1
|
Ciapała K, Pawlik K, Ciechanowska A, Makuch W, Mika J. Astaxanthin has a beneficial influence on pain-related symptoms and opioid-induced hyperalgesia in mice with diabetic neuropathy-evidence from behavioral studies. Pharmacol Rep 2024; 76:1346-1362. [PMID: 39528765 PMCID: PMC11582234 DOI: 10.1007/s43440-024-00671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The treatment of painful diabetic neuropathy is still a clinical problem. The aim of this study was to determine whether astaxanthin, a substance that inhibits mitogen-activated protein kinases, activates nuclear factor erythroid 2-related factor 2 and influences N-methyl-D-aspartate receptor, affects nociceptive transmission in mice with diabetic neuropathy. METHODS The studies were performed on streptozotocin-induced mouse diabetic neuropathic pain model. Single intrathecal and intraperitoneal administrations of astaxanthin at various doses were conducted in both males and females. Additionally, repeated twice-daily treatment with astaxanthin (25 mg/kg) and morphine (30 mg/kg) were performed. Hypersensitivity was evaluated with von Frey and cold plate tests. RESULTS This behavioral study provides the first evidence that in a mouse model of diabetic neuropathy, single injections of astaxanthin similarly reduce tactile and thermal hypersensitivity in both male and female mice, regardless of the route of administration. Moreover, repeated administration of astaxanthin slightly delays the development of morphine tolerance and significantly suppresses the occurrence of opioid-induced hyperalgesia, although it does not affect blood glucose levels, body weight, or motor coordination. Surprisingly, astaxanthin administered repeatedly produces a better analgesic effect when administered alone than in combination with morphine, and its potency becomes even more pronounced over time. CONCLUSIONS These behavioral results provide a basis for further evaluation of the potential use of astaxanthin in the clinical treatment of diabetic neuropathy and suggest that the multidirectional action of this substance may have positive effects on relieving neuropathic pain in diabetes.
Collapse
Affiliation(s)
- Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland.
| |
Collapse
|
2
|
Bober A, Piotrowska A, Pawlik K, Ciapała K, Maciuszek M, Makuch W, Mika J. A New Application for Cenicriviroc, a Dual CCR2/CCR5 Antagonist, in the Treatment of Painful Diabetic Neuropathy in a Mouse Model. Int J Mol Sci 2024; 25:7410. [PMID: 39000516 PMCID: PMC11242565 DOI: 10.3390/ijms25137410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
The ligands of chemokine receptors 2 and 5 (CCR2 and CCR5, respectively) are associated with the pathomechanism of neuropathic pain development, but their role in painful diabetic neuropathy remains unclear. Therefore, the aim of our study was to examine the function of these factors in the hypersensitivity accompanying diabetes. Additionally, we analyzed the analgesic effect of cenicriviroc (CVC), a dual CCR2/CCR5 antagonist, and its influence on the effectiveness of morphine. An increasing number of experimental studies have shown that targeting more than one molecular target is advantageous compared with the coadministration of individual pharmacophores in terms of their analgesic effect. The advantage of using bifunctional compounds is that they gain simultaneous access to two receptors at the same dose, positively affecting their pharmacokinetics and pharmacodynamics and consequently leading to improved analgesia. Experiments were performed on male and female Swiss albino mice with a streptozotocin (STZ, 200 mg/kg, i.p.) model of diabetic neuropathy. We found that the blood glucose level increased, and the mechanical and thermal hypersensitivity developed on the 7th day after STZ administration. In male mice, we observed increased mRNA levels of Ccl2, Ccl5, and Ccl7, while in female mice, we observed additional increases in Ccl8 and Ccl12 levels. We have demonstrated for the first time that a single administration of cenicriviroc relieves pain to a similar extent in male and female mice. Moreover, repeated coadministration of cenicriviroc with morphine delays the development of opioid tolerance, while the best and longest-lasting analgesic effect is achieved by repeated administration of cenicriviroc alone, which reduces pain hypersensitivity in STZ-exposed mice, and unlike morphine, no tolerance to the analgesic effects of CVC is observed until Day 15 of treatment. Based on these results, we suggest that targeting CCR2 and CCR5 with CVC is a potent therapeutic option for novel pain treatments in diabetic neuropathy patients.
Collapse
Affiliation(s)
| | - Anna Piotrowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (A.B.); (K.P.); (K.C.); (M.M.); (W.M.)
| | | | | | | | | | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (A.B.); (K.P.); (K.C.); (M.M.); (W.M.)
| |
Collapse
|
3
|
Merighi A. Brain-Derived Neurotrophic Factor, Nociception, and Pain. Biomolecules 2024; 14:539. [PMID: 38785946 PMCID: PMC11118093 DOI: 10.3390/biom14050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
This article examines the involvement of the brain-derived neurotrophic factor (BDNF) in the control of nociception and pain. BDNF, a neurotrophin known for its essential role in neuronal survival and plasticity, has garnered significant attention for its potential implications as a modulator of synaptic transmission. This comprehensive review aims to provide insights into the multifaceted interactions between BDNF and pain pathways, encompassing both physiological and pathological pain conditions. I delve into the molecular mechanisms underlying BDNF's involvement in pain processing and discuss potential therapeutic applications of BDNF and its mimetics in managing pain. Furthermore, I highlight recent advancements and challenges in translating BDNF-related research into clinical practice.
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, 10095 Turin, Italy
| |
Collapse
|
4
|
Ma Y, Chen J, Chen C, Wei B, Liu X. Suppression of HCN channels in the spinal dorsal horn restores KCC2 expression and attenuates diabetic neuropathic pain. Neurosci Lett 2024; 822:137626. [PMID: 38191090 DOI: 10.1016/j.neulet.2024.137626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/24/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
Previous studies have shown that the hyperpolarized cyclic nucleotide gated (HCN) ion channels in the spinal dorsal horn (SDH) might be involved in the development of diabetic neuropathic pain (DNP). Additionally, other studies have shown that the decreased potassium-chloride cotransporter 2 (KCC2) expression in the SDH promotes pain hypersensitivity. Both HCN channels and KCC2 were highly expressed in spinal substantia gelatinosa neurons. However, whether the K+ efflux induced by the activation of HCN channels in DNP modulate KCC2 function and subsequently affect the role of γ-aminobutyric acid (GABA)/GABA-A receptors of neurons in the SDH remains to be clarified. The purpose of this work was to investigate the underlying mechanisms of KCC2 participating in HCN channels to promote DNP. Here, we found that the analgesic role of HCN channels blocker ZD7288 was associated with the up-regulated KCC2 expression and could be prevented by DIOA, a KCC2 blocker. Furthermore, the level of GABA in DNP rats significantly increased, which was decreased by ZD72288. Moreover, DIOA pretreatment could partly block the inhibitory effect of ZD7288 on the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) signaling activation of DNP rats. Finally, inhibition of cAMP-PKA signaling alleviated allodynia and elevated KCC2 expression in DNP rats. Altogether, this study reveals that the role of cAMP-PKA signaling-regulated HCN channels in DNP associated with decreased KCC2 expression in the spinal cord and altered GABA nature.
Collapse
Affiliation(s)
- Yanqiao Ma
- Department of Physiology, Zunyi Medical University, Zunyi 563000, China
| | - Ji Chen
- School of Pharmacy, Qingdao University, Qingdao 266000, China
| | - Chaodong Chen
- General Surgery, Fenggang County People's Hospital, Zunyi 563000, China
| | - Bangcong Wei
- Department of Pharmacy, Dushan County Mawei Central Hospital, Qiannan Buyi and Miao Autonomous Prefecture, 558000, China
| | - Xiaohong Liu
- Department of Physiology, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
5
|
Ramos D, Cruz CD. Involvement of microglia in chronic neuropathic pain associated with spinal cord injury - a systematic review. Rev Neurosci 2023; 34:933-950. [PMID: 37490300 DOI: 10.1515/revneuro-2023-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/10/2023] [Indexed: 07/26/2023]
Abstract
In recent decade microglia have been found to have a central role in the development of chronic neuropathic pain after injury to the peripheral nervous system. It is widely accepted that peripheral nerve injury triggers microglial activation in the spinal cord, which contributes to heightened pain sensation and eventually chronic pain states. The contribution of microglia to chronic pain arising after injury to the central nervous system, such as spinal cord injury (SCI), has been less studied, but there is evidence supporting microglial contribution to central neuropathic pain. In this systematic review, we focused on post-SCI microglial activation and how it is linked to emergence and maintenance of chronic neuropathic pain arising after SCI. We found that the number of studies using animal SCI models addressing microglial activity is still small, compared with the ones using peripheral nerve injury models. We have collected 20 studies for full inclusion in this review. Many mechanisms and cellular interactions are yet to be fully understood, although several studies report an increase of density and activity of microglia in the spinal cord, both in the vicinity of the injury and in the spared spinal tissue, as well as in the brain. Changes in microglial activity come with several molecular changes, including expression of receptors and activation of signalling pathways. As with peripheral neuropathic pain, microglia seem to be important players and might become a therapeutic target in the future.
Collapse
Affiliation(s)
- David Ramos
- Faculty of Medicine of Porto, University of Porto, Porto, Portugal
- Department of Biomedicine, Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Célia Duarte Cruz
- Department of Biomedicine, Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Translational Neurourology, IBMC and Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| |
Collapse
|
6
|
Role of microglia and P2X4 receptors in chronic pain. Pain Rep 2021; 6:e864. [PMID: 33981920 PMCID: PMC8108579 DOI: 10.1097/pr9.0000000000000864] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
This study summarizes current understanding of the role of microglia and P2X4 receptor in chronic pain including neuropathic pain and of their therapeutic potential. Pain plays an indispensable role as an alarm system to protect us from dangers or injuries. However, neuropathic pain, a debilitating pain condition caused by damage to the nervous system, persists for a long period even in the absence of dangerous stimuli or after injuries have healed. In this condition, pain becomes a disease itself rather than the alarm system and is often resistant to currently available medications. A growing body of evidence indicates that microglia, a type of macrophages residing in the central nervous system, play a crucial role in the pathogenesis of neuropathic pain. Whenever microglia in the spinal cord detect a damaging signal within the nervous system, they become activated and cause diverse alterations that change neural excitability, leading to the development of neuropathic pain. For over a decade, several lines of molecular and cellular mechanisms that define microglial activation and subsequently altered pain transmission have been proposed. In particular, P2X4 receptors (a subtype of purinergic receptors) expressed by microglia have been investigated as an essential molecule for neuropathic pain. In this review article, we describe our understanding of the mechanisms by which activated microglia cause neuropathic pain through P2X4 receptors, their involvement in several pathological contexts, and recent efforts to develop new drugs targeting microglia and P2X4 receptors.
Collapse
|
7
|
Abstract
Neuropathy is a common complication of long-term diabetes that impairs quality of life by producing pain, sensory loss and limb amputation. The presence of neuropathy in both insulin-deficient (type 1) and insulin resistant (type 2) diabetes along with the slowing of progression of neuropathy by improved glycemic control in type 1 diabetes has caused the majority of preclinical and clinical investigations to focus on hyperglycemia as the initiating pathogenic lesion. Studies in animal models of diabetes have identified multiple plausible mechanisms of glucotoxicity to the nervous system including post-translational modification of proteins by glucose and increased glucose metabolism by aldose reductase, glycolysis and other catabolic pathways. However, it is becoming increasingly apparent that factors not necessarily downstream of hyperglycemia can also contribute to the incidence, progression and severity of neuropathy and neuropathic pain. For example, peripheral nerve contains insulin receptors that transduce the neurotrophic and neurosupportive properties of insulin, independent of systemic glucose regulation, while the detection of neuropathy and neuropathic pain in patients with metabolic syndrome and failure of improved glycemic control to protect against neuropathy in cohorts of type 2 diabetic patients has placed a focus on the pathogenic role of dyslipidemia. This review provides an overview of current understanding of potential initiating lesions for diabetic neuropathy and the multiple downstream mechanisms identified in cell and animal models of diabetes that may contribute to the pathogenesis of diabetic neuropathy and neuropathic pain.
