1
|
Chen Z, Mo Q, Luo S, Liang J, Li Y, Gao Y, Zhang C, Jiang L, Ma J, Yang S, Jiang F, Liu M, Liu S, Yang J. Exploring antiviral effect and mechanism of Jinye Baidu granules(JYBD)against influenza A virus through network pharmacology and in vitro and invivo experiments. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118720. [PMID: 39197802 DOI: 10.1016/j.jep.2024.118720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jinye Baidu granules (JYBD) have been used to treat acute respiratory tract infections and demonstrated clinical efficacy for the treatment of emerging or epidemic respiratory viruses such as SARS-CoV-2 and influenza virus. AIM OF THE STUDY This study is to investigate the antiviral effect of JYBD against influenza A viruses (IAV) in vitro and in vivo and elucidate its underlying mechanism. MATERIALS AND METHODS Ultra-high-performance liquid chromatography connected with Orbitrap mass spectrometer (UHPLC-Orbitrap MS) was employed to describe the chemical profile of JYBD. The potential pathways and targets involved in JYBD against IAV infection were predicted by network pharmacology. The efficacy and mechanism of JYBD were validated through both in vivo and in vitro experiments. Moreover, combination therapy with JYBD and the classic anti-influenza drugs was also investigated. RESULTS A total of 126 compounds were identified by UHPLC-Orbitrap MS, of which 9 compounds were unambiguously confirmed with reference standards. JYBD could significantly inhibit the replication of multiple strains of IAV, especially oseltamivir-resistant strains. The results of qRT-PCR and WB demonstrated that JYBD could inhibit the excessive induction of pro-inflammatory cytokines induced by IAV infection and regulate inflammatory response through inhibiting JAK/STAT, NF-κB and MAPK pathways. Moreover, both JYBD monotherapy or in combination with oseltamivir could alleviate IAV-induced severe lung injury in mice. CONCLUSIONS JYBD could inhibit IAV replication and mitigate virus-induced excessive inflammatory response. Combinations of JYBD and neuraminidase inhibitors conferred synergistic suppression of IAV both in vitro and in vivo. It might provide a scientific basis for clinical applications of JYBD against influenza virus infected diseases.
Collapse
Affiliation(s)
- Zhixuan Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Qinxian Mo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Sinopharm Zhonglian Pharmaceutical Co., Ltd., Wuhan 430000, PR China
| | - Siqi Luo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Jinlong Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Yinyan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Yinhuang Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Chunyu Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Linrui Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Jun Ma
- Sinopharm Zhonglian Pharmaceutical Co., Ltd., Wuhan 430000, PR China
| | - Sizu Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Feng Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Menghua Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Shuwen Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| | - Jie Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
2
|
Vijayakumar P, Mishra A, Deka RP, Pinto SM, Subbannayya Y, Sood R, Prasad TSK, Raut AA. Proteomics Analysis of Duck Lung Tissues in Response to Highly Pathogenic Avian Influenza Virus. Microorganisms 2024; 12:1288. [PMID: 39065055 PMCID: PMC11278641 DOI: 10.3390/microorganisms12071288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 07/28/2024] Open
Abstract
Domestic ducks (Anas platyrhynchos domesticus) are resistant to most of the highly pathogenic avian influenza virus (HPAIV) infections. In this study, we characterized the lung proteome and phosphoproteome of ducks infected with the HPAI H5N1 virus (A/duck/India/02CA10/2011/Agartala) at 12 h, 48 h, and 5 days post-infection. A total of 2082 proteins were differentially expressed and 320 phosphorylation sites mapping to 199 phosphopeptides, corresponding to 129 proteins were identified. The functional annotation of the proteome data analysis revealed the activation of the RIG-I-like receptor and Jak-STAT signaling pathways, which led to the induction of interferon-stimulated gene (ISG) expression. The pathway analysis of the phosphoproteome datasets also confirmed the activation of RIG-I, Jak-STAT signaling, NF-kappa B signaling, and MAPK signaling pathways in the lung tissues. The induction of ISG proteins (STAT1, STAT3, STAT5B, STAT6, IFIT5, and PKR) established a protective anti-viral immune response in duck lung tissue. Further, the protein-protein interaction network analysis identified proteins like AKT1, STAT3, JAK2, RAC1, STAT1, PTPN11, RPS27A, NFKB1, and MAPK1 as the main hub proteins that might play important roles in disease progression in ducks. Together, the functional annotation of the proteome and phosphoproteome datasets revealed the molecular basis of the disease progression and disease resistance mechanism in ducks infected with the HPAI H5N1 virus.
Collapse
Affiliation(s)
- Periyasamy Vijayakumar
- Pathogenomics Laboratory, WOAH Reference Lab for Avian Influenza, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, Madhya Pradesh, India; (P.V.); (A.M.); (R.S.)
- Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Salem 600051, Tamil Nadu, India
| | - Anamika Mishra
- Pathogenomics Laboratory, WOAH Reference Lab for Avian Influenza, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, Madhya Pradesh, India; (P.V.); (A.M.); (R.S.)
| | - Ram Pratim Deka
- International Livestock Research Institute, National Agricultural Science Complex, Pusa 110012, New Delhi, India;
| | - Sneha M. Pinto
- Centre for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India; (S.M.P.); (Y.S.)
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Yashwanth Subbannayya
- Centre for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India; (S.M.P.); (Y.S.)
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Richa Sood
- Pathogenomics Laboratory, WOAH Reference Lab for Avian Influenza, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, Madhya Pradesh, India; (P.V.); (A.M.); (R.S.)
| | | | - Ashwin Ashok Raut
- Pathogenomics Laboratory, WOAH Reference Lab for Avian Influenza, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, Madhya Pradesh, India; (P.V.); (A.M.); (R.S.)
| |
Collapse
|
3
|
Werz O, Stettler H, Theurer C, Seibel J. The 125th Anniversary of Aspirin-The Story Continues. Pharmaceuticals (Basel) 2024; 17:437. [PMID: 38675399 PMCID: PMC11054228 DOI: 10.3390/ph17040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The year 2024 marks the 125th anniversary of aspirin, still one of the most frequently used drugs worldwide. Despite its veritable age, it is still relevant in pharmacotherapy and its use has spread to new areas over time. Due to aspirin's multiple pharmacological actions unified in one single molecule (i.e., analgesic, antipyretic, anti-inflammatory, antithrombotic, and antiviral effects), it continues to attract considerable attention in the scientific community and is subject to intense basic and clinical research. In fact, recent results confirmed aspirin's potential role as an antiviral drug and as an agent that can block harmful platelet functions in inflammatory/immunological processes. These features may open up new horizons for this ancient drug. The future of aspirin looks, therefore, bright and promising. Aspirin is not yet ready for retirement; on the contrary, its success story continues. This 125th anniversary paper will concisely review the various therapeutic uses of aspirin with a particular emphasis on the latest research results and their implications (e.g., use as an antiviral agent). In addition, the reader is provided with future perspectives for this remarkable drug.
Collapse
Affiliation(s)
- Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Hans Stettler
- Bayer Consumer Care AG, Peter Merian-Strasse 84, 4002 Basel, Switzerland;
| | - Christoph Theurer
- Bayer Vital GmbH, Kaiser-Wilhelm-Allee 70, 51373 Leverkusen, Germany;
| | - Jens Seibel
- Bayer Vital GmbH, Kaiser-Wilhelm-Allee 70, 51373 Leverkusen, Germany;
| |
Collapse
|
4
|
Meseko C, Sanicas M, Asha K, Sulaiman L, Kumar B. Antiviral options and therapeutics against influenza: history, latest developments and future prospects. Front Cell Infect Microbiol 2023; 13:1269344. [PMID: 38094741 PMCID: PMC10716471 DOI: 10.3389/fcimb.2023.1269344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023] Open
Abstract
Drugs and chemotherapeutics have helped to manage devastating impacts of infectious diseases since the concept of 'magic bullet'. The World Health Organization estimates about 650,000 deaths due to respiratory diseases linked to seasonal influenza each year. Pandemic influenza, on the other hand, is the most feared health disaster and probably would have greater and immediate impact on humanity than climate change. While countermeasures, biosecurity and vaccination remain the most effective preventive strategies against this highly infectious and communicable disease, antivirals are nonetheless essential to mitigate clinical manifestations following infection and to reduce devastating complications and mortality. Continuous emergence of the novel strains of rapidly evolving influenza viruses, some of which are intractable, require new approaches towards influenza chemotherapeutics including optimization of existing anti-infectives and search for novel therapies. Effective management of influenza infections depend on the safety and efficacy of selected anti-infective in-vitro studies and their clinical applications. The outcomes of therapies are also dependent on understanding diversity in patient groups, co-morbidities, co-infections and combination therapies. In this extensive review, we have discussed the challenges of influenza epidemics and pandemics and discoursed the options for anti-viral chemotherapies for effective management of influenza virus infections.
Collapse
Affiliation(s)
- Clement Meseko
- Regional Centre for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - Melvin Sanicas
- Medical and Clinical Development, Clover Biopharmaceuticals, Boston, MA, United States
| | - Kumari Asha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Lanre Sulaiman
- Regional Centre for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - Binod Kumar
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
5
|
Hornung F, Schulz L, Köse-Vogel N, Häder A, Grießhammer J, Wittschieber D, Autsch A, Ehrhardt C, Mall G, Löffler B, Deinhardt-Emmer S. Thoracic adipose tissue contributes to severe virus infection of the lung. Int J Obes (Lond) 2023; 47:1088-1099. [PMID: 37587162 PMCID: PMC10599992 DOI: 10.1038/s41366-023-01362-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVE Obesity is an independent risk factor for severe influenza virus and COVID-19 infections. There might be an interplay between adipose tissue and respiratory pathogens, although the mechanism is unknown. Proinflammatory factors secreted by the adipose tissue are often discussed to serve as indirect contributor to virus infection. However, the direct potential of adipose tissue to serve as a viral niche has not yet been investigated. METHODS Two murine obesity models (DIO and ob/ob) were infected with influenza A virus (IAV) and monitored for 3 weeks. p.i. Lung and adipose tissue were harvested, and the viral load was analysed. Direct replication of IAV in vitro was investigated in human derived primary adipocytes and macrophages. The indirect impact of the secretory products of adipocytes during infection was analysed in a co-culture system with lung fibroblasts. Moreover, lung and adipose tissue was harvested from deceased patients infected with SARS-CoV-2 omicron variant. Additionally, replication of SARS-CoV-2 alpha, delta, and omicron variants was investigated in vitro in adipocytes and macrophages. RESULTS Both murine obesity models presented high IAV titers compared to non-obese mice. Interestingly, adipose tissue adjacent to the lungs was a focal point for influenza virus replication in mice. We further detected IAV replication and antiviral response in human adipocytes. Co-cultivation of adipocytes and lung fibroblasts led to increased IL-8 concentration during infection. Though we observed SARS-CoV-2 in the thoracic adipose tissue of COVID-19 patients, no active replication was found in adipocytes in vitro. However, SARS-CoV-2 was detected in the macrophages and this finding was associated with increased inflammation. CONCLUSIONS Our study revealed that thoracic adipose tissue contributes to respiratory virus infection. Besides indirect induction of proinflammatory factors during infection, adipocytes and macrophages within the tissue can directly support viral replication.
Collapse
Affiliation(s)
- Franziska Hornung
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, Jena, Germany.
| | - Luise Schulz
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, Jena, Germany
| | - Nilay Köse-Vogel
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, Jena, Germany
| | - Antje Häder
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, Jena, Germany
| | - Jana Grießhammer
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, Jena, Germany
| | - Daniel Wittschieber
- Institute of Forensic Medicine, Jena University Hospital, Am Klinikum 1, Jena, Germany
- Institute of Forensic Medicine, University Hospital Bonn, University of Bonn, Stiftsplatz 12, 53111, Bonn, Germany
| | - Angelina Autsch
- Institute of Forensic Medicine, Jena University Hospital, Am Klinikum 1, Jena, Germany
| | - Christina Ehrhardt
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Straße 2, Jena, Germany
| | - Gita Mall
- Institute of Forensic Medicine, Jena University Hospital, Am Klinikum 1, Jena, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, Jena, Germany
| | - Stefanie Deinhardt-Emmer
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, Jena, Germany.
- Leibniz Institute of Photonic Technology-Member of the Research Alliance "Leibniz Health Technologies", Albert-Einstein-Straße 9, Jena, Germany.
| |
Collapse
|
6
|
Zhao W, Li Z, Yu ML, Liu Y, Liu CC, Jia XJ, Liu MQ, Li YG. Aspirin inhibits rotavirus replication and alters rat gut microbial composition. Virol J 2023; 20:237. [PMID: 37848986 PMCID: PMC10580602 DOI: 10.1186/s12985-023-02199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Aspirin is widely used to treat various clinical symptoms. Evidence suggests that aspirin has antiviral properties, but little is known about its specific effect against rotavirus. METHODS MA104, Caco-2, and CV-1 cells were infected with rotavirus, and aspirin was added after 12 h. Viral mRNA and titer levels were measured by qRT-PCR and immunofluorescence assays. For in vivo validation, forty specific-pathogen-free SD rats were randomly divided into oral aspirin (ASP) groups and control (NC) groups. 16 S rRNA gene sequencing was performed to identify gut microbiota. After 6 months of continuous ASP/NC administration, the rats were infected with rotavirus. Fecal samples were collected over a 30-day time course, and viral levels were quantified. Proinflammatory cytokines/chemokine levels were measured by ELISA. RESULTS Aspirin inhibited rotavirus infection in cell lines and in rats. The effects of aspirin on viral replication were associated with the alteration of gut microbiota composition by aspirin, including increased abundance of Firmicutes and decreased abundance of Bacteroidetes after aspirin treatment. Mechanistically, aspirin reduced IL-2 and IL-10 levels, and increased IRF-1 and COX-2 levels. Aspirin blocked rotavirus replication in vitro and in vivo, which might be related to effects on IRF-1, COX-2, chemokines, and gut microbial composition. CONCLUSION These results indicate that long-term oral aspirin administration reduces rotavirus infection. Intestinal virus infection may be suppressed in elderly patients who take aspirin for a long time. The change of their Gut microbiota may lead to functional disorder of the intestinal tract, which may provide some reference for clinical adjuvant probiotics treatment.
