1
|
Jia W, Huang Y, Jiang T, Deng W, Lin L, Xu M, Jiang J. Rapid screening of indigenous degrading microorganisms for enhancing in-situ bioremediation of organic pollutants-contaminated soil. ENVIRONMENTAL RESEARCH 2024; 263:120154. [PMID: 39414109 DOI: 10.1016/j.envres.2024.120154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Organic pollutants (OPs) have caused severe environmental contaminations in the world and aroused wide public concern. Autochthonous bioaugmentation (ABA) is considered a reliable bioremediation approach for OPs contamination. However, the rapid screening of indigenous degrading strains from in-situ environments remains a primary challenge for the practical application of ABA. In this study, 3,5,6-Trichloro-2-pyridinol (TCP, an important intermediate in the synthesis of various pesticides) was selected as the target OPs, and DNA stable isotope probing (DNA-SIP) combined with high-throughput sequencing was employed to explore the rapid screening of indigenous degrading microorganisms. The results of DNA-SIP revealed a significant enrichment of OTU557 (Cupriavidus sp.) in the 13C-TCP-labeled heavy DNA fractions, indicating that it is the key strain involved in TCP metabolism. Subsequently, an indigenous TCP degrader, Cupriavidus sp. JL-1, was rapidly isolated from native soil based on the analysis of the metabolic substrate spectrum of Cupriavidus sp. Furthermore, ABA of strain JL-1 demonstrated higher remediation efficacy and stable survival compared to the exogenous TCP-degrading strain Cupriavidus sp. P2 in in-situ TCP-contaminated soil. This study presents a successful case for the rapid acquisition of indigenous TCP-degrading microorganisms to support ABA as a promising strategy for the in-situ bioremediation of TCP-contaminated soil.
Collapse
Affiliation(s)
- Weibin Jia
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Youda Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Tianhui Jiang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Wenfang Deng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Lizhou Lin
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China.
| |
Collapse
|
2
|
Frene JP, Lawson SS, Lue Sue ND, Crawford RH, Gardner TG. Effects of tree species identity on soil microbial communities in Juglans nigra and Quercus rubra plantations. Front Microbiol 2024; 15:1442026. [PMID: 39534505 PMCID: PMC11554539 DOI: 10.3389/fmicb.2024.1442026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding how different tree species affect soil microbial communities is crucial for sustainable forestry and ecosystem management practices. Despite Black walnut (Juglans nigra L.) forestry having a rich history, the overall comprehension of how this hardwood species influences soil remains incomplete. In earlier studies, we examined the effects of hardwood plantations on soil chemical properties and their interaction with microbial biomass, however, we highlight the importance of studying the soil microbial communities and their relationship with soil properties in greater depth. Building on this foundation, our research focused on evaluating microbiome compositions beneath J. nigra and another hardwood, Northern red oak (Quercus rubra L.) after a decade of establishment. We uncovered intriguing patterns within the soil bacterial/archaeal and fungal structures by conducting meticulous analyses utilizing amplicon sequencing alongside soil chemical properties. Our findings underscore that tree species play a pivotal role in shaping soil microbial structures, a role that surpasses even seasonal and depth influences. Most notably, J. nigra stands out for its ability to enhance microbial diversity, as evidenced by increased alpha-diversity indices compared to baseline values. Conversely, Q. rubra tends to decrease these indices. Significant disparities in microbial composition between the two tree species were evident, with J. nigra exhibiting enrichment in certain taxa such as Nitrospira, Geobacter, and Bacillus while Q. rubra showed enrichment in others like Acidobacteriota and ectomycorrhizal fungi. Furthermore, we also observed differences in co-occurrence networks by delving deeper into the interconnections within the soil microbiota. In both fungal and bacterial/archaeal communities, J. nigra and Q. rubra notably decreased the number of connections within their networks, while Q. rubra increased some, suggesting a more interconnected network. These differences were further highlighted by network metrics with Q. rubra displaying a higher mean degree and clustering coefficient. Additionally, our analysis revealed that tree species influence soil chemical properties, either directly or indirectly, thereby affecting soil bacterial and fungal communities. In conclusion, our study elucidates the intricate interplay between tree species and soil microbiota, emphasizing the need to consider these relationships in forestry and ecosystem management practices.
Collapse
Affiliation(s)
- Juan P. Frene
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, United States
| | - Shaneka S. Lawson
- USDA Forest Service, Northern Research Station, Hardwood Tree Improvement and Regeneration Center (HTIRC), Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, United States
| | - Niall D. Lue Sue
- USDA Forest Service, Northern Research Station, Hardwood Tree Improvement and Regeneration Center (HTIRC), Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, United States
| | - Ralph H. Crawford
- Northern Research Station, USDA Forest Service, Wyndmoor, PA, United States
| | - Terrence G. Gardner
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
3
|
Jeon Y, Kwon YS, Noh YJ, Lee SM, Song JW, Kim JH, Seo JS. Unraveling the mechanisms of benzo[a]pyrene degradation by Pigmentiphaga kullae strain KIT-003 using a multi-omics approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116665. [PMID: 38964062 DOI: 10.1016/j.ecoenv.2024.116665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/15/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), notably benzo[a]pyrene (BaP), are environmental contaminants with multiple adverse ecological implications. Numerous studies have suggested the use of BaP biodegradation using various bacterial strains to remove BaP from the environment. This study investigates the BaP biodegradation capability of Pigmentiphaga kullae strain KIT-003, isolated from the Nak-dong River (South Korea) under specific environmental conditions. The optimum conditions of biodegradation were found to be pH 7.0, 35°C, and a salinity of 0 %. GC-MS analysis suggested alternative pathways by which KIT-003 produced catechol from BaP through several intermediate metabolites, including 4-formylchrysene-5-carboxylic acid, 5,6-dihydro-5,6-dihydroxychrysene-5-carboxylic acid (isomer: 3,4-dihydro-3,4-dihydroxychrysene-4-carboxylic acid), naphthalene-1,2-dicarboxylic acid, and 2-hydroxy-1-naphthoic acid. Proteomic profiles indicated upregulation of enzymes associated with aromatic compound degradation, such as nahAc and nahB, and of those integral to the tricarboxylic acid cycle, reflecting the strain's adaptability to and degradation of BaP. Lipidomic analysis of KIT-003 demonstrated that BaP exposure induced an accumulation of glycerolipids such as diacylglycerol and triacylglycerol, indicating their crucial role in bacterial adaptation mechanisms under BaP stress. This study provides significant scientific knowledge regarding the intricate mechanisms involved in BaP degradation by microorganisms.
Collapse
Affiliation(s)
- Yoonjeong Jeon
- Environmental Safety-Assessment Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Young Sang Kwon
- Environmental Safety-Assessment Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Young Ji Noh
- Environmental Safety-Assessment Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Seung-Min Lee
- Environmental Safety-Assessment Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Jong-Wook Song
- Environmental Safety-Assessment Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Jong-Hwan Kim
- Environmental Safety-Assessment Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea.
| | - Jong-Su Seo
- Environmental Safety-Assessment Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea.
| |
Collapse
|
4
|
Tang X, Li Y, Jin R, Yin G, Hou L, Liu M, Ju F, Han P. Community pattern of potential phenanthrene (PHE) degrading bacteria in PHE contaminated soil revealed by 13C-DNA stable isotope probing. CHEMOSPHERE 2023; 344:140377. [PMID: 37806323 DOI: 10.1016/j.chemosphere.2023.140377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Quantification of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil and identification of potential PAH degraders are essential for comprehending their environmental fate and conducting bioremediation. However, the microbial population responsible for the breakdown of phenanthrene (PHE) in polluted soil environments is frequently disregarded. In this study, via DNA-stable-isotope probing (DNA-SIP), we found that soil microbiota likely plays a crucial part in the PHE degradation. The PHE removal rates were 98% and 99%, in 13C-PHE and 12C-PHE microcosmic incubations, respectively. 13CO2 was produced along with the degradation of 13C-PHE. According to the analysis of 16S rRNA gene, there was a relatively higher presence of unidentified bacteria in the 'heavy' DNA fractions treated with 13C-PHE. Genus of Enterobacteriales, Acidobacteria, Alphaproteobacteria, Paenibacillaceae, Flavobacteriia, Chloroflexi, Cyanobacteria, Caldilineae, Latescibacteria, Armatimonadetes and Blastocatellia were succseesfully labeled during the degradation of 13C-PHE, indicating their capacity of utilizing PHE. Co-occurrence network of 13C-heavy fractions exhibited greater complexity compared with that of 12C-heavy fractions, revealling an enhancement of bacterial interspecies interactions. Collectivley, this study eluidated the soil microbes involed in the PHE degradation and offered fresh perspectives on the community pattern of potential PHE degrading bacteria.
Collapse
Affiliation(s)
- Xiufeng Tang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.
| | - Ye Li
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.
| | - Ruihe Jin
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310030, China.
| | - Ping Han
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
5
|
Jiménez-Volkerink SN, Jordán M, Singleton DR, Grifoll M, Vila J. Bacterial benz(a)anthracene catabolic networks in contaminated soils and their modulation by other co-occurring HMW-PAHs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121624. [PMID: 37059172 DOI: 10.1016/j.envpol.2023.121624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/04/2023] [Accepted: 04/09/2023] [Indexed: 05/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are major environmental pollutants in a number of point source contaminated sites, where they are found embedded in complex mixtures containing different polyaromatic compounds. The application of bioremediation technologies is often constrained by unpredictable end-point concentrations enriched in recalcitrant high molecular weight (HMW)-PAHs. The aim of this study was to elucidate the microbial populations and potential interactions involved in the biodegradation of benz(a)anthracene (BaA) in PAH-contaminated soils. The combination of DNA stable isotope probing (DNA-SIP) and shotgun metagenomics of 13C-labeled DNA identified a member of the recently described genus Immundisolibacter as the key BaA-degrading population. Analysis of the corresponding metagenome assembled genome (MAG) revealed a highly conserved and unique genetic organization in this genus, including novel aromatic ring-hydroxylating dioxygenases (RHD). The influence of other HMW-PAHs on BaA degradation was ascertained in soil microcosms spiked with BaA and fluoranthene (FT), pyrene (PY) or chrysene (CHY) in binary mixtures. The co-occurrence of PAHs resulted in a significant delay in the removal of PAHs that were more resistant to biodegradation, and this delay was associated with relevant microbial interactions. Members of Immundisolibacter, associated with the biodegradation of BaA and CHY, were outcompeted by Sphingobium and Mycobacterium, triggered by the presence of FT and PY, respectively. Our findings highlight that interacting microbial populations modulate the fate of PAHs during the biodegradation of contaminant mixtures in soils.
Collapse
Affiliation(s)
- Sara N Jiménez-Volkerink
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain
| | - Maria Jordán
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain
| | - David R Singleton
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708-0287, USA
| | - Magdalena Grifoll
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain.
| | - Joaquim Vila
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain
| |
Collapse
|
6
|
Teng T, Liang J, Zhu J, Jin P, Zhang D. Altered active pyrene degraders in biosurfactant-assisted bioaugmentation as revealed by RNA stable isotope probing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120192. [PMID: 36126767 DOI: 10.1016/j.envpol.2022.120192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Bioaugmentation is an effective approach for removing pyrene from contaminated sites, and its performance is enhanced by a biosurfactant. To reveal the mechanisms of biosurfactant-assisted bioaugmentation, we introduced RNA stable isotope probing (RNA-SIP) in the pyrene-contaminated soils and explored the impacts of rhamnolipid on the pyrene degradation process. After 12-day degradation, residual pyrene was the lowest in the bioaugmentation treatment (7.76 ± 1.57%), followed by biosurfactant-assisted bioaugmentation (9.86 ± 2.58%) and enhanced natural attenuation (23.97 ± 1.05%). Thirteen well-known and two novel pyrene-degrading bacteria were confirmed to participate in the pyrene degradation. Pyrene degradation was accelerated in the biosurfactant-assisted bioaugmentation, manifested by the high diversity of active pyrene degraders. Our findings expand the knowledge on pyrene degrading bacteria and the mechanisms of pyrene degradation in a bioaugmentation process.