Collapse
|
8
|
Ferrini F, Salio C, Boggio EM, Merighi A. Interplay of BDNF and GDNF in the Mature Spinal Somatosensory System and Its Potential Therapeutic Relevance. Curr Neuropharmacol 2021; 19:1225-1245. [PMID: 33200712 PMCID: PMC8719296 DOI: 10.2174/1570159x18666201116143422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/17/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022] Open
Abstract
The growth factors BDNF and GDNF are gaining more and more attention as modulators of synaptic transmission in the mature central nervous system (CNS). The two molecules undergo a regulated secretion in neurons and may be anterogradely transported to terminals where they can positively or negatively modulate fast synaptic transmission. There is today a wide consensus on the role of BDNF as a pro-nociceptive modulator, as the neurotrophin has an important part in the initiation and maintenance of inflammatory, chronic, and/or neuropathic pain at the peripheral and central level. At the spinal level, BDNF intervenes in the regulation of chloride equilibrium potential, decreases the excitatory synaptic drive to inhibitory neurons, with complex changes in GABAergic/glycinergic synaptic transmission, and increases excitatory transmission in the superficial dorsal horn. Differently from BDNF, the role of GDNF still remains to be unraveled in full. This review resumes the current literature on the interplay between BDNF and GDNF in the regulation of nociceptive neurotransmission in the superficial dorsal horn of the spinal cord. We will first discuss the circuitries involved in such a regulation, as well as the reciprocal interactions between the two factors in nociceptive pathways. The development of small molecules specifically targeting BDNF, GDNF and/or downstream effectors is opening new perspectives for investigating these neurotrophic factors as modulators of nociceptive transmission and chronic pain. Therefore, we will finally consider the molecules of (potential) pharmacological relevance for tackling normal and pathological pain.
Collapse
Affiliation(s)
- Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- Department of Psychiatry & Neuroscience, Université Laval, Québec, Canada
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Elena M. Boggio
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- National Institute of Neuroscience, Grugliasco, Italy
| |
Collapse
|
9
|
Bogacka J, Ciapała K, Pawlik K, Dobrogowski J, Przeklasa-Muszynska A, Mika J. Blockade of CCR4 Diminishes Hypersensitivity and Enhances Opioid Analgesia - Evidence from a Mouse Model of Diabetic Neuropathy. Neuroscience 2020; 441:77-92. [PMID: 32592824 DOI: 10.1016/j.neuroscience.2020.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 01/28/2023]
Abstract
Chemokine signaling has been implicated in the pathogenesis of diabetic neuropathy; however, the role of chemokine CC motif receptor 4 (CCR4) remains unknown. The goal was to examine the function of CCR4 in hypersensitivity development and opioid effectiveness in diabetic neuropathy. Streptozotocin (STZ; 200 mg/kg, intraperitoneally administered)-induced mouse model of diabetic neuropathy were used. An analysis of the mRNA/protein expression of CCR4 and its ligands was performed by qRT-PCR, microarray and/or Western blot methods. C021 (CCR4 antagonist), morphine and buprenorphine were injected intrathecally or intraperitoneally, and pain-related behavior was evaluated by the von Frey, cold plate and rotarod tests. We observed that on day 7 after STZ administration, the blood glucose level was increased, and as a consequence, hypersensitivity to tactile and thermal stimuli developed. In addition, we observed an increase in the mRNA level of CCL2 but not CCL17/CCL22. The microarray technique showed that the CCL2 protein level was also upregulated. In naive mice, the pronociceptive effect of intrathecally injected CCL2 was blocked by C021, suggesting that this chemokine acts through CCR4. Importantly, our results provide the first evidence that in a mouse model of diabetic neuropathy, single intrathecal and intraperitoneal injections of C021 diminished neuropathic pain-related behavior in a dose-dependent manner and improved motor functions. Moreover, both single intrathecal and intraperitoneal injections of C021 enhanced morphine and buprenorphine effectiveness. These results reveal that pharmacological modulation of CCR4 may be a good potential therapeutic target for the treatment of diabetic neuropathy and may enhance the effectiveness of opioids.
Collapse
Affiliation(s)
- Joanna Bogacka
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343 Krakow, Poland
| | - Katarzyna Ciapała
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343 Krakow, Poland
| | - Katarzyna Pawlik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343 Krakow, Poland
| | - Jan Dobrogowski
- Department of Pain Research and Treatment, Chair of Anesthesiology and Intensive Therapy, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Przeklasa-Muszynska
- Department of Pain Research and Treatment, Chair of Anesthesiology and Intensive Therapy, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Mika
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343 Krakow, Poland.
| |
Collapse
|
10
|
Ifenprodil Reduced Expression of Activated Microglia, BDNF and DREAM Proteins in the Spinal Cord Following Formalin Injection During the Early Stage of Painful Diabetic Neuropathy in Rats. J Mol Neurosci 2020; 71:379-393. [PMID: 32671697 DOI: 10.1007/s12031-020-01661-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
The pharmacological inhibition of glial activation is one of the new approaches for combating neuropathic pain in which the role of glia in the modulation of neuropathic pain has attracted significant interest and attention. Neuron-glial crosstalk is achieved with N-methyl-D-aspartate-2B receptor (NMDAR-2B) activation. This study aims to determine the effect of ifenprodil, a potent noncompetitive NMDAR-2B antagonist, on activated microglia, brain-derived neurotrophic factors (BDNF) and downstream regulatory element antagonist modulator (DREAM) protein expression in the spinal cord of streptozotocin-induced painful diabetic neuropathy (PDN) rats following formalin injection. In this experimentation, 48 Sprague-Dawley male rats were randomly selected and divided into four groups: (n = 12): control, PDN, and ifenprodil-treated PDN rats at 0.5 μg or 1.0 μg for 7 days. Type I diabetes mellitus was then induced by injecting streptozotocin (60 mg/kg, i.p.) into the rats which were then over a 2-week period allowed to progress into the early phase of PDN. Ifenprodil was administered in PDN rats while saline was administered intrathecally in the control group. A formalin test was conducted during the fourth week to induce inflammatory nerve injury, in which the rats were sacrificed at 72 h post-formalin injection. The lumbar enlargement region (L4-L5) of the spinal cord was dissected for immunohistochemistry and western blot analyses. The results demonstrated a significant increase in formalin-induced flinching and licking behavior with an increased spinal expression of activated microglia, BDNF and DREAM proteins. It was also shown that the ifenprodil-treated rats following both doses reduced the extent of their flinching and duration of licking in PDN in a dose-dependent manner. As such, ifenprodil successfully demonstrated inhibition against microglia activation and suppressed the expression of BDNF and DREAM proteins in the spinal cord of PDN rats. In conclusion, ifenprodil may alleviate PDN by suppressing spinal microglia activation, BDNF and DREAM proteins.
Collapse
|
11
|
Dunn JS, Nagi SS, Mahns DA. Minocycline reduces experimental muscle hyperalgesia induced by repeated nerve growth factor injections in humans: A placebo‐controlled double‐blind drug‐crossover study. Eur J Pain 2020; 24:1138-1150. [DOI: 10.1002/ejp.1558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/28/2020] [Accepted: 03/11/2020] [Indexed: 11/09/2022]
Affiliation(s)
- James S. Dunn
- School of Medicine Western Sydney University Penrith NSW Australia
| | - Saad S. Nagi
- School of Medicine Western Sydney University Penrith NSW Australia
- Department of Biomedical and Clinical Sciences Center for Social and Affective Neuroscience Linköping University Linköping Sweden
| | - David A. Mahns
- School of Medicine Western Sydney University Penrith NSW Australia
| |
Collapse
|
12
|
Ismail CAN, Suppian R, Ab Aziz CB, Long I. Expressions of spinal microglia activation, BDNF, and DREAM proteins correlated with formalin-induced nociceptive responses in painful and painless diabetic neuropathy rats. Neuropeptides 2020; 79:102003. [PMID: 31902597 DOI: 10.1016/j.npep.2019.102003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/21/2019] [Accepted: 12/22/2019] [Indexed: 12/30/2022]
Abstract
The complications of diabetic polyneuropathy (DN) determines its level of severity. It may occur with distinctive clinical symptoms (painful DN) or appears undetected (painless DN). This study aimed to investigate microglia activation and signalling molecules brain-derived neurotrophic factor (BDNF) and downstream regulatory element antagonist modulator (DREAM) proteins in spinal cord of streptozotocin-induced diabetic neuropathy rats. Thirty male Sprague-Dawley rats (200-230 g) were randomly assigned into three groups: (1) control, (2) painful DN and (3) painless DN. The rats were induced with diabetes by single intraperitoneal injection of streptozotocin (60 mg/kg) whilst control rats received citrate buffer as a vehicle. Four weeks post-diabetic induction, the rats were induced with chronic inflammatory pain by intraplantar injection of 5% formalin and pain behaviour responses were recorded and assessed. Three days later, the rats were sacrificed and lumbar enlargement region of spinal cord was collected. The tissue was immunoreacted against OX-42 (microglia), BDNF and DREAM proteins, which was also quantified by western blotting. The results demonstrated that painful DN rats exhibited increased pain behaviour score peripherally and centrally with marked increase of spinal activated microglia, BDNF and DREAM proteins expressions compared to control group. In contrast, painless DN group demonstrated a significant reduction of pain behaviour score peripherally and centrally with significant reduction of spinal activated microglia, BDNF and DREAM proteins expressions. In conclusions, the spinal microglia activation, BDNF and DREAM proteins correlate with the pain behaviour responses between the variants of DN.
Collapse
Affiliation(s)
- Che Aishah Nazariah Ismail
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Rapeah Suppian
- School of Health Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Che Badariah Ab Aziz
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Idris Long
- School of Health Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
13
|
He D, Chen H, Zeng M, Xia C, Wang J, Shen L, Zhu D, Chen Y, Wang J. Asthmatic Airway Vagal Hypertonia Involves Chloride Dyshomeostasis of Preganglionic Neurons in Rats. Front Neurosci 2020; 14:31. [PMID: 32082109 PMCID: PMC7005078 DOI: 10.3389/fnins.2020.00031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/10/2020] [Indexed: 11/17/2022] Open
Abstract
Airway vagal hypertonia is closely related to the severity of asthma; however, the mechanisms of its genesis are unclear. This study aims to prove that asthmatic airway vagal hypertonia involves neuronal Cl– dyshomeostasis. The experimental airway allergy model was prepared with ovalbumin in male adult Sprague-Dawley rats. Plethysmography was used to evaluate airway vagal response to intracisternally injected γ-aminobutyric acid (GABA). Immunofluorescent staining and Western-blot assay were used to examine the expression of microglia-specific proteins, Na+-K+-2Cl– co-transporter 1 (NKCC1), K+-Cl– co-transporter 2 (KCC2) and brain-derived nerve growth factor (BDNF) in airway vagal centers. Pulmonary inflammatory changes were examined with hematoxylin and eosin staining of lung sections and ELISA assay of ovalbumin-specific IgE in bronchoalveolar lavage fluid (BALF). The results showed that histochemically, experimental airway allergy activated microglia, upregulated NKCC1, downregulated KCC2, and increased the content of BDNF in airway vagal centers. Functionally, experimental airway allergy augmented the excitatory airway vagal response to intracisternally injected GABA, which was attenuated by intracisternally pre-injected NKCC1 inhibitor bumetanide. All of the changes induced by experimental airway allergy were prevented or mitigated by chronic intracerebroventricular or intraperitoneal injection of minocycline, an inhibitor of microglia activation. These results demonstrate that experimental airway allergy augments the excitatory response of airway vagal centers to GABA, which might be the result of neuronal Cl– dyshomeostasis subsequent to microglia activation, increased BDNF release and altered expression of Cl– transporters. Cl– dyshomeostasis in airway vagal centers might contribute to the genesis of airway vagal hypertonia in asthma.
