1
|
Kajihara KT, Yuan M, Amend AS, Cetraro N, Darcy JL, Fraiola KMS, Frank K, McFall-Ngai M, Medeiros MCI, Nakayama KK, Nelson CE, Rollins RL, Sparagon WJ, Swift SOI, Téfit MA, Yew JY, Yogi D, Hynson NA. Diversity, connectivity and negative interactions define robust microbiome networks across land, stream, and sea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631746. [PMID: 39829850 PMCID: PMC11741383 DOI: 10.1101/2025.01.07.631746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
In this era of rapid global change, factors influencing the stability of ecosystems and their functions have come into the spotlight. For decades the relationship between stability and complexity has been investigated in modeled and empirical systems, yet results remain largely context dependent. To overcome this we leverage a multiscale inventory of fungi and bacteria ranging from single sites along an environmental gradient, to habitats inclusive of land, sea and stream, to an entire watershed. We use networks to assess the relationship between microbiome complexity and robustness and identify fundamental principles of stability. We demonstrate that while some facets of complexity are positively associated with robustness, others are not. Beyond positive biodiversity x robustness relationships we find that the number of "gatekeeper" species or those that are highly connected and central within their networks, and the proportion of predicted negative interactions are universal indicators of robust microbiomes. With the potential promise of microbiome engineering to address global challenges ranging from human to ecosystem health we identify properties of microbiomes for future experimental studies that may enhance their stability. We emphasize that features beyond biodiversity and additional characteristics beyond stability such as adaptability should be considered in these efforts.
Collapse
|
2
|
Zhang K, Chen X, Shi X, Yang Z, Yang L, Liu D, Yu F. Endophytic Bacterial Community, Core Taxa, and Functional Variations Within the Fruiting Bodies of Laccaria. Microorganisms 2024; 12:2296. [PMID: 39597685 PMCID: PMC11596330 DOI: 10.3390/microorganisms12112296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Macrofungi do not exist in isolation but establish symbiotic relationships with microorganisms, particularly bacteria, within their fruiting bodies. Herein, we examined the fruiting bodies' bacteriome of seven species of the genus Laccaria collected from four locations in Yunnan, China. By analyzing bacterial diversity, community structure, and function through 16S rRNA sequencing, we observed the following: (1) In total, 4,840,291 high-quality bacterial sequences obtained from the fruiting bodies were grouped into 16,577 amplicon sequence variants (ASVs), and all samples comprised 23 shared bacterial ASVs. (2) The Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium complex was found to be the most abundant and presumably coexisting bacterium. (3) A network analysis revealed that endophytic bacteria formed functional groups, which were dominated by the genera Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Novosphingobium, and Variovorax. (4) The diversity, community structure, and dominance of ecological functions (chemoheterotrophy and nitrogen cycling) among endophytic bacteria were significantly shaped by geographic location, habitat, and fungal genotype, rather than fruiting body type. (5) A large number of the endophytic bacteria within Laccaria are bacteria that promote plant growth; however, some pathogenic bacteria that pose a threat to human health might also be present. This research advances our understanding of the microbial ecology of Laccaria and the factors shaping its endophytic bacterial communities.
Collapse
Affiliation(s)
- Kaixuan Zhang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xin Chen
- College of Life Sciences, Northwest Agriculture and Forestry University, Yangling 712100, China;
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Zhenyan Yang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Lian Yang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Dong Liu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| |
Collapse
|
3
|
Kajihara KT, Hynson NA. Networks as tools for defining emergent properties of microbiomes and their stability. MICROBIOME 2024; 12:184. [PMID: 39342398 PMCID: PMC11439251 DOI: 10.1186/s40168-024-01868-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/04/2024] [Indexed: 10/01/2024]
Abstract
The potential promise of the microbiome to ameliorate a wide range of societal and ecological challenges, from disease prevention and treatment to the restoration of entire ecosystems, hinges not only on microbiome engineering but also on the stability of beneficial microbiomes. Yet the properties of microbiome stability remain elusive and challenging to discern due to the complexity of interactions and often intractable diversity within these communities of bacteria, archaea, fungi, and other microeukaryotes. Networks are powerful tools for the study of complex microbiomes, with the potential to elucidate structural patterns of stable communities and generate testable hypotheses for experimental validation. However, the implementation of these analyses introduces a cascade of dichotomies and decision trees due to the lack of consensus on best practices. Here, we provide a road map for network-based microbiome studies with an emphasis on discerning properties of stability. We identify important considerations for data preparation, network construction, and interpretation of network properties. We also highlight remaining limitations and outstanding needs for this field. This review also serves to clarify the varying schools of thought on the application of network theory for microbiome studies and to identify practices that enhance the reproducibility and validity of future work. Video Abstract.
Collapse
Affiliation(s)
- Kacie T Kajihara
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.
| | - Nicole A Hynson
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| |
Collapse
|
4
|
Zádrapová D, Chakraborty A, Žáček P, Korecký J, Bhar A, Roy A. Exploring the Rhizospheric Microbial Communities under Long-Term Precipitation Regime in Norway Spruce Seed Orchard. Int J Mol Sci 2024; 25:9658. [PMID: 39273604 PMCID: PMC11395193 DOI: 10.3390/ijms25179658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
The rhizosphere is the hotspot for microbial enzyme activities and contributes to carbon cycling. Precipitation is an important component of global climate change that can profoundly alter belowground microbial communities. However, the impact of precipitation on conifer rhizospheric microbial populations has not been investigated in detail. In the present study, using high-throughput amplicon sequencing, we investigated the impact of precipitation on the rhizospheric soil microbial communities in two Norway Spruce clonal seed orchards, Lipová Lhota (L-site) and Prenet (P-site). P-site has received nearly double the precipitation than L-site for the last three decades. P-site documented higher soil water content with a significantly higher abundance of Aluminium (Al), Iron (Fe), Phosphorous (P), and Sulphur (S) than L-site. Rhizospheric soil metabolite profiling revealed an increased abundance of acids, carbohydrates, fatty acids, and alcohols in P-site. There was variance in the relative abundance of distinct microbiomes between the sites. A higher abundance of Proteobacteria, Acidobacteriota, Ascomycota, and Mortiellomycota was observed in P-site receiving high precipitation, while Bacteroidota, Actinobacteria, Chloroflexi, Firmicutes, Gemmatimonadota, and Basidiomycota were prevalent in L-site. The higher clustering coefficient of the microbial network in P-site suggested that the microbial community structure is highly interconnected and tends to cluster closely. The current study unveils the impact of precipitation variations on the spruce rhizospheric microbial association and opens new avenues for understanding the impact of global change on conifer rizospheric microbial associations.
Collapse
Affiliation(s)
- Dagmar Zádrapová
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Suchdol, 165 21 Prague, Czech Republic
| | - Amrita Chakraborty
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Suchdol, 165 21 Prague, Czech Republic
| | - Petr Žáček
- Faculty of Science, Charles University in Prague, BIOCEV, Průmyslová 595, Vestec, 252 42 Prague, Czech Republic
| | - Jiří Korecký
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Suchdol, 165 21 Prague, Czech Republic
| | - Anirban Bhar
- Molecular Plant and Microbiology Laboratory (MPML), Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, India
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Suchdol, 165 21 Prague, Czech Republic
| |
Collapse
|
5
|
Li S, Li X, Ye Y, Chen M, Chen H, Yang D, Li M, Jiang F, Zhang X, Zhang C. The rhizosphere microbiome and its influence on the accumulation of metabolites in Bletilla striata (Thunb.) Reichb. f. BMC PLANT BIOLOGY 2024; 24:409. [PMID: 38760736 PMCID: PMC11100225 DOI: 10.1186/s12870-024-05134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Bletilla striata (Thunb.) Reichb. f. (B. striata) is a perennial herbaceous plant in the Orchidaceae family known for its diverse pharmacological activities, such as promoting wound healing, hemostasis, anti-inflammatory effects, antioxidant properties, and immune regulation. Nevertheless, the microbe-plant-metabolite regulation patterns for B. striata remain largely undetermined, especially in the field of rhizosphere microbes. To elucidate the interrelationships between soil physics and chemistry and rhizosphere microbes and metabolites, a comprehensive approach combining metagenome analysis and targeted metabolomics was employed to investigate the rhizosphere soil and tubers from four provinces and eight production areas in China. RESULTS Our study reveals that the core rhizosphere microbiome of B. striata is predominantly comprised of Paraburkholderia, Methylibium, Bradyrhizobium, Chitinophaga, and Mycobacterium. These microbial species are recognized as potentially beneficial for plants health. Comprehensive analysis revealed a significant association between the accumulation of metabolites, such as militarine and polysaccharides in B. striata and the composition of rhizosphere microbes at the genus level. Furthermore, we found that the soil environment indirectly influenced the metabolite profile of B. striata by affecting the composition of rhizosphere microbes. Notably, our research identifies soil organic carbon as a primary driving factor influencing metabolite accumulation in B. striata. CONCLUSION Our fndings contribute to an enhanced understanding of the comprehensive regulatory mechanism involving microbe-plant-metabolite interactions. This research provides a theoretical basis for the cultivation of high-quality traditional Chinese medicine B. striata.
Collapse
Affiliation(s)
- Shiqing Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Xiaomei Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Yueyu Ye
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Man Chen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Haimin Chen
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Dongfeng Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Meiya Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Fusheng Jiang
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Xiaobo Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Chunchun Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
6
|
Jin Z, Jiang F, Wang L, Declerck S, Feng G, Zhang L. Arbuscular mycorrhizal fungi and Streptomyces: brothers in arms to shape the structure and function of the hyphosphere microbiome in the early stage of interaction. MICROBIOME 2024; 12:83. [PMID: 38725008 PMCID: PMC11080229 DOI: 10.1186/s40168-024-01811-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/07/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Fungi and bacteria coexist in a wide variety of environments, and their interactions are now recognized as the norm in most agroecosystems. These microbial communities harbor keystone taxa, which facilitate connectivity between fungal and bacterial communities, influencing their composition and functions. The roots of most plants are associated with arbuscular mycorrhizal (AM) fungi, which develop dense networks of hyphae in the soil. The surface of these hyphae (called the hyphosphere) is the region where multiple interactions with microbial communities can occur, e.g., exchanging or responding to each other's metabolites. However, the presence and importance of keystone taxa in the AM fungal hyphosphere remain largely unknown. RESULTS Here, we used in vitro and pot cultivation systems of AM fungi to investigate whether certain keystone bacteria were able to shape the microbial communities growing in the hyphosphere and potentially improved the fitness of the AM fungal host. Based on various AM fungi, soil leachates, and synthetic microbial communities, we found that under organic phosphorus (P) conditions, AM fungi could selectively recruit bacteria that enhanced their P nutrition and competed with less P-mobilizing bacteria. Specifically, we observed a privileged interaction between the isolate Streptomyces sp. D1 and AM fungi of the genus Rhizophagus, where (1) the carbon compounds exuded by the fungus were acquired by the bacterium which could mineralize organic P and (2) the in vitro culturable bacterial community residing on the surface of hyphae was in part regulated by Streptomyces sp. D1, primarily by inhibiting the bacteria with weak P-mineralizing ability, thereby enhancing AM fungi to acquire P. CONCLUSIONS This work highlights the multi-functionality of the keystone bacteria Streptomyces sp. D1 in fungal-bacteria and bacterial-bacterial interactions at the hyphal surface of AM fungi. Video Abstract.
Collapse
Affiliation(s)
- Zexing Jin
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Feiyan Jiang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Letian Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Stéphane Declerck
- Applied Microbiology, Mycology, Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 2, Bte L7.05.06, Louvain-La-Neuve, B-1348, Belgium
| | - Gu Feng
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Lin Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Antón-Herrero R, Chicca I, García-Delgado C, Crognale S, Lelli D, Gargarello RM, Herrero J, Fischer A, Thannberger L, Eymar E, Petruccioli M, D’Annibale A. Main Factors Determining the Scale-Up Effectiveness of Mycoremediation for the Decontamination of Aliphatic Hydrocarbons in Soil. J Fungi (Basel) 2023; 9:1205. [PMID: 38132804 PMCID: PMC10745009 DOI: 10.3390/jof9121205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Soil contamination constitutes a significant threat to the health of soil ecosystems in terms of complexity, toxicity, and recalcitrance. Among all contaminants, aliphatic petroleum hydrocarbons (APH) are of particular concern due to their abundance and persistence in the environment and the need of remediation technologies to ensure their removal in an environmentally, socially, and economically sustainable way. Soil remediation technologies presently available on the market to tackle soil contamination by petroleum hydrocarbons (PH) include landfilling, physical treatments (e.g., thermal desorption), chemical treatments (e.g., oxidation), and conventional bioremediation. The first two solutions are costly and energy-intensive approaches. Conversely, bioremediation of on-site excavated soil arranged in biopiles is a more sustainable procedure. Biopiles are engineered heaps able to stimulate microbial activity and enhance biodegradation, thus ensuring the removal of organic pollutants. This soil remediation technology is currently the most environmentally friendly solution available on the market, as it is less energy-intensive and has no detrimental impact on biological soil functions. However, its major limitation is its low removal efficiency, especially for long-chain hydrocarbons (LCH), compared to thermal desorption. Nevertheless, the use of fungi for remediation of environmental contaminants retains the benefits of bioremediation treatments, including low economic, social, and environmental costs, while attaining removal efficiencies similar to thermal desorption. Mycoremediation is a widely studied technology at lab scale, but there are few experiences at pilot scale. Several factors may reduce the overall efficiency of on-site mycoremediation biopiles (mycopiles), and the efficiency detected in the bench scale. These factors include the bioavailability of hydrocarbons, the selection of fungal species and bulking agents and their application rate, the interaction between the inoculated fungi and the indigenous microbiota, soil properties and nutrients, and other environmental factors (e.g., humidity, oxygen, and temperature). The identification of these factors at an early stage of biotreatability experiments would allow the application of this on-site technology to be refined and fine-tuned. This review brings together all mycoremediation work applied to aliphatic petroleum hydrocarbons (APH) and identifies the key factors in making mycoremediation effective. It also includes technological advances that reduce the effect of these factors, such as the structure of mycopiles, the application of surfactants, and the control of environmental factors.
