1
|
Zhang W, Shao Q, Zhong H, Yang Y, Li R, Liu Y, Hu Y, Wang P, Chi B. Glycopeptide microneedles triggering the ECM process to promote fibroblast viability for anti-aging treatments. BIOMATERIALS ADVANCES 2025; 168:214124. [PMID: 39616682 DOI: 10.1016/j.bioadv.2024.214124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/14/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
Skin anti-aging remains challenging due to the cumulative detrimental effects within the intricate microenvironment. Here, we present glycopeptide hydrogel (γ-PGA/HA) microneedle patches composed of poly (γ-glutamic acid) and hyaluronic acid as a potential solution. These microneedles aim to effectively penetrate the skin barrier while remodeling extracellular matrix to regulate the skin microenvironment. To align with clinical requirements, the functional properties of microenvironment regulation materials are characterized by testing the water absorption and retention, redox balance, and inflammatory microenvironment regulation ability. The γ-PGA/HA exhibited remarkable moisturizing, biocompatibility, fibroblast viability promotion, ROS consumption, and TNF-α inhibiting effects. Histological analysis provides empirical evidence supporting the functional efficacy of the microneedle, thus validating the anti-skin-aging potential of a model that mimics natural aging processes. Therefore, γ-PGA/HA holds promise for regulating the skin microenvironment, offering potential applications in skin aging treatments.
Collapse
Affiliation(s)
- Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Qing Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Hua Zhong
- Kuitun Hospital of Ili prefecture, Kuitun, Xinjiang, Uyger Autonomous Region 833200, PR China
| | - Yingying Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Ruixue Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yaxian Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
2
|
Jin X, Zheng Q, Nguyen TTM, Park SJ, Yi GS, Yang SJ, Yi TH. Lithospermum erythrorhizon and Forsythia suspensa Prevent Collagen Degradation and Maintain Skin Hydration by Regulating MMPs and HAS2/HYAL1 Signaling. Molecules 2025; 30:1083. [PMID: 40076307 PMCID: PMC11901933 DOI: 10.3390/molecules30051083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
The growing demand for aesthetic enhancement has driven the development of anti-aging cosmetics, with natural compound-based formulations emerging as a new trend to enhance efficacy. This study aims to develop a 30% ethanol extract of a 1:1 mixture of Lithospermum erythrorhizon and Forsythia suspensa (LF) as a potential material for combating UVB-induced skin aging. The bioactive components of LF extract were identified via HPLC. Antioxidant efficacy (DPPH, ABTS, and SOD) and the inhibitory effects on ROS production in cells were evaluated using flow cytometry. MMPs' expressions were analyzed via RT-PCR, while TGF-β/Smad, ERK/AP-1, and HAS2/HYAL1 pathways were examined via ELISA and Western blot. Research findings indicate that LF effectively scavenges reactive oxygen species and enhances the activation of TGF-β signaling, promoting the synthesis of PIP (Procollagen Type I C-Peptide). Collagen degradation was mitigated through the inhibition of the AP-1 pathway, which regulates the expression of MMPs, and by suppressing the expression of TIMP. Additionally, modulation of the HAS2/HYAL1 signaling axis ensures a balanced regulation of hyaluronic acid (HA) synthesis and degradation, thereby contributing to the maintenance of collagen integrity and skin hydration. In conclusion, LF has exhibited significant protective effects against demonstrated anti-aging properties, highlighting its potential as a novel therapeutic agent in cosmetic formulations targeting aging.
Collapse
Affiliation(s)
- Xiangji Jin
- Department of Dermatology, School of Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dong-daemun, Seoul 02447, Republic of Korea;
| | - Qiwen Zheng
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (S.-J.P.); (S.-J.Y.)
| | - Trang Thi Minh Nguyen
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (S.-J.P.); (S.-J.Y.)
| | - Se-Jig Park
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (S.-J.P.); (S.-J.Y.)
| | - Gyeong-Seon Yi
- Department of Convergent Biotechnology and Advanced Materials Engineering, Graduate School, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Su-Jin Yang
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (S.-J.P.); (S.-J.Y.)
| | - Tae-Hoo Yi
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (S.-J.P.); (S.-J.Y.)
| |
Collapse
|
3
|
Yang Y, Wu Y, Xiang L, Picardo M, Zhang C. Deciphering the role of skin aging in pigmentary disorders. Free Radic Biol Med 2025; 227:638-655. [PMID: 39674424 DOI: 10.1016/j.freeradbiomed.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Skin aging is a complex biological process involving intrinsic and extrinsic factors. Skin aging contains alterations at the tissue, cellular, and molecular levels. Currently, there is increasing evidence that skin aging occurs not only in time-dependent chronological aging but also plays a role in skin pigmentary disorders. This review provides an in-depth analysis of the impact of skin aging on different types of pigmentary disorders, including both hyperpigmentation disorders such as melasma and senile lentigo and hypopigmentation disorders such as vitiligo, idiopathic guttate hypomelanosis and graying of hair. In addition, we explore the mechanisms of skin aging on pigmentation regulation and suggest several potential therapeutic approaches for skin aging and aging-related pigmentary disorders.
Collapse
Affiliation(s)
- Yiwen Yang
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China
| | - Yue Wu
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China
| | - Mauro Picardo
- Istituto Dermopatico Immacolata, IDI-RCCS, Rome, Italy.
| | - Chengfeng Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China.
| |
Collapse
|
4
|
Kusumawati I, Kurniawan KO, Rohmania R, Pratama BA, Pratama YA, Rullyansyah S, Warsito MF, Widyowati R, Hestianah EP, Matsunami K. Comparative Study of Liposomal and Ethosomal Formulations of Curcuma heyneana Rhizome Extract in a Transdermal Delivery System. Pharm Nanotechnol 2025; 13:303-312. [PMID: 37937575 DOI: 10.2174/0122117385252518231018161755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 11/09/2023]
Abstract
AIMS This study aimed to develop an anti-aging nanoformulation with Curcuma heyneana extract as bioactive substance. BACKGROUND Curcuma heyneana Valeton & Zipj extract has been proven in previous research to have antioxidant, anti-ageing, anti-inflammatory, and wound healing properties, which makes it a potential bioactive material for anti-ageing and sunscreen cosmetic products. Phytoantioxidants need to penetrate into deeper skin layers to ensure effectivity. Thus, a transdermal delivery system is needed to deliver the extract to a deeper skin layer. OBJECTIVES The objective of the study was to compare the permeability and anti-ageing activity of liposomal and ethosomal formulations of C. heynena rhizome ethanolic extract. METHODS In this study, C. heyneana extract was loaded into a phospholipid vesicular system in the form of liposome and ethosome formulations using the ethanolic injection method. The anti-ageing activity was assessed by analyzing the epidermal thickness, number of sunburn cells, distance between collagen fibers, and number of fibroblasts. While the histologic specimen scoring was carried out for the in vivo penetration study. RESULTS The ethosomal formulation had been found to have better penetration ability since it was able to reach the lower dermis area compared to the liposomes, which only reached the upper dermis. The ethosomal formulation of C. heyneana extract exhibited a better anti-ageing activity based on the parameters of epidermal thickness, sunburn cell count, fibroblast count, and the distance between collagen fibres in rat skin histology. CONCLUSION Ethosomes have been found to be a more proficient carrier system for transdermal delivery of C. heyneana extract compared to liposomes. Meanwhile, their penetration correlated with the effectivity of the formulation, suggesting that the vesicular system enhanced the penetration ability of the extract.
Collapse
Affiliation(s)
- Idha Kusumawati
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Surabaya, 60155, Indonesia
- Natural Product Drug Discovery and Development Research Group, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Surabaya, 60155, Indonesia
| | - Kresma Oky Kurniawan
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Surabaya, 60155, Indonesia
| | - Rohmania Rohmania
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Surabaya, 60155, Indonesia
| | - Bernasdito Ade Pratama
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Surabaya, 60155, Indonesia
| | - Yusuf Alif Pratama
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Surabaya, 60155, Indonesia
| | - Subhan Rullyansyah
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Surabaya, 60155, Indonesia
| | - Mega Ferdina Warsito
- Research Centre for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta-Bogor Km 46, Cibinong, 16911, Bogor, Indonesia
| | - Retno Widyowati
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Surabaya, 60155, Indonesia
| | - Eka Pramyrtha Hestianah
- Veterinary Anatomy Department, Faculty of Veterinary, Universitas Airlangga, Jl. Mulyorejo, Surabaya, 60155, Indonesia
| | - Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| |
Collapse
|
5
|
Aoyagi D, Yamada-Kato T, Okunishi I. Effects of Blue Rose Extract Powder Intake on Skin Characteristics in Middle-Aged and Older Japanese Women-Randomized, Double-Blind, and Placebo-Controlled Trial. J Nutr Sci Vitaminol (Tokyo) 2025; 71:163-172. [PMID: 40301058 DOI: 10.3177/jnsv.71.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
In this study, we aimed at evaluating the effect of improving skin conditions on petal-derived blue rose extract (BRE) powder intake in middle-aged and older women in Japan. We conducted a randomized, double-blind, and placebo-controlled parallel study in 48 healthy Japanese women aged 40-50 y who were aware of dry skin. We divided the participants equally into two groups (i.e., 24-24 in the test and control groups, respectively). The participants consumed 100 mg either the placebo or BRE powder daily for 4 wk. We performed skin measurements before-and-after 4 wk of continuous intake. Upon 4 wk after continuous intake, the BRE group displayed improved skin quality compared with the control group. The primary outcome was stratum corneum water content, which significantly improved in the BRE group. The secondary outcomes, melanin index, stains, wrinkles, and rough texture showed improvements between the groups as well. Visual perception, roughness of texture, and wrinkles were improved between the groups. Finally, transparency yielded better scores within the groups. This study presents the results of the first functional test targeting BRE, unraveling various effect of improving skin condition and highlighting the potential of taking BRE in skin care.
Collapse
|
6
|
Vergatti A, Abate V, D'Elia L, De Filippo G, Piccinocchi G, Gennari L, Merlotti D, Galletti F, Strazzullo P, Rendina D. Smoking habits and osteoporosis in community-dwelling men subjected to dual-X-ray absorptiometry: a cross-sectional study. J Endocrinol Invest 2024; 47:3129-3135. [PMID: 38807014 PMCID: PMC11549200 DOI: 10.1007/s40618-024-02402-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Active and Environmental Tobacco Smoke (ETS) are a global cause of death. Osteoporosis (Op) is the most common metabolic bone disorder worldwide, impacting on mortality and disability, with high health and welfare costs. Active smoking is a known risk factor for Op, but there is few information regarding Op and ETS in men. PURPOSE The study aim is to evaluate the association between smoking habits and Op in community-dwelling men that have been subjected to Dual-X-ray Absorptiometry and completed a questionnaire about their own and cohabiter's smoking habits. METHODS We performed a cross-sectional study based on administrative data. This study is part of the SIMON protocol. The binary logistic regression analysis was used to estimate the role of ETS on the risk of Op, adjusting for age, body mass index (BMI), type 2 diabetes mellitus (T2DM) and eGFR. RESULTS Four hundred sixteen men were selected and, based on questionnaire replies, 167 were classified as current smokers (CS), 93 as passive smokers (PS) and 156 as never smokers (NS). NS showed a lower prevalence of past fragility fracture, radiological features of osteoporosis and hypovitaminosis D compared to PS and CS (p < 0.05). NS showed a lower prevalence of Op compared to PS and CS, also after correction for age, BMI, T2DM and eGFR (p < 0.05). CONCLUSION The study results demonstrate that PS and CS have a higher risk of Op, fragility fractures and vitamin D deficiency compared to NS.
Collapse
Affiliation(s)
- A Vergatti
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - V Abate
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - L D'Elia
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy.
| | - G De Filippo
- Assistance Publique-Hôpitaux de Paris, Hôpital Robert-Debré, Service d'Endocrinologie et Diabétologie, Paris, France
| | | | - L Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - D Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - F Galletti
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
- Tobacco Treatment Center, Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - P Strazzullo
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - D Rendina
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| |
Collapse
|
7
|
Chaikul P, Lourith N, Kanlayavattanakul M. Decelerated skin aging effect of rubber (Hevea brasiliensis) seed oil in cell culture assays. Sci Rep 2024; 14:29509. [PMID: 39604582 PMCID: PMC11603368 DOI: 10.1038/s41598-024-81035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
Rubber seeds, the abundant by-products of rubber tree (Hevea brasiliensis), have been studied for sustainable utilization. Nevertheless, there is no information available regarding activity against skin aging. The study aimed to prepare rubber seed oil (RSO) and evaluate fatty acid compositions by gas chromatography - mass spectrometry (GC/MS), linamarin contamination by ultra-high performance liquid chromatography - tandem mass spectrometry (UPLC-MS/MS). Additionally, cytotoxicity assay and anti-skin aging activities, including cell proliferating stimulation, cellular antioxidant, collagen stimulation, and matrix metalloproteinase-2 (MMP-2) inhibition, were analyzed in immortalized human skin keratinocytes (HaCaT cells) and human dermal fibroblasts. RSO was pale-yellow oily liquid with an extraction yield of 35.79 ± 0.52%. Principal fatty acids were comprised of oleic (43.37 ± 0.76%), linoleic (38.49 ± 0.81%), palmitic (11.47 ± 0.12%), and stearic (6.66 ± 0.05%) acids. Linamarin contamination was not detected in 100 µg/mL RSO, demonstrating the absence of a cyanogenic glucoside. Non-cytotoxic concentrations of RSO in both cells were in the range of 0.0001-0.1 mg/mL. Activities of RSO against skin aging included the cell proliferating stimulation, the antioxidant activity, the collagen stimulation, and the MMP-2 suppression at mRNA expression level and enzymatic activity. Study results have suggested that rubber seeds can probably be employed as a promising ingredient in the preparations designed for deceleration of skin aging.