Collapse
Affiliation(s)
- Ding He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hong Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ming Zeng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chunmei Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Linlin Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Danian Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yonghua Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jijiang Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Ismail CAN, Suppian R, Aziz CBA, Long I. Minocycline attenuates the development of diabetic neuropathy by modulating DREAM and BDNF protein expression in rat spinal cord. J Diabetes Metab Disord 2019; 18:181-190. [PMID: 31275889 DOI: 10.1007/s40200-019-00411-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 05/08/2019] [Indexed: 01/18/2023]
Abstract
Aim This study investigates the effects of minocycline (an inhibitor of microglial activation) administration on the expression level of spinal BDNF and DREAM proteins in diabetic neuropathic pain (DNP) rats. Methods The rats were divided into four groups (n = 16): non-diabetic control, diabetic control and diabetic rats receiving minocycline (80 μg/day or 160 μg/day). The diabetic rat model was induced by intraperitoneal injection of streptozotocin (60 mg/kg STZ). Tactile allodynia was assessed on day-0 (baseline), day-14 (pre-intervention) and day-22 (post-intervention). Minocycline at doses of 80 μg and 160 μg were given intrathecally from day-15 until day-21. On day-23, formalin test was conducted to assess nociceptive behaviour response. The spinal expression of OX-42 and level of BDNF and DREAM proteins were detected by immunohistochemistry and western blot analyses. Results Diabetes rats showed significant tactile allodynia and nociceptive behaviour. These were accompanied by augmented expression of spinal OX-42, BDNF and DREAM protein levels. Both doses of minocycline attenuated tactile allodynia and nociceptive behaviour and also suppressed the diabetic-induced increase in spinal expressions of OX-42, BDNF and DREAM proteins. Conclusion This study revealed that minocycline could attenuate DNP by modulating spinal BDNF and DREAM protein expressions.
Collapse
Affiliation(s)
- Che Aishah Nazariah Ismail
- 1Physiology Department, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Rapeah Suppian
- 2School of Health Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Che Badariah Abd Aziz
- 1Physiology Department, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Idris Long
- 2School of Health Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| |
Collapse
|
15
|
Resham K, Sharma SS. Pharmacologic Inhibition of Porcupine, Disheveled, and β-Catenin in Wnt Signaling Pathway Ameliorates Diabetic Peripheral Neuropathy in Rats. THE JOURNAL OF PAIN 2019; 20:1338-1352. [PMID: 31075529 DOI: 10.1016/j.jpain.2019.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/22/2019] [Accepted: 03/15/2019] [Indexed: 12/23/2022]
Abstract
Wnt signaling pathway has been investigated extensively for its diverse metabolic and pain-modulating mechanisms; recently its involvement has been postulated in the development of neuropathic pain. However, there are no reports as yet on the involvement of Wnt signaling pathway in one of the most debilitating neurovascular complication of diabetes, namely, diabetic peripheral neuropathy (DPN). Thus, in the present study, involvement of Wnt signaling was investigated in DPN using Wnt signaling inhibitors namely LGK974 (porcupine inhibitor), NSC668036 (disheveled inhibitor), and PNU74654 (β-catenin inhibitor). Diabetes was induced by a single intraperitoneal injection of streptozotocin (50 mg/kg) to male Sprague-Dawley rats. Diabetic rats after 6 weeks of diabetes induction showed increased expression of Wnt signaling proteins in the spinal cord (L4-L6 lumbar segment), dorsal root ganglions and sciatic nerves. Subsequent increase in inflammation, endoplasmic reticulum stress and loss of intraepidermal nerve fiber density was also observed, leading to neurobehavioral and nerve functional deficits in diabetic rats. Intrathecal administration of Wnt signaling inhibitors (each at doses of 10 and 30 µmol/L) in diabetic rats showed improvement in pain-associated behaviors (heat, cold, and mechanical hyperalgesia) and nerve functions (motor, sensory nerve conduction velocities, and nerve blood flow) by decreasing the expression of Wnt pathway proteins, inflammatory marker, matrix metalloproteinase 2, endoplasmic reticulum stress marker, glucose-regulated protein 78, and improving intraepidermal nerve fiber density. All these results signify the neuroprotective potential of Wnt signaling inhibitors in DPN. PERSPECTIVE: This study emphasizes the involvement of Wnt signaling pathway in DPN. Blockade of this pathway using Wnt inhibitors provided neuroprotection in experimental DPN in rats. This study may provide a basis for exploring the therapeutic potential of Wnt inhibitors in DPN patients.
Collapse
Affiliation(s)
- Kahkashan Resham
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Shyam S Sharma
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
16
|
MicroRNA-mediated downregulation of potassium-chloride-cotransporter and vesicular γ-aminobutyric acid transporter expression in spinal cord contributes to neonatal cystitis-induced visceral pain in rats. Pain 2018; 158:2461-2474. [PMID: 28885452 DOI: 10.1097/j.pain.0000000000001057] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Loss of GABAergic inhibition in pain pathways has been considered to be a key component in the development of chronic pain. In the present study, we intended to examine whether miR-92b-mediated posttranscriptional dysregulation of spinal potassium chloride cotransporter (KCC2) and vesicular γ-aminobutyric acid transporter (VGAT) plays a major role in the development and maintenance of long-term visceral hyperalgesia in neonatal zymosan-treated rats. Neonatal cystitis was induced by transurethral zymosan administration from postnatal (P) days 14 to 16 (protocol 1). Two other zymosan protocols were also used: adult rechallenge on P57 to 59 following neonatal P14 to 16 exposures (protocol 2), and adult zymosan exposures on P57 to 59 (protocol 3). Both neonatal and adult bladder inflammation protocols demonstrated an increase in spinal miR-92b-3p expression and subsequent decrease in KCC2 and VGAT expression in spinal dorsal horn neurons. In situ hybridization demonstrated a significant upregulation of miR-92b-3p in the spinal dorsal horn neurons of neonatal cystitis rats compared with saline-treated controls. In dual in situ hybridization and immunohistochemistry studies, we further demonstrated coexpression of miR-92b-3p with targets KCC2 and VGAT in spinal dorsal horn neurons, emphasizing a possible regulatory role both at pre- and post-synaptic levels. Intrathecal administration of lentiviral pLSyn-miR-92b-3p sponge (miR-92b-3p inhibitor) upregulated KCC2 and VGAT expression in spinal dorsal horn neurons. In behavioral studies, intrathecal administration of lentiviral miR-92b-3p sponge attenuated an increase in visceromotor responses and referred viscerosomatic hypersensitivity following the induction of cystitis. These findings indicate that miR-92b-3p-mediated posttranscriptional regulation of spinal GABAergic system plays an important role in sensory pathophysiology of zymosan-induced cystitis.
Collapse
|
17
|
Dewanjee S, Das S, Das AK, Bhattacharjee N, Dihingia A, Dua TK, Kalita J, Manna P. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur J Pharmacol 2018; 833:472-523. [DOI: 10.1016/j.ejphar.2018.06.034] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/15/2018] [Accepted: 06/26/2018] [Indexed: 02/07/2023]
|
18
|
Zhou YQ, Liu DQ, Chen SP, Sun J, Wang XM, Tian YK, Wu W, Ye DW. Minocycline as a promising therapeutic strategy for chronic pain. Pharmacol Res 2018; 134:305-310. [PMID: 30042091 DOI: 10.1016/j.phrs.2018.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 01/25/2023]
Abstract
Chronic pain remains to be a clinical challenge due to insufficient therapeutic strategies. Minocycline is a member of the tetracycline class of antibiotics, which has been used in clinic for decades. It is frequently reported that minocycline may has many non-antibiotic properties, among which is its anti-nociceptive effect. The results from our lab and others suggest that minocycline exerts strong analgesic effect in animal models of chronic pain including visceral pain, chemotherapy-induced periphery neuropathy, periphery injury induced neuropathic pain, diabetic neuropathic pain, spinal cord injury, inflammatory pain and bone cancer pain. In this review, we summarize the mechanisms underlying the analgesic effect of minocycline in preclinical studies. Due to a good safety record when used chronically, minocycline may become a promising therapeutic strategy for chronic pain in clinic.
Collapse
Affiliation(s)
- Ya-Qun Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dai-Qiang Liu
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-Ping Chen
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Sun
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Mei Wang
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Ke Tian
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wu
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
19
|
Dai S, Qi Y, Fu J, Li N, Zhang X, Zhang J, Zhang W, Xu H, Zhou H, Ma Z. Dexmedetomidine attenuates persistent postsurgical pain by upregulating K +-Cl - cotransporter-2 in the spinal dorsal horn in rats. J Pain Res 2018; 11:993-1004. [PMID: 29872336 PMCID: PMC5973459 DOI: 10.2147/jpr.s158737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Dexmedetomidine (DEX) could have an analgesic effect on pain transmission through the modulation of brain-derived neurotrophic factor (BDNF). In addition, KCC2-induced shift in neuronal Cl− homeostasis is crucial for postsynaptic inhibition mediated by GABAA receptors. Accumulating evidence shows that nerve injury, peripheral inflammation and stress activate the spinal BDNF/TrkB signal, which results in the downregulation of KCC2 transport and expression, eventually leads to GAGAergic disinhibition and hyperalgesia. The aim of this experiment was to explore the interaction between DEX and KCC2 at a molecular level in rats in the persistent postsurgical pain (PPSP). Methods PPSP in rats was evoked by the skin/muscle incision and retraction (SMIR). Mechanical hypersensitivity was assessed with the Dynamic Plantar Aesthesiometer. Western blot and immunofluorescence assay were used to assess the expressions of related proteins. Results In the first part of our experiment, the results revealed that the BDNF/TrkB-KCC2 signal plays a critical role in the development of SMIR-evoked PPSP; the second part showed that intraperitoneal administrations of 40 µg/kg DEX at 15 min presurgery and 1 to 3 days post-surgery significantly attenuated SMIR-evoked PPSP. Simultaneously, SMIR-induced KCC2 downregulation was partly reversed, which coincided with the inhibition of the BDNF/TrkB signal in the spinal dorsal horn. Moreover, intrathecal administrations of KCC2 inhibitor VU0240551 significantly reduced the analgesic effect of DEX on SMIR-evoked PPSP. Conclusion The results of our study indicated that DEX attenuated PPSP by restoring KCC2 function through reducing BDNF/TrkB signal in the spinal dorsal horn in rats, which provides a new insight into the treatment of chronic pain in clinical postsurgical pain management.
