1
|
Pellegrini JM, González-Espinoza G, Shayan RR, Hysenaj L, Rouma T, Arce-Gorvel V, Lelouard H, Popoff D, Zhao Y, Hanniffy S, Castillo-Zeledón A, Loperena-Barber M, Celis-Gutierrez J, Mionnet C, Bosilkovski M, Solera J, Muraille E, Barquero-Calvo E, Moreno E, Conde-Álvarez R, Moriyón I, Gorvel JP, Mémet S. Brucella abortus impairs T lymphocyte responsiveness by mobilizing IL-1RA-secreting omental neutrophils. Nat Commun 2025; 16:862. [PMID: 39833171 PMCID: PMC11747348 DOI: 10.1038/s41467-024-55799-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/30/2024] [Indexed: 01/22/2025] Open
Abstract
Immune evasion strategies of Brucella, the etiologic agent of brucellosis, a global zoonosis, remain partially understood. The omentum, a tertiary lymphoid organ part of visceral adipose tissue, has never been explored as a Brucella reservoir. We report that B. abortus infects and replicates within murine omental macrophages. Throughout the chronic phase of infection, the omentum accumulates macrophages, monocytes and neutrophils. The maintenance of PD-L1+Sca-1+ macrophages, monocytes and neutrophils in the omentum depends on the wadC-encoded determinant of Brucella LPS. We demonstrate that PD-L1+Sca-1+ murine omental neutrophils produce high levels of IL-1RA leading to T cell hyporesponsiveness. These findings corroborate brucellosis patient analysis of whole blood displaying upregulation of PDL1 and Ly6E genes, and of serum exhibiting high levels of IL-1RA. Overall, the omentum, a reservoir for B. abortus, promotes bacterial persistence and causes CD4+ and CD8+ T cell immunosuppression by IL-1RA secreted by PD-L1+Sca-1+ neutrophils.
Collapse
Affiliation(s)
| | | | | | - Lisiena Hysenaj
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Thomas Rouma
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d'Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
- Laboratoire de de Parasitologie, and ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
| | | | - Hugues Lelouard
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Dimitri Popoff
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Yun Zhao
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Sean Hanniffy
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Amanda Castillo-Zeledón
- Universidad Nacional, Pathology Department, Escuela de Medicina Veterinaria, Heredia, Costa Rica
| | - Maite Loperena-Barber
- Universidad de Navarra, Instituto de Salud Tropical e Departamento de Microbiología y Parasitología, Pamplona, Spain
| | | | - Cyrille Mionnet
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Mile Bosilkovski
- University Clinic for Infectious Diseases and Febrile Conditions, Skopje, Republic of North Macedonia
| | - Javier Solera
- Hospital General Universitario, Facultad de Medicina, Universidad Castilla la Mancha Albacete, Albacete, Spain
| | - Eric Muraille
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d'Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
- Laboratoire de de Parasitologie, and ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Elías Barquero-Calvo
- Universidad Nacional, Pathology Department, Escuela de Medicina Veterinaria, Heredia, Costa Rica
| | - Edgardo Moreno
- Universidad Nacional, Pathology Department, Escuela de Medicina Veterinaria, Heredia, Costa Rica
| | - Raquel Conde-Álvarez
- Universidad de Navarra, Instituto de Salud Tropical e Departamento de Microbiología y Parasitología, Pamplona, Spain
| | - Ignacio Moriyón
- Universidad de Navarra, Instituto de Salud Tropical e Departamento de Microbiología y Parasitología, Pamplona, Spain
| | | | - Sylvie Mémet
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France.
| |
Collapse
|
2
|
Qin Y, Zhou G, Jiao F, Cheng C, Meng C, Wang L, Wu S, Fan C, Li J, Zhou B, Chu Y, Jiao H. Brucella mediates autophagy, inflammation, and apoptosis to escape host killing. Front Cell Infect Microbiol 2024; 14:1408407. [PMID: 39507949 PMCID: PMC11537862 DOI: 10.3389/fcimb.2024.1408407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/26/2024] [Indexed: 11/08/2024] Open
Abstract
Brucellosis is a serious zoonosis caused by Brucella spp. infection, which not only seriously jeopardizes the health of humans and mammals, but also causes huge economic losses to the livestock industry. Brucella is a Gram-negative intracellular bacterium that relies primarily on its virulence factors and a variety of evolved survival strategies to replicate and proliferate within cells. Currently, the mechanisms of autophagy, inflammation, and apoptosis in Brucella-infected hosts are not fully understood and require further research and discussion. This review focuses on the relationship between Brucella and autophagy, inflammation, and apoptosis to provide the scientific basis for revealing the pathogenesis of Brucella.
Collapse
Affiliation(s)
- Yaqiong Qin
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Gengxu Zhou
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Fengyuan Jiao
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Chuan Cheng
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Chi Meng
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Lingjie Wang
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Shengping Wu
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Cailiang Fan
- The College of Veterinary Medicine, Southwest University, Chongqing, China
- Animal Epidemic Prevention and Control Center of Rongchang, Chongqing, China
| | - Jixiang Li
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Bo Zhou
- Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Hanwei Jiao
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Loperena-Barber M, Elizalde-Bielsa A, Salvador-Bescós M, Ruiz-Rodríguez P, Pellegrini JM, Renau-Mínguez C, Lancaster R, Zúñiga-Ripa A, Iriarte M, Bengoechea JA, Coscollá M, Gorvel JP, Moriyón I, Conde-Álvarez R. "Phylogenomic insights into brucellaceae: The Pseudochrobactrum algeriensis case". INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105625. [PMID: 38906517 DOI: 10.1016/j.meegid.2024.105625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
The genus Pseudochrobactrum encompasses free-living bacteria phylogenetically close to Ochrobactrum opportunistic pathogens and to Brucella, facultative intracellular parasites causing brucellosis, a worldwide-extended and grave zoonosis. Recently, Pseudochrobactrum strains were isolated from Brucella natural hosts on Brucella selective media, potentially causing diagnostic confusions. Strikingly, P. algeriensis was isolated from cattle lymph nodes, organs that are inimical to bacteria. Here, we analyse P. algeriensis potential virulence factors in comparison with Ochrobactrum and Brucella. Consistent with genomic analyses, Western-Blot analyses confirmed that P. algeriensis lacks the ability to synthesize the N-formylperosamine O-polysaccharide characteristic of the lipopolysaccharide (LPS) of smooth Brucella core species. However, unlike other Pseudochrobactrum but similar to some early diverging brucellae, P. algeriensis carries genes potentially synthetizing a rhamnose-based O-polysaccharide LPS. Lipid A analysis by MALDI-TOF demonstrated that P. algeriensis LPS bears a lipid A with a reduced pathogen-associated molecular pattern, a trait shared with Ochrobactrum and Brucella that is essential to generate a highly stable outer membrane and to delay immune activation. Also, although not able to multiply intracellularly in macrophages, the analysis of P. algeriensis cell lipid envelope revealed the presence of large amounts of cationic aminolipids, which may account for the extremely high resistance of P. algeriensis to bactericidal peptides and could favor colonization of mucosae and transient survival in Brucella hosts. However, two traits critical in Brucella pathogenicity are either significantly different (T4SS [VirB]) or absent (erythritol catabolic pathway) in P. algeriensis. This work shows that, while diverging in other characteristics, lipidic envelope features relevant in Brucella pathogenicity are conserved in Brucellaceae. The constant presence of these features strongly suggests that reinforcement of the envelope integrity as an adaptive advantage in soil was maintained in Brucella because of the similarity of some environmental challenges, such as the action of cationic peptide antibiotics and host defense peptides. This information adds knowledge about the evolution of Brucellaceae, and also underlines the taxonomical differences of the three genera compared.
Collapse
Affiliation(s)
- Maite Loperena-Barber
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Aitor Elizalde-Bielsa
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Miriam Salvador-Bescós
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Paula Ruiz-Rodríguez
- Institute for Integrative Systems Biology, Universidad de Valencia-CSIC, Valencia, Spain
| | | | - Chantal Renau-Mínguez
- Institute for Integrative Systems Biology, Universidad de Valencia-CSIC, Valencia, Spain
| | - Rebecca Lancaster
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Amaia Zúñiga-Ripa
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Maite Iriarte
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Jose A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Mireia Coscollá
- Institute for Integrative Systems Biology, Universidad de Valencia-CSIC, Valencia, Spain
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy, CNRS, INSERM, Aix-Marseille University, Marseille, France
| | - Ignacio Moriyón
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Raquel Conde-Álvarez
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
4
|
Carvalho TP, Toledo FAO, Bautista DFA, Silva MF, Oliveira JBS, Lima PA, Costa FB, Ribeiro NQ, Lee JY, Birbrair A, Paixão TA, Tsolis RM, Santos RL. Pericytes modulate endothelial inflammatory response during bacterial infection. mBio 2024; 15:e0325223. [PMID: 38289074 PMCID: PMC10936204 DOI: 10.1128/mbio.03252-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 03/14/2024] Open
Abstract
Pericytes are located around blood vessels, in close contact with endothelial cells. We discovered that pericytes dampen pro-inflammatory endothelial cell responses. Endothelial cells co-cultured with pericytes had markedly reduced expression of adhesion molecules (PECAM-1 and ICAM-1) and proinflammatory cytokines (CCL-2 and IL-6) in response to bacterial stimuli (Brucella ovis, Listeria monocytogenes, or Escherichia coli lipopolysaccharide). Pericyte-depleted mice intraperitoneally inoculated with either B. ovis, a stealthy pathogen that does not trigger detectable inflammation, or Listeria monocytogenes, developed peritonitis. Further, during Citrobacter rodentium infection, pericyte-depleted mice developed severe intestinal inflammation, which was not evident in control mice. The anti-inflammatory effect of pericytes required connexin 43, as either chemical inhibition or silencing of connexin 43 abrogated pericyte-mediated suppression of endothelial inflammatory responses. Our results define a mechanism by which pericytes modulate inflammation during infection, which shifts our understanding of pericyte biology: from a structural cell to a pro-active player in modulating inflammation. IMPORTANCE A previously unknown mechanism by which pericytes modulate inflammation was discovered. The absence of pericytes or blocking interaction between pericytes and endothelium through connexin 43 results in stronger inflammation, which shifts our understanding of pericyte biology, from a structural cell to a player in controlling inflammation.
Collapse
Affiliation(s)
- Thaynara P. Carvalho
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| | - Frank A. O. Toledo
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Diego F. A. Bautista
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Monique F. Silva
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jefferson B. S. Oliveira
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pâmela A. Lima
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fabíola B. Costa
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Noelly Q. Ribeiro
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jee-Yon Lee
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| | - Alexander Birbrair
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tatiane A. Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Reneé M. Tsolis
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| | - Renato L. Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| |
Collapse
|
5
|
Yang J, Wang Y, Hou Y, Sun M, Xia T, Wu X. Evasion of host defense by Brucella. CELL INSIGHT 2024; 3:100143. [PMID: 38250017 PMCID: PMC10797155 DOI: 10.1016/j.cellin.2023.100143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
Brucella , an adept intracellular pathogen, causes brucellosis, a zoonotic disease leading to significant global impacts on animal welfare and the economy. Regrettably, there is currently no approved and effective vaccine for human use. The ability of Brucella to evade host defenses is essential for establishing chronic infection and ensuring stable intracellular growth. Brucella employs various mechanisms to evade and undermine the innate and adaptive immune responses of the host through modulating the activation of pattern recognition receptors (PRRs), inflammatory responses, or the activation of immune cells like dendritic cells (DCs) to inhibit antigen presentation. Moreover, it regulates multiple cellular processes such as apoptosis, pyroptosis, and autophagy to establish persistent infection within host cells. This review summarizes the recently discovered mechanisms employed by Brucella to subvert host immune responses and research progress on vaccines, with the aim of advancing our understanding of brucellosis and facilitating the development of more effective vaccines and therapeutic approaches against Brucella .
