecosystems. This challenge is further exacerbated by the current lack of integration of research focused on these different scales. We propose that integrating the fields of quantitative genetics and food web ecology will reveal new insights on how climate change may reorganize biodiversity across levels of organization. This is because quantitative genetics links the genotypes of individuals to population‐level phenotypic variation due to genetic (G), environmental (E) and gene‐by‐environment (G × E) factors. Food web ecology, on the other hand, links population‐level phenotypes to the structure and dynamics of communities and ecosystems. We synthesize data and theory across these fields and find evidence that genetic (G) and plastic (E and G × E) phenotypic variation within populations will change in magnitude under new climates in predictable ways. We then show how changes in these sources of phenotypic variation can rewire food webs by altering the number and strength of species interactions, with consequences for ecosystem resilience. We also find evidence suggesting there are predictable asymmetries in genetic and plastic trait variation across trophic levels, which set the pace for phenotypic change and food web responses to climate change. Advances in genomics now make it possible to partition G, E and G × E phenotypic variation in natural populations, allowing tests of the hypotheses we propose. By synthesizing advances in quantitative genetics and food web ecology, we provide testable predictions for how the structure and dynamics of biodiversity will respond to climate change.
Collapse
Affiliation(s)
- Matthew A Barbour
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jean P Gibert
- Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
34
|
Benadi G, Dormann C, Fründ J, Stephan R, Vázquez DP. Quantitative prediction of interactions in bipartite networks based on traits, abundances, and phylogeny. Am Nat 2021; 199:841-854. [DOI: 10.1086/714420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
35
|
Habitat generalist species constrain the diversity of mimicry rings in heterogeneous habitats. Sci Rep 2021; 11:5072. [PMID: 33658554 PMCID: PMC7930205 DOI: 10.1038/s41598-021-83867-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/05/2021] [Indexed: 11/08/2022] Open
Abstract
How evolution creates and maintains trait patterns in species-rich communities is still an unsolved topic in evolutionary ecology. One classical example of community-level pattern is the unexpected coexistence of different mimicry rings, each of which is a group of mimetic species with the same warning signal. The coexistence of different mimicry rings in a community seems paradoxical because selection among unpalatable species should favor convergence to a single warning pattern. We combined mathematical modeling based on network theory and numerical simulations to explore how different types of selection, such as mimetic and environmental selections, and habitat use by mimetic species influence the formation of coexisting rings. We show that when habitat and mimicry are strong sources of selection, the formation of multiple rings takes longer due to conflicting selective pressures. Moreover, habitat generalist species decrease the distinctiveness of different mimicry rings’ patterns and a few habitat generalist species can generate a “small-world effect”, preventing the formation of multiple mimicry rings. These results may explain why the coexistence of mimicry rings is more common in groups of animals that tend towards habitat specialism, such as butterflies.
Collapse
|
36
|
Doré M, Fontaine C, Thébault E. Relative effects of anthropogenic pressures, climate, and sampling design on the structure of pollination networks at the global scale. GLOBAL CHANGE BIOLOGY 2021; 27:1266-1280. [PMID: 33274540 DOI: 10.1111/gcb.15474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/10/2020] [Indexed: 06/12/2023]
Abstract
Pollinators provide crucial ecosystem services that underpin to wild plant reproduction and yields of insect-pollinated crops. Understanding the relative impacts of anthropogenic pressures and climate on the structure of plant-pollinator interaction networks is vital considering ongoing global change and pollinator decline. Our ability to predict the consequences of global change for pollinator assemblages worldwide requires global syntheses, but these analytical approaches may be hindered by variable methods among studies that either invalidate comparisons or mask biological phenomena. Here we conducted a synthetic analysis that assesses the relative impact of anthropogenic pressures and climatic variability, and accounts for heterogeneity in sampling methodology to reveal network responses at the global scale. We analyzed an extensive dataset, comprising 295 networks over 123 locations all over the world, and reporting over 50,000 interactions between flowering plant species and their insect visitors. Our study revealed that anthropogenic pressures correlate with an increase in generalism in pollination networks while pollinator richness and taxonomic composition are more related to climatic variables with an increase in dipteran pollinator richness associated with cooler temperatures. The contrasting response of species richness and generalism of the plant-pollinator networks stresses the importance of considering interaction network structure alongside diversity in ecological monitoring. In addition, differences in sampling design explained more variation than anthropogenic pressures or climate on both pollination networks richness and generalism, highlighting the crucial need to report and incorporate sampling design in macroecological comparative studies of pollination networks. As a whole, our study reveals a potential human impact on pollination networks at a global scale. However, further research is needed to evaluate potential consequences of loss of specialist species and their unique ecological interactions and evolutionary pathways on the ecosystem pollination function at a global scale.