Collapse
Affiliation(s)
- Shuhong Dai
- Department of Anesthesiology, XuZhou Central Hospital, Xuzhou, China
| | - Yu Qi
- Department of Anesthesiology, XuZhou Central Hospital, Xuzhou, China
| | - Jie Fu
- Department of Anesthesiology, XuZhou Central Hospital, Xuzhou, China
| | - Na Li
- Department of Anesthesiology, XuZhou Central Hospital, Xuzhou, China
| | - Xu Zhang
- Department of Anesthesiology, XuZhou Central Hospital, Xuzhou, China
| | - Juan Zhang
- The Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Wei Zhang
- The Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Haijun Xu
- Department of Anesthesiology, XuZhou Central Hospital, Xuzhou, China
| | - Hai Zhou
- Department of Anesthesiology, XuZhou Central Hospital, Xuzhou, China
| | - Zhengliang Ma
- The Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
20
|
Kim YB, Kim WB, Jung WW, Jin X, Kim YS, Kim B, Han HC, Block GD, Colwell CS, Kim YI. Excitatory GABAergic Action and Increased Vasopressin Synthesis in Hypothalamic Magnocellular Neurosecretory Cells Underlie the High Plasma Level of Vasopressin in Diabetic Rats. Diabetes 2018; 67:486-495. [PMID: 29212780 DOI: 10.2337/db17-1042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/20/2017] [Indexed: 11/13/2022]
Abstract
Diabetes mellitus (DM) is associated with increased plasma levels of arginine-vasopressin (AVP), which may aggravate hyperglycemia and nephropathy. However, the mechanisms by which DM may cause the increased AVP levels are not known. Electrophysiological recordings in supraoptic nucleus (SON) slices from streptozotocin (STZ)-induced DM rats and vehicle-treated control rats revealed that γ-aminobutyric acid (GABA) functions generally as an excitatory neurotransmitter in the AVP neurons of STZ rats, whereas it usually evokes inhibitory responses in the cells of control animals. Furthermore, Western blotting analyses of Cl- transporters in the SON tissues indicated that Na+-K+-2Cl- cotransporter isotype 1 (a Cl- importer) was upregulated and K+-Cl- cotransporter isotype 2 (KCC2; a Cl- extruder) was downregulated in STZ rats. Treatment with CLP290 (a KCC2 activator) significantly lowered blood AVP and glucose levels in STZ rats. Last, investigation that used rats expressing an AVP-enhanced green fluorescent protein fusion gene showed that AVP synthesis in AVP neurons was much more intense in STZ rats than in control rats. We conclude that altered Cl- homeostasis that makes GABA excitatory and enhanced AVP synthesis are important changes in AVP neurons that would increase AVP secretion in DM. Our data suggest that Cl- transporters in AVP neurons are potential targets of antidiabetes treatments.
Collapse
Affiliation(s)
- Young-Beom Kim
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woong Bin Kim
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Won Woo Jung
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Xiangyan Jin
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yoon Sik Kim
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA
| | - Byoungjae Kim
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee Chul Han
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Gene D Block
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA
| | - Christopher S Colwell
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA
| | - Yang In Kim
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
21
|
Lee-Kubli C, Marshall AG, Malik RA, Calcutt NA. The H-Reflex as a Biomarker for Spinal Disinhibition in Painful Diabetic Neuropathy. Curr Diab Rep 2018; 18:1. [PMID: 29362940 PMCID: PMC6876556 DOI: 10.1007/s11892-018-0969-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Neuropathic pain may arise from multiple mechanisms and locations. Efficacy of current treatments for painful diabetic neuropathy is limited to an unpredictable subset of patients, possibly reflecting diversity of pain generator mechanisms, and there is a lack of targeted treatments for individual patients. This review summarizes preclinical evidence supporting a role for spinal disinhibition in painful diabetic neuropathy, the physiology and pharmacology of rate-dependent depression (RDD) of the spinal H-reflex and the translational potential of using RDD as a biomarker of spinally mediated pain. RECENT FINDINGS Impaired RDD occurs in animal models of diabetes and was also detected in diabetic patients with painful vs painless neuropathy. RDD status can be determined using standard neurophysiological equipment. Loss of RDD may provide a clinical biomarker of spinal disinhibition, thereby enabling a personalized medicine approach to selection of current treatment options and enrichment of future clinical trial populations.
Collapse
Affiliation(s)
| | - Andrew G Marshall
- Faculty of Medical and Human Sciences, Institute of Cardiovascular Sciences, University of Manchester and National Institute for Healthy Research/Wellcome Trust Clinical Research Facility, Manchester, UK
- Department of Clinical Neurophysiology, Salford Royal Hospital, National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Rayaz A Malik
- Faculty of Medical and Human Sciences, Institute of Cardiovascular Sciences, University of Manchester and National Institute for Healthy Research/Wellcome Trust Clinical Research Facility, Manchester, UK
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
22
|
Spinal CCL1/CCR8 signaling interplay as a potential therapeutic target – Evidence from a mouse diabetic neuropathy model. Int Immunopharmacol 2017; 52:261-271. [DOI: 10.1016/j.intimp.2017.09.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/15/2017] [Accepted: 09/22/2017] [Indexed: 12/11/2022]
|
23
|
Lee JY, Choi HY, Park CS, Pyo MK, Yune TY, Kim GW, Chung SH. GS-KG9 ameliorates diabetic neuropathic pain induced by streptozotocin in rats. J Ginseng Res 2017; 43:58-67. [PMID: 30662294 PMCID: PMC6323171 DOI: 10.1016/j.jgr.2017.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 02/08/2023] Open
Abstract
Background Diabetic neuropathy is one of the most devastating ailments of the peripheral nervous system. Neuropathic pain develops in ∼30% of diabetics. Here, we examined the suppressive effect of GS-KG9 on neuropathic pain induced by streptozotocin (STZ). Methods Hyperglycemia was induced by intraperitoneal injection of STZ. Rats showing blood glucose level > 250 mg/dL were divided into five groups, and treatment groups received oral saline containing GS-KG9 (50 mg/kg, 150 mg/kg, or 300 mg/kg) twice daily for 4 wk. The effects of GS-KG9 on pain behavior, microglia activation in the lumbar spinal cord and ventral posterolateral (VPL) nucleus of the thalamus, and c-Fos expression in the dorsal horn of the lumbar spinal cord were examined. Results The development of neuropathic pain began at Day 5 and peaked at Week 4 after STZ injection. Mechanical and thermal pains were both significantly attenuated in GS-KG9-treated groups from 10 d after STZ injection as compared to those in the STZ control. GS-KG9 also repressed microglia activation in L4 dorsal horn and VPL region of the thalamus. In addition, increase in c-Fos-positive cells within L4 dorsal horn lamina I and II of the STZ control group was markedly alleviated by GS-KG9. Conclusion These results suggest that GS-KG9 effectively relieves STZ-induced neuropathic pain by inhibiting microglial activation in the spinal cord dorsal horn and VPL region of the thalamus.
Collapse
Affiliation(s)
- Jee Youn Lee
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Hae Young Choi
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Chan Sol Park
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Mi Kyung Pyo
- International Ginseng and Herb Research Institute, Geumsan, Republic of Korea
| | - Tae Young Yune
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, Republic of Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Go Woon Kim
- Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Sung Hyun Chung
- Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Ferrini F, Lorenzo LE, Godin AG, Quang ML, De Koninck Y. Enhancing KCC2 function counteracts morphine-induced hyperalgesia. Sci Rep 2017. [PMID: 28634406 PMCID: PMC5478677 DOI: 10.1038/s41598-017-04209-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Morphine-induced hyperalgesia (MIH) is a severe adverse effect accompanying repeated morphine treatment, causing a paradoxical decrease in nociceptive threshold. Previous reports associated MIH with a decreased expression of the Cl− extruder KCC2 in the superficial dorsal horn (SDH) of the spinal cord, weakening spinal GABAA/glycine-mediated postsynaptic inhibition. Here, we tested whether the administration of small molecules enhancing KCC2, CLP257 and its pro-drug CLP290, may counteract MIH. MIH was typically expressed within 6–8 days of morphine treatment. Morphine-treated rats exhibited decreased withdrawal threshold to mechanical stimulation and increased vocalizing behavior to subcutaneous injections. Chloride extrusion was impaired in SDH neurons measured as a depolarizing shift in EGABA under Cl− load. Delivering CLP257 to spinal cord slices obtained from morphine-treated rats was sufficient to restore Cl− extrusion capacity in SDH neurons. In vivo co-treatment with morphine and oral CLP290 prevented membrane KCC2 downregulation in SDH neurons. Concurrently, co-treatment with CLP290 significantly mitigated MIH and acute administration of CLP257 in established MIH restored normal nociceptive behavior. Our data indicate that enhancing KCC2 activity is a viable therapeutic approach for counteracting MIH. Chloride extrusion enhancers may represent an effective co-adjuvant therapy to improve morphine analgesia by preventing and reversing MIH.
Collapse
Affiliation(s)
- Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Turin, Italy.,CERVO Brain Research Centre, Institut universitaire en santé mentale de Québec, Québec, Canada
| | - Louis-Etienne Lorenzo
- CERVO Brain Research Centre, Institut universitaire en santé mentale de Québec, Québec, Canada
| | - Antoine G Godin
- CERVO Brain Research Centre, Institut universitaire en santé mentale de Québec, Québec, Canada
| | - Miorie Le Quang
- CERVO Brain Research Centre, Institut universitaire en santé mentale de Québec, Québec, Canada
| | - Yves De Koninck
- CERVO Brain Research Centre, Institut universitaire en santé mentale de Québec, Québec, Canada. .,Department of Psychiatry and Neuroscience, Université Laval, Québec, Canada.
| |
Collapse
|
25
|
Microglial Inhibition Influences XCL1/XCR1 Expression and Causes Analgesic Effects in a Mouse Model of Diabetic Neuropathy. Anesthesiology 2017; 125:573-89. [PMID: 27387353 DOI: 10.1097/aln.0000000000001219] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Recent studies indicated the involvement of some chemokines in the development of diabetic neuropathy; however, participation of the chemokine-C-motif ligand (XCL) subfamily remains unknown. The goal of this study was to examine how microglial inhibition by minocycline hydrochloride (MC) influences chemokine-C-motif ligand 1 (XCL1)-chemokine-C-motif receptor 1 (XCR1)/G protein-coupled receptor 5 expression and the development of allodynia/hyperalgesia in streptozotocin-induced diabetic neuropathy. METHODS The studies were performed on streptozotocin (200 mg/kg, intraperitoneally)-induced mouse diabetic neuropathic pain model and primary glial cell cultures. The MC (30 mg/kg, intraperitoneally) was injected two times daily until day 21. XCL1 and its neutralizing antibody were injected intrathecally, and behavior was evaluated with von Frey and cold plate tests. Quantitative analysis of protein expression of glial markers, XCL1, and/or XCR1 was performed by Western blot and visualized by immunofluorescence. RESULTS MC treatment diminished allodynia (0.9 ± 0.1 g; n = 7 vs. 3.8 ± 0.7 g; n = 7) and hyperalgesia (6.5 ± 0.6 s; n = 7 vs. 16.5 ± 1 s; n = 7) in the streptozotocin-induced diabetes. Repeated MC administration prevented microglial activation and inhibited the up-regulation of the XCL1/XCR1 levels. XCL1 administration (10 to 500 ng/5 μl; n = 9) in naive mice enhanced nociceptive transmission, and injections of neutralizing XCL1 (4 to 8 μg/5 μl; n = 10) antibody into the mice with diabetic neuropathic pain diminished allodynia/hyperalgesia. Microglia activation evoked in primary microglial cell cultures resulted in enhanced XCL1 release and XCR1 expression. Additionally, double immunofluorescence indicated the widespread coexpression of XCR1-expressing cells with spinal neurons. CONCLUSIONS In diabetic neuropathy, declining levels of XCL1 evoked by microglia inhibition result in the cause of analgesia. The putative mechanism corroborating this finding can be related to lower spinal expression of XCR1 together with the lack of stimulation of these XCR1 receptors, which are localized on neurons.
