1
|
Awasthi VA, Dhankar V, Singh S. Novel therapeutic targets for reperfusion injury in ischemic stroke: Understanding the role of mitochondria, excitotoxicity and ferroptosis. Vascul Pharmacol 2024; 156:107413. [PMID: 39059676 DOI: 10.1016/j.vph.2024.107413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/25/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Ischemic reperfusion injury (IRI) remains a significant challenge in various clinical settings, including stroke. Despite advances in reperfusion strategies, the restoration of blood flow to ischemic tissues often exacerbates tissue damage through a complex cascade of cellular and molecular events. In recent years, there has been growing interest in identifying novel therapeutic targets to ameliorate the detrimental effects of IRI and improve patient outcomes. This review critically evaluates emerging therapeutic targets and strategies for IRI management, such as R-spondin 3, neurolysin, glial cell gene therapy and inter alpha inhibitors. Diverse pathophysiology involved in IRI stroke such as oxidative stress, inflammation, mitochondrial dysfunction, and ferroptosis are also closely discussed. Additionally, we explored the intricate interplay between inflammation and IRI, focusing on cell-mediated gene therapy approaches and anti-inflammatory agents that hold promise for attenuating tissue damage. Moreover, we delve into novel strategies aimed at preserving endothelial function, promoting tissue repair, and enhancing cellular resilience to ischemic insults. Finally, we discuss challenges, future directions, and translational opportunities for the development of effective therapies targeting ischemic reperfusion injury.
Collapse
Affiliation(s)
- Vidhi Anupam Awasthi
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Vaibhav Dhankar
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India.
| |
Collapse
|
2
|
Ansari MA, Al-Jarallah A, Rao MS, Babiker A, Bensalamah K. Upregulation of NADPH-oxidase, inducible nitric oxide synthase and apoptosis in the hippocampus following impaired insulin signaling in the rats: Development of sporadic Alzheimer's disease. Brain Res 2024; 1834:148890. [PMID: 38552936 DOI: 10.1016/j.brainres.2024.148890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/21/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
NADPH-oxidase (NOX) is a multi-subunit enzyme complex. The upregulation of NOX causes massive production of superoxide (O2¯), which avidly reacts with nitric oxide (NO) and increases cellular reactive oxygen/nitrogen species (ROS/RNS). Increased ROS/RNS plays pivotal role in the sporadic Alzheimer's disease (sAD) development and brain damage following impaired insulin signaling. Hence, this study aimed to examine early-time course of changes in NOX and NOS expression, and apoptotic proteins in the rats hippocampi following insulin signaling impairment [induced by STZ injection; intraperitoneal (IP) or in cerebral ventricles (ICV)]. Early effects (1, 3, or 6 weeks) on the NOX activity, translocation of NOX subunits from cytosol to the membrane, NO-synthases [neuronal-, inducible- and endothelial-NOS; nNOS, iNOS and eNOS], The Rac-1 protein expression, levels of NO and O2¯, cytochrome c release, caspase-3 and 9 activations (cleavage) were studied. STZ injection (in both models) increased NOX activity, O2¯ production, and enhanced cytosolic subunits translocation into membrane. The iNOS but not nNOS and eNOS expression and NO levels were increased in STZ treated rats. Finally, STZ injection increased cytochrome c release, caspase-3 and 9 activations in a manner that was significantly associated with levels of O2¯ and NO in the hippocampus. ICV-STZ administration resulted in significant profound changes over the IP route. In conclusion, impairment in insulin function induces early changes in ROS/RNS contents through NOX and iNOS upregulation and neuronal apoptosis in the hippocampus. Our results could mechanistically explain the role of impaired insulin function in the development of sAD.
Collapse
Affiliation(s)
- Mubeen A Ansari
- Department of Pharmacology and Toxicology, Kuwait University, Kuwait City, Safat 13110, Kuwait.
| | - Aishah Al-Jarallah
- Department of Biochemistry, Kuwait University, Kuwait City, Safat 13110, Kuwait
| | - Muddanna S Rao
- Department of Anatomy, Kuwait University, Kuwait City, Safat 13110, Kuwait
| | - Ahmed Babiker
- Faculty of Medicine, Kuwait University, Kuwait City, Safat 13110, Kuwait
| | - Khaled Bensalamah
- Faculty of Medicine, Kuwait University, Kuwait City, Safat 13110, Kuwait
| |
Collapse
|
3
|
Hashmat A, Ya J, Kadir R, Alwjwaj M, Bayraktutan U. Hyperglycaemia perturbs blood-brain barrier integrity through its effects on endothelial cell characteristics and function. Tissue Barriers 2024:2350821. [PMID: 38712515 DOI: 10.1080/21688370.2024.2350821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
Breakdown of blood-brain barrier (BBB) represents a key pathology in hyperglycemia-mediated cerebrovascular damage after an ischemic stroke. As changes in the level and nature of vasoactive agents released by endothelial cells (ECs) may contribute to BBB dysfunction, this study first explored the specific impact of hyperglycemia on EC characteristics and secretome. It then assessed whether secretome obtained from ECs subjected to normoglycaemia or hyperglycemia might regulate pericytic cytokine profile differently. Using a triple cell culture model of human BBB, composed of brain microvascular EC (BMEC), astrocytes and pericytes, this study showed that exposure to hyperglycemia (25 mM D-glucose) for 72 h impaired the BBB integrity and function as evidenced by decreases in transendothelial electrical resistance and increases in paracellular flux of sodium fluorescein. Dissolution of zonula occludens-1, a tight junction protein, and appearance of stress fibers appeared to play a key role in this pathology. Despite elevations in angiogenin, endothelin-1, interleukin-8 and basic fibroblast growth factor levels and a decrease in placental growth factor levels in BMEC subjected to hyperglycemia vs normoglycaemia (5.5 mM D-glucose), tubulogenic capacity of BMECs remained similar in both settings. Similarly, pericytes subjected to secretome obtained from hyperglycemic BMEC released higher quantities of macrophage migration inhibitory factor and serpin and lower quantities of monocyte chemoattractant protein-1, intercellular adhesion molecule, interleukin-6 and interleukin-8. Taken together these findings indicate the complexity of the mechanisms leading to BBB disruption in hyperglycemic settings and emphasize the importance of endothelial cell-pericyte axis in the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Arshad Hashmat
- Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Jingyuan Ya
- Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Rais Kadir
- Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Mansour Alwjwaj
- Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Ulvi Bayraktutan
- Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, The University of Nottingham, Nottingham, UK
| |
Collapse
|
4
|
Gao X, Bayraktutan U. TNF-α evokes blood-brain barrier dysfunction through activation of Rho-kinase and neurokinin 1 receptor. Immunobiology 2023; 228:152706. [PMID: 37454559 DOI: 10.1016/j.imbio.2023.152706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/17/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Ischaemic stroke, accompanied by neuroinflammation, impairs blood-brain barrier (BBB) integrity through a complex mechanism involving activation of both RhoA/Rho kinase/myosin light chain-2 and neurokinin 1 receptor (NK1R). Using an in vitro model of human BBB composed of brain microvascular endothelial cells (BMEC), astrocytes and pericytes, this study examined the potential contributions of these elements to BBB damage induced by elevated availability of pro-inflammatory cytokine, TNF-α. Treatment of human BMECs with TNF-α significantly enhanced RhoA activity and the protein expressions of Rho kinase and phosphorylated Ser19MLC-2 while decreasing that of NK1R. Pharmacological inhibition of Rho kinase by Y-27632 and NK1R by CP96345 neutralised the disruptive effects of TNF-α on BBB integrity and function as ascertained by reversal of decreases in transendothelial electrical resistance and increases in paracellular flux of low molecular weight permeability marker, sodium fluorescein, respectively. Suppression of RhoA activation, mitigation of actin stress fibre formation and restoration of plasma membrane localisation of tight junction protein zonula occludens-1 appeared to contribute to the barrier-protective effects of both Y-27632 and CP96345. Attenuation of TNF-α-mediated increases in NK1R protein expression in BMEC by Y-27632 suggests that RhoA/Rho kinase pathway acts upstream to NK1R. In conclusion, specific inhibition of Rho kinase in cerebrovascular conditions, accompanied by excessive release of pro-inflammatory cytokine TNF-α, helps preserve endothelial cell morphology and inter-endothelial cell barrier formation and may serve as an important therapeutic target.
Collapse
Affiliation(s)
- Xin Gao
- Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ulvi Bayraktutan
- Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
5
|
Wątroba M, Grabowska AD, Szukiewicz D. Effects of Diabetes Mellitus-Related Dysglycemia on the Functions of Blood-Brain Barrier and the Risk of Dementia. Int J Mol Sci 2023; 24:10069. [PMID: 37373216 DOI: 10.3390/ijms241210069] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetes mellitus is one of the most common metabolic diseases worldwide, and its long-term complications include neuropathy, referring both to the peripheral and to the central nervous system. Detrimental effects of dysglycemia, especially hyperglycemia, on the structure and function of the blood-brain barrier (BBB), seem to be a significant backgrounds of diabetic neuropathy pertaining to the central nervous system (CNS). Effects of hyperglycemia, including excessive glucose influx to insulin-independent cells, may induce oxidative stress and secondary innate immunity dependent inflammatory response, which can damage cells within the CNS, thus promoting neurodegeneration and dementia. Advanced glycation end products (AGE) may exert similar, pro-inflammatory effects through activating receptors for advanced glycation end products (RAGE), as well as some pattern-recognition receptors (PRR). Moreover, long-term hyperglycemia can promote brain insulin resistance, which may in turn promote Aβ aggregate accumulation and tau hyperphosphorylation. This review is focused on a detailed analysis of the effects mentioned above towards the CNS, with special regard to mechanisms taking part in the pathogenesis of central long-term complications of diabetes mellitus initiated by the loss of BBB integrity.
Collapse
Affiliation(s)
- Mateusz Wątroba
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland
| | - Anna D Grabowska
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland
| | - Dariusz Szukiewicz
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland
| |
Collapse
|
6
|
Malik JR, Fletcher CV, Podany AT, Dyavar SR, Scarsi KK, Pais GM, Scheetz MH, Avedissian SN. A novel 4-cell in-vitro blood-brain barrier model and its characterization by confocal microscopy and TEER measurement. J Neurosci Methods 2023; 392:109867. [PMID: 37116621 PMCID: PMC10275325 DOI: 10.1016/j.jneumeth.2023.109867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
The blood-brain barrier (BBB) is a protective cellular anatomical layer with a dynamic micro-environment, tightly regulating the transport of materials across it. To achieve in-vivo characteristics, an in-vitro BBB model requires the constituent cell types to be layered in an appropriate order. A cost-effective in-vitro BBB model is desired to facilitate central nervous system (CNS) drug penetration studies. Enhanced integrity of tight junctions observed during the in-vitro BBB establishment and post-experiment is essential in these models. We successfully developed an in-vitro BBB model mimicking the in-vivo cell composition and a distinct order of seeding primary human brain cells. Unlike other in-vitro BBB models, our work avoids the need for pre-coated plates for cell adhesion and provides better cell visualization during the procedure. We found that using bovine collagen-I coating, followed by bovine fibronectin coating and poly-L-lysine coating, yields better adhesion and layering of cells on the transwell membrane compared to earlier reported use of collagen and poly-L-lysine only. Our results indicated better cell visibility and imaging with the polyester transwell membrane as well as point to a higher and more stable Trans Endothelial Electrical Resistance values in this plate. In addition, we found that the addition of zinc induced higher claudin 5 expressions in neuronal cells. Dolutegravir, a drug used in the treatment of HIV, is known to appear in moderate concentrations in the CNS. Thus, dolutegravir was used to assess the functionality of the final model and cells. Using primary cells and an in-house coating strategy substantially reduces costs and provides superior imaging of cells and their tight junction protein expression. Our 4-cell-based BBB model is a suitable experimental model for the drug screening process.