Collapse
Affiliation(s)
- Rafael Antón-Herrero
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (R.A.-H.); (E.E.)
| | | | - Carlos García-Delgado
- Department of Geology and Geochemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Silvia Crognale
- Department for Innovation in Biological, Agri-Food and Forestry Systems, University of Tuscia, 01100 Tuscia, Italy; (S.C.); (D.L.); (M.P.); (A.D.)
| | - Davide Lelli
- Department for Innovation in Biological, Agri-Food and Forestry Systems, University of Tuscia, 01100 Tuscia, Italy; (S.C.); (D.L.); (M.P.); (A.D.)
| | - Romina Mariel Gargarello
- Water, Air and Soil Unit, Eurecat, Centre Tecnològic de Catalunya, 08242 Manresa, Spain; (R.M.G.); (J.H.)
| | - Jofre Herrero
- Water, Air and Soil Unit, Eurecat, Centre Tecnològic de Catalunya, 08242 Manresa, Spain; (R.M.G.); (J.H.)
| | | | | | - Enrique Eymar
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (R.A.-H.); (E.E.)
| | - Maurizio Petruccioli
- Department for Innovation in Biological, Agri-Food and Forestry Systems, University of Tuscia, 01100 Tuscia, Italy; (S.C.); (D.L.); (M.P.); (A.D.)
| | - Alessandro D’Annibale
- Department for Innovation in Biological, Agri-Food and Forestry Systems, University of Tuscia, 01100 Tuscia, Italy; (S.C.); (D.L.); (M.P.); (A.D.)
| |
Collapse
|
8
|
Pang W, Zhang P, Zhang Y, Zhang X, Huang Y, Zhang T, Liu B. The Ectomycorrhizal Fungi and Soil Bacterial Communities of the Five Typical Tree Species in the Junzifeng National Nature Reserve, Southeast China. PLANTS (BASEL, SWITZERLAND) 2023; 12:3853. [PMID: 38005750 PMCID: PMC10675191 DOI: 10.3390/plants12223853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023]
Abstract
To explore the contribution of microorganisms to forest ecosystem function, we studied the ectomycorrhizal (ECM) fungal and soil bacterial community of the five typical tree species (Pinus massoniana, PM; Castanopsis carlesii, CC; Castanopsis eyrei, CE; Castanopsis fargesii, CF; and Keteleeria cyclolepis, KC) at the Junzifeng National Nature Reserve. The results indicated that the ECM fungal and soil bacterial diversity of CC and CF was similar, and the diversity rates of CC and CF were higher than those of PM, CE, and KC. Cenococcum geophilum and unclassified_Cortinariaceae II were the most prevalent occurring ECM fungi species in the five typical tree species, followed by unclassified_Cortinariaceae I and Lactarius atrofuscus. In bacteria, the dominant bacterial genera were Acidothermus, Bradyrhizobium, Acidibacter, Candidatus_Solibacter, Candidatus_Koribacter, Roseiarcus, and Bryobacter. EMF fungi and soil bacteria were correlated with edaphic factors, especially the soil pH, TP, and TK, caused by stand development. The results show that the community characteristics of ECM fungi and bacteria in the typical tree species of the Junzifeng National Nature Reserve reflect the critical role of soil microorganisms in stabilizing forest ecosystems.
Collapse
Affiliation(s)
- Wenbo Pang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.P.); (P.Z.); (Y.Z.)
| | - Panpan Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.P.); (P.Z.); (Y.Z.)
| | - Yuhu Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.P.); (P.Z.); (Y.Z.)
| | - Xiao Zhang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yanbin Huang
- Administration Bureau of Fujian Junzifeng National Nature Reserve, Mingxi 365200, China;
| | - Taoxiang Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.P.); (P.Z.); (Y.Z.)
| | - Bao Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.P.); (P.Z.); (Y.Z.)
| |
Collapse
|
9
|
Embacher J, Zeilinger S, Kirchmair M, Rodriguez-R LM, Neuhauser S. Wood decay fungi and their bacterial interaction partners in the built environment – A systematic review on fungal bacteria interactions in dead wood and timber. FUNGAL BIOL REV 2023. [DOI: 10.1016/j.fbr.2022.100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Hou F, Yi F, Song L, Zhan S, Zhang R, Han X, Sun X, Liu Z. Bacterial community dynamics and metabolic functions prediction in white button mushroom (Agaricus bisporus) during storage. Food Res Int 2023; 171:113077. [PMID: 37330835 DOI: 10.1016/j.foodres.2023.113077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
White button mushroom (Agaricus bisporus) is rich in nutritional value, but it is easily infected by microorganisms during storage, which leads to spoilage and shortens the storage time. In this paper, A. bisporus at different storage times was sequenced by Illumina Novaseq 6000 platform. QIIME2 and PICRUSt2 were used to analyze the changes of bacterial community diversity and predict metabolic functions during storage of A. bisporus. Then, the pathogenic bacteria were isolated and identified from the spoilt samples of A. bisporus with black spot. The results showed that the bacterial species richness of A. bisporus surface gradually decreased. 2,291 ASVs were finally obtained through DADA2 denoising, belonging to 27 phyla, 60 classes, 154 orders, 255 families and 484 genera. The abundance of Pseudomonas on the surface of fresh A. bisporus sample was 22.8%, which increased to 68.7% after 6 days of storage. The abundance significantly increased and became a dominant spoilage bacterium. In addition, A total of 46 secondary metabolic pathways belonging to 6 categories of primary biological metabolic pathways were predicted during storage of A. bisporus, and metabolism (71.8%) was the main functional pathway. Co-occurrence network analysis revealed that the dominant bacterium Pseudomonas was positively correlated with 13 functional pathways (level 3). A total of 5 strains were isolated and purified from diseased A. bisporus surface. The test of pathogenicity showed that Pseudomonas tolaasii caused serious spoilage of A. bisporus. The study provided a theoretical basis for the development of antibacterial materials to reduce related diseases and prolong the storage time of A. bisporus.
Collapse
Affiliation(s)
- Fanyun Hou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049 Shandong, PR China
| | - Fangxuan Yi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049 Shandong, PR China
| | - Lisha Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049 Shandong, PR China
| | - Shouqing Zhan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049 Shandong, PR China
| | - Rongfei Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049 Shandong, PR China
| | - Xiangbo Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049 Shandong, PR China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049 Shandong, PR China
| | - Zhanli Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049 Shandong, PR China.
| |
Collapse
|
11
|
Zhang AY, Zhang ML, Zhu JL, Mei Y, Xu FJ, Bai HY, Sun K, Zhang W, Dai CC, Jia Y. Endofungal Bacterial Microbiota Promotes the Absorption of Chelated Inorganic Phosphorus by Host Pine through the Ectomycorrhizal System. Microbiol Spectr 2023; 11:e0016223. [PMID: 37404161 PMCID: PMC10433794 DOI: 10.1128/spectrum.00162-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
Ectomycorrhizal fungi play an irreplaceable role in phosphorus cycling. However, ectomycorrhizal fungi have a limited ability to dissolve chelated inorganic phosphorus, which is the main component of soil phosphorus. Endofungal bacteria in ectomycorrhizal fruiting bodies are always closely related to the ecological function of ectomycorrhizal fungi. In this study, we explore endofungal bacteria in the fruiting body of Tylopilus neofelleus and their function during the absorption of chelated inorganic phosphorus by host pine through the ectomycorrhizal system. The results showed that the endofungal bacterial microbiota in the fruiting body of T. neofelleus might be related to the dissolution of chelated inorganic phosphorus in soil. The soluble phosphorus content in the combined system of T. neofelleus and endofungal bacteria Bacillus sp. strain B5 was five times higher than the sum of T. neofelleus-only treatment and Bacillus sp. strain B5-only treatment in the dissolution experiment of chelated inorganic phosphorus. The results showed that T. neofelleus not only promoted the proliferation of Bacillus sp. strain B5 in the combined system but also improved the expression of genes related to organic acid metabolism, as assesed by transcriptomic analysis. Lactic acid content was five times higher in the combined system than the sum of T. neofelleus-only treatment and Bacillus sp. strain B5-only treatment. Two essential genes related to lactate metabolism of Bacillus sp. strain B5, gapA and pckA, were significantly upregulated. Finally, in a pot experiment, we verified that T. neofelleus and Bacillus sp. strain B5 could synergistically promote the absorption of chelated inorganic phosphorus by Pinus sylvestris in a ternary symbiotic system. IMPORTANCE Ectomycorrhizal fungi (ECMF) have a limited ability to dissolve chelated inorganic phosphorus, which is the main component of soil phosphorus. In the natural environment, the extraradical hyphae of ECMF alone may not satisfy the phosphorus demand of the plant ectomycorrhizal system. In this study, our results innovatively show that the ectomycorrhizal system might be a ternary symbiont in which ectomycorrhizal fungi might recruit endofungal bacteria that could synergistically promote the mineralization of chelated inorganic phosphorus, which ultimately promotes plant phosphorus absorption by the ectomycorrhizal system.
Collapse
Affiliation(s)
- Ai-Yue Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Mei-Ling Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jia-Le Zhu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yan Mei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Fang-Ji Xu
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences (SAAS), Jinan, China
| | - Hong-Yan Bai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yong Jia
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
12
|
Zuo X, Xu W, Wei S, Jiang S, Luo Y, Ling M, Zhang K, Gao Y, Wang Z, Hu J, Grossart HP, Luo Z. Aerobic denitrifying bacterial-fungal consortium mediating nitrate removal: Dynamics, network patterns and interactions. iScience 2023; 26:106824. [PMID: 37250796 PMCID: PMC10212969 DOI: 10.1016/j.isci.2023.106824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
In recent years, nitrogen removal by mixed microbial cultures has received increasing attention owing to cooperative metabolism. A natural bacterial-fungal consortium was isolated from mariculture, which exhibited an excellent aerobic denitrification capacity. Under aerobic conditions, nitrate removal and denitrification efficiencies were up to 100% and 44.27%, respectively. High-throughput sequencing and network analysis suggested that aerobic denitrification was potentially driven by the co-occurrence of the following bacterial and fungal genera: Vibrio, Fusarium, Gibberella, Meyerozyma, Exophiala and Pseudoalteromonas, with the dominance of Vibrio and Fusarium in bacterial and fungal communities, respectively. In addition, the isolated consortium had a high steady aerobic denitrification performance in our sub-culturing experiments. Our results provide new insights on the dynamics, network patterns and interactions of aerobic denitrifying microbial consortia with a high potential for new biotechnology applications.
Collapse
Affiliation(s)
- Xiaotian Zuo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- School of Marine Sciences, China University of Geosciences, Beijing 100083, China
| | - Wei Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Shiping Wei
- School of Marine Sciences, China University of Geosciences, Beijing 100083, China
| | - Shuangcheng Jiang
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China
| | - Yu Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Minghuang Ling
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Kai Zhang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yuanhao Gao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Zhichao Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jiege Hu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin 16775, Germany
- Institute of Biochemistry and Biology, Postdam University, Potsdam 14469, Germany
| | - Zhuhua Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China
- Marine Biology College, Xiamen Ocean Vocational College, Xiamen 361012, China
- Co-Innovation Center of Jiangsu Marine Bioindustry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
13
|
Álvarez-Barragán J, Cravo-Laureau C, Xiong B, Wick LY, Duran R. Marine Fungi Select and Transport Aerobic and Anaerobic Bacterial Populations from Polycyclic Aromatic Hydrocarbon-Contaminated Sediments. mBio 2023; 14:e0276122. [PMID: 36786561 PMCID: PMC10127579 DOI: 10.1128/mbio.02761-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
The organization of microbial communities in marine sediment relies on complex biotic and abiotic interactions. Among them, the interaction between fungi and bacteria plays a crucial role building specific microbial assemblages, resulting in metabolic networks adapted to environmental conditions. The fungal-bacterial interaction (FBI) includes bacterial translocation via fungal mycelia, allowing bacterial dispersion, and ecological niche colonization. In order to demonstrate that the translocation of bacteria through fungal mycelia involves bacterial selection, the mycelia of two fungi isolated from marine coastal sediment, Alternaria destruens F10.81 and Fusarium pseudonygamai F5.76, showing different strategies for uptake of polycyclic aromatic hydrocarbon (PAH), homogenous internalization and vacuole forming respectively, were used to translocate bacteria through hydrophobic hydrocarbon contaminated sediments. A. destruens F10.81 selected four specific bacteria, while bacterial selection by F. pseudonygamai F5.76 was not evident. Among the bacteria selected by A. destruens F10.81, Spirochaeta litoralis, known as strictly anaerobic bacterium, was identified, indicating that A. destruens F10.81 selects and transports both aerobic and anaerobic bacteria. Such a result is consistent with the observed formation of anoxic micro-niches in areas surrounding and affected by fungal hyphae. Our findings provide new insights on the selection and dispersion of bacterial communities by fungi, which are crucial for the organization of microbial communities and their functioning in coastal PAH-contaminated sediments. IMPORTANCE The study provides advances for understanding fungal-bacterial relationships, particularly on the selection and dispersion of bacterial communities by fungi, which are crucial for the organization of microbial communities and their functioning in coastal PAH-contaminated sediments. The transportation of bacteria via fungal hyphae (fungal highway) results in bacterial selection; in particular, fungal hyphae offer adequate conditions for the transport of both aerobic and anaerobic bacteria through hydrophobic patches for the colonization of novel niches.