Collapse
Affiliation(s)
- Tingting Teng
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University, Xi'an, 710049, PR China; College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, PR China
| | - Jidong Liang
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Jinwei Zhu
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University, Xi'an, 710049, PR China; Shaanxi Electrical Equipment Institute, Xi'an, 710025, PR China
| | - Pengkang Jin
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, PR China
| |
Collapse
|
7
|
Li X, Yao S, Bolan N, Wang Z, Jiang X, Song Y. Combined maize straw-biochar and oxalic acids induced a relay activity of abundant specific degraders for efficient phenanthrene degradation: Evidence based on the DNA-SIP technology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119867. [PMID: 35940483 DOI: 10.1016/j.envpol.2022.119867] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/08/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Biochar-oxalic acid composite application (BCOA) have shown to be efficient in the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil, but the functional degraders and the mechanism of improving biodegradation remains unclear. In this study, with the help of stable isotope probing technology of phenanthrene (Phe), we determined that BCOA significantly improved Phe mineralization by 2.1 times, which was ascribed to the increased numbers and abundances of functional degraders. The BCOA increased contents of dissolved organic carbon and available nutrients and decreased pH values in soil, thus promoting the activity, diversity and close cooperation of the functional Phe-degraders, and stimulating their functions associated with Phe degradation. In addition, there is a relay activity among more and diverse functional Phe-degraders in the soil with BCOA. Specifically, Pullulanibacillus persistently participated in Phe-degradation in the soil with BCOA throughout the incubation period. Moreover, Pullulanibacillus, Blastococcus, Alsobacter, Ramlibacter, and Mizugakiibacter were proved to be potential Phe-degraders in soil for the first time. The specific Phe degraders and their relay and cooperation activity in soils as impacted by BCOA were first identified with DNA-stable isotope probing technology. Our findings provided a novel perspective to understand the efficient degradation of PAH in the BCOA treatments, revealed the potential of soil native microbes in the efficient bioremediation of PAH-contaminated natural soil, and provided a basis for the development of in-situ phytoremediation technologies to remediate PAH pollution in future.
Collapse
Affiliation(s)
- Xiaona Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Institute of Environmental Processes and Pollution Control, And School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi Yao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Nanthi Bolan
- School of Agriculture and Environment, UWA Institute of Agriculture, The University of Western Australia, Nedland, WA, 6009, Australia
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, And School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Dhar K, Panneerselvan L, Venkateswarlu K, Megharaj M. Efficient bioremediation of PAHs-contaminated soils by a methylotrophic enrichment culture. Biodegradation 2022; 33:575-591. [PMID: 35976498 PMCID: PMC9581816 DOI: 10.1007/s10532-022-09996-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/05/2022] [Indexed: 01/13/2023]
Abstract
Bioaugmentation effectively enhances microbial bioremediation of hazardous polycyclic aromatic hydrocarbons (PAHs) from contaminated environments. While screening for pyrene-degrading bacteria from a former manufactured gas plant soil (MGPS), the mixed enrichment culture was found to be more efficient in PAHs biodegradation than the culturable pure strains. Interestingly, analysis of 16S rRNA sequences revealed that the culture was dominated by a previously uncultured member of the family Rhizobiaceae. The culture utilized C1 and other methylotrophic substrates, including dimethylformamide (DMF), which was used as a solvent for supplementing the culture medium with PAHs. In the liquid medium, the culture rapidly degraded phenanthrene, pyrene, and the carcinogenic benzo(a)pyrene (BaP), when provided as the sole carbon source or with DMF as a co-substrate. The efficiency of the culture in the bioremediation of PAHs from the MGPS and a laboratory waste soil (LWS) was evaluated in bench-scale slurry systems. After 28 days, 80% of Σ16 PAHs were efficiently removed from the inoculated MGPS. Notably, the bioaugmentation achieved 90% removal of four-ringed and 60% of highly recalcitrant five- and six-ringed PAHs from the MGPS. Likewise, almost all phenanthrene, pyrene, and 65% BaP were removed from the bioaugmented LWS. This study highlights the application of the methylotrophic enrichment culture dominated by an uncultured bacterium for the efficient bioremediation of PAHs.
Collapse
Affiliation(s)
- Kartik Dhar
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
| | - Logeshwaran Panneerselvan
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia.,Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, 515003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia. .,Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
9
|
Volkoff SJ, Rodriguez DL, Singleton DR, McCumber AW, Aitken MD, Stewart JR, Gunsch CK. Identifying bioaugmentation candidates for bioremediation of polycyclic aromatic hydrocarbons in contaminated estuarine sediment of the Elizabeth River, VA, USA. Appl Microbiol Biotechnol 2022; 106:1715-1727. [PMID: 35089401 DOI: 10.1007/s00253-021-11754-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 11/02/2022]
Abstract
Estuarine sediments near former creosoting facilities along the Elizabeth River (Virginia, USA) are contaminated by polycyclic aromatic hydrocarbons (PAHs). In this study, we interrogated the bacterial community of the Elizabeth River with both culture-based and culture-independent methods to identify potential candidates for bioremediation of these contaminants. DNA-based stable isotope probing (SIP) experiments with phenanthrene and fluoranthene using sediment from the former Republic Creosoting site identified relevant PAH-degrading bacteria within the Azoarcus, Hydrogenophaga, and Croceicoccus genera. Targeted cultivation of PAH-degrading bacteria from the same site recovered 6 PAH-degrading strains, including one strain highly similar to Hydrogenophaga sequences detected in SIP experiments. Other isolates were most similar to organisms within the Novosphingobium, Sphingobium, Stenotrophomonas, and Alcaligenes genera. Lastly, we performed 16S rRNA gene amplicon microbiome analyses of sediment samples from four sites, including Republic Creosoting, with varying concentrations of PAHs. Analysis of these data showed a striking divergence of the microbial community at the highly contaminated Republic Creosoting site from less contaminated sites with the enrichment of several bacterial clades including those affiliated with the Pseudomonas genus. Sequences within the microbiome libraries similar to SIP-derived sequences were generally found at high relative abundance, while the Croceicoccus sequence was present at low to moderate relative abundance. These results suggest that Azoarcus and Hydrogenophaga strains might be good target candidates for biostimulation, while Croceicoccus spp. might be good targets for bioaugmentation in these sediments. Furthermore, this study demonstrates the value of culture-based and culture-independent methods in identifying promising bacterial candidates for use in a precision bioremediation scheme. KEY POINTS: • This study highlights the importance of using multiple strategies to identify promising bacterial candidates for use in a precision bioremediation scheme. • We used both selective cultivation techniques and DNA-based stable isotope probing to identify bacterial degraders of prominent PAHs at a historically contaminated site in the Elizabeth River, VA, USA. • Azoarcus and Hydrogenophaga strains might be good target candidates for biostimulation in Elizabeth River sediments, while Croceicoccus spp. might be good targets for bioaugmentation.
Collapse
Affiliation(s)
- Savannah J Volkoff
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, 121 Hudson Hall, Durham, NC, 27708, USA
| | - Daniel L Rodriguez
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, 121 Hudson Hall, Durham, NC, 27708, USA
| | - David R Singleton
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, 121 Hudson Hall, Durham, NC, 27708, USA
| | - Alexander W McCumber
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, 121 Hudson Hall, Durham, NC, 27708, USA
| | - Michael D Aitken
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27759-7431, USA
| | - Jill R Stewart
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27759-7431, USA
| | - Claudia K Gunsch
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, 121 Hudson Hall, Durham, NC, 27708, USA.
| |
Collapse
|
10
|
Teng T, Liang J, Wu Z. Identification of pyrene degraders via DNA-SIP in oilfield soil during natural attenuation, bioaugmentation and biostimulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149485. [PMID: 34392205 DOI: 10.1016/j.scitotenv.2021.149485] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Pyrene is a model contaminant of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs), which are compounds that have potential carcinogenic effects and pose a serious threat to human health. Finding effective pyrene-degrading bacteria is crucial for removing PAHs from soil. In this study, DNA-based stable isotope probing (DNA-SIP) technology was used to investigate pyrene degraders in PAH-contaminated oilfield soil during natural attenuation (NA), bioaugmentation (BA) and biostimulation (BS). The results show that BA played an important role in pyrene degradation with the highest pyrene removal rate (~95%) after 12 days incubation, followed by removal rates of ~90% for NA and ~30% for BS. In addition, 6 novel pyrene degraders were identified, while 12 well-known PAH degraders were demonstrated to participate in the biodegradation of pyrene. Additionally, the external homologous strains introduced during BA promoted the degradation of pyrene, but not by directly participating in the metabolism of the target compound. Rhamnolipid supplementation during BS promoted the involvement of more microorganisms in the degradation of pyrene, which was beneficial to identifying more pyrene degraders via DNA-SIP. These findings provide new insight into the effects of external homologous strains and supplementary rhamnolipids on pyrene degradation.
Collapse
Affiliation(s)
- Tingting Teng
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jidong Liang
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zijun Wu
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
11
|
Cai X, Li J, Guan F, Luo X, Yuan Y. Unveiling metabolic characteristics of an uncultured Gammaproteobacterium responsible for in situ PAH biodegradation in petroleum polluted soil. Environ Microbiol 2021; 23:7093-7104. [PMID: 34674400 DOI: 10.1111/1462-2920.15814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/12/2021] [Accepted: 10/05/2021] [Indexed: 01/17/2023]
Abstract
Exploring the metabolic characteristics of indigenous PAH degraders is critical to understanding the PAH bioremediation mechanism in the natural environment. While stable-isotopic probing (SIP) is a viable method to identify functional microorganisms in complex environments, the metabolic characteristics of uncultured degraders are still elusive. Here, we investigated the naphthalene (NAP) biodegradation of petroleum polluted soils by combining SIP, amplicon sequencing and metagenome binning. Based on the SIP and amplicon sequencing results, an uncultured Gammaproteobacterium sp. was identified as the key NAP degrader. Additionally, the assembled genome of this uncultured degrader was successfully obtained from the 13 C-DNA metagenomes by matching its 16S rRNA gene with the SIP identified OTU sequence. Meanwhile, a number of NAP degrading genes encoding naphthalene/PAH dioxygenases were identified in this genome, further confirming the direct involvement of this indigenous degrader in the NAP degradation. The degrader contained genes related to the metabolisms of several carbon sources, energy substances and vitamins, illuminating potential reasons for why microorganisms cannot be cultivated and finally realize their cultivation. Our findings provide novel information on the mechanisms of in situ PAH biodegradation and add to our current knowledge on the cultivation of non-culturable microorganisms by combining both SIP and metagenome binning.