Collapse
Affiliation(s)
- Johid R Malik
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Courtney V Fletcher
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA; Division of Infectious Diseases, Department of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anthony T Podany
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Kimberly K Scarsi
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA; Division of Infectious Diseases, Department of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Gwendolyn M Pais
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, USA; Midwestern University, College of Pharmacy Center of Pharmacometric Excellence, Downers Grove, IL, USA
| | - Marc H Scheetz
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, USA; Midwestern University, College of Pharmacy Center of Pharmacometric Excellence, Downers Grove, IL, USA
| | - Sean N Avedissian
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
7
|
Gonzales-Aloy E, Ahmed-Cox A, Tsoli M, Ziegler DS, Kavallaris M. From cells to organoids: The evolution of blood-brain barrier technology for modelling drug delivery in brain cancer. Adv Drug Deliv Rev 2023; 196:114777. [PMID: 36931346 DOI: 10.1016/j.addr.2023.114777] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/13/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Brain cancer remains the deadliest cancer. The blood-brain barrier (BBB) is impenetrable to most drugs and is a complex 3D network of multiple cell types including endothelial cells, astrocytes, and pericytes. In brain cancers, the BBB becomes disrupted during tumor progression and forms the blood-brain tumor barrier (BBTB). To advance therapeutic development, there is a critical need for physiologically relevant BBB in vitro models. 3D cell systems are emerging as valuable preclinical models to accelerate discoveries for diseases. Given the versatility and capability of 3D cell models, their potential for modelling the BBB and BBTB is reviewed. Technological advances of BBB models and challenges of in vitro modelling the BBTB, and application of these models as tools for assessing therapeutics and nano drug delivery, are discussed. Quantitative, in vitro BBB models that are predictive of effective brain cancer therapies will be invaluable for accelerating advancing new treatments to the clinic.
Collapse
Affiliation(s)
- Estrella Gonzales-Aloy
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; Australian Center for NanoMedicine, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia
| | - Aria Ahmed-Cox
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; Australian Center for NanoMedicine, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia; Katharina Gaus Light Microscopy Facility, Mark Wainright Analytical Center, UNSW Sydney, NSW, Australia
| | - Maria Tsoli
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia; Kids Cancer Center, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; Australian Center for NanoMedicine, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia; UNSW RNA Institute, UNSW Sydney, NSW, Australia.
| |
Collapse
|
8
|
Yao M, Hao Y, Wang T, Xie M, Li H, Feng J, Feng L, Ma D. A review of stress-induced hyperglycaemia in the context of acute ischaemic stroke: Definition, underlying mechanisms, and the status of insulin therapy. Front Neurol 2023; 14:1149671. [PMID: 37025208 PMCID: PMC10070880 DOI: 10.3389/fneur.2023.1149671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/21/2023] [Indexed: 04/08/2023] Open
Abstract
The transient elevation of blood glucose produced following acute ischaemic stroke (AIS) has been described as stress-induced hyperglycaemia (SIH). SIH is common even in patients with AIS who have no previous diagnosis of diabetes mellitus. Elevated blood glucose levels during admission and hospitalization are strongly associated with enlarged infarct size and adverse prognosis in AIS patients. However, insulin-intensive glucose control therapy defined by admission blood glucose for SIH has not achieved the desired results, and new treatment ideas are urgently required. First, we explore the various definitions of SIH in the context of AIS and their predictive value in adverse outcomes. Then, we briefly discuss the mechanisms by which SIH arises, describing the dual effects of elevated glucose levels on the central nervous system. Finally, although preclinical studies support lowering blood glucose levels using insulin, the clinical outcomes of intensive glucose control are not promising. We discuss the reasons for this phenomenon.
Collapse
Affiliation(s)
- Mengyue Yao
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yulei Hao
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Tian Wang
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Meizhen Xie
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hui Li
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Liangshu Feng
- Stroke Centre, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
- Liangshu Feng
| | - Di Ma
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Di Ma
| |
Collapse
|
9
|
Barberio C, Withers A, Mishra Y, Couraud PO, Romero IA, Weksler B, Owens RM. A human-derived neurovascular unit in vitro model to study the effects of cellular cross-talk and soluble factors on barrier integrity. Front Cell Neurosci 2022; 16:1065193. [PMID: 36545654 PMCID: PMC9762047 DOI: 10.3389/fncel.2022.1065193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
The blood-brain barrier (BBB) restricts paracellular and transcellular diffusion of compounds and is part of a dynamic multicellular structure known as the "neurovascular unit" (NVU), which strictly regulates the brain homeostasis and microenvironment. Several neuropathological conditions (e.g., Parkinson's disease and Alzheimer's disease), are associated with BBB impairment yet the exact underlying pathophysiological mechanisms remain unclear. In total, 90% of drugs that pass animal testing fail human clinical trials, in part due to inter-species discrepancies. Thus, in vitro human-based models of the NVU are essential to better understand BBB mechanisms; connecting its dysfunction to neuropathological conditions for more effective and improved therapeutic treatments. Herein, we developed a biomimetic tri-culture NVU in vitro model consisting of 3 human-derived cell lines: human cerebral micro-vascular endothelial cells (hCMEC/D3), human 1321N1 (astrocyte) cells, and human SH-SY5Y neuroblastoma cells. The cells were grown in Transwell hanging inserts in a variety of configurations and the optimal setup was found to be the comprehensive tri-culture model, where endothelial cells express typical markers of the BBB and contribute to enhancing neural cell viability and neurite outgrowth. The tri-culture configuration was found to exhibit the highest transendothelial electrical resistance (TEER), suggesting that the cross-talk between astrocytes and neurons provides an important contribution to barrier integrity. Lastly, the model was validated upon exposure to several soluble factors [e.g., Lipopolysaccharides (LPS), sodium butyrate (NaB), and retinoic acid (RA)] known to affect BBB permeability and integrity. This in vitro biological model can be considered as a highly biomimetic recapitulation of the human NVU aiming to unravel brain pathophysiology mechanisms as well as improve testing and delivery of therapeutics.
Collapse
Affiliation(s)
- Chiara Barberio
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Aimee Withers
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Yash Mishra
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Pierre-Olivier Couraud
- Institut Cochin, Centre National de la Recherche Scientifique UMR 8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U567, Université René Descartes, Paris, France
| | - Ignacio A. Romero
- Department of Biological Sciences, The Open University, Milton Keynes, United Kingdom
| | - Babette Weksler
- Department of Medicine, Weill Medical College of Cornell University, New York, NY, United States
| | - Róisín M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom,*Correspondence: Róisín M. Owens,
| |
Collapse
|
10
|
Ansari MA, Rao MS, Al-Jarallah A, Babiker FM. Early Time Course of Oxidative Stress in Hippocampal Synaptosomes and Cognitive Loss Following Impaired Insulin Signaling in Rats: Development of Sporadic Alzheimer’s Disease. Brain Res 2022; 1798:148134. [DOI: 10.1016/j.brainres.2022.148134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2022]
|
11
|
Kadir RRA, Alwjwaj M, Bayraktutan U. Protein kinase C-β distinctly regulates blood-brain barrier-forming capacity of Brain Microvascular endothelial cells and outgrowth endothelial cells. Metab Brain Dis 2022; 37:1815-1827. [PMID: 35763197 PMCID: PMC9283364 DOI: 10.1007/s11011-022-01041-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 06/17/2022] [Indexed: 01/16/2023]
Abstract
Outgrowth endothelial cells (OECs) provide an endogenous repair mechanism and thus maintain endothelial barrier integrity. As inhibition of protein kinase C-β (PKC-β) activity has been shown to attenuate endothelial damage in various pathological conditions including hyperglycaemia and ischaemic injury, the present study comparatively assessed the effect of LY333531, a PKC-β inhibitor, on the cerebral barrier integrity formed by OECs or human brain microvascular endothelial cells (HBMECs). To this end, an in vitro model of human BBB established by co-culture of astrocytes and pericytes with either OECs or HBMECs was exposed to 4 h of oxygen-glucose deprivation with/out LY333531 (0.05 µM). The inhibition of PKC-β protected the integrity and function of the BBB formed by HBMECs, as evidenced by increases in transendothelial electrical resistance and decreases in sodium fluorescein flux. It also attenuated ischaemia-evoked actin cytoskeleton remodelling, oxidative stress, and apoptosis in HBMECs. In contrast, treatments with LY333531 exacerbated the deleterious effect of ischaemia on the integrity and function of BBB formed by OECs while augmenting the levels of oxidative stress, apoptosis, and cytoskeletal reorganisation in OECs. Interestingly, the magnitude of damage in all aforementioned parameters, notably oxidative stress, was lower with low dose of LY333531 (0.01 µM). It is therefore possible that the therapeutic concentration of LY333531 (0.05 µM) may neutralise the activity of NADPH oxidase and thus trigger a negative feedback mechanism which in turn exacerbate the detrimental effects of ischaemic injury. In conclusion, targeting PKC-β signalling pathway in ischaemic settings requires close attention while using OECs as cellular therapeutic.
Collapse
Affiliation(s)
- Rais Reskiawan A Kadir
- Academic Unit of Mental Health and Clinical Neuroscience, The University of Nottingham, Nottingham, UK
| | - Mansour Alwjwaj
- Academic Unit of Mental Health and Clinical Neuroscience, The University of Nottingham, Nottingham, UK
| | - Ulvi Bayraktutan
- Academic Unit of Mental Health and Clinical Neuroscience, The University of Nottingham, Nottingham, UK.
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, NG5 1PB, Nottingham, UK.
| |
Collapse
|
12
|
Jeong JH, Lee DH, Song J. HMGB1 signaling pathway in diabetes-related dementia: Blood-brain barrier breakdown, brain insulin resistance, and Aβ accumulation. Biomed Pharmacother 2022; 150:112933. [PMID: 35413600 DOI: 10.1016/j.biopha.2022.112933] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/28/2022] Open
Abstract
Diabetes contributes to the onset of various diseases, including cancer and cardiovascular and neurodegenerative diseases. Recent studies have highlighted the similarities and relationship between diabetes and dementia as an important issue for treating diabetes-related cognitive deficits. Diabetes-related dementia exhibits several features, including blood-brain barrier disruption, brain insulin resistance, and Aβ over-accumulation. High-mobility group box1 (HMGB1) is a protein known to regulate gene transcription and cellular mechanisms by binding to DNA or chromatin via receptor for advanced glycation end-products (RAGE) and toll-like receptor 4 (TLR4). Recent studies have demonstrated that the interplay between HMGB1, RAGE, and TLR4 can impact both neuropathology and diabetic alterations. Herein, we review the recent research regarding the roles of HMGB1-RAGE-TLR4 axis in diabetes-related dementia from several perspectives and emphasize the importance of the influence of HMGB1 in diabetes-related dementia.
Collapse
Affiliation(s)
- Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| | - Dong Hoon Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School, and Chonnam National University Hwasun Hospital, Hwasun 58128, Jeollanam-do, Republic of Korea.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
13
|
Garvin J, Semenikhina M, Liu Q, Rarick K, Isaeva E, Levchenko V, Staruschenko A, Palygin O, Harder D, Cohen S. Astrocytic responses to high glucose impair barrier formation in cerebral microvessel endothelial cells. Am J Physiol Regul Integr Comp Physiol 2022; 322:R571-R580. [PMID: 35412389 PMCID: PMC9109795 DOI: 10.1152/ajpregu.00315.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/27/2022]
Abstract
Hyperglycemic conditions are prodromal to blood-brain barrier (BBB) impairment. The BBB comprises cerebral microvessel endothelial cells (CMECs) that are surrounded by astrocytic foot processes. Astrocytes express high levels of gap junction connexin 43 (Cx43), which play an important role in autocrine and paracrine signaling interactions that mediate gliovascular cross talk through secreted products. One of the key factors of the astrocytic "secretome" is vascular endothelial growth factor (VEGF), a potent angiogenic factor that can disrupt BBB integrity. We hypothesize that high-glucose conditions change the astrocytic expression of Cx43 and increase VEGF secretion leading to impairment of CMEC barrier properties in vitro and in vivo. Using coculture of neonatal rat astrocytes and CMEC, we mimic hyperglycemic conditions using high-glucose (HG) feeding media and show a significant decrease in Cx43 expression and the corresponding increase in secreted VEGF. This result was confirmed by the analyses of Cx43 and VEGF protein levels in the brain cortex samples from the type 2 diabetic rat (T2DN). To further characterize inducible changes in BBB, we measured transendothelial cell electrical resistance (TEER) and tight junction protein levels in cocultured conditioned astrocytes with isolated rat CMEC. The coculture monolayer's integrity and permeability were significantly compromised by HG media exposure, which was indicated by decreased TEER without a change in tight junction protein levels in CMEC. Our study provides insight into gliovascular adaptations to increased glucose levels resulting in impaired cellular cross talk between astrocytes and CMEC, which could be one explanation for cerebral BBB disruption in diabetic conditions.