Collapse
Affiliation(s)
| | | | - Bijing Xiong
- Helmholtz Centre for Environmental Research–UFZ, Department of Environmental Microbiology, Leipzig, Germany
| | - Lukas Y. Wick
- Helmholtz Centre for Environmental Research–UFZ, Department of Environmental Microbiology, Leipzig, Germany
| | - Robert Duran
- Universite de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, Pau, France
| |
Collapse
|
14
|
Singavarapu B, Du J, Beugnon R, Cesarz S, Eisenhauer N, Xue K, Wang Y, Bruelheide H, Wubet T. Functional Potential of Soil Microbial Communities and Their Subcommunities Varies with Tree Mycorrhizal Type and Tree Diversity. Microbiol Spectr 2023; 11:e0457822. [PMID: 36951585 PMCID: PMC10111882 DOI: 10.1128/spectrum.04578-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/11/2023] [Indexed: 03/24/2023] Open
Abstract
Soil microbial communities play crucial roles in the earth's biogeochemical cycles. Yet, their genomic potential for nutrient cycling in association with tree mycorrhizal type and tree-tree interactions remained unclear, especially in diverse tree communities. Here, we studied the genomic potential of soil fungi and bacteria with arbuscular (AM) and ectomycorrhizal (EcM) conspecific tree species pairs (TSPs) at three tree diversity levels in a subtropical tree diversity experiment (BEF-China). The soil fungi and bacteria of the TSPs' interaction zone were characterized by amplicon sequencing, and their subcommunities were determined using a microbial interkingdom co-occurrence network approach. Their potential genomic functions were predicted with regard to the three major nutrients carbon (C), nitrogen (N), and phosphorus (P) and their combinations. We found the microbial subcommunities that were significantly responding to different soil characteristics. The tree mycorrhizal type significantly influenced the functional composition of these co-occurring subcommunities in monospecific stands and two-tree-species mixtures but not in mixtures with more than three tree species (here multi-tree-species mixtures). Differentiation of subcommunities was driven by differentially abundant taxa producing different sets of nutrient cycling enzymes across the tree diversity levels, predominantly enzymes of the P (n = 11 and 16) cycles, followed by the N (n = 9) and C (n = 9) cycles, in monospecific stands and two-tree-species mixtures, respectively. Fungi of the Agaricomycetes, Sordariomycetes, Eurotiomycetes, and Leotiomycetes and bacteria of the Verrucomicrobia, Acidobacteria, Alphaproteobacteria, and Actinobacteria were the major differential contributors (48% to 62%) to the nutrient cycling functional abundances of soil microbial communities across tree diversity levels. Our study demonstrated the versatility and significance of microbial subcommunities in different soil nutrient cycling processes of forest ecosystems. IMPORTANCE Loss of multifunctional microbial communities can negatively affect ecosystem services, especially forest soil nutrient cycling. Therefore, exploration of the genomic potential of soil microbial communities, particularly their constituting subcommunities and taxa for nutrient cycling, is vital to get an in-depth mechanistic understanding for better management of forest soil ecosystems. This study revealed soil microbes with rich nutrient cycling potential, organized in subcommunities that are functionally resilient and abundant. Such microbial communities mainly found in multi-tree-species mixtures associated with different mycorrhizal partners can foster soil microbiome stability. A stable and functionally rich soil microbiome is involved in the cycling of nutrients, such as carbon, nitrogen, and phosphorus, and their combinations could have positive effects on ecosystem functioning, including increased forest productivity. The new findings could be highly relevant for afforestation and reforestation regimes, notably in the face of growing deforestation and global warming scenarios.
Collapse
Affiliation(s)
- Bala Singavarapu
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Jianqing Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Rémy Beugnon
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Leipzig Institute for Meteorology, Universität Leipzig, Leipzig, Germany
- CEFE, Université Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Kai Xue
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Yanfen Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Chinese Academy of Sciences, Beijing, China
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Tesfaye Wubet
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| |
Collapse
|
15
|
Wang Y, Jiménez DJ, Zhang Z, van Elsas JD. Functioning of a tripartite lignocellulolytic microbial consortium cultivated under two shaking conditions: a metatranscriptomic study. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:54. [PMID: 36991472 DOI: 10.1186/s13068-023-02289-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/25/2023] [Indexed: 03/30/2023]
Abstract
Abstract
Background
In a previous study, shaking speed was found to be an important factor affecting the population dynamics and lignocellulose-degrading activities of a synthetic lignocellulolytic microbial consortium composed of the bacteria Sphingobacterium paramultivorum w15, Citrobacter freundii so4, and the fungus Coniochaeta sp. 2T2.1. Here, the gene expression profiles of each strain in this consortium were examined after growth at two shaking speeds (180 and 60 rpm) at three time points (1, 5 and 13 days).
Results
The results indicated that, at 60 rpm, C. freundii so4 switched, to a large extent, from aerobic to flexible (aerobic/microaerophilic/anaerobic) metabolism, resulting in continued slow growth till late stage. In addition, Coniochaeta sp. 2T2.1 tended to occur to a larger extent in the hyphal form, with genes encoding adhesion proteins being highly expressed. Much like at 180 rpm, at 60 rpm, S. paramultivorum w15 and Coniochaeta sp. 2T2.1 were key players in hemicellulose degradation processes, as evidenced from the respective CAZy-specific transcripts. Coniochaeta sp. 2T2.1 exhibited expression of genes encoding arabinoxylan-degrading enzymes (i.e., of CAZy groups GH10, GH11, CE1, CE5 and GH43), whereas, at 180 rpm, some of these genes were suppressed at early stages of growth. Moreover, C. freundii so4 stably expressed genes that were predicted to encode proteins with (1) β-xylosidase/β-glucosidase and (2) peptidoglycan/chitinase activities, (3) stress response- and detoxification-related proteins. Finally, S. paramultivorum w15 showed involvement in vitamin B2 generation in the early stages across the two shaking speeds, while this role was taken over by C. freundii so4 at late stage at 60 rpm.
Conclusions
We provide evidence that S. paramultivorum w15 is involved in the degradation of mainly hemicellulose and in vitamin B2 production, and C. freundii so4 in the degradation of oligosaccharides or sugar dimers, next to detoxification processes. Coniochaeta sp. 2T2.1 was held to be strongly involved in cellulose and xylan (at early stages), next to lignin modification processes (at later stages). The synergism and alternative functional roles presented in this study enhance the eco-enzymological understanding of the degradation of lignocellulose in this tripartite microbial consortium.
Collapse
|
16
|
Nguyen NH. Fungal Hyphosphere Microbiomes Are Distinct from Surrounding Substrates and Show Consistent Association Patterns. Microbiol Spectr 2023; 11:e0470822. [PMID: 36939352 PMCID: PMC10100729 DOI: 10.1128/spectrum.04708-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/22/2023] [Indexed: 03/21/2023] Open
Abstract
Mat-forming fungi are common in forest and grassland soils across the world, where their activity contributes to important soil ecological processes. These fungi maintain dominance through aggressive and abundant hyphae that modify their internal physical and chemical environments and through these modifications select for what appears to be a suite of mycophilic bacteria. Here, the bacteria associated with the fungal mats of Leucopaxillus gentianeus and Leucopaxillus albissimus from western North America are compared to adjacent nonmat substrates. Within the mats, the bacterial richness and diversity were significantly reduced, and the community composition was significantly different. The bacterial community structure between the two fungal hosts was marginally significant and indicated a shared set of bacterial associates. The genera Burkholderia, Streptomyces, Bacillus, Paenibacillus, and Mycobacterium were significantly abundant within the fungal mats and represent core members of these hypha-rich environments. Comparison with the literature from fungal mat studies worldwide showed that these genera are common and often significantly found within fungal mats, further reinforcing the concept of a mycophilic bacterial guild. These genera are incorporated into a synthesis discussion in the context of our current understanding of the nature of fungal-bacterial interactions and the potential outcomes of these interactions in soil nutrient cycling, plant productivity, and human health. IMPORTANCE Fungi and bacteria are the most abundant and diverse organisms in soils (perhaps more so than any other habitat on earth), and together these microorganisms contribute to broad soil ecosystem processes. There is a suite of bacteria that appears consistently within the physical space called the hyphosphere, the area of influence surrounding fungal hyphae. How these bacteria are selected for, how they are maintained, and what broader ecological functions they perform are subjects of interest in this relatively new field-the cross-kingdom interactions between fungi and bacteria. Understanding their cooccurrence and their interactions can open new realms of understanding in soil ecological processes with global consequences.
Collapse
Affiliation(s)
- Nhu H. Nguyen
- University of Hawaiʻi at Mānoa, Honolulu, Hawaiʻi, USA
| |
Collapse
|
17
|
Ge W, Ren Y, Dong C, Shao Q, Bai Y, He Z, Yao T, Zhang Y, Zhu G, Deshmukh SK, Han Y. New perspective: Symbiotic pattern and assembly mechanism of Cantharellus cibarius-associated bacteria. Front Microbiol 2023; 14:1074468. [PMID: 36876069 PMCID: PMC9978014 DOI: 10.3389/fmicb.2023.1074468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Cantharellus cibarius, an ectomycorrhizal fungus belonging to the Basidiomycetes, has significant medicinal and edible value, economic importance, and ecological benefits. However, C. cibarius remains incapable of artificial cultivation, which is thought to be due to the presence of bacteria. Therefore, much research has focused on the relationship between C. cibarius and bacteria, but rare bacteria are frequently overlooked, and symbiotic pattern and assembly mechanism of the bacterial community associated with C. cibarius remain unknown. In this study, the assembly mechanism and driving factors of both abundant and rare bacterial communities of C. cibarius were revealed by the null model. The symbiotic pattern of the bacterial community was examined using a co-occurrence network. Metabolic functions and phenotypes of the abundant and rare bacteria were compared using METAGENassist2, and the impacts of abiotic variables on the diversity of abundant and rare bacteria were examined using partial least squares path modeling. In the fruiting body and mycosphere of C. cibarius, there was a higher proportion of specialist bacteria compared with generalist bacteria. Dispersal limitation dominated the assembly of abundant and rare bacterial communities in the fruiting body and mycosphere. However, pH, 1-octen-3-ol, and total phosphorus of the fruiting body were the main driving factors of bacterial community assembly in the fruiting body, while available nitrogen and total phosphorus of the soil affected the assembly process of the bacterial community in the mycosphere. Furthermore, bacterial co-occurrence patterns in the mycosphere may be more complex compared with those in the fruiting body. Unlike the specific potential functions of abundant bacteria, rare bacteria may provide supplementary or unique metabolic pathways (such as sulfite oxidizer and sulfur reducer) to enhance the ecological function of C. cibarius. Notably, while volatile organic compounds can reduce mycosphere bacterial diversity, they can increase fruiting body bacterial diversity. Findings from this study further, our understanding of C. cibarius-associated microbial ecology.
Collapse
Affiliation(s)
- Wei Ge
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Yulian Ren
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Chunbo Dong
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Qiuyu Shao
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Yanmin Bai
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Zhaoying He
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Ting Yao
- Analysis and Test Center, Huangshan University, Huangshan, China
| | - Yanwei Zhang
- School of Biological Sciences, Guizhou Education University, Guiyang, Guizhou, China
| | - Guosheng Zhu
- Guizhou Key Laboratory of Edible Fungi Breeding, Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Sunil Kumar Deshmukh
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, New Delhi, India
| | - Yanfeng Han
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
18
|
Dhuldhaj UP, Singh R, Singh VK. Pesticide contamination in agro-ecosystems: toxicity, impacts, and bio-based management strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9243-9270. [PMID: 36456675 DOI: 10.1007/s11356-022-24381-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Continuous rise in application of pesticides in the agro-ecosystems in order to ensure food supply to the ever-growing population is of greater concern to the human health and the environment. Once entered into the agro-ecosystem, the fate and transport of pesticides is determined largely by the nature of pesticides and the soil attributes, in addition to the soil-inhabiting microbes, fauna, and flora. Changes in the soil microbiological actions, soil properties, and enzymatic activities resulting from pesticide applications are the important factors substantially affecting the soil productivity. Disturbances in the microbial community composition may lead to the considerable perturbations in cycling of major nutrients, metals, and subsequent uptake by plants. Indiscriminate applications are linked with the accumulation of pesticides in plant-based foods, feeds, and animal products. Furthermore, rapid increase in the application of pesticides having long half-life has also been reported to contaminate the nearby aquatic environments and accumulation in the plants, animals, and microbes surviving there. To circumvent the negative consequences of pesticide application, multitude of techniques falling in physical, chemical, and biological categories are presented by different investigators. In the present study, important findings pertaining to the pesticide contamination in cultivated agricultural soils; toxicity on soil microbes, plants, invertebrates, and vertebrates; effects on soil characteristics; and alleviation of toxicity by bio-based management approaches have been thoroughly reviewed. With the help of bibliometric analysis, thematic evolution and research trends on the bioremediation of pesticides in the agro-ecosystems have also been highlighted.