Collapse
Affiliation(s)
- Xixi Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.,CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Fengyi Guan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaoshan Luo
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
12
|
Akbari A, Kasprzyk A, Galvez R, Ghoshal S. A rhamnolipid biosurfactant increased bacterial population size but hindered hydrocarbon biodegradation in weathered contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:145441. [PMID: 33725602 DOI: 10.1016/j.scitotenv.2021.145441] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Surfactants are used to enhance the bioavailability of recalcitrant residual petroleum contamination during bioremediation. However, surfactants in some cases inhibit biodegradation, which is often attributed to their toxicity. Herein, we show that a rhamnolipid biosurfactant likely served as a carbon source and exhibited physiological inhibition on petroleum biodegradation. The addition of biosurfactants in mixed, batch, slurry bioreactors with soils from a petroleum-contaminated site led to a dose-dependent shift in the microbial community with a decrease in diversity and increase in population size and delayed biodegradation. Microbial community analysis indicated the enrichment of Alphaproteobacteria affiliated taxa such as Sphingomonadaceae in systems amended with biosurfactant. The diversity was significantly lower in systems with higher doses of biosurfactants compared to systems without biosurfactant. Droplet Digital PCR indicated a 30-90 fold increase in 16S rRNA copy numbers in systems with higher doses of biosurfactant than control systems without surfactant and nutrients, whereas the nutrient amendment alone led to a two-fold increase in population size. Total petroleum hydrocarbon analysis showed that the biodegradation extent was negatively impacted by rhamnolipid at the highest dose compared to lower doses (23% vs. 40%) or without the biosurfactant. Indigenous isolates cultivated from the oil-amended soil exhibited growth on rhamnolipid as a sole carbon source. A novel insight gained is how dose-dependent responses of microbial communities to biosurfactants alter the biodegradation time profile of hydrocarbons. The study highlights the significance of microbial assessment prior to surfactant-mediated bioremediation practices.
Collapse
Affiliation(s)
- Ali Akbari
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada.
| | - Aleksandra Kasprzyk
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Rosa Galvez
- Department of Civil and Water Engineering, Laval University, Quebec, Quebec G1V 0A6, Canada
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| |
Collapse
|
13
|
Wu F, Jiao S, Hu J, Wu X, Wang B, Shen G, Yang Y, Tao S, Wang X. Stronger impacts of long-term relative to short-term exposure to carbon nanomaterials on soil bacterial communities. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124550. [PMID: 33223310 DOI: 10.1016/j.jhazmat.2020.124550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/27/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Environmental impacts of carbon nanomaterials (CNMs) have been attracting increasing concerns in recent years. Knowledge on how short-term exposure to CNMs influences soil microbial communities is available. However, little is known about the possible difference in effects of long-term versus short-term exposure of CNMs on soil microbial communities. In this study, we systematically compared effects of fullerene (C60), single-walled carbon nanotubes (SW), and graphene (GR) on soil bacterial communities over short (30 d) and long (360 d) term exposure durations. Our findings revealed that short-term exposure to all CNMs significantly increased the alpha diversity of soil bacterial communities. SW and GR exposure for 360 d relative to that for 30 d more significantly decreased their alpha diversity. Compared to short-term exposure, a long term exposure to CNMs more strongly altered the beta diversity of soil bacterial communities. LEfSe analysis showed that, GR relative to C60 and SW exposure more strongly altered soil bacterial community composition especially for long-term duration at various taxonomic levels; more taxa were also identified by LEfSe analysis as biomarkers upon long-term GR exposure. More OTUs were affected by long-term GR exposure. These differences resulted from both distinct physicochemical properties of various CNMs and their exposure durations.
Collapse
Affiliation(s)
- Fan Wu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shuo Jiao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jing Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xinyi Wu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Bin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Guofeng Shen
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yu Yang
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV 89557, USA
| | - Shu Tao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xilong Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
14
|
Liao Q, Liu H, Lu C, Liu J, Waigi MG, Ling W. Root exudates enhance the PAH degradation and degrading gene abundance in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:144436. [PMID: 33401039 DOI: 10.1016/j.scitotenv.2020.144436] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Root exudates could influence the bioavailability of polycyclic aromatic hydrocarbons (PAHs), provide nutrients for soil microorganisms, and affect PAH biodegradation. However, it remains unclear how a bacterial community and its PAH-degrading genes play crucial roles in PAH biodegradation and respond to root exudates. In this study, a 32-day soil microcosm study was conducted to explore the impacts of artificial and actual root exudates on PAH degradation, degrading genes, and bacterial community structure. The results showed that 10-100 mg DOC/kg artificial and actual root exudates promoted the degradation of naphthalene, phenanthrene, and pyrene in soils, and their percent removal increased initially and then decreased with the increasing root exudates. Quantitative polymerase chain reaction analysis and 16S rRNA gene high-throughput sequencing suggested that the artificial root exudates significantly promoted the Nocardioides and Arthrobacter genera, which may harbor the nidA gene (the representative PAH-degrading gene from Gram-positive bacteria). In contrast, actual root exudates significantly stimulated the Pseudomonas genus that may harbor the nahAc gene (the representative PAH-degrading gene from Gram-negative bacteria). The correlation analysis further indicated that the absolute abundance of PAH degraders and degrading genes had strong correlations with PAH degradation efficiency. Therefore, these findings suggest that root exudates enhanced PAH biodegradation probably due to increases in abundance of both PAH-degraders and their degrading genes.
Collapse
Affiliation(s)
- Qihang Liao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Liu
- College of Economics and Management, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Lu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
15
|
Liang J, Gao S, Wu Z, Rijnaarts HHM, Grotenhuis T. DNA-SIP identification of phenanthrene-degrading bacteria undergoing bioaugmentation and natural attenuation in petroleum-contaminated soil. CHEMOSPHERE 2021; 266:128984. [PMID: 33234305 DOI: 10.1016/j.chemosphere.2020.128984] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/08/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
DNA-stable isotope probing (SIP) with 13C labeled phenanthrene (PHE) as substrate was used to identify specific bacterial degraders during natural attenuation (NA) and bioaugmentation (BA) in petroleum contaminated soil. BA, with the addition of a bacterial suspension mixture named GZ, played a significant role in PHE degradation with a higher PHE removal rate (∼90%) than that of NA (∼80%) during the first 3 days, and remarkably altered microbial communities. Of the five strains introduced in BA, only two genera, particularly, Ochrobactrum, Rhodococcus were extensively responsible for PHE-degradation. Six (Bacillus sp., Acinetobacter sp., Xanthomonas sp., Conexibacter sp., Acinetobacter sp. and Staphylococcus sp.) and seven (Ochrobactrum sp., Rhodococcus sp., Alkanindiges sp., Williamsia sp., Sphingobium sp., Gillisia sp. and Massilia sp.) bacteria responsible for PHE degradation were identified in NA and BA treatments, respectively. This study reports for the first time the association of Xanthomonas sp., Williamsia sp., and Gillisia sp. to PHE degradation.
Collapse
Affiliation(s)
- Jidong Liang
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Sha Gao
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Department of Environmental Technology, Wageningen University and Research, Wageningen, 6700AA, the Netherlands
| | - Zijun Wu
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huub H M Rijnaarts
- Department of Environmental Technology, Wageningen University and Research, Wageningen, 6700AA, the Netherlands
| | - Tim Grotenhuis
- Department of Environmental Technology, Wageningen University and Research, Wageningen, 6700AA, the Netherlands
| |
Collapse
|
16
|
Li Q, Li J, Jiang L, Sun Y, Luo C, Zhang G. Diversity and structure of phenanthrene degrading bacterial communities associated with fungal bioremediation in petroleum contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123895. [PMID: 33264959 DOI: 10.1016/j.jhazmat.2020.123895] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/14/2020] [Accepted: 08/29/2020] [Indexed: 06/12/2023]
Abstract
Fungal bioremediation is a promising technique for the cleanup of sites contaminated with polycyclic aromatic hydrocarbons (PAHs). However, due to limited understanding of the composition and dynamics of the native PAH-degrading microorganisms in contaminated sites, its application has been difficult. In the present study, DNA stable-isotope probing was performed to identify indigenous phenanthrene (PHE)-degrading bacteria and determine their diversity during the fungal bioremediation process. The results showed a total of 14 operational taxonomic units (OTUs) enriched in the heavy DNA fractions, which were related to seven genera (Sphingomonas, Sphingobacterium, Acidovorax, Massilia, Flavobacterium, Cupriavidus, Aeromicrobium, and unclassified Chitinophagaceae). Along with enhanced efficiency of PHE removal, the number and diversity of indigenous PHE-degrading bacteria in soil bioaugmented with fungi were significantly increased. Furthermore, based on the results of linear model analysis, we found that PHE degraders affiliated with the genus Sphingomonas were significantly enriched during fungal bioremediation. Moreover, fungal bioaugmentation promoted indigenous functional Proteobacteria involved in PAH degradation through co-metabolism, suggesting that PAH biodegradation was attributable to cooperative metabolism by fungi and indigenous bacteria. Our findings provide new insights into the diversity of PHE-degrading communities and support a more comprehensive view of the fungal bioremediation process.
Collapse
Affiliation(s)
- Qiqian Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; College of Chemical and Biological Engineering, Hechi University, Yizhou, 546300, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yingtao Sun
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
17
|
Hou R, Gan L, Guan F, Wang Y, Li J, Zhou S, Yuan Y. Bioelectrochemically enhanced degradation of bisphenol S: mechanistic insights from stable isotope-assisted investigations. iScience 2021; 24:102014. [PMID: 33490921 PMCID: PMC7809511 DOI: 10.1016/j.isci.2020.102014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/03/2020] [Accepted: 12/24/2020] [Indexed: 12/04/2022] Open
Abstract
Electroactive microbes is the driving force for the bioelectrochemical degradation of organic pollutants, but the underlying microbial interactions between electrogenesis and pollutant degradation have not been clearly identified. Here, we combined stable isotope-assisted metabolomics (SIAM) and 13C-DNA stable isotope probing (DNA-SIP) to investigate bisphenol S (BPS) enhanced degradation by electroactive mixed-culture biofilms (EABs). Using SIAM, six 13C fully labeled transformation products were detected originating via hydrolysis, oxidation, alkylation, or aromatic ring-cleavage reactions from 13C-BPS, suggesting hydrolysis and oxidation as the initial and key degradation pathways for the electrochemical degradation process. The DNA-SIP results further displayed high 13C-DNA accumulation in the genera Bacteroides and Cetobacterium from the EABs and indicated their ability in the assimilation of BPS or its metabolites. Collectively, network analysis showed that the collaboration between electroactive microbes and BPS assimilators played pivotal roles the improvement in bioelectrochemically enhanced BPS degradation.