Collapse
Affiliation(s)
- Jodi Garvin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Marharyta Semenikhina
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Qiuli Liu
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kevin Rarick
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Elena Isaeva
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - David Harder
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Susan Cohen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
14
|
Li X, Cai Y, Zhang Z, Zhou J. Glial and Vascular Cell Regulation of the Blood-Brain Barrier in Diabetes. Diabetes Metab J 2022; 46:222-238. [PMID: 35299293 PMCID: PMC8987684 DOI: 10.4093/dmj.2021.0146] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/20/2022] [Indexed: 12/18/2022] Open
Abstract
As a structural barrier, the blood-brain barrier (BBB) is located at the interface between the brain parenchyma and blood, and modulates communication between the brain and blood microenvironment to maintain homeostasis. The BBB is composed of endothelial cells, basement membrane, pericytes, and astrocytic end feet. BBB impairment is a distinguishing and pathogenic factor in diabetic encephalopathy. Diabetes causes leakage of the BBB through downregulation of tight junction proteins, resulting in impaired functioning of endothelial cells, pericytes, astrocytes, microglia, nerve/glial antigen 2-glia, and oligodendrocytes. However, the temporal regulation, mechanisms of molecular and signaling pathways, and consequences of BBB impairment in diabetes are not well understood. Consequently, the efficacy of therapies diabetes targeting BBB leakage still lags behind the requirements. This review summarizes the recent research on the effects of diabetes on BBB composition and the potential roles of glial and vascular cells as therapeutic targets for BBB disruption in diabetic encephalopathy.
Collapse
Affiliation(s)
- Xiaolong Li
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yan Cai
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zuo Zhang
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jiyin Zhou
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
15
|
Alwjwaj M, Kadir RRA, Bayraktutan U. Outgrowth endothelial progenitor cells restore cerebral barrier function following ischaemic damage: the impact of NOX2 inhibition. Eur J Neurosci 2022; 55:1658-1670. [PMID: 35179812 DOI: 10.1111/ejn.15627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
Disruption of blood-brain barrier (BBB), formed mainly by human brain microvascular endothelial cells (HBMECs), constitutes the major cause of mortality following ischaemic stroke. This study investigates whether OECs (outgrowth endothelial cells) can restore BBB integrity and function following ischaemic damage, and how inhibition of NOX2, a main source of vascular oxidative stress, affects the characteristics of BBB established with OECs and HBMECs in ischaemic settings. In vitro models of human BBB were constructed by co-culture of pericytes and astrocytes with either OECs or HBMECs before exposure to oxygen-glucose deprivation (OGD) alone or followed by reperfusion (OGD+R) in the absence or presence of NOX2 inhibitor, gp91ds-tat. The function and integrity of BBB were assessed by measurements of paracellular flux of sodium fluorescein (NaF) and transendothelial electrical resistance (TEER), respectively. Treatment with OECs during OGD+R effectively restored BBB integrity and function. Compared to HBMECs, OECs possessed lower NADPH oxidase activity, superoxide anion levels, and had greater total antioxidant capacity during OGD and OGD+R. Inhibition of NADPH oxidase during OGD and OGD+R restored the integrity and function of BBB established by HBMECs. This was evidenced by reductions in NADPH oxidase activity and superoxide anion levels. In contrast, treatment with gp91ds-tat aggravated ischaemic injury-induced BBB damage constructed by OECs. In conclusion, OECs are more resistant to ischaemic conditions and can effectively repair cerebral barrier following ischaemic damage. Suppression of oxidative stress through specific targeting of NOX2 requires close attention while using OECs as therapeutics.
Collapse
Affiliation(s)
- Mansour Alwjwaj
- Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, Nottingham, UK
| | - Rais Reskiawan A Kadir
- Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, Nottingham, UK
| | - Ulvi Bayraktutan
- Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, Nottingham, UK
| |
Collapse
|
16
|
Entezari M, Hashemi D, Taheriazam A, Zabolian A, Mohammadi S, Fakhri F, Hashemi M, Hushmandi K, Ashrafizadeh M, Zarrabi A, Ertas YN, Mirzaei S, Samarghandian S. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation. Biomed Pharmacother 2022; 146:112563. [PMID: 35062059 DOI: 10.1016/j.biopha.2021.112563] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is considered as a main challenge in both developing and developed countries, as lifestyle has changed and its management seems to be vital. Type I and type II diabetes are the main kinds and they result in hyperglycemia in patients and related complications. The gene expression alteration can lead to development of DM and related complications. The AMP-activated protein kinase (AMPK) is an energy sensor with aberrant expression in various diseases including cancer, cardiovascular diseases and DM. The present review focuses on understanding AMPK role in DM. Inducing AMPK signaling promotes glucose in DM that is of importance for ameliorating hyperglycemia. Further investigation reveals the role of AMPK signaling in enhancing insulin sensitivity for treatment of diabetic patients. Furthermore, AMPK upregulation inhibits stress and cell death in β cells that is of importance for preventing type I diabetes development. The clinical studies on diabetic patients have shown the role of AMPK signaling in improving diabetic complications such as brain disorders. Furthermore, AMPK can improve neuropathy, nephropathy, liver diseases and reproductive alterations occurring during DM. For exerting such protective impacts, AMPK signaling interacts with other molecular pathways such as PGC-1α, PI3K/Akt, NOX4 and NF-κB among others. Therefore, providing therapeutics based on AMPK targeting can be beneficial for amelioration of DM.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Danial Hashemi
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Shima Mohammadi
- Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Farima Fakhri
- Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonosis, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer 34396, Istanbul, Turkey
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
17
|
MicroRNA Transcriptomics Analysis Identifies Dysregulated Hedgehog Signaling Pathway in a Mouse Model of Acute Intracerebral Hemorrhage Exposed to Hyperglycemia. J Stroke Cerebrovasc Dis 2022; 31:106281. [PMID: 35026495 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/22/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Hyperglycemia is often observed in the patients after acute stroke. This study aims to elucidate the potential effect and mechanism of hyperglycemia by screening microRNAs expression in intracerebral hemorrhage mice. METHODS We employed the collagenase model of intracerebral hemorrhage. Twenty male C57BL/6 mice were used and randomly divided in normo- and hyperglycemic. The hyperglycemia was induced by intraperitoneally injection of 50% of Dextrose (8 mL/kg) 3 hours after intracerebral hemorrhage. The neurologic impairment was investigated by neurologic deficit scale. To study the specific mechanisms of hyperglycemia, microRNAs expression in perihematomal area was investigated by RNA sequencing. MicroRNAs expression in hyperglycemic intracerebral hemorrhage animals were compared normoglycemic mice. Functional annotation analysis was used to indicate potential pathological pathway, underlying observed effects. Finally, polymerase chain reaction validation was administered. RESULTS Intraperitoneal injection of dextrose significantly increased blood glucose level. That was associated with aggravation of neurological deficits in hyperglycemic compared to normoglycemic animals. A total of 73 differentially expressed microRNAs were identified via transcriptomics analysis. Bioinformatics analyses showed that these microRNAs were significantly altered in several signaling pathways, of which the hedgehog signaling pathway was regarded as the most potential pathway associated with the effect of hyperglycemia on acute intracerebral hemorrhage. Furthermore, polymerase chain reaction results validated the correlation between microRNAs and hedgehog signaling pathway. CONCLUSIONS MicroRNA elevated in hyperglycemia group may be involved in worsening the neurological function via inhibiting the hedgehog signaling, which provides a novel molecular physiological mechanism and lays the foundation for treatment of intracerebral hemorrhage.
Collapse
|
18
|
Kadir RRA, Alwjwaj M, Bayraktutan U. Establishment of an In Vitro Model of Human Blood-Brain Barrier to Study the Impact of Ischemic Injury. Methods Mol Biol 2022; 2492:143-155. [PMID: 35733043 DOI: 10.1007/978-1-0716-2289-6_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The blood-brain barrier (BBB), mainly composed of brain microvascular endothelial cells, astrocyte end-feet, and pericytes, serves as a physical and biochemical barrier that selectively limits the passage of circulating molecules into the brain parenchyma. The disruption of its integrity and function is a major cause of increased mortality and disability among ischemic stroke patients. Hence, scrutiny of the cellular and molecular mechanisms that alter BBB permeability following an ischemic injury remains of paramount importance. In this context, establishment of an in vitro model of BBB that closely simulates human cerebral barrier may offer an easy, inexpensive, and straightforward approach to identify signaling pathways involved in BBB breakdown and may help to discover new therapeutic targets to restore its damage. This chapter describes a sequential method pertaining to establishment of a triple culture model of human BBB consisting of the three main cellular components of the cerebral barrier. It also documents how the integrity and function of this barrier are evaluated through measurements of transendothelial electrical resistance (TEER) and paracellular flux of permeability marker and sodium fluorescein (NaF, 376 Da), respectively, both in normal and experimental conditions mimicking ischemic injury.
Collapse
Affiliation(s)
- Rais Reskiawan A Kadir
- Stroke, Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Mansour Alwjwaj
- Stroke, Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Ulvi Bayraktutan
- Stroke, Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, The University of Nottingham, Nottingham, UK.
| |
Collapse
|
19
|
Chen Y, Chen S, Chang J, Wei J, Feng M, Wang R. Perihematomal Edema After Intracerebral Hemorrhage: An Update on Pathogenesis, Risk Factors, and Therapeutic Advances. Front Immunol 2021; 12:740632. [PMID: 34737745 PMCID: PMC8560684 DOI: 10.3389/fimmu.2021.740632] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/27/2021] [Indexed: 11/26/2022] Open
Abstract
Intracerebral hemorrhage (ICH) has one of the worst prognoses among patients with stroke. Surgical measures have been adopted to relieve the mass effect of the hematoma, and developing targeted therapy against secondary brain injury (SBI) after ICH is equally essential. Numerous preclinical and clinical studies have demonstrated that perihematomal edema (PHE) is a quantifiable marker of SBI after ICH and is associated with a poor prognosis. Thus, PHE has been considered a promising therapeutic target for ICH. However, the findings derived from existing studies on PHE are disparate and unclear. Therefore, it is necessary to classify, compare, and summarize the existing studies on PHE. In this review, we describe the growth characteristics and relevant underlying mechanism of PHE, analyze the contributions of different risk factors to PHE, present the potential impact of PHE on patient outcomes, and discuss the currently available therapeutic strategies.