Collapse
Affiliation(s)
- Maël Doré
- Institut de Systématique, Evolution, Biodiversité, MNHN-CNRS-Sorbonne Université-EPHE-Université des Antilles, Muséum national d'Histoire naturelle de Paris, Paris, France
- Centre d'Ecologie et des Sciences de la Conservation, UMR 7204 MNHN-CNRS-Sorbonne Université, Muséum national d'Histoire naturelle de Paris, Paris, France
- Sorbonne Université, CNRS, IRD, INRAE, Université Paris Est Créteil, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Paris, France
| | - Colin Fontaine
- Centre d'Ecologie et des Sciences de la Conservation, UMR 7204 MNHN-CNRS-Sorbonne Université, Muséum national d'Histoire naturelle de Paris, Paris, France
| | - Elisa Thébault
- Sorbonne Université, CNRS, IRD, INRAE, Université Paris Est Créteil, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Paris, France
| |
Collapse
|
37
|
Cornet L, Magain N, Baurain D, Lutzoni F. Exploring syntenic conservation across genomes for phylogenetic studies of organisms subjected to horizontal gene transfers: A case study with Cyanobacteria and cyanolichens. Mol Phylogenet Evol 2021; 162:107100. [PMID: 33592234 DOI: 10.1016/j.ympev.2021.107100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
Understanding the evolutionary history of symbiotic Cyanobacteria at a fine scale is essential to unveil patterns of associations with their hosts and factors driving their spatiotemporal interactions. As for bacteria in general, Horizontal Gene Transfers (HGT) are expected to be rampant throughout their evolution, which justified the use of single-locus phylogenies in macroevolutionary studies of these photoautotrophic bacteria. Genomic approaches have greatly increased the amount of molecular data available, but the selection of orthologous, congruent genes that are more likely to reflect bacterial macroevolutionary histories remains problematic. In this study, we developed a synteny-based approach and searched for Collinear Orthologous Regions (COR), under the assumption that genes that are present in the same order and orientation across a wide monophyletic clade are less likely to have undergone HGT. We searched sixteen reference Nostocales genomes and identified 99 genes, part of 28 COR comprising three to eight genes each. We then developed a bioinformatic pipeline, designed to minimize inter-genome contamination and processed twelve Nostoc-associated lichen metagenomes. This reduced our original dataset to 90 genes representing 25 COR, which were used to infer phylogenetic relationships within Nostocales and among lichenized Cyanobacteria. This dataset was narrowed down further to 71 genes representing 22 COR by selecting only genes part of one (largest) operon per COR. We found a relatively high level of congruence among trees derived from the 90-gene dataset, but congruence was only slightly higher among genes within a COR compared to genes across COR. However, topological congruence was significantly higher among the 71 genes part of one operon per COR. Nostocales phylogenies resulting from concatenation and species tree approaches based on the 90- and 71-gene datasets were highly congruent, but the most highly supported result was obtained when using synteny, collinearity, and operon information (i.e., 71-gene dataset) as gene selection criteria, which outperformed larger datasets with more genes.
Collapse
Affiliation(s)
- Luc Cornet
- InBioS - PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Nicolas Magain
- Department of Biology, Duke University, Durham, NC, USA; Evolution and Conservation Biology, InBioS, University of Liège, Liège, Belgium
| | - Denis Baurain
- InBioS - PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium.