Collapse
Affiliation(s)
- Jinke Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yue Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yuanpan Hou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Mengyao Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Tian Xia
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xin Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| |
Collapse
|
6
|
Elizalde-Bielsa A, Aragón-Aranda B, Loperena-Barber M, Salvador-Bescós M, Moriyón I, Zúñiga-Ripa A, Conde-Álvarez R. Development and evaluation of the Galleria mellonella (greater wax moth) infection model to study Brucella host-pathogen interaction. Microb Pathog 2023; 174:105930. [PMID: 36496059 DOI: 10.1016/j.micpath.2022.105930] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Brucellosis is a zoonotic disease caused by Gram-negative bacteria of the genus Brucella. These pathogens cause long-lasting infections, a process in which Brucella modifications in the lipopolysaccharide (LPS) and envelope lipids reduce pathogen-associated molecular pattern (PAMP) recognition, thus hampering innate immunity activation. In vivo models are essential to investigate bacterial virulence, mice being the most used model. However, ethical and practical considerations impede their use in high-throughput screening studies. Although lacking the complexity of the mammalian immune system, insects share key-aspects of innate immunity with mammals, and Galleria mellonella has been used increasingly as a model. G. mellonella larvae have been shown useful in virulence analyses, including Gram-negative pathogens like Klebsiella pneumoniae and Legionella pneumophila. To assess its potential to study Brucella virulence, we first evaluated larva survival upon infection with representative Brucella species (i.e.B. abortus 2308W, B. microti CCM4915 and B. suis biovar 2) and mutants in the VirB type-IV secretion system (T4SS) or in the LPS-O-polysaccharide (O-PS). As compared to K.pneumoniae, the Brucella spp. tested induced a delayed and less severe mortality profile consistent with an escape of innate immunity detection. Brucella replication within larvae was affected by the lack of O-PS, which is reminiscent of their attenuation in natural hosts. On the contrary, replication was not affected by T4SS dysfunction and the mutant induced only slightly less mortality (not statistically significant) than its parental strain. We also evaluated G. mellonella to efficiently recognise Brucella and their LPS by quantification of the pro-phenoloxidase system and melanisation activation, using Pseudomonas LPS as a positive control. Among the brucellae, only B. microti LPS triggered an early-melanisation response consistent with the slightly increased endotoxicity of this species in mice. Therefore, G. mellonella represents a tool to screen for potential Brucella factors modulating innate immunity, but its usefulness to investigate other mechanisms relevant in Brucella intracellular life is limited.
Collapse
Affiliation(s)
- Aitor Elizalde-Bielsa
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain
| | - Beatriz Aragón-Aranda
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain
| | - Maite Loperena-Barber
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain
| | - Miriam Salvador-Bescós
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain
| | - Ignacio Moriyón
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain
| | - Amaia Zúñiga-Ripa
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain
| | - Raquel Conde-Álvarez
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain.
| |
Collapse
|
7
|
Francisco S, Billod JM, Merino J, Punzón C, Gallego A, Arranz A, Martin-Santamaria S, Fresno M. Induction of TLR4/TLR2 Interaction and Heterodimer Formation by Low Endotoxic Atypical LPS. Front Immunol 2022; 12:748303. [PMID: 35140704 PMCID: PMC8818788 DOI: 10.3389/fimmu.2021.748303] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/27/2021] [Indexed: 12/01/2022] Open
Abstract
The Toll-like receptor 4 (TLR4)/myeloid differentiation protein-2 (MD-2) complex is considered the major receptor of the innate immune system to recognize lipopolysaccharides (LPSs). However, some atypical LPSs with different lipid A and core saccharide moiety structures and compositions than the well-studied enterobacterial LPSs can induce a TLR2-dependent response in innate immune cells. Ochrobactrum intermedium, an opportunistic pathogen, presents an atypical LPS. In this study, we found that O. intermedium LPS exhibits a weak inflammatory activity compared to Escherichia coli LPS and, more importantly, is a specific TLR4/TLR2 agonist, able to signal through both receptors. Molecular docking analysis of O. intermedium LPS predicts a favorable formation of a TLR2/TLR4/MD-2 heterodimer complex, which was experimentally confirmed by fluorescence resonance energy transfer (FRET) in cells. Interestingly, the core saccharide plays an important role in this interaction. This study reveals for the first time TLR4/TLR2 heterodimerization that is induced by atypical LPS and may help to escape from recognition by the innate immune system.
Collapse
Affiliation(s)
- Sara Francisco
- Diomune S. L., Parque Científico de Madrid, Madrid, Spain
- Department of Molecular Biology, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
| | - Jean-Marc Billod
- Department of Structural Biology, Centro de Investigaciones Biologicas “Margarita Salas”, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid, Spain
| | - Javier Merino
- Diomune S. L., Parque Científico de Madrid, Madrid, Spain
- Department of Molecular Biology, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen Punzón
- Diomune S. L., Parque Científico de Madrid, Madrid, Spain
| | - Alicia Gallego
- Department of Molecular Biology, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
| | - Alicia Arranz
- Department of Molecular Biology, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
| | - Sonsoles Martin-Santamaria
- Department of Structural Biology, Centro de Investigaciones Biologicas “Margarita Salas”, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid, Spain
| | - Manuel Fresno
- Diomune S. L., Parque Científico de Madrid, Madrid, Spain
- Department of Molecular Biology, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Human macrophages utilize a wide range of pathogen recognition receptors to recognize Legionella pneumophila, including Toll-Like Receptor 4 engaging Legionella lipopolysaccharide and the Toll-like Receptor 3 nucleic-acid sensor. PLoS Pathog 2021; 17:e1009781. [PMID: 34280250 PMCID: PMC8321404 DOI: 10.1371/journal.ppat.1009781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/29/2021] [Accepted: 07/03/2021] [Indexed: 12/15/2022] Open
Abstract
Cytokines made by macrophages play a critical role in determining the course of Legionella pneumophila infection. Prior murine-based modeling indicated that this cytokine response is initiated upon recognition of L. pneumophila by a subset of Toll-like receptors, namely TLR2, TLR5, and TLR9. Through the use of shRNA/siRNA knockdowns and subsequently CRISPR/Cas9 knockouts (KO), we determined that TRIF, an adaptor downstream of endosomal TLR3 and TLR4, is required for full cytokine secretion by human primary and cell-line macrophages. By characterizing a further set of TLR KO's in human U937 cells, we discerned that, contrary to the viewpoint garnered from murine-based studies, TLR3 and TLR4 (along with TLR2 and TLR5) are in fact vital to the macrophage response in the early stages of L. pneumophila infection. This conclusion was bolstered by showing that i) chemical inhibitors of TLR3 and TLR4 dampen the cytokine output of primary human macrophages and ii) transfection of TLR3 and TLR4 into HEK cells conferred an ability to sense L. pneumophila. TLR3- and TLR4-dependent cytokines promoted migration of human HL-60 neutrophils across an epithelial layer, pointing to the biological importance for the newfound signaling pathway. The response of U937 cells to L. pneumophila LPS was dependent upon TLR4, a further contradiction to murine-based studies, which had concluded that TLR2 is the receptor for Legionella LPS. Given the role of TLR3 in sensing nucleic acid (i.e., dsRNA), we utilized newly-made KO U937 cells to document that DNA-sensing by cGAS-STING and DNA-PK are also needed for the response of human macrophages to L. pneumophila. Given the lack of attention given them in the bacterial field, C-type lectin receptors were similarly examined; but, they were not required. Overall, this study arguably represents the most extensive, single-characterization of Legionella-recognition receptors within human macrophages.
Collapse
|
9
|
Wu H, Wang Y, Li H, Meng L, Zheng N, Wang J. Effect of Food Endotoxin on Infant Health. Toxins (Basel) 2021; 13:298. [PMID: 33922125 PMCID: PMC8143472 DOI: 10.3390/toxins13050298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 01/07/2023] Open
Abstract
Endotoxin is a complex molecule derived from the outer membrane of Gram-negative bacteria, and it has strong thermal stability. The processing of infant food can kill pathogenic bacteria but cannot remove endotoxin. Because the intestinal structure of infants is not fully developed, residual endotoxin poses a threat to their health by damaging the intestinal flora and inducing intestinal inflammation, obesity, and sepsis, among others. This paper discusses the sources and contents of endotoxin in infant food and methods for preventing endotoxin from harming infants. However, there is no clear evidence that endotoxin levels in infant food cause significant immune symptoms or even diseases in infants. However, in order to improve the safety level of infant food and reduce the endotoxin content, this issue should not be ignored. The purpose of this review is to provide a theoretical basis for manufacturers and consumers to understand the possible harm of endotoxin content in infant formula milk powder and to explore how to reduce its level in infant formula milk powder. Generally, producers should focus on cleaning the milk source, securing the cold chain, avoiding long-distance transportation, and shortening the storage time of raw milk to reduce the level of bacteria and endotoxin. After production and processing, the endotoxin content should be measured as an important index to test the quality of infant formula milk powder so as to provide high-quality infant products for the healthy growth of newborns.
Collapse
Affiliation(s)
- Haoming Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (H.L.); (L.M.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China;
| | - Huiying Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (H.L.); (L.M.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lu Meng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (H.L.); (L.M.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (H.L.); (L.M.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (H.L.); (L.M.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
10
|
Jiao H, Zhou Z, Li B, Xiao Y, Li M, Zeng H, Guo X, Gu G. The Mechanism of Facultative Intracellular Parasitism of Brucella. Int J Mol Sci 2021; 22:ijms22073673. [PMID: 33916050 PMCID: PMC8036852 DOI: 10.3390/ijms22073673] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a highly prevalent zoonotic disease characterized by abortion and reproductive dysfunction in pregnant animals. Although the mortality rate of Brucellosis is low, it is harmful to human health, and also seriously affects the development of animal husbandry, tourism and international trade. Brucellosis is caused by Brucella, which is a facultative intracellular parasitic bacteria. It mainly forms Brucella-containing vacuoles (BCV) in the host cell to avoid the combination with lysosome (Lys), so as to avoid the elimination of it by the host immune system. Brucella not only has the ability to resist the phagocytic bactericidal effect, but also can make the host cells form a microenvironment which is conducive to its survival, reproduction and replication, and survive in the host cells for a long time, which eventually leads to the formation of chronic persistent infection. Brucella can proliferate and replicate in cells, evade host immune response and induce persistent infection, which are difficult problems in the treatment and prevention of Brucellosis. Therefore, the paper provides a preliminary overview of the facultative intracellular parasitic and immune escape mechanisms of Brucella, which provides a theoretical basis for the later study on the pathogenesis of Brucella.
Collapse
Affiliation(s)
- Hanwei Jiao
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
- Veterinary Scientific Engineering Research Center, Chongqing 402460, China
- Correspondence:
| | - Zhixiong Zhou
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Bowen Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Yu Xiao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Mengjuan Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Hui Zeng
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Xiaoyi Guo
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Guojing Gu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| |
Collapse
|
11
|
Roop RM, Barton IS, Hopersberger D, Martin DW. Uncovering the Hidden Credentials of Brucella Virulence. Microbiol Mol Biol Rev 2021; 85:e00021-19. [PMID: 33568459 PMCID: PMC8549849 DOI: 10.1128/mmbr.00021-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteria in the genus Brucella are important human and veterinary pathogens. The abortion and infertility they cause in food animals produce economic hardships in areas where the disease has not been controlled, and human brucellosis is one of the world's most common zoonoses. Brucella strains have also been isolated from wildlife, but we know much less about the pathobiology and epidemiology of these infections than we do about brucellosis in domestic animals. The brucellae maintain predominantly an intracellular lifestyle in their mammalian hosts, and their ability to subvert the host immune response and survive and replicate in macrophages and placental trophoblasts underlies their success as pathogens. We are just beginning to understand how these bacteria evolved from a progenitor alphaproteobacterium with an environmental niche and diverged to become highly host-adapted and host-specific pathogens. Two important virulence determinants played critical roles in this evolution: (i) a type IV secretion system that secretes effector molecules into the host cell cytoplasm that direct the intracellular trafficking of the brucellae and modulate host immune responses and (ii) a lipopolysaccharide moiety which poorly stimulates host inflammatory responses. This review highlights what we presently know about how these and other virulence determinants contribute to Brucella pathogenesis. Gaining a better understanding of how the brucellae produce disease will provide us with information that can be used to design better strategies for preventing brucellosis in animals and for preventing and treating this disease in humans.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ian S Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Dariel Hopersberger
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Daniel W Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
12
|
Amjadi O, Rafiei A, Mardani M, Zafari P, Zarifian A. A review of the immunopathogenesis of Brucellosis. Infect Dis (Lond) 2019; 51:321-333. [PMID: 30773082 DOI: 10.1080/23744235.2019.1568545] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Brucellosis, caused by the intracellular pathogens Brucella, is one of the major zoonotic infections. Considering the economic burden, its prevalence has been a health concern especially in endemic regions. Brucella is able to survive and replicate within host cells by expressing different virulence factors and using various strategies to avoid the host's immune response. This leads to progression of the disease from an acute phase to chronic brucellosis. Exploration of genetic variations has confirmed the expected influence of gene polymorphisms on susceptibility and resistance to brucellosis of humans. Since there is no approved human vaccine and treatment is uncertain with risk of relapse, it is important to increase knowledge about pathogenesis, diagnosis and treatment of brucellosis in order to manage and control this infection, especially in endemic regions.