Collapse
Affiliation(s)
- Wei Zhao
- College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, China
| | - ZhouPing Li
- The first affiliated hospital of Jinzhou Medical University, Jinzhou, China
| | - Mei Ling Yu
- College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, China
| | - Yang Liu
- College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, China
| | - Chang Cheng Liu
- College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, China
| | - Xue Jiao Jia
- College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, China
| | - Meng Qi Liu
- College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, China
| | - Yong Gang Li
- College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
7
|
Wang Y, Zhang R, Yang F, Yang L, Li Q, Guo J, Liu X, Song J, Zhang G, Li J, An Z, Alexis NE, Jaspers I, Wu W. Potential mechanisms mediating PM 2.5-induced alterations of H3N2 influenza virus infection and cytokine production in human bronchial epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115069. [PMID: 37244199 DOI: 10.1016/j.ecoenv.2023.115069] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
Exposure to particulate matter (PM) has been associated with increased hospital admissions for influenza. Airway epithelial cells are a primary target for inhaled environmental insults including fine PM (PM2.5) and influenza viruses. The potentiation of PM2.5 exposure on the effects of influenza virus on airway epithelial cells has not been adequately elucidated. In this study, the effects of PM2.5 exposure on influenza virus (H3N2) infection and downstream modulation of inflammation and antiviral immune response were investigated using a human bronchial epithelial cell line, BEAS-2B. The results showed that PM2.5 exposure alone increased the production of pro-inflammatory cytokines including interleukin-6 (IL-6) and IL-8 but decreased the production of the antiviral cytokine interferon-β (IFN-β) in BEAS-2B cells while H3N2 exposure alone increased the production of IL-6, IL-8, and IFN-β. Importantly, prior exposure to PM2.5 enhanced subsequent H3N2 infectivity, expression of viral hemagglutinin protein, as well as upregulation of IL-6 and IL-8, but reduced H3N2-induced IFN-β production. Pre-treatment with a pharmacological inhibitor of nuclear factor-κB (NF-κB) suppressed pro-inflammatory cytokine production induced by PM2.5, H3N2, as well as PM2.5-primed H3N2 infection. Moreover, antibody-mediated neutralization of Toll-like receptor 4 (TLR4) blocked cytokine production triggered by PM2.5 or PM2.5-primed H3N2 infection, but not H3N2 alone. Taken together, exposure to PM2.5 alters H3N2-induced cytokine production and markers of replication in BEAS-2B cells, which in turn are regulated by NF-κB and TLR4.
Collapse
Affiliation(s)
- Yinbiao Wang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Rui Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Fuyun Yang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Lin Yang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Qingmei Li
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
| | - Junqing Guo
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
| | - Xiao Liu
- School of Laboratory Medicine, Henan Medical College, Zhengzhou 451191, PR China
| | - Jie Song
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Guofu Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Juan Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ilona Jaspers
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, PR China.
| |
Collapse
|
8
|
Huo J, Wang T, Wei B, Shi X, Yang A, Chen D, Hu J, Zhu H. Integrated network pharmacology and intestinal flora analysis to determine the protective effect of Xuanbai-Chengqi decoction on lung and gut injuries in influenza virus-infected mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115649. [PMID: 35987410 DOI: 10.1016/j.jep.2022.115649] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/03/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xuanbai-Chengqi decoction (XBCQ) is a traditional Chinese medicine (TCM) compound used in the treatment of pulmonary infection in China. Despite the popular usage of XBCQ, its underlying protective roles and the associated molecular mechanisms with the gut-lung axis in influenza remain unclear. AIM OF THE STUDY We aimed to explore the protective effects and the underlying mechanism of XBCQ efficacy on lung and intestine injuries induced by influenza A virus as well as to identify the main active components through integrated network pharmacology, intestinal flora analysis and pathway validation. MATERIALS AND METHODS The potential active components and therapeutic targets of XBCQ in the treatment of influenza were hypothesized through a series of network pharmacological strategies, including components screening, targets prediction and bioinformatics analysis. Inflammatory cytokines and pathway proteins were assayed to validate the results of network pharmacology. Then the mechanism of XBCQ alleviating lung and intestine injuries was further explored via intestinal flora analysis. The important role of Rhubarb in the formula was verified by removing Rhubarb. RESULTS XBCQ could significantly improve the survival rate in IAV-infected mice. The network pharmacology results demonstrated that JUN, mitogen-activated protein kinase (MAPK), and tumor necrosis factor (TNF) are the key targets of XBCQ that can be useful in influenza treatment as it contains the core components luteolin, emodin, and aloe-emodin, which are related to the pathways of TNF, T-cell receptor (TCR), and NF-κB. Verification experiments demonstrated that XBCQ could significantly alleviate the immune injury of the lungs and the gut of the mice, which is attributable to the inhibition of the release of inflammatory cytokines (such as TNF-α, IL-6, and IL-1β), the downregulation of the protein expression levels of Toll-like receptors-7 (TLR7), MyD88, and p-NF-κB65, and the reduction in the relative abundance of Enterobacteriaceae and Proteus, while an increase in that of Firmicutes and Lachnospiraceae. The overall protective role of XBCQ contributing to the treatment of the lungs and the gut was impaired when Rhubarb was removed from XBCQ. CONCLUSIONS Our results suggest that the efficacy of XBCQ is related to the inhibition of the immune injury and remodeling of the intestinal flora, wherein Rhubarb plays an important role, which cumulatively provide the evidence applicable for the treatment of viral pneumonia induced by a different respiratory virus with XBCQ.
Collapse
Affiliation(s)
- Jinlin Huo
- Preclinical Medicine College, Shanghai University of Traditional Chinese Medicine, 1200# Cailun Rd., Pudong District, Shanghai, 201203, PR China
| | - Ting Wang
- Department of Biological Medicines, Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong District, Shanghai, 201203, PR China
| | - Bokai Wei
- Preclinical Medicine College, Shanghai University of Traditional Chinese Medicine, 1200# Cailun Rd., Pudong District, Shanghai, 201203, PR China
| | - Xunlong Shi
- Department of Biological Medicines, Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong District, Shanghai, 201203, PR China
| | - Aidong Yang
- Preclinical Medicine College, Shanghai University of Traditional Chinese Medicine, 1200# Cailun Rd., Pudong District, Shanghai, 201203, PR China
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong District, Shanghai, 201203, PR China.
| | - Jing Hu
- Preclinical Medicine College, Shanghai University of Traditional Chinese Medicine, 1200# Cailun Rd., Pudong District, Shanghai, 201203, PR China.
| | - Haiyan Zhu
- Department of Biological Medicines, Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong District, Shanghai, 201203, PR China.
| |
Collapse
|
9
|
Atanasova-Panchevska N, Stojchevski R, Hadzi-Petrushev N, Mitrokhin V, Avtanski D, Mladenov M. Antibacterial and Antiviral Properties of Tetrahydrocurcumin-Based Formulations: An Overview of Their Metabolism in Different Microbiotic Compartments. Life (Basel) 2022; 12:1708. [PMID: 36362863 PMCID: PMC9696410 DOI: 10.3390/life12111708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 08/29/2023] Open
Abstract
In this review, the basic metabolic characteristics of the curcuminoid tetrahydrocurcumin (THC) at the level of the intestinal microbiota were addressed. Special attention was given to the bactericidal effects of one of the THC-phospholipid formulations, which has shown greater bioavailability and activity than pure THC. Similarly, quinoline derivatives and amino acid conjugates of THC have also shown antibacterial effects in the gut. The microbial effect of pure THC is particularly pronounced in pathophysiological conditions related to the function of the intestinal microbiota, such as type II diabetes. Furthermore, the antiviral characteristics of Cur compared to those of THC are more pronounced in preventing the influenza virus. In the case of HIV infections, the new microemulsion gel formulations of THC possess high retention during preventive application in the vagina and, at the same time, do not disturb the vaginal microbiota, which is critical in maintaining low vaginal pH. Based on the reviewed literature, finding new formulations of THC which can increase its bioavailability and activity and emphasize its antibacterial and antiviral characteristics could be very important. Applying such THC formulations in preventing and treating ailments related to the microbiotic compartments in the body would be beneficial from a medical point of view.
Collapse
Affiliation(s)
- Natalija Atanasova-Panchevska
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, P.O. Box 162, 1000 Skopje, North Macedonia
| | - Radoslav Stojchevski
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, P.O. Box 162, 1000 Skopje, North Macedonia
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, P.O. Box 162, 1000 Skopje, North Macedonia
| | - Vadim Mitrokhin
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, 117997 Moscow, Russia
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, P.O. Box 162, 1000 Skopje, North Macedonia
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, 117997 Moscow, Russia
| |
Collapse
|
10
|
Ghati N, Bhatnagar S, Mahendran M, Thakur A, Prasad K, Kumar D, Dwivedi T, Mani K, Tiwari P, Gupta R, Mohan A, Saxena A, Guleria R, Deepti S. Statin and aspirin as adjuvant therapy in hospitalised patients with SARS-CoV-2 infection: a randomised clinical trial (RESIST trial). BMC Infect Dis 2022; 22:606. [PMID: 35810307 PMCID: PMC9270743 DOI: 10.1186/s12879-022-07570-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/27/2022] [Indexed: 01/21/2023] Open
Abstract
Background Statins and aspirin have been proposed for treatment of COVID-19 because of their anti-inflammatory and anti-thrombotic properties. Several observational studies have shown favourable results. There is a need for a randomised controlled trial. Methods In this single-center, open-label, randomised controlled trial, 900 RT-PCR positive COVID-19 patients requiring hospitalisation, were randomly assigned to receive either atorvastatin 40 mg (Group A, n = 224), aspirin 75 mg (Group B, n = 225), or both (Group C, n = 225) in addition to standard of care for 10 days or until discharge whichever was earlier or only standard of care (Group D, n = 226). The primary outcome variable was clinical deterioration to WHO Ordinal Scale for Clinical Improvement ≥ 6. The secondary outcome was change in serum C-reactive protein, interleukin-6, and troponin I. Results The primary outcome occurred in 25 (2.8%) patients: 7 (3.2%) in Group A, 3 (1.4%) in Group B, 8 (3.6%) in Group C, and 7 (3.2%) in Group D. There was no difference in primary outcome across the study groups (P = 0.463). Comparison of all patients who received atorvastatin or aspirin with the control group (Group D) also did not show any benefit [Atorvastatin: HR 1.0 (95% CI 0.41–2.46) P = 0.99; Aspirin: HR 0.7 (95% CI 0.27–1.81) P = 0.46]. The secondary outcomes revealed lower serum interleukin-6 levels among patients in Groups B and C. There was no excess of adverse events. Conclusions Among patients admitted with mild to moderate COVID-19 infection, additional treatment with aspirin, atorvastatin, or a combination of the two does not prevent clinical deterioration. Trial Registry Number CTRI/2020/07/026791 (http://ctri.nic.in; registered on 25/07/2020) Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07570-5.
Collapse
Affiliation(s)
- Nirmal Ghati
- Department of Cardiology, Jai Prakash Narayan Apex Trauma Center, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sushma Bhatnagar
- Department of Onco-Anaesthesia, Dr. B.R.A Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Manjit Mahendran
- Department of Cardiology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Abhishek Thakur
- Department of Cardiology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Kshitij Prasad
- Department of Cardiology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Devesh Kumar
- Department of Cardiology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Tanima Dwivedi
- Department of Laboratory Medicine, National Cancer Institute (Jhajjar, Haryana), All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Kalaivani Mani
- Department of Biostatistics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Pawan Tiwari
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Ritu Gupta
- Department of Laboratory Oncology, Dr. B.R.A Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Anant Mohan
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Anita Saxena
- Department of Cardiology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Randeep Guleria
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Siddharthan Deepti
- Department of Cardiology, All India Institute of Medical Sciences (AIIMS), New Delhi, India. .,Department of Cardiology, Cardiothoracic Sciences Centre, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
11
|
Ma S, Su W, Sun C, Lowe S, Zhou Z, Liu H, Qu G, Xia W, Xie P, Wu B, Gao J, Feng L, Sun Y. Does aspirin have an effect on risk of death in patients with COVID-19? A meta-analysis. Eur J Clin Pharmacol 2022; 78:1403-1420. [PMID: 35732963 PMCID: PMC9217117 DOI: 10.1007/s00228-022-03356-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/14/2022] [Indexed: 01/06/2023]
Abstract
Purpose The coronavirus disease 2019 (COVID-19) pandemic has shown unprecedented impact world-wide since the eruption in late 2019. Importantly, emerging reports suggest an increased risk of thromboembolism development in patients with COVID-19. Meanwhile, it is found that aspirin reduced mortality in critically ill patients with non-COVID-19 acute respiratory distress syndrome. Therefore, a meta-analysis was performed to investigate the effects of aspirin on COVID-19 mortality. Methods A systematic literature search was conducted in 10 electronic databases and 4 registries. Random effects models were used to calculate pooled relative risks (RRs) with 95% confidence intervals (Cis) to estimate the effect of aspirin on COVID-19 mortality. Relevant subgroup analyses and sensitivity analyses were also performed. Results The results showed that aspirin use was associated with a reduction in COVID-19 mortality (adjusted RR 0.69; 95% CI 0.50–0.95; P < 0.001). Subgroup analysis found that the low-dose group was associated with a reduced COVID-19 mortality (adjusted RR 0.64; 95% CI 0.48–0.85; P < 0.01). Aspirin use was associated with reduced COVID-19 mortality in Europe and America (crude RR 0.71; 95% CI 0.52–0.98; P = 0.04), and results from cohort studies suggested that aspirin use was a protective factor for COVID-19 mortality (adjusted RR 0.73; 95% CI 0.52–0.99; P = 0.04). Meanwhile, aspirin use was not associated with bleeding risk (crude RR 1.22; 95% CI 0.80–1.87; P = 0.96). Conclusions This meta-analysis found that aspirin use was associated with a reduction in mortality in patients with COVID-19 and not with an increased risk of bleeding. Supplementary information The online version contains supplementary material available at 10.1007/s00228-022-03356-5.