| | | |
Collapse
|
38
|
Naniwadekar R, Gopal A, Page N, Ghuman S, Ramachandran V, Joshi J. Large frugivores matter more on an island: Insights from island-mainland comparison of plant-frugivore communities. Ecol Evol 2021; 11:1399-1412. [PMID: 33598140 PMCID: PMC7863668 DOI: 10.1002/ece3.7151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/20/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022] Open
Abstract
Endozoochory, a mutualistic interaction between plants and frugivores, is one of the key processes responsible for maintenance of tropical biodiversity. Islands, which have a smaller subset of plants and frugivores when compared with mainland communities, offer an interesting setting to understand the organization of plant-frugivore communities vis-a-vis the mainland sites. We examined the relative influence of functional traits and phylogenetic relationships on the plant-seed disperser interactions on an island and a mainland site. The island site allowed us to investigate the organization of the plant-seed disperser community in the natural absence of key frugivore groups (bulbuls and barbets) of Asian tropics. The endemic Narcondam Hornbill was the most abundant frugivore on the island and played a central role in the community. Species strength of frugivores (a measure of relevance of frugivores for plants) was positively associated with their abundance. Among plants, figs had the highest species strength and played a central role in the community. Island-mainland comparison revealed that the island plant-seed disperser community was more asymmetric, connected, and nested as compared to the mainland community. Neither phylogenetic relationships nor functional traits (after controlling for phylogenetic relationships) were able to explain the patterns of interactions between plants and frugivores on the island or the mainland pointing toward the diffused nature of plant-frugivore interactions. The diffused nature is a likely consequence of plasticity in foraging behavior and trait convergence that contribute to governing the interactions between plants and frugivores. This is one of the few studies to compare the plant-seed disperser communities between a tropical island and mainland and demonstrates key role played by a point-endemic frugivore in seed dispersal on island.
Collapse
Affiliation(s)
| | | | | | | | - Vivek Ramachandran
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
| | - Jahnavi Joshi
- CSIR‐Centre for Cellular and Molecular BiologyHyderabadIndia
| |
Collapse
|
39
|
Hsu V, Moeller HV. Metabolic Symbiosis Facilitates Species Coexistence and Generates Light-Dependent Priority Effects. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.614367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Metabolic symbiosis is a form of symbiosis in which organisms exchange metabolites, typically for mutual benefit. For example, acquired phototrophs like Paramecium bursaria obtain photosynthate from endosymbiotic green algae called Chlorella. In addition to facilitating the persistence of P. bursaria by providing a carbon source that supplements P. bursaria’s heterotrophic digestion of bacteria, symbiotic Chlorella may impact competitive interactions between P. bursaria and other bacterivores, with cascading effects on community composition and overall diversity. Here, we tested the effects of metabolic symbiosis on coexistence by assessing the impacts of acquired phototrophy on priority effects, or the effect of species arrival order on species interactions, between P. bursaria and its competitor Colpidium. Our results suggest light-dependent priority effects. The acquired phototroph benefited from metabolic symbiosis during sequential arrival of each organism in competition, and led to increased growth of late-arriving Colpidium. These findings demonstrate that understanding the consequences of priority effects for species coexistence requires consideration of metabolic symbiosis.
Collapse
|
40
|
Coux C, Donoso I, Tylianakis JM, García D, Martínez D, Dehling DM, Stouffer DB. Tricky partners: native plants show stronger interaction preferences than their exotic counterparts. Ecology 2020; 102:e03239. [PMID: 33125718 DOI: 10.1002/ecy.3239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/29/2020] [Accepted: 09/14/2020] [Indexed: 11/08/2022]
Abstract
In ecological networks, neutral predictions suggest that species' interaction frequencies are proportional to their relative abundances. Deviations from neutral predictions thus correspond to interaction preferences (when positive) or avoidances (when negative), driven by nonneutral (e.g., niche-based) processes. Exotic species interact with many partners with which they have not coevolved, and it remains unclear whether this systematically influences the strength of neutral processes on interactions, and how these interaction-level differences scale up to entire networks. To fill this gap, we compared interactions between plants and frugivorous birds at nine forest sites in New Zealand varying in the relative abundance and composition of native and exotic species, with independently sampled data on bird and plant abundances from the same sites. We tested if the strength and direction of interaction preferences differed between native and exotic species. We further evaluated whether the performance of neutral predictions at the site level was predicted by the proportion of exotic interactions in each network from both bird and plant perspectives, and the species composition in each site. We found that interactions involving native plants deviated more strongly from neutral predictions than did interactions involving exotics. This "pickiness" of native plants could be detrimental in a context of global biotic homogenization where they could be increasingly exposed to novel interactions with neutrally interacting mutualists. However, the realization of only a subset of interactions in different sites compensated for the neutrality of interactions involving exotics, so that neutral predictions for whole networks did not change systematically with the proportion of exotic species or species composition. Therefore, the neutral and niche processes that underpin individual interactions may not scale up to entire networks. This shows that seemingly simplistic neutral assumptions entail complex processes and can provide valuable understanding of community assembly or invasion dynamics.
