1
|
Innocent TM, Sapountzis P, Zhukova M, Poulsen M, Schiøtt M, Nash DR, Boomsma JJ. From the inside out: Were the cuticular Pseudonocardia bacteria of fungus-farming ants originally domesticated as gut symbionts? PNAS NEXUS 2024; 3:pgae391. [PMID: 39411080 PMCID: PMC11474983 DOI: 10.1093/pnasnexus/pgae391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/20/2024] [Indexed: 10/19/2024]
Abstract
The mutualistic interaction specificity between attine ants and antibiotic-producing Actinobacteria has been controversial because Pseudonocardia strains cannot always be isolated from worker cuticles across attine ant species, while other actinobacteria can apparently replace Pseudonocardia and also inhibit growth of Escovopsis mycopathogens. Here we report that across field samples of Panamanian species: (i) Cuticular Pseudonocardia were largely restricted to species in the crown of the attine phylogeny and their appearance likely coincided with the first attines colonizing Central/North America. (ii) The phylogenetically basal attines almost always had cuticular associations with other Actinobacteria than Pseudonocardia. (iii) The sub-cuticular glands nourishing cuticular bacteria appear to be homologous throughout the phylogeny, consistent with an ancient general attine-Actinobacteria association. (iv) The basal attine species investigated always had Pseudonocardia as gut symbionts while Pseudonocardia presence appeared mutually exclusive between cuticular and gut microbiomes. (v) Gut-associated Pseudonocardia were phylogenetically ancestral while cuticular symbionts formed a derived crown group within the Pseudonocardia phylogeny. We further show that laboratory colonies often secondarily acquire cuticular Actinobacteria that they do not associate with in the field, suggesting that many previous studies were uninformative for questions of co-adaptation in the wild. An exhaustive literature survey showed that published studies concur with our present results, provided that they analyzed field colonies and that Actinobacteria were specifically isolated from worker cuticles shortly after field collection. Our results offer several testable hypotheses for a better overall understanding of attine-Pseudonocardia interaction dynamics and putative coevolution throughout the Americas.
Collapse
Affiliation(s)
- Tabitha M Innocent
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Panagiotis Sapountzis
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
- Medis 0454, INRAE, Centre INRAE Auvergne-Rhône-Alpes, Site de Theix 63122, France
| | - Mariya Zhukova
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Michael Poulsen
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Morten Schiøtt
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - David R Nash
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
2
|
Hammer TJ. Why do hosts malfunction without microbes? Missing benefits versus evolutionary addiction. Trends Microbiol 2024; 32:132-141. [PMID: 37652785 DOI: 10.1016/j.tim.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 09/02/2023]
Abstract
Microbes are widely recognized to be vital to host health. This new consensus rests, in part, on experiments showing how hosts malfunction when microbes are removed. More and more microbial dependencies are being discovered, even in fundamental processes such as development, immunity, physiology, and behavior. But why do they exist? The default explanation is that microbes are beneficial; when hosts lose microbes, they also lose benefits. Here I call attention to evolutionary addiction, whereby a host trait evolves a need for microbes without having been improved by them. Evolutionary addiction should be considered when interpreting microbe-removal experiments, as it is a distinct and potentially common process. Further, it may have unique implications for the evolution and stability of host-microbe interactions.
Collapse
Affiliation(s)
- Tobin J Hammer
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
3
|
Hyde J, Brackney DE, Steven B. Three species of axenic mosquito larvae recruit a shared core of bacteria in a common garden experiment. Appl Environ Microbiol 2023; 89:e0077823. [PMID: 37681948 PMCID: PMC10537770 DOI: 10.1128/aem.00778-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/05/2023] [Indexed: 09/09/2023] Open
Abstract
In this study, we describe the generation of two new species of axenic mosquito, Aedes albopictus and Aedes triseriatus. Along with Aedes aegypti, axenic larvae of these three species were exposed to an environmental water source to document the assembly of the microbiome in a common garden experiment. Additionally, the larvae were reared either individually or combinatorially with the other species to characterize the effects of co-rearing on the composition of the microbiome. We found that the microbiome of the larvae was composed of a relatively low-diversity collection of bacteria from the colonizing water. The abundance of bacteria in the water was a poor predictor of their abundance in the larvae, suggesting the larval microbiome is made up of a subset of relatively rare aquatic bacteria. We found 11 bacterial 16S rRNA gene amplicon sequence variants (ASVs) that were conserved among ≥90% of the mosquitoes sampled, including 2 found in 100% of the larvae, pointing to a conserved core of bacteria capable of colonizing all three species of mosquito. Yet, the abundance of these ASVs varied widely between larvae, suggesting individuals harbored largely unique microbiome structures, even if they overlapped in membership. Finally, larvae reared in a tripartite mix of the host-species consistently showed a convergence in the structure of their microbiome, indicating that multi-species interactions between hosts potentially lead to shifts in the composition of their respective microbiomes. IMPORTANCE This study is the first report of the axenic (free of external microbes) rearing of two species of mosquito, Aedes albopictus and Aedes triseriatus. Our previous report of axenic Aedes aegypti brings the number of axenic species to three. We designed a method to perform a common garden experiment to characterize the bacteria the three species of axenic larvae assemble from their surroundings. Furthermore, species could be reared in isolation or in multi-species combinations to assess how host-species interactions influence the composition of the microbiome. We found all three species recruited a common core of bacteria from their rearing water, with a large contingent of rare and sporadically detected bacteria. Finally, we also show that co-rearing of mosquito larvae leads to a coalescence in the composition of their microbiome, indicating that host-species interactions potentially influence the composition of the microbiome.
Collapse
Affiliation(s)
- Josephine Hyde
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Doug E. Brackney
- Department of Entomology, Center for Vector Biology and Zoonotic Diseases, Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Blaire Steven
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Maciag T, Kozieł E, Rusin P, Otulak-Kozieł K, Jafra S, Czajkowski R. Microbial Consortia for Plant Protection against Diseases: More than the Sum of Its Parts. Int J Mol Sci 2023; 24:12227. [PMID: 37569603 PMCID: PMC10418420 DOI: 10.3390/ijms241512227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Biological plant protection presents a promising and exciting alternative to chemical methods for safeguarding plants against the increasing threats posed by plant diseases. This approach revolves around the utilization of biological control agents (BCAs) to suppress the activity of significant plant pathogens. Microbial BCAs have the potential to effectively manage crop disease development by interacting with pathogens or plant hosts, thereby increasing their resistance. However, the current efficacy of biological methods remains unsatisfactory, creating new research opportunities for sustainable plant cultivation management. In this context, microbial consortia, comprising multiple microorganisms with diverse mechanisms of action, hold promise in terms of augmenting the magnitude and stability of the overall antipathogen effect. Despite scientific efforts to identify or construct microbial consortia that can aid in safeguarding vital crops, only a limited number of microbial consortia-based biocontrol formulations are currently available. Therefore, this article aims to present a complex analysis of the microbial consortia-based biocontrol status and explore potential future directions for biological plant protection research with new technological advancements.
Collapse
Affiliation(s)
- Tomasz Maciag
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Edmund Kozieł
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Piotr Rusin
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Katarzyna Otulak-Kozieł
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Sylwia Jafra
- Division of Biological Plant Protection, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama Street 58, 80-307 Gdansk, Poland
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama Street 58, 80-307 Gdansk, Poland
| |
Collapse
|
5
|
Ganesan R, Wierz JC, Kaltenpoth M, Flórez LV. How It All Begins: Bacterial Factors Mediating the Colonization of Invertebrate Hosts by Beneficial Symbionts. Microbiol Mol Biol Rev 2022; 86:e0012621. [PMID: 36301103 PMCID: PMC9769632 DOI: 10.1128/mmbr.00126-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Beneficial associations with bacteria are widespread across animals, spanning a range of symbiont localizations, transmission routes, and functions. While some of these associations have evolved into obligate relationships with permanent symbiont localization within the host, the majority require colonization of every host generation from the environment or via maternal provisions. Across the broad diversity of host species and tissue types that beneficial bacteria can colonize, there are some highly specialized strategies for establishment yet also some common patterns in the molecular basis of colonization. This review focuses on the mechanisms underlying the early stage of beneficial bacterium-invertebrate associations, from initial contact to the establishment of the symbionts in a specific location of the host's body. We first reflect on general selective pressures that can drive the transition from a free-living to a host-associated lifestyle in bacteria. We then cover bacterial molecular factors for colonization in symbioses from both model and nonmodel invertebrate systems where these have been studied, including terrestrial and aquatic host taxa. Finally, we discuss how interactions between multiple colonizing bacteria and priority effects can influence colonization. Taking the bacterial perspective, we emphasize the importance of developing new experimentally tractable systems to derive general insights into the ecological factors and molecular adaptations underlying the origin and establishment of beneficial symbioses in animals.
Collapse
Affiliation(s)
- Ramya Ganesan
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jürgen C. Wierz
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Laura V. Flórez
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Plant and Environmental Sciences, Section for Organismal Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Afridi MS, Javed MA, Ali S, De Medeiros FHV, Ali B, Salam A, Sumaira, Marc RA, Alkhalifah DHM, Selim S, Santoyo G. New opportunities in plant microbiome engineering for increasing agricultural sustainability under stressful conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:899464. [PMID: 36186071 PMCID: PMC9524194 DOI: 10.3389/fpls.2022.899464] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/08/2022] [Indexed: 07/30/2023]
Abstract
Plant microbiome (or phytomicrobiome) engineering (PME) is an anticipated untapped alternative strategy that could be exploited for plant growth, health and productivity under different environmental conditions. It has been proven that the phytomicrobiome has crucial contributions to plant health, pathogen control and tolerance under drastic environmental (a)biotic constraints. Consistent with plant health and safety, in this article we address the fundamental role of plant microbiome and its insights in plant health and productivity. We also explore the potential of plant microbiome under environmental restrictions and the proposition of improving microbial functions that can be supportive for better plant growth and production. Understanding the crucial role of plant associated microbial communities, we propose how the associated microbial actions could be enhanced to improve plant growth-promoting mechanisms, with a particular emphasis on plant beneficial fungi. Additionally, we suggest the possible plant strategies to adapt to a harsh environment by manipulating plant microbiomes. However, our current understanding of the microbiome is still in its infancy, and the major perturbations, such as anthropocentric actions, are not fully understood. Therefore, this work highlights the importance of manipulating the beneficial plant microbiome to create more sustainable agriculture, particularly under different environmental stressors.
Collapse
Affiliation(s)
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Sher Ali
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), São Paulo, Brazil
| | | | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abdul Salam
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sumaira
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| |
Collapse
|
7
|
Scheuring I, Rasmussen JA, Bozzi D, Limborg MT. A strategic model of a host–microbe–microbe system reveals the importance of a joint host–microbe immune response to combat stress-induced gut dysbiosis. Front Microbiol 2022; 13:912806. [PMID: 35992720 PMCID: PMC9386248 DOI: 10.3389/fmicb.2022.912806] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Microbiomes provide key ecological functions to their host; however, most host-associated microbiomes are too complicated to allow a model of essential host–microbe–microbe interactions. The intestinal microbiota of salmonids may offer a solution since few dominating species often characterize it. Healthy fish coexist with a mutualistic Mycoplasma sp. species, while stress allows the spread of pathogenic strains, such as Aliivibrio sp. Even after a skin infection, the Mycoplasma does not recover; Aliivibrio sp. often remains the dominant species, or Mycoplasma–Aliivibrio coexistence was occasionally observed. We devised a model involving interactions among the host immune system, Mycoplasma sp. plus a toxin-producing pathogen. Our model embraces a complete microbiota community and is in harmony with experimental results that host–Mycoplasma mutualism prevents the spread of pathogens. Contrary, stress suppresses the host immune system allowing dominance of pathogens, and Mycoplasma does not recover after stress disappears.