Collapse
Affiliation(s)
- Yihao Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shengpan Chen
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Institute of Neuroscience, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Jianbo Chang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Junji Wei
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Feng
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Kadir RRA, Alwjwaj M, McCarthy Z, Bayraktutan U. Therapeutic hypothermia augments the restorative effects of PKC-β and Nox2 inhibition on an in vitro model of human blood-brain barrier. Metab Brain Dis 2021; 36:1817-1832. [PMID: 34398388 PMCID: PMC8437893 DOI: 10.1007/s11011-021-00810-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 07/26/2021] [Indexed: 12/24/2022]
Abstract
To investigate whether therapeutic hypothermia augments the restorative impact of protein kinase C-β (PKC-β) and Nox2 inhibition on an in vitro model of human blood-brain barrier (BBB). Cells cultured in normoglycaemic (5.5 mM) or hyperglycaemic (25 mM, 6 to 120 h) conditions were treated with therapeutic hypothermia (35 °C) in the absence or presence of a PKC-β inhibitor (LY333531, 0.05 μM) or a Nox2 inhibitor (gp91ds-tat, 50 μM). BBB was established by co-culture of human brain microvascular endothelial cells (HBMECs) with astrocytes (HAs) and pericytes. BBB integrity and function were assessed via transendothelial electrical resistance (TEER) and paracellular flux of sodium fluorescein (NaF, 376 Da). Nox activity (lucigenin assay), superoxide anion production (cytochrome-C reduction assay), cellular proliferative capacity (wound scratch assay) and actin cytoskeletal formation (rhodamine-phalloidin staining) were assessed both in HBMECs and HAs using the specific methodologies indicated in brackets. Therapeutic hypothermia augmented the protective effects of PKC-β or Nox2 inhibition on BBB integrity and function in experimental setting of hyperglycaemia, as evidenced by increases in TEER and concomitant decreases in paracellular flux of NaF. The combinatory approaches were more effective in repairing physical damage exerted on HBMEC and HA monolayers by wound scratch and in decreasing Nox activity and superoxide anion production compared to sole treatment regimen with either agent. Similarly, the combinatory approaches were more effective in suppressing actin stress fibre formation and maintaining normal cytoskeletal structure. Therapeutic hypothermia augments the cerebral barrier-restorative capacity of agents specifically targeting PKC-β or Nox2 pathways.
Collapse
Affiliation(s)
- Rais Reskiawan A Kadir
- Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Mansour Alwjwaj
- Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Zoe McCarthy
- Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Ulvi Bayraktutan
- Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK.
| |
Collapse
|
21
|
Allen CL, Wolanska K, Malhi NK, Benest AV, Wood ME, Amoaku W, Torregrossa R, Whiteman M, Bates DO, Whatmore JL. Hydrogen Sulfide Is a Novel Protector of the Retinal Glycocalyx and Endothelial Permeability Barrier. Front Cell Dev Biol 2021; 9:724905. [PMID: 34557493 PMCID: PMC8452977 DOI: 10.3389/fcell.2021.724905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/29/2021] [Indexed: 12/27/2022] Open
Abstract
Significantly reduced levels of the anti-inflammatory gaseous transmitter hydrogen sulfide (H2S) are observed in diabetic patients and correlate with microvascular dysfunction. H2S may protect the microvasculature by preventing loss of the endothelial glycocalyx. We tested the hypothesis that H2S could prevent or treat retinal microvascular endothelial dysfunction in diabetes. Bovine retinal endothelial cells (BRECs) were exposed to normal (NG, 5.5 mmol/L) or high glucose (HG, 25 mmol/L) ± the slow-release H2S donor NaGYY4137 in vitro. Glycocalyx coverage (stained with WGA-FITC) and calcein-labeled monocyte adherence were measured. In vivo, fundus fluorescein angiography (FFA) was performed in normal and streptozotocin-induced (STZ) diabetic rats. Animals received intraocular injection of NaGYY4137 (1 μM) or the mitochondrial-targeted H2S donor AP39 (100 nM) simultaneously with STZ (prevention) or on day 6 after STZ (treatment), and the ratio of interstitial to vascular fluorescence was used to estimate apparent permeability. NaGYY4137 prevented HG-induced loss of BREC glycocalyx, increased monocyte binding to BRECs (p ≤ 0.001), and increased overall glycocalyx coverage (p ≤ 0.001). In rats, the STZ-induced increase in apparent retinal vascular permeability (p ≤ 0.01) was significantly prevented by pre-treatment with NaGYY4137 and AP39 (p < 0.05) and stabilized by their post-STZ administration. NaGYY4137 also reduced the number of acellular capillaries (collagen IV + /IB4-) in the diabetic retina in both groups (p ≤ 0.05). We conclude that NaGYY4137 and AP39 protected the retinal glycocalyx and endothelial permeability barrier from diabetes-associated loss of integrity and reduced the progression of diabetic retinopathy (DR). Hydrogen sulfide donors that target the glycocalyx may therefore be a therapeutic candidate for DR.
Collapse
Affiliation(s)
- Claire L Allen
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Katarzyna Wolanska
- The Institute of Biomedical and Clinical Science, University of Exeter Medical School, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - Naseeb K Malhi
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Andrew V Benest
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Mark E Wood
- Biosciences, College of Life and Environmental Science, University of Exeter, Exeter, United Kingdom
| | - Winfried Amoaku
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Roberta Torregrossa
- The Institute of Biomedical and Clinical Science, University of Exeter Medical School, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - Matthew Whiteman
- The Institute of Biomedical and Clinical Science, University of Exeter Medical School, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - David O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Jacqueline L Whatmore
- The Institute of Biomedical and Clinical Science, University of Exeter Medical School, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
22
|
Sharma S, Brown CE. Microvascular basis of cognitive impairment in type 1 diabetes. Pharmacol Ther 2021; 229:107929. [PMID: 34171341 DOI: 10.1016/j.pharmthera.2021.107929] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/23/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
The complex computations of the brain require a constant supply of blood flow to meet its immense metabolic needs. Perturbations in blood supply, even in the smallest vascular networks, can have a profound effect on neuronal function and cognition. Type 1 diabetes is a prevalent and insidious metabolic disorder that progressively and heterogeneously disrupts vascular signalling and function in the brain. As a result, it is associated with an array of adverse vascular changes such as impaired regulation of vascular tone, pathological neovascularization and vasoregression, capillary plugging and blood brain barrier disruption. In this review, we highlight the link between microvascular dysfunction and cognitive impairment that is commonly associated with type 1 diabetes, with the aim of synthesizing current knowledge in this field.
Collapse
Affiliation(s)
- Sorabh Sharma
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Craig E Brown
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
23
|
Cheon SY, Song J. The Association between Hepatic Encephalopathy and Diabetic Encephalopathy: The Brain-Liver Axis. Int J Mol Sci 2021; 22:ijms22010463. [PMID: 33466498 PMCID: PMC7796499 DOI: 10.3390/ijms22010463] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatic encephalopathy (HE) is one of the main consequences of liver disease and is observed in severe liver failure and cirrhosis. Recent studies have provided significant evidence that HE shows several neurological symptoms including depressive mood, cognitive dysfunction, impaired circadian rhythm, and attention deficits as well as motor disturbance. Liver disease is also a risk factor for the development of diabetes mellitus. Diabetic encephalopathy (DE) is characterized by cognitive dysfunction and motor impairment. Recent research investigated the relationship between metabolic changes and the pathogenesis of neurological disease, indicating the importance between metabolic organs and the brain. Given that a diverse number of metabolites and changes in the brain contribute to neurologic dysfunction, HE and DE are emerging types of neurologic disease. Here, we review significant evidence of the association between HE and DE, and summarise the common risk factors. This review may provide promising therapeutic information and help to design a future metabolic organ-related study in relation to HE and DE.
Collapse
Affiliation(s)
- So Yeong Cheon
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea;
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Korea
- Correspondence: ; Tel.: +82-61-379-2706; Fax: +82-61-375-5834
| |
Collapse
|
24
|
Song Z, Guo D, Tang Z, Liu H, Li X, Luo S, Yao X, Song W, Song J, Zhou Z. Noncontrast Computed Tomography-Based Radiomics Analysis in Discriminating Early Hematoma Expansion after Spontaneous Intracerebral Hemorrhage. Korean J Radiol 2020; 22:415-424. [PMID: 33169546 PMCID: PMC7909850 DOI: 10.3348/kjr.2020.0254] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/26/2020] [Accepted: 07/02/2020] [Indexed: 01/05/2023] Open
Abstract
Objective To determine whether noncontrast computed tomography (NCCT) models based on multivariable, radiomics features, and machine learning (ML) algorithms could further improve the discrimination of early hematoma expansion (HE) in patients with spontaneous intracerebral hemorrhage (sICH). Materials and Methods We retrospectively reviewed 261 patients with sICH who underwent initial NCCT within 6 hours of ictus and follow-up CT within 24 hours after initial NCCT, between April 2011 and March 2019. The clinical characteristics, imaging signs and radiomics features extracted from the initial NCCT images were used to construct models to discriminate early HE. A clinical-radiologic model was constructed using a multivariate logistic regression (LR) analysis. Radiomics models, a radiomics-radiologic model, and a combined model were constructed in the training cohort (n = 182) and independently verified in the validation cohort (n = 79). Receiver operating characteristic analysis and the area under the curve (AUC) were used to evaluate the discriminative power. Results The AUC of the clinical-radiologic model for discriminating early HE was 0.766. The AUCs of the radiomics model for discriminating early HE built using the LR algorithm in the training and validation cohorts were 0.926 and 0.850, respectively. The AUCs of the radiomics-radiologic model in the training and validation cohorts were 0.946 and 0.867, respectively. The AUCs of the combined model in the training and validation cohorts were 0.960 and 0.867, respectively. Conclusion NCCT models based on multivariable, radiomics features and ML algorithm could improve the discrimination of early HE. The combined model was the best recommended model to identify sICH patients at risk of early HE.
Collapse
Affiliation(s)
- Zuhua Song
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dajing Guo
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhuoyue Tang
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| | | | - Xin Li
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Sha Luo
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueying Yao
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenlong Song
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junjie Song
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiming Zhou
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
25
|
Qiao J, Lawson CM, Rentrup KFG, Kulkarni P, Ferris CF. Evaluating blood-brain barrier permeability in a rat model of type 2 diabetes. J Transl Med 2020; 18:256. [PMID: 32580725 PMCID: PMC7313122 DOI: 10.1186/s12967-020-02428-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/18/2020] [Indexed: 11/10/2022] Open
Abstract
Background This is an exploratory study using a novel imaging modality, quantitative ultrashort time-to-echo, contrast enhanced (QUTE-CE) magnetic resonance imaging to evaluate the permeability of the blood–brain barrier in a rat model of type 2 diabetes with the presumption that small vessel disease is a contributing factor to neuropathology in diabetes. Methods The BBZDR/Wor rat, a model of type 2 diabetes, and age-matched controls were studied for changes in blood–brain barrier permeability. QUTE-CE, a quantitative vascular biomarker, generated angiographic images with over 500,000 voxels that were registered to a 3D MRI rat brain atlas providing site-specific information on blood–brain barrier permeability in 173 different brain areas. Results In this model of diabetes, without the support of insulin treatment, there was global capillary pathology with over 84% of the brain showing a significant increase in blood–brain barrier permeability over wild-type controls. Areas of the cerebellum and midbrain dopaminergic system were not significantly affected. Conclusion Small vessel disease as assessed by permeability in the blood–brain barrier in type 2 diabetes is pervasive and includes much of the brain. The increase in blood–brain barrier permeability is a likely contributing factor to diabetic encephalopathy and dementia.