Collapse
Affiliation(s)
- Camille Coux
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Isabel Donoso
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, Frankfurt (Main), 60325, Germany.,Departamento Biología de Organismos y Sistemas, Unidad Mixta de Investigación en Biodiversidad (UMIB, CSIC-UO-PA), Universidad de Oviedo, Oviedo, 33071, Spain
| | - Jason M Tylianakis
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Daniel García
- Departamento Biología de Organismos y Sistemas, Unidad Mixta de Investigación en Biodiversidad (UMIB, CSIC-UO-PA), Universidad de Oviedo, Oviedo, 33071, Spain
| | - Daniel Martínez
- Departamento Biología de Organismos y Sistemas, Unidad Mixta de Investigación en Biodiversidad (UMIB, CSIC-UO-PA), Universidad de Oviedo, Oviedo, 33071, Spain
| | - D Matthias Dehling
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Daniel B Stouffer
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| |
Collapse
|
41
|
Guimarães PR. The Structure of Ecological Networks Across Levels of Organization. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-012220-120819] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interactions connect the units of ecological systems, forming networks. Individual-based networks characterize variation in niches among individuals within populations. These individual-based networks merge with each other, forming species-based networks and food webs that describe the architecture of ecological communities. Networks at broader spatiotemporal scales portray the structure of ecological interactions across landscapes and over macroevolutionary time. Here, I review the patterns observed in ecological networks across multiple levels of biological organization. A fundamental challenge is to understand the amount of interdependence as we move from individual-based networks to species-based networks and beyond. Despite the uneven distribution of studies, regularities in network structure emerge across scales due to the fundamental architectural patterns shared by complex networks and the interplay between traits and numerical effects. I illustrate the integration of these organizational scales by exploring the consequences of the emergence of highly connected species for network structures across scales.
Collapse
Affiliation(s)
- Paulo R. Guimarães
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brazil
| |
Collapse
|
42
|
Mutualistic networks emerging from adaptive niche-based interactions. Nat Commun 2020; 11:5470. [PMID: 33122629 PMCID: PMC7596068 DOI: 10.1038/s41467-020-19154-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 09/25/2020] [Indexed: 11/09/2022] Open
Abstract
Mutualistic networks are vital ecological and social systems shaped by adaptation and evolution. They involve bipartite cooperation via the exchange of goods or services between actors of different types. Empirical observations of mutualistic networks across genres and geographic conditions reveal correlated nested and modular patterns. Yet, the underlying mechanism for the network assembly remains unclear. We propose a niche-based adaptive mechanism where both nestedness and modularity emerge simultaneously as complementary facets of an optimal niche structure. Key dynamical properties are revealed at different timescales. Foremost, mutualism can either enhance or reduce the network stability, depending on competition intensity. Moreover, structural adaptations are asymmetric, exhibiting strong hysteresis in response to environmental change. Finally, at the evolutionary timescale we show that the adaptive mechanism plays a crucial role in preserving the distinctive patterns of mutualism under species invasions and extinctions. Nested and modular patterns are vastly observed in mutualistic networks across genres and geographic conditions. Here, the authors show a unified mechanism that underlies the assembly and evolution of such networks, based on adaptive niche interactions of the participants.
Collapse
|
43
|
Stoy KS, Gibson AK, Gerardo NM, Morran LT. A need to consider the evolutionary genetics of host-symbiont mutualisms. J Evol Biol 2020; 33:1656-1668. [PMID: 33047414 DOI: 10.1111/jeb.13715] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/20/2020] [Accepted: 09/27/2020] [Indexed: 12/28/2022]
Abstract
Despite the ubiquity and importance of mutualistic interactions, we know little about the evolutionary genetics underlying their long-term persistence. As in antagonistic interactions, mutualistic symbioses are characterized by substantial levels of phenotypic and genetic diversity. In contrast to antagonistic interactions, however, we, by and large, do not understand how this variation arises, how it is maintained, nor its implications for future evolutionary change. Currently, we rely on phenotypic models to address the persistence of mutualistic symbioses, but the success of an interaction almost certainly depends heavily on genetic interactions. In this review, we argue that evolutionary genetic models could provide a framework for understanding the causes and consequences of diversity and why selection may favour processes that maintain variation in mutualistic interactions.