Collapse
Affiliation(s)
- István Scheuring
- Centre for Ecological Research, Institute of Evolution, Budapest, Hungary
- MTA-ELTE, Research Group of Theoretical Biology and Evolutionary Ecology, Eötvõs University, Budapest, Hungary
| | - Jacob A. Rasmussen
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Davide Bozzi
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Morten T. Limborg
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Morten T. Limborg
| |
Collapse
|
8
|
Hansen KA, Kim RR, Lawton ES, Tran J, Lewis SK, Deol AS, Van Arnam EB. Bacterial Associates of a Desert Specialist Fungus-Growing Ant Antagonize Competitors with a Nocamycin Analog. ACS Chem Biol 2022; 17:1824-1830. [PMID: 35730734 DOI: 10.1021/acschembio.2c00187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fungus-growing ants are defended by antibiotic-producing bacterial symbionts in the genus Pseudonocardia. Nutrients provisioned by the ants support these symbionts but also invite colonization and competition from other bacteria. As an arena for chemically mediated bacterial competition, this niche offers a window into ecological antibiotic function with well-defined competing organisms. From multiple colonies of the desert specialist ant Trachymyrmex smithi, we isolated Amycolatopsis bacteria that inhibit the growth of Pseudonocardia symbionts under laboratory conditions. Using bioassay-guided fractionation, we discovered a novel analog of the antibiotic nocamycin that is responsible for this antagonism. We identified the biosynthetic gene cluster for this antibiotic, which has a suite of oxidative enzymes consistent with this molecule's more extensive oxidative tailoring relative to similar tetramic acid antibiotics. High genetic similarity to globally distributed soil Amycolatopsis isolates suggest that this ant-derived Amycolatopsis strain may be an opportunistic soil strain whose antibiotic production allows for competition in this specialized niche. This nocamycin analog adds to the catalog of novel bioactive molecules isolated from bacterial associates of fungus-growing ants, and its activity against ant symbionts represents, to our knowledge, the first putative ecological function for the widely distributed enoyl tetramic acid family of antibiotics.
Collapse
Affiliation(s)
- Katherine A Hansen
- Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Rose R Kim
- Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Elisabeth S Lawton
- Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Janet Tran
- Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Stephanie K Lewis
- Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Arjan S Deol
- Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Ethan B Van Arnam
- Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| |
Collapse
|
9
|
Besedin D, Turner BJ, Deo P, Lopes MDB, Williams CR. Effect of captivity and water salinity on culture-dependent frog skin microbiota and Batrachochytrium dendrobatidis ( Bd) infection. T ROY SOC SOUTH AUST 2022. [DOI: 10.1080/03721426.2022.2086358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Darislav Besedin
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Brandon J. Turner
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Permal Deo
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Health and Biomedical Innovation, UniSA Clinical and Health Science, University of South Australia, Adelaide, South Australia, Australia
| | - Miguel De Barros Lopes
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Health and Biomedical Innovation, UniSA Clinical and Health Science, University of South Australia, Adelaide, South Australia, Australia
| | - Craig R. Williams
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
10
|
Inhibitory Bacterial Diversity and Mucosome Function Differentiate Susceptibility of Appalachian Salamanders to Chytrid Fungal Infection. Appl Environ Microbiol 2022; 88:e0181821. [PMID: 35348389 PMCID: PMC9040618 DOI: 10.1128/aem.01818-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mucosal defenses are crucial in animals for protection against pathogens and predators. Host defense peptides (antimicrobial peptides, AMPs) as well as skin-associated microbes are key components of mucosal immunity, particularly in amphibians. We integrate microbiology, molecular biology, network-thinking, and proteomics to understand how host and microbially derived products on amphibian skin (referred to as the mucosome) serve as pathogen defenses. We studied defense mechanisms against chytrid pathogens, Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), in four salamander species with different Batrachochytrium susceptibilities. Bd infection was quantified using qPCR, mucosome function (i.e., ability to kill Bd or Bsal zoospores in vitro), skin bacterial communities using 16S rRNA gene amplicon sequencing, and the role of Bd-inhibitory bacteria in microbial networks across all species. We explored the presence of candidate-AMPs in eastern newts and red-backed salamanders. Eastern newts had the highest Bd prevalence and mucosome function, while red-back salamanders had the lowest Bd prevalence and mucosome function, and two-lined salamanders and seal salamanders were intermediates. Salamanders with highest Bd infection intensity showed greater mucosome function. Bd infection prevalence significantly decreased as putative Bd-inhibitory bacterial richness and relative abundance increased on hosts. In co-occurrence networks, some putative Bd-inhibitory bacteria were found as hub-taxa, with red-backs having the highest proportion of protective hubs and positive associations related to putative Bd-inhibitory hub bacteria. We found more AMP candidates on salamanders with lower Bd susceptibility. These findings suggest that salamanders possess distinct innate mechanisms that affect chytrid fungi. IMPORTANCE How host mucosal defenses interact, and influence disease outcome is critical in understanding host defenses against pathogens. A more detailed understanding is needed of the interactions between the host and the functioning of its mucosal defenses in pathogen defense. This study investigates the variability of chytrid susceptibility in salamanders and the innate defenses each species possesses to mediate pathogens, thus advancing the knowledge toward a deeper understanding of the microbial ecology of skin-associated bacteria and contributing to the development of bioaugmentation strategies to mediate pathogen infection and disease. This study improves the understanding of complex immune defense mechanisms in salamanders and highlights the potential role of the mucosome to reduce the probability of Bd disease development and that putative protective bacteria may reduce likelihood of Bd infecting skin.
Collapse
|
11
|
May G, Shaw RG, Geyer CJ, Eck DJ. Do Interactions among Microbial Symbionts Cause Selection for Greater Pathogen Virulence? Am Nat 2022; 199:252-265. [DOI: 10.1086/717679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Georgiana May
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota 55108
| | - Ruth G. Shaw
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota 55108
| | - Charles J. Geyer
- School of Statistics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Daniel J. Eck
- Department of Statistics, University of Illinois, Champaign, Illinois 61820
| |
Collapse
|
12
|
Natural selection for imprecise vertical transmission in host-microbiota systems. Nat Ecol Evol 2022; 6:77-87. [PMID: 34949814 PMCID: PMC9901532 DOI: 10.1038/s41559-021-01593-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/19/2021] [Indexed: 02/08/2023]
Abstract
How and when the microbiome modulates host adaptation remains an evolutionary puzzle, despite evidence that the extended genetic repertoire of the microbiome can shape host phenotypes and fitness. One complicating factor is that the microbiome is often transmitted imperfectly across host generations, leading to questions about the degree to which the microbiome contributes to host adaptation. Here, using an evolutionary model, we demonstrate that decreasing vertical transmission fidelity can increase microbiome variation, and thus phenotypic variation, across hosts. When the most beneficial microbial genotypes change unpredictably from one generation to the next (for example, in variable environments), hosts can maximize fitness by increasing the microbiome variation among offspring, as this improves the chance of there being an offspring with the right microbial combination for the next generation. Imperfect vertical transmission can therefore be adaptive in varying environments. We characterize how selection on vertical transmission is shaped by environmental conditions, microbiome changes during host development and the contribution of other factors to trait variation. We illustrate how environmentally dependent microbial effects can favour intermediate transmission and set our results in the context of examples from natural systems. We also suggest research avenues to empirically test our predictions. Our model provides a basis to understand the evolutionary pathways that potentially led to the wide diversity of microbe transmission patterns found in nature.
Collapse
|
13
|
Abstract
We develop a method to artificially select for rhizosphere microbiomes that confer salt tolerance to the model grass Brachypodium distachyon grown under sodium salt stress or aluminum salt stress. In a controlled greenhouse environment, we differentially propagated rhizosphere microbiomes between plants of a nonevolving, highly inbred plant population; therefore, only microbiomes evolved in our experiment, but the plants did not evolve in parallel. To maximize microbiome perpetuation when transplanting microbiomes between plants and, thus, maximize response to microbiome selection, we improved earlier methods by (i) controlling microbiome assembly when inoculating seeds at the beginning of each selection cycle; (ii) fractionating microbiomes before transfer between plants to harvest, perpetuate, and select on only bacterial and viral microbiome components; (iii) ramping of salt stress gradually from minor to extreme salt stress with each selection cycle to minimize the chance of overstressing plants; (iv) using two nonselection control treatments (e.g., nonselection microbial enrichment and null inoculation) that permit comparison to the improving fitness benefits that selected microbiomes impart on plants. Unlike previous methods, our selection protocol generated microbiomes that enhance plant fitness after only 1 to 3 rounds of microbiome selection. After nine rounds of microbiome selection, the effect of microbiomes selected to confer tolerance to aluminum salt stress was nonspecific (these artificially selected microbiomes equally ameliorate sodium and aluminum salt stresses), but the effect of microbiomes selected to confer tolerance to sodium salt stress was specific (these artificially selected microbiomes do not confer tolerance to aluminum salt stress). Plants with artificially selected microbiomes had 55 to 205% greater seed production than plants with unselected control microbiomes. IMPORTANCE We developed an experimental protocol that improves earlier methods of artificial selection on microbiomes and then tested the efficacy of our protocol to breed root-associated bacterial microbiomes that confer salt tolerance to a plant. Salt stress limits growth and seed production of crop plants, and artificially selected microbiomes conferring salt tolerance may ultimately help improve agricultural productivity. Unlike previous experiments of microbiome selection, our selection protocol generated microbiomes that enhance plant productivity after only 1 to 3 rounds of artificial selection on root-associated microbiomes, increasing seed production under extreme salt stress by 55 to 205% after nine rounds of microbiome selection. Although we artificially selected microbiomes under controlled greenhouse conditions that differ from outdoor conditions, increasing seed production by 55 to 205% under extreme salt stress is a remarkable enhancement of plant productivity compared to traditional plant breeding. We describe a series of additional experimental protocols that will advance insights into key parameters that determine efficacy and response to microbiome selection.
Collapse
|
14
|
Worsley SF, Innocent TM, Holmes NA, Al-Bassam MM, Schiøtt M, Wilkinson B, Murrell JC, Boomsma JJ, Yu DW, Hutchings MI. Competition-based screening helps to secure the evolutionary stability of a defensive microbiome. BMC Biol 2021; 19:205. [PMID: 34526023 PMCID: PMC8444595 DOI: 10.1186/s12915-021-01142-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/03/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The cuticular microbiomes of Acromyrmex leaf-cutting ants pose a conundrum in microbiome biology because they are freely colonisable, and yet the prevalence of the vertically transmitted bacteria Pseudonocardia, which contributes to the control of Escovopsis fungus garden disease, is never compromised by the secondary acquisition of other bacterial strains. Game theory suggests that competition-based screening can allow the selective recruitment of antibiotic-producing bacteria from the environment, by providing abundant resources to foment interference competition between bacterial species and by using Pseudonocardia to bias the outcome of competition in favour of antibiotic producers. RESULTS Here, we use RNA-stable isotope probing (RNA-SIP) to confirm that Acromyrmex ants can maintain a range of microbial symbionts on their cuticle by supplying public resources. We then used RNA sequencing, bioassays, and competition experiments to show that vertically transmitted Pseudonocardia strains produce antibacterials that differentially reduce the growth rates of other microbes, ultimately biassing the bacterial competition to allow the selective establishment of secondary antibiotic-producing strains while excluding non-antibiotic-producing strains that would parasitise the symbiosis. CONCLUSIONS Our findings are consistent with the hypothesis that competition-based screening is a plausible mechanism for maintaining the integrity of the co-adapted mutualism between the leaf-cutting ant farming symbiosis and its defensive microbiome. Our results have broader implications for explaining the stability of other complex symbioses involving horizontal acquisition.