Collapse
Affiliation(s)
- Puxvadee Chaikul
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand.
- Phytocosmetics and Cosmeceuticals Research Group, Mae Fah Luang University, Chiang Rai, 57100, Thailand.
| | - Nattaya Lourith
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Phytocosmetics and Cosmeceuticals Research Group, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Mayuree Kanlayavattanakul
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Phytocosmetics and Cosmeceuticals Research Group, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| |
Collapse
|
8
|
Wang K, Hu X, Xie XL, Huang M, Wang D, Yu FL. Phytocosmetic potential of Blumea balsamifera oil in mitigating UV-induced photoaging: Evidence from cellular and mouse models. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118535. [PMID: 38972529 DOI: 10.1016/j.jep.2024.118535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Blumea balsamifera (L.) DC. (BB), the source of Blumea balsamifera oil (BBO), is an aromatic medicinal plant, renowned for its pharmacological properties and its traditional use in Southeast Asian countries such as China, Thailand, Vietnam, Malaysia, and the Philippines for centuries. Traditionally, BB has been used as a raw herbal medicine for treating various skin conditions like eczema, dermatitis, athlete's foot, and wound healing for skin injuries. AIM OF THE STUDY This research aimed to explore the inhibitory effects of BBO on skin aging using two models: in vitro analysis with human dermal fibroblasts (HDF) under UVB-induced stress, and in vivo studies on UVA-induced dorsal skin aging in mice. The study sought to uncover the mechanisms behind BBO's anti-aging effects, specifically, its impact on cellular and tissue responses to UV-induced skin aging. MATERIALS AND METHODS We applied doses of 10-20 μL/mL of BBO to HDF cells that had been exposed to UVB radiation to simulate skin aging. We measured cell viability, and levels of reactive oxygen species (ROS), SA-β-gal, pro-inflammatory cytokines, and matrix metalloproteinases (MMPs). In addition, we investigated the involvement of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) signaling pathways in mediating the anti-aging effects of BBO. Histopathological and biochemical analyses were conducted in a mouse model to examine the effects of BBO on UV-induced photoaging. RESULTS UV exposure accelerated aging, and caused cellular damage and inflammatory responses through ROS-mediated pathways. In HDF cells, BBO treatment countered the UVB-induced senescence, and the recovery of cell viability was correlated to notable reductions in SA-β-gal, ROS, pro-inflammatory cytokines, and MMPs. Mechanistically, the anti-aging effect of BBO was associated with the downregulation of the JNK/NF-κB signaling pathways. In the in vivo mouse model, BBO exhibited protective capabilities against UV-induced photoaging, which were manifested by the enhanced antioxidant enzyme activities and tissue remodeling. CONCLUSIONS BBO effectively protects fibroblasts from UV-induced photoaging through the JNK/NF-κB pathway. Recovery from photoaging involves an increase in dermal fibroblasts, alleviation of inflammation, accelerated synthesis of antioxidant enzymes, and slowed degradation of ECM proteins. Overall, BBO enhances the skin's defensive capabilities against oxidative stress, underscoring its potential as a therapeutic agent for oxidative stress-related skin aging.
Collapse
Affiliation(s)
- Kai Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, P.R. China/Hainan Provincial Engineering Research Center for Blumea Balsamifera, Haikou, Hainan, 571101, P.R. China
| | - Xuan Hu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, P.R. China/Hainan Provincial Engineering Research Center for Blumea Balsamifera, Haikou, Hainan, 571101, P.R. China
| | - Xiao-Li Xie
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, P.R. China/Hainan Provincial Engineering Research Center for Blumea Balsamifera, Haikou, Hainan, 571101, P.R. China
| | - Mei Huang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, P.R. China/Hainan Provincial Engineering Research Center for Blumea Balsamifera, Haikou, Hainan, 571101, P.R. China
| | - Dan Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, P.R. China/Hainan Provincial Engineering Research Center for Blumea Balsamifera, Haikou, Hainan, 571101, P.R. China
| | - Fu-Lai Yu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, P.R. China/Hainan Provincial Engineering Research Center for Blumea Balsamifera, Haikou, Hainan, 571101, P.R. China.
| |
Collapse
|
9
|
Kim H, Shin CY, Park CH, Lee DH, Lee SH, Chung JH. The pivotal role of osteopontin in UV-induced skin inflammation in a mouse model. Open Biol 2024; 14:230397. [PMID: 39533922 PMCID: PMC11558241 DOI: 10.1098/rsob.230397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 11/16/2024] Open
Abstract
Osteopontin (OPN) is a pro-inflammatory protein that influences bone remodelling, wound healing, angiogenesis, allergic inflammation, and skin diseases such as psoriasis, contact dermatitis and skin cancer. However, the role of OPN in the skin remains unclear. Therefore, this study aimed to investigate the role of OPN in the skin, particularly in the context of ultraviolet (UV) irradiation-induced inflammation. OPN expression and its effects on inflammatory modulators were assessed in human skin, in a mouse model and in vitro, using a UV source emitting both UVB and UVA radiation, which collectively contribute to UV-induced skin inflammation. OPN expression increased in human and mouse skin after UV irradiation. Compared with wild-type mice, UV irradiation-induced skin phenotypes, such as erythema and skin thickening, were alleviated in OPN-/- mice. In addition, the number of immune cells recruited to the skin after UV irradiation and the expression of inflammatory cytokines and matrix metalloproteinases (MMPs) were observed to be decreased in the skin of OPN-/- mice compared with that of wild-type mice. By contrast, the degree of skin inflammation was higher in the hOPN KI mice than in wild-type mice. Treatment with recombinant OPN increased the expression of MMP-1 and inflammatory cytokines in human dermal fibroblasts and epidermal keratinocytes in vitro. Our results suggest that OPN may play a regulatory role in UV-induced skin inflammation.
Collapse
Affiliation(s)
- Haesoo Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Chang-Yup Shin
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Chi-Hyun Park
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Si-Hyung Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Institute on Aging, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Guo X, He L, Sun J, Ye H, Yin C, Zhang W, Han H, Jin W. Exploring the Potential of Anthocyanins for Repairing Photoaged Skin: A Comprehensive Review. Foods 2024; 13:3506. [PMID: 39517290 PMCID: PMC11545459 DOI: 10.3390/foods13213506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Long-term exposure to ultraviolet (UV) rays can result in skin photoaging, which is primarily characterized by dryness, roughness, pigmentation, and a loss of elasticity. However, the clinical drugs commonly employed to treat photoaged skin often induce adverse effects on the skin. Anthocyanins (ACNs) are water-soluble pigments occurring abundantly in various flowers, fruits, vegetables, and grains and exhibiting a range of biological activities. Studies have demonstrated that ACNs contribute to the repair of photoaged skin due to their diverse biological characteristics and minimal side effects. Evidence suggests that the stability of ACNs can be enhanced through encapsulation or combination with other substances to improve their bioavailability and permeability, ultimately augmenting their efficacy in repairing photoaged skin. A growing body of research utilizing cell lines, animal models, and clinical studies has produced compelling data demonstrating that ACNs mitigate skin photoaging by reducing oxidative stress, alleviating the inflammatory response, improving collagen synthesis, alleviating DNA damage, and inhibiting pigmentation. This review introduces sources of ACNs while systematically summarizing their application forms as well as mechanisms for repairing photoaged skin. Additionally, it explores the potential role of ACNs in developing functional foods. These findings may provide valuable insight into using ACNs as promising candidates for developing functional products aimed at repairing photoaged skin.
Collapse
Affiliation(s)
- Xinmiao Guo
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Hanzhong 723001, China
| | - Linlin He
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Hanzhong 723001, China
| | - Jiaqiang Sun
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Hanzhong 723001, China
| | - Hua Ye
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Hanzhong 723001, China
| | - Cuiyuan Yin
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Hanzhong 723001, China
| | - Weiping Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
| | - Hao Han
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
- Shaanxi Black Organic Food Engineering Center, Shaanxi University of Technology, Hanzhong 723001, China
| | - Wengang Jin
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.G.); (J.S.); (H.Y.); (C.Y.); (W.Z.); (H.H.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
| |
Collapse
|
11
|
Noh SG, Kim HW, Kim S, Chung KW, Jung YS, Yoon JH, Yu BP, Lee J, Chung HY. Senoinflammation as the underlying mechanism of aging and its modulation by calorie restriction. Ageing Res Rev 2024; 101:102503. [PMID: 39284417 DOI: 10.1016/j.arr.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Senoinflammation is characterized by an unresolved low-grade inflammatory process that affects multiple organs and systemic functions. This review begins with a brief overview of the fundamental concepts and frameworks of senoinflammation. It is widely involved in the aging of various organs and ultimately leads to progressive systemic degeneration. Senoinflammation underlying age-related inflammation, is causally related to metabolic dysregulation and the formation of senescence-associated secretory phenotype (SASP) during aging and age-related diseases. This review discusses the biochemical evidence and molecular biology data supporting the concept of senoinflammation and its regulatory processes, highlighting the anti-aging and anti-inflammatory effects of calorie restriction (CR). Experimental data from CR studies demonstrated effective suppression of various pro-inflammatory cytokines and chemokines, lipid accumulation, and SASP during aging. In conclusion, senoinflammation represents the basic mechanism that creates a microenvironment conducive to aging and age-related diseases. Furthermore, it serves as a potential therapeutic target for mitigating aging and age-related diseases.
Collapse
Affiliation(s)
- Sang Gyun Noh
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Hyun Woo Kim
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Seungwoo Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Ki Wung Chung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Young-Suk Jung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jeong-Hyun Yoon
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jaewon Lee
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| | - Hae Young Chung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
12
|
Ashooriha M, Khoshneviszadeh M, Kabiri M, Dehshahri A, Hassani B, Ansari M, Emami S. Multi-functional tyrosinase inhibitors derived from kojic acid and hydroquinone-like diphenols for treatment of hyperpigmentation: Synthesis and in vitro biological evaluation. Arch Pharm (Weinheim) 2024:e2400380. [PMID: 39466938 DOI: 10.1002/ardp.202400380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
A series of multi-functional tyrosinase inhibitors derived from kojic acid (KA) and hydroquinone-like diphenols were designed and synthesized using click chemistry. The in vitro enzymatic assay revealed that all compounds containing a free enolic structure showed excellent activity against tyrosinase (IC50 = 0.14-3.7 µM), being significantly more potent than KA. The most active compounds were catechol (6c) and α-naphthol (6i) analogs with 138- and 96-fold higher potency than KA. On the other hand, all free phenolic compounds (6a-c and 6g-j) derived from aromatic diols showed outstanding free radical scavenging activities superior to KA. Certainly, the α-naphthol derivative 6i with IC50 = 10.1 µM was the most active anti-oxidant, being as potent as quercetin. The SAR analysis indicated that the enolic head of the conjugate molecules mainly contributes to the anti-tyrosinase activity, and the free phenolic part of the molecules can offer anti-oxidant potency. The anti-melanogenic assay of the most promising derivative, 6i, against melanoma (B16F10) cells demonstrated that the prototype compound 6i can significantly reduce the melanin content, more effectively than KA. By using a conjugation strategy, we have improved the tyrosinase inhibitory and radical scavenging activity in the multi-functional agents such as 6i over the parent compound KA, being potentially useful in the treatment of hyperpigmentation and other skin disorders.
Collapse
Affiliation(s)
- Morteza Ashooriha
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Kabiri
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, New York City, New York, USA
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Hassani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Ansari
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
13
|
Ahn SY, Kim KA, Lee S, Kim KH. Potential skin anti-aging effects of main phenolic compounds, tremulacin and tremuloidin from Salix chaenomeloides leaves on TNF-α-stimulated human dermal fibroblasts. Chem Biol Interact 2024; 402:111192. [PMID: 39127184 DOI: 10.1016/j.cbi.2024.111192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
The genus Salix spp. has long been recognized as a healing herb for its use in treating fever, inflammation, and pain relief, as well as a food source for its nutritional value. In this study, we aimed to explore the potential bioactive natural products in the leaves of Salix chaenomeloides, commonly known as Korean pussy willow, for their protective effects against skin damage, including aging. Utilizing LC/MS-guided chemical analysis of the ethanol extract of S. chaenomeloides leaves, with a focus on major compounds, we successfully isolated two main phenolic compounds, tremulacin (1) and tremuloidin (2). Subsequently, we investigated the protective effects of tremulacin (1) and tremuloidin (2) in TNF-α-stimulated human dermal fibroblasts (HDFs). The results revealed that both tremulacin (1) and tremuloidin (2) inhibited TNF-α-stimulation-induced ROS, suppressed matrix metalloproteinase-1 (MMP-1) expression, and enhanced collagen secretion. This implies that both tremulacin (1) and tremuloidin (2) hold promise as preventive agents against photoaging-induced skin aging. Furthermore, we assessed the activity of mitogen-activated protein kinases (MAPKs), cyclooxygenase-2 (COX-2), and heme oxygenase 1 (HO-1) to elucidate the mechanism of photoaging inhibition by tremuloidin (2), which exhibited superior efficacy. We found that tremuloidin (2) inhibited ERK and p38 phosphorylation and notably suppressed COX-2 expression while significantly upregulating HO-1 expression. These findings suggest potent anti-inflammatory and antioxidant properties of tremuloidin (2), positioning it as a potential candidate for combating photoaging-induced skin aging.