Collapse
Affiliation(s)
- Kayla S Stoy
- Department of Biology, Emory University, Atlanta, GA, USA.,Population Biology, Ecology, and Evolution Program, Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA
| | - Amanda K Gibson
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | | | - Levi T Morran
- Department of Biology, Emory University, Atlanta, GA, USA
| |
Collapse
|
44
|
CaraDonna PJ, Burkle LA, Schwarz B, Resasco J, Knight TM, Benadi G, Blüthgen N, Dormann CF, Fang Q, Fründ J, Gauzens B, Kaiser-Bunbury CN, Winfree R, Vázquez DP. Seeing through the static: the temporal dimension of plant-animal mutualistic interactions. Ecol Lett 2020; 24:149-161. [PMID: 33073900 DOI: 10.1111/ele.13623] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/24/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022]
Abstract
Most studies of plant-animal mutualistic networks have come from a temporally static perspective. This approach has revealed general patterns in network structure, but limits our ability to understand the ecological and evolutionary processes that shape these networks and to predict the consequences of natural and human-driven disturbance on species interactions. We review the growing literature on temporal dynamics of plant-animal mutualistic networks including pollination, seed dispersal and ant defence mutualisms. We then discuss potential mechanisms underlying such variation in interactions, ranging from behavioural and physiological processes at the finest temporal scales to ecological and evolutionary processes at the broadest. We find that at the finest temporal scales (days, weeks, months) mutualistic interactions are highly dynamic, with considerable variation in network structure. At intermediate scales (years, decades), networks still exhibit high levels of temporal variation, but such variation appears to influence network properties only weakly. At the broadest temporal scales (many decades, centuries and beyond), continued shifts in interactions appear to reshape network structure, leading to dramatic community changes, including loss of species and function. Our review highlights the importance of considering the temporal dimension for understanding the ecology and evolution of complex webs of mutualistic interactions.
Collapse
Affiliation(s)
- Paul J CaraDonna
- Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL, 60647, USA
- Rocky Mountain Biological Laboratory, P.O. Box 519, Crested Butte, CO, 81224, USA
- Plant Biology and Conservation, Northwestern University, Evanston, IL, 60208, USA
| | - Laura A Burkle
- Department of Ecology, Montana State University, Bozeman, MT, 59717, USA
| | - Benjamin Schwarz
- Biometry and Environmental System Analysis, Albert-Ludwigs-Universität Freiburg, Tennenbacherstr. 4, Freiburg im Breisgau, 79106, Germany
| | - Julian Resasco
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Tiffany M Knight
- Institute of Biology, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, Halle (Saale), 06108, Germany
- Department of Community Ecology, Helmholtz Centre for Environmental Research-UFZ, Theodor-Lieser-Straße 4, Halle (Saale), 06120, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
| | - Gita Benadi
- Biometry and Environmental System Analysis, Albert-Ludwigs-Universität Freiburg, Tennenbacherstr. 4, Freiburg im Breisgau, 79106, Germany
| | - Nico Blüthgen
- Ecological Networks, Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 3, Darmstadt, 64287, Germany
| | - Carsten F Dormann
- Biometry and Environmental System Analysis, Albert-Ludwigs-Universität Freiburg, Tennenbacherstr. 4, Freiburg im Breisgau, 79106, Germany
- Freiburg Institute for Advanced Studies, Universität Freiburg, Freiburg im Breisgau, 79104, Germany
| | - Qiang Fang
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471003, China
| | - Jochen Fründ
- Biometry and Environmental System Analysis, Albert-Ludwigs-Universität Freiburg, Tennenbacherstr. 4, Freiburg im Breisgau, 79106, Germany
| | - Benoit Gauzens
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Christopher N Kaiser-Bunbury
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, UK
| | - Rachael Winfree
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, 14 College Farm Rd, New Brunswick, NJ, 08901, USA
| | - Diego P Vázquez