Collapse
Affiliation(s)
- Umesh Pravin Dhuldhaj
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded, 431606, India
| | - Rishikesh Singh
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Vipin Kumar Singh
- Department of Botany, K. S. Saket P. G. College, (Affiliated to Dr. Ram Manohar Lohia Avadh University), Ayodhya, 224123, India.
| |
Collapse
|
19
|
N-Terminus Plays a Critical Role for Stabilizing the Filamentous Assembly and the Antifungal Activity of Bg_9562. Microbiol Spectr 2022; 10:e0160722. [PMID: 36005835 PMCID: PMC9603447 DOI: 10.1128/spectrum.01607-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bg_9562, a prophage tail-like protein was earlier shown to be required for bacterial mycophagy by Burkholderia gladioli strain NGJ1. The purified protein exhibited broad-spectrum antifungal activity; however, the structural and mechanistic details vis-à-vis its activity remained elusive. In this study, we have structurally characterized the protein Bg_9562 using negatively stained transmission electron microscopy, molecular modeling and mutagenesis. We find that Bg_9562 shows structural similarity to Gp13, a tail assembly chaperone. The transmission electron microscopy revealed that, Bg_9562 forms long flexible tubular structures. Molecular modeling of the filament like structure divulges that the inter subunit contacts are meditated largely through hydrophobic interactions. Using mutagenesis, we demonstrate that the N-terminal residues of the protein when deleted results in reduced activity and destabilization of filament formation. Overall, structure-function analysis opens up avenues for further utilization of the protein as a potent antifungal molecule. IMPORTANCE Burkholderia gladioli strain NGJ1, isolated from healthy rice seedling, was earlier demonstrated to have mycophagous properties on a broad range of fungi, including Rhizoctonia solani, a causal agent of deadly sheath blight disease of rice. The purified Bg_9562 protein exerts broad-spectrum antifungal activity. The protein also inhibits the growth of laboratory strain of Candida, an opportunistic human pathogen. In this study, we structurally characterize Bg_9562 using a combination of negative staining transmission electron microscopy, molecular modeling, mutagenesis, and functional antifungal assay. We show that the protein assembles into long filament like structures stabilized by N-terminus residues and this region is important for its activity. Our study has implications in utilizing Bg_9562 or its derivatives as antifungal molecule(s) which will provide environmentally friendly control of fungal diseases of plants and animals.
Collapse
|
20
|
Snelders NC, Rovenich H, Thomma BPHJ. Microbiota manipulation through the secretion of effector proteins is fundamental to the wealth of lifestyles in the fungal kingdom. FEMS Microbiol Rev 2022; 46:fuac022. [PMID: 35604874 PMCID: PMC9438471 DOI: 10.1093/femsre/fuac022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Fungi are well-known decomposers of organic matter that thrive in virtually any environment on Earth where they encounter wealths of other microbes. Some fungi evolved symbiotic lifestyles, including pathogens and mutualists, that have mostly been studied in binary interactions with their hosts. However, we now appreciate that such interactions are greatly influenced by the ecological context in which they take place. While establishing their symbioses, fungi not only interact with their hosts but also with the host-associated microbiota. Thus, they target the host and its associated microbiota as a single holobiont. Recent studies have shown that fungal pathogens manipulate the host microbiota by means of secreted effector proteins with selective antimicrobial activity to stimulate disease development. In this review, we discuss the ecological contexts in which such effector-mediated microbiota manipulation is relevant for the fungal lifestyle and argue that this is not only relevant for pathogens of plants and animals but also beneficial in virtually any niche where fungi occur. Moreover, we reason that effector-mediated microbiota manipulation likely evolved already in fungal ancestors that encountered microbial competition long before symbiosis with land plants and mammalian animals evolved. Thus, we claim that effector-mediated microbiota manipulation is fundamental to fungal biology.
Collapse
Affiliation(s)
- Nick C Snelders
- Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Hanna Rovenich
- Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
| | - Bart P H J Thomma
- Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences, Institute for Plant Sciences, University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
21
|
Lee KK, Kim H, Lee YH. Cross-kingdom co-occurrence networks in the plant microbiome: Importance and ecological interpretations. Front Microbiol 2022; 13:953300. [PMID: 35958158 PMCID: PMC9358436 DOI: 10.3389/fmicb.2022.953300] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022] Open
Abstract
Microbial co-occurrence network analysis is being widely used for data exploration in plant microbiome research. Still, challenges lie in how well these microbial networks represent natural microbial communities and how well we can interpret and extract eco-evolutionary insights from the networks. Although many technical solutions have been proposed, in this perspective, we touch on the grave problem of kingdom-level bias in network representation and interpretation. We underscore the eco-evolutionary significance of using cross-kingdom (bacterial-fungal) co-occurrence networks to increase the network's representability of natural communities. To do so, we demonstrate how ecosystem-level interpretation of plant microbiome evolution changes with and without multi-kingdom analysis. Then, to overcome oversimplified interpretation of the networks stemming from the stereotypical dichotomy between bacteria and fungi, we recommend three avenues for ecological interpretation: (1) understanding dynamics and mechanisms of co-occurrence networks through generalized Lotka-Volterra and consumer-resource models, (2) finding alternative ecological explanations for individual negative and positive fungal-bacterial edges, and (3) connecting cross-kingdom networks to abiotic and biotic (host) environments.
Collapse
Affiliation(s)
- Kiseok Keith Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Hyun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
- Center for Plant Microbiome Research, Seoul National University, Seoul, South Korea
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
22
|
Microbial Involvement in the Bioremediation of Total Petroleum Hydrocarbon Polluted Soils: Challenges and Perspectives. ENVIRONMENTS 2022. [DOI: 10.3390/environments9040052] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nowadays, soil contamination by total petroleum hydrocarbons is still one of the most widespread forms of contamination. Intervention technologies are consolidated; however, full-scale interventions turn out to be not sustainable. Sustainability is essential not only in terms of costs, but also in terms of restoration of the soil resilience. Bioremediation has the possibility to fill the gap of sustainability with proper knowledge. Bioremediation should be optimized by the exploitation of the recent “omic” approaches to the study of hydrocarburoclastic microbiomes. To reach the goal, an extensive and deep knowledge in the study of bacterial and fungal degradative pathways, their interactions within microbiomes and of microbiomes with the soil matrix has to be gained. “Omic” approaches permits to study both the culturable and the unculturable soil microbial communities active in degradation processes, offering the instruments to identify the key organisms responsible for soil contaminant depletion and restoration of soil resilience. Tools for the investigation of both microbial communities, their degradation pathways and their interaction, will be discussed, describing the dedicated genomic and metagenomic approaches, as well as the interpretative tools of the deriving data, that are exploitable for both optimizing bio-based approaches for the treatment of total petroleum hydrocarbon contaminated soils and for the correct scaling up of the technologies at the industrial scale.
Collapse
|
23
|
Wang YH, Kong WL, Zhu ML, Dai Y, Wu XQ. Colonization by the Mycorrhizal Helper Bacillus pumilus HR10 Is Enhanced During the Establishment of Ectomycorrhizal Symbiosis Between Hymenochaete sp. Rl and Pinus thunbergii. Front Microbiol 2022; 13:818912. [PMID: 35330763 PMCID: PMC8940532 DOI: 10.3389/fmicb.2022.818912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/09/2022] [Indexed: 12/02/2022] Open
Abstract
There are complex interactions between mycorrhizal helper bacteria (MHBs) and ectomycorrhizal (ECM) fungi, with MHBs promoting mycorrhizal synthesis and ECM fungi regulating plant rhizobacterial colonization, diversity, and function. In this study, to investigate whether the ECM fungus Hymenochaete sp. Rl affects the survival and colonization of the MHB strain Bacillus pumilus HR10 in the rhizosphere, the biomass of B. pumilus HR10 was measured in the rhizosphere and mycorrhizosphere. In addition, extracts of Hymenochaete sp. Rl and Pinus thunbergii were evaluated for their effect on B. pumilus HR10 colonization (growth, sporulation, biofilm formation, extracellular polysaccharide and extracellular protein contents, flagellar motility, and expression of colonization-related genes). The results showed that inoculation of Hymenochaete sp. Rl significantly increased the biomass of B. pumilus HR10 in the rhizosphere; however, while extracts of Hymenochaete sp. Rl and P. thunbergii did not affect the biomass or spore formation of HR10, they did affect its biofilm formation, extracellular polysaccharide and extracellular protein production, and flagellar motility. Furthermore, the addition of symbiont extracts affected the expression of chemotaxis-related genes in HR10. When the extracts were added separately, the expression of srf genes in HR10 increased; when the extracts were added simultaneously, the expression of the flagellin gene fliG in HR10 increased, but there was no significant effect on the expression of srf genes, consistent with the results on biofilm production. Thus, Hymenochaete sp. Rl and P. thunbergii roots had a positive effect on colonization by B. pumilus HR10 at the rhizosphere level through their secretions.
Collapse
Affiliation(s)
- Ya-Hui Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Wei-Liang Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Mei-Ling Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Yun Dai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
24
|
Xu F, Liao H, Zhang Y, Yao M, Liu J, Sun L, Zhang X, Yang J, Wang K, Wang X, Ding Y, Liu C, Rensing C, Zhang J, Yeh K, Xu W. Coordination of root auxin with the fungus Piriformospora indica and bacterium Bacillus cereus enhances rice rhizosheath formation under soil drying. THE ISME JOURNAL 2022; 16:801-811. [PMID: 34621017 PMCID: PMC8857228 DOI: 10.1038/s41396-021-01133-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/10/2022]
Abstract
Moderate soil drying (MSD) is a promising agricultural technique that can reduce water consumption and enhance rhizosheath formation promoting drought resistance in plants. The endophytic fungus Piriformospora indica (P. indica) with high auxin production may be beneficial for rhizosheath formation. However, the integrated role of P. indica with native soil microbiome in rhizosheath formation is unclear. Here, we investigated the roles of P. indica and native bacteria on rice rhizosheath formation under MSD using high-throughput sequencing and rice mutants. Under MSD, rice rhizosheath formation was significantly increased by around 30% with P. indica inoculation. Auxins in rice roots and P. indica were responsible for the rhizosheath formation under MSD. Next, the abundance of the genus Bacillus, known as plant growth-promoting rhizobacteria, was enriched in the rice rhizosheath and root endosphere with P. indica inoculation under MSD. Moreover, the abundance of Bacillus cereus (B. cereus) with high auxin production was further increased by P. indica inoculation. After inoculation with both P. indica and B. cereus, rhizosheath formation in wild-type or auxin efflux carrier OsPIN2 complemented line rice was higher than that of the ospin2 mutant. Together, our results suggest that the interaction of the endophytic fungus P. indica with the native soil bacterium B. cereus favors rice rhizosheath formation by auxins modulation in rice and microbes under MSD. This finding reveals a cooperative contribution of P. indica and native microbiota in rice rhizosheath formation under moderate soil drying, which is important for improving water use in agriculture.
Collapse
Affiliation(s)
- Feiyun Xu
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Hanpeng Liao
- grid.256111.00000 0004 1760 2876Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yingjiao Zhang
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Minjie Yao
- grid.256111.00000 0004 1760 2876Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jianping Liu
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Leyun Sun
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xue Zhang
- grid.256111.00000 0004 1760 2876Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jinyong Yang
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Ke Wang
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xiaoyun Wang
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yexin Ding
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Chen Liu
- grid.256111.00000 0004 1760 2876Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Christopher Rensing
- grid.256111.00000 0004 1760 2876Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jianhua Zhang
- grid.221309.b0000 0004 1764 5980Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Kaiwun Yeh
- grid.19188.390000 0004 0546 0241Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
25
|
Chen L, Yan M, Qian X, Yang Z, Xu Y, Wang T, Cao J, Sun S. Bacterial Community Composition in the Growth Process of Pleurotus eryngii and Growth-Promoting Abilities of Isolated Bacteria. Front Microbiol 2022; 13:787628. [PMID: 35173699 PMCID: PMC8842659 DOI: 10.3389/fmicb.2022.787628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
The effects of biological factors on the vegetative growth process of mushrooms remain largely unexplored. We investigated the bacterial community in different growth stages of Pleurotus eryngii by high-throughput sequencing technology to explore the relationship between interacting bacteria and the growth and development of P. eryngii. We found significant variances in mushroom interacting association bacteria (MIAB) compositions among the samples from different growth stages, and 410 genera were identified. The bacteria in the full-bag and post-ripe stages were shifted to the biocontrol and growth-promotion ones. The mushroom growth-promoting bacteria (MGPB) were also isolated successfully and identified as B. cereus Bac1. The growth speed and density of mycelial pellets of P. eryngii, and activities of two exoenzymes (laccase and amylase), were analyzed by adding the different volumes of cell-free fermentation broth of B. cereus Bac1 to fungal culture media. The results showed that when a 5 mL cell-free fermentation broth was used, the growth speed of P. eryngii hyphae was enhanced by 1.15-fold over the control and reached 0.46 mm/h. The relative activity of laccase and amylase was increased by 26.9 and 43.83%. Our study revealed that the abundant interacting bacteria coexist with P. eryngii hyphae. Moreover, the abundance of some bacteria exhibiting a positive correlation with the growth periods of their host fungi can effectively promote the growth of the host, which will provide technical supports on the high-efficiency production of P. eryngii in factory cultivation.