Collapse
Affiliation(s)
- Rui Hou
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Lin Gan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Fengyi Guan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yi Wang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, School of Resources and Environment, Fujian Agriculture and Forestry, Fuzhou 350000, China
| | - Yong Yuan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
18
|
Bao H, Wang J, Li J, Zhang H, Wu F. Effects of corn straw on dissipation of polycyclic aromatic hydrocarbons and potential application of backpropagation artificial neural network prediction model for PAHs bioremediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109745. [PMID: 31606644 DOI: 10.1016/j.ecoenv.2019.109745] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/12/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
In order to provide a viable option for remediation of PAHs-contaminated soils, a greenhouse experiment was conducted to assess the effect of corn straw amendment (1%, 2%, 4% or 6%, w/w) on dissipation of aged polycyclic aromatic hydrocarbons (PAHs) in contaminated soils. Backpropagation artificial neural network (BP-ANN) was applied to model the relationships between soil properties and PAHs concentration in soils. The removal rate of PAHs, enzyme activity (catalase and dehydrogenase), dissolved organic carbon (DOC) and microbial biomass carbon (MBC) in soils were investigated to evaluate the dissipation of PAHs under different ratio of corn straw amendment. The present study showed that corn straw amendment apparently accelerated the dissipation of PAHs after incubation of 112 days, especially under 4% and 6% treatments. Compared with non-amended soil, corn straw amendment significantly (p < 0.05) increased the removal rate of low molecular weight (LMW) PAHs and significantly (p < 0.05) enhanced the dissipation of high molecular weight (HMW) PAHs only under 6% treatment. Moreover, corn straw amendment increased activities of catalase and dehydrogenase, concentrations of DOC and MBC in soils, which are beneficial to the degradation of PAHs in soils. The performance of the BP-ANN model was assessed through the root mean square error (RMSE) and determination coefficient (R2). The results indicated that BP-ANN model could provide satisfactory prediction of PAHs concentration in soils during incubation period at R2 and RMSE values of 0.948, 187.4 μg kg-1, respectively. The results indicated that high amendment of corn straw was a potential option for remediation of PAHs-contaminated soils and that the BP-ANN model could successfully provide prompt prediction of PAHs concentration in soils.
Collapse
Affiliation(s)
- Huanyu Bao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, PR China
| | - Jinfeng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, PR China
| | - Jiao Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, PR China
| | - He Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, PR China
| | - Fuyong Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
19
|
Thomas F, Corre E, Cébron A. Stable isotope probing and metagenomics highlight the effect of plants on uncultured phenanthrene-degrading bacterial consortium in polluted soil. THE ISME JOURNAL 2019; 13:1814-1830. [PMID: 30872807 PMCID: PMC6775975 DOI: 10.1038/s41396-019-0394-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/08/2019] [Accepted: 02/28/2019] [Indexed: 11/09/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous soil pollutants. The discovery that plants can stimulate microbial degradation of PAHs has promoted research on rhizoremediation strategies. We combined DNA-SIP with metagenomics to assess the influence of plants on the identity and metabolic functions of active PAH-degrading bacteria in contaminated soil, using phenanthrene (PHE) as a model hydrocarbon. 13C-PHE dissipation was 2.5-fold lower in ryegrass-planted conditions than in bare soil. Metabarcoding of 16S rDNA revealed significantly enriched OTUs in 13C-SIP incubations compared to 12C-controls, namely 130 OTUs from bare soil and 73 OTUs from planted soil. Active PHE-degraders were taxonomically diverse (Proteobacteria, Actinobacteria and Firmicutes), with Sphingomonas and Sphingobium dominating in bare and planted soil, respectively. Plant root exudates favored the development of PHE-degraders having specific functional traits at the genome level. Indeed, metagenomes of 13C-enriched DNA fractions contained more genes involved in aromatic compound metabolism in bare soil, whereas carbohydrate catabolism genes were more abundant in planted soil. Functional gene annotation allowed reconstruction of complete pathways with several routes for PHE catabolism. Sphingomonadales were the major taxa performing the first steps of PHE degradation in both conditions, suggesting their critical role to initiate in situ PAH remediation. Active PHE-degraders act in a consortium, whereby complete PHE mineralization is achieved through the combined activity of taxonomically diverse co-occurring bacteria performing successive metabolic steps. Our study reveals hitherto underestimated functional interactions for full microbial detoxification in contaminated soils.
Collapse
Affiliation(s)
- François Thomas
- Université de Lorraine, CNRS, LIEC, 54500, Nancy, France
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680, Roscoff, France
| | - Erwan Corre
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Aurélie Cébron
- Université de Lorraine, CNRS, LIEC, 54500, Nancy, France.
| |
Collapse
|
20
|
Ouyang WY, Su JQ, Richnow HH, Adrian L. Identification of dominant sulfamethoxazole-degraders in pig farm-impacted soil by DNA and protein stable isotope probing. ENVIRONMENT INTERNATIONAL 2019; 126:118-126. [PMID: 30797101 DOI: 10.1016/j.envint.2019.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 05/27/2023]
Abstract
Increasing introduction of antibiotic residues from humans and animal farming into the environment impacts the functioning of natural ecosystems and significantly contributes to the propagation of antibiotic resistance. Microbial degradation is the major sink of antibiotics in soil but the identification of in situ degrading populations is challenging. Here, we investigated sulfamethoxazole-degrading bacteria in soil microcosms by culture-independent DNA and protein stable isotope probing. 0.5% of the carbon from 13C6-labeled sulfamethoxazole amended to soil microcosms was transformed to 13CO2 demonstrating partial mineralization of the antibiotic. DNA stable isotope probing revealed incorporation of 13C from 13C6-labeled sulfamethoxazole into Actinobacteria and among them into the families Intrasporangiaceae, Nocardioidaceae, and Gaiellaceae and the order Solirubrobacterales. Protein stable isotope probing demonstrated the incorporation of 13C from 13C6-labeled sulfamethoxazole into proteins of bacteria of the families Intrasporangiaceae, Nocardioidaceae and the order Solirubrobacterales, which is consistent with the results of DNA stable isotope probing. The 13C abundance of 60 to 80% in several taxonomically relevant proteins indicated that Intrasporangiaceae directly acquired carbon from 13C6-labeled sulfamethoxazole. The results highlight the crucial role of yet-uncultivated indigenous bacteria for antibiotics degradation, and the potential of cultivation-independent stable isotope based molecular approaches to elucidate the structure of antibiotic-degrading populations in complex microbial communities under natural conditions.
Collapse
Affiliation(s)
- Wei-Ying Ouyang
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Chair of Geobiotechnology, Technische Universität Berlin, Berlin, Germany
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Lorenz Adrian
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Chair of Geobiotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
21
|
Song M, Wang Y, Jiang L, Peng K, Wei Z, Zhang D, Li Y, Zhang G, Luo C. The complex interactions between novel DEHP-metabolising bacteria and the microbes in agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:733-740. [PMID: 30743959 DOI: 10.1016/j.scitotenv.2019.01.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/05/2019] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
The indigenous microorganisms with the ability of metabolising di-(2-ethylhexyl) phthalate (DEHP) in agricultural soils and their interactions with non-degrading microbes were revealed by DNA-based stable isotope probing coupled with molecular ecological network. Aside from the previously reported DEHP degraders (family Planococcaceae and genus Sphingobacterium), five OTUs representing bacteria affiliated with genus Brevundimona, class Spartobacteria, genus Singulisphaera, genus Dyella and class Ktedonobacteria were linked with DEHP biodegradation. The analysis of the constructed ecological network based on soil microbial communities demonstrated the negative relationships between DEHP degraders and the dominant family Oxalobacteraceae in soils. Additionally, two cultivable bacteria isolated from the same soils, Rhizobium-1 and Ensifer-1, had strong capabilities in degrading DEHP but their involvement in in situ DEHP degradation was questioned, as their DNA was not labelled with 13C from DEHP. These findings provide deeper understanding on the indigenous DEHP-degrading communities and will benefit the remediation of phthalate esters contaminated soils.
Collapse
Affiliation(s)
- Mengke Song
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yujie Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Longfei Jiang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ke Peng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zikai Wei
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yongtao Li
- Joint Institute for Environmental Research and Education, South China Agricultural University, Guangzhou 510642, China
| | - Gan Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Chunling Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Joint Institute for Environmental Research and Education, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
22
|
pahE, a Functional Marker Gene for Polycyclic Aromatic Hydrocarbon-Degrading Bacteria. Appl Environ Microbiol 2019; 85:AEM.02399-18. [PMID: 30478232 DOI: 10.1128/aem.02399-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/09/2018] [Indexed: 11/20/2022] Open
Abstract
The characterization of native polycyclic aromatic hydrocarbon (PAH)-degrading bacteria is significant for understanding the PAH degradation process in the natural environment and developing effective remediation technologies. Most previous investigations of PAH-degrading bacteria in environmental samples employ pahAc, which encodes the α-subunit of PAH ring-hydroxylating dioxygenase, as a functional marker gene. However, the poor phylogenetic resolution and nonspecificity of pahAc result in a misestimation of PAH-degrading bacteria. Here, we propose a PAH hydratase-aldolase-encoding gene, pahE, as a superior biomarker for PAH-degrading bacteria. Comparative phylogenetic analysis of the key enzymes involved in the upper pathway of PAH degradation indicated that pahE evolved dependently from a common ancestor. A phylogenetic tree constructed based on PahE is largely congruent with PahAc-based phylogenies, except for the dispersion of several clades of other non-PAH-degrading aromatic hydrocarbon dioxygenases present in the PahAc tree. Analysis of pure strains by PCR confirmed that pahE can specifically distinguish PAH-degrading bacteria, while pahAc cannot. Illumina sequencing of pahE and pahAc amplicons showed more genotypes and higher specificity and resolution for pahE Novel reads were also discovered among the pahE amplicons, suggesting the presence of novel PAH-degrading populations. These results suggest that pahE is a more powerful biomarker for exploring the ecological role and degradation potential of PAH-degrading bacteria in ecosystems, which is significant to the bioremediation of PAH pollution and environmental microbial ecology.IMPORTANCE PAH contamination has become a worldwide environmental issue because of the potential toxic effects on natural ecosystems and human health. Biotransformation and biodegradation are considered the main natural elimination forms of PAHs from contaminated sites. Therefore, the knowledge of the degradation potential of the microbial community in contaminated sites is crucial for PAH pollution bioremediation. However, the nonspecificity of pahAc as a functional marker of PAH-degrading bacteria has resulted neither in a reliable prediction of PAH degradation potential nor an accurate assessment of degradation. Here, we introduced pahE encoding the PAH hydratase-aldolase as a new and better functional marker gene of PAH-degrading bacteria. This study provides a powerful molecular tool to more effectively explore the ecological role and degradation potential of PAH-degrading bacteria in ecosystems, which is significant to the bioremediation of PAH pollution.
Collapse
|
23
|
Distribution of bacterial polycyclic aromatic hydrocarbon (PAH) ring-hydroxylating dioxygenases genes in oilfield soils and mangrove sediments explored by gene-targeted metagenomics. Appl Microbiol Biotechnol 2019; 103:2427-2440. [PMID: 30661109 DOI: 10.1007/s00253-018-09613-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/25/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
Abstract
PAH ring-hydroxylating dioxygenases (PAH-RHDα) gene, a useful biomarker for PAH-degrading bacteria, has been widely used to examine PAH-degrading bacterial community in different contaminated sites. However, the distribution of PAH-RHDα genes in oilfield soils and mangrove sediments and their relationship with environmental factors still remain largely unclear. In this study, gene-targeted metagenomics was first used to investigate the diversity of PAH-degrading bacterial communities in oilfield soils and mangrove sediments. The results showed that higher diversity of PAH-degrading bacteria in the studied samples was revealed by gene-targeted metagenomics than traditional clone library analysis. Pseudomonas, Burkholderia, Ralstonia, Polymorphum gilvum, Mycobacterium, Sciscionella marina, Rhodococcus, and potential new degraders were prevailed in the oilfield area. For mangrove sediments, novel PAH degraders and Mycobacterium were predominated. The spatial distribution of PAH-RHDα gene was dependent on geographical location and regulated by local environmental variables. PAH content played a key role in shaping PAH-degrading bacterial communities in the studied samples, which would enrich PAH-degrading bacterial population and decrease PAH-degrading bacterial diversity. This work brings a more comprehensive and some new insights into the distribution and biodegradation potential of PAH-degrading bacteria in soil and sediments ecosystems.