Collapse
Affiliation(s)
- Omolbanin Amjadi
- a Student Research Committee, Department of Immunology, School of Medicine , Mazandaran University of Medical Sciences , Sari , Iran
| | - Alireza Rafiei
- b Department of Immunology, School of Medicine , Mazandaran University of Medical Sciences , Sari , Iran
| | - Masoud Mardani
- c Infectious Diseases and Tropical Medicine Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Parisa Zafari
- a Student Research Committee, Department of Immunology, School of Medicine , Mazandaran University of Medical Sciences , Sari , Iran.,b Department of Immunology, School of Medicine , Mazandaran University of Medical Sciences , Sari , Iran
| | - Ahmadreza Zarifian
- d Infectious Disease Research Group, Student Research Committee, Medical School , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
13
|
Zhao Y, Hanniffy S, Arce-Gorvel V, Conde-Alvarez R, Oh S, Moriyón I, Mémet S, Gorvel JP. Immunomodulatory properties of Brucella melitensis lipopolysaccharide determinants on mouse dendritic cells in vitro and in vivo. Virulence 2018; 9:465-479. [PMID: 28968180 PMCID: PMC5955181 DOI: 10.1080/21505594.2017.1386831] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The lipopolysaccharide (LPS) is a major virulence factor of Brucella, a facultative intracellular pathogenic Gram-negative bacterium. Brucella LPS exhibits a low toxicity and its atypical structure was postulated to delay the host immune response, favouring the establishment of chronic disease. Here we carried out an in-depth in vitro and in vivo characterisation of the immunomodulatory effects of Brucella LPS on different dendritic cell (DC) subpopulations. By using LPSs from bacteria that share some of Brucella LPS structural features, we demonstrated that the core component of B. melitensis wild-type (Bm-wt) LPS accounts for the low activation potential of Brucella LPS in mouse GM-CSF-derived (GM-) DCs. Contrary to the accepted dogma considering Brucella LPS a poor TLR4 agonist and DC activator, Bm-wt LPS selectively induced expression of surface activation markers and cytokine secretion from Flt3-Ligand-derived (FL-) DCs in a TLR4-dependent manner. It also primed in vitro T cell proliferation by FL-DCs. In contrast, modified LPS with a defective core purified from Brucella carrying a mutated wadC gene (Bm-wadC), efficiently potentiated mouse and human DC activation and T cell proliferation in vitro. In vivo, Bm-wt LPS promoted scant activation of splenic DC subsets and limited recruitment of monocyte- DC like cells in the spleen, conversely to Bm-wadC LPS. Bm-wadC live bacteria drove high cytokine secretion levels in sera of infected mice. Altogether, these results illustrate the immunomodulatory properties of Brucella LPS and the enhanced DC activation ability of the wadC mutation with potential for vaccine development targeting Brucella core LPS structure.
Collapse
Affiliation(s)
- Yun Zhao
- a Centre d'Immunologie de Marseille-Luminy, CIML, Aix Marseille Univ, CNRS, INSERM , Marseille , France
| | - Sean Hanniffy
- a Centre d'Immunologie de Marseille-Luminy, CIML, Aix Marseille Univ, CNRS, INSERM , Marseille , France
| | - Vilma Arce-Gorvel
- a Centre d'Immunologie de Marseille-Luminy, CIML, Aix Marseille Univ, CNRS, INSERM , Marseille , France
| | - Raquel Conde-Alvarez
- b Departamento de Microbiología y Parasitología , Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra , c/Irunlarrea 1, Pamplona , Spain
| | - SangKon Oh
- c Baylor Institute for Immunology Research , 3434 Live Oak St., Dallas , TX , U.S.A
| | - Ignacio Moriyón
- b Departamento de Microbiología y Parasitología , Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra , c/Irunlarrea 1, Pamplona , Spain
| | - Sylvie Mémet
- a Centre d'Immunologie de Marseille-Luminy, CIML, Aix Marseille Univ, CNRS, INSERM , Marseille , France
| | - Jean-Pierre Gorvel
- a Centre d'Immunologie de Marseille-Luminy, CIML, Aix Marseille Univ, CNRS, INSERM , Marseille , France
| |
Collapse
|
14
|
Stojanovska V, McQuade RM, Fraser S, Prakash M, Gondalia S, Stavely R, Palombo E, Apostolopoulos V, Sakkal S, Nurgali K. Oxaliplatin-induced changes in microbiota, TLR4+ cells and enhanced HMGB1 expression in the murine colon. PLoS One 2018; 13:e0198359. [PMID: 29894476 PMCID: PMC5997344 DOI: 10.1371/journal.pone.0198359] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 05/17/2018] [Indexed: 02/07/2023] Open
Abstract
Oxaliplatin is a platinum-based chemotherapeutic used for cancer treatment. Its use associates with peripheral neuropathies and chronic gastrointestinal side-effects. Oxaliplatin induces immunogenic cell death by provoking the presentation of damage associated molecular patterns. The damage associated molecular patterns high-mobility group box 1 (HMGB1) protein exerts pro-inflammatory cytokine-like activity and binds to toll-like receptors (namely TLR4). Gastrointestinal microbiota may influence chemotherapeutic efficacy and contribute to local and systemic inflammation. We studied effects of oxaliplatin treatment on 1) TLR4 and high-mobility group box 1 expression within the colon; 2) gastrointestinal microbiota composition; 3) inflammation within the colon; 4) changes in Peyer's patches and mesenteric lymph nodes immune populations in mice. TLR4+ cells displayed pseudopodia-like extensions characteristic of antigen sampling co-localised with high-mobility group box 1 -overexpressing cells in the colonic lamina propria from oxaliplatin-treated animals. Oxaliplatin treatment caused significant reduction in Parabacteroides and Prevotella1, but increase in Prevotella2 and Odoribacter bacteria at the genus level. Downregulation of pro-inflammatory cytokines and chemokines in colon samples, a reduction in macrophages and dendritic cells in mesenteric lymph nodes were found after oxaliplatin treatment. In conclusion, oxaliplatin treatment caused morphological changes in TLR4+ cells, increase in gram-negative microbiota and enhanced HMGB1 expression associated with immunosuppression in the colon.
Collapse
Affiliation(s)
- Vanesa Stojanovska
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Rachel M. McQuade
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Sarah Fraser
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Monica Prakash
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Shakuntla Gondalia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Melbourne, Victoria, Australia
| | - Rhian Stavely
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Enzo Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Melbourne, Victoria, Australia
| | - Vasso Apostolopoulos
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Samy Sakkal
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Department of Medicine Western Health, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Martínez-Gómez E, Ståhle J, Gil-Ramírez Y, Zúñiga-Ripa A, Zaccheus M, Moriyón I, Iriarte M, Widmalm G, Conde-Álvarez R. Genomic Insertion of a Heterologous Acetyltransferase Generates a New Lipopolysaccharide Antigenic Structure in Brucella abortus and Brucella melitensis. Front Microbiol 2018; 9:1092. [PMID: 29887851 PMCID: PMC5981137 DOI: 10.3389/fmicb.2018.01092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/07/2018] [Indexed: 12/31/2022] Open
Abstract
Brucellosis is a bacterial zoonosis of worldwide distribution caused by bacteria of the genus Brucella. In Brucella abortus and Brucella melitensis, the major species infecting domestic ruminants, the smooth lipopolysaccharide (S-LPS) is a virulence factor. This S-LPS carries a N-formyl-perosamine homopolymer O-polysaccharide that is the major antigen in serodiagnostic tests and is required for virulence. We report that the Brucella O-PS can be structurally and antigenically modified using wbdR, the acetyl-transferase gene involved in N-acetyl-perosamine synthesis in Escherichia coli O157:H7. Brucella constructs carrying plasmidic wbdR expressed a modified O-polysaccharide but were unstable, a problem circumvented by inserting wbdR into a neutral site of chromosome II. As compared to wild-type bacteria, both kinds of wbdR constructs expressed shorter O-polysaccharides and NMR analyses showed that they contained both N-formyl and N-acetyl-perosamine. Moreover, deletion of the Brucella formyltransferase gene wbkC in wbdR constructs generated bacteria producing only N-acetyl-perosamine homopolymers, proving that wbdR can replace for wbkC. Absorption experiments with immune sera revealed that the wbdR constructs triggered antibodies to new immunogenic epitope(s) and the use of monoclonal antibodies proved that B. abortus and B. melitensis wbdR constructs respectively lacked the A or M epitopes, and the absence of the C epitope in both backgrounds. The wbdR constructs showed resistance to polycations similar to that of the wild-type strains but displayed increased sensitivity to normal serum similar to that of a per R mutant. In mice, the wbdR constructs produced chronic infections and triggered antibody responses that can be differentiated from those evoked by the wild-type strain in S-LPS ELISAs. These results open the possibilities of developing brucellosis vaccines that are both antigenically tagged and lack the diagnostic epitopes of virulent field strains, thereby solving the diagnostic interference created by current vaccines against Brucella.
Collapse
Affiliation(s)
- Estrella Martínez-Gómez
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Jonas Ståhle
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| | - Yolanda Gil-Ramírez
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Amaia Zúñiga-Ripa
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Mona Zaccheus
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| | - Ignacio Moriyón
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Maite Iriarte
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| | - Raquel Conde-Álvarez
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
16
|
Conde-Álvarez R, Palacios-Chaves L, Gil-Ramírez Y, Salvador-Bescós M, Bárcena-Varela M, Aragón-Aranda B, Martínez-Gómez E, Zúñiga-Ripa A, de Miguel MJ, Bartholomew TL, Hanniffy S, Grilló MJ, Vences-Guzmán MÁ, Bengoechea JA, Arce-Gorvel V, Gorvel JP, Moriyón I, Iriarte M. Identification of lptA, lpxE, and lpxO, Three Genes Involved in the Remodeling of Brucella Cell Envelope. Front Microbiol 2018; 8:2657. [PMID: 29375522 PMCID: PMC5767591 DOI: 10.3389/fmicb.2017.02657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/20/2017] [Indexed: 12/19/2022] Open
Abstract
The brucellae are facultative intracellular bacteria that cause a worldwide extended zoonosis. One of the pathogenicity mechanisms of these bacteria is their ability to avoid rapid recognition by innate immunity because of a reduction of the pathogen-associated molecular pattern (PAMP) of the lipopolysaccharide (LPS), free-lipids, and other envelope molecules. We investigated the Brucella homologs of lptA, lpxE, and lpxO, three genes that in some pathogens encode enzymes that mask the LPS PAMP by upsetting the core-lipid A charge/hydrophobic balance. Brucella lptA, which encodes a putative ethanolamine transferase, carries a frame-shift in B. abortus but not in other Brucella spp. and phylogenetic neighbors like the opportunistic pathogen Ochrobactrum anthropi. Consistent with the genomic evidence, a B. melitensis lptA mutant lacked lipid A-linked ethanolamine and displayed increased sensitivity to polymyxin B (a surrogate of innate immunity bactericidal peptides), while B. abortus carrying B. melitensis lptA displayed increased resistance. Brucella lpxE encodes a putative phosphatase acting on lipid A or on a free-lipid that is highly conserved in all brucellae and O. anthropi. Although we found no evidence of lipid A dephosphorylation, a B. abortus lpxE mutant showed increased polymyxin B sensitivity, suggesting the existence of a hitherto unidentified free-lipid involved in bactericidal peptide resistance. Gene lpxO putatively encoding an acyl hydroxylase carries a frame-shift in all brucellae except B. microti and is intact in O. anthropi. Free-lipid analysis revealed that lpxO corresponded to olsC, the gene coding for the ornithine lipid (OL) acyl hydroxylase active in O. anthropi and B. microti, while B. abortus carrying the olsC of O. anthropi and B. microti synthesized hydroxylated OLs. Interestingly, mutants in lptA, lpxE, or olsC were not attenuated in dendritic cells or mice. This lack of an obvious effect on virulence together with the presence of the intact homolog genes in O. anthropi and B. microti but not in other brucellae suggests that LptA, LpxE, or OL β-hydroxylase do not significantly alter the PAMP properties of Brucella LPS and free-lipids and are therefore not positively selected during the adaptation to intracellular life.