Collapse
Affiliation(s)
- Liding Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Miao Yan
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Qian
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ziwei Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanfei Xu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianjiao Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jixuan Cao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shujing Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
26
|
Bahram M, Netherway T. Fungi as mediators linking organisms and ecosystems. FEMS Microbiol Rev 2021; 46:6468741. [PMID: 34919672 PMCID: PMC8892540 DOI: 10.1093/femsre/fuab058] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/15/2021] [Indexed: 12/03/2022] Open
Abstract
Fungi form a major and diverse component of most ecosystems on Earth. They are both micro and macroorganisms with high and varying functional diversity as well as great variation in dispersal modes. With our growing knowledge of microbial biogeography, it has become increasingly clear that fungal assembly patterns and processes differ from other microorganisms such as bacteria, but also from macroorganisms such as plants. The success of fungi as organisms and their influence on the environment lies in their ability to span multiple dimensions of time, space, and biological interactions, that is not rivalled by other organism groups. There is also growing evidence that fungi mediate links between different organisms and ecosystems, with the potential to affect the macroecology and evolution of those organisms. This suggests that fungal interactions are an ecological driving force, interconnecting different levels of biological and ecological organisation of their hosts, competitors, and antagonists with the environment and ecosystem functioning. Here we review these emerging lines of evidence by focusing on the dynamics of fungal interactions with other organism groups across various ecosystems. We conclude that the mediating role of fungi through their complex and dynamic ecological interactions underlie their importance and ubiquity across Earth's ecosystems.
Collapse
Affiliation(s)
- Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Ulls väg 16, 756 51 Sweden.,Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 40 Lai St. Estonia
| | - Tarquin Netherway
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Ulls väg 16, 756 51 Sweden
| |
Collapse
|
27
|
Xiong BJ, Dusny C, Wang L, Appel J, Lindstaedt K, Schlosser D, Harms H, Wick LY. Illuminate the hidden: in vivo mapping of microscale pH in the mycosphere using a novel whole-cell biosensor. ISME COMMUNICATIONS 2021; 1:75. [PMID: 36765263 PMCID: PMC9723660 DOI: 10.1038/s43705-021-00075-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 01/07/2023]
Abstract
The pH of an environment is both a driver and the result of diversity and functioning of microbial habitats such as the area affected by fungal hyphae (mycosphere). Here we used a novel pH-sensitive bioreporter, Synechocystis sp. PCC6803_peripHlu, and ratiometric fluorescence microscopy, to spatially and temporally resolve the mycosphere pH at the micrometre scale. Hyphae of the basidiomycete Coprionopsis cinerea were allowed to overgrow immobilised and homogeneously embedded pH bioreporters in an agarose microcosm. Signals of >700 individual cells in an area of 0.4 × 0.8 mm were observed over time and used to create highly resolved (3 × 3 µm) pH maps using geostatistical approaches. C. cinerea changed the pH of the agarose from 6.9 to ca. 5.0 after 48 h with hyphal tips modifying pH in their vicinity up to 1.8 mm. pH mapping revealed distinct microscale spatial variability and temporally stable gradients between pH 4.4 and 5.8 over distances of ≈20 µm. This is the first in vivo mapping of a mycosphere pH landscape at the microscale. It underpins the previously hypothesised establishment of pH gradients serving to create spatially distinct mycosphere reaction zones.
Collapse
Affiliation(s)
- Bi-Jing Xiong
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Christian Dusny
- Department of Solar Materials, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Lin Wang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jens Appel
- Department of Biology, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 5, 24118, Kiel, Germany
| | - Kristin Lindstaedt
- Department of Solar Materials, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Dietmar Schlosser
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Lukas Y Wick
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany.
| |
Collapse
|
28
|
Högberg MN, Högberg P, Wallander H, Nilsson LO. Carbon-nitrogen relations of ectomycorrhizal mycelium across a natural nitrogen supply gradient in boreal forest. THE NEW PHYTOLOGIST 2021; 232:1839-1848. [PMID: 34449884 DOI: 10.1111/nph.17701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
The supply of carbon (C) from tree photosynthesis to ectomycorrhizal (ECM) fungi is known to decrease with increasing plant nitrogen (N) supply, but how this affects fungal nutrition and growth remains to be clarified. We placed mesh-bags with quartz sand, with or without an organic N (15 N-, 13 C-labeled) source, in the soil along a natural N supply gradient in boreal forest, to measure growth and use of N and C by ECM extramatrical mycelia. Mycelial C : N declined with increasing N supply. Addition of N increased mycelial growth at the low-N end of the gradient. We found an inverse relationship between uptake of added N and C; the use of added N was high when ambient N was low, whereas use of added C was high when C from photosynthesis was low. We propose that growth of ECM fungi is N-limited when soil N is scarce and tree belowground C allocation to ECM fungi is high, but is C-limited when N supply is high and tree belowground C allocation is low. This suggests that ECM fungi have a major role in soil N retention in nutrient-poor, but less so in nutrient-rich boreal forests.
Collapse
Affiliation(s)
- Mona N Högberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Peter Högberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Håkan Wallander
- Department of Biology, Lund University, Lund, SE-22362, Sweden
| | - Lars-Ola Nilsson
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, DK-1958, Denmark
- Chancellery, Halmstad University, Halmstad, SE-301 18, Sweden
| |
Collapse
|
29
|
Methods for Studying Bacterial–Fungal Interactions in the Microenvironments of Soil. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Due to their small size, microorganisms directly experience only a tiny portion of the environmental heterogeneity manifested in the soil. The microscale variations in soil properties constrain the distribution of fungi and bacteria, and the extent to which they can interact with each other, thereby directly influencing their behavior and ecological roles. Thus, to obtain a realistic understanding of bacterial–fungal interactions, the spatiotemporal complexity of their microenvironments must be accounted for. The objective of this review is to further raise awareness of this important aspect and to discuss an overview of possible methodologies, some of easier applicability than others, that can be implemented in the experimental design in this field of research. The experimental design can be rationalized in three different scales, namely reconstructing the physicochemical complexity of the soil matrix, identifying and locating fungi and bacteria to depict their physical interactions, and, lastly, analyzing their molecular environment to describe their activity. In the long term, only relevant experimental data at the cell-to-cell level can provide the base for any solid theory or model that may serve for accurate functional prediction at the ecosystem level. The way to this level of application is still long, but we should all start small.
Collapse
|
30
|
Ge W, Zhang ZY, Dong CB, Han YF, Deshmukh SK, Liang ZQ. Bacterial Community Analysis and Potential Functions of Core Taxa in Different Parts of the Fungus Cantharellus cibarius. Pol J Microbiol 2021; 70:373-385. [PMID: 34584531 PMCID: PMC8459004 DOI: 10.33073/pjm-2021-035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/25/2021] [Accepted: 07/25/2021] [Indexed: 11/05/2022] Open
Abstract
Cantharellus cibarius is a widely distributed, popular, edible fungus with high nutritional and economic value. However, significant challenges persist in the microbial ecology and artificial cultivation of C. cibarius. Based on the 16S rRNA sequencing data, this study analyzed bacterial community structures and diversity of fruit bodies and rhizomorph parts of C. cibarius and mycosphere samples (collected in the Wudang District, Guiyang, Guizhou Province, China). It explored the composition and function of the core bacterial taxa. The analyzed results showed that the rhizomorph bacterial community structure was similar to mycosphere, but differed from the fruit bodies. Members of the Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium complex had the highest abundance in the fruit bodies. However, they were either absent or low in abundance in the rhizomorphs and mycosphere. At the same time, members of the Burkholderia-Caballeronia-Paraburkholderia complex were abundant in the fruit bodies and rhizomorphs parts of C. cibarius, as well as mycosphere. Through functional annotation of core bacterial taxa, we found that there was an apparent trend of potential functional differentiation of related bacterial communities in the fruit body and rhizomorph: potential functional groups of core bacterial taxa in the fruit bodies centered on nitrogen fixation, nitrogen metabolism, and degradation of aromatic compounds, while those in rhizomorphs focused on aerobic chemoheterotrophy, chemoheterotrophy, defense against soil pathogens, decomposition of complex organic compounds, and uptake of insoluble inorganic compounds. The analysis of functional groups of bacteria with different structures is of great significance to understand that bacteria promote the growth and development of C. cibarius.
Collapse
Affiliation(s)
- Wei Ge
- Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang, China
| | - Zhi-Yuan Zhang
- Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang, China
| | - Chun-Bo Dong
- Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang, China
| | - Yan-Feng Han
- Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang, China
| | - Sunil K Deshmukh
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, New Delhi, India
| | - Zong-Qi Liang
- Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
31
|
Bhalla K, Qu X, Kretschmer M, Kronstad JW. The phosphate language of fungi. Trends Microbiol 2021; 30:338-349. [PMID: 34479774 DOI: 10.1016/j.tim.2021.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 11/20/2022]
Abstract
Phosphate is an essential macronutrient for fungal proliferation as well as a key mediator of antagonistic, beneficial, and pathogenic interactions between fungi and other organisms. In this review, we summarize recent insights into the integration of phosphate metabolism with mechanisms of fungal adaptation that support growth and survival. In particular, we highlight aspects of phosphate sensing important for responses to stress and regulation of cell-surface changes with an impact on fungal pathogenesis, host immune responses, and disease outcomes. Additionally, new studies provide insights into the influence of phosphate availability on cooperative or antagonistic interactions between fungi and other microbes, the associations of mycorrhizal and endophytic fungi with plants, and connections with plant immunity. Overall, phosphate homeostasis is emerging as an integral part of fungal metabolism and communication to support diverse lifestyles.
Collapse
Affiliation(s)
- Kabir Bhalla
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Xianya Qu
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Matthias Kretschmer
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
32
|
Truffle Microbiome Is Driven by Fruit Body Compartmentalization Rather than Soils Conditioned by Different Host Trees. mSphere 2021; 6:e0003921. [PMID: 34378984 PMCID: PMC8386477 DOI: 10.1128/msphere.00039-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Truffles are among the most expensive edible mushrooms; their value is worth billions of U.S. dollars annually in international markets. They establish ectomycorrhizal symbiotic relationships with diverse host tree roots and produce hypogeous ascomata. Their whole life cycle is closely related to their associated microbiome. However, whether truffle-associated compartments or host tree rhizospheres are the vital driver for truffle ascomata microbiome is unclear. To identify and compare fungal and bacterial communities in four truffle-associated compartments (Tuber indicum: bulk soil, adhering soil to peridium, peridium, and gleba) from three host trees, we sequenced their ITS (fungal) and 16S (bacterial) ribosomal DNA using the Illumina MiSeq high-throughput platform. We further applied the amplicon data to analyze the core microbiome and microbial ecological networks. Tuber indicum microbiome composition was strongly driven by its associated compartments rather than by their symbiotic host trees. Truffle microbiome was bacteria dominated, and its bacterial community formed a substantially more complex interacting network compared to that of the fungal community. The core fungal community changed from Basidiomycota dominated (bulk soil) to Rozellomycota dominated (interphase soil); the core bacterial community shifted from Bacteroidetes to Proteobacteria dominance from truffle peridium to gleba tissue. Especially, at the truffle and soil interphase, the niche-based selection of truffle microbiome was verified by (i) a clear exclusion of four bacterial phyla (Rokubacteria, Nitrospirae, Chloroflexi, and Planctomycetes) in gleba; (ii) a significant decrease in alpha-diversity (as revealed by Chao 1, Shannon, and Simpson indices); and (iii) the complexity of the network substantially decreased from bulk soil to soil-truffle interphase and further to the peridium and gleba. The network analysis of microbiome showed that the microbial positive interactions were higher in truffle tissues than in both bulk soil and peridium-adhering soil and that Cupriavidus, Bradyrhizobium, Aminobacter, and Mesorhizobium spp. were the keystone network hubs in the truffle gleba. This study provides insights into the factors that drive the truffle microbiome dynamics and the recruitment and function of the microbiome components. IMPORTANCE Currently, the factors that drive the microbiome associated with truffles, the most highly prized fungi in the world, are largely unknown. We demonstrate for the first time here that truffle microbiome composition is strongly driven by associated compartments rather than by symbiotic host trees. The truffle microbiome was bacteria dominated, and its bacterial community formed a substantially more complex (with the higher numbers of nodes, links, and modules) interacting network compared to that of the fungal community. Network analysis showed a higher number of positive microbial interactions with each other in truffle tissues than in both bulk soil and peridium-adhering soil. For the first time, the fungal community structure associated with truffles using high-throughput sequencing, microbial networks, and keystone species analyses is presented. This study provides novel insights into the factors that drive the truffle microbiome dynamics and the recruitment and function of the microbiome components, showing that they are more complex than previously thought.