Collapse
|
26
|
Amorim D, Puga S, Bragança R, Braga A, Pertovaara A, Almeida A, Pinto-Ribeiro F. Minocycline reduces mechanical allodynia and depressive-like behaviour in type-1 diabetes mellitus in the rat. Behav Brain Res 2017; 327:1-10. [DOI: 10.1016/j.bbr.2017.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/24/2017] [Accepted: 03/02/2017] [Indexed: 12/29/2022]
|
27
|
Kannampalli P, Babygirija R, Zhang J, Poe MM, Li G, Cook JM, Shaker R, Banerjee B, Sengupta JN. Neonatal bladder inflammation induces long-term visceral pain and altered responses of spinal neurons in adult rats. Neuroscience 2017; 346:349-364. [PMID: 28126369 DOI: 10.1016/j.neuroscience.2017.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 12/31/2022]
Abstract
Painful events early in life have been shown to increase the incidence of interstitial cystitis/painful bladder syndrome in adulthood. However, the intrinsic mechanism is not well studied. We previously reported that neonatal bladder inflammation causes chronic visceral hypersensitivity along with molecular disruption of spinal GABAergic system in rats. The present study investigates whether these molecular changes affect the integrative function and responses of bladder-sensitive primary afferent and spinal neurons. Neonatal bladder inflammation was induced by intravesicular injection of zymosan during postnatal (P) days 14-16. In adulthood (P60), the viscero-motor response (VMR) to visceral stimuli was significantly inhibited by intrathecal (i.t) HZ166 (GABAAα-2 agonist) only in neonatally saline-treated, but not in neonatally zymosan-treated rats. HZ166 significantly inhibited the responses of bladder-responsive lumbosacral (LS) spinal neurons to urinary bladder distension (UBD) and slow infusion (SI) in neonatally saline-treated rats. Similar results were also observed in naïve adult rats where HZ166 produced significant inhibition of bladder-responsive spinal neurons. However, HZ166 did not inhibit responses of UBD-responsive spinal neurons from neonatally zymosan-treated rats. The drug did not attenuate the responses of UBD-sensitive pelvic nerve afferent (PNA) fibers to UBD and SI in either group of rats tested. Immunohistochemical studies showed a significantly lower level of GABAAα-2 receptor expression in the LS spinal cord of neonatally zymosan-treated rats compared to saline-treated rats. These findings indicate that neonatal bladder inflammation leads to functional and molecular alteration of spinal GABAAα-2 receptor subtypes, which may result in chronic visceral hyperalgesia in adulthood.
Collapse
Affiliation(s)
- Pradeep Kannampalli
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Reji Babygirija
- Department of Pediatric Gastroenterology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jiang Zhang
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael M Poe
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Guanguan Li
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Reza Shaker
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Banani Banerjee
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jyoti N Sengupta
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pediatric Gastroenterology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
28
|
Eyileten C, Kaplon-Cieslicka A, Mirowska-Guzel D, Malek L, Postula M. Antidiabetic Effect of Brain-Derived Neurotrophic Factor and Its Association with Inflammation in Type 2 Diabetes Mellitus. J Diabetes Res 2017; 2017:2823671. [PMID: 29062839 PMCID: PMC5618763 DOI: 10.1155/2017/2823671] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/12/2017] [Accepted: 08/22/2017] [Indexed: 01/07/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin, which plays an important role in the central nervous system, and systemic or peripheral inflammatory conditions, such as acute coronary syndrome and type 2 diabetes mellitus (T2DM). BDNF is also expressed in several nonneuronal tissues, and platelets are the major source of peripheral BDNF. Here, we reviewed the potential role of BDNF in platelet reactivity in T2DM and its association with selected inflammatory and platelet activation mediators. Besides that, we focused on adipocytokines such as leptin, resistin, and adiponectin which are considered to take part in inflammation and both lipid and glucose metabolism in diabetic patients as previous studies showed the relation between adipocytokines and BDNF. We also reviewed the evidences of the antidiabetic effect of BDNF and the association with circulating inflammatory cytokines in T2DM.
Collapse
Affiliation(s)
- Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | | | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | - Lukasz Malek
- Faculty of Rehabilitation, University of Physical Education, Warsaw, Poland
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| |
Collapse
|
29
|
Newton VL, Guck JD, Cotter MA, Cameron NE, Gardiner NJ. Neutrophils Infiltrate the Spinal Cord Parenchyma of Rats with Experimental Diabetic Neuropathy. J Diabetes Res 2017; 2017:4729284. [PMID: 28293643 PMCID: PMC5331287 DOI: 10.1155/2017/4729284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/15/2017] [Indexed: 01/07/2023] Open
Abstract
Spinal glial cell activation and cytokine secretion have been implicated in the etiology of neuropathic pain in a number of experimental models, including diabetic neuropathy. In this study, streptozotocin- (STZ-) induced diabetic rats were either untreated or treated with gabapentin (50 mg/kg/day by gavage for 2 weeks, from 6 weeks after STZ). At 8 weeks after STZ, hypersensitivity was confirmed in the untreated diabetic rats as a reduced response threshold to touch, whilst mechanical thresholds in gabapentin-treated diabetic rats were no different from controls. Diabetes-associated thermal hypersensitivity was also ameliorated by gabapentin. We performed a cytokine profiling array in lumbar spinal cord samples from control and diabetic rats. This revealed an increase in L-selectin, an adhesion molecule important for neutrophil transmigration, in the spinal cord of diabetic rats but not diabetic rats treated with gabapentin. Furthermore, we found an increase in the number of neutrophils present in the parenchyma of the spinal cord, which was again ameliorated in gabapentin-treated diabetic rats. Therefore, we suggest that dysregulated spinal L-selectin and neutrophil infiltration into the spinal cord could contribute to the pathogenesis of painful diabetic neuropathy.
Collapse
Affiliation(s)
- Victoria L. Newton
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Jonathan D. Guck
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Mary A. Cotter
- School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Natalie J. Gardiner
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- *Natalie J. Gardiner:
| |
Collapse
|
30
|
Pain modulation from the brain during diabetic neuropathy: Uncovering the role of the rostroventromedial medulla. Neurobiol Dis 2016; 96:346-356. [PMID: 27717882 DOI: 10.1016/j.nbd.2016.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/06/2016] [Accepted: 10/01/2016] [Indexed: 01/17/2023] Open
Abstract
Diabetic neuropathy has a profound impact in the quality of life of patients who frequently complain of pain. The mechanisms underlying diabetic neuropathic pain (DNP) are no longer ascribed only to damage of peripheral nerves. The effects of diabetes at the central nervous system are currently considered causes of DPN. Management of DNP may be achieved by antidepressants that act on serotonin (5-HT) uptake, namely specific serotonin reuptake inhibitors. The rostroventromedial medulla (RVM) is a key pain control center involved in descending pain modulation at the spinal cord through local release of 5-HT and plays a peculiar role in the balance of bidirectional control (i.e. inhibitory and facilitatory) from the brain to the spinal cord. This review discusses recently uncovered neurobiological mechanisms that mediate nociceptive modulation from the RVM during diabetes installation. In early phases of the disease, facilitation of pain modulation from the RVM prevails through a triplet of mechanisms which include increase in serotonin expression at the RVM and consequent rise of serotonin levels at the spinal cord and upregulation of local facilitatory 5HT3 receptors, enhancement of spontaneous activity of facilitatory RVM neurons and up-regulation of the expression of transient receptor potential vanilloid type 1 (TRPV1) receptor. With the progression of diabetes the alterations in the RVM increase dramatically, with oxidative stress and neuronal death associated to microglia-mediated inflammation. In a manner similar to other central areas, like the thalamus, the RVM is likely to be a "pain generator/amplifier" during diabetes, accounting to increase DNP. Early interventions in DNP prevention using strategies that simultaneously tackle the exacerbation of 5-HT3 spinal receptors and of microglial RVM activity, namely those that increase the levels of anti-inflammatory cytokines, should be considered in the future of DNP treatment.
Collapse
|
31
|
Greig M, Tesfaye S, Selvarajah D, Wilkinson ID. Insights into the pathogenesis and treatment of painful diabetic neuropathy. HANDBOOK OF CLINICAL NEUROLOGY 2016; 126:559-78. [PMID: 25410244 DOI: 10.1016/b978-0-444-53480-4.00037-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Painful diabetic distal symmetrical polyneuropathy (painful DPN) is a puzzle with two important missing pieces: Firstly we still do not understand why only some patients with neuropathy experience painful symptoms; Secondly we still do not have a complete understanding of how nociception generated in the peripheral nervous system is processed by the central nervous system (CNS). Available treatments offer only symptom relief and there is currently no effective treatment based on arresting or reversing the progression of disease. Therefore the management of painful DPN remains less than optimal because the complex pathophysiology of nociception and pain perception in health and disease is incompletely understood. Studies of the peripheral nervous system are investigating the molecular processes involved in signal transduction that have the potential to be interrupted or modified to ease pain. Magnetic resonance imaging techniques are helping to elucidate central pain processing pathways and describe the translation of nociception to pain. Combining the knowledge from these two streams of enquiry we will soon be able to predict accurately who will develop painful DPN, how we can halt or reverse the condition, or who will respond to symptomatic treatments. Future developments in the treatment of painful DPN will be underpinned by decoding the peripheral and central mechanisms of pain. Research is focusing on these areas of enquiry in the hope that answers will lead to effective treatments to alleviate pain and reverse pathology for those suffering from painful DPN.
Collapse
Affiliation(s)
- Marni Greig
- Diabetes Department, Royal Hallamshire Hospital, Sheffield, UK
| | - Solomon Tesfaye
- Diabetes Department, Royal Hallamshire Hospital, Sheffield, UK.
| | | | - Iain D Wilkinson
- Academic Radiology, Department of Cardiovascular Science, Royal Hallamshire Hospital, Sheffield, UK
| |
Collapse
|
32
|
Abstract
Painful neuropathy, like the other complications of diabetes, is a growing healthcare concern. Unfortunately, current treatments are of variable efficacy and do not target underlying pathogenic mechanisms, in part because these mechanisms are not well defined. Rat and mouse models of type 1 diabetes are frequently used to study diabetic neuropathy, with rats in particular being consistently reported to show allodynia and hyperalgesia. Models of type 2 diabetes are being used with increasing frequency, but the current literature on the progression of indices of neuropathic pain is variable and relatively few therapeutics have yet been developed in these models. While evidence for spontaneous pain in rodent models is sparse, measures of evoked mechanical, thermal and chemical pain can provide insight into the pathogenesis of the condition. The stocking and glove distribution of pain tantalizingly suggests that the generator site of neuropathic pain is found within the peripheral nervous system. However, emerging evidence demonstrates that amplification in the spinal cord, via spinal disinhibition and neuroinflammation, and also in the brain, via enhanced thalamic activity or decreased cortical inhibition, likely contribute to the pathogenesis of painful diabetic neuropathy. Several potential therapeutic strategies have emerged from preclinical studies, including prophylactic treatments that intervene against underlying mechanisms of disease, treatments that prevent gains of nociceptive function, treatments that suppress enhancements of nociceptive function, and treatments that impede normal nociceptive mechanisms. Ongoing challenges include unraveling the complexity of underlying pathogenic mechanisms, addressing the potential disconnect between the perceived location of pain and the actual pain generator and amplifier sites, and finding ways to identify which mechanisms operate in specific patients to allow rational and individualized choice of targeted therapies.