Collapse
|
24
|
Li J, Luo C, Zhang G, Zhang D. Coupling magnetic-nanoparticle mediated isolation (MMI) and stable isotope probing (SIP) for identifying and isolating the active microbes involved in phenanthrene degradation in wastewater with higher resolution and accuracy. WATER RESEARCH 2018; 144:226-234. [PMID: 30032019 DOI: 10.1016/j.watres.2018.07.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/05/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
Stable isotope probing (SIP) is a cultivation-independent approach identifying the functional microbes in their natural habitats, possibly linking their identities to functions. DNA-SIP is well-established but suffers from the shift of 12C-DNA into the heavy DNA (13C-DNA) fraction, which significantly reduces the resolution and accuracy. In this study, we coupled magnetic-nanoparticle mediated isolation (MMI) and DNA-SIP, namely MMI-SIP, to identify the active microbes involved in phenanthrene degradation from PAH-contaminated wastewater. Microbes affiliated to Pseudomonas and Sphingobium were responsible for in situ phenanthrene metabolism from the SIP results, and Pigmentiphaga was only unraveled for phenanthrene degradation in the MMI and MMI-SIP microcosms. MMI-SIP also significantly increased the enrichment of the above microbes and genes encoding the alpha subunit of the PAH-ring hydroxylating dioxygenase (PAH-RHDα) in the heavy DNA fractions. Our findings suggest that MMI-SIP is a powerful tool, with higher resolution and accuracy, to distinguish the active microbes involved in phenanthrene metabolism in the wastewater, provide a more precise map of functional microbial communities, and offer suggestions for effective management for wastewater treatment plants.
Collapse
Affiliation(s)
- Jibing Li
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Chunling Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Gan Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
25
|
Deng Y, Deng C, Yang J, Li B, Wang E, Yuan H. Novel Butane-Oxidizing Bacteria and Diversity of bmoX Genes in Puguang Gas Field. Front Microbiol 2018; 9:1576. [PMID: 30065710 PMCID: PMC6056644 DOI: 10.3389/fmicb.2018.01576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/25/2018] [Indexed: 11/13/2022] Open
Abstract
To investigate the diversity of butane-oxidizing bacteria in soils contaminated by long-term light hydrocarbon microseepage and the influence of butane on the soil microbial community, a quantitative study and identification of butane-oxidizing bacteria (BOB) in soils at the Puguang gas field were performed by DNA-based stable isotope probing (DNA-SIP). For the first time, two phylotypes corresponding to the genera Giesbergeria and Ramlibacter were identified as being directly involved in butane oxidation, in addition to the well-known light hydrocarbon degrader Pseudomonas. Furthermore, bmoX genes were strongly labeled by 13C-butane, and their abundances in gas field soils increased by 43.14-, 17.39-, 21.74-, and 30.14-fold when incubated with butane for 6, 9, 12, and 14 days, respectively, indicating that these bmoX-harboring bacteria could use butane as the sole carbon and energy source and they play an important role in butane degradation. We also found that the addition of butane rapidly shaped the bacterial community and reduced the diversity of bmoX genes in the gas field soils. These findings improve our understanding of BOB in the gas field environment and reveal the potential for their applications in petroleum exploration and bioremediation.
Collapse
Affiliation(s)
- Yue Deng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chunping Deng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinshui Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Baozhen Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Hongli Yuan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Song M, Jiang L, Zhang D, Luo C, Yin H, Li Y, Zhang G. Identification of biphenyl-metabolising microbes in activated biosludge using cultivation-independent and -dependent approaches. JOURNAL OF HAZARDOUS MATERIALS 2018; 353:534-541. [PMID: 29727832 DOI: 10.1016/j.jhazmat.2018.04.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Microbes have important roles in removing organic pollutants in wastewater treatment plants (WWTPs), especially in mineralising recalcitrant persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs). However, the majority of the microorganisms that metabolise these pollutants in situ remain elusive owing to barriers of traditional techniques in unravel yet-to-be-cultivated microbes. In this study, DNA stable-isotope probing (SIP) coupled with high-throughput sequencing was applied to identify the microbes responsible for PCB degradation in the activated biosludge of a WWTP using 13C-labelled biphenyl (BP). Results of time-course SIP revealed different bacteria and archaea involved in BP metabolism, which dominated the BP-degrading community at different time points. BP degradation by the genera Spartobacteria, Alicyclobacillus, Flavobacterium and the order Cenarchaeales has not been reported previously. The abundance of biphenyl dioxygenase (bphA) genes increased over time and a novel bphA gene was identified from the 13C-heavy DNA fraction. In addition, three cultivable BP degraders were isolated, but did not participate in BP degradation in situ or contain the identified bphA genes. Taken together, these data reveal the huge potential and important roles of yet-to-be-cultivated microbes responsible for PCB degradation in activated biosludge, providing fundamental knowledge on WWTP management to remove POPs.
Collapse
Affiliation(s)
- Mengke Song
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Longfei Jiang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Chunling Luo
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Hua Yin
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Gan Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
27
|
Kotoky R, Rajkumari J, Pandey P. The rhizosphere microbiome: Significance in rhizoremediation of polyaromatic hydrocarbon contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:858-870. [PMID: 29660711 DOI: 10.1016/j.jenvman.2018.04.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/22/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Microbial communities are an essential part of plant rhizosphere and participate in the functioning of plants, including rhizoremediation of petroleum contaminants. Rhizoremediation is a promising technology for removal of polyaromatic hydrocarbons based on interactions between plants and microbiome in the rhizosphere. Root exudation in the rhizosphere provides better nutrient uptake for rhizosphere microbiome, and therefore it is considered to be one of the major factors of microbial community function in the rhizosphere that plays a key role in the enhanced PAH biodegradation. Although the importance of the rhizosphere microbiome for plant growth has been widely recognized, the interactions between microbiome and plant roots in the process of rhizosphere mediated remediation of PAH still needs attention. Most of the current researches target PAH degradation by plant or single microorganism, separately, whereas the interactions between plants and whole microbiome are overlooked and its role has been ignored. This review summarizes recent knowledge of PAH degradation in the rhizosphere in the process of plant-microbiome interactions based on emerging omics approaches such as metagenomics, metatranscriptomics, metabolomics and metaproteomics. These omics approaches with combinations to bioinformatics tools provide us a better understanding in integrated activity patterns between plants and rhizosphere microbes, and insight into the biochemical and molecular modification of the meta-organisms (plant-microbiome) to maximize rhizoremediation activity. Moreover, a better understanding of the interactions could lead to the development of techniques to engineer rhizosphere microbiome for better hydrocarbon degradation.
Collapse
Affiliation(s)
- Rhitu Kotoky
- Department of Microbiology, Assam University, Silchar, 788011, India
| | - Jina Rajkumari
- Department of Microbiology, Assam University, Silchar, 788011, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, 788011, India.
| |
Collapse
|
28
|
Singleton DR, Lee J, Dickey AN, Stroud A, Scholl EH, Wright FA, Aitken MD. Polyphasic characterization of four soil-derived phenanthrene-degrading Acidovorax strains and proposal of Acidovorax carolinensis sp. nov. Syst Appl Microbiol 2018; 41:460-472. [PMID: 29937052 DOI: 10.1016/j.syapm.2018.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
Abstract
Four bacterial strains identified as members of the Acidovorax genus were isolated from two geographically distinct but similarly contaminated soils in North Carolina, USA, characterized, and their genomes sequenced. Their 16S rRNA genes were highly similar to those previously recovered during stable-isotope probing (SIP) of one of the soils with the polycyclic aromatic hydrocarbon (PAH) phenanthrene. Heterotrophic growth of all strains occurred with a number of organic acids, as well as phenanthrene, but no other tested PAHs. Optimal growth occurred aerobically under mesophilic temperature, neutral pH, and low salinity conditions. Predominant fatty acids were C16:1ω7c/C16:1ω6c, C16:0, and C18:1ω7c, and were consistent with the genus. Genomic G+C contents ranged from 63.6 to 64.2%. A combination of whole genome comparisons and physiological analyses indicated that these four strains likely represent a single species within the Acidovorax genus. Chromosomal genes for phenanthrene degradation to phthalate were nearly identical to highly conserved regions in phenanthrene-degrading Delftia, Burkholderia, Alcaligenes, and Massilia species in regions flanked by transposable or extrachromosomal elements. The lower degradation pathway for phenanthrene metabolism was inferred by comparisons to described genes and proteins. The novel species Acidovorax carolinensis sp. nov. is proposed, comprising the four strains described in this study with strain NA3T as the type strain (=LMG 30136, =DSM 105008).
Collapse
Affiliation(s)
- David R Singleton
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA.
| | - Janice Lee
- Department of Biology, University of North Carolina,Chapel Hill, NC, 27599-3280, USA
| | - Allison N Dickey
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Aaron Stroud
- Department of Biology, University of North Carolina,Chapel Hill, NC, 27599-3280, USA
| | - Elizabeth H Scholl
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Fred A Wright
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Michael D Aitken
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA
| |
Collapse
|
29
|
Li J, Luo C, Zhang D, Song M, Cai X, Jiang L, Zhang G. Autochthonous Bioaugmentation-Modified Bacterial Diversity of Phenanthrene Degraders in PAH-Contaminated Wastewater as Revealed by DNA-Stable Isotope Probing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2934-2944. [PMID: 29378393 DOI: 10.1021/acs.est.7b05646] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
To reveal the mechanisms of autochthonous bioaugmentation (ABA) in wastewater contaminated with polycyclic aromatic hydrocarbons (PAHs), DNA-stable-isotope-probing (SIP) was used in the present study with the addition of an autochthonous microorganism Acinetobacter tandoii LJ-5. We found LJ-5 inoculum produced a significant increase in phenanthrene (PHE) mineralization, but LJ-5 surprisingly did not participate in indigenous PHE degradation from the SIP results. The improvement of PHE biodegradation was not explained by the engagement of LJ-5 but attributed to the remarkably altered diversity of PHE degraders. Of the major PHE degraders present in ambient wastewater ( Rhodoplanes sp., Mycobacterium sp., Xanthomonadaceae sp. and Enterobacteriaceae sp.), only Mycobacterium sp. and Enterobacteriaceae sp. remained functional in the presence of strain LJ-5, but five new taxa Bacillus, Paenibacillus, Ammoniphilus, Sporosarcina, and Hyphomicrobium were favored. Rhodoplanes, Ammoniphilus, Sporosarcina, and Hyphomicrobium were directly linked to, for the first time, indigenous PHE biodegradation. Sequences of functional PAH-RHDα genes from heavy fractions further proved the change in PHE degraders by identifying distinct PAH-ring hydroxylating dioxygenases between ambient degradation and ABA. Our findings indicate a new mechanism of ABA, provide new insights into the diversity of PHE-degrading communities, and suggest ABA as a promising in situ bioremediation strategy for PAH-contaminated wastewater.