Collapse
Affiliation(s)
- Raquel Conde-Álvarez
- Universidad de Navarra, Facultad de Medicina, Departamento de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN) e Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Leyre Palacios-Chaves
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas - Universidad Pública de Navarra - Gobierno de Navarra, Pamplona, Spain
| | - Yolanda Gil-Ramírez
- Universidad de Navarra, Facultad de Medicina, Departamento de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN) e Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Miriam Salvador-Bescós
- Universidad de Navarra, Facultad de Medicina, Departamento de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN) e Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Marina Bárcena-Varela
- Universidad de Navarra, Facultad de Medicina, Departamento de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN) e Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Beatriz Aragón-Aranda
- Universidad de Navarra, Facultad de Medicina, Departamento de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN) e Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Estrella Martínez-Gómez
- Universidad de Navarra, Facultad de Medicina, Departamento de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN) e Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Amaia Zúñiga-Ripa
- Universidad de Navarra, Facultad de Medicina, Departamento de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN) e Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - María J de Miguel
- Unidad de Producción y Sanidad Animal, Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón - Universidad de Zaragoza, Zaragoza, Spain
| | - Toby Leigh Bartholomew
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Sean Hanniffy
- Institut National de la Santé et de la Recherche Médicale, U1104, Centre National de la Recherche Scientifique UMR7280, Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Marseille, France
| | - María-Jesús Grilló
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas - Universidad Pública de Navarra - Gobierno de Navarra, Pamplona, Spain
| | | | - José A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Vilma Arce-Gorvel
- Institut National de la Santé et de la Recherche Médicale, U1104, Centre National de la Recherche Scientifique UMR7280, Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Marseille, France
| | - Jean-Pierre Gorvel
- Institut National de la Santé et de la Recherche Médicale, U1104, Centre National de la Recherche Scientifique UMR7280, Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Marseille, France
| | - Ignacio Moriyón
- Universidad de Navarra, Facultad de Medicina, Departamento de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN) e Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Maite Iriarte
- Universidad de Navarra, Facultad de Medicina, Departamento de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN) e Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| |
Collapse
|
17
|
Abstract
Many bacterial pathogens can cause acute infections that are cleared with the onset of adaptive immunity, but a subset of these pathogens can establish persistent, and sometimes lifelong, infections. While bacteria that cause chronic infections are phylogenetically diverse, they share common features in their interactions with the host that enable a protracted period of colonization. This article will compare the persistence strategies of two chronic pathogens from the Proteobacteria, Brucella abortus and Salmonella enterica serovar Typhi, to consider how these two pathogens, which are very different at the genomic level, can utilize common strategies to evade immune clearance to cause chronic intracellular infections of the mononuclear phagocyte system.
Collapse
|
18
|
The role of NLRP3 and AIM2 in inflammasome activation during Brucella abortus infection. Semin Immunopathol 2016; 39:215-223. [PMID: 27405866 DOI: 10.1007/s00281-016-0581-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/04/2016] [Indexed: 01/18/2023]
Abstract
The innate immune system is essential for the detection and elimination of bacterial pathogens. Upon inflammasome activation, caspase-1 cleaves pro-IL-1β and pro-IL-18 to their mature forms IL-1β and IL-18, respectively, and the cell undergoes inflammatory death termed pyroptosis. Here, we reviewed recent findings demonstrating that Brucella abortus ligands activate NLRP3 and AIM2 inflammasomes which lead to control of infection. This protective effect is due to the inflammatory response caused by IL-1β and IL-18 rather than cell death. Brucella DNA is sensed by AIM2 and bacteria-induced mitochondrial reactive oxygen species is detected by NLRP3. However, deregulation of pro-inflammatory cytokine production can lead to immunopathology. Nervous system invasion by bacteria of the genus Brucella results in an inflammatory disorder termed neurobrucellosis. Herein, we discuss the mechanism of caspase-1 activation and IL-1β secretion in glial cells infected with B. abortus. Our results demonstrate that the ASC inflammasome is indispensable for inducing the activation of caspase-1 and secretion of IL-1β upon infection of astrocytes and microglia with Brucella. Moreover, our results demonstrate that secretion of IL-1β by Brucella-infected glial cells depends on NLRP3 and AIM2 and leads to neurobrucellosis. Further, the inhibition of the host cell inflammasome as an immune evasion strategy has been described for bacterial pathogens. We discuss here that the bacterial type IV secretion system VirB is required for inflammasome activation in host cells during infection. Taken together, our results indicate that Brucella is sensed by ASC inflammasomes mainly NLRP3 and AIM2 that collectively orchestrate a robust caspase-1 activation and pro-inflammatory response.
Collapse
|
19
|
Fang S, Xu Y, Zhang Y, Tian J, Li J, Li Z, He Z, Chai R, Liu F, Zhang T, Yang S, Pei C, Liu X, Lin P, Xu H, Yu B, Li H, Sun B. Irgm1 promotes M1 but not M2 macrophage polarization in atherosclerosis pathogenesis and development. Atherosclerosis 2016; 251:282-290. [PMID: 27439214 DOI: 10.1016/j.atherosclerosis.2016.07.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND AIMS Atherosclerosis is a chronic inflammatory vascular disease related to macrophages uptake of low-density lipoprotein and their subsequent transformation into foam cells. M1 (inflammatory)/M2 (anti-inflammatory) balance was suggested to impact disease progression. In this study, we investigated whether the immunity related GTPase (Irgm1) regulates macrophage polarization during atherosclerosis development. METHODS We used apolipoprotein E (ApoE) knockout and Irgm1 haplodeficient mice and induced atherosclerosis with high-cholesterol diet for the indicated months. Atherosclerotic arteries were collected from patients undergoing vascular surgery, to determine the lesional expression of Irgm1 and distribution of M1/M2 populations. RESULTS Our results showed that IRGM/Irgm1 expression was increased in atherosclerotic artery samples (1.7-fold, p=0.0045) compared with non-atherosclerotic arteries, which was consistent with findings in the murine experimental atherosclerosis model (1.9-fold, p=0.0002). IRGM/Irgm1 expression was mostly found in lesional M1 macrophages. Haplodeficiency of Irgm1 in ApoE(-/-) mice resulted in reduced infiltrating M1 macrophages in atheroma (94%, p=0.0002) and delayed development of atherosclerotic plaques. In vitro experiments also confirmed that Irgm1 haplodeficiency reduced iNOS expression of polarized M1 macrophages (81%, p=0.0034), with negligible impact on the M2 phenotype. Moreover, we found that Irgm1 haplodeficiency in mice significantly reduced expression level of M1 function-related transcription factors, interferon regulatory factor (Irf) 5 and Irf8, but not Irf4, an M2-related transcription factor. CONCLUSIONS This study shows that Irgm1/IRGM participates in the polarization of M1 macrophage and promotes development of atheroma in murine experimental atherosclerosis.
Collapse
Affiliation(s)
- Shaohong Fang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Yanwen Xu
- Department of Neurobiology, Neurobiology Key Laboratory, Harbin Medical University, Education Department of Heilongjiang Province, Harbin, 150081, China
| | - Yun Zhang
- Department of Neurobiology, Neurobiology Key Laboratory, Harbin Medical University, Education Department of Heilongjiang Province, Harbin, 150081, China
| | - Jiangtian Tian
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Ji Li
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Zhaoying Li
- Department of Neurobiology, Neurobiology Key Laboratory, Harbin Medical University, Education Department of Heilongjiang Province, Harbin, 150081, China
| | - Zhongze He
- Department of Neurobiology, Neurobiology Key Laboratory, Harbin Medical University, Education Department of Heilongjiang Province, Harbin, 150081, China
| | - Ruikai Chai
- Department of Neurobiology, Neurobiology Key Laboratory, Harbin Medical University, Education Department of Heilongjiang Province, Harbin, 150081, China
| | - Fang Liu
- Department of Neurobiology, Neurobiology Key Laboratory, Harbin Medical University, Education Department of Heilongjiang Province, Harbin, 150081, China
| | - Tongshuai Zhang
- Department of Neurobiology, Neurobiology Key Laboratory, Harbin Medical University, Education Department of Heilongjiang Province, Harbin, 150081, China
| | - Shuang Yang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Chunying Pei
- Department of Immunology, Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University, Harbin, 150081, China
| | - Xinxin Liu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Peng Lin
- Department of Neurobiology, Neurobiology Key Laboratory, Harbin Medical University, Education Department of Heilongjiang Province, Harbin, 150081, China
| | - Hongwei Xu
- Department of Immunology, Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University, Harbin, 150081, China
| | - Bo Yu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Hulun Li
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China; Department of Neurobiology, Neurobiology Key Laboratory, Harbin Medical University, Education Department of Heilongjiang Province, Harbin, 150081, China.
| | - Bo Sun
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China; Department of Neurobiology, Neurobiology Key Laboratory, Harbin Medical University, Education Department of Heilongjiang Province, Harbin, 150081, China.
| |
Collapse
|
20
|
Han L, Ni Y, Cao M, Zhu L, Dai A, Xu Z, Liu X, Chen R, Ning X, Ke K. A New Role Discovered for IGTP: The Protective Effect of IGTP in ICH-Induced Neuronal Apoptosis. Cell Mol Neurobiol 2016; 36:713-24. [PMID: 26242173 DOI: 10.1007/s10571-015-0251-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/29/2015] [Indexed: 10/23/2022]
Abstract
Interferon gamma-induced GTPase (IGTP), which is also named Irgm3, has been widely described in regulating host resistance against intracellular pathogens. Previous researches have demonstrated that IGTP exerts beneficial function during coxsackievirus B3 (CVB3) infection. However, little information is available regarding the role of IGTP in central nervous system. Here, our study revealed that IGTP may have an essential role during ICH-induced neuronal apoptosis. We found the expression level of IGTP adjacent to hematoma was strongly increased after ICH, accompanied with the up-regulation of proliferating cell nuclear antigen (PCNA), active-caspase-3, p-GSK-3β, and Bax. IGTP was also observed to be co-localized with PCNA in astrocytes and active-caspase-3 in neurons, indicating its association with astrocyte proliferation and neuronal apoptosis after ICH. Finally, in vitro study, knocking down IGTP with IGTP-specific siRNA promoted active-caspase-3, p-GSK-3β, and Bax expression, and led to more severe neuronal apoptosis after ICH. All these results above suggested that IGTP might play a critical role in protecting neurons from apoptosis after ICH.