Collapse
Affiliation(s)
- Shaodi Ma
- Department of Epidemiology and Health Statistics, School of Public, Health Anhui Medical University, No. 81 Meishan Road, 230032, Anhui, People's Republic of China
| | - Wanying Su
- Department of Epidemiology and Health Statistics, School of Public, Health Anhui Medical University, No. 81 Meishan Road, 230032, Anhui, People's Republic of China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Zhen Zhou
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Haixia Liu
- Department of Epidemiology and Health Statistics, School of Public, Health Anhui Medical University, No. 81 Meishan Road, 230032, Anhui, People's Republic of China
| | - Guangbo Qu
- Department of Epidemiology and Health Statistics, School of Public, Health Anhui Medical University, No. 81 Meishan Road, 230032, Anhui, People's Republic of China
| | - Weihang Xia
- Department of Epidemiology and Health Statistics, School of Public, Health Anhui Medical University, No. 81 Meishan Road, 230032, Anhui, People's Republic of China
| | - Peng Xie
- Department of Epidemiology and Health Statistics, School of Public, Health Anhui Medical University, No. 81 Meishan Road, 230032, Anhui, People's Republic of China
| | - Birong Wu
- Department of Epidemiology and Health Statistics, School of Public, Health Anhui Medical University, No. 81 Meishan Road, 230032, Anhui, People's Republic of China
| | - Juan Gao
- Department of Epidemiology and Health Statistics, School of Public, Health Anhui Medical University, No. 81 Meishan Road, 230032, Anhui, People's Republic of China
| | - Linya Feng
- Department of Epidemiology and Health Statistics, School of Public, Health Anhui Medical University, No. 81 Meishan Road, 230032, Anhui, People's Republic of China
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public, Health Anhui Medical University, No. 81 Meishan Road, 230032, Anhui, People's Republic of China.
- Chaohu Hospital, Anhui Medical University, No. 64 Chaohubei Road, Anhui, 238000, China.
- Center for Evidence-Based Practice, Anhui Medical University, No. 81 Meishan Road, Anhui, 230032, China.
| |
Collapse
|
12
|
Jungwirth J, Häring C, König S, Giebeler L, Doshi H, Brandt C, Deinhardt-Emmer S, Löffler B, Ehrhardt C. D,L-Lysine-Acetylsalicylate + Glycine (LASAG) Reduces SARS-CoV-2 Replication and Shows an Additive Effect with Remdesivir. Int J Mol Sci 2022; 23:ijms23136880. [PMID: 35805887 PMCID: PMC9266999 DOI: 10.3390/ijms23136880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 12/04/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing the coronavirus disease-19 (COVID-19) is still challenging healthcare systems and societies worldwide. While vaccines are available, therapeutic strategies are developing and need to be adapted to each patient. Many clinical approaches focus on the repurposing of approved therapeutics against other diseases. However, the efficacy of these compounds on viral infection or even harmful secondary effects in the context of SARS-CoV-2 infection are sparsely investigated. Similarly, adverse effects of commonly used therapeutics against lifestyle diseases have not been studied in detail. Using mono cell culture systems and a more complex chip model, we investigated the effects of the acetylsalicylic acid (ASA) salt D,L-lysine-acetylsalicylate + glycine (LASAG) on SARS-CoV-2 infection in vitro. ASA is commonly known as Aspirin® and is one of the most frequently used medications worldwide. Our data indicate an inhibitory effect of LASAG on SARS-CoV-2 replication and SARS-CoV-2-induced expression of pro-inflammatory cytokines and coagulation factors. Remarkably, our data point to an additive effect of the combination of LASAG and the antiviral acting drug remdesivir on SARS-CoV-2 replication in vitro.
Collapse
Affiliation(s)
- Johannes Jungwirth
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, D-07745 Jena, Germany; (J.J.); (C.H.); (S.K.); (L.G.)
| | - Clio Häring
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, D-07745 Jena, Germany; (J.J.); (C.H.); (S.K.); (L.G.)
| | - Sarah König
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, D-07745 Jena, Germany; (J.J.); (C.H.); (S.K.); (L.G.)
| | - Liane Giebeler
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, D-07745 Jena, Germany; (J.J.); (C.H.); (S.K.); (L.G.)
| | - Heena Doshi
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, D-07745 Jena, Germany;
| | - Christian Brandt
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany;
| | - Stefanie Deinhardt-Emmer
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany; (S.D.-E.); (B.L.)
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany; (S.D.-E.); (B.L.)
| | - Christina Ehrhardt
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, D-07745 Jena, Germany; (J.J.); (C.H.); (S.K.); (L.G.)
- Correspondence: ; Tel.: +49-(0)3641-939-5700
| |
Collapse
|
13
|
Plášek J, Gumulec J, Máca J, Škarda J, Procházka V, Grézl T, Václavík J. COVID-19 associated coagulopathy: Mechanisms and host-directed treatment. Am J Med Sci 2022; 363:465-475. [PMID: 34752741 PMCID: PMC8576106 DOI: 10.1016/j.amjms.2021.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/22/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is associated with specific coagulopathy that frequently occurs during the different phases of coronavirus disease 2019 (COVID-19) and can result in thrombotic complications and/or death. This COVID-19-associated coagulopathy (CAC) exhibits some of the features associated with thrombotic microangiopathy, particularly complement-mediated hemolytic-uremic syndrome. In some cases, due to the anti-phospholipid antibodies, CAC resembles catastrophic anti-phospholipid syndrome. In other patients, it exhibits features of hemophagocytic syndrome. CAC is mainly identified by: increases in fibrinogen, D-dimers, and von Willebrand factor (released from activated endothelial cells), consumption of a disintegrin and metalloproteinase with thrombospondin type 1 motifs, member 13 (ADAMTS13), over activated and dysregulated complement, and elevated plasma cytokine levels. CAC manifests as both major cardiovascular and/or cerebrovascular events and dysfunctional microcirculation, which leads to multiple organ damage. It is not clear whether the mainstay of COVID-19 is complement overactivation, cytokine/chemokine activation, or a combination of these activities. Available data have suggested that non-critically ill hospitalized patients should be administered full-dose heparin. In critically ill, full dose heparin treatment is discouraged due to higher mortality rate. In addition to anti-coagulation, four different host-directed therapeutic pathways have recently emerged that influence CAC: (1) Anti-von Willebrand factor monoclonal antibodies; (2) activated complement C5a inhibitors; (3) recombinant ADAMTS13; and (4) Interleukin (IL)-1 and IL-6 antibodies. Moreover, neutralizing monoclonal antibodies against the virus surface protein have been tested. However, the role of antiplatelet treatment remains unclear for patients with COVID-19.
Collapse
Affiliation(s)
- Jiří Plášek
- Department of Internal Medicine and Cardiology, University Hospital Ostrava, Ostrava, Czech Republic; Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.
| | - J Gumulec
- Department of Clinical Hematology, University Hospital of Ostrava, Ostrava, Czech Republic
| | - J Máca
- Department of Anesthesiology and Intensive Care, University Hospital Ostrava, Ostrava, Czech Republic; Medical Faculty, Institute of Physiology and Pathophysiology, University of Ostrava, Ostrava, Czech Republic
| | - J Škarda
- Institute of Clinical Pathology, University Hospital of Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - V Procházka
- Institute of Radiology, University Hospital of Ostrava, Ostrava, Czech Republic
| | - T Grézl
- Department of Internal Medicine and Cardiology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Jan Václavík
- Department of Internal Medicine and Cardiology, University Hospital Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
14
|
A Review on the Potential Species of the Zingiberaceae Family with Anti-viral Efficacy Towards Enveloped Viruses. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural products are a great wellspring of biodiversity for finding novel antivirals, exposing new interactions between structure and operation and creating successful defensive or remedial methodologies against viral diseases. The members of Zingiberaceae traditional plant and herbal products have robust anti-viral action, and their findings will further lead to the production of derivatives and therapeutic. Additionally, it highlights the insight of utilizing these phytoextracts or their constituent compounds as an emergency prophylactic medicine during the pandemic or endemic situations for novel viruses. In this connection, this review investigates the potential candidates of the Zingiberaceae family, consisting of bioactive phytocompounds with proven antiviral efficacy against enveloped viruses. The present study was based on published antiviral efficacy of Curcuma longa, Zingiber officinale, Kaempferia parviflora, Aframomum melegueta Elettaria cardamomum, Alpina Sps (belongs to the Zingiberaceae family) towards the enveloped viruses. The relevant data was searched in Scopus”, “Scifinder”, “Springer”, “Pubmed”, “Google scholar” “Wiley”, “Web of Science”, “Cochrane “Library”, “Embase”, Dissertations, theses, books, and technical reports. Meticulously articles were screened with the subject relevancy and categorized for their ethnopharmacological significance with in-depth analysis. We have comprehensively elucidated the antiviral potency of phytoextracts, major composition, key compounds, mode of action, molecular evidence, immunological relevance, and potential bioactive phytocompounds of these five species belonging to the Zingiberaceae family. Conveniently, these phytoextracts exhibited multimode activity in combating the dreadful enveloped viruses.
Collapse
|
15
|
Perlas A, Argilaguet J, Bertran K, Sánchez-González R, Nofrarías M, Valle R, Ramis A, Cortey M, Majó N. Dual Host and Pathogen RNA-Seq Analysis Unravels Chicken Genes Potentially Involved in Resistance to Highly Pathogenic Avian Influenza Virus Infection. Front Immunol 2022; 12:800188. [PMID: 35003125 PMCID: PMC8727699 DOI: 10.3389/fimmu.2021.800188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) cause severe systemic disease and high mortality rates in chickens, leading to a huge economic impact in the poultry sector. However, some chickens are resistant to the disease. This study aimed at evaluating the mechanisms behind HPAIV disease resistance. Chickens of different breeds were challenged with H7N1 HPAIV or clade 2.3.4.4b H5N8 HPAIV, euthanized at 3 days post-inoculation (dpi), and classified as resistant or susceptible depending on the following criteria: chickens that presented i) clinical signs, ii) histopathological lesions, and iii) presence of HPAIV antigen in tissues were classified as susceptible, while chickens lacking all these criteria were classified as resistant. Once classified, we performed RNA-Seq from lung and spleen samples in order to compare the transcriptomic signatures between resistant and susceptible chickens. We identified minor transcriptomic changes in resistant chickens in contrast with huge alterations observed in susceptible chickens. Interestingly, six differentially expressed genes were downregulated in resistant birds and upregulated in susceptible birds. Some of these genes belong to the NF-kappa B and/or mitogen-activated protein kinase signaling pathways. Among these six genes, the serine protease-encoding gene PLAU was of particular interest, being the most significantly downregulated gene in resistant chickens. Expression levels of this protease were further validated by RT-qPCR in a larger number of experimentally infected chickens. Furthermore, HPAIV quasi-species populations were constructed using 3 dpi oral swabs. No substantial changes were found in the viral segments that interact with the innate immune response and with the host cell receptors, reinforcing the role of the immune system of the host in the clinical outcome. Altogether, our results suggest that an early inactivation of important host genes could prevent an exaggerated immune response and/or viral replication, conferring resistance to HPAIV in chickens.