Collapse
|
33
|
Muller LAH, Ballhausen MB, Andrade-Linares DR, Pinek L, Golubeva P, Rillig MC. Fungus-bacterium associations are widespread in fungal cultures isolated from a semi-arid natural grassland in Germany. FEMS Microbiol Ecol 2021; 97:6228834. [PMID: 33861336 DOI: 10.1093/femsec/fiab059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/14/2021] [Indexed: 01/18/2023] Open
Abstract
We report on a study that aimed at establishing a large soil-fungal culture collection spanning a wide taxonomic diversity and systematically screening the collection for bacterial associations. Fungal cultures were isolated from soil samples obtained from a natural grassland in eastern Germany and bacterial associations were assessed by PCR-amplification and sequencing of bacterial 16S rRNA. In addition, intraspecies genetic diversities of a subset of the isolated species were estimated by double-digest restriction associated DNA sequencing. A total of 688 fungal cultures, representing at least 106 fungal species from 36 different families, were obtained and even though clonal isolates were identified in almost all fungal species subjected to ddRAD-seq, relatively high genetic diversities could be observed in some of the isolated species. A total of 69% of the fungal isolates in our collection were found to be associated with bacteria and the most commonly identified bacterial genera were Pelomonas, Enterobacter and Burkholderia. Our results indicate that bacterial associations commonly occur in soil fungi, even if antibiotics are being applied during the isolation process, and provide a basis for the use of our culture collection in ecological experiments that want to acknowledge the importance of intraspecies genetic diversity.
Collapse
Affiliation(s)
- L A H Muller
- Institut für Biologie - Ökologie der Pflanzen, Freie Universität Berlin, Altensteinstr. 6, 14195 Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195 Berlin, Germany
| | - M-B Ballhausen
- Institut für Biologie - Ökologie der Pflanzen, Freie Universität Berlin, Altensteinstr. 6, 14195 Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195 Berlin, Germany
| | - D R Andrade-Linares
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - L Pinek
- Institut für Biologie - Ökologie der Pflanzen, Freie Universität Berlin, Altensteinstr. 6, 14195 Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195 Berlin, Germany
| | - P Golubeva
- Institut für Biologie - Ökologie der Pflanzen, Freie Universität Berlin, Altensteinstr. 6, 14195 Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195 Berlin, Germany
| | - M C Rillig
- Institut für Biologie - Ökologie der Pflanzen, Freie Universität Berlin, Altensteinstr. 6, 14195 Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195 Berlin, Germany
| |
Collapse
|
34
|
Maurice S, Arnault G, Nordén J, Botnen SS, Miettinen O, Kauserud H. Fungal sporocarps house diverse and host-specific communities of fungicolous fungi. THE ISME JOURNAL 2021; 15:1445-1457. [PMID: 33432137 PMCID: PMC8115690 DOI: 10.1038/s41396-020-00862-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022]
Abstract
Sporocarps (fruit bodies) are the sexual reproductive stage in the life cycle of many fungi. They are highly nutritious and consequently vulnerable to grazing by birds and small mammals, and invertebrates, and can be infected by microbial and fungal parasites and pathogens. The complexity of communities thriving inside sporocarps is largely unknown. In this study, we revealed the diversity, taxonomic composition and host preference of fungicolous fungi (i.e., fungi that feed on other fungi) in sporocarps. We carried out DNA metabarcoding of the ITS2 region from 176 sporocarps of 11 wood-decay fungal host species, all collected within a forest in northeast Finland. We assessed the influence of sporocarp traits, such as lifespan, morphology and size, on the fungicolous fungal community. The level of colonisation by fungicolous fungi, measured as the proportion of non-host ITS2 reads, varied between 2.8-39.8% across the 11 host species and was largely dominated by Ascomycota. Host species was the major determinant of the community composition and diversity of fungicolous fungi, suggesting that host adaptation is important for many fungicolous fungi. Furthermore, the alpha diversity was consistently higher in short-lived and resupinate sporocarps compared to long-lived and pileate ones, perhaps due to a more hostile environment for fungal growth in the latter too. The fungicolous fungi represented numerous lineages in the fungal tree of life, among which a significant portion was poorly represented with reference sequences in databases.
Collapse
Affiliation(s)
- Sundy Maurice
- Section for Genetics and Evolutionary Biology, University of Oslo, Blindernveien 31, 0316, Oslo, Norway.
| | - Gontran Arnault
- Section for Genetics and Evolutionary Biology, University of Oslo, Blindernveien 31, 0316, Oslo, Norway
| | - Jenni Nordén
- Norwegian Institute for Nature Research, Gaustadalléen 21, 0349, Oslo, Norway
| | - Synnøve Smebye Botnen
- Section for Genetics and Evolutionary Biology, University of Oslo, Blindernveien 31, 0316, Oslo, Norway
| | - Otto Miettinen
- Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, FI-00014, Helsinki, Finland
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology, University of Oslo, Blindernveien 31, 0316, Oslo, Norway
| |
Collapse
|
35
|
Yuan MM, Kakouridis A, Starr E, Nguyen N, Shi S, Pett-Ridge J, Nuccio E, Zhou J, Firestone M. Fungal-Bacterial Cooccurrence Patterns Differ between Arbuscular Mycorrhizal Fungi and Nonmycorrhizal Fungi across Soil Niches. mBio 2021; 12:e03509-20. [PMID: 33879589 PMCID: PMC8092305 DOI: 10.1128/mbio.03509-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/04/2021] [Indexed: 11/20/2022] Open
Abstract
Soil bacteria and fungi are known to form niche-specific communities that differ between actively growing and decaying roots. Yet almost nothing is known about the cross-kingdom interactions that frame these communities and the environmental filtering that defines these potentially friendly or competing neighbors. We explored the temporal and spatial patterns of soil fungal (mycorrhizal and nonmycorrhizal) and bacterial cooccurrence near roots of wild oat grass, Avena fatua, growing in its naturalized soil in a greenhouse experiment. Amplicon sequences of the fungal internal transcribed spacer (ITS) and bacterial 16S rRNA genes from rhizosphere and bulk soils collected at multiple plant growth stages were used to construct covariation-based networks as a step toward identifying fungal-bacterial associations. Corresponding stable-isotope-enabled metagenome-assembled genomes (MAGs) of bacteria identified in cooccurrence networks were used to inform potential mechanisms underlying the observed links. Bacterial-fungal networks were significantly different in rhizosphere versus bulk soils and between arbuscular mycorrhizal fungi (AMF) and nonmycorrhizal fungi. Over 12 weeks of plant growth, nonmycorrhizal fungi formed increasingly complex networks with bacteria in rhizosphere soils, while AMF more frequently formed networks with bacteria in bulk soils. Analysis of network-associated bacterial MAGs suggests that some of the fungal-bacterial links that we identified are potential indicators of bacterial breakdown and consumption of fungal biomass, while others intimate shared ecological niches.IMPORTANCE Soils near living and decomposing roots form distinct niches that promote microorganisms with distinctive environmental preferences and interactions. Yet few studies have assessed the community-level cooccurrence of bacteria and fungi in these soil niches as plant roots grow and senesce. With plant growth, we observed increasingly complex cooccurrence networks between nonmycorrhizal fungi and bacteria in the rhizosphere, while mycorrhizal fungal (AMF) and bacterial cooccurrence was more pronounced in soil further from roots, in the presence of decaying root litter. This rarely documented phenomenon suggests niche sharing of nonmycorrhizal fungi and bacteria, versus niche partitioning between AMF and bacteria; both patterns are likely driven by C substrate availability and quality. Although the implications of species cooccurrence are fiercely debated, MAGs matching the bacterial nodes in our networks possess the functional potential to interact with the fungi that they are linked to, suggesting an ecological significance of fungal-bacterial cooccurrence patterns.
Collapse
Affiliation(s)
- Mengting Maggie Yuan
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
| | - Anne Kakouridis
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
| | - Evan Starr
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Nhu Nguyen
- Department of Tropical Plants and Soil Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Shengjing Shi
- AgResearch Ltd., Lincoln Science Centre, Christchurch, New Zealand
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Erin Nuccio
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Mary Firestone
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
36
|
Yu WY, Peng MH, Wang JJ, Ye WY, Li YL, Zhang T, Wang AR, Zhang DM, Wang ZH, Lu GD, Bao JD. Microbial community associated with ectomycorrhizal Russula symbiosis and dominated nature areas in southern China. FEMS Microbiol Lett 2021; 368:6164866. [PMID: 33693611 DOI: 10.1093/femsle/fnab028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 03/05/2021] [Indexed: 11/13/2022] Open
Abstract
Russula griseocarnosa is one of the uncultivable important mycorrhizal edible fungi. Currently, there is a limited insight into the dynamic composition of the microbial communities associated with Russula. Here, the microbiota in the root and mycorrhizosphere from Russula-Fagaceae nature areas of Fujian province were identified by Illumina MiSeq high-throughput sequencing. First, we compared three types of fungal communities associated with Russula-Fagaceae root mycelia-running stage (stage-1), Russula sporocarping stage-2 (stage-2) and Russula-free Fagaceae root (stage-3). Fungal diversity negatively correlated with Russula. Russula, Tomentella and Lactarius were core EcM in Fagaceae roots. A total of eight genera, including Boletus, are likely a positive indicator of Russula sporocarp production in Russula-Fagaceae roots, while Tomentella and Elaphomyces for Russula symbiosis. Secondly, analysis of fungal and bacterial communities within rhizosphere soils from the three stages revealed six genera, including Dacryobolus and Acidocella, as possible indicator species associated with sporocarping in Russula. Elaphomyces, Tomentella, Sorangium, Acidicaldus, Acidobacterium and Haliangium occurred more frequently in the Russula rhizosphere. Furthermore, operational taxonomic unit (OTU) network analysis showed a positive correlation between Russula,Tomentella, Elaphomyces and Sorangium. Overall, our results revealed a relationship between micro-community and Russula, which may provide a new strategy for improving Russula symbiosis and sporocarp production.
Collapse
Affiliation(s)
- Wen-Ying Yu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Fujian Universities Key Laboratory of Plant-Microbe Interaction, College of Life Sciences and College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ming-Hui Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Fujian Universities Key Laboratory of Plant-Microbe Interaction, College of Life Sciences and College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jia-Jia Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Fujian Universities Key Laboratory of Plant-Microbe Interaction, College of Life Sciences and College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wen-Yu Ye
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Fujian Universities Key Laboratory of Plant-Microbe Interaction, College of Life Sciences and College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ya-Ling Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Fujian Universities Key Laboratory of Plant-Microbe Interaction, College of Life Sciences and College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tian Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Fujian Universities Key Laboratory of Plant-Microbe Interaction, College of Life Sciences and College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ai-Rong Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Fujian Universities Key Laboratory of Plant-Microbe Interaction, College of Life Sciences and College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dong-Mei Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Fujian Universities Key Laboratory of Plant-Microbe Interaction, College of Life Sciences and College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zong-Hua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Fujian Universities Key Laboratory of Plant-Microbe Interaction, College of Life Sciences and College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Fujian Universities Key Laboratory of Plant-Microbe Interaction, College of Life Sciences and College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jian-Dong Bao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Fujian Universities Key Laboratory of Plant-Microbe Interaction, College of Life Sciences and College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
37
|
Competitive Exclusion and Metabolic Dependency among Microorganisms Structure the Cellulose Economy of an Agricultural Soil. mBio 2021; 12:mBio.03099-20. [PMID: 33402535 PMCID: PMC8545098 DOI: 10.1128/mbio.03099-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microorganisms that degrade cellulose utilize extracellular reactions that yield free by-products which can promote interactions with noncellulolytic organisms. We hypothesized that these interactions determine the ecological and physiological traits governing the fate of cellulosic carbon (C) in soil. We performed comparative genomics with genome bins from a shotgun metagenomic-stable isotope probing experiment to characterize the attributes of cellulolytic and noncellulolytic taxa accessing 13C from cellulose. We hypothesized that cellulolytic taxa would exhibit competitive traits that limit access, while noncellulolytic taxa would display greater metabolic dependency, such as signatures of adaptive gene loss. We tested our hypotheses by evaluating genomic traits indicative of competitive exclusion or metabolic dependency, such as antibiotic production, growth rate, surface attachment, biomass degrading potential, and auxotrophy. The most 13C-enriched taxa were cellulolytic Cellvibrio (Gammaproteobacteria) and Chaetomium (Ascomycota), which exhibited a strategy of self-sufficiency (prototrophy), rapid growth, and competitive exclusion via antibiotic production. Auxotrophy was more prevalent in cellulolytic Actinobacteria than in cellulolytic Proteobacteria, demonstrating differences in dependency among cellulose degraders. Noncellulolytic taxa that accessed 13C from cellulose (Planctomycetales, Verrucomicrobia, and Vampirovibrionales) were also more dependent, as indicated by patterns of auxotrophy and 13C labeling (i.e., partial labeling or labeling at later stages). Major 13C-labeled cellulolytic microbes (e.g., Sorangium, Actinomycetales, Rhizobiales, and Caulobacteraceae) possessed adaptations for surface colonization (e.g., gliding motility, hyphae, attachment structures) signifying the importance of surface ecology in decomposing particulate organic matter. Our results demonstrated that access to cellulosic C was accompanied by ecological trade-offs characterized by differing degrees of metabolic dependency and competitive exclusion.