Collapse
Affiliation(s)
- Jibing Li
- Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Chunling Luo
- Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
- College of Natural Resources and Environment , South China Agricultural University , Guangzhou , 510642 , China
| | - Dayi Zhang
- School of Environment , Tsinghua University , Beijing 100084 , China
| | - Mengke Song
- College of Natural Resources and Environment , South China Agricultural University , Guangzhou , 510642 , China
| | - Xixi Cai
- College of Resources and Environment , Fujian Agriculture and Forestry University , Fuzhou , 350002 , China
| | - Longfei Jiang
- Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Gan Zhang
- Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| |
Collapse
|
30
|
Mamet SD, Ma B, Ulrich A, Schryer A, Siciliano SD. Who Is the Rock Miner and Who Is the Hunter? The Use of Heavy-Oxygen Labeled Phosphate (P 18O 4) to Differentiate between C and P Fluxes in a Benzene-Degrading Consortium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1773-1786. [PMID: 29378402 DOI: 10.1021/acs.est.7b05773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Phosphorus availability and cycling in microbial communities is a key determinant of bacterial activity. However, identifying organisms critical to P cycling in complex biodegrading consortia has proven elusive. Here we assess a new DNA stable isotope probing (SIP) technique using heavy oxygen-labeled phosphate (P18O4) and its effectiveness in pure cultures and a nitrate-reducing benzene-degrading consortium. First, we successfully labeled pure cultures of Gram-positive Micrococcus luteus and Gram-negative Bradyrhizobium elkanii and separated isotopically light and heavy DNA in pure cultures using centrifugal analyses. Second, using high-throughput amplicon sequencing of 16S rRNA genes to characterize active bacterial taxa (13C-labeled), we found taxa like Betaproteobacteria were key in denitrifying benzene degradation and that other degrading (nonhydrocarbon) inactive taxa (P18O4-labeled) like Staphylococcus and Corynebacterium may promote degradation through production of secondary metabolites (i.e., "helper" or "rock miner" bacteria). Overall, we successfully separated active and inactive taxa in contaminated soils, demonstrating the utility of P18O4-DNA SIP for identifying actively growing bacterial taxa. We also identified potential "miner" bacteria that choreograph hydrocarbon degradation by other microbes (i.e., the "hunters") without directly degrading contaminants themselves. Thus, while several taxa degrade benzene under denitrifying conditions, microbial benzene degradation may be enhanced by both direct degraders and miner bacteria.
Collapse
Affiliation(s)
- Steven D Mamet
- Department of Soil Science, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Bin Ma
- Department of Civil and Environmental Engineering, University of Alberta , Edmonton, Alberta T6G 1H9, Canada
| | - Ania Ulrich
- Department of Civil and Environmental Engineering, University of Alberta , Edmonton, Alberta T6G 1H9, Canada
| | - Aimée Schryer
- Department of Soil Science, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Steven D Siciliano
- Department of Soil Science, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5A8, Canada
| |
Collapse
|
31
|
Jiang B, Jin N, Xing Y, Su Y, Zhang D. Unraveling uncultivable pesticide degraders via stable isotope probing (SIP). Crit Rev Biotechnol 2018; 38:1025-1048. [DOI: 10.1080/07388551.2018.1427697] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, PR China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, PR China
| | - Naifu Jin
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, PR China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, PR China
| | - Yuping Su
- Environmental Science and Engineering College, Fujian Normal University, Fuzhou, PR China
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
- Environmental Science and Engineering College, Fujian Normal University, Fuzhou, PR China
- School of Environment, Tsinghua University, Beijing, PR China
| |
Collapse
|
32
|
Jiang L, Cheng Z, Zhang D, Song M, Wang Y, Luo C, Yin H, Li J, Zhang G. The influence of e-waste recycling on the molecular ecological network of soil microbial communities in Pakistan and China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:173-181. [PMID: 28800486 DOI: 10.1016/j.envpol.2017.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 06/07/2023]
Abstract
Primitive electronic waste (e-waste) recycling releases large amounts of organic pollutants and heavy metals into the environment. As crucial moderators of geochemical cycling processes and pollutant remediation, soil microbes may be affected by these contaminants. We collected soil samples heavily contaminated by e-waste recycling in China and Pakistan, and analyzed the indigenous microbial communities. The results of this work revealed that the microbial community composition and diversity, at both whole and core community levels, were affected significantly by polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs) and heavy metals (e.g., Cu, Zn, and Pb). The geographical distance showed limited impacts on microbial communities compared with geochemical factors. The constructed ecological network of soil microbial communities illustrated microbial co-occurrence, competition and antagonism across soils, revealing the response of microbes to soil properties and pollutants. Two of the three main modules constructed with core operational taxonomic units (OTUs) were sensitive to nutrition (total organic carbon and total nitrogen) and pollutants. Five key OTUs assigned to Acidobacteria, Proteobacteria, and Nitrospirae in ecological network were identified. This is the first study to report the effects of e-waste pollutants on soil microbial network, providing a deeper understanding of the ecological influence of crude e-waste recycling activities on soil ecological functions.
Collapse
Affiliation(s)
- Longfei Jiang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhineng Cheng
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YW, UK
| | - Mengke Song
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yujie Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chunling Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jun Li
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
33
|
Novel bacteria capable of degrading phenanthrene in activated sludge revealed by stable-isotope probing coupled with high-throughput sequencing. Biodegradation 2017; 28:423-436. [PMID: 28956196 DOI: 10.1007/s10532-017-9806-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022]
Abstract
The indigenous microorganisms responsible for degrading phenanthrene (PHE) in activated biosludge were identified using DNA-based stable isotope probing. Besides the well-known PHE degraders Burkholderia, Ralstonia, Sinobacteraceae and Arthrobacter, we for the first time linked the taxa Paraburkholderia and Kaistobacter with in situ PHE biodegradation. Analysis of PAH-RHDα gene detected in the heavy DNA fraction of 13C-PHE treatment suggested the mechanisms of horizontal gene transfer or inter-species hybridisation in PAH-RHD gene spread within the microbial community. Additionally, three cultivable PHE degraders, Microbacterium sp. PHE-1, Rhodanobacter sp. PHE-2 and Rhodococcus sp. PHE-3, were isolated from the same activated biosludge. Among them, Rhodanobacter sp. PHE-2 is the first identified strain in its genus with PHE-degrading ability. However, the involvement of these strains in PHE degradation in situ was questionable, due to their limited enrichment in the heavy DNA fraction of 13C-PHE treatment and lack of PAH-RHDα gene found in these isolates. Collectively, our findings provide a deeper understanding of the diversity and functions of indigenous microbes in PHE degradation.
Collapse
|
34
|
Vandermaesen J, Lievens B, Springael D. Isolation and identification of culturable bacteria, capable of heterotrophic growth, from rapid sand filters of drinking water treatment plants. Res Microbiol 2017; 168:594-607. [DOI: 10.1016/j.resmic.2017.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 03/08/2017] [Accepted: 03/29/2017] [Indexed: 10/19/2022]
|
35
|
Tian Z, Gold A, Nakamura J, Zhang Z, Vila J, Singleton DR, Collins LB, Aitken MD. Nontarget Analysis Reveals a Bacterial Metabolite of Pyrene Implicated in the Genotoxicity of Contaminated Soil after Bioremediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7091-7100. [PMID: 28510420 PMCID: PMC6309544 DOI: 10.1021/acs.est.7b01172] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Bioremediation is an accepted technology for cleanup of soil contaminated with polycyclic aromatic hydrocarbons (PAHs), but it can increase the genotoxicity of the soil despite removal of the regulated PAHs. Although polar biotransformation products have been implicated as causative genotoxic agents, no specific product has been identified. We pursued a nontarget analytical approach combining effect-directed analysis (EDA) and metabolite profiling to compare extracts of PAH-contaminated soil from a former manufactured-gas plant site before and after treatment in a laboratory-scale aerobic bioreactor. A compound with the composition C15H8O2 and four methylated homologues were shown to accumulate as a result of bioreactor treatment, and the C15H8O2 compound purified from soil extracts was determined to be genotoxic. Its structure was established by nuclear magnetic resonance and mass spectroscopy as a heretofore unidentified α,β-unsaturated lactone derived from dioxygenation of pyrene at an apical ring, 2H-naphtho[2,1,8-def]chromen-2-one (NCO), which was confirmed by synthesis. The concentration of NCO in the bioreactor was 11 μg g-1 dry soil, corresponding to 13% of the pyrene removed. It also accumulated in aerobically incubated soil from two additional PAH-contaminated sites and was formed from pyrene by two pyrene-degrading bacterial cultures known to be geographically widespread, underscoring its potential environmental significance.
Collapse
|
36
|
Duarte M, Nielsen A, Camarinha-Silva A, Vilchez-Vargas R, Bruls T, Wos-Oxley ML, Jauregui R, Pieper DH. Functional soil metagenomics: elucidation of polycyclic aromatic hydrocarbon degradation potential following 12 years of in situ bioremediation. Environ Microbiol 2017; 19:2992-3011. [PMID: 28401633 DOI: 10.1111/1462-2920.13756] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 03/29/2017] [Accepted: 04/06/2017] [Indexed: 11/27/2022]
Abstract
A culture-independent function-based screening approach was used to assess the microbial aerobic catabolome for polycyclic aromatic hydrocarbons degradation of a soil subjected to 12 years of in situ bioremediation. A total of 422 750 fosmid clones were screened for key aromatic ring-cleavage activities using 2,3-dihydroxybiphenyl as substrate. Most of the genes encoding ring-cleavage enzymes on the 768 retrieved positive fosmids could not be identified using primer-based approaches and, thus, 205 fosmid inserts were sequenced. Nearly two hundred extradiol dioxygenase encoding genes of three different superfamilies could be identified. Additional key genes of aromatic metabolic pathways were identified, including a high abundance of Rieske non-heme iron oxygenases that provided detailed information on enzymes activating aromatic compounds and enzymes involved in activation of the side chain of methylsubstituted aromatics. The gained insights indicated a complex microbial network acting at the site under study, which comprises organisms similar to recently identified Immundisolibacter cernigliae TR3.2 and Rugosibacter aromaticivorans Ca6 and underlined the great potential of an approach that combines an activity-screening, a cost-effective high-throughput sequencing of fosmid clones and a phylogenomic-routed and manually curated database to carefully identify key proteins dedicated to aerobic degradation of aromatic compounds.
Collapse
Affiliation(s)
- Márcia Duarte
- Microbial Interactions and Processes Research Group, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig, D-38124, Germany
| | - Agnes Nielsen
- Microbial Interactions and Processes Research Group, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig, D-38124, Germany
| | - Amélia Camarinha-Silva
- Microbial Interactions and Processes Research Group, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig, D-38124, Germany
| | - Ramiro Vilchez-Vargas
- Microbial Interactions and Processes Research Group, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig, D-38124, Germany.,Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University, Magdeburg, Germany
| | - Thomas Bruls
- Institut de Génomique, Genoscope, UMR8030 (CNRS, CEA, Université d'Evry), Evry, France
| | - Melissa L Wos-Oxley
- Microbial Interactions and Processes Research Group, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig, D-38124, Germany
| | - Ruy Jauregui
- Microbial Interactions and Processes Research Group, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig, D-38124, Germany.,AgResearch Grasslands, Tennent drive, Palmerston North, New Zealand
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig, D-38124, Germany
| |
Collapse
|
37
|
Corteselli EM, Aitken MD, Singleton DR. Description of Immundisolibacter cernigliae gen. nov., sp. nov., a high-molecular-weight polycyclic aromatic hydrocarbon-degrading bacterium within the class Gammaproteobacteria, and proposal of Immundisolibacterales ord. nov. and Immundisolibacteraceae fam. nov. Int J Syst Evol Microbiol 2017; 67:925-931. [PMID: 27926817 DOI: 10.1099/ijsem.0.001714] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacterial strain TR3.2T was isolated from aerobic bioreactor-treated soil from a polycyclic aromatic hydrocarbon (PAH)-contaminated site in Salisbury, NC, USA. Strain TR3.2T was identified as a member of 'Pyrene Group 2' or 'PG2', a previously uncultivated cluster of organisms associated with the degradation of high-molecular-weight PAHs by stable-isotope probing. Based on its 16S rRNA gene sequence, the strain was classified as a member of the class Gammaproteobacteria but possessed only 90.5 % gene identity to its closest described relative, Methylococcus capsulatus strain Bath. Strain TR3.2T grew on the PAHs pyrene, phenanthrene, anthracene, benz[a]anthracene and fluorene, as well as the azaarene carbazole, and could additionally metabolize a limited number of organic acids. Optimal growth occurred aerobically under mesophilic temperature, neutral pH and low salinity conditions. Strain TR3.2T was catalase and oxidase positive. Predominant fatty acids were C17 : 0 cyclo and C16 : 0. Genomic G+C content of the single chromosome was 67.79 mol% as determined by complete genome sequencing. Due to the high sequence divergence from any cultivated species and its unique physiological properties compared to its closest relatives, strain TR3.2T is proposed as a representative of a novel order, family, genus and species within the class Gammaproteobacteria, for which the name Immundisolibacter cernigliae gen. nov., sp. nov. is proposed. The associated order and family are therefore proposed as Immundisolibacteralesord. nov. and Immundisolibacteraceaefam. nov. The type strain of the species is TR3.2T (=ATCC TSD-58T=DSM 103040T).