Collapse
Affiliation(s)
- Corinne A Lee-Kubli
- Graduate School of Biomedical Sciences, Sanford-Burnham Institute for Molecular Medicine, La Jolla, CA, USA; Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
33
|
Sisignano M, Parnham MJ, Geisslinger G. Drug Repurposing for the Development of Novel Analgesics. Trends Pharmacol Sci 2015; 37:172-183. [PMID: 26706620 DOI: 10.1016/j.tips.2015.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 01/12/2023]
Abstract
Drug development consumes huge amounts of time and money and the search for novel analgesics, which are urgently required, is particularly difficult, having resulted in many setbacks in the past. Drug repurposing - the identification of new uses for existing drugs - is an alternative approach, which bypasses most of the time- and cost-consuming components of drug development. Recent, unexpected findings suggest a role for several existing drugs, such as minocycline, ceftriaxone, sivelestat, and pioglitazone, as novel analgesics in chronic and neuropathic pain states. Here, we discuss these findings as well as their proposed antihyperalgesic mechanisms and outline the merits of pathway-based repurposing screens, in combination with bioinformatics and novel cellular reprogramming techniques, for the identification of novel analgesics.
Collapse
Affiliation(s)
- Marco Sisignano
- Institute of Clinical Pharmacology, pharmazentrum Frankfurt/ZAFES, University Hospital of Goethe-University, 60590 Frankfurt am Main, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group Translational Medicine and Pharmacology (TMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, pharmazentrum Frankfurt/ZAFES, University Hospital of Goethe-University, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group Translational Medicine and Pharmacology (TMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
34
|
Li L, Yu T, Yu L, Li H, Liu Y, Wang D. Exogenous brain-derived neurotrophic factor relieves pain symptoms of diabetic rats by reducing excitability of dorsal root ganglion neurons. Int J Neurosci 2015; 126:749-58. [PMID: 26441011 DOI: 10.3109/00207454.2015.1057725] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes lacking of effective treatments. Enhanced excitability of dorsal root ganglion (DRG) neuron plays a crucial role in the progression of diabetic neuropathic hyperalgesia. Brain-derived neurotrophic factor (BDNF) is known as a neuromodulator of nociception, but whether and how BDNF modulates the excitability of DRG neurons in the development of DPN remain to be clarified. This study investigated the role of exogenous BDNF and its high-affinity tropomyosin receptor kinase B (TrkB) in rats with streptozotocin-induced diabetic neuropathic pain. The results showed that continued intrathecal administration of BDNF to diabetic rats dramatically alleviated mechanical and thermal hyperalgesia, as well as inhibited hyperexcitability of DRG neurons. These effects were blocked by pretreatment with TrkB Fc (a synthetic fusion protein consisting of the extracellular ligand-binding domain of the TrkB receptor). The expression of BDNF and TrkB was upregulated in the DRG of diabetic rats. Intrathecal administration of BDNF did not affect this upregulation. These data provide novel information that exogenous BDNF relieved pain symptoms of diabetic rats by reducing hyperexcitability of DRG neurons and might be the potential treatment of painful diabetic neuropathy.
Collapse
Affiliation(s)
- Lei Li
- a 1 Department of Diagnosis , Jining Medical University , Jining , China
| | - Ting Yu
- b 2 Department of Anatomy , Shandong University School of Medicine , Jinan , China
| | - Liling Yu
- c 3 Department of Laboratory Medicine , Affiliated Hospital of Jining Medical University , Jining , China
| | - Haijun Li
- d 4 Department of Emergency , Affiliated Hospital of Jining Medical University , Jining , China
| | - Yongjuan Liu
- e 5 Department of Infectious Diseases , Shandong University Qilu Hospital , Jinan , China
| | - Dongqin Wang
- a 1 Department of Diagnosis , Jining Medical University , Jining , China
| |
Collapse
|
35
|
Silva M, Martins D, Tavares I, Morgado C. Inhibition of spinal 5-HT3R reverted diabetes-induced mechanical hypersensitivity in a GABAAR-mediated neurotransmission-dependent manner. Neuroscience 2015. [PMID: 26210577 DOI: 10.1016/j.neuroscience.2015.07.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Spinal 5-HT3 receptor (5-HT3R) has been implicated in chronic pain development. The extent to which 5-HT3R contributes to spinal sensitization and diabetic neuropathic pain (DNP) remains elusive and the mechanisms subserving the effects of 5-HT3R activation on spinal pain processing during chronic pain are still unclear. In this study, we evaluated the contribution of spinal 5-HT3R to pain facilitation and spinal sensitization during DNP, exploiting the role of GABAAR-mediated neurotransmission and glial activation in the effects elicited by intrathecal administration of a 5-HT3R antagonist. Mechanical nociception was evaluated by paw pressure test in streptozotocin (STZ)-diabetic and control rats after intrathecal (i.t.) administration of a 5-HT3R antagonist (Y25130). The spinal activation of extracellular signal-regulated kinases (ERKs) pathway and the expression of 5-HT3R, glial fibrillary acidic protein (GFAP; marker of astroglia activation) and ionized calcium binding adaptor molecule 1 (IBA-1; marker of microglia activation) were evaluated at the peak maximum effect of Y25130. The involvement of GABAAR-mediated neurotransmission in the behavioral pain effect of Y25130, was assessed in STZ-diabetic animals receiving i.t. administrations of muscimol (GABAAR agonist). Intrathecal administration of Y25130 reverted mechanical hyperalgesia and decreased the activation of ERKs in STZ-diabetic rats, while no effects were observed in control animals. The spinal activation of GABAAR by i.t. administration of muscimol abolished Y25130-driven antinociception. The expression of IBA-1, GFAP and 5-HT3R was unaltered by treatment. These findings point to a GABA-mediated pronociceptive role of spinal 5-HT3R during DNP.
Collapse
Affiliation(s)
- M Silva
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Portugal; i3S - Instituto de Inovação e investigação em Saúde, Universidade do Porto, Portugal
| | - D Martins
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Portugal; i3S - Instituto de Inovação e investigação em Saúde, Universidade do Porto, Portugal
| | - I Tavares
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Portugal; i3S - Instituto de Inovação e investigação em Saúde, Universidade do Porto, Portugal.
| | - C Morgado
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Portugal; i3S - Instituto de Inovação e investigação em Saúde, Universidade do Porto, Portugal
| |
Collapse
|
36
|
Tsuda M. Microglia in the spinal cord and neuropathic pain. J Diabetes Investig 2015; 7:17-26. [PMID: 26813032 PMCID: PMC4718109 DOI: 10.1111/jdi.12379] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/13/2015] [Accepted: 05/16/2015] [Indexed: 12/13/2022] Open
Abstract
In contrast to physiological pain, pathological pain is not dependent on the presence of tissue‐damaging stimuli. One type of pathological pain – neuropathic pain – is often a consequence of nerve injury or of diseases such as diabetes. Neuropathic pain can be agonizing, can persist over long periods and is often resistant to known painkillers. A growing body of evidence shows that many pathological processes within the central nervous system are mediated by complex interactions between neurons and glial cells. In the case of painful peripheral neuropathy, spinal microglia react and undergo a series of changes that directly influence the establishment of neuropathic pain states. After nerve damage, purinergic P2X4 receptors (non‐selective cation channels activated by extracellular adenosine triphosphate) are upregulated in spinal microglia in a manner that depends on the transcription factors interferon regulatory factor 8 and 5, both of which are expressed in microglia after peripheral nerve injury. P2X4 receptor expression on the cell surface of microglia is also regulated at the post‐translational level by signaling from CC chemokine receptor chemotactic cytokine receptor 2. Furthermore, spinal microglia in response to extracellular stimuli results in signal transduction through intracellular signaling cascades, such as mitogen‐activated protein kinases, p38 and extracellular signal‐regulated protein kinase. Importantly, inhibiting the function or expression of these microglial molecules suppresses the aberrant excitability of dorsal horn neurons and neuropathic pain. These findings show that spinal microglia are a central player in mechanisms for neuropathic pain, and might be a potential target for treating the chronic pain state.
Collapse
Affiliation(s)
- Makoto Tsuda
- Department of Life Innovation Graduate School of Pharmaceutical Sciences Kyushu University Fukuoka Japan
| |
Collapse
|
37
|
Schomberg D, Miranpuri G, Duellman T, Crowell A, Vemuganti R, Resnick D. Spinal cord injury induced neuropathic pain: Molecular targets and therapeutic approaches. Metab Brain Dis 2015; 30:645-58. [PMID: 25588751 DOI: 10.1007/s11011-014-9642-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
Abstract
Neuropathic pain, especially that resulting from spinal cord injury, is a tremendous clinical challenge. A myriad of biological changes have been implicated in producing these pain states including cellular interactions, extracellular proteins, ion channel expression, and epigenetic influences. Physiological consequences of these changes are varied and include functional deficits and pain responses. Developing therapies that effectively address the cause of these symptoms require a deeper knowledge of alterations in the molecular pathways. Matrix metalloproteinases and tissue inhibitors of metalloproteinases are two promising therapeutic targets. Matrix metalloproteinases interact with and influence many of the studied pain pathways. Gene expression of ion channels and inflammatory mediators clearly contributes to neuropathic pain. Localized and time dependent targeting of these proteins could alleviate and even prevent neuropathic pain from developing. Current therapeutic options for neuropathic pain are limited primarily to analgesics targeting the opioid pathway. Therapies directed at molecular targets are highly desirable and in early stages of development. These include transplantation of exogenously engineered cell populations and targeted gene manipulation. This review describes specific molecular targets amenable to therapeutic intervention using currently available delivery systems.
Collapse
Affiliation(s)
- Dominic Schomberg
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI, 53792, USA
| | | | | | | | | | | |
Collapse
|
38
|
Involvement of medullary GABAergic system in extraterritorial neuropathic pain mechanisms associated with inferior alveolar nerve transection. Exp Neurol 2015; 267:42-52. [DOI: 10.1016/j.expneurol.2015.02.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 12/03/2014] [Accepted: 02/22/2015] [Indexed: 01/15/2023]
|
39
|
Barragan A, Weidner JM, Jin Z, Korpi ER, Birnir B. GABAergic signalling in the immune system. Acta Physiol (Oxf) 2015; 213:819-27. [PMID: 25677654 DOI: 10.1111/apha.12467] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 12/12/2014] [Accepted: 02/06/2015] [Indexed: 01/12/2023]
Abstract
The GABAergic system is the main inhibitory neurotransmitter system in the central nervous system (CNS) of vertebrates. Signalling of the transmitter γ-aminobutyric acid (GABA) via GABA type A receptor channels or G-protein-coupled type B receptors is implicated in multiple CNS functions. Recent findings have implicated the GABAergic system in immune cell functions, inflammatory conditions and diseases in peripheral tissues. Interestingly, the specific effects may vary between immune cell types, with stage of activation and be altered by infectious agents. GABA/GABA-A receptor-mediated immunomodulatory functions have been unveiled in immune cells, being present in T lymphocytes and regulating the migration of Toxoplasma-infected dendritic cells. The GABAergic system may also play a role in the regulation of brain resident immune cells, the microglial cells. Activation of microglia appears to regulate the function of GABAergic neurotransmission in neighbouring neurones through changes induced by secretion of brain-derived neurotrophic factor. The neurotransmitter-driven immunomodulation is a new but rapidly growing field of science. Herein, we review the present knowledge of the GABA signalling in immune cells of the periphery and the CNS and raise questions for future research.