- Freiburg Institute for Advanced Studies, Universität Freiburg, Freiburg im Breisgau, 79104, Germany
- Argentine Institute for Dryland Research, CONICET, National University of Cuyo, Av. Ruiz Leal s/n, Mendoza, 5500, Argentina
- Faculty of Exact and Natural Sciences, National University of Cuyo, Padre Jorge Contreras 1300, Mendoza, M5502JMA, Argentina
| |
Collapse
|
45
|
Meng Y, Lai YC, Grebogi C. Tipping point and noise-induced transients in ecological networks. J R Soc Interface 2020; 17:20200645. [PMID: 33050778 DOI: 10.1098/rsif.2020.0645] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A challenging and outstanding problem in interdisciplinary research is to understand the interplay between transients and stochasticity in high-dimensional dynamical systems. Focusing on the tipping-point dynamics in complex mutualistic networks in ecology constructed from empirical data, we investigate the phenomena of noise-induced collapse and noise-induced recovery. Two types of noise are studied: environmental (Gaussian white) noise and state-dependent demographic noise. The dynamical mechanism responsible for both phenomena is a transition from one stable steady state to another driven by stochastic forcing, mediated by an unstable steady state. Exploiting a generic and effective two-dimensional reduced model for real-world mutualistic networks, we find that the average transient lifetime scales algebraically with the noise amplitude, for both environmental and demographic noise. We develop a physical understanding of the scaling laws through an analysis of the mean first passage time from one steady state to another. The phenomena of noise-induced collapse and recovery and the associated scaling laws have implications for managing high-dimensional ecological systems.
Collapse
Affiliation(s)
- Yu Meng
- Institute for Complex Systems and Mathematical Biology, School of Natural and Computing Sciences, King's College, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - Ying-Cheng Lai
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA.,Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Celso Grebogi
- Institute for Complex Systems and Mathematical Biology, School of Natural and Computing Sciences, King's College, University of Aberdeen, Aberdeen AB24 3UE, UK
| |
Collapse
|
46
|
Pinto CE, Awade M, Watanabe MTC, Brito RM, Costa WF, Maia UM, Imperatriz-Fonseca VL, Giannini TC. Size and isolation of naturally isolated habitats do not affect plant-bee interactions: A case study of ferruginous outcrops within the eastern Amazon forest. PLoS One 2020; 15:e0238685. [PMID: 32915824 PMCID: PMC7485833 DOI: 10.1371/journal.pone.0238685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/22/2020] [Indexed: 11/19/2022] Open
Abstract
Pollination may be severely affected by the decreasing size and increasing isolation of habitat patches. However, most studies that have considered the effects of these two variables on plant-pollinator interactions have been carried out in areas that have undergone anthropogenic fragmentation, and little is known about their effects in natural habitats. The Carajás National Forest and Campos Ferruginosos National Park are two protected areas in the eastern Amazon where one can find isolated ferruginous outcrops characterized by iron-rich soil and herbaceous-shrub vegetation surrounded by Amazon forest. These patches of canga provide an opportunity to analyze plant-pollinator interactions in naturally fragmented areas. Our objective was to test whether the size and isolation of naturally isolated outcrops located in Carajás affect plant-pollinator interactions by using pollination syndromes and interaction networks. We determined the pollination syndromes of 771 plant species that occurred in eleven canga patches and performed field work to analyze plant-pollinator networks in nine canga patches. The structure of the plant-pollinator networks was not affected by the size or isolation of the canga patches. Generalist species were present in all canga areas, indicating that they are important in maintaining the plant communities in isolated canga patches. The lack of significance related to the distance between canga patches suggests that the forest does not prevent pollinator movement between canga patches.