Collapse
Affiliation(s)
- Albert Perlas
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Jordi Argilaguet
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Kateri Bertran
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Raúl Sánchez-González
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Miquel Nofrarías
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Rosa Valle
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Antonio Ramis
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Martí Cortey
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Natàlia Majó
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| |
Collapse
|
16
|
Tantry US, Schror K, Navarese EP, Jeong YH, Kubica J, Bliden KP, Gurbel PA. Aspirin as an Adjunctive Pharmacologic Therapy Option for COVID-19: Anti-Inflammatory, Antithrombotic, and Antiviral Effects All in One Agent. J Exp Pharmacol 2021; 13:957-970. [PMID: 34908882 PMCID: PMC8665864 DOI: 10.2147/jep.s330776] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction Pharmacologic therapy options for COVID-19 should include antiviral, anti-inflammatory, and anticoagulant agents. With the limited effectiveness, currently available virus-directed therapies may have a substantial impact on global health due to continued reports of mutant variants affecting repeated waves of COVID-19 around the world. Methods We searched articles pertaining to aspirin, COVID-19, acute lung injury and pharmacology in PubMed and provide a comprehensive appraisal of potential use of aspirin in the management of patients with COVID-19. The scope of this article is to provide an overview of the rationale and currently available clinical evidence that supports aspirin as an effective therapeutic option in COVID-19. Results Experimental and clinical evidence are available for the potential use of aspirin in patients with COVID-19. Discussion Aspirin targets the intracellular signaling pathway that is essential for viral replication, and resultant inflammatory responses, hypercoagulability, and platelet activation. With these multiple benefits, aspirin can be a credible adjunctive therapeutic option for the treatment of COVID-19. In addition, inhaled formulation with its rapid effects may enhance direct delivery to the lung, which is the key organ damaged in COVID-19 during the critical initial course of the disease, whereas the 150-325 mg/day can be used for long-term treatment to prevent thrombotic event occurrences. Being economical and widely available, aspirin can be exploited globally, particularly in underserved communities and remote areas of the world to combat the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- Udaya S Tantry
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, LifeBridge Health, Baltimore, MD, USA
| | - Karsten Schror
- Department of Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Eliano Pio Navarese
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Young-Hoon Jeong
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Cardiovascular Center, Gyeongsang National University Changwon Hospital, Changwon, South Korea
| | - Jacek Kubica
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Kevin P Bliden
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, LifeBridge Health, Baltimore, MD, USA
| | - Paul A Gurbel
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, LifeBridge Health, Baltimore, MD, USA
| |
Collapse
|
17
|
Wijaya I, Andhika R, Huang I, Purwiga A, Budiman KY. The effects of aspirin on the outcome of COVID-19: A systematic review and meta-analysis. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2021; 12:100883. [PMID: 34754983 PMCID: PMC8556685 DOI: 10.1016/j.cegh.2021.100883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/04/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023] Open
Abstract
Background Repurposing the use of aspirin to treat hospitalized patients with COVID-19 is a sensible approach. However, several previous studies showed conflicting results. This meta-analysis was aimed to assess the effect of aspirin on the outcome in patients with COVID-19. Methods Systematic search using relevant keywords was carried out via several electronic databases until February 21, 2021. Research studies on adults COVID-19 patients with documentation on the use of aspirin and reported our outcomes of interest were included in the analysis. Our main outcome of interest was all types of mortality, while the incidence of thrombosis and bleeding were considered as secondary outcomes. Estimated risk estimates of the included studies were then pooled using DerSimonian-Laird random-effect models regardless heterogeneity. Results Seven studies with a total of 34,415 patients were included in this systematic review and meta-analysis. The use of aspirin was associated with a reduced risk of mortality (RR 0.56, 95% CI 0.38–0.81, P = 0.002; I2: 68%, P = 0.005). Sensitivity analysis by differentiating in-hospital (active aspirin prescription) and pre-hospital use of aspirin could significantly reduce the heterogeneity (I2: 1%, P = 0.4). Only one study reported the incidence of major bleeding between aspirin and non-aspirin users (6.1% vs. 7.6%, P = 0.61). The association between the use of aspirin and the incidence of thrombosis were contradictory in two studies. Conclusion The use of aspirin was significantly associated with a reduced risk of mortality among patients with COVID-19. Due to limited studies, the effect of aspirin on the incidence of thrombosis and bleeding in patients with COVID-19 could not be drawn definitively.
Collapse
Affiliation(s)
- Indra Wijaya
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Rizky Andhika
- Division of Nephrology and Hypertension, Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Ian Huang
- Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Aga Purwiga
- Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Kevin Yonatan Budiman
- Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin General Hospital, Bandung, Indonesia
| |
Collapse
|
18
|
Abstract
SARS-CoV-2, the etiological agent of COVID-19, is characterized by a delay in type I interferon (IFN-I)-mediated antiviral defenses alongside robust cytokine production. Here, we investigate the underlying molecular basis for this imbalance and implicate virus-mediated activation of NF-κB in the absence of other canonical IFN-I-related transcription factors. Epigenetic and single-cell transcriptomic analyses show a selective NF-κB signature that was most prominent in infected cells. Disruption of NF-κB signaling through the silencing of the NF-κB transcription factor p65 or p50 resulted in loss of virus replication that was rescued upon reconstitution. These findings could be further corroborated with the use of NF-κB inhibitors, which reduced SARS-CoV-2 replication in vitro. These data suggest that the robust cytokine production in response to SARS-CoV-2, despite a diminished IFN-I response, is the product of a dependency on NF-κB for viral replication. IMPORTANCE The COVID-19 pandemic has caused significant mortality and morbidity around the world. Although effective vaccines have been developed, large parts of the world remain unvaccinated while new SARS-CoV-2 variants keep emerging. Furthermore, despite extensive efforts and large-scale drug screenings, no fully effective antiviral treatment options have been discovered yet. Therefore, it is of the utmost importance to gain a better understanding of essential factors driving SARS-CoV-2 replication to be able to develop novel approaches to target SARS-CoV-2 biology.
Collapse
|
19
|
Kleinehr J, Wilden JJ, Boergeling Y, Ludwig S, Hrincius ER. Metabolic Modifications by Common Respiratory Viruses and Their Potential as New Antiviral Targets. Viruses 2021; 13:2068. [PMID: 34696497 PMCID: PMC8540840 DOI: 10.3390/v13102068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 10/09/2021] [Indexed: 12/11/2022] Open
Abstract
Respiratory viruses are known to be the most frequent causative mediators of lung infections in humans, bearing significant impact on the host cell signaling machinery due to their host-dependency for efficient replication. Certain cellular functions are actively induced by respiratory viruses for their own benefit. This includes metabolic pathways such as glycolysis, fatty acid synthesis (FAS) and the tricarboxylic acid (TCA) cycle, among others, which are modified during viral infections. Here, we summarize the current knowledge of metabolic pathway modifications mediated by the acute respiratory viruses respiratory syncytial virus (RSV), rhinovirus (RV), influenza virus (IV), parainfluenza virus (PIV), coronavirus (CoV) and adenovirus (AdV), and highlight potential targets and compounds for therapeutic approaches.
Collapse
Affiliation(s)
- Jens Kleinehr
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (J.K.); (J.J.W.); (Y.B.); (S.L.)
| | - Janine J. Wilden
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (J.K.); (J.J.W.); (Y.B.); (S.L.)
| | - Yvonne Boergeling
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (J.K.); (J.J.W.); (Y.B.); (S.L.)
| | - Stephan Ludwig
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (J.K.); (J.J.W.); (Y.B.); (S.L.)
- Cells in Motion Interfaculty Centre (CiMIC), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany
| | - Eike R. Hrincius
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (J.K.); (J.J.W.); (Y.B.); (S.L.)
| |
Collapse
|
20
|
Kareem F, Khatoon R, Minhas MA. WITHDRAWN: Biodegradable Self-assembled polymeric Micelles based on Poly (ethylene oxide)-block-Polylactide block copolymer for sustained delivery of dapsone. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Del Sarto J, Gerlt V, Friedrich ME, Anhlan D, Wixler V, Teixeira MM, Boergeling Y, Ludwig S. Phosphorylation of JIP4 at S730 Presents Antiviral Properties against Influenza A Virus Infection. J Virol 2021; 95:e0067221. [PMID: 34319782 PMCID: PMC8475540 DOI: 10.1128/jvi.00672-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/27/2021] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus (IAV) is the causative agent of flu disease that results in annual epidemics and occasional pandemics. IAV alters several signaling pathways of the cellular host response in order to promote its replication. Therefore, some of these pathways can serve as targets for novel antiviral agents. Here, we show that c-Jun NH2-terminal kinase (JNK)-interacting protein 4 (JIP4) is dynamically phosphorylated in IAV infection. The lack of JIP4 resulted in higher virus titers, with significant differences in viral protein and mRNA accumulation as early as within the first replication cycle. In accordance, decreased IAV titers and protein accumulation were observed during the overexpression of JIP4. Strikingly, the antiviral function of JIP4 does not originate from modulation of JNK or p38 mitogen-activated protein kinase (MAPK) pathways or from altered expression of interferons or interferon-stimulated genes but rather originates from a direct reduction of viral polymerase activity. Furthermore, the interference of JIP4 with IAV replication seems to be linked to the phosphorylation of the serine at position 730 that is sufficient to impede the viral polymerase. Collectively, we provide evidence that JIP4, a host protein modulated in IAV infection, exhibits antiviral properties that are dynamically controlled by its phosphorylation at S730. IMPORTANCE Influenza A virus (IAV) infection is a world health concern, and current treatment options encounter high rates of resistance. Our group investigates host pathways modified in IAV infection as promising new targets. The host protein JIP4 is dynamically phosphorylated in IAV infection. JIP4 absence resulted in higher virus titers and viral protein and mRNA accumulation within the first replication cycle. Accordingly, decreased IAV titers and protein accumulation were observed during JIP4 overexpression. Strikingly, the antiviral function of JIP4 does not originate from modulation of JNK or p38 MAPK pathways or from altered expression of interferons or interferon-stimulated genes but rather originates from a reduction in viral polymerase activity. The interference of JIP4 with IAV replication is linked to the phosphorylation of serine 730. We provide evidence that JIP4, a host protein modulated in IAV infection, exhibits antiviral properties that are dynamically controlled by its phosphorylation at S730.
Collapse
Affiliation(s)
- Juliana Del Sarto
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Research Center for Drug Development, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vanessa Gerlt
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | | | - Darisuren Anhlan
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Viktor Wixler
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Research Center for Drug Development, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Yvonne Boergeling
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| |
Collapse
|
22
|
Yao R, Ianevski A, Kainov D. Safe-in-Man Broad Spectrum Antiviral Agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:313-337. [PMID: 34258746 DOI: 10.1007/978-981-16-0267-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Emerging and re-emerging viral diseases occur with regularity within the human population. The conventional 'one drug, one virus' paradigm for antivirals does not adequately allow for proper preparedness in the face of unknown future epidemics. In addition, drug developers lack the financial incentives to work on antiviral drug discovery, with most pharmaceutical companies choosing to focus on more profitable disease areas. Safe-in-man broad spectrum antiviral agents (BSAAs) can help meet the need for antiviral development by already having passed phase I clinical trials, requiring less time and money to develop, and having the capacity to work against many viruses, allowing for a speedy response when unforeseen epidemics arise. In this chapter, we discuss the benefits of repurposing existing drugs as BSAAs, describe the major steps in safe-in-man BSAA drug development from discovery through clinical trials, and list several database resources that are useful tools for antiviral drug repositioning.
Collapse
Affiliation(s)
- Rouan Yao
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Aleksandr Ianevski
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
- Institute of Technology, University of Tartu, Tartu, Estonia.
- Institute for Molecule Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
23
|
Deinhardt-Emmer S, Jäckel L, Häring C, Böttcher S, Wilden JJ, Glück B, Heller R, Schmidtke M, Koch M, Löffler B, Ludwig S, Ehrhardt C. Inhibition of Phosphatidylinositol 3-Kinase by Pictilisib Blocks Influenza Virus Propagation in Cells and in Lungs of Infected Mice. Biomolecules 2021; 11:biom11060808. [PMID: 34072389 PMCID: PMC8228449 DOI: 10.3390/biom11060808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Influenza virus (IV) infections are considered to cause severe diseases of the respiratory tract. Beyond mild symptoms, the infection can lead to respiratory distress syndrome and multiple organ failure. Occurrence of resistant seasonal and pandemic strains against the currently licensed antiviral medications points to the urgent need for new and amply available anti-influenza drugs. Interestingly, the virus-supportive function of the cellular phosphatidylinositol 3-kinase (PI3K) suggests that this signaling module may be a potential target for antiviral intervention. In the sense of repurposing existing drugs for new indications, we used Pictilisib, a known PI3K inhibitor to investigate its effect on IV infection, in mono-cell-culture studies as well as in a human chip model. Our results indicate that Pictilisib is a potent inhibitor of IV propagation already at early stages of infection. In a murine model of IV pneumonia, the in vitro key findings were verified, showing reduced viral titers as well as inflammatory response in the lung after delivery of Pictilisib. Our data identified Pictilisib as a promising drug candidate for anti-IV therapies that warrant further studying. These results further led to the conclusion that the repurposing of previously approved substances represents a cost-effective and efficient way for development of novel antiviral strategies.
Collapse
Affiliation(s)
- Stefanie Deinhardt-Emmer
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany; (M.K.); (B.L.)
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, D-07745 Jena, Germany; (C.H.); (S.B.); (B.G.); (M.S.)
- Correspondence: (S.D.-E.); (C.E.); Tel.: +49-(0)3641-9393640 (S.D.-E.); +49-(0)3641-9395700 (C.E.)
| | - Laura Jäckel
- Institute of Virology Muenster, Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University, D-48149 Muenster, Germany; (L.J.); (J.J.W.); (S.L.)
| | - Clio Häring
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, D-07745 Jena, Germany; (C.H.); (S.B.); (B.G.); (M.S.)
| | - Sarah Böttcher
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, D-07745 Jena, Germany; (C.H.); (S.B.); (B.G.); (M.S.)
| | - Janine J. Wilden
- Institute of Virology Muenster, Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University, D-48149 Muenster, Germany; (L.J.); (J.J.W.); (S.L.)
| | - Brigitte Glück
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, D-07745 Jena, Germany; (C.H.); (S.B.); (B.G.); (M.S.)
| | - Regine Heller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, D-07745 Jena, Germany;
| | - Michaela Schmidtke
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, D-07745 Jena, Germany; (C.H.); (S.B.); (B.G.); (M.S.)
| | - Mirijam Koch
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany; (M.K.); (B.L.)
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany; (M.K.); (B.L.)
| | - Stephan Ludwig
- Institute of Virology Muenster, Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University, D-48149 Muenster, Germany; (L.J.); (J.J.W.); (S.L.)
| | - Christina Ehrhardt
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, D-07745 Jena, Germany; (C.H.); (S.B.); (B.G.); (M.S.)