Collapse
Affiliation(s)
- A. Barragan
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm Sweden
- Department of Medicine; Center for Infectious Medicine; Karolinska Institutet; Stockholm Sweden
| | - J. M. Weidner
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm Sweden
- Department of Medicine; Center for Infectious Medicine; Karolinska Institutet; Stockholm Sweden
| | - Z. Jin
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| | - E. R. Korpi
- Department of Pharmacology; Faculty of Medicine; University of Helsinki; Helsinki Finland
- Department of Pharmacology; Yong Loo Lin School of Medicine; National University Health System; Neurobiology and Ageing Programme; Life Sciences Institute; National University of Singapore, and SINAPSE, Singapore Institute for Neurotechnology; Singapore
| | - B. Birnir
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| |
Collapse
|
40
|
Tan AM. Dendritic spine dysgenesis in neuropathic pain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:385-408. [PMID: 25744680 DOI: 10.1016/bs.pmbts.2014.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The failure of neuropathic pain to abate even years after trauma suggests that adverse changes to synaptic function must exist in a chronic pathological state in nociceptive pathways. The chronicity of neuropathic pain therefore underscores the importance of understanding the contribution of dendritic spines--micron-sized postsynaptic structures that represent modifiable sites of synaptic contact. Historically, dendritic spines have been of great interest to the learning and memory field. More recent evidence points to the exciting implication that abnormal dendritic spine structure following disease or injury may represent a "molecular memory" for maintaining chronic pain. Dendritic spine dysgenesis in dorsal horn neurons contributes to nociceptive hyperexcitability associated with neuropathic pain, as demonstrated in multiple pain models, i.e., spinal cord injury, peripheral nerve injury, diabetic neuropathy, and thermal burn injury. Because of the relationship between dendritic spine structure and neuronal function, a thorough investigation of dendritic spine behavior in the spinal cord is a unique opportunity to better understand the mechanisms of sensory dysfunction after injury or disease. At a conceptual level, a spinal memory mechanism that engages dendritic spine remodeling would also contribute to a broad range of intractable neurological conditions. Molecules involved in regulating dendritic spine plasticity may offer novel targets for the development of effective and durable therapies for neurological disease.
Collapse
Affiliation(s)
- Andrew Michael Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA; Hopkins School, New Haven, Connecticut, USA.
| |
Collapse
|
41
|
Neuropathic pain: role of inflammation, immune response, and ion channel activity in central injury mechanisms. Ann Neurosci 2014; 19:125-32. [PMID: 25205985 PMCID: PMC4117080 DOI: 10.5214/ans.0972.7531.190309] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 06/30/2012] [Accepted: 07/27/2012] [Indexed: 01/11/2023] Open
Abstract
Neuropathic pain (NP) is a significant and disabling clinical problem with very few therapeutic treatment options available. A major priority is to identify the molecular mechanisms responsible for NP. Although many seemingly relevant pathways have been identified, more research is needed before effective clinical interventions can be produced. Initial insults to the nervous system, such as spinal cord injury (SCI), are often compounded by secondary mechanisms such as inflammation, the immune response, and the changing expression of receptors and ion channels. The consequences of these secondary effects myriad and compound those elicited by the primary injury. Chronic NP syndromes following SCI can greatly complicate the clinical treatment of the primary injury and result in high comorbidity. In this review, we will describe physiological outcomes associated with SCI along with some of the mechanisms known to contribute to chronic NP development.
Collapse
|
42
|
Ali S, Driscoll HE, Newton VL, Gardiner NJ. Matrix metalloproteinase-2 is downregulated in sciatic nerve by streptozotocin induced diabetes and/or treatment with minocycline: Implications for nerve regeneration. Exp Neurol 2014; 261:654-65. [PMID: 25158309 PMCID: PMC4199570 DOI: 10.1016/j.expneurol.2014.08.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/07/2014] [Accepted: 08/11/2014] [Indexed: 12/13/2022]
Abstract
Minocycline is an inhibitor of matrix metalloproteinases (MMPs) and has been shown to have analgesic effects. Whilst increased expression of MMPs is associated with neuropathic pain, MMPs also play crucial roles in Wallerian degeneration and nerve regeneration. In this study we examined the expression of MMP-2, MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1/-2 in the sciatic nerve of control and streptozotocin-induced diabetic rats treated with either vehicle or minocycline by quantitative PCR and gelatin zymography. We assessed the effects of minocycline on nerve conduction velocity and intraepidermal nerve fibre (IENF) deficits in diabetic neuropathy and investigated the effects of minocycline or MMP-2 on neurite outgrowth from primary cultures of dissociated adult rat sensory neurons. We show that MMP-2 is expressed constitutively in the sciatic nerve in vivo and treatment with minocycline or diabetes leads to downregulation of MMP-2 expression and activity. The functional consequence of this is IENF deficits in minocycline-treated nondiabetic rats and an unsupportive microenvironment for regeneration in diabetes. Minocycline reduces levels of MMP-2 mRNA and nerve growth factor-induced neurite outgrowth. Furthermore, in vivo minocycline treatment reduces preconditioning-induced in vitro neurite outgrowth following a sciatic nerve crush. In contrast, the addition of active MMP-2 facilitates neurite outgrowth in the absence of neurotrophic support and pre-treatment of diabetic sciatic nerve substrata with active MMP-2 promotes a permissive environment for neurite outgrowth. In conclusion we suggest that MMP-2 downregulation may contribute to the regenerative deficits in diabetes. Minocycline treatment also downregulates MMP-2 activity and is associated with inhibitory effects on sensory neurons. Thus, caution should be exhibited with its use as the balance between beneficial and detrimental outcomes may be critical in assessing the benefits of using minocycline to treat diabetic neuropathy. MMP-2, but not MMP-9, is constitutively expressed in the adult rat sciatic nerve. Levels of cleaved active MMP-2 are reduced in sciatic nerve of diabetic rats. Active MMP-2 potentiates neurite outgrowth from sensory neurons. Minocycline reduces levels of MMP-2 mRNA and impairs NGF-induced neurite growth. Minocycline did not prevent nerve dysfunction in experimental diabetic neuropathy.
Collapse
Affiliation(s)
- Sumia Ali
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Heather E Driscoll
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Victoria L Newton
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Natalie J Gardiner
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
43
|
Wang D, Couture R, Hong Y. Activated microglia in the spinal cord underlies diabetic neuropathic pain. Eur J Pharmacol 2014; 728:59-66. [PMID: 24508519 DOI: 10.1016/j.ejphar.2014.01.057] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 01/23/2014] [Accepted: 01/29/2014] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus is an increasingly common chronic medical condition. Approximately 30% of diabetic patients develop neuropathic pain, manifested as spontaneous pain, hyperalgesia and allodynia. Hyperglycemia induces metabolic changes in peripheral tissues and enhances oxidative stress in nerve fibers. The damages and subsequent reactive inflammation affect structural properties of Schwann cells and axons leading to the release of neuropoietic mediators, such as pro-inflammatory cytokines and pro-nociceptive mediators. Therefore, diabetic neuropathic pain (DNP) shares some histological features and underlying mechanisms with traumatic neuropathy. DNP displays, however, other distinct features; for instance, sensory input to the spinal cord decreases rather than increasing in diabetic patients. Consequently, development of central sensitization in DNP involves mechanisms that are distinct from traumatic neuropathic pain. In DNP, the contribution of spinal cord microglia activation to central sensitization and pain processes is emerging as a new concept. Besides inflammation in the periphery, hyperglycemia and the resulting production of reactive oxygen species affect the local microenvironment in the spinal cord. All these alterations could trigger resting and sessile microglia to the activated phenotype. In turn, microglia synthesize and release pro-inflammatory cytokines and neuroactive molecules capable of inducing hyperactivity of spinal nociceptive neurons. Hence, it is imperative to elucidate glial mechanisms underlying DNP for the development of effective therapeutic agents. The present review highlights the recent developments regarding the contribution of spinal microglia as compelling target for the treatment of DNP.
Collapse
Affiliation(s)
- Dongmei Wang
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, New campus, Fuzhou, Fujian 350108, People׳s Republic of China
| | - Réjean Couture
- Department of Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succursale Downtown, Montréal, Québec, Canada H3C 3J7
| | - Yanguo Hong
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, New campus, Fuzhou, Fujian 350108, People׳s Republic of China.
| |
Collapse
|
44
|
Kinoshita J, Takahashi Y, Watabe AM, Utsunomiya K, Kato F. Impaired noradrenaline homeostasis in rats with painful diabetic neuropathy as a target of duloxetine analgesia. Mol Pain 2013; 9:59. [PMID: 24279796 PMCID: PMC4222693 DOI: 10.1186/1744-8069-9-59] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/22/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Painful diabetic neuropathy (PDN) is a serious complication of diabetes mellitus that affects a large number of patients in many countries. The molecular mechanisms underlying the exaggerated nociception in PDN have not been established. Recently, duloxetine (DLX), a serotonin and noradrenaline re-uptake inhibitor, has been recommended as one of the first-line treatments of PDN in the United States Food and Drug Administration, the European Medicines Agency and the Japanese Guideline for the Pharmacologic Management of Neuropathic pain. Because selective serotonin re-uptake inhibitors show limited analgesic effects in PDN, we examined whether the potent analgesic effect of DLX contributes toward improving the pathologically aberrant noradrenaline homeostasis in diabetic models. RESULTS In streptozotocin (STZ) (50 mg/kg, i.v.)-induced diabetic rats that exhibited robust mechanical allodynia and thermal hyperalgesia, DLX (10 mg/kg, i.p.) significantly and markedly increased the nociceptive threshold. The analgesic effect of DLX was nullified by the prior administration of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) (50 mg/kg, i.p.), which drastically eliminated dopamine-beta-hydroxylase- and norepinephrine transporter-immunopositive fibers in the lumbar spinal dorsal horn and significantly reduced the noradrenaline content in the lumbar spinal cord. The treatment with DSP-4 alone markedly lowered the nociceptive threshold in vehicle-treated non-diabetic rats; however, this pro-nociceptive effect was occluded in STZ-treated diabetic rats. Furthermore, STZ-treated rats exhibited a higher amount of dopamine-beta-hydroxylase- and norepinephrine transporter-immunopositive fibers in the dorsal horn and noradrenaline content in the spinal cord compared to vehicle-treated rats. CONCLUSIONS Impaired noradrenaline-mediated regulation of the spinal nociceptive network might underlie exaggerated nociception in PDN. DLX might exert its analgesic effect by selective enhancement of noradrenergic signals, thus counteracting this situation.