Collapse
Affiliation(s)
- Lijian Han
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yaohui Ni
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Maohong Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Liang Zhu
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Aihua Dai
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Zhiwei Xu
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xiaorong Liu
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Rongrong Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xiaojin Ning
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Kaifu Ke
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
21
|
Neutrophil and Alveolar Macrophage-Mediated Innate Immune Control of Legionella pneumophila Lung Infection via TNF and ROS. PLoS Pathog 2016; 12:e1005591. [PMID: 27105352 PMCID: PMC4841525 DOI: 10.1371/journal.ppat.1005591] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 04/01/2016] [Indexed: 12/31/2022] Open
Abstract
Legionella pneumophila is a facultative intracellular bacterium that lives in aquatic environments where it parasitizes amoeba. However, upon inhalation of contaminated aerosols it can infect and replicate in human alveolar macrophages, which can result in Legionnaires' disease, a severe form of pneumonia. Upon experimental airway infection of mice, L. pneumophila is rapidly controlled by innate immune mechanisms. Here we identified, on a cell-type specific level, the key innate effector functions responsible for rapid control of infection. In addition to the well-characterized NLRC4-NAIP5 flagellin recognition pathway, tumor necrosis factor (TNF) and reactive oxygen species (ROS) are also essential for effective innate immune control of L. pneumophila. While ROS are essential for the bactericidal activity of neutrophils, alveolar macrophages (AM) rely on neutrophil and monocyte-derived TNF signaling via TNFR1 to restrict bacterial replication. This TNF-mediated antibacterial mechanism depends on the acidification of lysosomes and their fusion with L. pneumophila containing vacuoles (LCVs), as well as caspases with a minor contribution from cysteine-type cathepsins or calpains, and is independent of NLRC4, caspase-1, caspase-11 and NOX2. This study highlights the differential utilization of innate effector pathways to curtail intracellular bacterial replication in specific host cells upon L. pneumophila airway infection.
Collapse
|
22
|
He J, Li G, Chen J, Lin J, Zeng C, Chen J, Deng J, Xie P. Prolonged exposure to low-dose microcystin induces nonalcoholic steatohepatitis in mice: a systems toxicology study. Arch Toxicol 2016; 91:465-480. [PMID: 26984711 DOI: 10.1007/s00204-016-1681-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/09/2016] [Indexed: 12/20/2022]
Abstract
Microcystin-LR (MCLR), a cyanotoxin widely present in freshwater, has been shown to have potent acute hepatotoxicity. However, the chronic toxicity of low-dose MCLR remains confusing by traditional measurements of toxicity. This has impeded understanding of the chronic liver damage of low-dose MCLR and corresponding safety risks of the human exposure guideline value. Here, iTRAQ-based proteomics and NMR-based metabonomics were used to decipher the molecular toxicological signatures of low doses of MCLR in mice exposed to this agent for 90 days. Low levels of MCLR, even under the reported no observed adverse effect level, significantly altered hepatic protein expression, especially of proteins associated with lipid metabolism, transport, immune and proteolysis. Coherently, MCLR induced marked perturbations in lipid metabolites in both liver and serum. Integrated analysis of proteomic, metabolic, histological and cytokine profiles revealed that MCLR significantly inhibited fatty acid β-oxidation and hepatic lipoprotein secretion and promoted hepatic inflammation, resulting in nonalcoholic steatohepatitis disease (NASH). These findings for the first time provide compelling evidence that chronic exposure to low-level MCLR can induce NASH. These results also indicate that current guidelines for MCs in drinking water may be inadequate and associated with risks to human health.
Collapse
Affiliation(s)
- Jun He
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan, 430072, People's Republic of China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan, 430072, People's Republic of China
| | - Juan Lin
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan, 430072, People's Republic of China
| | - Cheng Zeng
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jing Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan, 430072, People's Republic of China
| | - Junliang Deng
- Shanghai Biotree Biotech Co., Ltd, Shanghai, 200433, People's Republic of China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
23
|
Ahmed W, Zheng K, Liu ZF. Establishment of Chronic Infection: Brucella's Stealth Strategy. Front Cell Infect Microbiol 2016; 6:30. [PMID: 27014640 PMCID: PMC4791395 DOI: 10.3389/fcimb.2016.00030] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/29/2016] [Indexed: 01/18/2023] Open
Abstract
Brucella is a facultative intracellular pathogen that causes zoonotic infection known as brucellosis which results in abortion and infertility in natural host. Humans, especially in low income countries, can acquire infection by direct contact with infected animal or by consumption of animal products and show high morbidity, severe economic losses and public health problems. However for survival, host cells develop complex immune mechanisms to defeat and battle against attacking pathogens and maintain a balance between host resistance and Brucella virulence. On the other hand as a successful intracellular pathogen, Brucella has evolved multiple strategies to evade immune response mechanisms to establish persistent infection and replication within host. In this review, we mainly summarize the "Stealth" strategies employed by Brucella to modulate innate and the adaptive immune systems, autophagy, apoptosis and possible role of small noncoding RNA in the establishment of chronic infection. The purpose of this review is to give an overview for recent understanding how this pathogen evades immune response mechanisms of host, which will facilitate to understanding the pathogenesis of brucellosis and the development of novel, more effective therapeutic approaches to treat brucellosis.
Collapse
Affiliation(s)
- Waqas Ahmed
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Ke Zheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Zheng-Fei Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
24
|
Abstract
Brucellosis, caused by bacteria of the genus Brucella, is an important zoonotic infection that causes reproductive disease in domestic animals and chronic debilitating disease in humans. An intriguing aspect of Brucella infection is the ability of these bacteria to evade the host immune response, leading to pathogen persistence. Conversely, in the reproductive tract of infected animals, this stealthy pathogen is able to cause an acute severe inflammatory response. In this review, we discuss the different mechanisms used by Brucella to cause disease, with emphasis on its virulence factors and the dichotomy between chronic persistence and reproductive disease.
Collapse
Affiliation(s)
| | - Renee M Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California 95616; ,
| |
Collapse
|
25
|
Gnauck A, Lentle RG, Kruger MC. The Characteristics and Function of Bacterial Lipopolysaccharides and Their Endotoxic Potential in Humans. Int Rev Immunol 2015; 35:189-218. [PMID: 26606737 DOI: 10.3109/08830185.2015.1087518] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cross-talk between enteral microbiota and human host is essential for the development and maintenance of the human gastrointestinal and systemic immune systems. The presence of lipopolysaccharides (LPS) lysed from the cell membrane of Gram-negative bacteria in the gut lumen is thought to promote the development of a balanced gut immune response whilst the entry of the same LPS into systemic circulation may lead to a deleterious pro-inflammatory systemic immune response. Recent data suggest that chronically low levels of circulating LPS may be associated with the development of metabolic diseases such as insulin resistance, type 2 diabetes, atherosclerosis and cardiovascular disease. This review focuses on the cross-talk between enteral commensal bacteria and the human immune system via LPS. We explain the structural characterisation of the LPS molecule and its function in the bacteria. We then examine how LPS is recognised by various elements of the human immune system and the signalling pathways that are activated by the structure of the LPS molecule and the effect of various concentrations. Further, we discuss the sequelae of this signalling in the gut-associated and systemic immune systems i.e. the neutralisation of LPS and the development of tolerance to LPS.
Collapse
Affiliation(s)
- Anne Gnauck
- a School of Food and Nutrition, College of Health , Massey University , Palmerston North , New Zealand
| | - Roger G Lentle
- a School of Food and Nutrition, College of Health , Massey University , Palmerston North , New Zealand
| | - Marlena C Kruger
- a School of Food and Nutrition, College of Health , Massey University , Palmerston North , New Zealand
| |
Collapse
|
26
|
Papadopoulos A, Gagnaire A, Degos C, de Chastellier C, Gorvel JP. Brucella discriminates between mouse dendritic cell subsets upon in vitro infection. Virulence 2015; 7:33-44. [PMID: 26606688 PMCID: PMC4871654 DOI: 10.1080/21505594.2015.1108516] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Brucella is a Gram-negative bacterium responsible for brucellosis, a worldwide re-emerging zoonosis. Brucella has been shown to infect and replicate within Granulocyte macrophage colony-stimulating factor (GMCSF) in vitro grown bone marrow-derived dendritic cells (BMDC). In this cell model, Brucella can efficiently control BMDC maturation. However, it has been shown that Brucella infection in vivo induces spleen dendritic cells (DC) migration and maturation. As DCs form a complex network composed by several subpopulations, differences observed may be due to different interactions between Brucella and DC subsets. Here, we compare Brucella interaction with several in vitro BMDC models. The present study shows that Brucella is capable of replicating in all the BMDC models tested with a high infection rate at early time points in GMCSF-IL15 DCs and Flt3l DCs. GMCSF-IL15 DCs and Flt3l DCs are more activated than the other studied DC models and consequently intracellular bacteria are not efficiently targeted to the ER replicative niche. Interestingly, GMCSF-DC and GMCSF-Flt3l DC response to infection is comparable. However, the key difference between these 2 models concerns IL10 secretion by GMCSF DCs observed at 48 h post-infection. IL10 secretion can explain the weak secretion of IL12p70 and TNFα in the GMCSF-DC model and the low level of maturation observed when compared to GMCSF-IL15 DCs and Flt3l DCs. These models provide good tools to understand how Brucella induce DC maturation in vivo and may lead to new therapeutic design using DCs as cellular vaccines capable of enhancing immune response against pathogens.
Collapse
Affiliation(s)
- Alexia Papadopoulos
- a Centre d'Immunologie de Marseille-Luminy; Aix Marseille Université; CNRS UMR7280; INSERM U1104 ; Marseille , France
| | - Aurélie Gagnaire
- a Centre d'Immunologie de Marseille-Luminy; Aix Marseille Université; CNRS UMR7280; INSERM U1104 ; Marseille , France
| | - Clara Degos
- a Centre d'Immunologie de Marseille-Luminy; Aix Marseille Université; CNRS UMR7280; INSERM U1104 ; Marseille , France
| | - Chantal de Chastellier
- a Centre d'Immunologie de Marseille-Luminy; Aix Marseille Université; CNRS UMR7280; INSERM U1104 ; Marseille , France
| | - Jean-Pierre Gorvel
- a Centre d'Immunologie de Marseille-Luminy; Aix Marseille Université; CNRS UMR7280; INSERM U1104 ; Marseille , France
| |
Collapse
|
27
|
Barquero-Calvo E, Mora-Cartín R, Arce-Gorvel V, de Diego JL, Chacón-Díaz C, Chaves-Olarte E, Guzmán-Verri C, Buret AG, Gorvel JP, Moreno E. Brucella abortus Induces the Premature Death of Human Neutrophils through the Action of Its Lipopolysaccharide. PLoS Pathog 2015; 11:e1004853. [PMID: 25946018 PMCID: PMC4422582 DOI: 10.1371/journal.ppat.1004853] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 04/03/2015] [Indexed: 01/18/2023] Open
Abstract
Most bacterial infections induce the activation of polymorphonuclear neutrophils (PMNs), enhance their microbicidal function, and promote the survival of these leukocytes for protracted periods of time. Brucella abortus is a stealthy pathogen that evades innate immunity, barely activates PMNs, and resists the killing mechanisms of these phagocytes. Intriguing clinical signs observed during brucellosis are the low numbers of Brucella infected PMNs in the target organs and neutropenia in a proportion of the patients; features that deserve further attention. Here we demonstrate that B. abortus prematurely kills human PMNs in a dose-dependent and cell-specific manner. Death of PMNs is concomitant with the intracellular Brucella lipopolysaccharide (Br-LPS) release within vacuoles. This molecule and its lipid A reproduce the premature cell death of PMNs, a phenomenon associated to the low production of proinflammatory cytokines. Blocking of CD14 but not TLR4 prevents the Br-LPS-induced cell death. The PMNs cell death departs from necrosis, NETosis and classical apoptosis. The mechanism of PMN cell death is linked to the activation of NADPH-oxidase and a modest but steadily increase of ROS mediators. These effectors generate DNA damage, recruitments of check point kinase 1, caspases 5 and to minor extent of caspase 4, RIP1 and Ca++ release. The production of IL-1β by PMNs was barely stimulated by B. abortus infection or Br-LPS treatment. Likewise, inhibition of caspase 1 did not hamper the Br-LPS induced PMN cell death, suggesting that the inflammasome pathway was not involved. Although activation of caspases 8 and 9 was observed, they did not seem to participate in the initial triggering mechanisms, since inhibition of these caspases scarcely blocked PMN cell death. These findings suggest a mechanism for neutropenia in chronic brucellosis and reveal a novel Brucella-host cross-talk through which B. abortus is able to hinder the innate function of PMN. The absence of obvious clinical symptoms during the early stages of brucellosis is linked to the Brucella stealthy strategy and its non-canonical PAMPs, which are low PRRs agonists. Still, there are clinical profiles that require explanation. For instance ‒despite the fact that neutrophils readily ingest Brucella during the onset of infection, brucellosis courses without neutrophilia, and just a low number of infected neutrophils are present in target organs. In the chronic phases, a significant proportion of the patients display absolute neutropenia and bone marrow pancytopenia linked to the myeloid cell linage. Examination of the Brucella infected bone marrow reveals granulomas and phagocytosis of myeloid cells. Based on these observations we explored the fate of native neutrophils during their interaction with Brucella. We found that the bacterium induces the premature cell death of neutrophils without inducing proinflammatory phenotypic changes. This event was reproduced by the lipid A of the Brucella LPS and depends on NADPH-oxidase activation and low ROS formation. We believe that this phenomenon explains ‒at least in part‒ the hematological and histological profiles observed during brucellosis. In addition, it may be that dying Brucella-infected neutrophils serve as “Trojan horse” vehicles for infecting phagocytic cells without promoting activation.