- Correspondence: (S.D.-E.); (C.E.); Tel.: +49-(0)3641-9393640 (S.D.-E.); +49-(0)3641-9395700 (C.E.)
| |
Collapse
|
24
|
Yarovaya OI, Salakhutdinov NF. Mono- and sesquiterpenes as a starting platform for the development of antiviral drugs. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4969] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Godino C, Scotti A, Maugeri N, Mancini N, Fominskiy E, Margonato A, Landoni G. Antithrombotic therapy in patients with COVID-19? -Rationale and Evidence. Int J Cardiol 2021; 324:261-266. [PMID: 33002521 PMCID: PMC7521414 DOI: 10.1016/j.ijcard.2020.09.064] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/09/2020] [Accepted: 09/24/2020] [Indexed: 12/30/2022]
Abstract
In patients with severe or critical Coronavirus disease 2019 (COVID-19) manifestations, a thromboinflammatory syndrome, with diffuse microvascular thrombosis, is increasingly evident as the final step of pro-inflammatory cytokines storm. Actually, no proven effective therapies for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection exist. Preliminary observations on anticoagulant therapy appear to be associated with better outcomes in moderate and severe COVID-19 patients with signs of coagulopathy and in those requiring mechanical ventilation. The pathophysiology underlying the prothrombotic state elicited by SARS-CoV-2 outlines possible protective mechanisms of antithrombotic therapy (in primis anticoagulants) for this viral illness. The indications for antiplatelet/anticoagulant use (prevention, prophylaxis, therapy) are guided by the clinical context and the COVID-19 severity. We provide a practical approach on antithrombotic therapy management for COVID-19 patients from a multidisciplinary point of view.
Collapse
Affiliation(s)
- Cosmo Godino
- Clinical Cardiology Unit, Faculty of Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Andrea Scotti
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua Medical School, Padua, Italy
| | - Norma Maugeri
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Faculty of Medicine, Vita Salute San Raffaele University, Milan, Italy
| | - Evgeny Fominskiy
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Margonato
- Clinical Cardiology Unit, Faculty of Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy; Faculty of Medicine, Vita Salute San Raffaele University, Milan, Italy
| | - Giovanni Landoni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy; Faculty of Medicine, Vita Salute San Raffaele University, Milan, Italy
| |
Collapse
|
26
|
Ludwig S, Hrincius ER, Boergeling Y. The Two Sides of the Same Coin-Influenza Virus and Intracellular Signal Transduction. Cold Spring Harb Perspect Med 2021; 11:a038513. [PMID: 31871235 PMCID: PMC7778220 DOI: 10.1101/cshperspect.a038513] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cells respond to extracellular agents by activation of intracellular signaling pathways. Viruses can be regarded as such agents, leading to a firework of signaling inside the cell, primarily induced by pathogen-associated molecular patterns (PAMPs) that provoke safeguard mechanisms to defend from the invader. In the constant arms race between pathogen and cellular defense, viruses not only have evolved mechanisms to suppress or misuse supposedly antiviral signaling processes for their own benefit but also actively induce signaling to promote replication. This creates viral dependencies that may be exploited for novel strategies of antiviral intervention. Here, we will summarize the current knowledge of activation and function of influenza virus-induced signaling pathways with a focus on nuclear factor (NF)-κB signaling, mitogen-activated protein kinase cascades, and the phosphatidylinositol-3-kinase pathway. We will discuss the opportunities and drawbacks of targeting these signaling pathways for antiviral intervention.
Collapse
Affiliation(s)
- Stephan Ludwig
- Institute of Virology Muenster, University of Muenster, 48149 Muenster, Germany
| | - Eike R Hrincius
- Institute of Virology Muenster, University of Muenster, 48149 Muenster, Germany
| | - Yvonne Boergeling
- Institute of Virology Muenster, University of Muenster, 48149 Muenster, Germany
| |
Collapse
|
27
|
Terrier O, Slama-Schwok A. Anti-Influenza Drug Discovery and Development: Targeting the Virus and Its Host by All Possible Means. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:195-218. [PMID: 34258742 DOI: 10.1007/978-981-16-0267-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Infections by influenza virus constitute a major and recurrent threat for human health. Together with vaccines, antiviral drugs play a key role in the prevention and treatment of influenza virus infection and disease. Today, the number of antiviral molecules approved for the treatment of influenza is relatively limited, and their use is threatened by the emergence of viral strains with resistance mutations. There is therefore a real need to expand the prophylactic and therapeutic arsenal. This chapter summarizes the state of the art in drug discovery and development for the treatment of influenza virus infections, with a focus on both virus-targeting and host cell-targeting strategies. Novel antiviral strategies targeting other viral proteins or targeting the host cell, some of which are based on drug repurposing, may be used in combination to strengthen our therapeutic arsenal against this major pathogen.
Collapse
Affiliation(s)
- Olivier Terrier
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Anny Slama-Schwok
- Sorbonne Université, Centre de Recherche Saint-Antoine, INSERM U938, Biologie et Thérapeutique du Cancer, Paris, France.
| |
Collapse
|
28
|
Wilden JJ, Hrincius ER, Niemann S, Boergeling Y, Löffler B, Ludwig S, Ehrhardt C. Impact of Staphylococcus aureus Small Colony Variants on Human Lung Epithelial Cells with Subsequent Influenza Virus Infection. Microorganisms 2020; 8:E1998. [PMID: 33333815 PMCID: PMC7765246 DOI: 10.3390/microorganisms8121998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/29/2022] Open
Abstract
Human beings are exposed to microorganisms every day. Among those, diverse commensals and potential pathogens including Staphylococcus aureus (S. aureus) compose a significant part of the respiratory tract microbiota. Remarkably, bacterial colonization is supposed to affect the outcome of viral respiratory tract infections, including those caused by influenza viruses (IV). Since 30% of the world's population is already colonized with S. aureus that can develop metabolically inactive dormant phenotypes and seasonal IV circulate every year, super-infections are likely to occur. Although IV and S. aureus super-infections are widely described in the literature, the interactions of these pathogens with each other and the host cell are only scarcely understood. Especially, the effect of quasi-dormant bacterial subpopulations on IV infections is barely investigated. In the present study, we aimed to investigate the impact of S. aureus small colony variants on the cell intrinsic immune response during a subsequent IV infection in vitro. In fact, we observed a significant impact on the regulation of pro-inflammatory factors, contributing to a synergistic effect on cell intrinsic innate immune response and induction of harmful cell death. Interestingly, the cytopathic effect, which was observed in presence of both pathogens, was not due to an increased pathogen load.
Collapse
Affiliation(s)
- Janine J. Wilden
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany; (J.J.W.); (E.R.H.); (Y.B.); (S.L.)
| | - Eike R. Hrincius
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany; (J.J.W.); (E.R.H.); (Y.B.); (S.L.)
| | - Silke Niemann
- Institute of Medical Microbiology, Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany;
| | - Yvonne Boergeling
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany; (J.J.W.); (E.R.H.); (Y.B.); (S.L.)
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, 07747 Jena, Germany;
- Cluster of Excellence EXC 2051 “Balance of the Microverse”, FSU Jena, 07743 Jena, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany; (J.J.W.); (E.R.H.); (Y.B.); (S.L.)
- Cluster of Excellence EXC 1003 “Cells in Motion”, WWU Muenster, 48149 Muenster, Germany
| | - Christina Ehrhardt
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, 07745 Jena, Germany
| |
Collapse
|
29
|
Tseng HH, Huang WR, Cheng CY, Chiu HC, Liao TL, Nielsen BL, Liu HJ. Aspirin and 5-Aminoimidazole-4-carboxamide Riboside Attenuate Bovine Ephemeral Fever Virus Replication by Inhibiting BEFV-Induced Autophagy. Front Immunol 2020; 11:556838. [PMID: 33329515 PMCID: PMC7732683 DOI: 10.3389/fimmu.2020.556838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022] Open
Abstract
Recent study in our laboratory has demonstrated that BEFV-induced autophagy via activation of the PI3K/Akt/NF-κB and Src/JNK pathways and suppression of the PI3K-AKt-mTORC1 pathway is beneficial for virus replication. In the current study, we found that both aspirin and 5-aminoimidazole-4-carboxamide-1-β-riboside (AICAR) siginificantly attenuated virus replication by inhibiting BEFV-induced autophagy via suppressing the BEFV-activated PI3K/Akt/NF-κB and Src/JNK pathways as well as inducing reversion of the BEFV-suppressed PI3K-Akt-mTORC1 pathway. AICAR reversed the BEFV-activated PI3K/Akt/NF-κB and Src/JNK pathways at the early to late stages of infection and induced reversion of the BEFV-suppressed PI3K-AKt-mTORC1 pathway at the late stage of infection. Our findings reveal that inhibition of BEFV-induced autophagy by AICAR is independent of AMPK. Furthermore, we found that AICAR transcriptionally downregulates the ATG related genes ULK1, Beclin 1, and LC3 and enhances Atg7 degradation by the proteasome pathway. Aspirin suppresses virus replication by inhibiting BEFV-induced autophagy. It directly suppressed the NF-κB pathway and reversed the BEFV-activated Src/JNK pathway at the early stage of infection and reversed the BEFV-suppressed PI3K/Akt/mTOR pathway at the late stage of infection. The current study provides mechanistic insights into the effects of aspirin and AICAR on BEFV replication through suppression of BEFV-induced autophagy.
Collapse
Affiliation(s)
- Hsu-Hung Tseng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.,Division of General Surgery, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Wei-Ru Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Yuan Cheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Hung-Chuan Chiu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Tsai-Ling Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Brent L Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
30
|
Abstract
Severe Acute Respiratory Syndrome-Coronavirus-2 is responsible for the current pandemic that has led to more than 10 million confirmed cases of Coronavirus Disease-19 (COVID-19) and over 500,000 deaths worldwide (4 July 2020). Virus-mediated injury to multiple organs, mainly the respiratory tract, activation of immune response with the release of pro-inflammatory cytokines, and overactivation of the coagulation cascade and platelet aggregation leading to micro- and macrovascular thrombosis are the main pathological features of COVID-19. Empirical multidrug therapeutic approaches to treat COVID-19 are currently used with extremely uncertain outcomes, and many others are being tested in clinical trials. Acetylsalicylic acid (ASA) has both anti-inflammatory and antithrombotic effects. In addition, a significant ASA-mediated antiviral activity against DNA and RNA viruses, including different human coronaviruses, has been documented. The use of ASA in patients with different types of infections has been associated with reduced thrombo-inflammation and lower rates of clinical complications and in-hospital mortality. However, safety issues related both to the risk of bleeding and to that of developing rare but serious liver and brain damage mostly among children (i.e., Reye's syndrome) should be considered. Hence, whether ASA might be a safe and reasonable therapeutic candidate to be tested in clinical trials involving adults with COVID-19 deserves further attention. In this review we provide a critical appraisal of current evidence on the anti-inflammatory, antithrombotic, and antiviral effects of ASA, from both a pre-clinical and a clinical perspective. In addition, the potential benefits and risks of use of ASA have been put in the context of the adult-restricted COVID-19 population.
Collapse
|
31
|
Bao J, Wang X, Liu S, Zou Q, Zheng S, Yu F, Chen Y. Galectin-1 Ameliorates Influenza A H1N1pdm09 Virus-Induced Acute Lung Injury. Front Microbiol 2020; 11:1293. [PMID: 32595629 PMCID: PMC7303544 DOI: 10.3389/fmicb.2020.01293] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/20/2020] [Indexed: 11/13/2022] Open
Abstract
Influenza remains one of the major epidemic diseases worldwide. Acute lung injury mainly caused by excessive pro-inflammatory host immune responses leads to high mortality rates in severe influenza patients. Galectin-1, an animal lectin ubiquitously expressed in mammalian tissues, is reported to play important roles in viral diseases. Here, we established murine and A549 cell models to explore the potential roles of galectin-1 treatment in H1N1pdm09-induced acute lung injury. We found that galectin-1 protein level was elevated in A549 cell culture supernatants and mouse BALF after H1N1pdm09 challenge. In vivo experiments showed recombinant galectin-1 treatment reduced wet/dry weight ratio, inflammatory cell infiltration in mouse lungs and mediated the expression of cytokines and chemokines including IL-1β, IL-6, IL-10, IL-12(p40), IL-12(p70), G-CSF, MCP-1, MIP-1α and RANTES in serum and BALF of infected mice. Reduced apoptosis and viral titers in mouse lungs were also found after galectin-1 treatment. As expected, galectin-1 treated mice performed reduced body weight loss and enhanced survival rate against H1N1pdm09 challenge. In addition, in vitro experiments showed that viral titers decreased in a dose-dependent manner and cell apoptosis in A549 cells reduced after recombinant galectin-1 treatment. Taken together, our findings indicate a potentially positive effect of Gal-1 treatment on ameliorating the progress of H1N1pdm09-induced acute lung injury and recombinant galectin-1 might serve as a new agent in treating influenza.
Collapse
Affiliation(s)
- Jiaqi Bao
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China.,Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China
| | - Xiaochen Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China.,Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China
| | - Sijia Liu
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qianda Zou
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China.,Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China
| | - Shufa Zheng
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China.,Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fei Yu
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China.,Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China
| | - Yu Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China.,Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
|
33
|
The influenza replication blocking inhibitor LASAG does not sensitize human epithelial cells for bacterial infections. PLoS One 2020; 15:e0233052. [PMID: 32413095 PMCID: PMC7228112 DOI: 10.1371/journal.pone.0233052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/27/2020] [Indexed: 01/04/2023] Open
Abstract
Severe influenza virus (IV) infections still represent a major challenge to public health. To combat IV infections, vaccines and antiviral compounds are available. However, vaccine efficacies vary with very limited to no protection against newly emerging zoonotic IV introductions. In addition, the development of resistant virus variants against currently available antivirals can be rapidly detected, in consequence demanding the design of novel antiviral strategies. Virus supportive cellular signaling cascades, such as the NF-κB pathway, have been identified to be promising antiviral targets against IV in in vitro and in vivo studies and clinical trials. While administration of NF-κB pathway inhibiting agents, such as LASAG results in decreased IV replication, it remained unclear whether blocking of NF-κB might sensitize cells to secondary bacterial infections, which often come along with viral infections. Thus, we examined IV and Staphylococcus aureus growth during LASAG treatment. Interestingly, our data reveal that the presence of LASAG during superinfection still leads to reduced IV titers. Furthermore, the inhibition of the NF-κB pathway resulted in decreased intracellular Staphylococcus aureus loads within epithelial cells, indicating a dependency on the pathway for bacterial uptake. Unfortunately, so far it is not entirely clear if this phenomenon might be a drawback in bacterial clearance during infection.