Collapse
|
38
|
Pent M, Bahram M, Põldmaa K. Fruitbody chemistry underlies the structure of endofungal bacterial communities across fungal guilds and phylogenetic groups. THE ISME JOURNAL 2020; 14:2131-2141. [PMID: 32409757 PMCID: PMC7368025 DOI: 10.1038/s41396-020-0674-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 01/06/2023]
Abstract
Eukaryote-associated microbiomes vary across host taxa and environments but the key factors underlying their diversity and structure in fungi are still poorly understood. Here we determined the structure of bacterial communities in fungal fruitbodies in relation to the main chemical characteristics in ectomycorrhizal (EcM) and saprotrophic (SAP) mushrooms as well as in the surrounding soil. Our analyses revealed significant differences in the structure of endofungal bacterial communities across fungal phylogenetic groups and to a lesser extent across fungal guilds. These variations could be partly ascribed to differences in fruitbody chemistry, particularly the carbon-to-nitrogen ratio and pH. Fungal fruitbodies appear to represent nutrient-rich islands that derive their microbiome largely from the underlying continuous soil environment, with a larger overlap of operational taxonomic units observed between SAP fruitbodies and the surrounding soil, compared with EcM fungi. In addition, bacterial taxa involved in the decomposition of organic material were relatively more abundant in SAP fruitbodies, whereas those involved in release of minerals were relatively more enriched in EcM fruitbodies. Such contrasts in patterns and underlying processes of the microbiome structure between SAP and EcM fungi provide further evidence that bacteria can support the functional roles of these fungi in terrestrial ecosystems.
Collapse
Affiliation(s)
- Mari Pent
- Institute of Ecology and Earth Sciences, University of Tartu, 14a Ravila, 50411, Tartu, Estonia.
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51, Uppsala, Sweden.
| | - Kadri Põldmaa
- Institute of Ecology and Earth Sciences, University of Tartu, 14a Ravila, 50411, Tartu, Estonia
| |
Collapse
|
39
|
Fungus-growing insects host a distinctive microbiota apparently adapted to the fungiculture environment. Sci Rep 2020; 10:12384. [PMID: 32709946 PMCID: PMC7381635 DOI: 10.1038/s41598-020-68448-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 06/24/2020] [Indexed: 01/09/2023] Open
Abstract
Some lineages of ants, termites, and beetles independently evolved a symbiotic association with lignocellulolytic fungi cultivated for food, in a lifestyle known as fungiculture. Fungus-growing insects' symbiosis also hosts a bacterial community thought to integrate their physiology. Similarities in taxonomic composition support the microbiota of fungus-growing insects as convergent, despite differences in fungus-rearing by these insects. Here, by comparing fungus-growing insects to several hosts ranging diverse dietary patterns, we investigate whether the microbiota taxonomic and functional profiles are characteristic of the fungiculture environment. Compared to other hosts, the microbiota associated with fungus-growing insects presents a distinctive taxonomic profile, dominated by Gammaproteobacteria at class level and by Pseudomonas at genera level. Even with a functional profile presenting similarities with the gut microbiota of herbivorous and omnivorous hosts, some differentially abundant features codified by the microbiota of fungus-growing insects suggest these communities occupying microhabitats that are characteristic of fungiculture. These features include metabolic pathways involved in lignocellulose breakdown, detoxification of plant secondary metabolites, metabolism of simple sugars, fungal cell wall deconstruction, biofilm formation, antimicrobials biosynthesis, and metabolism of diverse nutrients. Our results suggest that the microbiota could be functionally adapted to the fungiculture environment, codifying metabolic pathways potentially relevant to the fungus-growing insects' ecosystems functioning.
Collapse
|
40
|
Pratama AA, van Elsas JD. Gene mobility in microbiomes of the mycosphere and mycorrhizosphere -role of plasmids and bacteriophages. FEMS Microbiol Ecol 2020; 95:5454738. [PMID: 30980672 DOI: 10.1093/femsec/fiz053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/12/2019] [Indexed: 12/22/2022] Open
Abstract
Microbial activity in soil, including horizontal gene transfer (HGT), occurs in soil hot spots and at "hot moments". Given their capacities to explore soil for nutrients, soil fungi (associated or not with plant roots) can act as (1) selectors of myco(rrhizo)sphere-adapted organisms and (2) accelerators of HGT processes across the cell populations that are locally present. This minireview critically examines our current understanding of the drivers of gene mobility in the myco(rrhizo)sphere. We place a special focus on the role of two major groups of gene mobility agents, i.e. plasmids and bacteriophages. With respect to plasmids, there is mounting evidence that broad-host-range (IncP-1β and PromA group) plasmids are prominent drivers of gene mobility across mycosphere inhabitants. A role of IncP-1β plasmids in Fe uptake processes has been revealed. Moreover, a screening of typical mycosphere-inhabiting Paraburkholderia spp. revealed carriage of integrated plasmids, next to prophages, that presumably confer fitness enhancements. In particular, functions involved in biofilm formation and nutrient uptake were thus identified. The potential of the respective gene mobility agents to promote the movement of such genes is critically examined.
Collapse
Affiliation(s)
- Akbar Adjie Pratama
- Department of Microbial Ecology - Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Jan Dirk van Elsas
- Department of Microbial Ecology - Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
41
|
Pratama AA, Jiménez DJ, Chen Q, Bunk B, Spröer C, Overmann J, van Elsas JD. Delineation of a Subgroup of the Genus Paraburkholderia, Including P. terrae DSM 17804T, P. hospita DSM 17164T, and Four Soil-Isolated Fungiphiles, Reveals Remarkable Genomic and Ecological Features-Proposal for the Definition of a P. hospita Species Cluster. Genome Biol Evol 2020; 12:325-344. [PMID: 32068849 PMCID: PMC7186790 DOI: 10.1093/gbe/evaa031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2020] [Indexed: 12/24/2022] Open
Abstract
The fungal-interactive (fungiphilic) strains BS001, BS007, BS110, and BS437 have previously been preliminarily assigned to the species Paraburkholderia terrae. However, in the (novel) genus Paraburkholderia, an as-yet unresolved subgroup exists, that clusters around Paraburkholderia hospita (containing the species P. terrae, P. hospita, and Paraburkholderia caribensis). To shed light on the precise relationships across the respective type strains and the novel fungiphiles, we here compare their genomic and ecophysiological features. To reach this goal, the genomes of the three type strains, with sizes ranging from 9.0 to 11.5 Mb, were de novo sequenced and the high-quality genomes analyzed. Using whole-genome, ribosomal RNA and marker-gene-concatenate analyses, close relationships between P. hospita DSM 17164T and P. terrae DSM 17804T, versus more remote relationships to P. caribensis DSM 13236T, were found. All four fungiphilic strains clustered closely to the two-species cluster. Analyses of average nucleotide identities (ANIm) and tetranucleotide frequencies (TETRA) confirmed the close relationships between P. hospita DSM 17164T and P. terrae DSM 17804T (ANIm = 95.42; TETRA = 0.99784), as compared with the similarities of each one of these strains to P. caribensis DSM 13236T. A species cluster was thus proposed. Furthermore, high similarities of the fungiphilic strains BS001, BS007, BS110, and BS437 with this cluster were found, indicating that these strains also make part of it, being closely linked to P. hospita DSM 17164T (ANIm = 99%; TETRA = 0.99). We propose to coin this cluster the P. hospita species cluster (containing P. hospita DSM 17164T, P. terrae DSM 17804T, and strains BS001, BS007, BS110, and BS437), being clearly divergent from the closely related species P. caribensis (type strain DSM 13236T). Moreover, given their close relatedness to P. hospita DSM 17164T within the cluster, we propose to rename the four fungiphilic strains as members of P. hospita. Analysis of migratory behavior along with fungal growth through soil revealed both P. terrae DSM 17804T and P. hospita DSM 17164T (next to the four fungiphilic strains) to be migration-proficient, whereas P. caribensis DSM 13236T was a relatively poor migrator. Examination of predicted functions across the genomes of the seven investigated strains, next to several selected additional ones, revealed the common presence of features in the P. hospita cluster strains that are potentially important in interactions with soil fungi. Thus, genes encoding specific metabolic functions, biofilm formation (pelABCDEFG, pgaABCD, alginate-related genes), motility/chemotaxis, type-4 pili, and diverse secretion systems were found.
Collapse
Affiliation(s)
- Akbar Adjie Pratama
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | - Diego Javier Jiménez
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Qian Chen
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Department of Microbiology, Braunschweig University of Technology, Germany
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| |
Collapse
|
42
|
Yu F, Liang JF, Song J, Wang SK, Lu JK. Bacterial Community Selection of Russula griseocarnosa Mycosphere Soil. Front Microbiol 2020; 11:347. [PMID: 32269551 PMCID: PMC7109302 DOI: 10.3389/fmicb.2020.00347] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/17/2020] [Indexed: 11/13/2022] Open
Abstract
Russula griseocarnosa is a wild, ectomycorrhizal, edible, and medicinal fungus with high economic value in southern China. R. griseocarnosa fruiting bodies cannot be artificially cultivated. To better understand the effects of abiotic and biotic factors on R. griseocarnosa growth, the physicochemical properties of R. griseocarnosa and its associated bacterial communities were investigated in two soil types (mycosphere and bulk soil) from Fujian, Guangdong, and Guangxi Provinces. The results revealed that the diversity, community structure, and functional characteristics of the dominant mycosphere bacteria in all geographical locations were similar. Soil pH and available nitrogen (AN) are the major factors influencing the mycosphere-soil bacterial communities' structure. The diversity of soil bacteria is decreased in R. griseocarnosa mycosphere when compared with the bulk soil. Burkholderia-Paraburkholderia, Mycobacterium, Roseiarcus, Sorangium, Acidobacterium, and Singulisphaera may also be mycorrhiza helper bacteria (MHB) of R. griseocarnosa. The functional traits related to the two-component system, bacterial secretion system, tyrosine metabolism, biosynthesis of unsaturated fatty acids, and metabolism of cofactors and vitamins were more abundant in R. griseocarnosa mycosphere soil. The mycosphere soil bacteria of R. griseocarnosa play a key role in R. griseocarnosa growth. Application of management strategies, such as N fertilizer and microbial fertilizer containing MHB, may promote the conservation, propagation promotion, and sustainable utilization of R. griseocarnosa.
Collapse
Affiliation(s)
| | - Jun-Feng Liang
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | | | | | | |
Collapse
|
43
|
Cloutier M, Muru K, Ravicoularamin G, Gauthier C. Polysaccharides from Burkholderia species as targets for vaccine development, immunomodulation and chemical synthesis. Nat Prod Rep 2019; 35:1251-1293. [PMID: 30023998 DOI: 10.1039/c8np00046h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2018 Burkholderia species are a vast group of human pathogenic, phytopathogenic, and plant- or environment-associated bacteria. B. pseudomallei, B. mallei, and B. cepacia complex are the causative agents of melioidosis, glanders, and cystic fibrosis-related infections, respectively, which are fatal diseases in humans and animals. Due to their high resistance to antibiotics, high mortality rates, and increased infectivity via the respiratory tract, B. pseudomallei and B. mallei have been listed as potential bioterrorism agents by the Centers for Disease Control and Prevention. Burkholderia species are able to produce a large network of surface-exposed polysaccharides, i.e., lipopolysaccharides, capsular polysaccharides, and exopolysaccharides, which are virulence factors, immunomodulators, major biofilm components, and protective antigens, and have crucial implications in the pathogenicity of Burkholderia-associated diseases. This review provides a comprehensive and up-to-date account regarding the structural elucidation and biological activities of surface polysaccharides produced by Burkholderia species. The chemical synthesis of oligosaccharides mimicking Burkholderia polysaccharides is described in detail. Emphasis is placed on the recent research efforts toward the development of glycoconjugate vaccines against melioidosis and glanders based on synthetic or native Burkholderia oligo/polysaccharides.
Collapse
Affiliation(s)
- Maude Cloutier
- INRS-Institut Armand-Frappier, Université du Québec, 531, boul. des Prairies, Laval, Québec H7V 1B7, Canada.
| | | | | | | |
Collapse
|
44
|
Bonfante P, Venice F, Lanfranco L. The mycobiota: fungi take their place between plants and bacteria. Curr Opin Microbiol 2019; 49:18-25. [DOI: 10.1016/j.mib.2019.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/05/2019] [Accepted: 08/26/2019] [Indexed: 01/09/2023]
|
45
|
Miquel Guennoc C, Rose C, Labbé J, Deveau A. Bacterial biofilm formation on the hyphae of ectomycorrhizal fungi: a widespread ability under controls? FEMS Microbiol Ecol 2019; 94:4998851. [PMID: 29788056 DOI: 10.1093/femsec/fiy093] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/16/2018] [Indexed: 12/22/2022] Open
Abstract
Ectomycorrhizal (ECM) fungi establish symbiosis with roots of most trees of boreal and temperate ecosystems and are major drivers of nutrient fluxes between trees and the soil. ECM fungi constantly interact with bacteria all along their life cycle and the extended networks of hyphae provide a habitat for complex bacterial communities. Despite the important effects these bacteria can have on the growth and activities of ECM fungi, little is known about the mechanisms by which these microorganisms interact. Here we investigated the ability of bacteria to form biofilm on the hyphae of the ECM fungus Laccaria bicolor. We showed that the ability to form biofilms on the hyphae of the ECM fungus is widely shared among soil bacteria. Conversely, some fungi, belonging to the Ascomycete class, did not allow for the formation of bacterial biofilms on their surfaces. The formation of biofilms was also modulated by the presence of tree roots and ectomycorrhizae, suggesting that biofilm formation does not occur randomly in soil but that it is regulated by several biotic factors. In addition, our study demonstrated that the formation of bacterial biofilm on fungal hyphae relies on the production of networks of filaments made of extracellular DNA.