Collapse
Affiliation(s)
- Elías Barquero-Calvo
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
- Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Ricardo Mora-Cartín
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Vilma Arce-Gorvel
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Juana L. de Diego
- Department of Cell Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Carlos Chacón-Díaz
- Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Esteban Chaves-Olarte
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
- Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Caterina Guzmán-Verri
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
- Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Andre G. Buret
- Biological Sciences, Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
- * E-mail: (JPG); (EM)
| | - Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- * E-mail: (JPG); (EM)
| |
Collapse
|
28
|
Mohamed KH, Daniel T, Aurélien D, El-Maarouf-Bouteau H, Rafik E, Arbelet-Bonnin D, Biligui B, Florence V, Mustapha EM, François B. Deciphering the dual effect of lipopolysaccharides from plant pathogenic Pectobacterium. PLANT SIGNALING & BEHAVIOR 2015; 10:e1000160. [PMID: 25760034 PMCID: PMC4622587 DOI: 10.1080/15592324.2014.1000160] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 05/29/2023]
Abstract
Lipopolysaccharides (LPS) are a component of the outer cell surface of almost all Gram-negative bacteria and play an essential role for bacterial growth and survival. Lipopolysaccharides represent typical microbe-associated molecular pattern (MAMP) molecules and have been reported to induce defense-related responses, including the expression of defense genes and the suppression of the hypersensitive response in plants. However, depending on their origin and the challenged plant, LPS were shown to have complex and different roles. In this study we showed that LPS from plant pathogens Pectobacterium atrosepticum and Pectobacterium carotovorum subsp. carotovorum induce common and different responses in A. thaliana cells when compared to those induced by LPS from non-phytopathogens Escherichia coli and Pseudomonas aeruginosa. Among common responses to both types of LPS are the transcription of defense genes and their ability to limit of cell death induced by Pectobacterium carotovorum subsp carotovorum. However, the differential kinetics and amplitude in reactive oxygen species (ROS) generation seemed to regulate defense gene transcription and be determinant to induce programmed cell death in response to LPS from the plant pathogenic Pectobacterium. These data suggest that different signaling pathways could be activated by LPS in A. thaliana cells.
Collapse
Key Words
- AD, actinomycin D
- Chx, cycloheximide
- DPI, diphenylene iodonium
- EB, Evans Blue
- ETI, effector-triggered immunity
- HR, hypersensitive response
- LPS, lipopolysaccharides
- MAMP, microbe associated molecular pattern
- OPS, O-polysaccharide part
- PAMP, pathogen- associated molecular pattern
- PCD, programmed cell death
- PTI, PAMP triggered immunity
- Pa, Pectobacterium atrosepticum
- Pcc, Pectobacterium carotovorum carotovorum
- Pectobacterium spp
- ROS, reactive oxygen species
- Tiron, sodium 4,5-dihydroxybenzene-1,3-disulfonate
- defense responses
- lipopolysaccharides
- programmed cell death
- reactive oxygen species
Collapse
Affiliation(s)
- Kettani-Halabi Mohamed
- Université Paris Diderot-Paris 7; Institut des Energies de Demain (UMR8236); Paris, France
- LVHM–Université Hassan II Mohammedia – Casabalanca; FSTM, Maroc
| | - Tran Daniel
- Université Paris Diderot-Paris 7; Institut des Energies de Demain (UMR8236); Paris, France
| | - Dauphin Aurélien
- UPMC UMR-S975; Inserm U975; CNRS UMR 7225 Plateforme d'Imagerie cellulaire Pitié-Salpêtrière; GH Pitié-Salpêtrière; Paris, France
| | | | - Errakhi Rafik
- Université Paris Diderot-Paris 7; Institut des Energies de Demain (UMR8236); Paris, France
| | | | - Bernadette Biligui
- Université Paris Diderot-Paris 7; Institut des Energies de Demain (UMR8236); Paris, France
| | | | | | - Bouteau François
- Université Paris Diderot-Paris 7; Institut des Energies de Demain (UMR8236); Paris, France
| |
Collapse
|
29
|
Bacteria, the endoplasmic reticulum and the unfolded protein response: friends or foes? Nat Rev Microbiol 2014; 13:71-82. [PMID: 25534809 DOI: 10.1038/nrmicro3393] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The unfolded protein response (UPR) is a cytoprotective response that is aimed at restoring cellular homeostasis following physiological stress exerted on the endoplasmic reticulum (ER), which also invokes innate immune signalling in response to invading microorganisms. Although it has been known for some time that the UPR is modulated by various viruses, recent evidence indicates that it also has multiple roles during bacterial infections. In this Review, we describe how bacteria interact with the ER, including how bacteria induce the UPR, how subversion of the UPR promotes bacterial proliferation and how the UPR contributes to innate immune responses against invading bacteria.
Collapse
|
30
|
Roset MS, Ibañez AE, de Souza Filho JA, Spera JM, Minatel L, Oliveira SC, Giambartolomei GH, Cassataro J, Briones G. Brucella cyclic β-1,2-glucan plays a critical role in the induction of splenomegaly in mice. PLoS One 2014; 9:e101279. [PMID: 24983999 PMCID: PMC4077732 DOI: 10.1371/journal.pone.0101279] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 06/05/2014] [Indexed: 01/28/2023] Open
Abstract
Brucella, the etiological agent of animal and human brucellosis, is a bacterium with the capacity to modulate the inflammatory response. Cyclic β-1,2-glucan (CβG) is a virulence factor key for the pathogenesis of Brucella as it is involved in the intracellular life cycle of the bacteria. Using comparative studies with different CβG mutants of Brucella, cgs (CβG synthase), cgt (CβG transporter) and cgm (CβG modifier), we have identified different roles for this polysaccharide in Brucella. While anionic CβG is required for bacterial growth in low osmolarity conditions, the sole requirement for a successful Brucella interaction with mammalian host is its transport to periplasmic space. Our results uncover a new role for CβG in promoting splenomegaly in mice. We showed that CβG-dependent spleen inflammation is the consequence of massive cell recruitment (monocytes, dendritics cells and neutrophils) due to the induction of pro-inflammatory cytokines such as IL-12 and TNF-α and also that the reduced splenomegaly response observed with the cgs mutant is not the consequence of changes in expression levels of the characterized Brucella PAMPs LPS, flagellin or OMP16/19. Complementation of cgs mutant with purified CβG increased significantly spleen inflammation response suggesting a direct role for this polysaccharide.
Collapse
Affiliation(s)
- Mara S. Roset
- Instituto de Investigaciones Biotecnológicas “Rodolfo Ugalde” - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- * E-mail: (GB); (MSR)
| | - Andrés E. Ibañez
- Laboratorio de Inmunogenética, INIGEM-CONICET, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Job Alves de Souza Filho
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juan M. Spera
- Instituto de Investigaciones Biotecnológicas “Rodolfo Ugalde” - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Leonardo Minatel
- Instituto de Investigaciones Biotecnológicas “Rodolfo Ugalde” - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sergio C. Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Guillermo H. Giambartolomei
- Laboratorio de Inmunogenética, INIGEM-CONICET, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas “Rodolfo Ugalde” - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gabriel Briones
- Instituto de Investigaciones Biotecnológicas “Rodolfo Ugalde” - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- * E-mail: (GB); (MSR)
| |
Collapse
|
31
|
Foley SL, Johnson TJ, Ricke SC, Nayak R, Danzeisen J. Salmonella pathogenicity and host adaptation in chicken-associated serovars. Microbiol Mol Biol Rev 2013; 77:582-607. [PMID: 24296573 PMCID: PMC3973385 DOI: 10.1128/mmbr.00015-13] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Enteric pathogens such as Salmonella enterica cause significant morbidity and mortality. S. enterica serovars are a diverse group of pathogens that have evolved to survive in a wide range of environments and across multiple hosts. S. enterica serovars such as S. Typhi, S. Dublin, and S. Gallinarum have a restricted host range, in which they are typically associated with one or a few host species, while S. Enteritidis and S. Typhimurium have broad host ranges. This review examines how S. enterica has evolved through adaptation to different host environments, especially as related to the chicken host, and continues to be an important human pathogen. Several factors impact host range, and these include the acquisition of genes via horizontal gene transfer with plasmids, transposons, and phages, which can potentially expand host range, and the loss of genes or their function, which would reduce the range of hosts that the organism can infect. S. Gallinarum, with a limited host range, has a large number of pseudogenes in its genome compared to broader-host-range serovars. S. enterica serovars such as S. Kentucky and S. Heidelberg also often have plasmids that may help them colonize poultry more efficiently. The ability to colonize different hosts also involves interactions with the host's immune system and commensal organisms that are present. Thus, the factors that impact the ability of Salmonella to colonize a particular host species, such as chickens, are complex and multifactorial, involving the host, the pathogen, and extrinsic pressures. It is the interplay of these factors which leads to the differences in host ranges that we observe today.
Collapse
|
32
|
Abstract
The complex immune system of mammals is the result of evolutionary forces that include battles against pathogens, as sensing and defeating intruders is a prerequisite to host survival. On the other hand, microorganisms have evolved multiple mechanisms to evade both arms of immunity: the innate and the adaptive immune systems. The successful pathogenic intracellular bacterium Brucella is not an exception to the rule: Brucella displays mechanisms that allow evasion of immune surveillance in order to establish persistent infections in mammals. In this review, we highlight some key mechanisms that pathogenic Brucella use to evade the adaptive immune system.
Collapse
Affiliation(s)
- Anna Martirosyan
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
| | | |
Collapse
|
33
|
Jain-Gupta N, Contreras-Rodriguez A, Vemulapalli R, Witonsky SG, Boyle SM, Sriranganathan N. Pluronic P85 enhances the efficacy of outer membrane vesicles as a subunit vaccine against Brucella melitensis challenge in mice. ACTA ACUST UNITED AC 2013; 66:436-44. [PMID: 23163875 DOI: 10.1111/1574-695x.12010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 09/23/2012] [Accepted: 09/26/2012] [Indexed: 01/18/2023]
Abstract
Brucellosis is the most common zoonotic disease worldwide, and there is no vaccine for human use. Brucella melitensis Rev1, a live attenuated strain, is the commercial vaccine for small ruminants to prevent B. melitensis infections but has been associated with abortions in animals. Moreover, strain Rev1 is known to cause disease in humans and cannot be used for human vaccination. Outer membrane vesicles (OMVs) obtained from B. melitensis have been shown to provide protection similar to strain Rev1 in mice against B. melitensis challenge. In the present work, we tested the efficacy of Pluronic P85 as an adjuvant to enhance the efficacy of Brucella OMVs as a vaccine. P85 enhanced the in vitro secretion of TNF-α by macrophages induced with OMVs and P85. Further, P85 enhanced the protection provided by OMVs against B. melitensis challenge. This enhanced protection was associated with higher total IgG antibody production but not increased IFN-γ or IL-4 cytokine levels. Moreover, P85 alone provided significantly better clearance of B. melitensis compared to saline-vaccinated mice. Further studies are warranted to find the mechanism of action of P85 that provides nonspecific protection and enhances the efficacy of OMVs as a vaccine against B. melitensis.