Collapse
|
34
|
Lai Y, Yan Y, Liao S, Li Y, Ye Y, Liu N, Zhao F, Xu P. 3D-quantitative structure-activity relationship and antiviral effects of curcumin derivatives as potent inhibitors of influenza H1N1 neuraminidase. Arch Pharm Res 2020; 43:489-502. [PMID: 32248350 PMCID: PMC7125423 DOI: 10.1007/s12272-020-01230-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/23/2020] [Indexed: 02/01/2023]
Abstract
Curcumin derivatives have been shown to inhibit replication of human influenza A viruses (IAVs). However, it is not clear whether curcumin and its derivatives can inhibit neuraminidase (NA) of influenza virus. In this study, a meaningful 3D quantitative structure–activity relationship model (comparative molecular field analysis R2 = 0.997, q2 = 0.527, s = 0.064, F = 282.663) was built to understand the chemical–biological interactions between their activities and neuraminidase. Molecular docking was used to predict binding models between curcumin derivatives and neuraminidase. Real-time polymerase chain reactions showed that the five active curcumin derivatives might have direct effects on viral particle infectivity in H1N1-infected lung epithelial (MDCK) cells. Neuraminidase activation assay showed that five active curcumin derivatives decreased H1N1-induced neuraminidase activation in MDCK cells. Indirect immunofluorescence assay indicated that two active curcumin derivatives (tetramethylcurcumin and curcumin) down-regulated the nucleoprotein expression. Curcumin inhibited IAV in vivo. The therapeutic mechanism of curcumin in the treatment of influenza viral pneumonia is related to improving the immune function of infected mice and regulating secretion of tumor necrosis-α, interleukin-6, and interferon-γ. These results indicate that curcumin derivatives inhibit IAV by blocking neuraminidase in the cellular model and curcumin also has anti-IAV activity in the animal model.
Collapse
Affiliation(s)
- Yanni Lai
- Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Yiwen Yan
- Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Shanghui Liao
- Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Yun Li
- Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Yi Ye
- Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Ni Liu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Fang Zhao
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Peiping Xu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.
| |
Collapse
|
35
|
Single enzyme nanoparticle, an effective tool for enzyme replacement therapy. Arch Pharm Res 2020; 43:1-21. [PMID: 31989476 DOI: 10.1007/s12272-020-01216-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/20/2020] [Indexed: 01/10/2023]
Abstract
The term "single enzyme nanoparticle" (SEN) refers to a chemically or biologically engineered single enzyme molecule. SENs are distinguished from conventional protein nanoparticles in that they can maintain their individual structure and enzymatic activity following modification. Furthermore, SENs exhibit enhanced properties as biopharmaceuticals, such as reduced antigenicity, and increased stability and targetability, which are attributed to the introduction of specific moieties, such as poly(ethylene glycol), carbohydrates, and antibodies. Enzyme replacement therapy (ERT) is a crucial therapeutic option for controlling enzyme-deficiency-related disorders. However, the unfavorable properties of enzymes, including immunogenicity, lack of targetability, and instability, can undermine the clinical significance of ERT. As shown in the cases of Adagen®, Revcovi®, Palynziq®, and Strensiq®, SEN can be an effective technology for overcoming these obstacles. Based on these four licensed products, we expect that additional SENs will be introduced for ERT in the near future. In this article, we review the concepts and features of SENs, as well as their preparation methods. Additionally, we summarize different types of enzyme deficiency disorders and the corresponding therapeutic enzymes. Finally, we focus on the current status of SENs in ERT by reviewing FDA-approved products.
Collapse
|
36
|
Rommel MGE, Milde C, Eberle R, Schulze H, Modlich U. Endothelial-platelet interactions in influenza-induced pneumonia: A potential therapeutic target. Anat Histol Embryol 2019; 49:606-619. [PMID: 31793053 DOI: 10.1111/ahe.12521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/07/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022]
Abstract
Every year, influenza viruses spread around the world, infecting the respiratory systems of countless humans and animals, causing illness and even death. Severe influenza infection is associated with pulmonary epithelial damage and endothelial dysfunction leading to acute lung injury (ALI). There is evidence that an aggressive cytokine storm and cell damage in lung capillaries as well as endothelial/platelet interactions contribute to vascular leakage, pro-thrombotic milieu and infiltration of immune effector cells. To date, treatments for ALI caused by influenza are limited to antiviral drugs, active ventilation or further symptomatic treatments. In this review, we summarize the mechanisms of influenza-mediated pathogenesis, permissive animal models and histopathological changes of lung tissue in both mice and men and compare it with histological and electron microscopic data from our own group. We highlight the molecular and cellular interactions between pulmonary endothelium and platelets in homeostasis and influenza-induced pathogenesis. Finally, we discuss novel therapeutic targets on platelets/endothelial interaction to reduce or resolve ALI.
Collapse
Affiliation(s)
- Marcel G E Rommel
- Research Group for Gene Modification in Stem Cells, Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany
| | - Christian Milde
- Research Group for Gene Modification in Stem Cells, Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany
| | - Regina Eberle
- Department of Morphology, Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| | - Harald Schulze
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Ute Modlich
- Research Group for Gene Modification in Stem Cells, Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
37
|
Liang X, Huang Y, Pan X, Hao Y, Chen X, Jiang H, Li J, Zhou B, Yang Z. Erucic acid from Isatis indigotica Fort. suppresses influenza A virus replication and inflammation in vitro and in vivo through modulation of NF-κB and p38 MAPK pathway. J Pharm Anal 2019; 10:130-146. [PMID: 32373385 PMCID: PMC7192973 DOI: 10.1016/j.jpha.2019.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/17/2019] [Accepted: 09/25/2019] [Indexed: 01/09/2023] Open
Abstract
Isatis indigotica Fort. (Ban-Lan-Gen) is an herbal medicine prescribed for influenza treatment. However, its active components and mode of action remain mostly unknown. In the present study, erucic acid was isolated from Isatis indigotica Fort., and subsequently its underlying mechanism against influenza A virus (IAV) infection was investigated in vitro and in vivo. Our results demonstrated that erucic acid exhibited broad-spectrum antiviral activity against IAV resulting from reduction of viral polymerase transcription activity. Erucic acid was found to exert inhibitory effects on IAV or viral (v) RNA-induced pro-inflammatory mediators as well as interferons (IFNs). The molecular mechanism by which erucic acid with antiviral and anti-inflammatory properties was attributed to inactivation of NF-κB and p38 MAPK signaling. Furthermore, the NF-κB and p38 MAPK inhibitory effect of erucic acid led to diminishing the transcriptional activity of interferon-stimulated gene factor 3 (ISGF-3), and thereby reducing IAV-triggered pro-inflammatory response amplification in IFN-β-sensitized cells. Additionally, IAV- or vRNA-triggered apoptosis of alveolar epithelial A549 cells was prevented by erucic acid. In vivo, erucic acid administration consistently displayed decreased lung viral load and viral antigens expression. Meanwhile, erucic acid markedly reduced CD8+ cytotoxic T lymphocyte (CTL) recruitment, pro-apoptotic signaling, hyperactivity of multiple signaling pathways, and exacerbated immune inflammation in the lung, which resulted in decreased lung injury and mortality in mice with a mouse-adapted A/FM/1/47-MA(H1N1) strain infection. Our findings provided a mechanistic basis for the action of erucic acid against IAV-mediated inflammation and injury, suggesting that erucic acid may have a therapeutic potential in the treatment of influenza. Erucic acid from Isatis indigotica Fort. exhibited broad-spectrum anti-influenza virus activity. Erucic acid reduced IAV polymerase transcription activity. Erucic acid suppressed IAV-triggered inflammation as well as pro-inflammatory amplification effects in IFN-sensitized cells. Erucic acid protected mice from lethal IAV infection.
Collapse
Affiliation(s)
- Xiaoli Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China
| | - Yuan Huang
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd, Guangzhou, 510515, China
| | - Xiping Pan
- Institute of Combination Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yanbing Hao
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiaowei Chen
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China
| | - Haiming Jiang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China
| | - Jing Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China
| | - Beixian Zhou
- Department of Pharmacy, The People's Hospital of Gaozhou, Gaozhou, 525200, Guangdong, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, PR China
| |
Collapse
|
38
|
Alternate NF-κB-Independent Signaling Reactivation of Latent HIV-1 Provirus. J Virol 2019; 93:JVI.00495-19. [PMID: 31243131 DOI: 10.1128/jvi.00495-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/16/2019] [Indexed: 12/22/2022] Open
Abstract
Current combination antiretroviral therapies (cART) are unable to eradicate HIV-1 from infected individuals because of the establishment of proviral latency in long-lived cellular reservoirs. The shock-and-kill approach aims to reactivate viral replication from the latent state (shock) using latency-reversing agents (LRAs), followed by the elimination of reactivated virus-producing cells (kill) by specific therapeutics. The NF-κB RelA/p50 heterodimer has been characterized as an essential component of reactivation of the latent HIV-1 long terminal repeat (LTR). Nevertheless, prolonged NF-κB activation contributes to the development of various autoimmune, inflammatory, and malignant disorders. In the present study, we established a cellular model of HIV-1 latency in J-Lat CD4+ T cells that stably expressed the NF-κB superrepressor IκB-α 2NΔ4 and demonstrate that conventional treatments with bryostatin-1 and hexamethylenebisacetamide (HMBA) or ionomycin synergistically reactivated HIV-1 from latency, even under conditions where NF-κB activation was repressed. Using specific calcineurin phosphatase, p38, and MEK1/MEK2 kinase inhibitors or specific short hairpin RNAs, c-Jun was identified to be an essential factor binding to the LTR enhancer κB sites and mediating the combined synergistic reactivation effect. Furthermore, acetylsalicylic acid (ASA), a potent inhibitor of the NF-κB activator kinase IκB kinase β (IKK-β), did not significantly diminish reactivation in a primary CD4+ T central memory (TCM) cell latency model. The present work demonstrates that the shock phase of the shock-and-kill approach to reverse HIV-1 latency may be achieved in the absence of NF-κB, with the potential to avoid unwanted autoimmune- and or inflammation-related side effects associated with latency-reversing strategies.IMPORTANCE The shock-and-kill approach consists of the reactivation of HIV-1 replication from latency using latency-reversing agents (LRAs), followed by the elimination of reactivated virus-producing cells. The cellular transcription factor NF-κB is considered a master mediator of HIV-1 escape from latency induced by LRAs. Nevertheless, a systemic activation of NF-κB in HIV-1-infected patients resulting from the combined administration of different LRAs could represent a potential risk, especially in the case of a prolonged treatment. We demonstrate here that conventional treatments with bryostatin-1 and hexamethylenebisacetamide (HMBA) or ionomycin synergistically reactivate HIV-1 from latency, even under conditions where NF-κB activation is repressed. Our study provides a molecular proof of concept for the use of anti-inflammatory drugs, like aspirin, capable of inhibiting NF-κB in patients under combination antiretroviral therapy during the shock-and-kill approach, to avoid potential autoimmune and inflammatory disorders that can be elicited by combinations of LRAs.
Collapse
|
39
|
Nichols JE, Niles JA, Fleming EH, Roberts NJ. The role of cell surface expression of influenza virus neuraminidase in induction of human lymphocyte apoptosis. Virology 2019; 534:80-86. [PMID: 31220651 DOI: 10.1016/j.virol.2019.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/08/2023]
Abstract
The immunopathological mechanisms as well as the role played by influenza A virus infection of human leukocytes and induction of apoptosis have not been fully elucidated. We confirm here that the percentage of cells that are infected is less than the percent of apoptotic cells. Depletion of monocytes/macrophages and depletion of cells expressing influenza neuraminidase from the cultures after exposure to virus decreased lymphocyte apoptosis. Treatment of virus-exposed leukocyte cultures with anti-neuraminidase antibodies but not with anti-hemagglutinin antibodies, reduced lymphocyte production of active caspase-3 and induction of apoptosis. Different strains of virus induced different levels of apoptosis. Variations in induction of apoptosis correlated with production and expression of viral neuraminidase by infected leukocytes. The data suggest that cell surface expression of neuraminidase plays an important role in the induction of apoptosis in human lymphocytes. The benefit, or cost, to the host of lymphocyte apoptosis warrants continued investigation.
Collapse
Affiliation(s)
- Joan E Nichols
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Texas, USA; Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Texas, USA
| | - Jean A Niles
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Texas, USA
| | - Elisa H Fleming
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Texas, USA; Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Texas, USA
| | - Norbert J Roberts
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Texas, USA; Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Texas, USA; Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
40
|
Keener AB. Host with the most: Targeting host cells instead of pathogens to fight infectious disease. Nat Med 2019; 23:528-531. [PMID: 28475570 PMCID: PMC7096006 DOI: 10.1038/nm0517-528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Pizzorno A, Padey B, Terrier O, Rosa-Calatrava M. Drug Repurposing Approaches for the Treatment of Influenza Viral Infection: Reviving Old Drugs to Fight Against a Long-Lived Enemy. Front Immunol 2019; 10:531. [PMID: 30941148 PMCID: PMC6434107 DOI: 10.3389/fimmu.2019.00531] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/27/2019] [Indexed: 12/18/2022] Open
Abstract
Influenza viruses still constitute a real public health problem today. To cope with the emergence of new circulating strains, but also the emergence of resistant strains to classic antivirals, it is necessary to develop new antiviral approaches. This review summarizes the state-of-the-art of current antiviral options against influenza infection, with a particular focus on the recent advances of anti-influenza drug repurposing strategies and their potential therapeutic, regulatory and economic benefits. The review will illustrate the multiple ways to reposition molecules for the treatment of influenza, from adventitious discovery to in silico-based screening. These novel antiviral molecules, many of which targeting the host cell, in combination with conventional antiviral agents targeting the virus, will ideally enter the clinics and reinforce the therapeutic arsenal to combat influenza virus infections.