Collapse
Affiliation(s)
- Sarah F Worsley
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Tabitha M Innocent
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Neil A Holmes
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| | - Mahmoud M Al-Bassam
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Morten Schiøtt
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| | - J Colin Murrell
- School of Environmental Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Jacobus J Boomsma
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Douglas W Yu
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| | - Matthew I Hutchings
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK.
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK.
| |
Collapse
|
15
|
Henry LP, Bruijning M, Forsberg SKG, Ayroles JF. The microbiome extends host evolutionary potential. Nat Commun 2021; 12:5141. [PMID: 34446709 PMCID: PMC8390463 DOI: 10.1038/s41467-021-25315-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
The microbiome shapes many host traits, yet the biology of microbiomes challenges traditional evolutionary models. Here, we illustrate how integrating the microbiome into quantitative genetics can help untangle complexities of host-microbiome evolution. We describe two general ways in which the microbiome may affect host evolutionary potential: by shifting the mean host phenotype and by changing the variance in host phenotype in the population. We synthesize the literature across diverse taxa and discuss how these scenarios could shape the host response to selection. We conclude by outlining key avenues of research to improve our understanding of the complex interplay between hosts and microbiomes.
Collapse
Affiliation(s)
- Lucas P. Henry
- grid.16750.350000 0001 2097 5006Dept. of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ USA ,grid.16750.350000 0001 2097 5006Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA
| | - Marjolein Bruijning
- grid.16750.350000 0001 2097 5006Dept. of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ USA
| | - Simon K. G. Forsberg
- grid.16750.350000 0001 2097 5006Dept. of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ USA ,grid.16750.350000 0001 2097 5006Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA ,grid.8993.b0000 0004 1936 9457Dept. of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Julien F. Ayroles
- grid.16750.350000 0001 2097 5006Dept. of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ USA ,grid.16750.350000 0001 2097 5006Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA
| |
Collapse
|
16
|
Worsley SF, Macey MC, Prudence SMM, Wilkinson B, Murrell JC, Hutchings MI. Investigating the Role of Root Exudates in Recruiting Streptomyces Bacteria to the Arabidopsis thaliana Microbiome. Front Mol Biosci 2021; 8:686110. [PMID: 34222338 PMCID: PMC8241931 DOI: 10.3389/fmolb.2021.686110] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/27/2021] [Indexed: 02/01/2023] Open
Abstract
Streptomyces species are saprophytic soil bacteria that produce a diverse array of specialized metabolites, including half of all known antibiotics. They are also rhizobacteria and plant endophytes that can promote plant growth and protect against disease. Several studies have shown that streptomycetes are enriched in the rhizosphere and endosphere of the model plant Arabidopsis thaliana. Here, we set out to test the hypothesis that they are attracted to plant roots by root exudates, and specifically by the plant phytohormone salicylate, which they might use as a nutrient source. We confirmed a previously published report that salicylate over-producing cpr5 plants are colonized more readily by streptomycetes but found that salicylate-deficient sid2-2 and pad4 plants had the same levels of root colonization by Streptomyces bacteria as the wild-type plants. We then tested eight genome sequenced Streptomyces endophyte strains in vitro and found that none were attracted to or could grow on salicylate as a sole carbon source. We next used 13CO2 DNA stable isotope probing to test whether Streptomyces species can feed off a wider range of plant metabolites but found that Streptomyces bacteria were outcompeted by faster growing proteobacteria and did not incorporate photosynthetically fixed carbon into their DNA. We conclude that, given their saprotrophic nature and under conditions of high competition, streptomycetes most likely feed on more complex organic material shed by growing plant roots. Understanding the factors that impact the competitiveness of strains in the plant root microbiome could have consequences for the effective application of biocontrol strains.
Collapse
Affiliation(s)
- Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Michael C Macey
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Samuel M M Prudence
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.,Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.,Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
17
|
Lehenberger M, Benkert M, Biedermann PHW. Ethanol-Enriched Substrate Facilitates Ambrosia Beetle Fungi, but Inhibits Their Pathogens and Fungal Symbionts of Bark Beetles. Front Microbiol 2021; 11:590111. [PMID: 33519728 PMCID: PMC7838545 DOI: 10.3389/fmicb.2020.590111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/16/2020] [Indexed: 11/26/2022] Open
Abstract
Bark beetles (sensu lato) colonize woody tissues like phloem or xylem and are associated with a broad range of micro-organisms. Specific fungi in the ascomycete orders Hypocreales, Microascales and Ophistomatales as well as the basidiomycete Russulales have been found to be of high importance for successful tree colonization and reproduction in many species. While fungal mutualisms are facultative for most phloem-colonizing bark beetles (sensu stricto), xylem-colonizing ambrosia beetles are long known to obligatorily depend on mutualistic fungi for nutrition of adults and larvae. Recently, a defensive role of fungal mutualists for their ambrosia beetle hosts was revealed: Few tested mutualists outcompeted other beetle-antagonistic fungi by their ability to produce, detoxify and metabolize ethanol, which is naturally occurring in stressed and/or dying trees that many ambrosia beetle species preferentially colonize. Here, we aim to test (i) how widespread beneficial effects of ethanol are among the independently evolved lineages of ambrosia beetle fungal mutualists and (ii) whether it is also present in common fungal symbionts of two bark beetle species (Ips typographus, Dendroctonus ponderosae) and some general fungal antagonists of bark and ambrosia beetle species. The majority of mutualistic ambrosia beetle fungi tested benefited (or at least were not harmed) by the presence of ethanol in terms of growth parameters (e.g., biomass), whereas fungal antagonists were inhibited. This confirms the competitive advantage of nutritional mutualists in the beetle’s preferred, ethanol-containing host material. Even though most bark beetle fungi are found in the same phylogenetic lineages and ancestral to the ambrosia beetle (sensu stricto) fungi, most of them were highly negatively affected by ethanol and only a nutritional mutualist of Dendroctonus ponderosae benefited, however. This suggests that ethanol tolerance is a derived trait in nutritional fungal mutualists, particularly in ambrosia beetles that show cooperative farming of their fungi.
Collapse
Affiliation(s)
- Maximilian Lehenberger
- Research Group Insect-Fungus Symbiosis, Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany
| | - Markus Benkert
- Research Group Insect-Fungus Symbiosis, Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany
| | - Peter H W Biedermann
- Research Group Insect-Fungus Symbiosis, Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany.,Chair of Forest Entomology and Protection, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
18
|
Goldstein SL, Klassen JL. Pseudonocardia Symbionts of Fungus-Growing Ants and the Evolution of Defensive Secondary Metabolism. Front Microbiol 2020; 11:621041. [PMID: 33424822 PMCID: PMC7793712 DOI: 10.3389/fmicb.2020.621041] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
Actinobacteria belonging to the genus Pseudonocardia have evolved a close relationship with multiple species of fungus-growing ants, where these bacteria produce diverse secondary metabolites that protect the ants and their fungal mutualists from disease. Recent research has charted the phylogenetic diversity of this symbiosis, revealing multiple instances where the ants and Pseudonocardia have formed stable relationships in which these bacteria are housed on specific regions of the ant's cuticle. Parallel chemical and genomic analyses have also revealed that symbiotic Pseudonocardia produce diverse secondary metabolites with antifungal and antibacterial bioactivities, and highlighted the importance of plasmid recombination and horizontal gene transfer for maintaining these symbiotic traits. Here, we propose a multi-level model for the evolution of Pseudonocardia and their secondary metabolites that includes symbiont transmission within and between ant colonies, and the potentially independent movement and diversification of their secondary metabolite biosynthetic genes. Because of their well-studied ecology and experimental tractability, Pseudonocardia symbionts of fungus-growing ants are an especially useful model system to understand the evolution of secondary metabolites, and also comprise a significant source of novel antibiotic and antifungal agents.
Collapse
Affiliation(s)
- Sarah L Goldstein
- Department of Molecular and Cell Biology, University of Connecticut, Mansfield, CT, United States
| | - Jonathan L Klassen
- Department of Molecular and Cell Biology, University of Connecticut, Mansfield, CT, United States
| |
Collapse
|
19
|
Tragust S, Herrmann C, Häfner J, Braasch R, Tilgen C, Hoock M, Milidakis MA, Gross R, Feldhaar H. Formicine ants swallow their highly acidic poison for gut microbial selection and control. eLife 2020; 9:e60287. [PMID: 33138912 PMCID: PMC7609056 DOI: 10.7554/elife.60287] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/14/2020] [Indexed: 12/23/2022] Open
Abstract
Animals continuously encounter microorganisms that are essential for health or cause disease. They are thus challenged to control harmful microbes while allowing the acquisition of beneficial microbes. This challenge is likely especially important for social insects with respect to microbes in food, as they often store food and exchange food among colony members. Here we show that formicine ants actively swallow their antimicrobial, highly acidic poison gland secretion. The ensuing acidic environment in the stomach, the crop, can limit the establishment of pathogenic and opportunistic microbes ingested with food and improve the survival of ants when faced with pathogen contaminated food. At the same time, crop acidity selectively allows acquisition and colonization by Acetobacteraceae, known bacterial gut associates of formicine ants. This suggests that swallowing of the poison in formicine ants acts as a microbial filter and that antimicrobials have a potentially widespread but so far underappreciated dual role in host-microbe interactions.
Collapse
Affiliation(s)
- Simon Tragust
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| | - Claudia Herrmann
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| | - Jane Häfner
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| | - Ronja Braasch
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| | - Christina Tilgen
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| | - Maria Hoock
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| | - Margarita Artemis Milidakis
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| | - Roy Gross
- Microbiology, Biocenter, University of Würzburg, Am HublandWürzburgGermany
| | - Heike Feldhaar
- Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, UniversitätsstraßeBayreuthGermany
| |
Collapse
|
20
|
Batey SFD, Greco C, Hutchings MI, Wilkinson B. Chemical warfare between fungus-growing ants and their pathogens. Curr Opin Chem Biol 2020; 59:172-181. [PMID: 32949983 PMCID: PMC7763482 DOI: 10.1016/j.cbpa.2020.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
Fungus-growing attine ants are under constant threat from fungal pathogens such as the specialized mycoparasite Escovopsis, which uses combined physical and chemical attack strategies to prey on the fungal gardens of the ants. In defence, some species assemble protective microbiomes on their exoskeletons that contain antimicrobial-producing Actinobacteria. Underlying this network of mutualistic and antagonistic interactions are an array of chemical signals. Escovopsis weberi produces the shearinine terpene-indole alkaloids, which affect ant behaviour, diketopiperazines to combat defensive bacteria, and other small molecules that inhibit the fungal cultivar. Pseudonocardia and Streptomyces mutualist bacteria produce depsipeptide and polyene macrolide antifungals active against Escovopsis spp. The ant nest metabolome is further complicated by competition between defensive bacteria, which produce antibacterials active against even closely related species. Specialist fungal pathogens attack the nests of fungus-growing ants. Ants form mutualistic relationships with defensive actinomycete bacteria. Specialised metabolites underpin these mutualistic and antagonistic interactions.