Collapse
Affiliation(s)
- Ju Qiao
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | | | - Kilian F G Rentrup
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Craig F Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA. .,Department of Psychology, Northeastern University, 360 Huntington Ave, Boston, MA, 02115-5000, USA.
| |
Collapse
|
26
|
Abdulkadir RR, Alwjwaj M, Othman OA, Rakkar K, Bayraktutan U. Outgrowth endothelial cells form a functional cerebral barrier and restore its integrity after damage. Neural Regen Res 2020; 15:1071-1078. [PMID: 31823887 PMCID: PMC7034270 DOI: 10.4103/1673-5374.269029] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Breakdown of blood-brain barrier, formed mainly by brain microvascular endothelial cells (BMECs), represents the major cause of mortality during early phases of ischemic strokes. Hence, discovery of novel agents that can effectively replace dead or dying endothelial cells to restore blood-brain barrier integrity is of paramount importance in stroke medicine. Although endothelial progenitor cells (EPCs) represent one such agents, their rarity in peripheral blood severely limits their adequate isolation and therapeutic use for acute ischemic stroke which necessitate their ex vivo expansion and generate early EPCs and outgrowth endothelial cells (OECs) as a result. Functional analyses of these cells, in the present study, demonstrated that only OECs endocytosed DiI-labelled acetylated low-density lipoprotein and formed tubules on matrigel, prominent endothelial cell and angiogenesis markers, respectively. Further analyses by flow cytometry demonstrated that OECs expressed specific markers for stemness (CD34), immaturity (CD133) and endothelial cells (CD31) but not for hematopoietic cells (CD45). Like BMECs, OECs established an equally tight in vitro model of human BBB with astrocytes and pericytes, suggesting their capacity to form tight junctions. Ischemic injury mimicked by concurrent deprivation of oxygen and glucose (4 hours) or deprivation of oxygen and glucose followed by reperfusion (20 hours) affected both barrier integrity and function in a similar fashion as evidenced by decreases in transendothelial electrical resistance and increases in paracellular flux, respectively. Wound scratch assays comparing the vasculoreparative capacity of cells revealed that, compared to BMECs, OECs possessed a greater proliferative and directional migratory capacity. In a triple culture model of BBB established with astrocytes, pericytes and BMEC, exogenous addition of OECs effectively repaired the damage induced on endothelial layer in serum-free conditions. Taken together, these data demonstrate that OECs may effectively home to the site of vascular injury and repair the damage to maintain (neuro)vascular homeostasis during or after a cerebral ischemic injury.
Collapse
Affiliation(s)
- Rais Reskiawan Abdulkadir
- Stroke, Division of Clinical Neuroscience, Clinical Sciences Building, School of Medicine, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Mansour Alwjwaj
- Stroke, Division of Clinical Neuroscience, Clinical Sciences Building, School of Medicine, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Othman Ahmad Othman
- Stroke, Division of Clinical Neuroscience, Clinical Sciences Building, School of Medicine, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Kamini Rakkar
- Stroke, Division of Clinical Neuroscience, Clinical Sciences Building, School of Medicine, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Ulvi Bayraktutan
- Stroke, Division of Clinical Neuroscience, Clinical Sciences Building, School of Medicine, Hucknall Road, Nottingham, NG5 1PB, UK
- Correspondence to: Ulvi Bayraktutan, .
| |
Collapse
|
27
|
Soluble epoxide hydrolase inhibitor protects against blood-brain barrier dysfunction in a mouse model of type 2 diabetes via the AMPK/HO-1 pathway. Biochem Biophys Res Commun 2020; 524:354-359. [PMID: 32001002 DOI: 10.1016/j.bbrc.2020.01.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus is a metabolic disorder that can lead to blood-brain barrier (BBB) disruption and cognitive decline. However, the mechanisms of BBB breakdown in diabetes are still unclear. Soluble epoxide hydrolase (sEH) is an enzyme that degrades epoxyeicosatrienoic acids (EETs), which have multiple protective effects on vascular structure and functions. In the current study, we showed increased vascular permeability of the BBB, which was accompanied by upregulation of sEH and downregulation of 14,15-EET. Moreover, the sEH inhibitor t-AUCB restored diabetic BBB integrity in vivo, and 14,15-EET prevented ROS accumulation and MEC injury in vitro. t-AUCB or 14,15-EET treatment provoked AMPK/HO-1 activation under diabetic conditions in vivo and in vitro. Thus, we suggest that decreased EET degradation by sEH inhibition might be a potential therapeutic approach to attenuate the progression of BBB injury in diabetic mice via AMPK/HO-1 pathway activation.
Collapse
|
28
|
Role of Resveratrol on Indoxyl Sulfate-Induced Endothelial Hyperpermeability via Aryl Hydrocarbon Receptor (AHR)/Src-Dependent Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5847040. [PMID: 31885805 PMCID: PMC6900952 DOI: 10.1155/2019/5847040] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/21/2019] [Indexed: 01/02/2023]
Abstract
Resveratrol (RES), a dietary polyphenol compound, has been shown to possess health benefits due to its anti-inflammatory, antioxidative, and antiatherosclerosis properties. Tryptophan metabolite-derived indoxyl sulfate (IS) is identified as one of the uremic toxins and physiological endogenous ligand/activator of aryl hydrocarbon receptor (AHR), associated with atherosclerosis in chronic kidney disease (CKD) patients. Studies have shown that a high serum level of IS causes deleterious effects on health primarily by inducing oxidative stress and endothelial dysfunction. However, the precise mechanisms are still unclear. Here, we investigated the underlying mechanism of IS effect on endothelial permeability and the role of RES on IS-induced endothelial hyperpermeability via the AHR/Src-dependent pathway. Bovine aorta endothelial cells (BAECs) were cultured and incubated with IS in the presence or absence of RES, and transendothelial electrical resistance (TEER) and permeability of cells were measured. Alongside, AHR, Src kinase, and Vascular Endothelial Cadherin (VE-Cadherin) activation were examined. Our data showed that IS reduced TEER of cells resulting in increased permeability. VE-Cadherin, a vital regulator of endothelial permeability, was also significantly activated in response to IS, which appeared to be associated with changes of endothelial permeability and AHR/Src kinase. Interestingly, in this setting, RES reversed the effect of IS and inhibited the increased activation of Src induced by IS-activated AHR and modulated VE-Cadherin and permeability. CH223191, an inhibitor of AHR, significantly inhibits IS-induced endothelial hyperpermeability. Further analysis with treatment of PP2, an inhibitor of Src abolishing Src activation, suggests downstream factors. All our data indicated that IS upregulated the AHR/Src kinase pathway, and increased endothelial permeability and phosphorylation of VE-Cadherin may be represented and provide new strategies for addressing protective properties of RES against Src kinase involved in AHR-mediated endothelial hyperpermeability. The findings may be crucial for managing diseases in which endothelial permeability is compromised, and the dietary polyphenols are involved.
Collapse
|
29
|
Abstract
It is increasingly recognized that tissue-specific nutrient deficiencies can exist in the absence of whole-body deficiency and that these deficiencies may result from disease or disease-related physiological processes. Brain and central nervous system tissues require adequate nutrient levels to function. Many nutrients are concentrated in the cerebrospinal fluid relative to the serum in healthy individuals, and other nutrients resist depletion in the presence of whole-body nutrient depletion. The endothelial, epithelial, and arachnoid brain barriers work in concert to selectively transport, concentrate, and maintain levels of the specific nutrients required by the brain while also blocking the passage of blood-borne toxins and pathogens to brain and central nervous system tissues. These barriers preserve nutrient levels within the brain and actively concentrate nutrients within the cerebrospinal fluid and brain. The roles of physical and energetic barriers, including the blood-brain and blood-nerve barriers, in maintaining brain nutrient levels in health and disease are discussed.
Collapse
Affiliation(s)
- Kendra A Tiani
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA;
| | - Patrick J Stover
- College of Agriculture and Life Sciences, Texas A & M University, College Station, Texas 77843-2142, USA
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA;
| |
Collapse
|
30
|
Stone NL, England TJ, O'Sullivan SE. A Novel Transwell Blood Brain Barrier Model Using Primary Human Cells. Front Cell Neurosci 2019; 13:230. [PMID: 31244605 PMCID: PMC6563620 DOI: 10.3389/fncel.2019.00230] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/08/2019] [Indexed: 01/28/2023] Open
Abstract
Structural alterations and breakdown of the blood brain barrier (BBB) is often a primary or secondary consequence of disease, resulting in brain oedema and the transport of unwanted substances into the brain. It is critical that effective in vitro models are developed to model the in vivo environment to aid in clinically relevant research, especially regarding drug screening and permeability studies. Our novel model uses only primary human cells and includes four of the key cells of the BBB: astrocytes, pericytes, brain microvascular endothelial cells (HBMEC) and neurons. We show that using a larger membrane pore size (3.0 μM) there is an improved connection between the endothelial cells, astrocytes and pericytes. Compared to a two and three cell model, we show that when neurons are added to HBMECs, astrocytes and pericytes, BBB integrity was more sensitive to oxygen-glucose deprivation evidenced by increased permeability and markers of cell damage. Our data also show that a four cell model responds faster to the barrier tightening effects of glucocorticoid dexamethasone, when compared to a two cell and three cell model. These data highlight the important role that neurons play in response to ischaemia, particularly how they contribute to BBB maintenance and breakdown. We consider that this model is more representative of the interactions at the neurovascular unit than other transwell models and is a useful method to study BBB physiology.
Collapse
Affiliation(s)
- Nicole L Stone
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Timothy J England
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Saoirse E O'Sullivan
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
31
|
Zhang F, Zhang S, Tao C, Yang Z, Li X, You C, Xin T, Yang M. Association between serum glucose level and spot sign in intracerebral hemorrhage. Medicine (Baltimore) 2019; 98:e14748. [PMID: 30882643 PMCID: PMC6426545 DOI: 10.1097/md.0000000000014748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hyperglycemia was proved to cause neuron death in both animal experiments and poor outcome of hemorrhage patients, but the predictive ability of admission blood glucose level for early hematoma growth in patients with intracranial hemorrhage (ICH) is still controversial. Spot sign is a well-established imaging predictor for early hematoma growth, implying active microvascular bleeding. Here, we aim to assess associations between admission serum glucose and early hematoma expansion in ICH patients, as well as spot sign.We retrospectively reviewed all the patients with ICH from January 2017 to March 2018 in West China Hospital, Sichuan University. Admission blood glucose, clinical variables, radiological characteristics, and laboratorial parameters were obtained from medical record. According to computed tomography (CT) and computed tomography angiography (CTA) scan results, hematoma expansion and spot sign were identified by 2 experienced neuroradiologists. Multivariate logistic regression analyses were employed to adjust the associations of hematoma expansion and spot sign with other clinical parameters.Around 42 patients exhibited early hematoma expansions and 26 exhibited spot signs over 138 enrolled patients. The average level of admission blood glucose was 7.55 mmol/L. Multivariate logistic regression analyses revealed that Glasgow Coma Scale (GCS) score on admission, hematoma volume, spot sign, and hyperglycemia were associated with hematoma expansion, whereas admission serum glucose and hematoma size were only associated with spot sign, respectively.Admission blood glucose level is correlated with hematoma growth and incidence of spot sign. These results indicated that hyperglycemia probably plays a critical role in the pathological process of the active bleeding. Further studies should be drawn urgently to understand the potential molecular mechanism of systemic hyperglycemia in affecting prognosis of patients with ICH.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Pathology, Case Western Reserve University, Ohio
| | - Si Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanyuan Tao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zijia Yang
- Department of Neurosurgery, Chengdu First People's Hospital, Chengdu
| | - Xi Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Xin
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Mu Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurology and Neurosurgery
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| |
Collapse
|
32
|
Liu L, Liu X. Contributions of Drug Transporters to Blood-Brain Barriers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:407-466. [PMID: 31571171 DOI: 10.1007/978-981-13-7647-4_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Blood-brain interfaces comprise the cerebral microvessel endothelium forming the blood-brain barrier (BBB) and the epithelium of the choroid plexuses forming the blood-cerebrospinal fluid barrier (BCSFB). Their main functions are to impede free diffusion between brain fluids and blood; to provide transport processes for essential nutrients, ions, and metabolic waste products; and to regulate the homeostasis of central nervous system (CNS), all of which are attributed to absent fenestrations, high expression of tight junction proteins at cell-cell contacts, and expression of multiple transporters, receptors, and enzymes. Existence of BBB is an important reason that systemic drug administration is not suitable for the treatment of CNS diseases. Some diseases, such epilepsy, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and diabetes, alter BBB function via affecting tight junction proteins or altering expression and function of these transporters. This chapter will illustrate function of BBB, expression of transporters, as well as their alterations under disease status.