Collapse
Affiliation(s)
- Si-Young Ahn
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Kyung Ah Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam, 13120, Republic of Korea.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
14
|
Lee M, Kim D, Park MR, Kim S, Kim JL, Kim OK, Lee J. Skin protective effect of Indian gooseberry and barley sprout complex on skin dryness, wrinkles, and melanogenesis by cell models. Nutr Res Pract 2024; 18:587-601. [PMID: 39398880 PMCID: PMC11464281 DOI: 10.4162/nrp.2024.18.5.587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Accepted: 05/28/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND/OBJECTIVES UV radiation is a major factor contributing to DNA damage in skin cells, including stem cells and mesenchymal stem cells, leading to the depletion of these crucial cells. This study examined whether a mixture of Indian gooseberry and barley sprout (IB) could inhibit UVB irradiation and 3-isobutyl-1-methylxanthine (IBMX)-induced photoaging and oxidative stress in the skin using HaCaT, Hs27, and B16F10 cells. MATERIALS/METHODS The moisturizing-related factors, the collagen synthesis-related c-Jun N-terminal kinase (JNK)/c-Fos/c-Jun/matrix metalloproteinases (MMPs) pathway, and the melanogenesis-related cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/cAMP-responsive binding protein (CREB)/melanocyte inducing transcription factor (MITF)/tyrosinase-related protein (TRP)/tyrosinase activation pathways were analyzed in vitro by an enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and Western blot analysis. RESULTS The IB complex increased the hyaluronic acid and sphingomyelin levels and the collagenase inhibitory activity, enhanced hydration-related factors, including collagen, hyaluronic acid synthase (HAS), elastin, long chain base subunit 1 (LCB1) (serine palmitoyltransferase; SPT), and delta 4-desaturase sphingolipid 1 (DEGS1), modulated the inflammatory cytokines levels, antioxidant enzyme activities and the NF-κB/MMPs/cyclooxygenase-2 (COX-2) pathway in UVB-irradiated HaCaT cells, and inhibited wrinkle formation by down-regulation of the JNK/c-Fos/c-Jun/MMP pathway and up-regulation of the transforming growth factor-β receptor I (TGFβR1)/small mothers against decapentaplegic homolog (Smad3)/procollagen type І pathway in UVB-irradiated Hs27 cells. Moreover, the IB complex prevented melanin production by down-regulating the PKA/CREB/MITF/TRP-1/TRP-2 pathway in IBMX-induced B16F10 cells. CONCLUSION These findings suggest that the IB complex has the potential to serve as a safeguard, shielding the skin from UVB radiation-induced photo-damage.
Collapse
Affiliation(s)
- Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Korea
- Department of Food Innovation and Health, Kyung Hee University, Yongin 17104, Korea
| | - Dakyung Kim
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Korea
| | | | | | | | - Ok-Kyung Kim
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju 61186, Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Korea
- Department of Food Innovation and Health, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
15
|
Liu K, Zhao C, Zhang K, Yang X, Feng R, Zong Y, He Z, Zhao Y, Du R. Pilose Antler Protein Relieves UVB-Induced HaCaT Cells and Skin Damage. Molecules 2024; 29:4060. [PMID: 39274908 PMCID: PMC11397021 DOI: 10.3390/molecules29174060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Extended exposure to UVB (280-315 nm) radiation results in oxidative damage and inflammation of the skin. Previous research has demonstrated that pilose antler extracts have strong anti-inflammatory properties and possess antioxidant effects. This study aimed to elucidate the mechanism of pilose antler protein in repairing photodamage caused by UVB radiation in HaCaT cells and ICR mice. Pilose antler protein (PAP) was found to increase the expression of type I collagen and hyaluronic acid in HaCaT cells under UVB irradiation while also inhibiting reactive oxygen species (ROS) production and oxidative stress in vitro. In vivo, the topical application of pilose antler protein effectively attenuated UVB-induced skin damage in ICR mice by reducing interleukin-1β (IL-β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) and inhibiting skin inflammation while alleviating UVB-induced oxidative stress. It was shown that pilose antler protein repaired UVB-induced photodamage through the MAPK and TGF-β/Smad pathways.
Collapse
Affiliation(s)
- Kaiyue Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chenxu Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ke Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xiaoyue Yang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ruyi Feng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
16
|
Lee YS, Lee SJ, Jang WJ, Lee EW. Protective Effects of the Postbiotic Levilactobacillus brevis BK3 against H 2O 2-Induced Oxidative Damage in Skin Cells. J Microbiol Biotechnol 2024; 34:1401-1409. [PMID: 38881180 PMCID: PMC11294649 DOI: 10.4014/jmb.2403.03010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/18/2024] [Accepted: 05/04/2024] [Indexed: 06/18/2024]
Abstract
Postbiotics have various functional effects, such as antioxidant, anti-inflammatory, and anti-obesity. Levilactobacillus brevis BK3, the subject of this study, was derived from lactic acid bacteria isolated from Kimchi, a traditional Korean fermented food. The antioxidant activity of BK3 was confirmed through the measurements of 2,2-diphenyl-1-picryl-hydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and total antioxidant capacity (TAC). The wrinkle improvement effect was validated by assessing elastase inhibitory activity and collagenase inhibitory activity. The intracellular activity was confirmed using human keratinocytes (HaCaT) and human fibroblasts (HFF-1). BK3 protects skin cells from oxidative stress induced by H2O2 and reduces intracellular reactive oxygen species (ROS) production. In addition, the expressions of the antioxidant genes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were upregulated. Meanwhile, matrix metalloproteinase-1 (MMP-1) and collagen type I alpha 1 (COL1A1), involved in collagen degradation and synthesis, were significantly regulated. These results suggest the possibility of utilizing BK3 as a functional ingredient with antioxidant and wrinkle-improving effects.
Collapse
Affiliation(s)
- Young-Sun Lee
- Department of Biomedicine and Pharmaceutics, Dong-Eui University, Busan 47340, Republic of Korea
| | - Su-Jeong Lee
- Department of Biomedicine and Pharmaceutics, Dong-Eui University, Busan 47340, Republic of Korea
| | - Won Je Jang
- Department of Biomedicine and Pharmaceutics, Dong-Eui University, Busan 47340, Republic of Korea
- Research Institute for Microbiology, Dong-Eui University, Busan 47340, Republic of Korea
| | - Eun-Woo Lee
- Department of Biomedicine and Pharmaceutics, Dong-Eui University, Busan 47340, Republic of Korea
- Research Institute for Microbiology, Dong-Eui University, Busan 47340, Republic of Korea
| |
Collapse
|
17
|
Kim JO, An G, Choi JH. Protective effect of mixture of Acanthopanax sessiliflorum and Chaenomeles sinensis against ultraviolet B-induced photodamage in human fibroblast and hairless mouse. Food Sci Biotechnol 2024; 33:1715-1725. [PMID: 38623430 PMCID: PMC11016041 DOI: 10.1007/s10068-023-01462-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/08/2023] [Accepted: 10/10/2023] [Indexed: 04/17/2024] Open
Abstract
Skin photoaging, characterized by collagen degradation and upregulation of matrix metalloproteinases (MMPs), is a major concern caused by UVB irradiation. In this study, we investigated the potential of Acanthopanax sessiliflorum extract (ASE) and Chaenomeles sinensis (CSE) extracts to mitigate the effects of UVB-induced photodamage in human fibroblast and hairless mice. Water extracts of AS (ASE) and CS (CSE) were found to inhibit the expression of MMP-1/-3 in vitro. Furthermore, the extract of mixture of AS and CS (ACE) showed more potent inhibitor effect, as compared to ASE and CSE. In UVB-irradiated hairless mice, oral administration of ACE effectively reduced wrinkle formation, skin roughness, and epidermal thickness while promoting the deposition of collagenous fibers. These results indicate that ACE has the potential to protect against skin photoaging by restoring the impaired skin via downregulation of MMP-1/-3 expression and secretion. Our findings highlight the therapeutic potential of ACE in mitigating skin photoaging. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01462-3.
Collapse
Affiliation(s)
- Jin-Ok Kim
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul, 02447 South Korea
| | - Gami An
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul, 02447 South Korea
| | - Jung-Hye Choi
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul, 02447 South Korea
- College of Pharmacy, Kyung Hee University, Seoul, 02447 South Korea
| |
Collapse
|
18
|
Chang L, Fan WW, Yuan HL, Liu X, Wang Q, Ruan GP, Pan XH, Zhu XQ. Role of umbilical cord mesenchymal stromal cells in skin rejuvenation. NPJ Regen Med 2024; 9:20. [PMID: 38729990 PMCID: PMC11087646 DOI: 10.1038/s41536-024-00363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Aging is the main cause of many degenerative diseases. The skin is the largest and the most intuitive organ that reflects the aging of the body. Under the interaction of endogenous and exogenous factors, there are cumulative changes in the structure, function, and appearance of the skin, which are characterized by decreased synthesis of collagen and elastin, increased wrinkles, relaxation, pigmentation, and other aging characteristics. skin aging is inevitable, but it can be delayed. The successful isolation of mesenchymal stromal cells (MSC) in 1991 has greatly promoted the progress of cell therapy in human diseases. The International Society for Cellular Therapy (ISCT) points out that the MSC is a kind of pluripotent progenitor cells that have self-renewal ability (limited) in vitro and the potential for mesenchymal cell differentiation. This review mainly introduces the role of perinatal umbilical cord-derived MSC(UC-MSC) in the field of skin rejuvenation. An in-depth and systematic understanding of the mechanism of UC-MSCs against skin aging is of great significance for the early realization of the clinical transformation of UC-MSCs. This paper summarized the characteristics of skin aging and summarized the mechanism of UC-MSCs in skin rejuvenation reported in recent years. In order to provide a reference for further research of UC-MSCs to delay skin aging.
Collapse
Affiliation(s)
- Le Chang
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Wei-Wen Fan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - He-Ling Yuan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Xin Liu
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Qiang Wang
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Guang-Ping Ruan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Xing-Hua Pan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China.
| | - Xiang-Qing Zhu
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China.
| |
Collapse
|
19
|
Park SW, Im SH, Hong WT, Yang HK, Jung YK. Lignin-derived carbon quantum dot/PVA films for totally blocking UV and high-energy blue light. Int J Biol Macromol 2024; 268:131919. [PMID: 38679248 DOI: 10.1016/j.ijbiomac.2024.131919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Excessive exposure to UV and high-energy blue light (HEBL) can cause fatal eye and skin injuries. As a result, it is crucial to protect our bodies from UV and HEBL radiation. To achieve complete blocking of UV and HEBL, we developed a lignin-derived carbon quantum dot (L-CQD)/polyvinyl alcohol (PVA) film. L-CQD was synthesized from lignin, a waste woody biomass, and then blended with a PVA matrix to create a flexible L-CQD/PVA film. Thanks to simultaneous UV and HEBL absorption characteristics and bright color of L-CQD, the PVA film with 0.375 wt% L-CQD demonstrated outstanding blocking efficiency: 100 % in UV-C, UV-B, and UV-A, and at least 99.9 % in HEBL. It also exhibited a 44 % increase in lightness and a 12 % enhancement in transparency compared to lignin/PVA film. The film's ability to block UV and HEBL was further demonstrated by reducing >40 % UV-induced ROS formation in both cancerous and normal cell lines (Hs 294T, HeLa, CCD-986sk, and L929), as well as by blocking blue laser diode (LD) and LED. Since the L-CQD/PVA film is simple to produce, environmentally friendly, flexible, and thermally stable, it is suitable for use as a protective coating against sunlight and harmful emissions from IT devices.
Collapse
Affiliation(s)
- Seok Won Park
- Department of Nanoscience and Engineering, Inje University, Gimhae 50834, Republic of Korea
| | - So Hui Im
- Department of Nanoscience and Engineering, Inje University, Gimhae 50834, Republic of Korea
| | - Woo Tae Hong
- Marine-Bionics convergence technology center, Pukyoung National University, Busan 48513, Republic of Korea; Department of Electrical, Electronics and Software Engineering, Pukyoung National University, Busan 48513, Republic of Korea
| | - Hyun Kyoung Yang
- Marine-Bionics convergence technology center, Pukyoung National University, Busan 48513, Republic of Korea; Department of Electrical, Electronics and Software Engineering, Pukyoung National University, Busan 48513, Republic of Korea
| | - Yun Kyung Jung
- Department of Nanoscience and Engineering, Inje University, Gimhae 50834, Republic of Korea; School of Biomedical Engineering, Inje University, Gimhae 50834, Republic of Korea.
| |
Collapse
|
20
|
Zhang L, Yu S, Guan Y, Wang D, Yang J, Li J, Zhao W, Zhang F. Dual intervention on the gut and skin microbiota attenuates facial cutaneous aging. Food Funct 2024; 15:4246-4261. [PMID: 38526064 DOI: 10.1039/d3fo05473j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The gut and skin microbiota are microbial barriers, resisting harmful foreign microorganisms and maintaining internal homeostasis. Dysbiosis of the gut and skin microbiota is involved in aging progression. However, interventions targeting facial skin wellness taking into account the gut-skin axis are scarce. In this study, the impact of an eight-week intervention with oral (O), topical (T), and both oral and topical (OT) xylo-oligosaccharides (XOS) by regulating gut and skin microbiota on facial cutaneous aging was investigated in a double-blind placebo-controlled trial in females. An increase in the proportion of participants with skin rejuvenation was observed, along with a significant reduction in facial pores after OT intervention. The reduction of cutaneous Cutibacterium by OT intervention was greater than that in the O and T groups. These interventions can change the skin microbial structure. Intestinal Bifidobacterium was enriched only by dual treatment with oral and topical XOS. Function prediction analysis revealed a decrease in K02770 encoding fructose-1-phosphate kinase involved in de novo lipid synthesis from fructose with dual intervention, suggesting that inhibition of lipophilic Cutibacterium may contribute to reducing facial pores. Overall, the dual XOS intervention approach is most effective for improving both gut and skin microbiota, as well as facial skin aging.