Collapse
Affiliation(s)
- Neeta Jain-Gupta
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Disease, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Host cytokine responses to Brucella abortus infection are elicited predominantly by the deployment of a type IV secretion system (T4SS). However, the mechanism by which the T4SS elicits inflammation remains unknown. Here we show that translocation of the T4SS substrate VceC into host cells induces proinflammatory responses. Ectopically expressed VceC interacted with the endoplasmic reticulum (ER) chaperone BiP/Grp78 and localized to the ER of HeLa cells. ER localization of VceC required a transmembrane domain in its N terminus. Notably, the expression of VceC resulted in reorganization of ER structures. In macrophages, VceC was required for B. abortus-induced inflammation by induction of the unfolded protein response by a process requiring inositol-requiring transmembrane kinase/endonuclease 1. Altogether, these findings suggest that translocation of the T4SS effector VceC induces ER stress, which results in the induction of proinflammatory host cell responses during B. abortus infection. IMPORTANCE Brucella species are pathogens that require a type IV secretion system (T4SS) to survive in host cells and to maintain chronic infection. By as-yet-unknown pathways, the T4SS also elicits inflammatory responses in infected cells. Here we show that inflammation caused by the T4SS results in part from the sensing of a T4SS substrate, VceC, that localizes to the endoplasmic reticulum (ER), an intracellular site of Brucella replication. Possibly via binding of the ER chaperone BiP, VceC causes ER stress with concomitant expression of proinflammatory cytokines. Thus, induction of the unfolded protein response may represent a novel pathway by which host cells can detect pathogens deploying a T4SS.
Collapse
|
35
|
Martirosyan A, Ohne Y, Degos C, Gorvel L, Moriyón I, Oh S, Gorvel JP. Lipopolysaccharides with acylation defects potentiate TLR4 signaling and shape T cell responses. PLoS One 2013; 8:e55117. [PMID: 23390517 PMCID: PMC3563657 DOI: 10.1371/journal.pone.0055117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/19/2012] [Indexed: 01/27/2023] Open
Abstract
Lipopolysaccharides or endotoxins are components of Gram-negative enterobacteria that cause septic shock in mammals. However, a LPS carrying hexa-acyl lipid A moieties is highly endotoxic compared to a tetra-acyl LPS and the latter has been considered as an antagonist of hexa-acyl LPS-mediated TLR4 signaling. We investigated the relationship between the structure and the function of bacterial LPS in the context of human and mouse dendritic cell activation. Strikingly, LPS with acylation defects were capable of triggering a strong and early TLR4-dependent DC activation, which in turn led to the activation of the proteasome machinery dampening the pro-inflammatory cytokine secretion. Upon activation with tetra-acyl LPS both mouse and human dendritic cells triggered CD4+ T and CD8+ T cell responses and, importantly, human myeloid dendritic cells favored the induction of regulatory T cells. Altogether, our data suggest that LPS acylation controlled by pathogenic bacteria might be an important strategy to subvert adaptive immunity.
Collapse
Affiliation(s)
- Anna Martirosyan
- Aix-Marseille University UM 2, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- INSERM U 1104, Marseille, France
- CNRS UMR 7280, Marseille, France
| | - Yoichiro Ohne
- Baylor Institute for Immunology Research, Dallas, Texas, United States of America
| | - Clara Degos
- Aix-Marseille University UM 2, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- INSERM U 1104, Marseille, France
- CNRS UMR 7280, Marseille, France
| | - Laurent Gorvel
- Aix-Marseille University UM 2, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- INSERM U 1104, Marseille, France
- CNRS UMR 7280, Marseille, France
| | - Ignacio Moriyón
- Institute for Tropical Health and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Sangkon Oh
- Baylor Institute for Immunology Research, Dallas, Texas, United States of America
| | - Jean-Pierre Gorvel
- Aix-Marseille University UM 2, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- INSERM U 1104, Marseille, France
- CNRS UMR 7280, Marseille, France
- * E-mail:
| |
Collapse
|
36
|
Conde-Álvarez R, Arce-Gorvel V, Gil-Ramírez Y, Iriarte M, Grilló MJ, Gorvel JP, Moriyón I. Lipopolysaccharide as a target for brucellosis vaccine design. Microb Pathog 2012; 58:29-34. [PMID: 23219811 DOI: 10.1016/j.micpath.2012.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 11/21/2012] [Accepted: 11/23/2012] [Indexed: 10/27/2022]
Abstract
The gram-negative bacteria of the genus Brucella are facultative intracellular parasites that cause brucellosis, a world wide-distributed zoonotic disease that represents a serious problem for animal and human health. There is no human-to-human contagion and, since there is no human vaccine, animal vaccination is essential to control brucellosis. However, current vaccines (all developed empirically) do not provide 100% protection and are infectious in humans. Attempts to generate new vaccines by obtaining mutants lacking the lipopolysaccharide O-polysaccharide, in purine metabolism or in Brucella type IV secretion system have not been successful. Here we propose a new approach to develop brucellosis vaccines based on the concept that Brucella surface molecules evade efficient detection by innate immunity, thus delaying protective Th1 responses and opening a time window to reach sheltered intracellular compartments. We showed recently that a branch of the core oligosaccharide section of Brucella lipopolysaccharide hampers recognition by TLR4-MD2. Mutation of glycosyltransferase WadC, involved in the synthesis of this branch, results in a lipopolysaccharide that, while keeping the O-polysaccharide essential for optimal protection, shows a truncated core, is more efficiently recognized by MD2 and triggers an increased cytokine response. In keeping with this, the wadC mutant is attenuated in dendritic cells and mice. In the mouse model of brucellosis vaccines, the Brucella abortus wadC mutant conferred protection similar to that provided by S19, the best cattle vaccine available. The properties of the wadC mutant provide the proof of concept for this new approach and open the way for more effective brucellosis vaccines.
Collapse
Affiliation(s)
- Raquel Conde-Álvarez
- Institute for Tropical Health and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
Wang Y, Chen Z, Qiu Y, Ke Y, Xu J, Yuan X, Li X, Fu S, Cui M, Xie Y, Du X, Wang Z, Huang L. Identification of Brucella abortus virulence proteins that modulate the host immune response. Bioengineered 2012; 3:303-5. [PMID: 22743689 DOI: 10.4161/bioe.21005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is an important zoonotic disease of almost worldwide distribution. One significant immune phenomenon of this disease is the ability of the pathogen to hide and survive in the host, establishing long lasting chronic infections. Brucella was found to have the ability to actively modulate the host immune response in order to establish chronic infections, but the mechanism by which the pathogen achieves this remains largely unknown. In our screening for protective antigens of Brucella abortus, 3 proteins (BAB1_0597, BAB1_0917, and BAB2_0431) were found to induce significantly higher levels of gamma interferon (IFNγ) in splenocytes of PBS immunized mice than those immunized with S19. This finding strongly implied that these three proteins inhibit the production of IFNγ. Previous studies have shown that LPS, PrpA, and Btp1/TcpB are three important immunomodulatory molecules with the capacity to interfere with host immune response. They have been shown to have the ability to inhibit the secretion of IFNγ, or to increase the production of IL-10. Due to the role of these proteins in virulence and immunomodulation, they likely offer significant potential as live, attenuated Brucella vaccine candidates. Understanding the mechanisms by which these proteins modulate the host immune responses will deepen our knowledge of Brucella virulence and provide important information on the development of new vaccines against Brucellosis.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
The lipopolysaccharide core of Brucella abortus acts as a shield against innate immunity recognition. PLoS Pathog 2012; 8:e1002675. [PMID: 22589715 PMCID: PMC3349745 DOI: 10.1371/journal.ppat.1002675] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 03/15/2012] [Indexed: 12/16/2022] Open
Abstract
Innate immunity recognizes bacterial molecules bearing pathogen-associated molecular patterns to launch inflammatory responses leading to the activation of adaptive immunity. However, the lipopolysaccharide (LPS) of the gram-negative bacterium Brucella lacks a marked pathogen-associated molecular pattern, and it has been postulated that this delays the development of immunity, creating a gap that is critical for the bacterium to reach the intracellular replicative niche. We found that a B. abortus mutant in the wadC gene displayed a disrupted LPS core while keeping both the LPS O-polysaccharide and lipid A. In mice, the wadC mutant induced proinflammatory responses and was attenuated. In addition, it was sensitive to killing by non-immune serum and bactericidal peptides and did not multiply in dendritic cells being targeted to lysosomal compartments. In contrast to wild type B. abortus, the wadC mutant induced dendritic cell maturation and secretion of pro-inflammatory cytokines. All these properties were reproduced by the wadC mutant purified LPS in a TLR4-dependent manner. Moreover, the core-mutated LPS displayed an increased binding to MD-2, the TLR4 co-receptor leading to subsequent increase in intracellular signaling. Here we show that Brucella escapes recognition in early stages of infection by expressing a shield against recognition by innate immunity in its LPS core and identify a novel virulence mechanism in intracellular pathogenic gram-negative bacteria. These results also encourage for an improvement in the generation of novel bacterial vaccines.
Collapse
|
39
|
Palacios-Chaves L, Zúñiga-Ripa A, Gutiérrez A, Gil-Ramírez Y, Conde-Álvarez R, Moriyón I, Iriarte M. Identification and functional analysis of the cyclopropane fatty acid synthase of Brucella abortus. Microbiology (Reading) 2012; 158:1037-1044. [DOI: 10.1099/mic.0.055897-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Leyre Palacios-Chaves
- Instituto de Salud Tropical y Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Amaia Zúñiga-Ripa
- Instituto de Salud Tropical y Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Yolanda Gil-Ramírez
- Instituto de Salud Tropical y Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Raquel Conde-Álvarez
- Instituto de Salud Tropical y Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Ignacio Moriyón
- Instituto de Salud Tropical y Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Maite Iriarte
- Instituto de Salud Tropical y Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
40
|
von Bargen K, Gorvel JP, Salcedo SP. Internal affairs: investigating the Brucella intracellular lifestyle. FEMS Microbiol Rev 2012; 36:533-62. [PMID: 22373010 DOI: 10.1111/j.1574-6976.2012.00334.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 01/10/2012] [Accepted: 02/16/2012] [Indexed: 01/18/2023] Open
Abstract
Bacteria of the genus Brucella are Gram-negative pathogens of several animal species that cause a zoonotic disease in humans known as brucellosis or Malta fever. Within their hosts, brucellae reside within different cell types where they establish a replicative niche and remain protected from the immune response. The aim of this article is to discuss recent advances in the field in the specific context of the Brucella intracellular 'lifestyle'. We initially discuss the different host cell targets and their relevance during infection. As it represents the key to intracellular replication, the focus is then set on the maturation of the Brucella phagosome, with particular emphasis on the Brucella factors that are directly implicated in intracellular trafficking and modulation of host cell signalling pathways. Recent data on the role of the type IV secretion system are discussed, novel effector molecules identified and how some of them impact on trafficking events. Current knowledge on Brucella gene regulation and control of host cell death are summarized, as they directly affect intracellular persistence. Understanding how Brucella molecules interplay with their host cell targets to modulate cellular functions and establish the intracellular niche will help unravel how this pathogen causes disease.
Collapse
Affiliation(s)
- Kristine von Bargen
- Faculté de Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, UM 2, Marseille Cedex, France
| | | | | |
Collapse
|
41
|
Atluri VL, Xavier MN, de Jong MF, den Hartigh AB, Tsolis RM. Interactions of the human pathogenic Brucella species with their hosts. Annu Rev Microbiol 2012; 65:523-41. [PMID: 21939378 DOI: 10.1146/annurev-micro-090110-102905] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brucellosis is a zoonotic infection caused primarily by the bacterial pathogens Brucella melitensis and B. abortus. It is acquired by consumption of unpasteurized dairy products or by contact with infected animals. Globally, it is one of the most widespread zoonoses, with 500,000 new cases reported each year. In endemic areas, Brucella infections represent a serious public health problem that results in significant morbidity and economic losses. An important feature of the disease is persistent bacterial colonization of the reticuloendothelial system. In this review we discuss recent insights into mechanisms of intracellular survival and immune evasion that contribute to systemic persistence by the pathogenic Brucella species.