Collapse
Affiliation(s)
- Li Liu
- China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
33
|
Zhang F, Li H, Qian J, Zhang S, Tao C, You C, Yang M. Hyperglycemia Is Associated with Island Sign in Patients with Intracerebral Hemorrhage. World Neurosurg 2018; 119:e703-e709. [DOI: 10.1016/j.wneu.2018.07.251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/27/2018] [Accepted: 07/28/2018] [Indexed: 11/15/2022]
|
34
|
Zhang F, Li H, Qian J, Tao C, Zheng J, You C, Yang M. Hyperglycemia Predicts Blend Sign in Patients with Intracerebral Hemorrhage. Med Sci Monit 2018; 24:6237-6244. [PMID: 30191900 PMCID: PMC6139114 DOI: 10.12659/msm.910024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Predictive values of admission blood glucose for early hematoma expansion in patients with intracranial hemorrhage (ICH) remain controversial. Blend sign is a novel image predictor for early hematoma growth that suggests presence of active bleeding. We investigated the association between hyperglycemia and blend sign in predicting early hematoma growth in ICH patients. Material/Methods All patients with intracranial hemorrhage were retrospectively reviewed. Clinical characteristics and radiological parameters were collected. Blood glucose was measured within 24 h after onset. CT scan results for hematoma expansion and blend sign were evaluated by 2 readers. Multivariate logistic regression analyses were applied to reveal the associations between hematoma growth and blend sign, as well as other variables. Results Out of 164 patients with ICH, 52 exhibited early hematoma growth and 18 of these were diagnosed with blend sign. Average blood glucose was 7.53 mmol/L among all patients. By using multivariate analyses, the time of CT scan baseline, GCS score, hematoma size, blend sign, and blood glucose were associated with hematoma expansion, whereas only hyperglycemia was associated with blend sign. Conclusions Admission hyperglycemia is associated with hematoma expansion in the presence of blend sign. These findings suggest that elevated blood glucose is a possible factor predicting continuous bleeding. Strategies to control blood glucose and ameliorate hematoma growth are urgently needed and will be investigated in our future studies.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China (mainland).,Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Hao Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Juan Qian
- Department of Population and Quantitative Health, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Chuanyuan Tao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Jun Zheng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Mu Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China (mainland).,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
35
|
Kayano R, Morofuji Y, Nakagawa S, Fukuda S, Watanabe D, Ozawa H, Niwa M, Matsuo T. In vitro analysis of drugs that improve hyperglycemia-induced blood-brain barrier dysfunction. Biochem Biophys Res Commun 2018; 503:1885-1890. [PMID: 30060956 DOI: 10.1016/j.bbrc.2018.07.131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Blood-brain barrier (BBB) disruptions are a key feature of hyperglycemia (HG)-induced cerebral damage. Patients with diabetes mellitus often have other cerebrovascular disease risk factors including hypertension, dyslipidemia, arrhythmia, and atherosclerosis obliterans. However, whether the drugs for these comorbidities are effective for improving HG-induced BBB damage is unclear. METHODS We investigated the effect of pitavastatin, candesartan, cilostazol, propranolol, and eicosapentaenoic acid on HG-induced BBB damage. In vitro BBB models consisting of primary cultures of rat brain capillary endothelial cells were subjected to HG (55 mM d-glucose). RESULTS We observed a significant decrease in transendothelial electrical resistance (TEER) with HG, showing that HG compromised the integrity of the in vitro BBB model. No significant decrease in cell viability was seen with HG, but HG increased the production of reactive oxygen species. Pitavastatin and candesartan inhibited decreases in TEER induced by HG. CONCLUSIONS In summary, pitavastatin and candesartan improved HG-induced BBB damage and this in vitro model of HG-induced BBB dysfunction contributes to the search for BBB protective drugs.
Collapse
Affiliation(s)
- Ryoma Kayano
- Department of Neuropsychiatry, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yoichi Morofuji
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Shinsuke Nakagawa
- Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Shuji Fukuda
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Daisuke Watanabe
- BBB Laboratory, PharmaCo-Cell Company, Ltd., Nagasaki, 1-43 Dejima, Nagasaki, 850-0862, Japan
| | - Hiroki Ozawa
- Department of Neuropsychiatry, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Masami Niwa
- BBB Laboratory, PharmaCo-Cell Company, Ltd., Nagasaki, 1-43 Dejima, Nagasaki, 850-0862, Japan; Nagasaki University, Japan
| | - Takayuki Matsuo
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
36
|
Chamorro Á. Neuroprotectants in the Era of Reperfusion Therapy. J Stroke 2018; 20:197-207. [PMID: 29886725 PMCID: PMC6007301 DOI: 10.5853/jos.2017.02901] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/14/2018] [Accepted: 03/24/2018] [Indexed: 01/06/2023] Open
Abstract
For decades, numerous pharmacological and non-pharmacological strategies have been evaluated without success to limit the consequences of the ischemic cascade, but more rarely the therapies were explored as add on remedies on individuals also receiving reperfusion therapies. It is plausible that these putative neuroprotectants never reached the ischemic brain in adequate concentrations. Currently, the concept of neuroprotection incorporates cerebral perfusion as an obligatory substrate upon which ischemic brain survival depends, and it is plausible that some of the compounds tested in previous neuroprotection trials might have resulted in more favorable results if reperfusion therapies had been co-administered. Nonetheless, pharmacological or mechanical thrombectomy are frequently powerless to fully reperfuse the ischemic brain despite achieving a high rate of recanalization. This review covers in some detail the importance of the microcirculation, and the barriers that may hamper flow reperfusion at the microcirculatory level. It describes the main mechanisms leading to microcirculatory thrombosis including oxidative/nitrosative stress and refers to recent efforts to ameliorate brain perfusion in combination with the co-administration of neuroprotectants mainly aimed at harnessing oxidative/nitrosative brain damage.
Collapse
Affiliation(s)
- Ángel Chamorro
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic and August Pi I Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Spain
| |
Collapse
|
37
|
Sceletium tortuosum may delay chronic disease progression via alkaloid-dependent antioxidant or anti-inflammatory action. J Physiol Biochem 2018. [PMID: 29520661 DOI: 10.1007/s13105-018-0620-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The link between obesity-induced systemic inflammation and decreased insulin signalling is well-known. It is also known that peripherally produced inflammatory cytokines can cross the blood-brain barrier, resulting in the release of neurotoxins that can ultimately lead to the demise of central nervous system integrity. A high-mesembrine Sceletium tortuosum extract was recently shown to possess cytoprotective and mild anti-inflammatory properties in monocytes and to target specific p450 enzymes to reduce adrenal glucocorticoid synthesis. This is significant since the aetiology of both obesity and diabetes is linked to inflammation and excess glucocorticoid production. Given the interlinked nature of glucocorticoid action and inflammation, central immunomodulatory effects of two Sceletium tortuosum extracts prepared by different extraction methods were investigated. Human astrocytes were pre-treated for 30 min, before exposure to Escherichia coli lipopolysaccharide for 23.5 h (in the presence of treatment). Cytotoxicity, mitotoxicity and cytokine responses (basally and in response to inflammatory stimulus) were assessed. In addition, total polyphenol content, antioxidant capacity and selected neural enzyme inhibition capacity were assessed for both extracts. The high-mesembrine Sceletium extract exerted cytoprotective and anti-inflammatory effects. In contrast, the high delta7-mesembrenone extract, rich in polyphenols, exhibited potent antioxidant effect, although with relatively higher risk of adverse effects with overdose. We conclude that both Sceletium tortuosum extracts may be employed as either a preventative supplement or complimentary treatment in the context of obesity and diabetes; however, current data also highlights the impact that extraction methods can have on plant product mechanism of action.
Collapse
|
38
|
Zhang J, Yang G, Zhu Y, Peng X, Li T, Liu L. Relationship of Cx43 regulation of vascular permeability to osteopontin-tight junction protein pathway after sepsis in rats. Am J Physiol Regul Integr Comp Physiol 2018; 314:R1-R11. [PMID: 28978514 DOI: 10.1152/ajpregu.00443.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Our previous study demonstrated that connexin (Cx)43 participated in the regulation of vascular permeability in severe sepsis. Osteopontin (OPN) has been demonstrated to participate in the occurrence of atherosclerosis, inflammation, as well as the adhesion and migration of cells. It is not clear whether OPN is involved in Cx43 regulating vascular permeability after sepsis and if it is related to tight-junction proteins. with the use of cecal ligation and puncture (CLP)-induced septic rats and lipopolysaccharide (LPS)-treated pulmonary vein vascular endothelial cells (VECs), the role of zona occuldens 1 (ZO-1) and claudin-5 in Cx43 regulation of vascular permeability and its relationship to OPN were investigated in the present study. The results showed that the expression of ZO-1 and claudin-5 in pulmonary vein were decreased in CLP rats and LPS-treated pulmonary vein VECs. Cx43-overexpressed lentivirus induced the degradation of ZO-1 and claudin-5, while Cx43 RNAi lentivirus abrogated the degradation of ZO-1 and claudin-5 induced by LPS. The vascular permeability and expression of OPN in pulmonary veins were significantly increased in CLP rats and LPS-treated pulmonary vein VECs. Silencing OPN by OPN RNAi lentivirus inhibited the vascular hyperpermeability induced by LPS. Overexpressed Cx43 lentivirus increased the expression of OPN and vascular permeability and downregulated the expression of ZO-1 and claudin-5 in pulmonary vein VECs. Silencing OPN by OPN RNAi lentivirus inhibited the effects of Cx43-overexpressed lentivirus on downregulation of ZO-1 and claudin-5 and vascular hyperpermeability in pulmonary vein VECs. Transfection of specific double-stranded RNA targeting to β-catenin and T-cell factor-4 (Tcf-4) abolished the upregulation of OPN induced by Cx43 overexpression. These results suggest that OPN participates in the regulation of vascular permeability by Cx43 after sepsis. Cx43 upregulation of OPN is via the Tcf-4/β-catenin transcription pathway; OPN increases vascular permeability by downregulating the expression of the tight junction proteins ZO-1 and claudin-5.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Guangming Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Xiaoyong Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
39
|
Roh HT, So WY. The effects of aerobic exercise training on oxidant-antioxidant balance, neurotrophic factor levels, and blood-brain barrier function in obese and non-obese men. JOURNAL OF SPORT AND HEALTH SCIENCE 2017; 6:447-453. [PMID: 30356625 PMCID: PMC6189263 DOI: 10.1016/j.jshs.2016.07.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 04/02/2016] [Accepted: 04/18/2016] [Indexed: 05/24/2023]
Abstract
PURPOSE The purpose of this study was to investigate the effects of obesity and aerobic exercise training on oxidant-antioxidant balance, neurotrophic factor levels, and blood-brain barrier (BBB) function. METHODS Ten non-obese healthy men (body mass index < 25 kg/m2) and 10 obese men (body mass index ≥ 25 kg/m2) were included in the study. Both groups performed treadmill exercise for 40 min 3 times weekly for 8 weeks at 70% heart rate reserve. Blood samples were collected to examine oxidant-antioxidant balance (reactive oxygen species (ROS) and superoxide dismutase (SOD) activity levels), neurotrophic factors (brain-derived neurotrophic factor (BDNF), nerve growth factor, and glial cell line-derived neurotrophic factor levels), and BBB function (S100β and neuron-specific enolase (NSE) levels) before and after exercise training. RESULTS The obese group showed significantly greater changes than the non-obese group in serum ROS (-0.46 ± 0.31 mmol/L vs. -0.10 ± 0.17 mmol/L, p = 0.005), serum S100β levels (-8.50 ± 5.92 ng/L vs. -0.78 ± 5.45 ng/L, p = 0.007), and serum NSE levels (-0.89 ± 0.54 µg/L vs. -0.01 ± 0.74 µg/L, p = 0.007) after training. At baseline, the obese group showed significantly higher serum ROS and S100β levels and significantly lower serum SOD activity and BDNF levels than the non-obese group (p < 0.05). The obese group showed significantly lower serum ROS, S100β, and NSE levels and significantly higher serum SOD activity and BDNF levels after training compared with baseline (p < 0.05). CONCLUSION These results suggest that obesity can reduce serum neurotrophic factor levels and can induce BBB dysfunction. On the other hand, aerobic exercise can improve an oxidant-antioxidant imbalance in obese subjects and limit BBB dysfunction.