Collapse
|
42
|
Lesch M, Luckner M, Meyer M, Weege F, Gravenstein I, Raftery M, Sieben C, Martin-Sancho L, Imai-Matsushima A, Welke RW, Frise R, Barclay W, Schönrich G, Herrmann A, Meyer TF, Karlas A. RNAi-based small molecule repositioning reveals clinically approved urea-based kinase inhibitors as broadly active antivirals. PLoS Pathog 2019; 15:e1007601. [PMID: 30883607 PMCID: PMC6422253 DOI: 10.1371/journal.ppat.1007601] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
Influenza viruses (IVs) tend to rapidly develop resistance to virus-directed vaccines and common antivirals targeting pathogen determinants, but novel host-directed approaches might preclude resistance development. To identify the most promising cellular targets for a host-directed approach against influenza, we performed a comparative small interfering RNA (siRNA) loss-of-function screen of IV replication in A549 cells. Analysis of four different IV strains including a highly pathogenic avian H5N1 strain, an influenza B virus (IBV) and two human influenza A viruses (IAVs) revealed 133 genes required by all four IV strains. According to gene enrichment analyses, these strain-independent host genes were particularly enriched for nucleocytoplasmic trafficking. In addition, 360 strain-specific genes were identified with distinct patterns of usage for IAVs versus IBV and human versus avian IVs. The strain-independent host genes served to define 43 experimental and otherwise clinically approved drugs, targeting reportedly fourteen of the encoded host factors. Amongst the approved drugs, the urea-based kinase inhibitors (UBKIs) regorafenib and sorafenib exhibited a superior therapeutic window of high IV antiviral activity and low cytotoxicity. Both UBKIs appeared to block a cell signaling pathway involved in IV replication after internalization, yet prior to vRNP uncoating. Interestingly, both compounds were active also against unrelated viruses including cowpox virus (CPXV), hantavirus (HTV), herpes simplex virus 1 (HSV1) and vesicular stomatitis virus (VSV) and showed antiviral efficacy in human primary respiratory cells. An in vitro resistance development analysis for regorafenib failed to detect IV resistance development against this drug. Taken together, the otherwise clinically approved UBKIs regorafenib and sorafenib possess high and broad-spectrum antiviral activity along with substantial robustness against resistance development and thus constitute attractive host-directed drug candidates against a range of viral infections including influenza. Conventional medications against influenza infections, including vaccination and antiviral drug therapy, are targeted against viral determinants–an approach collectively referred to as pathogen-directed. However, influenza viruses mutate fast and quickly develop resistance to these pathogen-directed treatments. An alternative, yet not well established, is to block host cellular molecules required by the virus to successfully multiply. Such a host-directed approach is anticipated to be more robust against the development of drug resistance. This notion is founded on the different modes of action of the two principal approaches: Virus-directed therapeutics target the virus itself. Thus, just a single mutation could abrogate sensitivity to a virus-directed therapeutic. In contrast, it is unlikely that viruses can easily circumvent a pharmacological blockage of a cellular factor by means of just a few mutations. Instead, the virus needs to either exploit an immediate parallel cellular pathway or adjust its replication cycle to a different cellular factor–the latter being a process likely to require multiple mutations, if possible at all. To identify the most promising targets for a host-directed therapy, we performed a small interfering RNA (siRNA) screen with four different influenza virus strains using a lung epithelial cell line. Subsequently, we tested a series of drugs, specific for the products of the genes that are required for replication of all four influenza virus strains tested. Regorafenib and sorafenib, two chemically related urea-based kinase inhibitors already clinically approved for cancer treatment, turned out to be effective inhibitors of all influenza viruses and displayed low cytotoxicity. These drugs blocked viral replication at an early stage of the life cycle not only in cell lines but also in human primary respiratory cells. Moreover, these drugs exhibited high efficacy even against unrelated viruses. In addition, no development of resistance was observed against regorafenib, which was used in an in vitro assay representatively of urea-based kinase inhibitors. Our results suggest that regorafenib and sorafenib are promising drug candidates for a host-directed therapy of influenza and other viral infections.
Collapse
Affiliation(s)
- Markus Lesch
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- Steinbeis Innovation Center for Systems Biomedicine, Falkensee, Germany
| | - Madlen Luckner
- Group of Molecular Biophysics, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Meyer
- Steinbeis Innovation Center for Systems Biomedicine, Falkensee, Germany
| | - Friderike Weege
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | - Martin Raftery
- Institute of Virology, Charité University Medicine, Berlin, Germany
| | - Christian Sieben
- Group of Molecular Biophysics, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura Martin-Sancho
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Aki Imai-Matsushima
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Robert-William Welke
- Group of Molecular Biophysics, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rebecca Frise
- Section of Virology, Department of Medicine, Imperial College London, St Mary's Campus, London, United Kingdom
| | - Wendy Barclay
- Section of Virology, Department of Medicine, Imperial College London, St Mary's Campus, London, United Kingdom
| | | | - Andreas Herrmann
- Group of Molecular Biophysics, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas F. Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- Steinbeis Innovation Center for Systems Biomedicine, Falkensee, Germany
- * E-mail: (TFM); (AK)
| | - Alexander Karlas
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- Steinbeis Innovation Center for Systems Biomedicine, Falkensee, Germany
- * E-mail: (TFM); (AK)
| |
Collapse
|
43
|
Lee JY, Abundo MEC, Lee CW. Herbal Medicines with Antiviral Activity Against the Influenza Virus, a Systematic Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 46:1663-1700. [PMID: 30612461 DOI: 10.1142/s0192415x18500854] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The rapidly changing influenza virus has remained a consistent threat to the well-being of a variety of species on the planet. Influenza virus' high mutation rate has allowed the virus to rapidly and continuously evolve, as well as generate new strains that are resistant to the current commercially available antivirals. Thus, the increased resistance has compelled the scientific community to explore alternative compounds that have antiviral effects against influenza virus. In this paper, the authors systematically review numerous herbal extracts that were shown to have antiviral effects against the virus. Specifically, the herbal antiviral targets mainly include hemagglutinin, neuraminidase and matrix 2 proteins. In some instances, herbal extracts inhibited the replication of oseltamivir-resistant strains and certain pentacyclic triterpenes exhibited higher antiviral activity than oseltamivir. This paper also explores the possibility of targeting various host-cell signaling pathways that are utilized by the virus during its replication process. Infected cell pathways are hijacked by intracellular signaling cascades such as NF-kB signaling, PI3K/Akt pathway, MAPK pathway and PKC/PKR signaling cascades. Herbal antivirals have been shown to target these pathways by suppressing nuclear export of influenza vRNP and thus inhibiting the phosphorylation signaling cascade. In conclusion, copious amounts of herbal antivirals have been shown to inhibit influenza virus, however further studies are needed for these new compounds to be up to modern pharmacological standards.
Collapse
Affiliation(s)
- Ju-Young Lee
- * Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, USA.,‡ Mom-Pyon Han Pharmacy, Nambusoonhwan-ro 770, Seosan City, Chungnam, Republic of Korea
| | - Michael Edward C Abundo
- * Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, USA.,† Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Chang-Won Lee
- * Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, USA.,† Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
44
|
Pizzorno A, Terrier O, Nicolas de Lamballerie C, Julien T, Padey B, Traversier A, Roche M, Hamelin ME, Rhéaume C, Croze S, Escuret V, Poissy J, Lina B, Legras-Lachuer C, Textoris J, Boivin G, Rosa-Calatrava M. Repurposing of Drugs as Novel Influenza Inhibitors From Clinical Gene Expression Infection Signatures. Front Immunol 2019; 10:60. [PMID: 30761132 PMCID: PMC6361841 DOI: 10.3389/fimmu.2019.00060] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/10/2019] [Indexed: 11/13/2022] Open
Abstract
Influenza virus infections remain a major and recurrent public health burden. The intrinsic ever-evolving nature of this virus, the suboptimal efficacy of current influenza inactivated vaccines, as well as the emergence of resistance against a limited antiviral arsenal, highlight the critical need for novel therapeutic approaches. In this context, the aim of this study was to develop and validate an innovative strategy for drug repurposing as host-targeted inhibitors of influenza viruses and the rapid evaluation of the most promising candidates in Phase II clinical trials. We exploited in vivo global transcriptomic signatures of infection directly obtained from a patient cohort to determine a shortlist of already marketed drugs with newly identified, host-targeted inhibitory properties against influenza virus. The antiviral potential of selected repurposing candidates was further evaluated in vitro, in vivo, and ex vivo. Our strategy allowed the selection of a shortlist of 35 high potential candidates out of a rationalized computational screening of 1,309 FDA-approved bioactive molecules, 31 of which were validated for their significant in vitro antiviral activity. Our in vivo and ex vivo results highlight diltiazem, a calcium channel blocker currently used in the treatment of hypertension, as a promising option for the treatment of influenza infections. Additionally, transcriptomic signature analysis further revealed the so far undescribed capacity of diltiazem to modulate the expression of specific genes related to the host antiviral response and cholesterol metabolism. Finally, combination treatment with diltiazem and virus-targeted oseltamivir neuraminidase inhibitor further increased antiviral efficacy, prompting rapid authorization for the initiation of a Phase II clinical trial. This original, host-targeted, drug repurposing strategy constitutes an effective and highly reactive process for the rapid identification of novel anti-infectious drugs, with potential major implications for the management of antimicrobial resistance and the rapid response to future epidemic or pandemic (re)emerging diseases for which we are still disarmed.
Collapse
Affiliation(s)
- Andrés Pizzorno
- Virologie et Pathologie Humaine—VirPath Team, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Research Center in Infectious Diseases of the CHU de Quebec and Laval University, Quebec City, QC, Canada
| | - Olivier Terrier
- Virologie et Pathologie Humaine—VirPath Team, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Claire Nicolas de Lamballerie
- Virologie et Pathologie Humaine—VirPath Team, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Viroscan3D SAS, Lyon, France
| | - Thomas Julien
- Virologie et Pathologie Humaine—VirPath Team, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Blandine Padey
- Virologie et Pathologie Humaine—VirPath Team, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Aurélien Traversier
- Virologie et Pathologie Humaine—VirPath Team, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | | | - Marie-Eve Hamelin
- Research Center in Infectious Diseases of the CHU de Quebec and Laval University, Quebec City, QC, Canada
| | - Chantal Rhéaume
- Research Center in Infectious Diseases of the CHU de Quebec and Laval University, Quebec City, QC, Canada
| | - Séverine Croze
- ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Vanessa Escuret
- Virologie et Pathologie Humaine—VirPath Team, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Laboratoire de Virologie, Centre National de Référence des virus Influenza Sud, Institut des Agents Infectieux, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| | - Julien Poissy
- Pôle de Réanimation, Hôpital Roger Salengro, Centre Hospitalier Régional et Universitaire de Lille, Université de Lille 2, Lille, France
| | - Bruno Lina
- Virologie et Pathologie Humaine—VirPath Team, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Laboratoire de Virologie, Centre National de Référence des virus Influenza Sud, Institut des Agents Infectieux, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| | - Catherine Legras-Lachuer
- Viroscan3D SAS, Lyon, France
- Ecologie Microbienne, UMR CNRS 5557, USC INRA 1364, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, France
| | - Julien Textoris
- Service d'Anesthésie et de Réanimation, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Pathophysiology of Injury-Induced Immunosuppression (PI3), EA 7426 Hospices Civils de Lyon, bioMérieux, Université Claude Bernard Lyon 1, Hôpital Edouard Herriot, Lyon, France
| | - Guy Boivin
- Research Center in Infectious Diseases of the CHU de Quebec and Laval University, Quebec City, QC, Canada
| | - Manuel Rosa-Calatrava
- Virologie et Pathologie Humaine—VirPath Team, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
45
|
Li J, Liang X, Zhou B, Chen X, Xie P, Jiang H, Jiang Z, Yang Z, Pan X. (+)‑pinoresinol‑O‑β‑D‑glucopyranoside from Eucommia ulmoides Oliver and its anti‑inflammatory and antiviral effects against influenza A (H1N1) virus infection. Mol Med Rep 2018; 19:563-572. [PMID: 30483751 DOI: 10.3892/mmr.2018.9696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/01/2018] [Indexed: 11/05/2022] Open
Abstract
Eucommia ulmoides Oliver (Du-Zhong) is an ancient Chinese herbal remedy used for the treatment of various diseases. To date, the effects of its constituent lignans on influenza viruses remain to be elucidated. In the present study, a lignan glycoside was isolated and purified from Eucommia ulmoides Oliver. Its structures were identified via extensive spectroscopic analysis, and its antiviral and anti‑inflammatory activities, specifically against influenza viruses, were determined via a cytopathic effect (CPE) assay, plaque‑reduction assays, a progeny virus yield reduction assay, reverse transcription‑quantitative polymerase chain reaction analysis and a Luminex assay. Additionally, western blot analysis was performed to investigate the underlying mechanisms of its effects against influenza viruses. The chemical and spectroscopic methods determined the structure of lignan glycoside to be (+)‑pinoresinol‑O‑β‑D‑glucopyranoside. The CPE assay showed that (+)‑pinoresinol‑O‑β‑D‑glucopyranoside exerted inhibitory activities with 50% inhibition concentration values of 408.81±5.24 and 176.24±4.41 µg/ml against the influenza A/PR/8/34 (H1N1) and A/Guangzhou/GIRD07/09 (H1N1) strains, respectively. Its antiviral properties were confirmed by plaque reduction and progeny virus yield reduction assays. Additional mechanistic analyses indicated that the anti‑H1N1 virus‑induced effects of (+)‑pinoresinol‑O-β‑D-glucopyranoside were likely due to inactivation of the nuclear factor‑κB, p38 mitogen‑activated protein kinase and AKT signaling pathways. Furthermore, (+)‑pinoresinol‑O‑β‑D‑glucopyranoside exhibited pronounced inhibitory effects on the expression of influenza H1N1 virus‑induced pro‑inflammatory mediators, including tumor necrosis factor‑α, interleukin (IL)‑6, IL‑8 and monocyte chemoattractant protein 1. The data obtained suggest that (+)‑pinoresinol‑O‑β‑D-glucopyranoside may be a candidate drug for treating influenza H1N1 virus infection.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Xiaoli Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Beixian Zhou
- Department of Pharmacy, The People's Hospital of Gaozhou, Gaozhou, Guangdong 525200, P.R. China
| | - Xiaowei Chen
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Peifang Xie
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Haiming Jiang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, P.R. China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Xiping Pan
- Institute of Chinese Integrative Medicine, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| |
Collapse
|
46
|
Wang B, Zhang Y, Jiang W, Zhu L, Li K, Zhou K, Dai D, Chang S, Fang M. GALNT3 inhibits NF-κB signaling during influenza A virus infection. Biochem Biophys Res Commun 2018; 503:2872-2877. [PMID: 30100058 DOI: 10.1016/j.bbrc.2018.08.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 01/13/2023]
Abstract
Protein glycosylation, attaching glycans covalently onto amino acid side chains of protein by various glycosyltransferase, is the most common post-translational modification. The UDP-GalNAc transferase 3 (GANLT3), encoded by Galnt3, transfers N-acetyl-d-galactosamine to hydroxyl groups of the side chains of Ser/Thr residues, initiating mucin type O-glycosylation of proteins. Most researches as yet focus on the involvement and abnormal expression of GALNT3 in various tumors. In this study, we found that GALNT3 was significantly decreased in the lungs after influenza A virus (IAV) infection in mice. Overexpression of GALNT3 in cell lines markedly inhibited IAV replication. Further experiments demonstrated that GALNT3 inhibited NF-κB signaling by preventing the translocation of phosphorylated P65 into nucleus. Therefore, our results reveal an important role of GALNT3 in regulating host responses during IAV infection, indicating the broad functions of the GALNT family, and the direct involvement of GALNTs during viral infections.