Collapse
Affiliation(s)
- Liujing Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| | - Shun Yu
- Department of Plastic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Yin Guan
- Huishan Community Health Service Center, Health Commission of Liangxi District, Wuxi, China
| | - Dan Wang
- Department of Plastic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Ju Yang
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Jingling Li
- Department of Plastic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| | - Feng Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Functional Food Clinical Evaluation Center, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- School of Bioengineering, Jiangnan University, Wuxi, Jiangsu, China
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, China
- Chinese Society of Nutritional Oncology, Beijing, China
| |
Collapse
|
21
|
Choi S, Rahman RT, Kim BM, Kang J, Kim J, Shim J, Nam YS. Photochemically Inert Broad-Spectrum Sunscreen by Metal-Phenolic Network Coatings of Titanium Oxide Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16767-16777. [PMID: 38512769 DOI: 10.1021/acsami.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Titanium dioxide (TiO2) nanoparticles are extensively used as a sunscreen filter due to their long-active ultraviolet (UV)-blocking performance. However, their practical use is being challenged by high photochemical activities and limited absorption spectrum. Current solutions include the coating of TiO2 with synthetic polymers and formulating a sunscreen product with additional organic UV filters. Unfortunately, these approaches are no longer considered effective because of recent environmental and public health issues. Herein, TiO2-metal-phenolic network hybrid nanoparticles (TiO2-MPN NPs) are developed as the sole active ingredient for sunscreen products through photochemical suppression and absorption spectrum widening. The MPNs are generated by the complexation of tannic acid with multivalent metal ions, forming a robust coating shell. The TiO2-MPN hybridization extends the absorption region to the high-energy-visible (HEV) light range via a new ligand-to-metal charge transfer photoexcitation pathway, boosting both the sun protection factor and ultraviolet-A protection factor about 4-fold. The TiO2-MPN NPs suppressed the photoinduced reactive oxygen species by 99.9% for 6 h under simulated solar irradiation. Accordingly, they substantially alleviated UV- and HEV-induced cytotoxicity of fibroblasts. This work outlines a new tactic for the eco-friendly and biocompatible design of sunscreen agents by selectively inhibiting the photocatalytic activities of semiconductor nanoparticles while broadening their optical spectrum.
Collapse
Affiliation(s)
- Saehan Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Rafia Tasnim Rahman
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Bo-Min Kim
- Department of Applied Chemistry, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Juyeon Kang
- Department of Applied Chemistry, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Jeonga Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jongwon Shim
- Department of Applied Chemistry, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
22
|
Taghizadeh B, Moradi R, Sobhani B, Mohammadpanah H, Behboodifar S, Golmohammadzadeh S, Chamani J, Maleki M, Alizadeh E, Zarghami N, Jaafari MR. Development of nano-liposomal human growth hormone as a topical formulation for preventing uvb-induced skin damage. Int J Biol Macromol 2024; 265:130641. [PMID: 38460623 DOI: 10.1016/j.ijbiomac.2024.130641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/29/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Due to its involvement in skin maintenance and repair, topical administration of recombinant human growth hormone (rhGH) is an interesting strategy for therapeutic purposes. We have formulated and characterized a topical rhGH-loaded liposomal formulation (rhGH-Lip) and evaluated its safety, biological activity, and preventive role against UVB-induced skin damage. The rhGH-Lip had an average size and zeta potential of 63 nm and -33 mV, respectively, with 70 % encapsulation efficiency. The formulation was stable at 4 °C for at least one year. The SDS-PAGE and circular dichroism results showed no structural alterations in rhGH upon encapsulation. In vitro, studies in HaCaT, HFFF-2, and Ba/F3-rhGHR cell lines confirmed the safety and biological activity of rhGH-Lip. Franz diffusion cell study showed increased rhGH skin permeation compared to free rhGH. Animal studies in nude mice showed that liposomal rhGH prevented UVB-induced epidermal hyperplasia, angiogenesis, wrinkle formation, and collagen loss, as well as improving skin moisture. The results of this study show that rhGH-Lip is a stable, safe, and effective skin delivery system and has potential as an anti-wrinkle formulation for topical application. This study also provides a new method for the topical delivery of proteins and merits further investigation.
Collapse
Affiliation(s)
- Bita Taghizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Moradi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bashir Sobhani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Mohammadpanah
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Behboodifar
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Chemistry, Faculty of Sciences, University of Birjand, Birjand, Iran
| | - Shiva Golmohammadzadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Masoud Maleki
- Cutaneous Leishmaniosis Research Center, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| | - Mahmoud Reza Jaafari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Oh S, Jeong J, Kim M, Jin X, Zheng S, Kim YM, Yi TH. A study of anti-wrinkle functions and improvement of cream with Phaseolus angularis. Int J Cosmet Sci 2024; 46:318-332. [PMID: 38083804 DOI: 10.1111/ics.12932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 11/04/2023] [Indexed: 04/04/2024]
Abstract
Chronic exposure to ultraviolet (UV) radiation from sunlight accelerates skin ageing, which is followed by harsh, thick, dry and loose conditions. One of the most demonstrative symptoms is deep wrinkles induced by skin barrier disruption. Our previous research showed that Phaseolus angularis seed extract (PASE) effectively inhibits skin ageing through UVB protection in HaCaT cells by suppressing skin damage. However, its efficacy has not been evaluated in clinical trials so far. PASE cream's effectiveness was initially tested on the artificial skin model, revealing an increase in filaggrin and defence against skin damage. Based on these results, in this single-centred, randomized, double-blind study, we investigated the anti-ageing effect of PASE in human eye wrinkle areas. For these 21 healthy adult women aged 30 to 59, a PASE cream was applied to the right eye wrinkle area and a placebo to the left eye wrinkle area twice a day (morning and evening) for 12 weeks. The change in thick, deep crease wrinkles around the eyes was confirmed by visual evaluation, skin measurements and a questionnaire. As a result, the surface roughness (R1), maximum roughness (R2), average roughness (R3), smoothness depth (R4) and arithmetic mean roughness (R5) values in the group using the PASE cream all decreased. Particularly, R1, R4 and R5 significantly decreased by 18.1%, 18.6% and 25.0%, respectively. Subjects who applied PASE cream also experienced an improvement in skin moisture nearly twice the time compared to the placebo group. In addition, no participants reported side effects. Our study showed that PASE cream led to clinically significant levels of wrinkle improvement. In conclusion, as PASE is a natural, safe food with no side effects, it can be a good resource for natural anti-wrinkle functional cosmetics in the future.
Collapse
Affiliation(s)
- Sarang Oh
- College of Life Science, Kyung Hee University, Yongin-si, Korea
- Snowwhitefactory Co., Ltd., Seoul, Korea
| | | | - Myeongju Kim
- College of Life Science, Kyung Hee University, Yongin-si, Korea
| | - Xiangji Jin
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Shengdao Zheng
- College of Life Science, Kyung Hee University, Yongin-si, Korea
- Snowwhitefactory Co., Ltd., Seoul, Korea
| | - Yong-Min Kim
- School of Industrial Bio-pharmaceutical Science, Semyung University, Jecheon-si, Korea
| | - Tae-Hoo Yi
- College of Life Science, Kyung Hee University, Yongin-si, Korea
| |
Collapse
|
24
|
García-Villegas A, Fernández-Ochoa Á, Alañón ME, Rojas-García A, Arráez-Román D, Cádiz-Gurrea MDLL, Segura-Carretero A. Bioactive Compounds and Potential Health Benefits through Cosmetic Applications of Cherry Stem Extract. Int J Mol Sci 2024; 25:3723. [PMID: 38612532 PMCID: PMC11011441 DOI: 10.3390/ijms25073723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Cherry stems, prized in traditional medicine for their potent antioxidant and anti-inflammatory properties, derive their efficacy from abundant polyphenols and anthocyanins. This makes them an ideal option for addressing skin aging and diseases. This study aimed to assess the antioxidant and anti-inflammatory effects of cherry stem extract for potential skincare use. To this end, the extract was first comprehensively characterized by HPLC-ESI-qTOF-MS. The extract's total phenolic content (TPC), antioxidant capacity, radical scavenging efficiency, and its ability to inhibit enzymes related to skin aging were determined. A total of 146 compounds were annotated in the cherry stem extract. The extract effectively fought against NO· and HOCl radicals with IC50 values of 2.32 and 5.4 mg/L. Additionally, it inhibited HYALase, collagenase, and XOD enzymes with IC50 values of 7.39, 111.92, and 10 mg/L, respectively. Based on the promising results that were obtained, the extract was subsequently gently integrated into a cosmetic gel at different concentrations and subjected to further stability evaluations. The accelerated stability was assessed through temperature ramping, heating-cooling cycles, and centrifugation, while the long-term stability was evaluated by storing the formulations under light and dark conditions for three months. The gel formulation enriched with cherry stem extract exhibited good stability and compatibility for topical application. Cherry stem extract may be a valuable ingredient for creating beneficial skincare cosmeceuticals.
Collapse
Affiliation(s)
- Abigail García-Villegas
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - Álvaro Fernández-Ochoa
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - María Elena Alañón
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain;
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
| | - Alejandro Rojas-García
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - David Arráez-Román
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| |
Collapse
|
25
|
Yang D, Liu Q, Xu Q, Zheng L, Zhang S, Lu S, Xiao G, Zhao M. Effects of collagen hydrolysates on UV-induced photoaging mice: Gly-Pro-Hyp as a potent anti-photoaging peptide. Food Funct 2024; 15:3008-3022. [PMID: 38411396 DOI: 10.1039/d3fo04949c] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
This work aimed to investigate the protective effects of collagen hydrolysates containing different contents of Gly-Pro-Xaa tripeptides on UV-induced photoaging mice and to identify potent anti-photoaging peptides. Results showed that oral ingestion of collagen hydrolysates with a higher content of Gly-Pro-Xaa tripeptides (∼11.4%, HCH) dramatically enhanced the absorption of Pro-Hyp, Hyp-Gly, and Gly-Pro-Hyp into the body, which were 1.77-, 2.18-, and 65.07-fold higher in area under the concentration-time curve (AUC) values than that of collagen hydrolysates with a lower content of Gly-Pro-Xaa tripeptides (∼3.8%, LCH), respectively. Furthermore, the protective effects of HCH on the photo-aged skin of mice were significantly stronger than those of LCH in terms of increases in the contents of hyaluronic acid and collagen, improvement in skin elasticity and epidermal thickness, alleviation in inflammation, and decreases in the contents of matrix metalloproteinase-1 (MMP-1) and MMP-3. More importantly, Gly-Pro-Hyp displayed potent anti-photoaging activities comparable to HCH based on an equivalent amount of Hyp. Network pharmacology analysis for potential mechanisms further indicated that Gly-Pro-Hyp might interact with JUN and FOS and regulate IL-17 and TNF signaling pathways. Collectively, our results suggested that HCH had great potential to be applied in functional foods for skin health and Gly-Pro-Hyp was found to be a potent collagen-derived anti-photoaging peptide, which might contribute to the excellent anti-photoaging effects of HCH.
Collapse
Affiliation(s)
- Danyin Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Qi Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Qiongyao Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Silu Zhang
- Shenzhen Porshealth Bioengineering Co., Ltd, Shenzhen 518116, China.
| | - Shan Lu
- Shenzhen Porshealth Bioengineering Co., Ltd, Shenzhen 518116, China.
| | - Guoxun Xiao
- Shenzhen Porshealth Bioengineering Co., Ltd, Shenzhen 518116, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
26
|
Zhu J, Yang Y, Wang H, Gao J, Liu C, Wang P, Liao H. Impacts of projected changes in sea surface temperature on ozone pollution in China toward carbon neutrality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170024. [PMID: 38224878 DOI: 10.1016/j.scitotenv.2024.170024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/07/2024] [Accepted: 01/07/2024] [Indexed: 01/17/2024]
Abstract
The global sea surface temperatures (SSTs) are expected to change diversely in the future under different climate scenarios, which will affect the near-surface ozone (O3) distribution and concentration by influencing meteorological states and large-scale atmospheric circulation. Many countries have planned to reach carbon neutrality by the mid-21st century. In this study, the impacts of global and regional SST changes on near-surface O3 concentrations in China in the middle of the 21st century under the carbon-neutral scenario (Shared Socioeconomic Pathway 1-1.9), compared with the high-emission scenario (Shared Socioeconomic Pathway 5-8.5), and possible physical and chemical mechanisms are investigated using the Community Earth System Model version 1 (CESM1). Under future climate change, the changes in SSTs in the carbon-neutral scenario relative to the high-emission scenario lead to a dipole change in near-surface O3 concentrations in eastern and western China, with a significant decrease of 0.79 ppbv in the eastern China and a significant increase of 1.05 ppbv in the western China. The cooling of North Pacific Ocean under the carbon-neutral scenario causes a decrease in near-surface O3 concentrations by 0.48 ppbv in eastern China due to the weakened chemical production and an increase by 0.74 ppbv in western China attributed to the enhanced O3 transport from Eurasia. Cooling of Southern Hemisphere oceans leads to anomalous upward air motions over eastern China, which weaken the vertical transport of high-elevation O3 to the surface, resulting in a reduction in near-surface O3 concentrations by 0.58 ppbv in eastern China. Our results suggest that future changes in SSTs in the carbon-neutral scenario will positively benefit O3 air quality improvement in the polluted eastern China, with the North Pacific and Southern Hemisphere oceans playing important roles.