Collapse
Affiliation(s)
- Elizabeth M Corteselli
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA
| | - Michael D Aitken
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA
| | - David R Singleton
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA
| |
Collapse
|
38
|
Han X, Hu H, Shi X, Zhang L, He J. Effects of different agricultural wastes on the dissipation of PAHs and the PAH-degrading genes in a PAH-contaminated soil. CHEMOSPHERE 2017; 172:286-293. [PMID: 28086156 DOI: 10.1016/j.chemosphere.2017.01.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 12/05/2016] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
Land application of agricultural wastes is considered as a promising bioremediation approach for cleaning up soils contaminated by aged polycyclic aromatic hydrocarbons (PAHs). However, it remains largely unknown about how microbial PAH-degraders, which play a key role in the biodegradation of soil PAHs, respond to the amendments of agricultural wastes. Here, a 90-day soil microcosm study was conducted to compare the effects of three agricultural wastes (i.e. WS, wheat stalk; MCSW, mushroom cultivation substrate waste; and CM, cow manure) on the dissipation of aged PAHs and the abundance and community structure of PAH-degrading microorganisms. The results showed that all the three agricultural wastes accelerated the dissipation of aged PAHs and significantly increased abundances of the bacterial 16S rRNA and PAH-degrading genes (i.e. pdo1 and nah). CM and MCSW with lower ratios of C:N eliminated soil PAHs more efficiently than WS with a high ratio of C:N. Low molecular weight PAHs were dissipated more quickly than those with high molecular weight. Phylogenetic analysis revealed that all of the nah and C12O clones were affiliated within Betaproteobacteria and Gammaproteobacteria, and application of agricultural wastes significantly changed the community structure of the microorganisms harboring nah and C12O genes, particularly in the CM treatment. Taken together, our findings suggest that the three tested agricultural wastes could accelerate the degradation of aged PAHs most likely through changing the abundances and community structure of microbial PAH degraders.
Collapse
Affiliation(s)
- Xuemei Han
- School of Resources and Environment, University of Jinan, Jinan, 250100, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hangwei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, 3010, Victoria, Australia.
| | - Xiuzhen Shi
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Limei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jizheng He
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, 3010, Victoria, Australia.
| |
Collapse
|
39
|
Li J, Luo C, Song M, Dai Q, Jiang L, Zhang D, Zhang G. Biodegradation of Phenanthrene in Polycyclic Aromatic Hydrocarbon-Contaminated Wastewater Revealed by Coupling Cultivation-Dependent and -Independent Approaches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3391-3401. [PMID: 28181806 DOI: 10.1021/acs.est.6b04366] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The indigenous microorganisms responsible for degrading phenanthrene (PHE) in polycyclic aromatic hydrocarbons (PAHs)-contaminated wastewater were identified by DNA-based stable isotope probing (DNA-SIP). In addition to the well-known PHE degraders Acinetobacter and Sphingobium, Kouleothrix and Sandaracinobacter were found, for the first time, to be directly responsible for indigenous PHE biodegradation. Additionally, a novel PHE degrader, Acinetobacter tandoii sp. LJ-5, was identified by DNA-SIP and direct cultivation. This is the first report and reference to A. tandoii involved in the bioremediation of PAHs-contaminated water. A PAH-RHDα gene involved in PHE metabolism was detected in the heavy fraction of 13C treatment, but the amplification of PAH-RHDα gene failed in A. tandoii LJ-5. Instead, the strain contained catechol 1,2-dioxygenase and the alpha/beta subunits of protocatechuate 3,4-dioxygenase, indicating use of the β-ketoadipate pathway to degrade PHE and related aromatic compounds. These findings add to our current knowledge on microorganisms degrading PHE by combining cultivation-dependent and cultivation-independent approaches and provide deeper insight into the diversity of indigenous PHE-degrading communities.
Collapse
Affiliation(s)
- Jibing Li
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
- University of Chinese Academy of Sciences , Beijing, 100039, China
| | - Chunling Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
| | - Mengke Song
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
| | - Qing Dai
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
- University of Chinese Academy of Sciences , Beijing, 100039, China
| | - Longfei Jiang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University , Lancaster, LA1 4YQ, United Kingdom
| | - Gan Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
| |
Collapse
|
40
|
Thijs S, Sillen W, Weyens N, Vangronsveld J. Phytoremediation: State-of-the-art and a key role for the plant microbiome in future trends and research prospects. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:23-38. [PMID: 27484694 DOI: 10.1080/15226514.2016.1216076] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Phytoremediation is increasingly adopted as a more sustainable approach for soil remediation. However, significant advances in efficiency are still necessary to attain higher levels of environmental and economic sustainability. Current interventions do not always give the expected outcomes in field settings due to an incomplete understanding of the multicomponent biological interactions. New advances in -omics are gradually implemented for studying microbial communities of polluted land in situ. This opens new perspectives for the discovery of biodegradative strains and provides us new ways of interfering with microbial communities to enhance bioremediation rates. This review presents retrospectives and future perspectives for plant microbiome studies relevant to phytoremediation, as well as some knowledge gaps in this promising research field. The implementation of phytoremediation in soil clean-up management systems is discussed, and an overview of the promoting factors that determine the growth of the phytoremediation market is given. Continuous growth is expected since elimination of contaminants from the environment is demanded. The evolution of scientific thought from a reductionist view to a more holistic approach will boost phytoremediation as an efficient and reliable phytotechnology. It is anticipated that phytoremediation will prove the most promising for organic contaminant degradation and bioenergy crop production on marginal land.
Collapse
Affiliation(s)
- Sofie Thijs
- a Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | - Wouter Sillen
- a Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | - Nele Weyens
- a Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | - Jaco Vangronsveld
- a Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| |
Collapse
|
41
|
Jin J, Yao J, Zhang Q, Liu J. Biodegradation of pyrene by pseudomonas sp. JPN2 and its initial degrading mechanism study by combining the catabolic nahAc gene and structure-based analyses. CHEMOSPHERE 2016; 164:379-386. [PMID: 27596825 DOI: 10.1016/j.chemosphere.2016.08.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 05/02/2023]
Abstract
In this study, a pyrene-degrading bacterial strain Pseudomonas sp. JPN2 was isolated from crude oil in Dagang Oilfield, China. The degrading percent of the strain JPN2 to pyrene was increased with the extension of culture time and achieved a maximum of 82.88% after 25 d culture. Meanwhile, four metabolites 4,5-dihydroxy-4,5-dihydropyrene, 4-phenanthrol, 1-hydroxy-2-naphthoic acid and phthalate were detected in the culture solution by GC-MS analysis. In addition, DNA fragments of nahAc gene, encoding α subunit of naphthalene dioxygenase, were amplified by PCR program and sequenced. As a result, it was presumed that the initial cleavage of the aromatic rings on pyrene was occurred at C4 and C5 positions and formed the intermediate 4,5-dihydroxy-4,5-dihydropyrene. This issue had been verified by the interaction analysis between pyrene and the active site of naphthalene dioxygenase in the strain JPN2 by molecular docking. Meanwhile, the differences of the amino acid residues in the active sites of template and target enzymes may be a factor leading to the different biological activity between the strain JPN2 and the other bacteria from the genus Pseudomonas. Additionally, the microcalorimetry analysis displayed that the strain JPN2 had high tolerance for pyrene, and the effect could be negligible under the experimental concentration (100 mg L-1). Consequently, the strain JPN2 was considered as an excellent candidate for the further bioremediation study of pyrene and the other aromatic contaminants.
Collapse
Affiliation(s)
- Jingnan Jin
- School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Yao
- School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; State Key Laboratory of Biogeology and Environmental Geology of Chinese Ministry of Education, and Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geoscience, Wuhan 430074, China.
| | - Qingye Zhang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianli Liu
- School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
42
|
Complete Genome Sequence of a Bacterium Representing a Deep Uncultivated Lineage within the Gammaproteobacteria Associated with the Degradation of Polycyclic Aromatic Hydrocarbons. GENOME ANNOUNCEMENTS 2016; 4:4/5/e01086-16. [PMID: 27795254 PMCID: PMC5054325 DOI: 10.1128/genomea.01086-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The bacterial strain TR3.2, representing a novel deeply branching lineage within the Gammaproteobacteria, was isolated and its genome sequenced. This isolate is the first cultivated representative of the previously described “Pyrene Group 2” (PG2) and represents a variety of environmental sequences primarily associated with petrochemical contamination and aromatic hydrocarbon degradation.
Collapse
|
43
|
Surfactant-induced bacterial community changes correlated with increased polycyclic aromatic hydrocarbon degradation in contaminated soil. Appl Microbiol Biotechnol 2016; 100:10165-10177. [PMID: 27695967 DOI: 10.1007/s00253-016-7867-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/06/2016] [Accepted: 09/16/2016] [Indexed: 10/20/2022]
Abstract
Bioremediation as a method for removing polycyclic aromatic hydrocarbons (PAHs) from contaminated environments has been criticized for poor removal of potentially carcinogenic but less bioavailable high molecular weight (HMW) compounds. As a partial remedy to this constraint, we studied surfactant addition at sub-micellar concentrations to contaminated soil to enhance the biodegradation of PAHs remaining after conventional aerobic bioremediation. We demonstrated increased removal of four- and five-ring PAHs using two nonionic surfactants, polyoxyethylene(4)lauryl ether (Brij 30) and polyoxyethylene sorbitol hexaoleate (POESH), and analyzed bacterial community shifts associated with those conditions. Eight groups of abundant bacteria were implicated as potentially being involved in increased HMW PAH removal. A group of unclassified Alphaproteobacteria and members of the Phenylobacterium genus in particular showed significantly increased relative abundance in the two conditions exhibiting increased PAH removal. Other implicated groups included members of the Sediminibacterium, Terrimonas, Acidovorax, and Luteimonas genera, as well as uncharacterized organisms within the families Chitinophagaceae and Bradyrhizobiaceae. Targeted isolation identified a subset of the community likely using the surfactants as a growth substrate, but few of the isolates exhibited PAH-degradation capability. Isolates recovered from the Acidovorax and uncharacterized Bradyrhizobiaceae groups suggest the abundance of those groups may have been attributable to growth on surfactants. Understanding the specific bacteria responsible for HMW PAH removal in natural and engineered systems and their response to stimuli such as surfactant amendment may improve bioremediation efficacy during treatment of contaminated environmental media.