Collapse
Affiliation(s)
| | | | | | | | | | - Ulysses M. Maia
- Instituto Tecnológico Vale, Pará, Brazil
- Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|
47
|
Morrison BML, Dirzo R. Distinct responses of antagonistic and mutualistic networks to agricultural intensification. Ecology 2020; 101:e03116. [PMID: 32530504 DOI: 10.1002/ecy.3116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/18/2020] [Accepted: 05/04/2020] [Indexed: 11/08/2022]
Abstract
Species interaction networks, which govern the maintenance of biodiversity and ecosystem processes within ecological communities, are being rapidly altered by anthropogenic activities worldwide. Studies on the response of species interaction networks to anthropogenic disturbance have almost exclusively focused on one interaction type at a time, such as mutualistic or antagonistic interactions, making it challenging to decipher how networks of different interaction types respond to the same anthropogenic disturbance. Moreover, few studies have simultaneously focused on the two main components of network structure: network topology (i.e., architecture) and network ecology (i.e., species identities and interaction turnover), thereby limiting our understanding of the ecological drivers underlying changes in network topology in response to anthropogenic disturbance. Here, we used 16,400 plant-pollinator and plant-herbivore interaction observations from 16 sites along an agricultural intensification gradient to compare changes in network topology and ecology between mutualistic and antagonistic networks. We measured two aspects of network topology-nestedness and modularity-and found that although the mutualistic networks were consistently more nested than antagonistic networks and antagonistic networks were consistently more modular, the rate of change in nestedness and modularity along the gradient was comparable between the two network types. Change in network ecology, however, was distinct between mutualistic and antagonistic networks, with partner switching making a significantly larger contribution to interaction turnover in the mutualistic networks than in the antagonistic networks, and species turnover being a strong contributor to interaction turnover in the antagonistic networks. The ecological and topological changes we observed in the antagonistic and mutualistic networks have different implications for pollinator and herbivore communities in agricultural landscapes, and support the idea that pollinators are more labile in their interaction partner choice, whereas herbivores form more reciprocally specialized, and therefore more vulnerable, interactions. Our results also demonstrate that studying both topological and ecological network structure can help to elucidate the effects of anthropogenic disturbance on ecological communities, with applications for conservation and restoration of species interactions and the ecosystem processes they maintain.
Collapse
Affiliation(s)
- Beth M L Morrison
- Department of Biology, Stanford University, Stanford, California, 94305, USA
| | - Rodolfo Dirzo
- Department of Biology, Stanford University, Stanford, California, 94305, USA
| |
Collapse
|
48
|
Parmentier T, De Laender F, Bonte D. The topology and drivers of ant-symbiont networks across Europe. Biol Rev Camb Philos Soc 2020; 95:1664-1688. [PMID: 32691527 DOI: 10.1111/brv.12634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022]
Abstract
Intimate associations between different species drive community composition across ecosystems. Understanding the ecological and evolutionary drivers of these symbiotic associations is challenging because their structure eventually determines stability and resilience of the entire species network. Here, we compiled a detailed database on naturally occurring ant-symbiont networks in Europe to identify factors that affect symbiont network topology. These networks host an unrivalled diversity of macrosymbiotic associations, spanning the entire mutualism-antagonism continuum, including: (i) myrmecophiles - commensalistic and parasitic arthropods; (ii) trophobionts - mutualistic aphids, scale insects, planthoppers and caterpillars; (iii) social parasites - parasitic ant species; (iv) parasitic helminths; and (v) parasitic fungi. We dissected network topology to investigate what determines host specificity, symbiont species richness, and the capacity of different symbiont types to switch hosts. We found 722 macrosymbionts (multicellular symbionts) associated with European ants. Symbiont type explained host specificity and the average relatedness of the host species. Social parasites were associated with few hosts that were phylogenetically highly related, whereas the other symbiont types interacted with a larger number of hosts across a wider taxonomic distribution. The hosts of trophobionts were the least phylogenetically related across all symbiont types. Colony size, host range and habitat type predicted total symbiont richness: ant hosts with larger colony size, a larger distribution range or with a wider habitat range contained more symbiont species. However, we found that different sets of host factors affected diversity in the different types of symbionts. Ecological factors, such as colony size, host range and niche width predominantly determined myrmecophile species richness, whereas host phylogeny was the most important predictor of mutualistic trophobiont, social parasite and parasitic helminth species richness. Lastly, we found that hosts with a common biogeographic history support a more similar community of symbionts. Phylogenetically related hosts also shared more trophobionts, social parasites and helminths, but not myrmecophiles. Taken together, these results suggest that ecological and evolutionary processes structure host specificity and symbiont richness in large-scale ant-symbiont networks, but these drivers may shift in importance depending on the type of symbiosis. Our findings highlight the potential of well-characterized bipartite networks composed of different types of symbioses to identify candidate processes driving community composition.