Collapse
Affiliation(s)
- Jiangtao Zhu
- Joint International Research Laboratory of Climate and Environment Change, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Yang Yang
- Joint International Research Laboratory of Climate and Environment Change, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China.
| | - Hailong Wang
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jiyuan Gao
- Joint International Research Laboratory of Climate and Environment Change, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Chao Liu
- Joint International Research Laboratory of Climate and Environment Change, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Pinya Wang
- Joint International Research Laboratory of Climate and Environment Change, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Hong Liao
- Joint International Research Laboratory of Climate and Environment Change, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| |
Collapse
|
27
|
Yang B, Jiang J, Wu H, Lu Q. Topical BCl-2 inhibitor (ABT-737) attenuates skin photoaging in mice. Exp Dermatol 2024; 33:e15051. [PMID: 38514923 DOI: 10.1111/exd.15051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 02/24/2024] [Indexed: 03/23/2024]
Affiliation(s)
- Bingyi Yang
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Jiao Jiang
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Haijing Wu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
28
|
Jang Y, Na HW, Shin DY, Lee J, Han JP, Kim HS, Kim SJ, Choi EJ, Lee C, Hong YD, Kim HJ, Seo YR. Integrative analysis of RNA-sequencing and microarray for the identification of adverse effects of UVB exposure on human skin. Front Public Health 2024; 12:1328089. [PMID: 38444441 PMCID: PMC10913594 DOI: 10.3389/fpubh.2024.1328089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/15/2024] [Indexed: 03/07/2024] Open
Abstract
Background Ultraviolet B (UVB) from sunlight represents a major environmental factor that causes toxic effects resulting in structural and functional cutaneous abnormalities in most living organisms. Although numerous studies have indicated the biological mechanisms linking UVB exposure and cutaneous manifestations, they have typically originated from a single study performed under limited conditions. Methods We accessed all publicly accessible expression data of various skin cell types exposed to UVB, including skin biopsies, keratinocytes, and fibroblasts. We performed biological network analysis to identify the molecular mechanisms and identify genetic biomarkers. Results We interpreted the inflammatory response and carcinogenesis as major UVB-induced signaling alternations and identified three candidate biomarkers (IL1B, CCL2, and LIF). Moreover, we confirmed that these three biomarkers contribute to the survival probability of patients with cutaneous melanoma, the most aggressive and lethal form of skin cancer. Conclusion Our findings will aid the understanding of UVB-induced cutaneous toxicity and the accompanying molecular mechanisms. In addition, the three candidate biomarkers that change molecular signals due to UVB exposure of skin might be related to the survival rate of patients with cutaneous melanoma.
Collapse
Affiliation(s)
- Yujin Jang
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Gyeonggi-do, Republic of Korea
| | - Hye-Won Na
- Research and Innovation Center, Amorepacific, Gyeonggi-do, Republic of Korea
| | - Dong Yeop Shin
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Gyeonggi-do, Republic of Korea
| | - Jun Lee
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Gyeonggi-do, Republic of Korea
| | - Jun Pyo Han
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Gyeonggi-do, Republic of Korea
| | - Hyun Soo Kim
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Gyeonggi-do, Republic of Korea
- National Institute of Environmental Research, Incheon, Republic of Korea
| | - Su Ji Kim
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Gyeonggi-do, Republic of Korea
| | - Eun-Jeong Choi
- Research and Innovation Center, Amorepacific, Gyeonggi-do, Republic of Korea
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Yong Deog Hong
- Research and Innovation Center, Amorepacific, Gyeonggi-do, Republic of Korea
| | - Hyoung-June Kim
- Research and Innovation Center, Amorepacific, Gyeonggi-do, Republic of Korea
| | - Young Rok Seo
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Gyeonggi-do, Republic of Korea
| |
Collapse
|
29
|
Portugal-Cohen M, Oron M, Cohen D, Ma'or Z, Soroka Y, Frusic-Zlotkin M, Kohen R. Advancements in non-invasive skin sampling: Clinical conditions characterization via the assessment of skin surface cytokine biomarkers. Exp Dermatol 2024; 33:e15037. [PMID: 38389180 DOI: 10.1111/exd.15037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
The skin is increasingly recognized as a biological active organ interacting with the immune system. Given that the epidermal skin layer actively releases various cytokines, non-invasive skin sampling methods could detect these cytokines, offering insights into clinical conditions. This study aims non-invasively measuring cytokine levels directly from the skin surface to characterize different inflammatory chronic disorders in the adult and elderly population: psoriasis, diabetes type 2, rosacea, chronic kidney disease (CKD) and aging. Cytokines IL-1β, IL-8 and IL-10 were sampled from healthy subjects and patients aged 18-80 using skin surface wash technique. A well with sterile phosphate-buffered saline solution was placed on the skin for 30 min, and the extracted solution was collected from the well for further cytokine levels analysis using ELISA assay. Results show distinct cytokine profiles in different pathological processes, healthy controls, affected and unaffected areas. Aging was associated with increased IL-1β, IL-8, and IL-10 levels in skin. In diabetes, IL-1β and IL-8 levels were elevated in lesional areas, while IL-10 levels were decreased in non-lesional skin. Psoriatic lesions showed elevated levels of IL-1β and IL-8. Rosacea patients had lower IL-10 levels in both lesional and non-lesional areas. CKD patients exhibited significantly lower IL-10 levels compared to healthy individuals. In conclusion, skin surface wash-derived cytokine profiles could serve as "alert biomarkers" for disease prediction, enabling early detection. Additionally, this method's cost-effectiveness allows pre-screening of molecules in clinical studies and holds potential as a tool for biomarkers and omics analysis, enhancing disorder characterization and disease management.
Collapse
Affiliation(s)
| | | | - Dror Cohen
- DermAb.io, Haifa, Israel
- The Myers Skin Research Laboratory, Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ze'evi Ma'or
- The Skin Research Institute, The Dead-Sea & Arava Science Center, Israel
| | - Yoram Soroka
- The Myers Skin Research Laboratory, Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marina Frusic-Zlotkin
- The Myers Skin Research Laboratory, Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ron Kohen
- The Myers Skin Research Laboratory, Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
30
|
Lee JM, Park SJ, Kim YJ, Kim SY, Jang YN, Park AY, Ho SH, Kim D, Lee JO, Yoo KH, Kim BJ. Actinidia polygama Water Extract (APWE) Protects Against UVB-Induced Photoaging via MAPK/AP-1 and TGFβ-Smad Pathway. Ann Dermatol 2024; 36:18-28. [PMID: 38325430 PMCID: PMC10861301 DOI: 10.5021/ad.23.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Actinidia polygama (silver vine) has been used in oriental medicine to treat gout, rheumatoid arthritis, and inflammation. Actinidia polygama water extract (APWE) is named PB203. OBJECTIVE To investigate whether PB203 has anti-photoaging effects and to understand the molecular mechanism underlying such effects. METHODS The antioxidant effect was assessed by 1,1-diphenyl-2-picrylhydrazyl assay and 2',7'-dichlorodihydrofluorescein diacetate staining in ultraviolet B (UVB)-irradiated HaCaT cells with or without PB203 treatment. Type I collagen, matrix metalloproteinase-1 (MMP-1), tissue inhibitor of metalloproteinase (TIMP-1), hyaluronic acid (HA), hyaluronan synthase 1 (HAS1) and HAS2 levels were measuring by enzyme-linked immunosorbent assay or reverse transcription quantitative polymerase chain reaction. Also, we investigate the effects of PB203 on wrinkle formation, and the potential mechanisms underlying such effects were investigated in UVB-induced wrinkle mouse model mice. RESULTS PB203 alleviated the UVB-induced reactive oxygen species production, phosphorylation of JNK, ERK, and p38, and formation of AP-1. In addition, PB203 inhibited the decreases in type I collagen and TIMP-1 levels, and the increase in MMP-1 levels in UVB-exposed HaCaT cells. In UVB-induced wrinkle mouse model, PB203 inhibited the decreases in elastin and type I collagen levels as well as the increases in MMP-1 expression, wrinkle formation, and skin dehydration. Furthermore, PB203 increased the expression of filaggrin, HAS1, and HAS2, improving the skin barrier function. CONCLUSION Taken together, we found that PB203 is as a potent candidate to serve as a functional ingredient or therapeutic agent to improve UVB-mediated skin aging.
Collapse
Affiliation(s)
- Jung Min Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| | - Su-Jin Park
- R&D Center, G&P Bioscience Co., Ltd., Seoul, Korea
| | - Yu-Jin Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| | - Su-Young Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Yoo-Na Jang
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| | - A Yeon Park
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| | | | - Dayoung Kim
- R&D Center, G&P Bioscience Co., Ltd., Seoul, Korea
| | - Jung Ok Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Kwang-Ho Yoo
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Beom Joon Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea.
| |
Collapse
|
31
|
Cao Y, Zhang X, He X, Wang W, Yi Y, Ai Y. Efficacy of ceramide-containing sunscreen on skin barrier. J Cosmet Dermatol 2024; 23:525-528. [PMID: 37641585 DOI: 10.1111/jocd.15977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/05/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND UV rays not only cause oxidative damage to the skin, but also damage its barrier function. The use of sunscreen is crucial in preventing skin from UV radiation, but it may have an impact on the function of the skin barrier. While much research has focused on the protective effects of sunscreen against UV oxidative damage, little is known about the impact of daily sunscreen use on the skin barrier. OBJECTIVE This study mainly investigated the changes in skin barrier function of volunteers (including those with sensitive skin) before and after using a ceramide-containing sunscreen. METHODS A total of 60 volunteers used SPF30 sunscreen containing ceramide every morning. Using non-invasive methods to detect skin barrier changes in TEWL, hydration, facial redness based on VISIA-CR image, and Erythema index (EI) value after 4 weeks of using ceramide-containing sunscreen. Adverse reactions were also assessed. RESULTS After 4 weeks of using ceramide-containing sunscreen, significant reductions were observed in skin redness with both an 11.89% decrease in a* value and a 5.68% decrease in skin EI, while there was also a significant decrease in transepidermal water loss (TEWL) with a reduction of 22.96%, and a significant increase in skin hydration with a 21.96% increase in the moisture content of the stratum corneum. No adverse events occurred during the entire testing process. CONCLUSION Daily application of ceramide-containing sunscreen can increase skin hydration while enhancing the function of the skin barrier.
Collapse
Affiliation(s)
- Yu Cao
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xianghua Zhang
- Dermatological Beauty Division, L'Oréal China Co.Ltd, Shanghai, China
| | - Xiaofeng He
- Research and Innovation Center, L'Oréal China Co.Ltd, Shanghai, China
| | - Wenna Wang
- Research and Innovation Center, L'Oréal China Co.Ltd, Shanghai, China
| | - Yi Yi
- Research and Innovation Center, L'Oréal China Co.Ltd, Shanghai, China
| | - Yunfei Ai
- Dermatological Beauty Division, L'Oréal China Co.Ltd, Shanghai, China
| |
Collapse
|
32
|
Lee SJ, Lee D, Park SA, Park JJ, Park WH. Hyaluronic acid/polyphenol sunscreens with broad-spectrum UV protection properties from tannic acid and quercetin. Int J Biol Macromol 2024; 257:128585. [PMID: 38056734 DOI: 10.1016/j.ijbiomac.2023.128585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Currently, commercial sunscreens cause a number of biotoxicity and environmental issues, making it imperative to develop biocompatible alternatives. In this study, we aimed to develop an alternative sunscreen from two ecofriendly and biocompatible natural polyphenolic compounds, tannic acid (TA) and quercetin (Que). The sunscreen was prepared through a simple process using an oil-in-water emulsion as the medium and hyaluronic acid (HA) as the base polymer to improve biocompatibility. The HA/TA/Que. sunscreen prepared in this study exhibits 0 % transmittance in the UVB region and <15 % transmittance in the UVA region, resulting in excellent sun-protection properties (SPF 30). Remarkably, the as-prepared HA/TA/Que. sunscreen has a suitable viscosity and similar UV protection properties to those of commercial sunscreens. The HA/TA/Que. sunscreen also exhibits 90.4 % antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl, demonstrating an ability to effectively capture reactive oxygen species that directly affect the skin. In addition, the cell viability was >90 % at a concentration of 50 μg/mL after 7 days, indicating excellent cytocompatibility. Owing to its various advantageous features, the HA/TA/Que. sunscreen with excellent sun protection properties and multiple functionalities is expected to resolve many environmental and biological issues caused by commercial sunscreens.