Collapse
Affiliation(s)
- Vidya L Atluri
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California 95616, USA.
| | | | | | | | | |
Collapse
|
42
|
Oliveira SC, de Almeida LA, Carvalho NB, Oliveira FS, Lacerda TLS. Update on the role of innate immune receptors during Brucella abortus infection. Vet Immunol Immunopathol 2011; 148:129-35. [PMID: 21700343 DOI: 10.1016/j.vetimm.2011.05.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 03/24/2011] [Accepted: 05/31/2011] [Indexed: 02/06/2023]
Abstract
The innate immune system constitutes an efficient defense mechanism against invading microbial pathogens. Recent studies have revealed the intracellular signaling cascades involved in the TLR-initiated immune response to Brucella spp. infection. However, there is a piece of the puzzle missing that is the role of non-TLR receptors in innate immunity. The involvement of TLR receptors in brucellosis has been investigated by different research groups. It was demonstrated that TLR2 clearly does not play any role in controlling Brucella abortus infection in vivo, whereas TLR9 has been shown to be required for clearance of this bacterium in infected mice. The participation of adaptor molecules, such as MyD88 and TRIF has also been discussed. Recently, we and others have reported the critical role of MyD88- and not TRIF-mediated signaling in dendritic cell maturation and in vivo resistance during B. abortus infection. However, the relationship between specific Brucella molecules and non-TLR receptors and signal transduction pathways needs to be better understood. It is now clear that the interaction between TLRs and recently identified cytosolic innate immune sensors is crucial for mounting effective immune responses. Finally, this review discusses the mechanisms used by Brucella to escape detection by the host innate immune system.
Collapse
Affiliation(s)
- Sérgio C Oliveira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Av. Antonio Carlos 6627, Pampulha, Belo Horizonte, MG, Brazil.
| | | | | | | | | |
Collapse
|
43
|
Immunoregulatory mechanisms of macrophage PPAR-γ in mice with experimental inflammatory bowel disease. Mucosal Immunol 2011; 4:304-13. [PMID: 21068720 PMCID: PMC3049196 DOI: 10.1038/mi.2010.75] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Peroxisome proliferator-activated receptor-γ (PPAR-γ) is widely expressed in macrophages and has been identified as a putative target for the development of novel therapies against inflammatory bowel disease (IBD). Computational simulations identified macrophages as key targets for therapeutic interventions against IBD. This study aimed to characterize the mechanisms underlying the beneficial effects of macrophage PPAR-γ in IBD. Macrophage-specific PPAR-γ deletion significantly exacerbated clinical activity and colonic pathology, impaired the splenic and mesenteric lymph node regulatory T-cell compartment, increased percentages of lamina propria (LP) CD8+ T cells, increased surface expression of CD40, Ly6C, and Toll-like receptor 4 (TLR-4) in LP macrophages, and upregulated expression of colonic IFN-γ, CXCL9, CXCL10, IL-22, IL1RL1, CCR1, suppressor of cytokine signaling 3, and MHC class II in mice with IBD. Moreover, macrophage PPAR-γ was required for accelerating pioglitazone-mediated recovery from dextran sodium sulfate (DSS) colitis, providing a cellular target for the anti-inflammatory effects of PPAR-γ agonists in IBD.
Collapse
|
44
|
Han SW, Lee SW, Ronald PC. Secretion, modification, and regulation of Ax21. Curr Opin Microbiol 2011; 14:62-7. [PMID: 21236725 DOI: 10.1016/j.mib.2010.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/03/2010] [Accepted: 12/13/2010] [Indexed: 10/18/2022]
Abstract
Innate immunity provides a first line of defense against pathogen attack and is activated rapidly following infection. Although it is now widely appreciated that host receptors of conserved microbial signatures play a key role in innate immunity in plants and animals, very little is known about the biological function of the microbially derived molecules recognized by such receptors. We have recently demonstrated that the rice XA21 receptor binds the AxY(S)22 peptide corresponding to the N-terminal region of Ax21, a type I-secreted protein that is highly conserved in all Xanthomonas species as well as in Xylella fastidiosa and the human pathogen, Stenotrophomonas maltophilia. We hypothesize that post-translational modification of Ax21 is carried out by the RaxP, RaxQ, and RaxST proteins and that perception and regulation of Ax21 is controlled by the RaxR/H and PhoP/Q 2-component regulatory systems. Ax21 is predicted to serve as an inducer of quorum sensing (QS), a process where bacteria communicate with one another. Because this is the first example of a conserved microbial signature that binds a host receptor and is also predicted to serve as an inducer of QS, this work has revealed fundamental new principles governing host-microbe interactions and has provided insight into the signaling dynamics of microbial communities.
Collapse
Affiliation(s)
- Sang-Wook Han
- Department of Plant Pathology, University of California, One Shields Ave., Davis, CA 95616, USA
| | | | | |
Collapse
|
45
|
de Jong MF, Rolán HG, Tsolis RM. Innate immune encounters of the (Type) 4th kind: Brucella. Cell Microbiol 2010; 12:1195-202. [PMID: 20670294 DOI: 10.1111/j.1462-5822.2010.01498.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In humans, pathogenic Brucella species cause a febrile illness known as brucellosis. A key pathogenic trait of this group of organisms is their ability to survive in immune cells and persist in tissues of the reticuloendothelial system, a process that requires the function of a Type IV secretion system. In contrast to other well-studied Gram-negative bacteria, Brucella spp. do not cause inflammation at the site of invasion, but have a latency period of 2-4 weeks before the onset of symptoms. This review discusses several mechanisms that allow Brucella spp. both to evade detection by pattern recognition receptors of the innate immune system and suppress their signalling. In contrast to these stealth features, the VirB Type IV secretion system, which mediates survival within phagocytic cells, stimulates innate immune responses in vivo. The responses stimulated by this virulence factor are sufficient to check bacterial growth, but not to elicit sterilizing immunity. The result is a stand-off between host and pathogen that results in persistent infection.
Collapse
Affiliation(s)
- Maarten F de Jong
- Department of Medical Microbiology & Immunology, University of California at Davis, Davis, CA, USA
| | | | | |
Collapse
|
46
|
Lacerda TLS, Cardoso PG, Augusto de Almeida L, Camargo ILBDC, Afonso DAF, Trant CC, Macedo GC, Campos E, Cravero SL, Salcedo SP, Gorvel JP, Oliveira SC. Inactivation of formyltransferase (wbkC) gene generates a Brucella abortus rough strain that is attenuated in macrophages and in mice. Vaccine 2010; 28:5627-34. [PMID: 20580469 DOI: 10.1016/j.vaccine.2010.06.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/04/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
Abstract
Rough mutants of Brucella abortus were generated by disruption of wbkC gene which encodes the formyltransferase enzyme involved in LPS biosynthesis. In bone marrow-derived macrophages the B. abortusDeltawbkC mutants were attenuated, could not reach a replicative niche and induced higher levels of IL-12 and TNF-alpha when compared to parental smooth strains. Additionally, mutants exhibited attenuation in vivo in C57BL/6 and interferon regulatory factor-1 knockout mice. DeltawbkC mutant strains induced lower protective immunity in C56BL/6 than smooth vaccine S19 but similar to rough vaccine RB51. Finally, we demonstrated that Brucella wbkC is critical for LPS biosynthesis and full bacterial virulence.
Collapse
Affiliation(s)
- Thaís Lourdes Santos Lacerda
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Pampulha, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Survival of the fittest: how Brucella strains adapt to their intracellular niche in the host. Med Microbiol Immunol 2009; 198:221-38. [PMID: 19830453 DOI: 10.1007/s00430-009-0123-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Indexed: 02/06/2023]
Abstract
Brucella strains produce abortion and infertility in their natural hosts and a zoonotic disease in humans known as undulant fever. These bacteria do not produce classical virulence factors, and their capacity to successfully survive and replicate within a variety of host cells underlies their pathogenicity. Extensive replication of the brucellae in placental trophoblasts is associated with reproductive tract pathology in natural hosts, and prolonged persistence in macrophages leads to the chronic infections that are a hallmark of brucellosis in both natural hosts and humans. This review describes how Brucella strains have efficiently adapted to their intracellular lifestyle in the host.
Collapse
|
48
|
Brucella abortus induces Irgm3 and Irga6 expression via type-I IFN by a MyD88-dependent pathway, without the requirement of TLR2, TLR4, TLR5 and TLR9. Microb Pathog 2009; 47:299-304. [PMID: 19747534 DOI: 10.1016/j.micpath.2009.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Revised: 09/01/2009] [Accepted: 09/02/2009] [Indexed: 12/24/2022]
Abstract
The innate immune system senses bacterial pathogens by pattern recognition receptors, such as the well-characterised Toll-like Receptors (TLR). The activation of TLR signalling cascades depends on several adaptor proteins, among which MyD88 plays a key role in triggering innate immune responses. Here, we show in murine macrophages that Brucella abortus triggers expression of the interferon-inducible resistance proteins (IRGs, p47 GTPases) via type-I IFN secretion at late time points, when Brucella has reached its replication niche. This induction requires the adaptor molecule MyD88 but does not involve the TLRs normally implicated in sensing Gram-negative bacteria, namely TLR2, TLR4, TLR5 and TLR9. Brucella mutants lacking the functional VirB type-IV secretion system were not capable of inducing Irgm3 and Irga6 expression, suggesting that the type-IV secretion system is part of the triggering of the activation process. Our data suggest that Brucella is recognized intracellularly by an unknown receptor, different from the conventional ones used for Gram-negative sensing, but one that nevertheless signals through MyD88.
Collapse
|
49
|
Tsolis RM, Seshadri R, Santos RL, Sangari FJ, Lobo JMG, de Jong MF, Ren Q, Myers G, Brinkac LM, Nelson WC, DeBoy RT, Angiuoli S, Khouri H, Dimitrov G, Robinson JR, Mulligan S, Walker RL, Elzer PE, Hassan KA, Paulsen IT. Genome degradation in Brucella ovis corresponds with narrowing of its host range and tissue tropism. PLoS One 2009; 4:e5519. [PMID: 19436743 PMCID: PMC2677664 DOI: 10.1371/journal.pone.0005519] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 03/23/2009] [Indexed: 01/08/2023] Open
Abstract
Brucella ovis is a veterinary pathogen associated with epididymitis in sheep. Despite its genetic similarity to the zoonotic pathogens B. abortus, B. melitensis and B. suis, B. ovis does not cause zoonotic disease. Genomic analysis of the type strain ATCC25840 revealed a high percentage of pseudogenes and increased numbers of transposable elements compared to the zoonotic Brucella species, suggesting that genome degradation has occurred concomitant with narrowing of the host range of B. ovis. The absence of genomic island 2, encoding functions required for lipopolysaccharide biosynthesis, as well as inactivation of genes encoding urease, nutrient uptake and utilization, and outer membrane proteins may be factors contributing to the avirulence of B. ovis for humans. A 26.5 kb region of B. ovis ATCC25840 Chromosome II was absent from all the sequenced human pathogenic Brucella genomes, but was present in all of 17 B. ovis isolates tested and in three B. ceti isolates, suggesting that this DNA region may be of use for differentiating B. ovis from other Brucella spp. This is the first genomic analysis of a non-zoonotic Brucella species. The results suggest that inactivation of genes involved in nutrient acquisition and utilization, cell envelope structure and urease may have played a role in narrowing of the tissue tropism and host range of B. ovis.
Collapse
Affiliation(s)
- Renee M. Tsolis
- Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Rekha Seshadri
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Renato L. Santos
- Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
- Escola de Veteranaria, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Felix J. Sangari
- Molecular Biology Department, University of Cantabria, Santander, Spain
| | | | - Maarten F. de Jong
- Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Qinghu Ren
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Garry Myers
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Lauren M. Brinkac
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - William C. Nelson
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Robert T. DeBoy
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Samuel Angiuoli
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Hoda Khouri
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - George Dimitrov
- J. Craig Venter Institute, La Jolla, California, United States of America
| | | | - Stephanie Mulligan
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Richard L. Walker
- California Animal Health and Food Safety Laboratory, Davis, California, United States of America
| | - Philip E. Elzer
- Department of Veterinary Science, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Karl A. Hassan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Ian T. Paulsen
- J. Craig Venter Institute, La Jolla, California, United States of America
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
- * E-mail:
| |
Collapse
|
50
|
Soltanian S, Stuyven E, Cox E, Sorgeloos P, Bossier P. Beta-glucans as immunostimulant in vertebrates and invertebrates. Crit Rev Microbiol 2009; 35:109-38. [DOI: 10.1080/10408410902753746] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|