Collapse
Affiliation(s)
- Hee-Tae Roh
- Department of Physical Education, College of Arts and Physical Education, Dong-A University, Busan 604-714, Republic of Korea
| | - Wi-Young So
- Sports and Health Care Major, College of Humanities and Arts, Korea National University of Transportation, Chungju-si 380-702, Republic of Korea
| |
Collapse
|
40
|
Takechi R, Lam V, Brook E, Giles C, Fimognari N, Mooranian A, Al-Salami H, Coulson SH, Nesbit M, Mamo JCL. Blood-Brain Barrier Dysfunction Precedes Cognitive Decline and Neurodegeneration in Diabetic Insulin Resistant Mouse Model: An Implication for Causal Link. Front Aging Neurosci 2017; 9:399. [PMID: 29249964 PMCID: PMC5717019 DOI: 10.3389/fnagi.2017.00399] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/17/2017] [Indexed: 12/24/2022] Open
Abstract
Diabetic insulin resistance and pro-diabetic diet are reported to increase dementia risk through unknown mechanisms. Emerging evidence suggests that the integrity of blood-brain barrier (BBB) is central to the onset and progression of neurodegeneration and cognitive impairment. Therefore, the current study investigated the effect of pro-diabetic diets on cognitive dysfunction in association to BBB integrity and its putative mechanisms. In C57BL/6J mice chronically ingested with a diet enriched in fat and fructose (HFF), Morris Water Maze (MWM) test indicated no significant cognitive decline after 4 weeks of HFF feeding compared to low-fat (LF) fed control. However, at this stage, BBB dysfunction accompanied by heightened neuroinflammation in cortex and hippocampal regions was already evident. After 24 weeks, HFF fed mice showed significantly deteriorated cognitive function concomitant with substantial neurodegeneration, which both showed significant associations with increased BBB permeability. In addition, the data indicated that the loss of BBB tight junctions was significantly associated with heightened inflammation and leukocyte infiltration. The data collectively suggest that in mice maintained on pro-diabetic diet, the dysfunctional BBB associated to inflammation and leukocyte recruitment precedes the neurodegeneration and cognitive decline, possibly indicating causal association.
Collapse
Affiliation(s)
- Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Emily Brook
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Corey Giles
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Nicholas Fimognari
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Armin Mooranian
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Hani Al-Salami
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Stephanie H Coulson
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Michael Nesbit
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - John C L Mamo
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
41
|
Zhang Y, Han Y, Zhao Y, Lv Y, Hu Y, Tan Y, Bi X, Yu B, Kou J. DT-13 Ameliorates TNF-α-Induced Vascular Endothelial Hyperpermeability via Non-Muscle Myosin IIA and the Src/PI3K/Akt Signaling Pathway. Front Immunol 2017; 8:925. [PMID: 28855900 PMCID: PMC5557769 DOI: 10.3389/fimmu.2017.00925] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/20/2017] [Indexed: 12/29/2022] Open
Abstract
DT-13(25(R,S)-ruscogenin-1-O-[β-d-glucopyranosyl-(1→2)][β-d-xylopyranosyl-(1→3)]-β-d-fucopyranoside) has been identified as an important factor in TNF-α-induced vascular inflammation. However, the effect of DT-13 on TNF-α-induced endothelial permeability and the potential molecular mechanisms remain unclear. Hence, this study was undertaken to elucidate the protective effect of DT-13 on TNF-α-induced endothelial permeability and the underlying mechanisms in vivo and in vitro. The in vivo results showed that DT-13 could ameliorate endothelial permeability in mustard oil-induced plasma leakage in the skin and modulate ZO-1 organization. In addition, the in vitro results showed that pretreatment with DT-13 could increase the transendothelial electrical resistance value and decrease the sodium fluorescein permeability coefficient. Moreover, DT-13 altered the mRNA and protein levels of ZO-1 as determined by real-time PCR, Western blotting, and immunofluorescence analyses. DT-13 treatment decreased the phosphorylations of Src, PI3K, and Akt in TNF-α-treated human umbilical vein endothelial cells (HUVECs). Further analyses with PP2 (10 µM, inhibitor of Src) indicated that DT-13 modulated endothelial permeability in TNF-α-induced HUVECs in an Src-dependent manner. LY294002 (10 µM, PI3K inhibitor) also had the same effect on DT-13 but did not affect phosphorylation of Src. Following decreased expression of non-muscle myosin IIA (NMIIA), the effect of DT-13 on the phosphorylations of Src, PI3K, and Akt was abolished. This study provides pharmacological evidence showing that DT-13 significantly ameliorated the TNF-α-induced vascular endothelial hyperpermeability through modulation of the Src/PI3K/Akt pathway and NMIIA, which play an important role in this process.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Yuwei Han
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Yazheng Zhao
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Yanni Lv
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Yang Hu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Yisha Tan
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Xueyuan Bi
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Boyang Yu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Junping Kou
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
42
|
Chen S, Zhao B, Wang W, Shi L, Reis C, Zhang J. Predictors of hematoma expansion predictors after intracerebral hemorrhage. Oncotarget 2017; 8:89348-89363. [PMID: 29179524 PMCID: PMC5687694 DOI: 10.18632/oncotarget.19366] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/19/2017] [Indexed: 01/04/2023] Open
Abstract
Despite years of effort, intracerebral hemorrhage (ICH) remains the most devastating form of stroke with more than 40% 30-day mortality worldwide. Hematoma expansion (HE), which occurs in one third of ICH patients, is strongly predictive of worse prognosis and potentially preventable if high-risk patients were identified in the early phase of ICH. In this review, we summarize data from recent studies on HE prediction and classify those potential indicators into four categories: clinical (severity of consciousness disturbance; blood pressure; blood glucose at and after admission); laboratory (hematologic parameters of coagulation, inflammation and microvascular integrity status), radiographic (interval time from ICH onset; baseline volume, shape and density of hematoma; intraventricular hemorrhage; especially the spot sign and modified spot sign) and integrated predictors (9-point or 24-point clinical prediction algorithm and PREDICT A/B). We discuss those predictors’ underlying pathophysiology in HE and present opportunities to develop future therapeutic strategies.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Binjie Zhao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Wei Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Ligen Shi
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Cesar Reis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, California, USA.,Department of Preventive Medicine, Loma Linda University, Loma Linda, California, USA
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
43
|
Geng J, Wang L, Qu M, Song Y, Lin X, Chen Y, Mamtilahun M, Chen S, Zhang Z, Wang Y, Yang GY. Endothelial progenitor cells transplantation attenuated blood-brain barrier damage after ischemia in diabetic mice via HIF-1α. Stem Cell Res Ther 2017; 8:163. [PMID: 28697748 PMCID: PMC5505148 DOI: 10.1186/s13287-017-0605-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/20/2017] [Accepted: 06/07/2017] [Indexed: 12/20/2022] Open
Abstract
Background Blood-brain barrier impairment is a major indicator of endothelial dysfunction in diabetes. Studies showed that endothelial progenitor cell (EPC) transplantation promoted angiogenesis and improved function recovery after hind limb ischemia in diabetic mice. The effect of EPC transplantation on blood-brain barrier integrity after cerebral ischemia in diabetic animals is unknown. The aim of this study is to explore the effect of EPC transplantation on the integrity of the blood-brain barrier after cerebral ischemia in diabetic mice. Methods EPCs were isolated by density gradient centrifugation and characterized by flow cytometry and immunostaining. Diabetes was induced in adult male C57BL/6 mice by a single injection of streptozotocin at 4 weeks before surgery. Diabetic mice underwent 90-minute transient middle cerebral artery occlusion surgery and received 1 × 106 EPCs transplantation immediately after reperfusion. Brain infarct volume, blood-brain barrier permeability, tight junction protein expression, and hypoxia inducible factor-1α (HIF-1α) mRNA level were examined after treatment. Results We demonstrated that neurological deficits were attenuated and brain infarct volume was reduced in EPC-transplanted diabetic mice after transient cerebral ischemia compared to the controls (p < 0.05). Blood-brain barrier leakage and tight junction protein degradation were reduced in EPC-transplanted mice (p <0.05). EPCs upregulated HIF-1α expression while HIF-1α inhibitor PX-478 abolished the beneficial effect of EPCs. Conclusions We conclude that EPCs protected blood-brain barrier integrity after focal ischemia in diabetic mice through upregulation of HIF-1α signaling.
Collapse
Affiliation(s)
- Jieli Geng
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,Department of Neurology, Shanghai Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Liping Wang
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Meijie Qu
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Yaying Song
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Xiaojie Lin
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Yajing Chen
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Muyassar Mamtilahun
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Shengdi Chen
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Yongting Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| | - Guo-Yuan Yang
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China. .,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| |
Collapse
|
44
|
Kuruca SE, Karadenizli S, Akgun-Dar K, Kapucu A, Kaptan Z, Uzum G. The effects of 17β-estradiol on blood brain barrier integrity in the absence of the estrogen receptor alpha; an in-vitro model. Acta Histochem 2017; 119:638-647. [PMID: 28803749 DOI: 10.1016/j.acthis.2017.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 12/17/2022]
Abstract
The blood-brain barrier (BBB), which saves the brain from toxic substances, is formed by endothelial cells. It is mainly composed of tight junction (TJ) proteins existing between endothelial cells. Estrogen is an important regulatory hormone of BBB permeability. It protects the BBB before menopause, but may increase BBB permeability with aging. In addition, nitric oxide modulates BBB permeability. Alcohol impairs the integrity of the BBB with oxidants and inflammatory mediators such as iNOS. We investigated the effects of estrogen on BBB integrity in an in vitro BBB model created with ERα-free HUVEC (human umbilical vein endothelial-like cells) to mimics the menopausal period. In vitro BBB model is created with HUVEC/C6 (rat glioma cells) co-culture. The effect of 17β-estradiol on ethanol-induced BBB disruption and change/or increase of iNOS activity, which modulate BBB integrity, were evaluated. Inducibility and functionality of BBB were investigated using transendothelial electrical resistance (TEER) and the expression of proteins TJ proteins (occludin and claudin-1) and iNOS activity by immunostaining. Our results revealed that 17β-estradiol treatment before and after ethanol decrease expression of occludin and claudin-1 and value of TEER which are BBB disrupt indicators. In addition, ethanol and 17β-estradiol separately and pre- and post-ethanol 17β-estradiol treatment increased iNOS expression. Thus our study suggests caution in the use of 17β-estradiol after menopause because 17β-estradiol at this time may both increase the inflammatory process as well as damage the BBB. We think that beneficial effects of 17β-estradiol may be through ERα but it needs further studies.
Collapse
|
45
|
Vitamin C, Aging and Alzheimer's Disease. Nutrients 2017; 9:nu9070670. [PMID: 28654021 PMCID: PMC5537785 DOI: 10.3390/nu9070670] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence in mice models of accelerated senescence indicates a rescuing role of ascorbic acid in premature aging. Supplementation of ascorbic acid appeared to halt cell growth, oxidative stress, telomere attrition, disorganization of chromatin, and excessive secretion of inflammatory factors, and extend lifespan. Interestingly, ascorbic acid (AA) was also found to positively modulate inflamm-aging and immunosenescence, two hallmarks of biological aging. Moreover, ascorbic acid has been shown to epigenetically regulate genome integrity and stability, indicating a key role of targeted nutrition in healthy aging. Growing in vivo evidence supports the role of ascorbic acid in ameliorating factors linked to Alzheimer’s disease (AD) pathogenesis, although evidence in humans yielded equivocal results. The neuroprotective role of ascorbic acid not only relies on the general free radical trapping, but also on the suppression of pro-inflammatory genes, mitigating neuroinflammation, on the chelation of iron, copper, and zinc, and on the suppression of amyloid-beta peptide (Aβ) fibrillogenesis. Epidemiological evidence linking diet, one of the most important modifiable lifestyle factors, and risk of Alzheimer's disease is rapidly increasing. Thus, dietary interventions, as a way to epigenetically modulate the human genome, may play a role in the prevention of AD. The present review is aimed at providing an up to date overview of the main biological mechanisms that are associated with ascorbic acid supplementation/bioavailability in the process of aging and Alzheimer’s disease. In addition, we will address new fields of research and future directions.