Collapse
Affiliation(s)
- Bin Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yufan Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Jiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Li Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Kaili Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101, China; Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Kai Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Dongsheng Dai
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101, China; International College, University of Chinese Academy of Sciences, Beijing, 100101, China; Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China.
| |
Collapse
|
47
|
Schräder T, Dudek SE, Schreiber A, Ehrhardt C, Planz O, Ludwig S. The clinically approved MEK inhibitor Trametinib efficiently blocks influenza A virus propagation and cytokine expression. Antiviral Res 2018; 157:80-92. [PMID: 29990517 DOI: 10.1016/j.antiviral.2018.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 01/14/2023]
Abstract
Influenza A virus (IAV) infections are still a major global threat for humans, especially for the risk groups of young children and the elderly. Annual epidemics and sporadically occurring pandemics highlight the necessity of effective antivirals that can limit viral replication. The currently licensed antiviral drugs target viral factors and are prone to provoke viral resistance. In infected host cells IAV induces various cellular signaling cascades. The Raf/MEK/ERK signaling cascade is indispensable for IAV replication because it triggers the nuclear export of newly assembled viral ribonucleoproteins (vRNPs). Inhibition of this cascade limits viral replication. Thus, next to their potential in anti-tumor therapy, inhibitors targeting the Raf/MEK/ERK signaling cascade came into focus as potential antiviral drugs. The first licensed MEK inhibitor Trametinib (GSK-1120212) is used for treatment of malignant melanoma, being highly selective and having a promising side effect profile. Since Trametinib may be qualified for a repurposing approach that would significantly shorten development time for an anti-flu use, we evaluated its antiviral potency and mode of action. In this study, we describe that Trametinib efficiently blocks replication of different IAV subtypes in vitro and in vivo. The broad antiviral activity against various IAV strains was due to its ability to interfere with export of progeny vRNPs from the nucleus. The compound also limited hyper-expression of several cytokines. Thus, we show for the first time that a clinically approved MEK inhibitor acts as a potent anti-influenza agent.
Collapse
Affiliation(s)
- Tobias Schräder
- Institute of Virology (IVM), Westfälische Wilhelms-Universität, Münster, Germany; Cluster of Excellence "Cells in Motion", Westfälische Wilhelms-Universität, Münster, Germany
| | - Sabine E Dudek
- Institute of Virology (IVM), Westfälische Wilhelms-Universität, Münster, Germany
| | - André Schreiber
- Institute of Virology (IVM), Westfälische Wilhelms-Universität, Münster, Germany
| | - Christina Ehrhardt
- Institute of Virology (IVM), Westfälische Wilhelms-Universität, Münster, Germany; Cluster of Excellence "Cells in Motion", Westfälische Wilhelms-Universität, Münster, Germany
| | - Oliver Planz
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Tübingen, Germany
| | - Stephan Ludwig
- Institute of Virology (IVM), Westfälische Wilhelms-Universität, Münster, Germany; Cluster of Excellence "Cells in Motion", Westfälische Wilhelms-Universität, Münster, Germany.
| |
Collapse
|
48
|
Scheuch G, Canisius S, Nocker K, Hofmann T, Naumann R, Pleschka S, Ludwig S, Welte T, Planz O. Targeting intracellular signaling as an antiviral strategy: aerosolized LASAG for the treatment of influenza in hospitalized patients. Emerg Microbes Infect 2018; 7:21. [PMID: 29511170 PMCID: PMC5841227 DOI: 10.1038/s41426-018-0023-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/18/2017] [Accepted: 12/23/2017] [Indexed: 12/13/2022]
Abstract
Influenza has been a long-running health problem and novel antiviral drugs are urgently needed. In pre-clinical studies, we demonstrated broad antiviral activity of D, L-lysine-acetylsalicylate glycine (LASAG) against influenza virus (IV) in cell culture and protection against lethal challenge in mice. LASAG is a compound with a new antiviral mode of action. It inhibits the NF-κB signal transduction module that is essential for IV replication. Our goal was to determine whether aerosolized LASAG would also show a therapeutic benefit in hospitalized patients suffering from severe influenza. The primary endpoint was time to alleviation of clinical influenza symptoms. The primary analysis was based on the modified intention-to-treat (MITT) population. This included all patients with confirmed influenza virus infection who received at least one treatment. The per protocol (PP) analysis set included all subjects from the MITT population who underwent at least 13 inhalations. In the MITT group, 48 (41.7%) participants (29 LASAG; 19 placebo) had severe influenza. The mean time to symptom alleviation was 56.2 h in the placebo group and 43.0 h in the LASAG group. The PP set consisted of 41 patients (24 LASAG; 17 placebo). The mean time to symptom alleviation in the LASAG group (38.3 h; P = 0.0365) was lower than that in the placebo group (56.2 h). In conclusion, LASAG improved the time to alleviation of influenza symptoms in hospitalized patients. The present phase II proof-of-concept (PoC) study demonstrates that targeting an intra-cellular signaling pathway using aerosolized LASAG improves the time to symptom alleviation compared to standard treatment.
Collapse
Affiliation(s)
- Gerhard Scheuch
- Bio-Inhalation GmbH, 35285, Gemuenden/Wohra, Hessen, Germany
| | | | | | | | - Rolf Naumann
- Ventaleon GmbH, 35285, Gemuenden/Wohra, Hessen, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, 35392, Giessen, Hessen, Germany
| | - Stephan Ludwig
- Institute of Virology (IVM), Westfaelische Wilhelms-University Muenster, 48149, Muenster, North Rhine-Westphalia, Germany
| | - Tobias Welte
- Pneumology Clinic, Medical University Hannover, 30625, Hannover, Lower Saxony, Germany
| | - Oliver Planz
- Interfaculty Institute for Cell Biology, Department of Immunology, Eberhard Karls Tuebingen University, 72076, Tuebingen, Baden-Württemberg, Germany.
| |
Collapse
|
49
|
Hahn F, Fröhlich T, Frank T, Bertzbach LD, Kohrt S, Kaufer BB, Stamminger T, Tsogoeva SB, Marschall M. Artesunate-derived monomeric, dimeric and trimeric experimental drugs - Their unique mechanistic basis and pronounced antiherpesviral activity. Antiviral Res 2018; 152:104-110. [PMID: 29458133 DOI: 10.1016/j.antiviral.2018.02.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 12/24/2022]
Abstract
Human cytomegalovirus (HCMV) is a major human pathogen and is associated with severe pathology, such as life-threatening courses of infection in immunocompromised individuals and neonates. Currently, antiviral therapy is still hampered by a considerable toxicity of the available drugs and induction of viral resistance. Recently, we and others reported the very potent antiviral activity of the broad antiinfective drug artesunate in vitro and in vivo. Here, we investigated further optimized analogs including monomeric, dimeric and trimeric derivatives belonging to this highly interesting chemical group of experimental drugs (sesquiterpenes/trioxanes) and compared these to the previously identified trimeric artesunate compound TF27. We could demonstrate that (i) seven of the eight investigated monomeric, dimeric and trimeric artesunate derivatives, i.e. TF79, TF85, TF87, TF93.2.4, TF111, TF57a and TF57ab, exerted a strong anti-HCMV activity in primary human fibroblasts, (ii) the EC50 values ranged in the low to sub-micromolar concentrations and indicated a higher antiviral potency than the recently described artesunate analogs, (iii) one trimeric compound, TF79, showed a very promising EC50 of 0.03 ± 0.00 μM, which even exceled the antiviral potency of TF27 (EC50 0.04 ± 0.01 μM), (iv) levels of cytotoxicity (quantitative measurement of lactate dehydrogenase release) were low in a range between 100 and 30 μM and thus different from antiviral concentrations, (v) an analysis of protein expression levels indicated a potent block of viral protein expression, and (vi) data from a NF-κB reporter cell system strongly suggested that these compounds share the same antiviral mechanism. Taken together, our data on these novel compounds strongly encourages our earlier concept on the oligomerization and hybridization of artesunate analogs, providing an excellent platform for the generation of antiherpesviral drugs.
Collapse
Affiliation(s)
- Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany.
| | - Tony Fröhlich
- Institute of Organic Chemistry I, Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.
| | - Theresa Frank
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany.
| | - Luca D Bertzbach
- Institute of Virology, Freie Universität Berlin, Robert Von Ostertag-Str. 7 - 13, 14163 Berlin, Germany.
| | - Stephan Kohrt
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany.
| | - Benedikt B Kaufer
- Institute of Virology, Freie Universität Berlin, Robert Von Ostertag-Str. 7 - 13, 14163 Berlin, Germany.
| | - Thomas Stamminger
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany.
| | - Svetlana B Tsogoeva
- Institute of Organic Chemistry I, Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany.
| |
Collapse
|
50
|
Droebner K, Haasbach E, Dudek SE, Scheuch G, Nocker K, Canisius S, Ehrhardt C, von Degenfeld G, Ludwig S, Planz O. Pharmacodynamics, Pharmacokinetics, and Antiviral Activity of BAY 81-8781, a Novel NF-κB Inhibiting Anti-influenza Drug. Front Microbiol 2017; 8:2130. [PMID: 29163418 PMCID: PMC5673638 DOI: 10.3389/fmicb.2017.02130] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/18/2017] [Indexed: 01/04/2023] Open
Abstract
Influenza is a respiratory disease that causes annual epidemics. Antiviral treatment options targeting the virus exist, but their efficiency is limited and influenza virus strains easily develop resistance. Thus, new treatment strategies are urgently needed. In the present study, we investigated the anti-influenza virus properties of D,L-lysine acetylsalicylate ⋅ glycine (BAY 81-8781; LASAG) that is approved as Aspirin i.v. for intravenous application. Instead of targeting the virus directly BAY 81-8781 inhibits the activation of the NF-κB pathway, which is required for efficient influenza virus propagation. Using highly pathogenic avian influenza virus strains we could demonstrate that BAY 81-8781 was able to control influenza virus infection in vitro. In the mouse infection model, inhalation of BAY 81-8781 resulted in reduced lung virus titers and protection of mice from lethal infection. Pharmacological studies demonstrated that the oral route of administration was not suitable to reach the sufficient concentrations of BAY 81-8781 for a successful antiviral effect in the lung. BAY 81-8781 treatment of mice infected with influenza virus started as late as 48 h after infection was still effective in protecting 50% of the animals from death. In summary, the data represent a successful proof of the novel innovative antiviral concept of targeting a host cell signaling pathway that is required for viral propagation instead of viral structures.
Collapse
Affiliation(s)
- Karoline Droebner
- Interfaculty Institute for Cell Biology, Department of Immunology, Eberhard Karls University, Tübingen, Germany.,Friedrich Loeffler Institut, Tübingen, Germany.,Bayer Pharma AG, Pharmaceuticals, Therapeutic Research Groups, Cardiovascular Research, Wuppertal, Germany
| | - Emanuel Haasbach
- Interfaculty Institute for Cell Biology, Department of Immunology, Eberhard Karls University, Tübingen, Germany
| | - Sabine E Dudek
- Institute of Virology Muenster, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | | | | | | - Christina Ehrhardt
- Institute of Virology Muenster, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Georges von Degenfeld
- Bayer Pharma AG, Pharmaceuticals, Therapeutic Research Groups, Cardiovascular Research, Wuppertal, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Oliver Planz
- Interfaculty Institute for Cell Biology, Department of Immunology, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|