Collapse
Affiliation(s)
- Sibyl F D Batey
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - Claudio Greco
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - Matthew I Hutchings
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, United Kingdom; School of Biological Sciences, University of East Anglia, Norwich, NR4 7TU, United Kingdom.
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, United Kingdom.
| |
Collapse
|
21
|
Loudon AH, Kurtz A, Esposito E, Umile TP, Minbiole KPC, Parfrey LW, Sheafor BA. Columbia spotted frogs (Rana luteiventris) have characteristic skin microbiota that may be shaped by cutaneous skin peptides and the environment. FEMS Microbiol Ecol 2020; 96:5894915. [DOI: 10.1093/femsec/fiaa168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/13/2020] [Indexed: 01/20/2023] Open
Abstract
ABSTRACT
Global amphibian declines due to the fungal pathogen Batrachochytrium dendrobatidis (Bd) have led to questions about how amphibians defend themselves against skin diseases. A total of two amphibian defense mechanisms are antimicrobial peptides (AMPs), a component of amphibian innate immune defense and symbiotic skin bacteria, which can act in synergy. We characterized components of these factors in four populations of Columbia spotted frogs (Rana luteiventris) to investigate their role in disease defense. We surveyed the ability of their AMPs to inhibit Bd, skin bacterial community composition, skin metabolite profiles and presence and intensity of Bd infection. We found that AMPs from R. luteiventris inhibited Bd in bioassays, but inhibition did not correlate with Bd intensity on frogs. R. luteiventris had two prevalent and abundant core bacteria: Rhizobacter and Chryseobacterium. Rhizobacter relative abundance was negatively correlated with AMP's ability to inhibit Bd, but was not associated with Bd status itself. There was no relationship between metabolites and Bd. Bacterial communities and Bd differ by location, which suggests a strong environmental influence. R. luteiventris are dominated by consistent core bacteria, but also house transient bacteria that are site specific. Our emergent hypothesis is that host control and environmental factors shape the microbiota on R. luteiventris.
Collapse
Affiliation(s)
- A H Loudon
- Department of Zoology and Biodiversity Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, CA
| | - A Kurtz
- Biology Department, Carroll College, Helena, Montana, 59625-0002, USA
| | - E Esposito
- Biology Department, Carroll College, Helena, Montana, 59625-0002, USA
| | - T P Umile
- Department of Chemistry, Villanova University, Villanova, Pennsylvania, 19085-1603, USA
| | - K P C Minbiole
- Department of Chemistry, Villanova University, Villanova, Pennsylvania, 19085-1603, USA
| | - L W Parfrey
- Department of Zoology and Biodiversity Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, CA
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, CA
| | - B A Sheafor
- Biology Department, Carroll College, Helena, Montana, 59625-0002, USA
| |
Collapse
|
22
|
Chomicki G, Werner GDA, West SA, Kiers ET. Compartmentalization drives the evolution of symbiotic cooperation. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190602. [PMID: 32772665 DOI: 10.1098/rstb.2019.0602] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Across the tree of life, hosts have evolved mechanisms to control and mediate interactions with symbiotic partners. We suggest that the evolution of physical structures that allow hosts to spatially separate symbionts, termed compartmentalization, is a common mechanism used by hosts. Such compartmentalization allows hosts to: (i) isolate symbionts and control their reproduction; (ii) reward cooperative symbionts and punish or stop interactions with non-cooperative symbionts; and (iii) reduce direct conflict among different symbionts strains in a single host. Compartmentalization has allowed hosts to increase the benefits that they obtain from symbiotic partners across a diversity of interactions, including legumes and rhizobia, plants and fungi, squid and Vibrio, insects and nutrient provisioning bacteria, plants and insects, and the human microbiome. In cases where compartmentalization has not evolved, we ask why not. We argue that when partners interact in a competitive hierarchy, or when hosts engage in partnerships which are less costly, compartmentalization is less likely to evolve. We conclude that compartmentalization is key to understanding the evolution of symbiotic cooperation. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Guillaume Chomicki
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Gijsbert D A Werner
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford OX1 3SZ, UK.,Netherlands Scientific Council for Government Policy, Buitenhof 34, 2513 AH Den Haag, The Netherlands
| | - Stuart A West
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - E Toby Kiers
- Department of Ecological Science, VU University, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Streptomyces Endophytes Promote Host Health and Enhance Growth across Plant Species. Appl Environ Microbiol 2020; 86:AEM.01053-20. [PMID: 32561579 PMCID: PMC7414947 DOI: 10.1128/aem.01053-20] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/10/2020] [Indexed: 01/07/2023] Open
Abstract
We must reduce reliance on agrochemicals, and there is increasing interest in using bacterial strains to promote plant growth and protect against disease. Our study follows up reports that Arabidopsis thaliana specifically recruits Streptomyces bacteria to its roots. We test the hypotheses that they offer benefits to their A. thaliana hosts and that strains isolated from these plants might be used as probiotics. We isolated Streptomyces strains from A. thaliana roots and genome sequenced five phylogenetically distinct strains. Genome mining and bioassays indicated that all five have plant growth-promoting properties, including production of indole-3-acetic acid (IAA), siderophores, and aminocyclopropane-1-carboxylate (ACC) deaminase. Three strains significantly increased A. thaliana growth in vitro and in combination in soil. Another produces potent filipin-like antifungals and protected germinating wheat seeds against the fungal pathogen Gaeumannomyces graminis var. tritici (wheat take-all fungus). We conclude that introducing Streptomyces strains into the root microbiome provides significant benefits to plants. Streptomyces bacteria are ubiquitous in soils and are well known for producing secondary metabolites, including antimicrobials. Increasingly, they are being isolated from plant roots, and several studies have shown they are specifically recruited to the rhizosphere and the endosphere of the model plant Arabidopsis thaliana. Here, we test the hypothesis that Streptomyces bacteria have a beneficial effect on A. thaliana growth and could potentially be used as plant probiotics. To do this, we selectively isolated streptomycetes from surface-washed A. thaliana roots and generated high-quality genome sequences for five strains, which we named L2, M2, M3, N1, and N2. Reinfection of A. thaliana plants with L2, M2, and M3 significantly increased plant biomass individually and in combination, whereas N1 and N2 had a negative effect on plant growth, likely due to their production of polyene natural products which can bind to phytosterols and reduce plant growth. N2 exhibits broad-spectrum antimicrobial activity and makes filipin-like polyenes, including 14-hydroxyisochainin which inhibits the take-all fungus, Gaeumannomyces graminis var. tritici. N2 antifungal activity as a whole was upregulated ∼2-fold in response to indole-3-acetic acid (IAA), suggesting a possible role during competition in the rhizosphere. Furthermore, coating wheat seeds with N2 spores protected wheat seedlings against take-all disease. We conclude that at least some soil-dwelling streptomycetes confer growth-promoting benefits on A. thaliana, while others might be exploited to protect crops against disease. IMPORTANCE We must reduce reliance on agrochemicals, and there is increasing interest in using bacterial strains to promote plant growth and protect against disease. Our study follows up reports that Arabidopsis thaliana specifically recruits Streptomyces bacteria to its roots. We test the hypotheses that they offer benefits to their A. thaliana hosts and that strains isolated from these plants might be used as probiotics. We isolated Streptomyces strains from A. thaliana roots and genome sequenced five phylogenetically distinct strains. Genome mining and bioassays indicated that all five have plant growth-promoting properties, including production of indole-3-acetic acid (IAA), siderophores, and aminocyclopropane-1-carboxylate (ACC) deaminase. Three strains significantly increased A. thaliana growth in vitro and in combination in soil. Another produces potent filipin-like antifungals and protected germinating wheat seeds against the fungal pathogen Gaeumannomyces graminis var. tritici (wheat take-all fungus). We conclude that introducing Streptomyces strains into the root microbiome provides significant benefits to plants.
Collapse
|
24
|
Modolon F, Barno AR, Villela HDM, Peixoto RS. Ecological and biotechnological importance of secondary metabolites produced by coral-associated bacteria. J Appl Microbiol 2020; 129:1441-1457. [PMID: 32627318 DOI: 10.1111/jam.14766] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/20/2020] [Accepted: 06/28/2020] [Indexed: 12/16/2022]
Abstract
Symbiotic relationships between corals and their associated micro-organisms are essential to maintain host homeostasis. Coral-associated bacteria (CAB) can have different beneficial roles in the coral metaorganism, such as metabolizing essential nutrients for the coral host and protecting the coral from pathogens. Many CAB exert these functions via secondary metabolites, which include antibacterial, antifouling, antitumour, antiparasitic and antiviral compounds. This review describes how analysis of CAB has led to the discovery of secondary metabolites with potential biotechnological applications. The most commonly found types of secondary metabolites, antimicrobial and antibiofilm compounds, are emphasized and described. Recently developed methods that can be applied to enhance the culturing of CAB from shallow-water reefs and the less-studied deep-sea coral reefs are also discussed. Last, we suggest how the combined use of meta-omics and innovative growth-diffusion techniques can vastly improve the discovery of novel compounds in coral environments.
Collapse
Affiliation(s)
- F Modolon
- Department of Microbiology, Paulo de Góes Microbiology Institute, Federal University of Rio De Janeiro, Rio de Janeiro, RJ, Brazil
| | - A R Barno
- Department of Microbiology, Paulo de Góes Microbiology Institute, Federal University of Rio De Janeiro, Rio de Janeiro, RJ, Brazil
| | - H D M Villela
- Department of Microbiology, Paulo de Góes Microbiology Institute, Federal University of Rio De Janeiro, Rio de Janeiro, RJ, Brazil
| | - R S Peixoto
- Department of Microbiology, Paulo de Góes Microbiology Institute, Federal University of Rio De Janeiro, Rio de Janeiro, RJ, Brazil.,IMAM-AquaRio - Rio de Janeiro Aquarium Research Center, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
25
|
Abstract
AbstractA microbiome rife with enemies of the host should cause selection for defensive traits in symbionts, yet such complex environments are also predicted to select for greater symbiont virulence. Why then do we so often observe defensive mutualists that protect hosts while causing little to no damage? To address this question, we build a symbiont-centered model that incorporates the evolution of two independent symbiont traits: defense and virulence. Virulence is modeled as a continuous trait spanning parasitism (positive virulence) and mutualism (negative virulence), thus accounting for the entire range of direct effects that symbionts have on host mortality. Defense is modeled as a continuous trait that ameliorates the costs to the host associated with infection by a deleterious parasite. We show that the evolution of increased defense in one symbiont may lead to the evolution of lower virulence in both symbionts and even facilitate pathogens evolving to mutualism. However, results are context dependent, and when defensive traits are costly, the evolution of greater defense may also lead to the evolution of greater virulence, breaking the common expectation that defensive symbionts are necessarily mutualists toward the host.