Collapse
|
44
|
Leewis MC, Uhlik O, Fraraccio S, McFarlin K, Kottara A, Glover C, Macek T, Leigh MB. Differential Impacts of Willow and Mineral Fertilizer on Bacterial Communities and Biodegradation in Diesel Fuel Oil-Contaminated Soil. Front Microbiol 2016; 7:837. [PMID: 27313574 PMCID: PMC4889597 DOI: 10.3389/fmicb.2016.00837] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 05/18/2016] [Indexed: 01/12/2023] Open
Abstract
Despite decades of research there is limited understanding of how vegetation impacts the ability of microbial communities to process organic contaminants in soil. Using a combination of traditional and molecular assays, we examined how phytoremediation with willow and/or fertilization affected the microbial community present and active in the transformation of diesel contaminants. In a pot study, willow had a significant role in structuring the total bacterial community and resulted in significant decreases in diesel range organics (DRO). However, stable isotope probing (SIP) indicated that fertilizer drove the differences seen in community structure and function. Finally, analysis of the total variance in both pot and SIP experiments indicated an interactive effect between willow and fertilizer on the bacterial communities. This study clearly demonstrates that a willow native to Alaska accelerates DRO degradation, and together with fertilizer, increases aromatic degradation by shifting microbial community structure and the identity of active naphthalene degraders.
Collapse
Affiliation(s)
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Czech Republic
| | - Serena Fraraccio
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Czech Republic
| | - Kelly McFarlin
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks AK, USA
| | - Anastasia Kottara
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Czech Republic
| | - Catherine Glover
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks AK, USA
| | - Tomas Macek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Czech Republic
| | - Mary Beth Leigh
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks AK, USA
| |
Collapse
|
45
|
Song M, Jiang L, Zhang D, Luo C, Wang Y, Yu Z, Yin H, Zhang G. Bacteria capable of degrading anthracene, phenanthrene, and fluoranthene as revealed by DNA based stable-isotope probing in a forest soil. JOURNAL OF HAZARDOUS MATERIALS 2016; 308:50-57. [PMID: 26808242 DOI: 10.1016/j.jhazmat.2016.01.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/30/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
Information on microorganisms possessing the ability to metabolize different polycyclic aromatic hydrocarbons (PAHs) in complex environments helps in understanding PAHs behavior in natural environment and developing bioremediation strategies. In the present study, stable-isotope probing (SIP) was applied to investigate degraders of PAHs in a forest soil with the addition of individually (13)C-labeled phenanthrene, anthracene, and fluoranthene. Three distinct phylotypes were identified as the active phenanthrene-, anthracene- and fluoranthene-degrading bacteria. The putative phenanthrene degraders were classified as belonging to the genus Sphingomona. For anthracene, bacteria of the genus Rhodanobacter were the putative degraders, and in the microcosm amended with fluoranthene, the putative degraders were identified as belonging to the phylum Acidobacteria. Our results from DNA-SIP are the first to directly link Rhodanobacter- and Acidobacteria-related bacteria with anthracene and fluoranthene degradation, respectively. The results also illustrate the specificity and diversity of three- and four-ring PAHs degraders in forest soil, contributes to our understanding on natural PAHs biodegradation processes, and also proves the feasibility and practicality of DNA-based SIP for linking functions with identity especially uncultured microorganisms in complex microbial biota.
Collapse
Affiliation(s)
- Mengke Song
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Longfei Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Chunling Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Yu
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Hua Yin
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Gan Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
46
|
Cupples AM. Contaminant-Degrading Microorganisms Identified Using Stable Isotope Probing. Chem Eng Technol 2016. [DOI: 10.1002/ceat.201500479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Kaci A, Petit F, Fournier M, Cécillon S, Boust D, Lesueur P, Berthe T. Diversity of active microbial communities subjected to long-term exposure to chemical contaminants along a 40-year-old sediment core. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:4095-4110. [PMID: 25934230 DOI: 10.1007/s11356-015-4506-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/06/2015] [Indexed: 06/04/2023]
Abstract
In estuarine ecosystems, metallic and organic contaminants are mainly associated with fine grain sediments which settle on mudflats. Over time, the layers of sediment accumulate and are then transformed by diagenetic processes mainly controlled by microbial activity, recording the history of the estuary's chemical contamination. In an environment of this specific type, we investigated the evolution of the chemical contamination and the structure of both total and active microbial communities, based on PhyloChip analysis of a 4.6-m core corresponding to a 40-year sedimentary record. While the archaeal abundance remained constant along the core, a decrease by one order of magnitude in the bacterial abundance was observed with depth. Both total and active microbial communities were dominated by Proteobacteria, Actinobacteria, and Firmicutes in all sediment samples. Among Proteobacteria, alpha-Proteobacteria dominated both total (from 37 to 60 %) and metabolically active (from 19.7 to 34.6 %) communities, including the Rhizobiales, Rhodobacter, Caulobacterales, and Sphingomonadales orders. Co-inertia analysis revealed a relationship between polycyclic aromatic hydrocarbons, zinc and some polychlorobiphenyls concentrations, and the structure of total and active microbial communities in the oldest and most contaminated sediments (from 1970 to 1975), suggesting that long-term exposure to chemicals shaped the structure of the microbial community.
Collapse
Affiliation(s)
- Assia Kaci
- Normandie Université, UR, UMR CNRS 6143 M2C, FED 4116, 76821, Mont Saint Aignan, France
| | - Fabienne Petit
- Normandie Université, UR, UMR CNRS 6143 M2C, FED 4116, 76821, Mont Saint Aignan, France
| | - Matthieu Fournier
- Normandie Université, UR, UMR CNRS 6143 M2C, FED 4116, 76821, Mont Saint Aignan, France
| | - Sébastien Cécillon
- Environmental Microbial Genomics Group, Ecole Centrale de Lyon, Laboratoire Ampère UMR5005 CNRS, Ecully, France
| | - Dominique Boust
- IRSN, Laboratoire de Radioécologie de Cherbourg-Octeville (LRC), 50130, Cherbourg-Octeville, France
| | - Patrick Lesueur
- Normandie Université, UR, UMR CNRS 6143 M2C, FED 4116, 76821, Mont Saint Aignan, France
| | - Thierry Berthe
- Normandie Université, UR, UMR CNRS 6143 M2C, FED 4116, 76821, Mont Saint Aignan, France.
| |
Collapse
|
48
|
Kästner M, Miltner A. Application of compost for effective bioremediation of organic contaminants and pollutants in soil. Appl Microbiol Biotechnol 2016; 100:3433-49. [PMID: 26921182 DOI: 10.1007/s00253-016-7378-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 01/27/2023]
Abstract
Soils contaminated with hazardous chemicals worldwide are awaiting remediation activities; bioremediation is often considered as a cost-effective remediation approach. Potential bioapproaches are biostimulation, e.g. by addition of nutrients, fertiliser and organic substrates, and bioaugmentation by addition of compound-degrading microbes or of organic amendments containing active microorganisms, e.g. activated sludge or compost. In most contaminated soils, the abundance of the intrinsic metabolic potential is too low to be improved by biostimulation alone, since the physical and chemical conditions in these soils are not conducive to biodegradation. In the last few decades, compost or farmyard manure addition as well as composting with various organic supplements have been found to be very efficient for soil bioremediation. In the present minireview, we provide an overview of the composting and compost addition approaches as 'stimulants' of natural attenuation. Laboratory degradation experiments are often biased either by not considering the abiotic factors or by focusing solely on the elimination of the chemicals without taking the biotic factors and processes into account. Therefore, we first systemise the concepts of composting and compost addition, then summarise the relevant physical, chemical and biotic factors and mechanisms for improved contaminant degradation triggered by compost addition. These factors and mechanisms are of particular interest, since they are more relevant and easier to determine than the composition of the degrading community, which is also addressed in this review. Due to the mostly empirical knowledge and the nonstandardised biowaste or compost materials, the field use of these approaches is highly challenging, but also promising. Based on the huge metabolic diversity of microorganisms developing during the composting processes, a highly complex metabolic diversity is established as a 'metabolic memory' within developing and mature compost materials. Compost addition can thus be considered as a 'super-bioaugmentation' with a complex natural mixture of degrading microorganisms, combined with a 'biostimulation' by nutrient containing readily to hardly degradable organic substrates. It also improves the abiotic soil conditions, thus enhancing microbial activity in general. Finally, this minireview also aims at guiding potential users towards full exploitation of the potentials of this approach.
Collapse
Affiliation(s)
- Matthias Kästner
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
| | - Anja Miltner
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| |
Collapse
|
49
|
Thomas F, Cébron A. Short-Term Rhizosphere Effect on Available Carbon Sources, Phenanthrene Degradation, and Active Microbiome in an Aged-Contaminated Industrial Soil. Front Microbiol 2016; 7:92. [PMID: 26903971 PMCID: PMC4742875 DOI: 10.3389/fmicb.2016.00092] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/18/2016] [Indexed: 11/13/2022] Open
Abstract
Over the last decades, understanding of the effects of plants on soil microbiomes has greatly advanced. However, knowledge on the assembly of rhizospheric communities in aged-contaminated industrial soils is still limited, especially with regard to transcriptionally active microbiomes and their link to the quality or quantity of carbon sources. We compared the short-term (2-10 days) dynamics of bacterial communities and potential PAH-degrading bacteria in bare or ryegrass-planted aged-contaminated soil spiked with phenanthrene, put in relation with dissolved organic carbon (DOC) sources and polycyclic aromatic hydrocarbon (PAH) pollution. Both resident and active bacterial communities (analyzed from DNA and RNA, respectively) showed higher species richness and smaller dispersion between replicates in planted soils. Root development strongly favored the activity of Pseudomonadales within the first 2 days, and of members of Actinobacteria, Caulobacterales, Rhizobiales, and Xanthomonadales within 6-10 days. Plants slowed down the dissipation of phenanthrene, while root exudation provided a cocktail of labile substrates that might preferentially fuel microbial growth. Although the abundance of PAH-degrading genes increased in planted soil, their transcription level stayed similar to bare soil. In addition, network analysis revealed that plants induced an early shift in the identity of potential phenanthrene degraders, which might influence PAH dissipation on the long-term.
Collapse
Affiliation(s)
- François Thomas
- CNRS, LIEC UMR7360, Faculté des Sciences et TechnologiesVandoeuvre-lés-Nancy, France; Université de Lorraine, LIEC UMR7360, Faculté des Sciences et TechnologiesVandoeuvre-lés-Nancy, France
| | - Aurélie Cébron
- CNRS, LIEC UMR7360, Faculté des Sciences et TechnologiesVandoeuvre-lés-Nancy, France; Université de Lorraine, LIEC UMR7360, Faculté des Sciences et TechnologiesVandoeuvre-lés-Nancy, France
| |
Collapse
|
50
|
Tauler M, Vila J, Nieto JM, Grifoll M. Key high molecular weight PAH-degrading bacteria in a soil consortium enriched using a sand-in-liquid microcosm system. Appl Microbiol Biotechnol 2015; 100:3321-36. [DOI: 10.1007/s00253-015-7195-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/19/2015] [Accepted: 11/22/2015] [Indexed: 12/31/2022]
|