Collapse
|
46
|
Bogush M, Heldt NA, Persidsky Y. Blood Brain Barrier Injury in Diabetes: Unrecognized Effects on Brain and Cognition. J Neuroimmune Pharmacol 2017; 12:593-601. [PMID: 28555373 DOI: 10.1007/s11481-017-9752-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/19/2017] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus (DM) is a disorder due to the inability properly to metabolize glucose associated with dysregulation of metabolic pathways of lipids and proteins resulting in structural and functional changes of various organ systems. DM has detrimental effects on the vasculature, resulting in the development of various cardiovascular diseases and stemming from microvascular injury. The blood brain barrier (BBB) is a highly specialized structure protecting the unique microenvironment of the brain. Endothelial cells, connected by junctional complexes and expressing numerous transporters, constitute the main cell type in the BBB. Other components, including pericytes, basement membrane, astrocytes and perivascular macrophages, join endothelial cells to form the neurovascular unit (NVU) and contribute to the proper function and integrity of the BBB. The role of the BBB in the pathogenesis of diabetic encephalopathy and other diabetes-related complications in the central nervous system is apparent. However, the mechanisms, timing and consequences of BBB injury in diabetes are not well understood. The importance of further studies related to barrier dysfunction in diabetes is dictated by its potential involvement in the cognitive demise associated with DM. This review summarizes the impact of DM on BBB/NVU integrity and function leading to neurological and cognitive complications.
Collapse
Affiliation(s)
- Marina Bogush
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Nathan A Heldt
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA. .,Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
47
|
Antihypertensive agents do not prevent blood-brain barrier dysfunction and cognitive deficits in dietary-induced obese mice. Int J Obes (Lond) 2017; 41:926-934. [PMID: 28239165 DOI: 10.1038/ijo.2017.57] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/13/2017] [Accepted: 02/19/2017] [Indexed: 11/08/2022]
Abstract
BACKGROUND While vascular risk factors including Western-styled diet and obesity are reported to induce cognitive decline and increase dementia risk, recent reports consistently suggest that compromised integrity of cerebrovascular blood-brain barrier (BBB) may have an important role in neurodegeneration and cognitive deficits. A number of studies report that elevated blood pressure increases the permeability of BBB. METHODS In this study, we investigated the effects of antihypertensive agents, candesartan or ursodeoxycholic acid (UDCA), on BBB dysfunction and cognitive decline in wild-type mice maintained on high fat and fructose (HFF) diet for 24 weeks. RESULTS In HFF-fed mice, significantly increased body weight with elevated blood pressure, plasma insulin and glucose compared with mice fed with low-fat control chow was observed. Concomitantly, significant disruption of BBB and cognitive decline were evident in the HFF-fed obese mice. Hypertension was completely prevented by the coprovision of candesartan or UDCA in mice maintained on HFF diet, while only candesartan significantly reduced the body weight compared with HFF-fed mice. Nevertheless, BBB dysfunction and cognitive decline remained unaffected by candesartan or UDCA. CONCLUSIONS These data conclusively indicate that modulation of blood pressure and/or body weight may not be directly associated with BBB dysfunction and cognitive deficits in Western diet-induced obese mice, and hence antihypertensive agents may not be effective in preventing BBB disruption and cognitive decline. The findings may provide important mechanistical insights to obesity-associated cognitive decline and its therapy.
Collapse
|
48
|
Lam V, Hackett M, Takechi R. Antioxidants and Dementia Risk: Consideration through a Cerebrovascular Perspective. Nutrients 2016; 8:nu8120828. [PMID: 27999412 PMCID: PMC5188481 DOI: 10.3390/nu8120828] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 12/16/2022] Open
Abstract
A number of natural and chemical compounds that exert anti-oxidative properties are demonstrated to be beneficial for brain and cognitive function, and some are reported to reduce the risk of dementia. However, the detailed mechanisms by which those anti-oxidative compounds show positive effects on cognition and dementia are still unclear. An emerging body of evidence suggests that the integrity of the cerebrovascular blood-brain barrier (BBB) is centrally involved in the onset and progression of cognitive impairment and dementia. While recent studies revealed that some anti-oxidative agents appear to be protective against the disruption of BBB integrity and structure, few studies considered the neuroprotective effects of antioxidants in the context of cerebrovascular integrity. Therefore, in this review, we examine the mechanistic insights of antioxidants as a pleiotropic agent for cognitive impairment and dementia through a cerebrovascular axis by primarily focusing on the current available data from physiological studies. Conclusively, there is a compelling body of evidence that suggest antioxidants may prevent cognitive decline and dementia by protecting the integrity and function of BBB and, indeed, further studies are needed to directly examine these effects in addition to underlying molecular mechanisms.
Collapse
Affiliation(s)
- Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, Perth WA 6845, Australia.
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth WA 6845, Australia.
| | - Mark Hackett
- Curtin Health Innovation Research Institute, Curtin University, Perth WA 6845, Australia.
- Department of Chemistry, Faculty of Science and Engineering, Curtin University, Perth WA 6845, Australia.
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University, Perth WA 6845, Australia.
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth WA 6845, Australia.
| |
Collapse
|
49
|
Justicia C, Salas-Perdomo A, Pérez-de-Puig I, Deddens LH, van Tilborg GAF, Castellví C, Dijkhuizen RM, Chamorro Á, Planas AM. Uric Acid Is Protective After Cerebral Ischemia/Reperfusion in Hyperglycemic Mice. Transl Stroke Res 2016; 8:294-305. [PMID: 27981484 DOI: 10.1007/s12975-016-0515-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/03/2016] [Accepted: 12/06/2016] [Indexed: 12/20/2022]
Abstract
Hyperglycemia at stroke onset is associated with poor long-term clinical outcome in numerous studies. Hyperglycemia induces intracellular acidosis, lipid peroxidation, and peroxynitrite production resulting in the generation of oxidative and nitrosative stress in the ischemic tissue. Here, we studied the effects of acute hyperglycemia on in vivo intercellular adhesion molecule-1 (ICAM-1) expression, neutrophil recruitment, and brain damage after ischemia/reperfusion in mice and tested whether the natural antioxidant uric acid was protective. Hyperglycemia was induced by i.p. administration of dextrose 45 min before transient occlusion of the middle cerebral artery. Magnetic resonance imaging (MRI) was performed at 24 h to measure lesion volume. A group of normoglycemic and hyperglycemic mice received an i.v. injection of micron-sized particles of iron oxide (MPIOs), conjugated with either anti-ICAM-1 antibody or control IgG, followed by T2*w MRI. Neutrophil infiltration was studied by immunofluorescence and flow cytometry. A group of hyperglycemic mice received an i.v. infusion of uric acid (16 mg/kg) or the vehicle starting after 45 min of reperfusion. ICAM-1-targeted MPIOs induced significantly larger MRI contrast-enhancing effects in the ischemic brain of hyperglycemic mice, which also showed more infiltrating neutrophils and larger lesions than normoglycemic mice. Uric acid reduced infarct volume in hyperglycemic mice but it did not prevent vascular ICAM-1 upregulation and did not significantly reduce the number of neutrophils in the ischemic brain tissue. In conclusion, hyperglycemia enhances stroke-induced vascular ICAM-1 and neutrophil infiltration and exacerbates the brain lesion. Uric acid reduces the lesion size after ischemia/reperfusion in hyperglycemic mice.
Collapse
Affiliation(s)
- Carles Justicia
- Departament d'Isquemia Cerebral i Neurodegeneracio, Institut d'Investigacions Biomediques de Barcelona (IIBB), Consejo Superior de Investigaciones Cientificas (CSIC), Rossello 161, planta 6, 08036, Barcelona, Spain. .,Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Rossello 161, planta 6, 08036, Barcelona, Spain.
| | - Angélica Salas-Perdomo
- Departament d'Isquemia Cerebral i Neurodegeneracio, Institut d'Investigacions Biomediques de Barcelona (IIBB), Consejo Superior de Investigaciones Cientificas (CSIC), Rossello 161, planta 6, 08036, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Rossello 161, planta 6, 08036, Barcelona, Spain
| | - Isabel Pérez-de-Puig
- Departament d'Isquemia Cerebral i Neurodegeneracio, Institut d'Investigacions Biomediques de Barcelona (IIBB), Consejo Superior de Investigaciones Cientificas (CSIC), Rossello 161, planta 6, 08036, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Rossello 161, planta 6, 08036, Barcelona, Spain
| | - Lisette H Deddens
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Geralda A F van Tilborg
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Clara Castellví
- Departament d'Isquemia Cerebral i Neurodegeneracio, Institut d'Investigacions Biomediques de Barcelona (IIBB), Consejo Superior de Investigaciones Cientificas (CSIC), Rossello 161, planta 6, 08036, Barcelona, Spain
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ángel Chamorro
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Rossello 161, planta 6, 08036, Barcelona, Spain.,Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Anna M Planas
- Departament d'Isquemia Cerebral i Neurodegeneracio, Institut d'Investigacions Biomediques de Barcelona (IIBB), Consejo Superior de Investigaciones Cientificas (CSIC), Rossello 161, planta 6, 08036, Barcelona, Spain. .,Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Rossello 161, planta 6, 08036, Barcelona, Spain.
| |
Collapse
|
50
|
Cao G, Jiang N, Hu Y, Zhang Y, Wang G, Yin M, Ma X, Zhou K, Qi J, Yu B, Kou J. Ruscogenin Attenuates Cerebral Ischemia-Induced Blood-Brain Barrier Dysfunction by Suppressing TXNIP/NLRP3 Inflammasome Activation and the MAPK Pathway. Int J Mol Sci 2016; 17:ijms17091418. [PMID: 27589720 PMCID: PMC5037697 DOI: 10.3390/ijms17091418] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022] Open
Abstract
Ruscogenin, an important steroid sapogenin derived from Ophiopogon japonicus, has been shown to inhibit cerebral ischemic injury. However, its potential molecular action on blood-brain barrier (BBB) dysfunction after stroke remains unclear. This study aimed to investigate the effects of ruscogenin on BBB dysfunction and the underlying mechanisms in middle cerebral artery occlusion/reperfusion (MCAO/R)-injured mice and oxygen–glucose deprivation/reoxygenation (OGD/R)-injured mouse brain microvascular endothelial cells (bEnd.3). The results demonstrated that administration of ruscogenin (10 mg/kg) decreased the brain infarction and edema, improved neurological deficits, increased cerebral brain flow (CBF), ameliorated histopathological damage, reduced evans blue (EB) leakage and upregulated the expression of tight junctions (TJs) in MCAO/R-injured mice. Meanwhile, ruscogenin (0.1–10 µM) treatment increased cell viability and trans-endothelial electrical resistance (TEER) value, decreased sodium fluorescein leakage, and modulated the TJs expression in OGD/R-induced bEnd.3 cells. Moreover, ruscogenin also inhibited the expression of interleukin-1β (IL-1β) and caspase-1, and markedly suppressed the expression of Nucleotide-binding domain (NOD)-like receptor family, pyrin domain containing 3 (NLRP3) and thiredoxin-interactive protein (TXNIP) in vivo and in vitro. Furthermore, ruscogenin decreased reactive oxygen species (ROS) generation and inhibited the mitogen-activated protein kinase (MAPK) pathway in OGD/R-induced bEnd.3 cells. Our findings provide some new insights into its potential application for the prevention and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Guosheng Cao
- Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| | - Nan Jiang
- Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| | - Yang Hu
- Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| | - Yuanyuan Zhang
- Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| | - Guangyun Wang
- Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| | - Mingzhu Yin
- Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| | - Xiaonan Ma
- Cellular and Molecular Biology Center, China Pharmaceutical University, Nanjing 211198, China.
| | - Kecheng Zhou
- Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| | - Jin Qi
- Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| | - Boyang Yu
- Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| | - Junping Kou
- Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|