Collapse
|
26
|
Walker DM, Hill AJ, Albecker MA, McCoy MW, Grisnik M, Romer A, Grajal-Puche A, Camp C, Kelehear C, Wooten J, Rheubert J, Graham SP. Variation in the Slimy Salamander (Plethodon spp.) Skin and Gut-Microbial Assemblages Is Explained by Geographic Distance and Host Affinity. MICROBIAL ECOLOGY 2020; 79:985-997. [PMID: 31802185 DOI: 10.1007/s00248-019-01456-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
A multicellular host and its microbial communities are recognized as a metaorganism-a composite unit of evolution. Microbial communities have a variety of positive and negative effects on the host life history, ecology, and evolution. This study used high-throughput amplicon sequencing to characterize the complete skin and gut microbial communities, including both bacteria and fungi, of a terrestrial salamander, Plethodon glutinosus (Family Plethodontidae). We assessed salamander populations, representing nine mitochondrial haplotypes ('clades'), for differences in microbial assemblages across 13 geographic locations in the Southeastern United States. We hypothesized that microbial assemblages were structured by both host factors and geographic distance. We found a strong correlation between all microbial assemblages at close geographic distances, whereas, as spatial distance increases, the patterns became increasingly discriminate. Network analyses revealed that gut-bacterial communities have the highest degree of connectedness across geographic space. Host salamander clade was explanatory of skin-bacterial and gut-fungal assemblages but not gut-bacterial assemblages, unless the latter were analyzed within a phylogenetic context. We also inferred the function of gut-fungal assemblages to understand how an understudied component of the gut microbiome may influence salamander life history. We concluded that dispersal limitation may in part describe patterns in microbial assemblages across space and also that the salamander host may select for skin and gut communities that are maintained over time in closely related salamander populations.
Collapse
Affiliation(s)
- Donald M Walker
- Department of Biology, Middle Tennessee State University, PO Box 60, Murfreesboro, TN, 37132, USA.
| | - Aubree J Hill
- Department of Biology, Tennessee Technological University, 1100 N. Dixie Ave, Cookeville, TN, 38505, USA
| | - Molly A Albecker
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Michael W McCoy
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Matthew Grisnik
- Department of Biology, Middle Tennessee State University, PO Box 60, Murfreesboro, TN, 37132, USA
| | - Alexander Romer
- Department of Biology, Middle Tennessee State University, PO Box 60, Murfreesboro, TN, 37132, USA
| | - Alejandro Grajal-Puche
- Department of Biology, Middle Tennessee State University, PO Box 60, Murfreesboro, TN, 37132, USA
| | - Carlos Camp
- Department of Biology, Piedmont College, 1021 Central Avenue, Demorest, GA, 30535, USA
| | - Crystal Kelehear
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Panama, Republic of Panama
- Department of Biology, Geology and Physical Sciences, Sul Ross State University, Alpine, TX, 79832, USA
| | - Jessica Wooten
- Department of Biology, Piedmont College, 1021 Central Avenue, Demorest, GA, 30535, USA
| | - Justin Rheubert
- Department of Natural Sciences, The University of Findlay, 1000 N. Main St, Findlay, OH, 45840, USA
| | - Sean P Graham
- Department of Biology, Geology and Physical Sciences, Sul Ross State University, Alpine, TX, 79832, USA
| |
Collapse
|
27
|
Birer C, Moreau CS, Tysklind N, Zinger L, Duplais C. Disentangling the assembly mechanisms of ant cuticular bacterial communities of two Amazonian ant species sharing a common arboreal nest. Mol Ecol 2020; 29:1372-1385. [PMID: 32133714 DOI: 10.1111/mec.15400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022]
Abstract
Bacteria living on the cuticle of ants are generally studied for their protective role against pathogens, especially in the clade of fungus-growing ants. However, little is known regarding the diversity of cuticular bacteria in other ant host species, as well as the mechanisms leading to the composition of these communities. Here, we used 16S rRNA gene amplicon sequencing to study the influence of host species, species interactions and the pool of bacteria from the environment on the assembly of cuticular bacterial communities on two phylogenetically distant Amazonian ant species that frequently nest together inside the roots system of epiphytic plants, Camponotus femoratus and Crematogaster levior. Our results show that (a) the vast majority of the bacterial community on the cuticle is shared with the nest, suggesting that most bacteria on the cuticle are acquired through environmental acquisition, (b) 5.2% and 2.0% of operational taxonomic units (OTUs) are respectively specific to Ca. femoratus and Cr. levior, probably representing their respective core cuticular bacterial community, and (c) 3.6% of OTUs are shared between the two ant species. Additionally, mass spectrometry metabolomics analysis of metabolites on the cuticle of ants, which excludes the detection of cuticular hydrocarbons produced by the host, were conducted to evaluate correlations among bacterial OTUs and m/z ion mass. Although some positive and negative correlations are found, the cuticular chemical composition was weakly species-specific, suggesting that cuticular bacterial communities are prominently environmentally acquired. Overall, our results suggest the environment is the dominant source of bacteria found on the cuticle of ants.
Collapse
Affiliation(s)
- Caroline Birer
- CNRS, UMR8172 EcoFoG, AgroParisTech, CIRAD, INRA, Université des Antilles, Université de Guyane, Cayenne, France.,Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Corrie S Moreau
- Departments of Entomology and Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Niklas Tysklind
- INRAE, UMR8172 EcoFoG, AgroParisTech, CIRAD, CNRS, Université des Antilles, Université de Guyane, Kourou, France
| | - Lucie Zinger
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
| | - Christophe Duplais
- CNRS, UMR8172 EcoFoG, AgroParisTech, CIRAD, INRA, Université des Antilles, Université de Guyane, Cayenne, France
| |
Collapse
|
28
|
Abstract
The evolution of a mutualism requires reciprocal interactions whereby one species provides a service that the other species cannot perform or performs less efficiently. Services exchanged in insect-fungus mutualisms include nutrition, protection, and dispersal. In ectosymbioses, which are the focus of this review, fungi can be consumed by insects or can degrade plant polymers or defensive compounds, thereby making a substrate available to insects. They can also protect against environmental factors and produce compounds antagonistic to microbial competitors. Insects disperse fungi and can also provide fungal growth substrates and protection. Insect-fungus mutualisms can transition from facultative to obligate, whereby each partner is no longer viable on its own. Obligate dependency has (a) resulted in the evolution of morphological adaptations in insects and fungi, (b) driven the evolution of social behaviors in some groups of insects, and (c) led to the loss of sexuality in some fungal mutualists.
Collapse
Affiliation(s)
- Peter H W Biedermann
- Research Group Insect-Fungus Symbiosis, Department of Animal Ecology and Tropical Biology, University of Würzburg, 97074 Würzburg, Germany;
| | - Fernando E Vega
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA;
| |
Collapse
|
29
|
Kruger A. Functional Redundancy of Batrachochytrium dendrobatidis Inhibition in Bacterial Communities Isolated from Lithobates clamitans Skin. MICROBIAL ECOLOGY 2020; 79:231-240. [PMID: 31165187 DOI: 10.1007/s00248-019-01387-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
The cutaneous microbial community can influence the health of amphibians exposed to Batrachochytrium dendrobatidis (Bd), a fungal pathogen that has contributed to recent amphibian declines. Resistance to Bd in amphibian populations is correlated with the presence of anti-Bd cutaneous microbes, which confer disease resistance by inhibiting Bd growth. I aimed to determine if green frogs (Lithobates clamitans), an abundant and widely distributed species in New Jersey, harbored bacteria that inhibit Bd and whether the presence and identity of these microbes varied among sites. I used in vitro challenge assays to determine if bacteria isolated from green frog skin could inhibit or enhance the growth of Bd. I found that green frogs at all sites harbored anti-Bd bacteria. However, there were differences in Bd inhibition capabilities among bacterial isolates identified as the same operational taxonomic unit (OTU), lending support to the idea that phylogenetic relatedness does not always predict Bd inhibition status. Additionally, anti-Bd bacterial richness did not vary by site, but the composition of anti-Bd bacterial taxa was distinct at each site. This suggests that there is functional redundancy of Bd inhibition across unique communities of anti-Bd symbionts found on frogs at different sites. These findings highlight the need to better elucidate the structure-function relationship of microbiomes and their role in disease resistance.
Collapse
Affiliation(s)
- Ariel Kruger
- Graduate Program in Ecology and Evolution, Department of Ecology, Evolution, and Natural Resources, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
30
|
Pringle EG. Convergence, constraint and the potential for mutualism between ants and gut microbes. Mol Ecol 2019; 28:699-702. [PMID: 30811772 DOI: 10.1111/mec.14998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/15/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
Abstract
Ants are a hugely diverse family of eusocial insects that dominate terrestrial ecosystems all over the planet. Did mutualistic gut microbes help ants to achieve their diversity and ecological dominance? Initial studies suggested the potential for widespread convergence in ant gut bacterial communities based on dietary niche, but it now seems possible that dedicated bacterial symbionts are restricted to a minority of ant lineages (Russell et al., ). Nevertheless, as most ants are omnivores, the evidence so far has suggested a broad, positive correlation between the evolution of dietary specialization and ant investment in nutrient-provisioning gut bacteria. In this issue of Molecular Ecology, Sapountzis et al. () and Rubin et al. () examine the evolution of gut bacterial communities in two iconic ant taxa-the attine fungus farmers and the Pseudomyrmex plant bodyguards, respectively-in a comparative context. By comparing gut bacteria between ant species of differing dietary specialization within each taxon, these studies demonstrate a hint of convergence in the midst of widespread apparent constraints. These results raise numerous interesting questions about the nature of these apparent constraints and whether they are causes or consequences of varying investment by ants to mutualism with their gut microbes.
Collapse
Affiliation(s)
- Elizabeth G Pringle
- Department of Biology, Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, Nevada
| |
Collapse
|
31
|
Lucaciu R, Pelikan C, Gerner SM, Zioutis C, Köstlbacher S, Marx H, Herbold CW, Schmidt H, Rattei T. A Bioinformatics Guide to Plant Microbiome Analysis. FRONTIERS IN PLANT SCIENCE 2019; 10:1313. [PMID: 31708944 PMCID: PMC6819368 DOI: 10.3389/fpls.2019.01313] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/20/2019] [Indexed: 05/18/2023]
Abstract
Recent evidence for intimate relationship of plants with their microbiota shows that plants host individual and diverse microbial communities that are essential for their survival. Understanding their relatedness using genome-based and high-throughput techniques remains a hot topic in microbiome research. Molecular analysis of the plant holobiont necessitates the application of specific sampling and preparatory steps that also consider sources of unwanted information, such as soil, co-amplified plant organelles, human DNA, and other contaminations. Here, we review state-of-the-art and present practical guidelines regarding experimental and computational aspects to be considered in molecular plant-microbiome studies. We discuss sequencing and "omics" techniques with a focus on the requirements needed to adapt these methods to individual research approaches. The choice of primers and sequence databases is of utmost importance for amplicon sequencing, while the assembly and binning of shotgun metagenomic sequences is crucial to obtain quality data. We discuss specific bioinformatic workflows to overcome the limitation of genome database resources and for covering large eukaryotic genomes such as fungi. In transcriptomics, it is necessary to account for the separation of host mRNA or dual-RNAseq data. Metaproteomics approaches provide a snapshot of the protein abundances within a plant tissue which requires the knowledge of complete and well-annotated plant genomes, as well as microbial genomes. Metabolomics offers a powerful tool to detect and quantify small molecules and molecular changes at the plant-bacteria interface if the necessary requirements with regard to (secondary) metabolite databases are considered. We highlight data integration and complementarity which should help to widen our understanding of the interactions among individual players of the plant holobiont in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hannes Schmidt
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| |
Collapse
|
32
|
Host-symbiont specificity determined by microbe-microbe competition in an insect gut. Proc Natl Acad Sci U S A 2019; 116:22673-22682. [PMID: 31636183 DOI: 10.1073/pnas.1912397116] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite the omnipresence of specific host-symbiont associations with acquisition of the microbial symbiont from the environment, little is known about how the specificity of the interaction evolved and is maintained. The bean bug Riptortus pedestris acquires a specific bacterial symbiont of the genus Burkholderia from environmental soil and harbors it in midgut crypts. The genus Burkholderia consists of over 100 species, showing ecologically diverse lifestyles, and including serious human pathogens, plant pathogens, and nodule-forming plant mutualists, as well as insect mutualists. Through infection tests of 34 Burkholderia species and 18 taxonomically diverse bacterial species, we demonstrate here that nonsymbiotic Burkholderia and even its outgroup Pandoraea could stably colonize the gut symbiotic organ and provide beneficial effects to the bean bug when inoculated on aposymbiotic hosts. However, coinoculation revealed that the native symbiont always outcompeted the nonnative bacteria inside the gut symbiotic organ, explaining the predominance of the native Burkholderia symbiont in natural bean bug populations. Hence, the abilities for colonization and cooperation, usually thought of as specific traits of mutualists, are not unique to the native Burkholderia symbiont but, to the contrary, competitiveness inside the gut is a derived trait of the native symbiont lineage only and was thus critical in the evolution of the insect gut symbiont.