Collapse
Affiliation(s)
- Jun Kinoshita
- Department of Neuroscience, Jikei University School of Medicine, Minato, Tokyo 105-8461, Japan.
| | | | | | | | | |
Collapse
|
45
|
Lee-Kubli CAG, Calcutt NA. Altered rate-dependent depression of the spinal H-reflex as an indicator of spinal disinhibition in models of neuropathic pain. Pain 2013; 155:250-260. [PMID: 24103402 DOI: 10.1016/j.pain.2013.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 10/01/2013] [Accepted: 10/01/2013] [Indexed: 12/17/2022]
Abstract
The unpredictable efficacy of current therapies for neuropathic pain may reflect diverse etiological mechanisms operating between, and within, diseases. As descriptions of pain rarely establish specific mechanisms, a tool that can identify underlying causes of neuropathic pain would be useful in developing patient-specific treatments. Rate-dependent depression (RDD), a measure of the change in amplitude of the Hoffman reflex over consecutive stimulations, is attenuated in diabetic rats that also exhibit impaired spinal γ-aminobutyric acid (GABA)A receptor function, reduced spinal potassium chloride co-transporter (KCC2) expression, and indices of painful neuropathy. To investigate whether loss of RDD is a reliable indicator of the contribution of spinal GABAergic dysfunction to neuropathic pain, we assessed RDD, tactile allodynia, and formalin-evoked hyperalgesia in 3 models: rats treated acutely with brain-derived neurotrophic factor (BDNF), diabetic rats treated with the BDNF-sequestering molecule tyrosine receptor kinase B/Fc (TrkB/Fc), and rats with paclitaxel-induced neuropathy. Delivery of BDNF to the spinal cord of normal rats produced RDD deficits and features of painful neuropathy associated with disrupted GABAA receptor-mediated inhibitory function and reduced dorsal spinal KCC2 expression. Treating diabetic rats with TrkB/Fc restored RDD and alleviated indices of painful neuropathy. In paclitaxel-treated rats, RDD was not impaired and behavioral indices of neuropathic pain were not associated with spinal GABAergic dysfunction or reduced dorsal spinal KCC2 expression. Our data reveal BDNF as part of the mechanism underlying spinal cord disinhibition caused by altered GABAA receptor function in diabetic rats and suggest that RDD deficits may be a useful indicator of neuropathic pain states associated with spinal disinhibition, thereby revealing specific therapeutic targets.
Collapse
Affiliation(s)
- Corinne A G Lee-Kubli
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA Graduate School of Biomedical Sciences, Sanford-Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | | |
Collapse
|
46
|
Zychowska M, Rojewska E, Kreiner G, Nalepa I, Przewlocka B, Mika J. Minocycline influences the anti-inflammatory interleukins and enhances the effectiveness of morphine under mice diabetic neuropathy. J Neuroimmunol 2013; 262:35-45. [PMID: 23870534 DOI: 10.1016/j.jneuroim.2013.06.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 06/10/2013] [Accepted: 06/16/2013] [Indexed: 01/27/2023]
Abstract
A single streptozotocin (STZ) injection in mice can induce significant neuropathic pain along with an increase in plasma glucose levels and a decrease in body weight. Seven days after the administration of STZ, an upregulation of C1q-positive cells was observed. Additionally, interleukins (IL-1beta, IL-3, IL-4, IL-6, IL-9, IL12p70, IL-17); proteins of the tumor necrosis factor (TNF) family, e.g., IFNgamma and sTNF RII, were upregulated. Chronic administration of minocycline increases antinociceptive factors (IL-1alpha, IL-2, IL-10, sTNFRII) in diabetic mice. Minocycline also reduces the occurrence of neuropathic pain and significantly potentiates the antiallodynic and antihyperalgesic effects of morphine.
Collapse
Affiliation(s)
- Magdalena Zychowska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | | | | | | | | | | |
Collapse
|
47
|
De Pinto M, Cahana A. Medical management of acute pain in patients with chronic pain. Expert Rev Neurother 2013; 12:1325-38. [PMID: 23234394 DOI: 10.1586/ern.12.123] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The number of patients with chronic pain has increased over the years, as well as the number of patients who manage chronic pain with opioids. As prescribed opioid use has increased, so has its abuse and misuse. It has also been estimated that the number of people using opioids illicitly has doubled worldwide over the last 20 years. Management of chronic pain with opioids is associated with pathophysiological phenomena such as tolerance, dependence and hyperalgesia. They can become a problem when chronic pain patients present for a surgical procedure. Furthermore, patients who are on opioids on a regular basis require higher amounts during the perioperative period. The perioperative management of the chronic pain patient is difficult and complex. Developing an appropriate plan that can fulfill patients' and surgical team's needs requires skills and experience. The aim of this review is to describe the options available for the optimal perioperative management of acute pain in patients with a history of chronic pain.
Collapse
Affiliation(s)
- Mario De Pinto
- Department of Anesthesiology and Pain Medicine, University of Washington, Pain Relief Service, Harborview Medical Center, 325 9th Avenue, Seattle, WA 98104, Box 359724, USA.
| | | |
Collapse
|
48
|
Sengupta JN, Pochiraju S, Kannampalli P, Bruckert M, Addya S, Yadav P, Miranda A, Shaker R, Banerjee B. MicroRNA-mediated GABA Aα-1 receptor subunit down-regulation in adult spinal cord following neonatal cystitis-induced chronic visceral pain in rats. Pain 2013; 154:59-70. [PMID: 23273104 DOI: 10.1016/j.pain.2012.09.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 07/17/2012] [Accepted: 09/05/2012] [Indexed: 12/22/2022]
Abstract
The nociceptive transmission under pathological chronic pain conditions involves transcriptional and/or translational alteration in spinal neurotransmitters, receptor expressions, and modification of neuronal functions. Studies indicate the involvement of microRNA (miRNA) - mediated transcriptional deregulation in the pathophysiology of acute and chronic pain. In the present study, we tested the hypothesis that long-term cross-organ colonic hypersensitivity in neonatal zymosan-induced cystitis is due to miRNA-mediated posttranscriptional suppression of the developing spinal GABAergic system. Cystitis was produced by intravesicular injection of zymosan (1% in saline) into the bladder during postnatal (P) days P14 through P16 and spinal dorsal horns (L6-S1) were collected either on P60 (unchallenged groups) or on P30 after a zymosan re-challenge on P29 (re-challenged groups). miRNA arrays and real-time reverse transcription-polymerase chain reaction (RT-PCR) revealed significant, but differential, up-regulation of mature miR-181a in the L6-S1 spinal dorsal horns from zymosan-treated rats compared with saline-treated controls in both the unchallenged and re-challenged groups. The target gene analysis demonstrated multiple complementary binding sites in miR-181a for GABA(A) receptor subunit GABA(Aα-1) gene with a miRSVR score of -1.83. An increase in miR-181a concomitantly resulted in significant down-regulation of GABA(Aα-1) receptor subunit gene and protein expression in adult spinal cords from rats with neonatal cystitis. Intrathecal administration of the GABA(A) receptor agonist muscimol failed to attenuate the viscero-motor response (VMR) to colon distension in rats with neonatal cystitis, whereas in adult zymosan-treated rats the drug produced significant decrease in VMR. These results support an integral role for miRNA-mediated transcriptional deregulation of the GABAergic system in neonatal cystitis-induced chronic pelvic pain.
Collapse
Affiliation(s)
- Jyoti N Sengupta
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, WI 53226, USA Division of Pediatric Gastroenterology, Hepatology and Nutrition, Medical College of Wisconsin, Milwaukee, WI, USA Cancer Genomics Facility, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Egeland NG, Moen A, Pedersen LM, Brisby H, Gjerstad J. Spinal nociceptive hyperexcitability induced by experimental disc herniation is associated with enhanced local expression of Csf1 and FasL. Pain 2013; 154:1743-1748. [PMID: 23711477 DOI: 10.1016/j.pain.2013.05.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 01/01/2023]
Abstract
Sciatica after disc herniation may be associated with compression of spinal nerves, but also inflammatory substances released from the nucleus pulposus (NP) leaking into the spinal canal. Here, in an animal model mimicking clinical intervertebral disc herniation, we investigate the effect of NP on neuronal activity. In anaesthetized Lewis rats, extracellular single-unit recordings of spinal dorsal horn neurons were performed, and the C-fibre responses were examined. Moreover, quantitative polymerase chain reaction was used to explore the gene expression of proinflammatory cytokines in the NP tissue exposed to the spinal dorsal nerve roots L3-L5. In accordance with earlier studies, we showed a significant increase in the C-fibre response and an upregulation of the gene expression of interleukin 1β and tumour necrosis factor 180 minutes after application of NP onto the nerve roots. Moreover, based on a polymerase chain reaction array of 84 common inflammatory cytokines at the same time point, we demonstrated a highly significant upregulation of colony-stimulating factor 1 also termed macrophage colony-stimulating factor and Fas ligand. The pronounced upregulation of Csf1 and Fas ligand 180 minutes after application of NP onto the nerve roots suggests that macrophage activation and apoptosis may be involved in pain hypersensitivity and other sensory abnormalities after disc herniation.
Collapse
Affiliation(s)
- Nina Gran Egeland
- National Institute of Occupational Health, Oslo, Norway Department of Molecular Biosciences, University of Oslo, Oslo, Norway Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
50
|
Silva M, Amorim D, Almeida A, Tavares I, Pinto-Ribeiro F, Morgado C. Pronociceptive changes in the activity of rostroventromedial medulla (RVM) pain modulatory cells in the streptozotocin-diabetic rat. Brain Res Bull 2013; 96:39-44. [PMID: 23644033 DOI: 10.1016/j.brainresbull.2013.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/06/2013] [Accepted: 04/19/2013] [Indexed: 12/12/2022]
Abstract
Neuropathic pain is one of the most frequent complications of diabetes. The increased neuronal activity of primary afferents and spinal cord neurons in streptozotocin (STZ)-diabetic rats increases the recruitment of the nociceptive ascending pathways, which may affect the activity of pain control circuits in the brain. This study aimed to characterize the electrophysiological responses of neurons of the rostroventromedial medulla (RVM), a key brainstem area involved in descending modulation of nociceptive neurotransmission at the spinal cord, in STZ-diabetic rats. Spontaneous and noxious-evoked activity of ON-like cells (pain facilitatory cells) and OFF-like cells (pain inhibitory cells) in the RVM were analyzed by single cell extracellular electrophysiological recordings in STZ-diabetic rats with behavioral signs of diabetic neuropathic pain 4 weeks after diabetes induction and in age-matched non-diabetic controls (CTRL). The electrophysiological analysis revealed an increase in the spontaneous activity of RVM pronociceptive ON-like cells in STZ-diabetic rats when compared to CTRL. On the contrary, the number of active antinociceptive OFF-like cells was significantly lower in the STZ-diabetic rats and their spontaneous activity was decreased when compared with CTRL. Overall, the changes in the activity of RVM pain modulatory cells in STZ-diabetic rats point to enhancement of descending pain facilitation. Based on similar results obtained at the RVM in traumatic neuropathic pain models, the changes in the electrophysiological responses of RVM in STZ-diabetic rats may account for exacerbated pain-like behaviors in diabetic neuropathy.
Collapse
Affiliation(s)
- M Silva
- Department of Experimental Biology, Faculty of Medicine of Porto and IBMC, University of Porto, Rua Dr Plácido Costa, 4200-450 Porto, Portugal.
| | | | | | | | | | | |
Collapse
|