Collapse
Affiliation(s)
- Thomas Parmentier
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, Ghent, B-9000, Belgium.,Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Namur, 5000, Belgium
| | - Frederik De Laender
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Namur, 5000, Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, Ghent, B-9000, Belgium
| |
Collapse
|
49
|
Fuster F, Kaiser-Bunbury CN, Traveset A. Pollination effectiveness of specialist and opportunistic nectar feeders influenced by invasive alien ants in the Seychelles. AMERICAN JOURNAL OF BOTANY 2020; 107:957-969. [PMID: 32592166 DOI: 10.1002/ajb2.1499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Opportunistic nectar-feeders may act as effective pollinators; nonetheless, we still lack information on whether these opportunistic species differ in their pollination effectiveness from specialized nectarivorous vertebrates and insects. Many nectar specialists have coevolved with the plants on which they feed; therefore, we would expect higher pollination effectiveness in specialists than in opportunistic feeders. Here, we assessed quantity and quality components of pollination effectiveness in specialist and opportunistic vertebrate nectarivores and insects, focusing on three plants from the Seychelles: Thespesia populnea, Polyscias crassa, and Syzygium wrightii. METHODS We determined the quantity component (QNC) of pollination effectiveness with pollinator observations, and the quality component (QLC) by measuring fruit and seed set resulting from single visits by each pollinator. To detect potential negative effects of invasive ants on native plant-pollinator interactions, we classified pollinator visits (quantity component) as disturbed (>6 ants/30 min) vs. undisturbed. RESULTS All focal plants were visited by insects, and vertebrate specialist and opportunist nectarivores, yet their pollination effectiveness differed. Flying insects were the most effective pollinators of T. populnea. The other two plants were most effectively pollinated by vertebrates; i.e., sunbirds (nectar specialists) in S. wrightii and Phelsuma geckos (nectar opportunists) in P. crassa, despite marked variation in QNC and QLC. Ant presence was associated with lower pollinator visitation rate in P. crassa and S. wrightii. CONCLUSIONS Our study highlights the importance of all pollinator guilds, including opportunist nectarivorous vertebrates as pollinators of island plants, and the vulnerability of such interactions to disruption by nonnative species.
Collapse
Affiliation(s)
- Francisco Fuster
- Global Change Research Group, Institut Mediterrani d'Estudis Avançats (CSIC-UIB), Miquel Marqués 21, 07190, Esporles, Mallorca, Balearic Islands, Spain
| | - Christopher N Kaiser-Bunbury
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, UK
| | - Anna Traveset
- Global Change Research Group, Institut Mediterrani d'Estudis Avançats (CSIC-UIB), Miquel Marqués 21, 07190, Esporles, Mallorca, Balearic Islands, Spain
| |
Collapse
|
50
|
Biological drivers of individual-based anuran-parasite networks under contrasting environmental conditions. J Helminthol 2020; 94:e167. [PMID: 32578526 DOI: 10.1017/s0022149x20000504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Understanding the mechanisms driving host-parasite interactions has important ecological and epidemiological implications. Traditionally, most studies dealing with host-parasite interaction networks have focused on species relationship patterns, and intra-population variation in such networks has been widely overlooked. In this study, we tested whether the composition of parasite communities of five anuran species (Leptodactylus chaquensis, Leptodactylus fuscus, Leptodactylus podicipinus, Pseudis paradoxa and Pithecopus azureus) vary across a pasture pond and a natural reserve site in south-eastern Pantanal, Brazil. We analysed the structure of individual-based networks of these five anuran species, assessed the species roles in the networks and the contribution of host species and body size to interaction strength in the networks, and tested if network ecological attributes varied between the two sites. We observed a total of 17 parasite morphospecies in 151 individual anurans and found that the abundance of parasite species tends to vary, with host species being the main filter driving parasite community structure. The composition of core parasite species remained similar between study sites, and network structure (i.e. parasite richness, interaction diversity, specialization, nestedness and modularity) did not change between pasture and natural reserve. Individual traits of hosts influenced network descriptors since larger hosts presented greater interaction strength independent of the study site. In short, we found that the occurrence of highly connected parasite taxa in both the pasture and the reserve sites may have promoted similarity in network structures, and host body size was the best predictor of associations with parasites in both study sites.
Collapse
|