Collapse
|
33
|
Archetti M. Maintenance of variation in mutualism by screening. Evolution 2019; 73:2036-2043. [DOI: 10.1111/evo.13816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Marco Archetti
- Department of BiologyPennsylvania State University University Park Pennsylvania 18602
- Huck Institutes of the Life SciencesPennsylvania State University University Park Pennsylvania 18602
| |
Collapse
|
34
|
Muletz-Wolz CR, Fleischer RC, Lips KR. Fungal disease and temperature alter skin microbiome structure in an experimental salamander system. Mol Ecol 2019; 28:2917-2931. [PMID: 31066947 DOI: 10.1111/mec.15122] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/27/2019] [Accepted: 04/25/2019] [Indexed: 12/29/2022]
Abstract
Pathogens compete with host microbiomes for space and resources. Their shared environment impacts pathogen-microbiome-host interactions, which can lead to variation in disease outcome. The skin microbiome of red-backed salamanders (Plethodon cinereus) can reduce infection by the pathogen Batrachochytrium dendrobatidis (Bd) at moderate infection loads, with high species richness and high abundance of competitors as putative mechanisms. However, it is unclear if the skin microbiome can reduce epizootic Bd loads across temperatures. We conducted a laboratory experiment to quantify skin microbiome and host responses (P. cinereus: n = 87) to Bd at mimicked epizootic loads across temperatures (13, 17 and 21°C). We quantified skin microbiomes using 16S rRNA gene metabarcoding and identified operational taxonomic units (OTUs) taxonomically similar to culturable bacteria known to kill Bd (anti-Bd OTUs). Prior to pathogen exposure, temperature changed the microbiome (OTU richness decreased by 12% and the abundance of anti-Bd OTUs increased by 18% per degree increase in temperature), but these changes were not predictive of disease outcome. After exposure, Bd changed the microbiome (OTU richness decreased by 0.1% and the abundance of anti-Bd OTUs increased by 0.2% per 1% increase in Bd load) and caused high host mortality across temperatures (35/45: 78%). Temperature indirectly impacted microbiome change and mortality through its direct effect on pathogen load. We did not find support for the microbiome impacting Bd load or host survival. Our research reveals complex host, pathogen, microbiome and environmental interactions to demonstrate that during epizootic events the microbiome will be unlikely to reduce pathogen invasion, even for putatively Bd-resistant species.
Collapse
Affiliation(s)
- Carly R Muletz-Wolz
- Department of Biology, University of Maryland, College Park, Maryland.,Center for Conservation Genomics, Smithsonian National Zoological Park and Conservation Biology Institute, Washington, District of Columbia
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian National Zoological Park and Conservation Biology Institute, Washington, District of Columbia
| | - Karen R Lips
- Department of Biology, University of Maryland, College Park, Maryland
| |
Collapse
|
35
|
Boza G, Worsley SF, Yu DW, Scheuring I. Efficient assembly and long-term stability of defensive microbiomes via private resources and community bistability. PLoS Comput Biol 2019; 15:e1007109. [PMID: 31150382 PMCID: PMC6576795 DOI: 10.1371/journal.pcbi.1007109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/17/2019] [Accepted: 05/15/2019] [Indexed: 11/19/2022] Open
Abstract
Understanding the mechanisms that promote the assembly and maintenance of host-beneficial microbiomes is an open problem. Empirical evidence supports the idea that animal and plant hosts can combine 'private resources' with the ecological phenomenon known as 'community bistability' to favour some microbial strains over others. We briefly review evidence showing that hosts can: (i) protect the growth of beneficial strains in an isolated habitat, (ii) use antibiotics to suppress non-beneficial, competitor strains, and (iii) provide resources that only beneficial strains are able to translate into an increased rate of growth, reproduction, or antibiotic production. We then demonstrate in a spatially explicit, individual-based model that these three mechanisms act similarly by selectively promoting the initial proliferation of preferred strains, that is, by acting as a private resource. The faster early growth of preferred strains, combined with the phenomenon of 'community bistability,' allows those strains to continue to dominate the microbiome even after the private resource is withdrawn or made public. This is because after a beneficial colony reaches a sufficiently large size, it can resist invasion by parasites without further private support from the host. We further explicitly model localized microbial interactions and diffusion dynamics, and we show that an intermediate level of antibiotic diffusion is the most efficient mechanism in promoting preferred strains and that there is a wide range of parameters under which hosts can promote the assembly of a self-sustaining defensive microbiome. This in turn supports the idea that hosts readily evolve to promote host-beneficial defensive microbiomes.
Collapse
Affiliation(s)
- Gergely Boza
- Evolutionary Systems Research Group, MTA Centre for Ecological Research, Hungarian Academy of Sciences, Tihany, Hungary
- International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
- * E-mail: , (GB); (IS)
| | - Sarah F. Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Douglas W. Yu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - István Scheuring
- Evolutionary Systems Research Group, MTA Centre for Ecological Research, Hungarian Academy of Sciences, Tihany, Hungary
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail: , (GB); (IS)
| |
Collapse
|
36
|
|
37
|
Chouvenc T, Elliott ML, Šobotník J, Efstathion CA, Su NY. The Termite Fecal Nest: A Framework for the Opportunistic Acquisition of Beneficial Soil Streptomyces (Actinomycetales: Streptomycetaceae). ENVIRONMENTAL ENTOMOLOGY 2018; 47:1431-1439. [PMID: 30321327 DOI: 10.1093/ee/nvy152] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Mutualistic associations between insects and microorganisms must imply gains for both partners, and the emphasis has mostly focused on coevolved host-symbiont systems. However, some insect hosts may have evolved traits that allow for various means of association with opportunistic microbial communities, especially when the microbes are omnipresent in their environment. It was previously shown that colonies of the subterranean termite Coptotermes formosanus Shiraki (Blattodea: Rhinotermitidae) build nests out of fecal material that host a community of Streptomyces Waksman and Henrici (Actinomycetales: Streptomycetaceae). These Actinobacteria produce an array of bioactive metabolites that provides a level of protection for termites against certain entomopathogenic fungi. How C. formosanus acquires and maintains this association remains unknown. This study shows that the majority of Streptomyces isolates found in field termite fecal nest materials are identical to Streptomyces isolates from soils surrounding the nests and are not vertically inherited. A survey of Streptomyces communities from C. formosanus fecal nest materials sampled at 20 locations around the world revealed that all nests are reliably associated with a diverse Streptomyces community. The C. formosanus fecal nest material therefore provides a nutritional framework that can recruit beneficial Streptomyces from the soil environment, in the absence of long-term coevolutionary processes. A diverse Streptomyces community is reliably present in soils, and subterranean termite colonies can acquire such facultative symbionts each social cycle into their fecal nest. This association probably emerged as an exaptation from the existing termite nest structure and benefits both the termite and the opportunistic colonizing bacteria.
Collapse
Affiliation(s)
- Thomas Chouvenc
- Department of Entomology and Nematology, Fort Lauderdale Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, College Avenue, Fort Lauderdale, FL
| | - Monica L Elliott
- Department of Plant Pathology, Fort Lauderdale Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, College Avenue, Fort Lauderdale, FL
| | - Jan Šobotník
- Termite Research Team, Faculty of Forestry and Wood Sciences CULS, Kamýcká, Prague Suchdol, Czechia, EU
| | - Caroline A Efstathion
- Department of Entomology and Nematology, Fort Lauderdale Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, College Avenue, Fort Lauderdale, FL
| | - Nan-Yao Su
- Department of Entomology and Nematology, Fort Lauderdale Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, College Avenue, Fort Lauderdale, FL
| |
Collapse
|
38
|
Kosakowski J, Verma P, Sengupta S, Higgs PG. The evolution of antibiotic production rate in a spatial model of bacterial competition. PLoS One 2018; 13:e0205202. [PMID: 30379843 PMCID: PMC6209167 DOI: 10.1371/journal.pone.0205202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/20/2018] [Indexed: 11/18/2022] Open
Abstract
We consider competition between antibiotic producing bacteria, non-producers (or cheaters), and sensitive cells in a two-dimensional lattice model. Previous work has shown that these three cell types can survive in spatial models due to the presence of spatial patterns, whereas coexistence is not possible in a well-mixed system. We extend this to consider the evolution of the antibiotic production rate, assuming that the cost of antibiotic production leads to a reduction in growth rate of the producers. We find that coexistence occurs for an intermediate range of antibiotic production rate. If production rate is too high or too low, only sensitive cells survive. When evolution of production rate is allowed, a mixture of cell types arises in which there is a dominant producer strain that produces sufficient to limit the growth of sensitive cells and which is able to withstand the presence of cheaters in its own species. The mixture includes a range of low-rate producers and non-producers, none of which could survive without the presence of the dominant producer strain. We also consider the case of evolution of antibiotic resistance within the sensitive species. In order for the resistant cells to survive, they must grow faster than both the non-producers and the producers. However, if the resistant cells grow too rapidly, the producing species is eliminated, after which the resistance mutation is no longer useful, and sensitive cells take over the system. We show that there is a range of growth rates of the resistant cells where the two species coexist, and where the production mechanism is maintained as a polymorphism in the producing species and the resistance mechanism is maintained as a polymorphism in the sensitive species.
Collapse
Affiliation(s)
- Jakub Kosakowski
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Prateek Verma
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Supratim Sengupta
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Paul G. Higgs
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
39
|
Nilsson-Møller S, Poulsen M, Innocent TM. A Visual Guide for Studying Behavioral Defenses to Pathogen Attacks in Leaf-Cutting Ants. J Vis Exp 2018. [PMID: 30371666 PMCID: PMC6235524 DOI: 10.3791/58420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The complex lifestyle, evolutionary history of advanced cooperation, and disease defenses of leaf-cutting ants are well studied. Although numerous studies have described the behaviors connected with disease defense, and the associated use of chemicals and antimicrobials, no common visual reference has been made. The main aim of this study was to record short clips of behaviors involved in disease defense, both prophylactically and directly targeted towards an antagonist of the colony following infection. To do so we used an infection experiment, with sub-colonies of the leaf-cutting ant species Acromyrmex echinatior, and the most significant known pathogenic threat to the ants' fungal crop (Leucoagaricus gongylophorus), a specialized pathogenic fungus in the genus Escovopsis. We filmed and compared infected and uninfected colonies, at both early and more advanced stages of infection. We quantified key defensive behaviors across treatments and show that the behavioral response to pathogen attack likely varies between different castes of worker ants, and between early and late detection of a threat. Based on these recordings we have made a library of behavioral clips, accompanied by definitions of the main individual defensive behaviors. We anticipate that such a guide can provide a common frame of reference for other researchers working in this field, to recognize and study these behaviors, and also provide greater scope for comparing different studies to ultimately help better understand the role these behaviors play in disease defense.