Collapse
Affiliation(s)
- Su Jin Lee
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Dongjin Lee
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| | - Su A Park
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| | - Jeong Jin Park
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Won Ho Park
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
33
|
Michel P, Żbikowska HM, Rudnicka K, Gonciarz W, Krupa A, Gajewski A, Machała P, Olszewska MA. Anti-inflammatory, antioxidant and photoprotective activity of standardised Gaultheria procumbens L. leaf, stem, and fruit extracts in UVA-irradiated human dermal fibroblasts. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117219. [PMID: 37742876 DOI: 10.1016/j.jep.2023.117219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gaultheria procumbens L. is a polyphenolic-rich medicinal and food plant. Its leaves, stems, and fruits are traditional anti-inflammatory, antipyretic, antioxidant, and antimicrobial herbal medicines used to treat internal and external inflammation-related ailments, including rheumatic diseases, influenza, the common cold, fever, and skin and periodontal problems. Moreover, G. procumbens leaf extract is used for skin care as an anti-ageing and anti-wrinkle ingredient. AIM OF THE STUDY Various environmental factors, especially solar ultraviolet radiation, accelerate skin ageing by promoting oxidative stress and inflammation. Despite the dermoprotective and anti-ageing applications, the impact of G. procumbens on human dermal fibroblasts is unknown. Therefore, the study aimed to evaluate the anti-inflammatory, antioxidant, and photoprotective activity of G. procumbens standardised leaf, stem, and fruit extracts in cellular models, including human dermal fibroblasts (Hs68 cells) under UVA-irradiation, the primary pro-ageing skin stressor. MATERIALS AND METHODS Hs68 fibroblasts were pre-treated (24h) with G. procumbens extracts (0.5-100 μg/mL) or reference compounds followed by UVA-irradiation (8 J/cm2). Cell viability and metabolic activity were measured by CCK-8 and MTT assays in human Hs68 and mouse L929 fibroblasts, respectively. The ROS level, SOD, and GST activities were estimated by fluorescence and spectrophotometric techniques. The pro-inflammatory potential (NF-κB transcription factor activation) was checked using THP1-Blue™ NF-κB cells, and the anti-inflammatory activity was studied by measuring IL-8, ICAM-1, and NF-κB levels and phosphorylation of Erk kinase in LPS-stimulated Hs68 cells by spectrophotometry and confocal microscopy. The UVA-induced DNA damage and cell migration were evaluated by comet and scratch assays, respectively. RESULTS The extracts did not affect the metabolic activity of mouse L929 fibroblasts and the viability of unirradiated human Hs68 cells. Additionally, the extracts noticeably enhanced the viability of UVA-irradiated Hs68 cells up to 115-120% (p < 0.001) for stem and leaf extract at 25 μg/mL. All extracts in a wide concentration range (0.5-100 μg/mL) did not activate monocytes or induce the NF-κB transcription factor in LPS-stimulated Hs68 fibroblasts. On the other hand, the extracts (5-25 μg/mL) restored the activity of endogenous antioxidant enzymes, i.e., SOD and GST, up to 120-140% (p < 0.001) in the UVA-irradiated Hs68 cells. Moreover, a statistically significant reduction of ROS, IL-8, ICAM-1, and NF-κB levels by up to 48%, 88%, 43%, and 39%, respectively (p < 0.001) and strong suppression of Erk kinase activation was observed for the extracts (25-50 μg/mL) in LPS-stimulated human fibroblasts. The total DNA damage (% tail DNA) in irradiated Hs68 cells was also strongly decreased by up to 66-69% (p < 0.001) at 50 μg/mL. However, the treatment with the extracts did not relevantly enhance the cell migration of Hs68 fibroblasts. CONCLUSIONS The results suggest that G. procumbens may effectively protect human skin fibroblast from UVA irradiation. The leaf and stem extracts were the most potent antioxidants, while fruit and stem extracts revealed the strongest anti-inflammatory activity. The observed effects support the traditional use of aerial plant parts (leaves, stems, and fruits) in treating inflammation-related skin disorders cross-linked with oxidative stress and the topical application of Gaultheria extracts as anti-ageing agents intended for skin care.
Collapse
Affiliation(s)
- Piotr Michel
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151, Lodz, Poland.
| | - Halina Małgorzata Żbikowska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - Agnieszka Krupa
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - Adrian Gajewski
- Department of Immunology and Allergy, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland.
| | - Paulina Machała
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Monika Anna Olszewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151, Lodz, Poland.
| |
Collapse
|
34
|
Kim MJ, Ahn HJ, Kong D, Lee S, Kim DH, Kang KS. Modeling of solar UV-induced photodamage on the hair follicles in human skin organoids. J Tissue Eng 2024; 15:20417314241248753. [PMID: 38725732 PMCID: PMC11080775 DOI: 10.1177/20417314241248753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/06/2024] [Indexed: 05/12/2024] Open
Abstract
Solar ultraviolet (sUV) exposure is known to cause skin damage. However, the pathological mechanisms of sUV on hair follicles have not been extensively explored. Here, we established a model of sUV-exposed skin and its appendages using human induced pluripotent stem cell-derived skin organoids with planar morphology containing hair follicles. Our model closely recapitulated several symptoms of photodamage, including skin barrier disruption, extracellular matrix degradation, and inflammatory response. Specifically, sUV induced structural damage and catagenic transition in hair follicles. As a potential therapeutic agent for hair follicles, we applied exosomes isolated from human umbilical cord blood-derived mesenchymal stem cells to sUV-exposed organoids. As a result, exosomes effectively alleviated inflammatory responses by inhibiting NF-κB activation, thereby suppressing structural damage and promoting hair follicle regeneration. Ultimately, our model provided a valuable platform to mimic skin diseases, particularly those involving hair follicles, and to evaluate the efficacy and underlying mechanisms of potential therapeutics.
Collapse
Affiliation(s)
- Min-Ji Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hee-Jin Ahn
- Cytotherapy R&D Center, PRIMORIS THERAPEUTICS CO., LTD., Gwangmyeong-si, Gyeonggi-do, Republic of Korea
| | - Dasom Kong
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Seunghee Lee
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co., Ltd., Geumcheon-gu, Seoul, Republic of Korea
| | - Da-Hyun Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biotechnology, Sungshin Women’s University, Seoul, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
35
|
Jang HY, Kim GB, Kim JM, Kang SY, Youn HJ, Park J, Ro SY, Chung EY, Park KH, Kim JS. Fisetin Inhibits UVA-Induced Expression of MMP-1 and MMP-3 through the NOX/ROS/MAPK Pathway in Human Dermal Fibroblasts and Human Epidermal Keratinocytes. Int J Mol Sci 2023; 24:17358. [PMID: 38139186 PMCID: PMC10743569 DOI: 10.3390/ijms242417358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Fisetin is a flavonoid found in plants and has been reported to be effective in various human diseases. However, the effective mechanisms of ultraviolet-A (UVA)-mediated skin damage are not yet clear. In this study, we investigated the protective mechanisms of fisetin regarding UVA-induced human dermal fibroblasts (HDFs) and human epidermal keratinocytes (HEKs) damages. Fisetin showed a cytoprotective effect against UVA irradiation and suppressed matrix metalloproteinases (MMPs), MMP-1, and MMP-3 expression. In addition, fisetin was rescued, which decreased mRNA levels of pro-inflammatory cytokines, reactive oxygen species production, and the downregulation of MAPK/AP-1 related protein and NADPH oxidase (NOX) mRNA levels. Furthermore, UVA-induced MMP-1 and MMP-3 were effectively inhibited by siRNAs to NOX 1 to 5 in HDFs and HEKs. These results indicate that fisetin suppresses UVA-induced damage through the NOX/ROS/MAPK pathway in HDFs and HEKs.
Collapse
Affiliation(s)
- Hye-Yeon Jang
- Department of Biochemistry and Molecular Biology, Institute for Medical Sciences, BK21FOUR 21st Century Medical Science Creative Human Resource Development Center, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (H.-Y.J.); (G.-B.K.); (J.-M.K.)
- Infectious Diseases Therapeutic Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Gi-Beum Kim
- Department of Biochemistry and Molecular Biology, Institute for Medical Sciences, BK21FOUR 21st Century Medical Science Creative Human Resource Development Center, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (H.-Y.J.); (G.-B.K.); (J.-M.K.)
| | - Jeong-Mi Kim
- Department of Biochemistry and Molecular Biology, Institute for Medical Sciences, BK21FOUR 21st Century Medical Science Creative Human Resource Development Center, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (H.-Y.J.); (G.-B.K.); (J.-M.K.)
| | - Sang Yull Kang
- Department of Surgery, Research Institute of Clinical Medicine, Jeonbuk National University Hospital, Biomedical Research Institute, Jeonbuk National University, Jeonju 54907, Republic of Korea; (S.Y.K.); (H.-J.Y.)
| | - Hyun-Jo Youn
- Department of Surgery, Research Institute of Clinical Medicine, Jeonbuk National University Hospital, Biomedical Research Institute, Jeonbuk National University, Jeonju 54907, Republic of Korea; (S.Y.K.); (H.-J.Y.)
| | - Jinny Park
- Department of Medical Oncology and Hematology, Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea;
| | - Su Yeon Ro
- Department of Anesthesiology and Pain Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Bucheon 14647, Republic of Korea; (S.Y.R.); (E.-Y.C.)
| | - Eun-Yong Chung
- Department of Anesthesiology and Pain Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Bucheon 14647, Republic of Korea; (S.Y.R.); (E.-Y.C.)
| | - Kwang-Hyun Park
- Department of Emergency Medical Rescue, Nambu University, Gwangju 62271, Republic of Korea
- BioMedical Science Graduate Program (BMSGP), Department of Emergency Medicine, Chonnam National University, Hwasun 58128, Republic of Korea
| | - Jong-Suk Kim
- Department of Biochemistry and Molecular Biology, Institute for Medical Sciences, BK21FOUR 21st Century Medical Science Creative Human Resource Development Center, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (H.-Y.J.); (G.-B.K.); (J.-M.K.)
| |
Collapse
|
36
|
Park J, Kim D, Lee M, Park GD, Kim SR, Jiang Y, Jun W, Kim OK, Lee J. Unripe Pear Extract Suppresses UVB-Induced Skin Photoaging in Hairless Mice and Keratinocytes. J Med Food 2023; 26:902-910. [PMID: 38010847 DOI: 10.1089/jmf.2023.k.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Our study aimed to investigate whether unripe pear extract (UP) could provide protection against UVB-induced damage to both mouse skin and keratinocytes. We observed that UVB exposure, a common contributor to skin photoaging, led to wrinkle formation, skin dryness, and inflammation in mice. Nevertheless, these effects were mitigated in the groups of UVB-irradiated mice treated with UP. Moreover, UP treatment at 400 μg/mL increased the antioxidant enzyme activities (sodium dodecyl sulfate, 2.22-fold higher; catalase, 2.91-fold higher; GPx, 1.96-fold higher) along with sphingomyelin (1.58-fold higher) and hyaluronic acid (1.31-fold higher) levels in UVB-irradiated keratinocytes. In the keratinocytes irradiated with UVB, UP 400 μg/mL resulted in reduced cytokine production (TNF-α, 33.2%; IL-1β, 45.3%; IL-6, 33.4%) and the expression of inflammatory pathway-related proteins. The findings indicate that UP has a direct protective effect on UVB-irradiated keratinocytes and is also able to shield against photoaging induced by UVB. Hence, it is suggested that UP could contribute to improved skin health by averting skin photoaging.
Collapse
Affiliation(s)
- Jeongjin Park
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Korea
| | - Dakyung Kim
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| | - Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| | | | - Soo Ro Kim
- Suheung Research Center, Seongnam, Korea
| | | | - Woojin Jun
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Korea
| | - Ok-Kyung Kim
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| |
Collapse
|
37
|
Haxaire C, Liebel F, Portocarrero Huang G, Chen S, Knapp E, Idkowiak-Baldys J, Glynn J. Effect of L-4-Thiazolylalanine (Protinol™) on skin barrier strength and skin protection. Int J Cosmet Sci 2023; 45:725-738. [PMID: 37402136 DOI: 10.1111/ics.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/19/2023] [Accepted: 06/24/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVES Skin barrier properties are critical for maintaining epidermal water content, protecting from environmental factors and providing the first line of defense against pathogens. In this study, we investigated the non-proteinogenic amino acid L-4-Thiazolylalanine (L4) as a potential active ingredient in skin protection and barrier strength. METHODS L4 on wound healing, anti-inflammatory and anti-oxidant properties were evaluated using monolayers and 3D skin equivalents. The transepithelial electrical resistance (TEER) value was used in vitro as a strong indicator of barrier strength and integrity. Clinical L4 efficacy was assessed for the evaluation of the skin barrier integrity and soothing benefits. RESULTS In vitro treatments of L4 show beneficial effects in wound closure mechanism, and we demonstrate that L4 anti-oxidant benefits with markedly increased HSP70 and decreased reactive oxygen species production induced by UVs exposure. Barrier strength and integrity were significantly improved by L4, confirmed clinically by an increase in 12R-lipoxygenase enzymatic activity in the stratum corneum. In addition, soothing benefits of L4 have been shown clinically with the decrease in redness after methyl nicotinate application on the inner arm and the significant reduction of the erythema and the skin desquamation on the scalp. CONCLUSION L4 delivered multiple skin benefits by strengthening the skin barrier, accelerating the skin repair process as well as soothing the skin and the scalp with anti-inflammaging effects. The observed efficacy validates L4 as a desirable skincare ingredient for topical treatment.
Collapse
Affiliation(s)
- C Haxaire
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - F Liebel
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - G Portocarrero Huang
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - S Chen
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - E Knapp
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - J Idkowiak-Baldys
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - J Glynn
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| |
Collapse
|
38
|
Ashmawy NS, Gad HA, El-Nashar HAS. Comparative Study of Essential Oils from Different Organs of Syzygium cumini (Pamposia) Based on GC/MS Chemical Profiling and In Vitro Antiaging Activity. Molecules 2023; 28:7861. [PMID: 38067590 PMCID: PMC10708113 DOI: 10.3390/molecules28237861] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Syzygium cumini L. is an evergreen tree belonging to family Myrtaceae, employed for different traditional uses like diabetes, inflammation, and fever. The current study aimed to compare the chemical compositions of the essential oils (EOs) isolated from different organs of Syzygium cumini (leaves (Scl), fruits (Scf), seeds (Scs), and bark (Scb)) using a GC/MS analysis. Also, a chemometric analysis was applied to explore the main similarities and differences among different organs using a Principal Component Analysis (PCA) and a hierarchal cluster analysis (HCA). Furthermore, in vitro antiaging activities were investigated via anti-collagenase, anti-elastase, and anti-hyaluronidase assays. The GC-MS analysis revealed 82 compounds representing 92.13%, 99.42%, 100%, and 92.97% in Scl, Scf, Scs, and Scb, respectively. The predominant components were α-pinene, β-pinene, (E)-β-caryophyllene, α-caryophyllene, caryophyllene oxide, and α-humulene epoxide II with variable percentages. All EOs were positioned on positive PC1, except for Scs, which was positioned on the negative side in a separate quadrant. The HCA dendrogram displayed the closeness of Scl and Scb, which was not clearly recognized in the PCA score plot. Moreover, the Scs oils were totally discriminated from other parts. The Scl and Scs oils showed superior anti-collagenase, anti-elastase, and anti-hyaluronidase activities. Thus, S. cumini oils should be considered for cosmetic preparations to retard skin aging manifestations.