Collapse
Affiliation(s)
- Cora Miquel Guennoc
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Christophe Rose
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, 54000 Nancy, France
| | - Jessy Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Aurélie Deveau
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France
| |
Collapse
|
46
|
Jenner M, Jian X, Dashti Y, Masschelein J, Hobson C, Roberts DM, Jones C, Harris S, Parkhill J, Raja HA, Oberlies NH, Pearce CJ, Mahenthiralingam E, Challis GL. An unusual Burkholderia gladioli double chain-initiating nonribosomal peptide synthetase assembles 'fungal' icosalide antibiotics. Chem Sci 2019; 10:5489-5494. [PMID: 31293732 PMCID: PMC6553374 DOI: 10.1039/c8sc04897e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/22/2019] [Indexed: 11/21/2022] Open
Abstract
Fungus-associated Burkholderia gladioli bacteria use a unique ‘dual-priming’ nonribosomal peptide synthetase to assemble icosalide A1.
Burkholderia is a multi-talented genus of Gram-negative bacteria, which in recent years has become increasingly recognised as a promising source of bioactive natural products. Metabolite profiling of Burkholderia gladioli BCC0238 showed that it produces the asymmetric lipopeptidiolide antibiotic icosalide A1, originally isolated from a fungus. Comparative bioinformatics analysis of several genome-sequenced B. gladioli isolates identified a gene encoding a nonribosomal peptide synthase (NRPS) with an unusual architecture that was predicted to be responsible for icosalide biosynthesis. Inactivation of this gene in B. gladioli BCC0238 abolished icosalide production. PCR analysis and sequencing of total DNA from the original fungal icosalide A1 producer revealed it has a B. gladioli strain associated with it that harbours an NRPS with an identical architecture to that responsible for icosalide A1 assembly in B. gladioli BCC0238. Sequence analysis of the icosalide NRPS indicated that it contains two chain-initiating condensation (CI) domains. One of these is appended to the N-terminus of module 1 – a common architecture for NRPSs involved in lipopeptide assembly. The other is embedded in module 3, immediately downstream of a putative chain-elongating condensation domain. Analysis of the reactions catalysed by a tridomain construct from module 3 of the NRPS using intact protein mass spectrometry showed that the embedded CI domain initiates assembly of a second lipopeptide chain, providing key insights into the mechanism for asymmetric diolide assembly.
Collapse
Affiliation(s)
- Matthew Jenner
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK . .,Warwick Integrative Synthetic Biology Centre , University of Warwick , Coventry CV4 7AL , UK
| | - Xinyun Jian
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Yousef Dashti
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Joleen Masschelein
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Christian Hobson
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Douglas M Roberts
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Cerith Jones
- Organisms and Environment Division , Cardiff School of Biosciences , Cardiff University , Main Building, Park Place , Cardiff CF10 3AT , UK
| | - Simon Harris
- Wellcome Trust Sanger Institute , Wellcome Trust Genome Campus , Hinxton , Cambridge CB10 1SA , UK
| | - Julian Parkhill
- Wellcome Trust Sanger Institute , Wellcome Trust Genome Campus , Hinxton , Cambridge CB10 1SA , UK
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry , University , of North Carolina at Greensboro , Greensboro , NC 27402 , USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry , University , of North Carolina at Greensboro , Greensboro , NC 27402 , USA
| | - Cedric J Pearce
- Mycosynthetix , 4905 Pine Cone Drive , Durham , North Carolina 27707 , USA
| | - Eshwar Mahenthiralingam
- Organisms and Environment Division , Cardiff School of Biosciences , Cardiff University , Main Building, Park Place , Cardiff CF10 3AT , UK
| | - Gregory L Challis
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK . .,Warwick Integrative Synthetic Biology Centre , University of Warwick , Coventry CV4 7AL , UK.,Biomedicine Discovery Institute , Department of Biochemistry and Molecular Biology , Monash University , Victoria 3800 , Australia
| |
Collapse
|
47
|
Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, Hacquard S, Hervé V, Labbé J, Lastovetsky OA, Mieszkin S, Millet LJ, Vajna B, Junier P, Bonfante P, Krom BP, Olsson S, van Elsas JD, Wick LY. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev 2018; 42:335-352. [PMID: 29471481 DOI: 10.1093/femsre/fuy008] [Citation(s) in RCA: 358] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 02/16/2018] [Indexed: 12/14/2022] Open
Abstract
Fungi and bacteria are found living together in a wide variety of environments. Their interactions are significant drivers of many ecosystem functions and are important for the health of plants and animals. A large number of fungal and bacterial families engage in complex interactions that lead to critical behavioural shifts of the microorganisms ranging from mutualism to antagonism. The importance of bacterial-fungal interactions (BFI) in environmental science, medicine and biotechnology has led to the emergence of a dynamic and multidisciplinary research field that combines highly diverse approaches including molecular biology, genomics, geochemistry, chemical and microbial ecology, biophysics and ecological modelling. In this review, we discuss recent advances that underscore the roles of BFI across relevant habitats and ecosystems. A particular focus is placed on the understanding of BFI within complex microbial communities and in regard of the metaorganism concept. We also discuss recent discoveries that clarify the (molecular) mechanisms involved in bacterial-fungal relationships, and the contribution of new technologies to decipher generic principles of BFI in terms of physical associations and molecular dialogues. Finally, we discuss future directions for research in order to stimulate synergy within the BFI research area and to resolve outstanding questions.
Collapse
Affiliation(s)
- Aurélie Deveau
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France
| | - Gregory Bonito
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Jessie Uehling
- Biology Department, Duke University, Box 90338, Durham, NC 27705, USA.,Plant and Microbial Biology, University of California, Berkeley, CA 94703, USA
| | - Mathieu Paoletti
- Institut de Biologie et Génétique Cellulaire, UMR 5095 CNRS et Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | - Matthias Becker
- IGZ, Leibniz-Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Vincent Hervé
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland.,Laboratory of Biogeosciences, Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Jessy Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Olga A Lastovetsky
- Graduate Field of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Sophie Mieszkin
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France
| | - Larry J Millet
- Joint Institute for Biological Science, University of Tennessee, and the Biosciences Division of Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Balázs Vajna
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Paola Bonfante
- Department of Life Science and Systems Biology, University of Torino, 10125 Torino, Italy
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry, G. Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Stefan Olsson
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| | - Jan Dirk van Elsas
- Microbial Ecology group, GELIFES, University of Groningen, 9747 Groningen, The Netherlands
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
48
|
Gong S, Chen C, Zhu J, Qi G, Jiang S. Effects of wine-cap Stropharia cultivation on soil nutrients and bacterial communities in forestlands of northern China. PeerJ 2018; 6:e5741. [PMID: 30324022 PMCID: PMC6183509 DOI: 10.7717/peerj.5741] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/12/2018] [Indexed: 01/21/2023] Open
Abstract
Background Cultivating the wine-cap mushroom (Stropharia rugosoannulata) on forestland has become popular in China. However, the effects of wine-cap Stropharia cultivation on soil nutrients and bacterial communities are poorly understood. Methods We employed chemical analyses and high-throughput sequencing to determine the impact of cultivating the wine-cap Stropharia on soil nutrients and bacterial communities of forestland. Results Cultivation regimes of Stropharia on forestland resulted in consistent increases of soil organic matter (OM) and available phosphorus (AP) content. Among the cultivation regimes, the greatest soil nutrient contents were found in the one-year interval cultivation regime, and the lowest total N and alkaline hydrolysable N contents were observed in the current-year cultivation regime. No significant differences were observed in alpha diversity among all cultivation regimes. Specific soil bacterial groups, such as Acidobacteria, increased in abundance after cultivation of Stropharia rugosoannulata. Discussion Given the numerous positive effects exerted by OM on soil physical and chemical properties, and the consistent increase in OM content for all cultivation regimes, we suggest that mushroom cultivation is beneficial to forest soil nutrient conditions through increasing OM content. Based on the fact that the one-year interval cultivation regime had the highest soil nutrient content as compared with other cultivation regimes, we recommend this regime for application in farming practice. The spent mushroom compost appeared to be more influential than the hyphae of S. rugosoannulata on the soil nutrients and bacterial communities; however, this requires further study. This research provides insight into understanding the effects of mushroom cultivation on the forest soil ecosystem and suggests a relevant cultivation strategy that reduces its negative impacts.
Collapse
Affiliation(s)
- Sai Gong
- College of Plant Protection, Shandong Province Key Laboratory of Agricultural Microbiology, Engineering Research Centre of Forest Pest Management of Shandong Province, Shandong Agricultural University, Taian, Shandong, China
| | - Chen Chen
- College of Plant Protection, Shandong Province Key Laboratory of Agricultural Microbiology, Engineering Research Centre of Forest Pest Management of Shandong Province, Shandong Agricultural University, Taian, Shandong, China
| | - Jingxian Zhu
- College of Plant Protection, Shandong Province Key Laboratory of Agricultural Microbiology, Engineering Research Centre of Forest Pest Management of Shandong Province, Shandong Agricultural University, Taian, Shandong, China
| | - Guangyao Qi
- College of Plant Protection, Shandong Province Key Laboratory of Agricultural Microbiology, Engineering Research Centre of Forest Pest Management of Shandong Province, Shandong Agricultural University, Taian, Shandong, China
| | - Shuxia Jiang
- College of Plant Protection, Shandong Province Key Laboratory of Agricultural Microbiology, Engineering Research Centre of Forest Pest Management of Shandong Province, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
49
|
Worrich A, Wick LY, Banitz T. Ecology of Contaminant Biotransformation in the Mycosphere: Role of Transport Processes. ADVANCES IN APPLIED MICROBIOLOGY 2018; 104:93-133. [PMID: 30143253 DOI: 10.1016/bs.aambs.2018.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fungi and bacteria often share common microhabitats. Their co-occurrence and coevolution give rise to manifold ecological interactions in the mycosphere, here defined as the microhabitats surrounding and affected by hyphae and mycelia. The extensive structure of mycelia provides ideal "logistic networks" for transport of bacteria and matter in structurally and chemically heterogeneous soil ecosystems. We describe the characteristics of the mycosphere as a unique and highly dynamic bacterial habitat and a hot spot for contaminant biotransformation. In particular, we emphasize the role of the mycosphere for (i) bacterial dispersal and colonization of subsurface interfaces and new habitats, (ii) matter transport processes and contaminant bioaccessibility, and (iii) the functional stability of microbial ecosystems when exposed to environmental fluctuations such as stress or disturbances. Adopting concepts from ecological theory, the chapter disentangles bacterial-fungal impacts on contaminant biotransformation in a systemic approach that interlinks empirical data from microbial ecosystems with simulation data from computational models. This approach provides generic information on key factors, processes, and ecological principles that drive microbial contaminant biotransformation in soil. We highlight that the transport processes create favorable habitat conditions for efficient bacterial contaminant degradation in the mycosphere. In-depth observation, understanding, and prediction of the role of mycosphere transport processes will support the use of bacterial-fungal interactions in nature-based solutions for contaminant biotransformation in natural and man-made ecosystems, respectively.
Collapse
Affiliation(s)
- Anja Worrich
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Lukas Y Wick
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany.
| | - Thomas Banitz
- Department of Ecological Modelling, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
50
|
Abstract
This Mycorrhiza issue groups topical papers based on presentations and discussions at the Mycorrhizal Microbiomes session at 9th International Conference on Mycorrhiza, Prague, Czech Republic, August 2017. The five articles that appear in this special issue advance the field of mycorrhizal microbiomes, not simply by importing ideas from an emerging area, but by using them to inform rich and methodologically grounded research. The aim of this special issue is to explore the interactions between mycorrhizal fungi and surrounding complex environments from a distinct but complementary point of view, highlighting the large spectrum of unknowns that still need to be explored. In this editorial, we first introduce the level of knowledge in this thematic area, then describe major results from the five manuscripts and characterise their importance to mycorrhizal research, and finally discuss the developing topics in this rapidly emerging thematic area.
Collapse
Affiliation(s)
- Mika T Tarkka
- Department of Community Ecology, UFZ- Helmholtz Centre for Environmental Research, 06120, Halle, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany.
| | - Barbara Drigo
- FII, University of South Australia, Mawson Lakes, GPO Box 2471, Adelaide, SA, 5001, Australia.
| | - Aurelie Deveau
- Interactions Arbres-Microorganismes, INRA, UMR 1136, 54280, Champenoux, France
- Interactions Arbres-Microorganismes, Universite´ de Lorraine, UMR 1136, 54506, Vandoeuvre-lés-Nancy, France
| |
Collapse
|