Collapse
Affiliation(s)
- Stephen Nilsson-Møller
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen
| | - Michael Poulsen
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen;
| | - Tabitha M Innocent
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen
| |
Collapse
|
40
|
Bletz MC, Kelly M, Sabino-Pinto J, Bales E, Van Praet S, Bert W, Boyen F, Vences M, Steinfartz S, Pasmans F, Martel A. Disruption of skin microbiota contributes to salamander disease. Proc Biol Sci 2018; 285:rspb.2018.0758. [PMID: 30135150 DOI: 10.1098/rspb.2018.0758] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022] Open
Abstract
Escalating occurrences of emerging infectious diseases underscore the importance of understanding microbiome-pathogen interactions. The amphibian cutaneous microbiome is widely studied for its potential to mitigate disease-mediated amphibian declines. Other microbial interactions in this system, however, have been largely neglected in the context of disease outbreaks. European fire salamanders have suffered dramatic population crashes as a result of the newly emerged Batrachochytrium salamandrivorans (Bsal). In this paper, we investigate microbial interactions on multiple fronts within this system. We show that wild, healthy fire salamanders maintain complex skin microbiotas containing Bsal-inhibitory members, but these community are present at a remarkably low abundance. Through experimentation, we show that increasing bacterial densities of Bsal-inhibiting bacteria via daily addition slowed disease progression in fire salamanders. Additionally, we find that experimental-Bsal infection elicited subtle changes in the skin microbiome, with selected opportunistic bacteria increasing in relative abundance resulting in septicemic events that coincide with extensive destruction of the epidermis. These results suggest that fire salamander skin, in natural settings, maintains bacterial communities at numbers too low to confer sufficient protection against Bsal, and, in fact, the native skin microbiota can constitute a source of opportunistic bacterial pathogens that contribute to pathogenesis. By shedding light on the complex interaction between the microbiome and a lethal pathogen, these data put the interplay between skin microbiomes and a wildlife disease into a new perspective.
Collapse
Affiliation(s)
- Molly C Bletz
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA .,Zoological Institute, Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Moira Kelly
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Joana Sabino-Pinto
- Zoological Institute, Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Emma Bales
- Zoological Institute, Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Sarah Van Praet
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Wim Bert
- Department of Biology, Nematology Research Unit, Faculty of Science, Ghent University, 9000 Ghent, Belgium
| | - Filip Boyen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Sebastian Steinfartz
- Zoological Institute, Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| |
Collapse
|
41
|
Martín-Vivaldi M, Soler JJ, Martínez-García Á, Arco L, Juárez-García-Pelayo N, Ruiz-Rodríguez M, Martínez-Bueno M. Acquisition of Uropygial Gland Microbiome by Hoopoe Nestlings. MICROBIAL ECOLOGY 2018; 76:285-297. [PMID: 29250734 DOI: 10.1007/s00248-017-1125-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
Mutualistic symbioses between animals and bacteria depend on acquisition of appropriate symbionts while avoiding exploitation by non-beneficial microbes. The mode of acquisition of symbionts would determine, not only the probability of encountering but also evolutionary outcomes of mutualistic counterparts. The microbiome inhabiting the uropygial gland of the European hoopoe (Upupa epops) includes a variety of bacterial strains, some of them providing antimicrobial benefits. Here, the mode of acquisition and stability of this microbiome is analyzed by means of Automated rRNA Intergenic Spacer Analysis and two different experiments. The first experiment impeded mothers' access to their glands, thus avoiding direct transmission of microorganisms from female to offspring secretions. The second experiment explored the stability of the microbiomes by inoculating glands with secretions from alien nests. The first experiment provoked a reduction in similarity of microbiomes of mother and nestlings. Interestingly, some bacterial strains were more often detected when females had not access to their glands, suggesting antagonistic effects among bacteria from different sources. The second experiment caused an increase in richness of the microbiome of receivers in terms of prevalence of Operational Taxonomic Units (OTUs) that reduced differences in microbiomes of donors and receivers. That occurred because OTUs that were present in donors but not in receivers incorporated to the microbiome of the latter, which provoked that cross-inoculated nestlings got similar final microbiomes that included the most prevalent OTUs. The results are therefore consistent with a central role of vertical transmission in bacterial acquisition by nestling hoopoes and support the idea that the typical composition of the hoopoe gland microbiome is reached by the incorporation of some bacteria during the nestling period. This scenario suggests the existence of a coevolved core microbiome composed by a mix of specialized vertically transmitted strains and facultative symbionts able to coexist with them. The implications of this mixed mode of transmission for the evolution of the mutualism are discussed.
Collapse
Affiliation(s)
- Manuel Martín-Vivaldi
- Departamento de Zoología, Universidad de Granada, 18071, Granada, Spain.
- Estación Experimental de Zonas Áridas (CSIC), 04120, Almería, Spain.
| | - Juan José Soler
- Estación Experimental de Zonas Áridas (CSIC), 04120, Almería, Spain
| | | | - Laura Arco
- Departamento de Zoología, Universidad de Granada, 18071, Granada, Spain
| | | | | | | |
Collapse
|
42
|
Heine D, Holmes NA, Worsley SF, Santos ACA, Innocent TM, Scherlach K, Patrick EH, Yu DW, Murrell JC, Vieria PC, Boomsma JJ, Hertweck C, Hutchings MI, Wilkinson B. Chemical warfare between leafcutter ant symbionts and a co-evolved pathogen. Nat Commun 2018; 9:2208. [PMID: 29880868 PMCID: PMC5992151 DOI: 10.1038/s41467-018-04520-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/24/2018] [Indexed: 11/14/2022] Open
Abstract
Acromyrmex leafcutter ants form a mutually beneficial symbiosis with the fungus Leucoagaricus gongylophorus and with Pseudonocardia bacteria. Both are vertically transmitted and actively maintained by the ants. The fungus garden is manured with freshly cut leaves and provides the sole food for the ant larvae, while Pseudonocardia cultures are reared on the ant-cuticle and make antifungal metabolites to help protect the cultivar against disease. If left unchecked, specialized parasitic Escovopsis fungi can overrun the fungus garden and lead to colony collapse. We report that Escovopsis upregulates the production of two specialized metabolites when it infects the cultivar. These compounds inhibit Pseudonocardia and one, shearinine D, also reduces worker behavioral defenses and is ultimately lethal when it accumulates in ant tissues. Our results are consistent with an active evolutionary arms race between Pseudonocardia and Escovopsis, which modifies both bacterial and behavioral defenses such that colony collapse is unavoidable once Escovopsis infections escalate. Acromyrmex ants cultivate fungus gardens that can be parasitized by Escovopsis sp., leading to colony collapse. Here, Heine et al. identify two secondary metabolites produced by Escovopsis that accumulate in Acromyrmex tissue, reduce behavioural defenses and suppress symbiotic Pseudonocardia bacteria.
Collapse
Affiliation(s)
- Daniel Heine
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| | - Neil A Holmes
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - Ana Carolina A Santos
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstraße 11a, Jena, 07745, Germany.,Friedrich Schiller University, Jena, Germany.,Departmento de Química, Universidade Federal de São Carlos, UFSCar, Via Washington Luiz KM 235, CP 676, São Carlos, SP, Brazil
| | - Tabitha M Innocent
- Department of Biology, Centre for Social Evolution, University of Copenhagen, Universitetsparken 15, Copenhagen, 2100, Denmark
| | - Kirstin Scherlach
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstraße 11a, Jena, 07745, Germany
| | - Elaine H Patrick
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - Douglas W Yu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - Paulo C Vieria
- Departmento de Química, Universidade Federal de São Carlos, UFSCar, Via Washington Luiz KM 235, CP 676, São Carlos, SP, Brazil
| | - Jacobus J Boomsma
- Department of Biology, Centre for Social Evolution, University of Copenhagen, Universitetsparken 15, Copenhagen, 2100, Denmark
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstraße 11a, Jena, 07745, Germany.,Friedrich Schiller University, Jena, Germany
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK.
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK.
| |
Collapse
|
43
|
Parfrey LW, Moreau CS, Russell JA. Introduction: The host-associated microbiome: Pattern, process and function. Mol Ecol 2018; 27:1749-1765. [DOI: 10.1111/mec.14706] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Laura Wegener Parfrey
- Department of Botany; Biodiversity Research Centre; University of British Columbia; Vancouver British Columbia Canada
- Department of Zoology; University of British Columbia; Vancouver British Columbia Canada
| | - Corrie S. Moreau
- Department of Science and Education; Field Museum of Natural History; Chicago IL USA
| | | |
Collapse
|
44
|
Abstract
Ambrosia beetles are among the true fungus-farming insects and cultivate fungal gardens on which the larvae and adults feed. After invading new habitats, some species destructively attack living or weakened trees growing in managed and unmanaged settings. Ambrosia beetles adapted to weakened trees tunnel into stem tissues containing ethanol to farm their symbiotic fungi, even though ethanol is a potent antimicrobial agent that inhibits the growth of various fungi, yeasts, and bacteria. Here we demonstrate that ambrosia beetles rely on ethanol for host tree colonization because it promotes the growth of their fungal gardens while inhibiting the growth of “weedy” fungal competitors. We propose that ambrosia beetles use ethanol to optimize their food production. Animal–microbe mutualisms are typically maintained by vertical symbiont transmission or partner choice. A third mechanism, screening of high-quality symbionts, has been predicted in theory, but empirical examples are rare. Here we demonstrate that ambrosia beetles rely on ethanol within host trees for promoting gardens of their fungal symbiont and producing offspring. Ethanol has long been known as the main attractant for many of these fungus-farming beetles as they select host trees in which they excavate tunnels and cultivate fungal gardens. More than 300 attacks by Xylosandrus germanus and other species were triggered by baiting trees with ethanol lures, but none of the foundresses established fungal gardens or produced broods unless tree tissues contained in vivo ethanol resulting from irrigation with ethanol solutions. More X. germanus brood were also produced in a rearing substrate containing ethanol. These benefits are a result of increased food supply via the positive effects of ethanol on food-fungus biomass. Selected Ambrosiella and Raffaelea fungal isolates from ethanol-responsive ambrosia beetles profited directly and indirectly by (i) a higher biomass on medium containing ethanol, (ii) strong alcohol dehydrogenase enzymatic activity, and (iii) a competitive advantage over weedy fungal garden competitors (Aspergillus, Penicillium) that are inhibited by ethanol. As ambrosia fungi both detoxify and produce ethanol, they may maintain the selectivity of their alcohol-rich habitat for their own purpose and that of other ethanol-resistant/producing microbes. This resembles biological screening of beneficial symbionts and a potentially widespread, unstudied benefit of alcohol-producing symbionts (e.g., yeasts) in other microbial symbioses.