Collapse
Affiliation(s)
- Naglaa S. Ashmawy
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Haidy A. Gad
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Heba A. S. El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| |
Collapse
|
39
|
Kim TY, Park NJ, Jo BG, Lee BS, Keem MJ, Kwon TH, Kim KH, Kim SN, Yang MH. Anti-Wrinkling Effect of 3,4,5-tri- O-caffeoylquinic Acid from the Roots of Nymphoides peltata through MAPK/AP-1, NF-κB, and Nrf2 Signaling in UVB-Irradiated HaCaT Cells. Antioxidants (Basel) 2023; 12:1899. [PMID: 37891978 PMCID: PMC10604296 DOI: 10.3390/antiox12101899] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Nymphoides peltata has been widely used pharmacologically in traditional Chinese medicine to treat heat strangury and polyuria. The aim of this study was to isolate the bioactive components from N. peltata and evaluate their potential use as antioxidant and anti-wrinkle agents. Phytochemical investigation of the methanolic extract of N. peltata roots led to the isolation of 15 compounds (1-15), which were structurally determined as α-spinasterol (1), 3-O-β-D-glucopyranosyl-oleanolic acid 28-O-β-D-glucuronopyranoside (2), 4-hydroxybenzoic acid (3), protocatechuic acid (4), vanillic acid (5), p-coumaric acid (6), caffeic acid (7), ferulic acid (8), neochlorogenic acid (neo-CQA) (9), chlorogenic acid (CQA) (10), cryptochlorogenic acid (crypto-CQA) (11), isochlorogenic acid B (3,4-DCQA) (12), isochlorogenic acid A (3,5-DCQA) (13), isochlorogenic acid C (4,5-DCQA) (14), and 3,4,5-tri-O-caffeoylquinic acid (TCQA) (15). Of these 15 compounds, compound 2 was a new oleanane saponin, the chemical structure of which was characterized by 1D and 2D nuclear magnetic resonance (NMR) spectroscopic data and high-resolution electrospray ionization mass spectrometry (HRESIMS), as well as chemical reaction. Biological evaluation of the isolated compounds revealed that 3,4,5-tri-O-caffeoylquinic acid (TCQA) significantly improved Nrf2 levels in an Nrf2-ARE reporter HaCaT cell screening assay. TCQA was found to potently inhibit the Nrf2/HO-1 pathway and to possess strong anti-wrinkle activity by modulating the MAPK/NF-κB/AP-1 signaling pathway and thus inhibiting MMP-1 synthesis in HaCaT cells exposed to UVB. Our results suggest that TCQA isolated from N. peltata might be useful for developing effective antioxidant and anti-wrinkle agents.
Collapse
Affiliation(s)
- Tae-Young Kim
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (T.-Y.K.); (B.-G.J.); (M.-J.K.); (T.-H.K.)
| | - No-June Park
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea;
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Beom-Geun Jo
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (T.-Y.K.); (B.-G.J.); (M.-J.K.); (T.-H.K.)
| | - Bum Soo Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Min-Ji Keem
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (T.-Y.K.); (B.-G.J.); (M.-J.K.); (T.-H.K.)
| | - Taek-Hwan Kwon
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (T.-Y.K.); (B.-G.J.); (M.-J.K.); (T.-H.K.)
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea;
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Min Hye Yang
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (T.-Y.K.); (B.-G.J.); (M.-J.K.); (T.-H.K.)
| |
Collapse
|
40
|
Clemente-Suárez VJ, Martín-Rodríguez A, Redondo-Flórez L, Villanueva-Tobaldo CV, Yáñez-Sepúlveda R, Tornero-Aguilera JF. Epithelial Transport in Disease: An Overview of Pathophysiology and Treatment. Cells 2023; 12:2455. [PMID: 37887299 PMCID: PMC10605148 DOI: 10.3390/cells12202455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Epithelial transport is a multifaceted process crucial for maintaining normal physiological functions in the human body. This comprehensive review delves into the pathophysiological mechanisms underlying epithelial transport and its significance in disease pathogenesis. Beginning with an introduction to epithelial transport, it covers various forms, including ion, water, and nutrient transfer, followed by an exploration of the processes governing ion transport and hormonal regulation. The review then addresses genetic disorders, like cystic fibrosis and Bartter syndrome, that affect epithelial transport. Furthermore, it investigates the involvement of epithelial transport in the pathophysiology of conditions such as diarrhea, hypertension, and edema. Finally, the review analyzes the impact of renal disease on epithelial transport and highlights the potential for future research to uncover novel therapeutic interventions for conditions like cystic fibrosis, hypertension, and renal failure.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain;
- Group de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain; (L.R.-F.); (C.V.V.-T.)
| | - Carlota Valeria Villanueva-Tobaldo
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain; (L.R.-F.); (C.V.V.-T.)
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | | |
Collapse
|
41
|
Gong M, Jiang D, Liu R, Tian S, Xing H, Chen Z, Shi R, Li HL. Influence of High-Temperature and Intense Light on the Enzymatic Antioxidant System in Ginger ( Zingiber officinale Roscoe) Plantlets. Metabolites 2023; 13:992. [PMID: 37755272 PMCID: PMC10534589 DOI: 10.3390/metabo13090992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023] Open
Abstract
Environmental stressors such as high temperature and intense light have been shown to have negative effects on plant growth and productivity. To survive in such conditions, plants activate several stress response mechanisms. The synergistic effect of high-temperature and intense light stress has a significant impact on ginger, leading to reduced ginger production. Nevertheless, how ginger responds to this type of stress is not yet fully understood. In this study, we examined the phenotypic changes, malonaldehyde (MDA) content, and the response of four vital enzymes (superoxide dismutase (SOD), catalase (CAT), lipoxygenase (LOX), and nitrate reductase (NR)) in ginger plants subjected to high-temperature and intense light stress. The findings of this study indicate that ginger is vulnerable to high temperature and intense light stress. This is evident from the noticeable curling, yellowing, and wilting of ginger leaves, as well as a decrease in chlorophyll index and an increase in MDA content. Our investigation confirms that ginger plants activate multiple stress response pathways, including the SOD and CAT antioxidant defenses, and adjust their response over time by switching to different pathways. Additionally, we observe that the expression levels of genes involved in different stress response pathways, such as SOD, CAT, LOX, and NR, are differently regulated under stress conditions. These findings offer avenues to explore the stress mechanisms of ginger in response to high temperature and intense light. They also provide interesting information for the choice of genetic material to use in breeding programs for obtaining ginger genotypes capable of withstanding high temperatures and intense light stress.
Collapse
Affiliation(s)
- Min Gong
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (M.G.); (S.T.)
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (D.J.); (H.X.)
| | - Dongzhu Jiang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (D.J.); (H.X.)
- College of Horticulture and Gardening, Yangtze University, Jingzhou 433200, China
| | - Ran Liu
- Chongqing Tianyuan Agricultural Technology Co., Ltd., Chongqing 402100, China;
| | - Shuming Tian
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (M.G.); (S.T.)
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (D.J.); (H.X.)
| | - Haitao Xing
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (D.J.); (H.X.)
| | - Zhiduan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
| | - Rujie Shi
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (M.G.); (S.T.)
| | - Hong-Lei Li
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (D.J.); (H.X.)
| |
Collapse
|
42
|
Ding C, Peng X, Yang J, Chen K, Liu X, Zhao Y, Zhang S, Sun S, Zhang J, Ding Q, Liu S, Liu W. Rg3-loaded P407/CS/HA hydrogel inhibits UVB-induced oxidative stress, inflammation and apoptosis in HaCaT cells. Biomed Pharmacother 2023; 165:115177. [PMID: 37467650 DOI: 10.1016/j.biopha.2023.115177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
UVB radiation can damage human skin, whereas Ginsenoside Rg3, the active ingredient in red ginseng that is processed from ginseng (Panax ginseng C.A. Meyer), could inhibit UVB induced cell damage through anti-oxidation. Meanwhile, P407/CS/HA hydrogel has significant biomedical applications as carriers of drugs. However, the beneficial effects of Rg3-loaded hydrogel (Rg3-Gel) on human HaCaT keratinocytes induced by UVB have rarely been reported. In our study, Rg3 was loaded into hydrogel and the effect of Rg3-Gel against UVB‑induced Hacat cells damages was determined by measuring its ability to alleviate UVB‑induced elevation of oxidative stress, pro-inflammatory and apoptotic response. We found that the treatment with Rg3-Gel inhibited the generation of intracellular ROS and MDA and upregulated the expression of antioxidant enzymes SOD and GSH-Px which were inhibited by UVB exposure. Increased levels of pro-inflammatory cytokines TNF‑α, COX‑2, iNOS and IL‑1β following UVB irradiation were suppressed by the introduction of Rg3-Gel. Additionally, the level of Bcl-2 was decreased and the expression of Bax and Caspase3 were enhanced by Rg3-Gel treatment. In conclusion, Rg3-Gel equipped with the synergistic effect of Rg3 and hydrogel has an effective inhibitory effect on UVB-induced oxidative stress, inflammatory and apoptosis.
Collapse
Affiliation(s)
- Chuanbo Ding
- Jilin Agricultural Science and Technology College, Jilin, China
| | - Xiaojuan Peng
- Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Jiali Yang
- Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Kecheng Chen
- Starsky Medical Research Center, Siping, Jilin 136001, China
| | - Xinglong Liu
- Jilin Agricultural Science and Technology College, Jilin, China
| | - Yingchun Zhao
- Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Shuai Zhang
- Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Shuwen Sun
- Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Jinping Zhang
- Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Qiteng Ding
- Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Shuang Liu
- Goldenwell Biotech, Inc, 50 West Liberty Street, Suite 880, Reno, NV 89501, USA.
| | - Wencong Liu
- Jilin Agricultural University, Changchun, Jilin 130118, China.
| |
Collapse
|
43
|
Long Y, Wang W, Zhang Y, Zhang S, Li Z, Deng J, Li J. Dendrobium nobile Lindl Polysaccharides Attenuate UVB-induced Photodamage by Regulating Oxidative Stress, Inflammation and MMPs Expression in Mice Model. Photochem Photobiol 2023; 99:1269-1281. [PMID: 36651803 DOI: 10.1111/php.13780] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Acute ultraviolet B (UVB) irradiation predominantly leads to various skin disorders caused by photodamage. The major causes of UVB-induced photodamage include oxidative stress, inflammatory infiltration and collagen degradation. The aim of the study was to elucidate whether DNP had protective effect on the skin of KM mice when exposed to UVB irradiation. The DNP protective properties to skin appearance and histopathological alterations in KM mice were evaluated by hematoxylin-eosin staining, toluidine blue staining, Gomori staining and Masson's trichrome staining and mast cell staining. In this study, DNP pretreatment promoted the activities of antioxidant enzymes, including superoxide dismutase, catalase and glutathione peroxidase, while decreased malondialdehyde level in UVB-irradiated skin, along with downregulation of proteins expression of matrix metalloproteinases and reduction in the level of the proinflammatory cytokines. Based on these findings, we demonstrated that DNP displayed strong ameliorative effects on UVB-induced acute photodamage for the first time, indicating that it would be a promoting ingredient candidate that could be used in antiphotodamage.
Collapse
Affiliation(s)
- Yunluan Long
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Wuji Wang
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yanyan Zhang
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Shiqian Zhang
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Zheng Li
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jiang Deng
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jingjie Li
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
44
|
Kim J, Lee N, Chun YS, Lee SH, Ku SK. Krill Oil's Protective Benefits against Ultraviolet B-Induced Skin Photoaging in Hairless Mice and In Vitro Experiments. Mar Drugs 2023; 21:479. [PMID: 37755092 PMCID: PMC10533088 DOI: 10.3390/md21090479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Krill oil (KO) shows promise as a natural marine-derived ingredient for improving skin health. This study investigated its antioxidant, anti-inflammatory, anti-wrinkle, and moisturizing effects on skin cells and UVB-induced skin photoaging in hairless mice. In vitro assays on HDF, HaCaT, and B16/F10 cells, as well as in vivo experiments on 60 hairless mice were conducted. A cell viability assay, diphenyl-1-picryhydrazyl (DPPH) radical scavenging activity test, elastase inhibition assay, procollagen content test, MMP-1 inhibition test, and hyaluronan production assay were used to experiment on in vitro cell models. Mice received oral KO administration (100, 200, or 400 mg/kg) once a day for 15 weeks and UVB radiation three times a week. L-Ascorbic acid (L-AA) was orally administered at 100 mg/kg once daily for 15 weeks, starting from the initial ultraviolet B (UVB) exposures. L-AA administration followed each UVB session (0.18 J/cm2) after one hour. In vitro, KO significantly countered UVB-induced oxidative stress, reduced wrinkles, and prevented skin water loss by enhancing collagen and hyaluronic synthesis. In vivo, all KO dosages showed dose-dependent inhibition of oxidative stress-induced inflammatory photoaging-related skin changes. Skin mRNA expressions for hyaluronan synthesis and collagen synthesis genes also increased dose-dependently after KO treatment. Histopathological analysis confirmed that krill oil (KO) ameliorated the damage caused by UVB-irradiated skin tissues. The results imply that KO could potentially act as a positive measure in diminishing UVB-triggered skin photoaging and address various skin issues like wrinkles and moisturization when taken as a dietary supplement.
Collapse
Affiliation(s)
- Jongkyu Kim
- AriBnC Co., Ltd., Yongin 16914, Republic of Korea; (J.K.); (Y.-S.C.)
| | - Namju Lee
- AriBnC Co., Ltd., Yongin 16914, Republic of Korea; (J.K.); (Y.-S.C.)
| | - Yoon-Seok Chun
- AriBnC Co., Ltd., Yongin 16914, Republic of Korea; (J.K.); (Y.-S.C.)
| | - Sang-Hoon Lee
- Department of Veterinary Surgery, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| |
Collapse
|
45
|
Lee S, Choi SP, Jeong H, Yu WK, Kim SW, Park YS. The Radical Scavenging Activities and Anti-Wrinkle Effects of Soymilk Fractions Fermented with Lacticaseibacillus paracasei MK1 and Their Derived Peptides. Antioxidants (Basel) 2023; 12:1392. [PMID: 37507931 PMCID: PMC10376689 DOI: 10.3390/antiox12071392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Soybean-derived peptides exert several beneficial effects in various experimental models. However, only a few studies have focused on the radical scavenging and anti-wrinkle effects of soymilk-derived peptides produced via different processes, such as fermentation, enzymatic treatment, and ultrafiltration. Therefore, in this study, we investigated the radical scavenging and antiwrinkle effects of soymilk fractions produced using these processes. We found that 50SFMKUF5, a 5 kDa ultrafiltration fraction fermented with Lacticaseibacillus paracasei MK1 after flavourzyme treatment, exhibited the highest radical scavenging activity using the 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay as well as potent anti-wrinkle effects assessed by type 1 procollagen production and tumor necrosis factor-α production in ultraviolet B (UVB)-treated human dermal fibroblasts and HaCaT keratinocytes. To identify potential bioactive peptides, candidate peptides were synthesized, and their anti-wrinkle effects were assessed. APEFLKEAFGVN (APE), palmitoyl-APE, and QIVTVEGGLSVISPK peptides were synthesized and used to treat UVB-irradiated fibroblasts, HaCaT keratinocytes, and α-melanocyte-stimulating hormone-induced B16F1 melanoma cells. Among these peptides, Pal-APE exerted the strongest effect. Our results highlight the potential of soymilk peptides as anti-aging substances.
Collapse
Affiliation(s)
- Sulhee Lee
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Sang-Pil Choi
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Huijin Jeong
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Won Kyu Yu
- Yonsei University Dairy, Asan 31419, Republic of Korea
| | - Sang Won Kim
- Yonsei University Dairy, Asan 31419, Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
46
|
Messire G, Serreau R, Berteina-Raboin S. Antioxidant Effects of Catechins (EGCG), Andrographolide, and Curcuminoids Compounds for Skin Protection, Cosmetics, and Dermatological Uses: An Update. Antioxidants (Basel) 2023; 12:1317. [PMID: 37507856 PMCID: PMC10376544 DOI: 10.3390/antiox12071317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Here we have chosen to highlight the main natural molecules extracted from Camellia sinensis, Andrographis paniculata, and Curcuma longa that may possess antioxidant activities of interest for skin protection. The molecules involved in the antioxidant process are, respectively, catechins derivatives, in particular, EGCG, andrographolide, and its derivatives, as well as various curcuminoids. These plants are generally used as beverages for Camellia sinensis (tea tree), as dietary supplements, or as spices. The molecules they contain are known for their diverse therapeutic activities, including anti-inflammatory, antimicrobial, anti-cancer, antidiabetic, and dermatological treatment. Their common antioxidant activities and therapeutic applications are widely documented, but their use in cosmetics is more recent. We will see that the use of pharmacomodulated derivatives, the addition of co-antioxidants, and the use of various formulations enable better skin penetration and greater ingredient stability. In this review, we will endeavor to compile the cosmetic uses of these natural molecules of interest and the various structural modulations reported with the aim of improving their bioavailability as well as establishing their different mechanisms of action.
Collapse
Affiliation(s)
- Gatien Messire
- Institut de Chimie Organique et Analytique ICOA, Université d'Orléans-Pôle de Chimie, UMR CNRS 7311, Rue de Chartres-BP 6759, 45067 Orléans CEDEX 02, France
| | - Raphaël Serreau
- Unité de Recherche PSYCOMADD, APHP Université Paris Saclay, Hôpital Paul-Brousse, 12 Avenue Paul Vaillant Couturier, 94804 Villejuif, France
- Addictologie EPSM Georges DAUMEZON, GHT Loiret, 1 Route de Chanteau, 45400 Fleury les Aubrais, France
| | - Sabine Berteina-Raboin
- Institut de Chimie Organique et Analytique ICOA, Université d'Orléans-Pôle de Chimie, UMR CNRS 7311, Rue de Chartres-BP 6759, 45067 Orléans CEDEX 02, France
| |
Collapse
|
47
|
Gu MJ, Lee HW, Yoo G, Kim D, Choi IW, Kim Y, Ha SK. Protective effect of Schizonepeta tenuifolia Briq. ethanolic extract against UVB-induced skin aging and photodamage in hairless mice. Front Pharmacol 2023; 14:1176073. [PMID: 37351505 PMCID: PMC10283040 DOI: 10.3389/fphar.2023.1176073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023] Open
Abstract
The purpose of this study was to illuminate the mechanism by which Schizonepeta tenuifolia Briq. (ST) ethanolic extract prevents skin photoaging in HR-1 hairless mice (HR-1). The ST ethanolic extract alleviated wrinkle formation, epidermal skin thickness, and collagen degradation in skin tissues of ultraviolet B (UVB)-irradiated HR-1 mice. Expression of matrix metalloproteinases (a wrinkle-related marker) was reduced, and tissue inhibitor of metalloproteinase 1 expression was upregulated following application of ST ethanolic extract. Furthermore, skin dehydration and levels of hyaluronidase-1 and -2 (enzymes that break hyaluronic acid) were decreased. Moreover, protein expression of hyaluronan synthases (markers of skin hydration) and hyaluronic acid levels increased following ST ethanolic extract treatment in UVB-induced photoaging HR-1 mice. In addition, the phosphorylation of mitogen-activated protein kinases (MAPKs), including p38, extracellular signal-regulated kinase, and Jun N-terminal kinase was suppressed, and expression of nuclear factor-kappa was reduced. Treatment with ST ethanolic extract also reduced advanced glycation end product (AGE) accumulation and expression of the receptor for AGE (RAGE) in skin tissue. These results suggest that ST ethanolic extract moderates skin damage caused by UVB irradiation via regulating the expression of wrinkle- and hydration-related proteins, MAPKs, and RAGE.
Collapse
Affiliation(s)
- Min Ji Gu
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Hee-Weon Lee
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
- New Drug Development Venter, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Guijae Yoo
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Donghwan Kim
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - In-Wook Choi
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Yoonsook Kim
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Sang Keun Ha
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
- Division of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
48
|
Meyer TA, Swindell WR, Chaudhuri RK. Acetyl Zingerone: A Photostable Multifunctional Skincare Ingredient That Combats Features of Intrinsic and Extrinsic Skin Aging. Antioxidants (Basel) 2023; 12:1168. [PMID: 37371898 DOI: 10.3390/antiox12061168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The cumulative damage skin sustains from exposure to environmental stressors throughout life exerts significant effects on skin aging and cancer development. One of the main ways by which environmental stressors mediate their effects within skin is through induction of reactive oxygen species (ROS). In this review, we chronicle the multiple properties by which acetyl zingerone (AZ) as a skincare ingredient can benefit skin (1) by helping manage overproduction of ROS through multiple routes as an antioxidant, physical quencher and selective chelator, (2) by fortifying protection after UV exposure ends to prevent the type of epidermal DNA damage that correlates with development of skin cancer, (3) by modulating matrisome activity and nurturing the integrity of the extracellular matrix (ECM) within the dermis and (4) through its proficient ability to neutralize singlet oxygen, by stabilizing the ascorbic acid precursor tetrahexyldecyl ascorbate (THDC) in the dermal microenvironment. This activity improves THDC bioavailability and may blunt pro-inflammatory effects of THDC, such as activation of type I interferon signaling. Moreover, AZ is photostable and can sustain its properties during UV exposure, in contrast to α-tocopherol. All these properties of AZ translate into measurable clinical benefits to improve the visual appearance of photoaged facial skin and to strengthen the skin's own defenses against sun damage.
Collapse
Affiliation(s)
| | - William R Swindell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
49
|
Kim M, Jang H, Park JH. Balloon Flower Root-Derived Extracellular Vesicles: In Vitro Assessment of Anti-Inflammatory, Proliferative, and Antioxidant Effects for Chronic Wound Healing. Antioxidants (Basel) 2023; 12:1146. [PMID: 37371876 DOI: 10.3390/antiox12061146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Excessive reactive oxygen species (ROS) in wound lesions can lead to oxidative stress and failure of normal wound healing processes, eventually resulting in chronic skin wounds. A multitude of researchers have investigated various natural products with physiological activities, including antioxidant effects, for healing chronic skin wounds. Balloon flower root (BFR), which contains bioactive components such as platycodins, is known for its anti-inflammatory and antioxidant effects. In this study, we isolated BFR-derived extracellular vesicles (BFR-EVs) that possess anti-inflammatory, proliferative, and antioxidant activities via a combination of polyethylene glycol-based precipitation and ultracentrifugation. Our objective was to investigate the potential of BFR-EVs in treating chronic wounds caused by ROS. Despite efficient intracellular delivery, BFR-EVs showed no significant cytotoxicity. In addition, BFR-EVs inhibited the expression of pro-inflammatory cytokine genes in lipopolysaccharide-stimulated RAW 264.7 cells. Furthermore, water-soluble tetrazolium salt-8 assay showed that BFR-EVs had a proliferation-promoting effect on human dermal fibroblasts (HDFs). Scratch closure and transwell migration assays indicated that BFR-EVs could promote the migration of HDFs. When the antioxidant effect of BFR-EVs was evaluated through 2',7'-dichlorodihydrofluorescein diacetate staining and quantitative real-time polymerase chain reaction, the results revealed that BFR-EVs significantly suppressed ROS generation and oxidative stress induced by H2O2 and ultraviolet irradiation. Our findings suggest that BFR-EVs hold the potential as a natural candidate for healing chronic skin wounds.
Collapse
Affiliation(s)
- Manho Kim
- Department of Biomedical Science, Kangwon National University, Chuncheon-si 24341, Republic of Korea
| | - Hyejun Jang
- Department of Biomedical Science, Kangwon National University, Chuncheon-si 24341, Republic of Korea
| | - Ju Hyun Park
- Department of Biomedical Science, Kangwon National University, Chuncheon-si 24341, Republic of Korea
| |
Collapse
|
50
|
Panahi HKS, Dehhaghi M, Amiri H, Guillemin GJ, Gupta VK, Rajaei A, Yang Y, Peng W, Pan J, Aghbashlo M, Tabatabaei M. Current and emerging applications of saccharide-modified chitosan: a critical review. Biotechnol Adv 2023; 66:108172. [PMID: 37169103 DOI: 10.1016/j.biotechadv.2023.108172] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/15/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
Chitin, as the main component of the exoskeleton of Arthropoda, is a highly available natural polymer that can be processed into various value-added products. Its most important derivative, i.e., chitosan, comprising β-1,4-linked 2-amino-2-deoxy-β-d-glucose (deacetylated d-glucosamine) and N-acetyl-d-glucosamine units, can be prepared via alkaline deacetylation process. Chitosan has been used as a biodegradable, biocompatible, non-antigenic, and nontoxic polymer in some in-vitro applications, but the recently found potentials of chitosan for in-vivo applications based on its biological activities, especially antimicrobial, antioxidant, and anticancer activities, have upgraded the chitosan roles in biomaterials. Chitosan approval, generally recognized as a safe compound by the United States Food and Drug Administration, has attracted much attention toward its possible applications in diverse fields, especially biomedicine and agriculture. Even with some favorable characteristics, the chitosan's structure should be customized for advanced applications, especially due to its drawbacks, such as low drug-load capacity, low solubility, high viscosity, lack of elastic properties, and pH sensitivity. In this context, derivatization with relatively inexpensive and highly available mono- and di-saccharides to soluble branched chitosan has been considered a "game changer". This review critically reviews the emerging technologies based on the synthesis and application of lactose- and galactose-modified chitosan as two important chitosan derivatives. Some characteristics of chitosan derivatives and biological activities have been detailed first to understand the value of these natural polymers. Second, the saccharide modification of chitosan has been discussed briefly. Finally, the applications of lactose- and galactose-modified chitosan have been scrutinized and compared to native chitosan to provide an insight into the current state-of-the research for stimulating new ideas with the potential of filling research gaps.
Collapse
Affiliation(s)
- Hamed Kazemi Shariat Panahi
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Mona Dehhaghi
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran; Environmental Research Institute, University of Isfahan, Isfahan 81746-73441, Iran
| | - Gilles J Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Ahmad Rajaei
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Yadong Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wanxi Peng
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Mortaza Aghbashlo
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| |
Collapse
|