Collapse
|
45
|
Rebollar EA, Gutiérrez-Preciado A, Noecker C, Eng A, Hughey MC, Medina D, Walke JB, Borenstein E, Jensen RV, Belden LK, Harris RN. The Skin Microbiome of the Neotropical Frog Craugastor fitzingeri: Inferring Potential Bacterial-Host-Pathogen Interactions From Metagenomic Data. Front Microbiol 2018; 9:466. [PMID: 29615997 PMCID: PMC5869913 DOI: 10.3389/fmicb.2018.00466] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/28/2018] [Indexed: 01/01/2023] Open
Abstract
Skin symbiotic bacteria on amphibians can play a role in protecting their host against pathogens. Chytridiomycosis, the disease caused by Batrachochytrium dendrobatidis, Bd, has caused dramatic population declines and extinctions of amphibians worldwide. Anti-Bd bacteria from amphibian skin have been cultured, and skin bacterial communities have been described through 16S rRNA gene amplicon sequencing. Here, we present a shotgun metagenomic analysis of skin bacterial communities from a Neotropical frog, Craugastor fitzingeri. We sequenced the metagenome of six frogs from two different sites in Panamá: three frogs from Soberanía (Sob), a Bd-endemic site, and three frogs from Serranía del Sapo (Sapo), a Bd-naïve site. We described the taxonomic composition of skin microbiomes and found that Pseudomonas was a major component of these communities. We also identified that Sob communities were enriched in Actinobacteria while Sapo communities were enriched in Gammaproteobacteria. We described gene abundances within the main functional classes and found genes enriched either in Sapo or Sob. We then focused our study on five functional classes of genes: biosynthesis of secondary metabolites, metabolism of terpenoids and polyketides, membrane transport, cellular communication and antimicrobial drug resistance. These gene classes are potentially involved in bacterial communication, bacterial-host and bacterial-pathogen interactions among other functions. We found that C. fitzingeri metagenomes have a wide array of genes that code for secondary metabolites, including antibiotics and bacterial toxins, which may be involved in bacterial communication, but could also have a defensive role against pathogens. Several genes involved in bacterial communication and bacterial-host interactions, such as biofilm formation and bacterial secretion systems were found. We identified specific genes and pathways enriched at the different sites and determined that gene co-occurrence networks differed between sites. Our results suggest that skin microbiomes are composed of distinct bacterial taxa with a wide range of metabolic capabilities involved in bacterial defense and communication. Differences in taxonomic composition and pathway enrichments suggest that skin microbiomes from different sites have unique functional properties. This study strongly supports the need for shotgun metagenomic analyses to describe the functional capacities of skin microbiomes and to tease apart their role in host defense against pathogens.
Collapse
Affiliation(s)
- Eria A Rebollar
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | | | - Cecilia Noecker
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Alexander Eng
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Myra C Hughey
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Daniel Medina
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Jenifer B Walke
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Elhanan Borenstein
- Department of Genome Sciences, University of Washington, Seattle, WA, United States.,Department of Computer Science and Engineering, University of Washington, Seattle, WA, United States.,Santa Fe Institute, Santa Fe, NM, United States
| | - Roderick V Jensen
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Lisa K Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States.,Smithsonian Tropical Research Institution, Panama City, Panama
| | - Reid N Harris
- Department of Biology, James Madison University, Harrisonburg, VA, United States.,Amphibian Survival Alliance, London, United Kingdom
| |
Collapse
|
46
|
Quigley KM, Warner PA, Bay LK, Willis BL. Unexpected mixed-mode transmission and moderate genetic regulation of Symbiodinium communities in a brooding coral. Heredity (Edinb) 2018; 121:524-536. [PMID: 29453423 PMCID: PMC6221883 DOI: 10.1038/s41437-018-0059-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 12/25/2017] [Accepted: 01/12/2018] [Indexed: 11/12/2022] Open
Abstract
Determining the extent to which Symbiodinium communities in corals are inherited versus environmentally acquired is fundamental to understanding coral resilience and to predicting coral responses to stressors like warming oceans that disrupt this critical endosymbiosis. We examined the fidelity with which Symbiodinium communities in the brooding coral Seriatopora hystrix are vertically transmitted and the extent to which communities are genetically regulated, by genotyping the symbiont communities within 60 larvae and their parents (9 maternal and 45 paternal colonies) using high-throughput sequencing of the ITS2 locus. Unexpectedly, Symbiodinium communities associated with brooded larvae were distinct from those within parent colonies, including the presence of types not detected in adults. Bayesian heritability (h2) analysis revealed that 33% of variability in larval Symbiodinium communities was genetically controlled. Results highlight flexibility in the establishment of larval symbiont communities and demonstrate that symbiont transmission is not exclusively vertical in brooding corals. Instead, we show that Symbiodinium transmission in S. hystrix involves a mixed-mode strategy, similar to many terrestrial invertebrate symbioses. Also, variation in the abundances of common Symbiodinium types among adult corals suggests that microhabitat differences influence the structure of in hospite Symbiodinium communities. Partial genetic regulation coupled with flexibility in the environmentally acquired component of Symbiodinium communities implies that corals with vertical transmission, like S. hystrix, may be more resilient to environmental change than previously thought.
Collapse
Affiliation(s)
- Kate M Quigley
- ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, QLD, Australia. .,AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, QLD, Australia.
| | - Patricia A Warner
- ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, QLD, Australia.,AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, QLD, Australia
| | - Line K Bay
- AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, QLD, Australia.,Australian Institute of Marine Science, PMB3, Townsville, QLD, Australia
| | - Bette L Willis
- ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, QLD, Australia.,AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, QLD, Australia
| |
Collapse
|
47
|
Antwis RE, Harrison XA. Probiotic consortia are not uniformly effective against different amphibian chytrid pathogen isolates. Mol Ecol 2018; 27:577-589. [PMID: 29218845 DOI: 10.1111/mec.14456] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022]
Abstract
Symbiotic bacterial communities can protect their hosts from infection by pathogens. Treatment of wild individuals with protective bacteria (probiotics) isolated from hosts can combat the spread of emerging infectious diseases. However, it is unclear whether candidate probiotic bacteria can offer consistent protection across multiple isolates of globally distributed pathogens. Here, we use the lethal amphibian fungal pathogen Batrachochytrium dendrobatidis to investigate whether probiotic richness (number of bacteria) or genetic distance among consortia members influences broad-scale in vitro inhibitory capabilities of probiotics across multiple isolates of the pathogen. We show that inhibition of multiple pathogen isolates by individual bacteria is rare, with no systematic pattern among bacterial genera in ability to inhibit multiple B. dendrobatidis isolates. Bacterial consortia can offer stronger protection against B. dendrobatidis compared to single strains, and this tended to be more pronounced for consortia containing multiple genera compared with those consisting of bacteria from a single genus (i.e., with lower genetic distance), but critically, this effect was not uniform across all B. dendrobatidis isolates. These novel insights have important implications for the effective design of bacterial probiotics to mitigate emerging infectious diseases.
Collapse
Affiliation(s)
- Rachael E Antwis
- School of Environment and Life Sciences, University of Salford, Salford, UK.,Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | | |
Collapse
|
48
|
Richards C, Otani S, Mikaelyan A, Poulsen M. Pycnoscelus surinamensis cockroach gut microbiota respond consistently to a fungal diet without mirroring those of fungus-farming termites. PLoS One 2017; 12:e0185745. [PMID: 28973021 PMCID: PMC5626473 DOI: 10.1371/journal.pone.0185745] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023] Open
Abstract
The gut microbiotas of cockroaches and termites play important roles in the symbiotic digestion of dietary components, such as lignocellulose. Diet has been proposed as a primary determinant of community structure within the gut, acting as a selection force to shape the diversity observed within this “bioreactor”, and as a key factor for the divergence of the termite gut microbiota from the omnivorous cockroach ancestor. The gut microbiota in most termites supports primarily the breakdown of lignocellulose, but the fungus-farming sub-family of higher termites has become similar in gut microbiota to the ancestral omnivorous cockroaches. To assess the importance of a fungus diet as a driver of community structure, we compare community compositions in the guts of experimentally manipulated Pycnoscelus surinamensis cockroaches fed on fungus cultivated by fungus-farming termites. MiSeq amplicon analysis of gut microbiotas from 49 gut samples showed a step-wise gradient pattern in community similarity that correlated with an increase in the proportion of fungal material provided to the cockroaches. Comparison of the taxonomic composition of manipulated communities to that of gut communities of a fungus-feeding termite species showed that although some bacteria OTUs shared by P. surinamensis and the farming termites increased in the guts of cockroaches on a fungal diet, cockroach communities remained distinct from those of termites. These results demonstrate that a fungal diet can play a role in structuring gut community composition, but at the same time exemplifies how original community compositions constrain the magnitude of such change.
Collapse
Affiliation(s)
- Callum Richards
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen East, Denmark
| | - Saria Otani
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen East, Denmark
| | - Aram Mikaelyan
- Department of Biological Sciences, Vanderbilt University, VU Station B, Nashville, TN, United States of America
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University, VU Station B, Nashville, TN, United States of America
| | - Michael Poulsen
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen East, Denmark
- * E-mail:
| |
Collapse
|
49
|
Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat Microbiol 2017; 2:17121. [DOI: 10.1038/nmicrobiol.2017.121] [Citation(s) in RCA: 402] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 07/03/2017] [Indexed: 02/08/2023]
|
50
|
Duarte A, Welch M, Swannack C, Wagner J, Kilner RM. Strategies for managing rival bacterial communities: Lessons from burying beetles. J Anim Ecol 2017; 87:414-427. [PMID: 28682460 PMCID: PMC5836980 DOI: 10.1111/1365-2656.12725] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 06/11/2017] [Indexed: 01/27/2023]
Abstract
The role of bacteria in animal development, ecology and evolution is increasingly well understood, yet little is known of how animal behaviour affects bacterial communities. Animals that benefit from defending a key resource from microbial competitors are likely to evolve behaviours to control or manipulate the animal's associated external microbiota. We describe four possible mechanisms by which animals could gain a competitive edge by disrupting a rival bacterial community: "weeding," "seeding," "replanting" and "preserving." By combining detailed behavioural observations with molecular and bioinformatic analyses, we then test which of these mechanisms best explains how burying beetles, Nicrophorus vespilloides, manipulate the bacterial communities on their carcass breeding resource. Burying beetles are a suitable species to study how animals manage external microbiota because reproduction revolves around a small vertebrate carcass. Parents shave a carcass and apply antimicrobial exudates on its surface, shaping it into an edible nest for their offspring. We compared bacterial communities in mice carcasses that were either fresh, prepared by beetles or unprepared but buried underground for the same length of time. We also analysed bacterial communities in the burying beetle's gut, during and after breeding, to understand whether beetles could be "seeding" the carcass with particular microbes. We show that burying beetles do not "preserve" the carcass by reducing bacterial load, as is commonly supposed. Instead, our results suggest they "seed" the carcass with bacterial groups which are part of the Nicrophorus core microbiome. They may also "replant" other bacteria from the carcass gut onto the surface of their carrion nest. Both these processes may lead to the observed increase in bacterial load on the carcass surface in the presence of beetles. Beetles may also "weed" the bacterial community by eliminating some groups of bacteria on the carcass, perhaps through the production of antimicrobials themselves. Whether these alterations to the bacterial community are adaptive from the beetle's perspective, or are simply a by-product of the way in which the beetles prepare the carcass for reproduction, remains to be determined in future work. In general, our work suggests that animals might use more sophisticated techniques for attacking and disrupting rival microbial communities than is currently appreciated.
Collapse
Affiliation(s)
- Ana Duarte
- Department of Zoology, University of Cambridge, Cambridge, UK.,College of Life and Environmental Sciences, University of Exeter, Cornwall, UK
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Chris Swannack
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Josef Wagner
- Pathogen Genetics Programme, Wellcome Trust Sanger Institute, Hinxton, UK
| | | |
Collapse
|