1
|
Agarwal M, Roth K, Yang Z, Sharma R, Maddipati K, Westrick J, Petriello MC. Loss of flavin-containing monooxygenase 3 modulates dioxin-like polychlorinated biphenyl 126-induced oxidative stress and hepatotoxicity. ENVIRONMENTAL RESEARCH 2024; 250:118492. [PMID: 38373550 PMCID: PMC11102846 DOI: 10.1016/j.envres.2024.118492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Dioxin-like pollutants (DLPs), such as polychlorinated biphenyl 126 (PCB 126), are synthetic chemicals classified as persistent organic pollutants. They accumulate in adipose tissue and have been linked to cardiometabolic disorders, including fatty liver disease. The toxicity of these compounds is associated with activation of the aryl hydrocarbon receptor (Ahr), leading to the induction of phase I metabolizing enzyme cytochrome P4501a1 (Cyp1a1) and the subsequent production of reactive oxygen species (ROS). Recent research has shown that DLPs can also induce the xenobiotic detoxification enzyme flavin-containing monooxygenase 3 (FMO3), which plays a role in metabolic homeostasis. We hypothesized whether genetic deletion of Fmo3 could protect mice, particularly in the liver, where Fmo3 is most inducible, against PCB 126 toxicity. To test this hypothesis, male C57BL/6 wild-type (WT) mice and Fmo3 knockout (Fmo3 KO) mice were exposed to PCB 126 or vehicle (safflower oil) during a 12-week study, at weeks 2 and 4. Various analyses were performed, including hepatic histology, RNA-sequencing, and quantitation of PCB 126 and F2-isoprostane concentrations. The results showed that PCB 126 exposure caused macro and microvesicular fat deposition in WT mice, but this macrovesicular fatty change was absent in Fmo3 KO mice. Moreover, at the pathway level, the hepatic oxidative stress response was significantly different between the two genotypes, with the induction of specific genes observed only in WT mice. Notably, the most abundant F2-isoprostane, 8-iso-15-keto PGE2, increased in WT mice in response to PCB 126 exposure. The study's findings also demonstrated that hepatic tissue concentrations of PCB 126 were higher in WT mice compared to Fmo3 KO mice. In summary, the absence of FMO3 in mice led to a distinctive response to dioxin-like pollutant exposure in the liver, likely due to alterations in lipid metabolism and storage, underscoring the complex interplay of genetic factors in the response to environmental toxins.
Collapse
Affiliation(s)
- Manisha Agarwal
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Katherine Roth
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Zhao Yang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Rahul Sharma
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Krishnarao Maddipati
- Department of Pathology, Lipidomic Core Facility, Wayne State University, Detroit, MI, 48202, USA
| | - Judy Westrick
- Department of Chemistry, Lumigen Instrumentation Center, Wayne State University, Detroit, MI, 48202, USA
| | - Michael C Petriello
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
2
|
Wibulpolprasert P, Subpinyo B, Chirnaksorn S, Shantavasinkul PC, Putadechakum S, Phongkitkarun S, Sritara C, Angkathunyakul N, Sumritpradit P. Correlation between magnetic resonance imaging proton density fat fraction (MRI-PDFF) and liver biopsy to assess hepatic steatosis in obesity. Sci Rep 2024; 14:6895. [PMID: 38519637 PMCID: PMC10960039 DOI: 10.1038/s41598-024-57324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
Obesity is highly associated with Non-alcoholic fatty liver disease (NAFLD) and increased risk of liver cirrhosis and liver cancer-related death. We determined the diagnostic performance of the complex-based chemical shift technique MRI-PDFF for quantifying liver fat and its correlation with histopathologic findings in an obese population within 24 h before bariatric surgery. This was a prospective, cross-sectional, Institutional Review Board-approved study of PDFF-MRI of the liver and MRI-DIXON image volume before bariatric surgery. Liver tissues were obtained during bariatric surgery. The prevalence of NAFLD in the investigated cohort was as high as 94%. Histologic hepatic steatosis grades 0, 1, 2, and 3 were observed in 3 (6%), 25 (50%), 14 (28%), and 8 (16%) of 50 obese patients, respectively. The mean percentages of MRI-PDFF from the anterior and posterior right hepatic lobe and left lobe vs. isolate left hepatic lobe were 15.6% (standard deviation [SD], 9.28%) vs. 16.29% (SD, 9.25%). There was a strong correlation between the percentage of steatotic hepatocytes and MRI-PDFF in the left hepatic lobe (r = 0.82, p < 0.001) and the mean value (r = 0.78, p < 0.001). There was a strong correlation between MRI-derived subcutaneous adipose tissue volume and total body fat mass by dual-energy X-ray absorptiometry, especially at the L2-3 and L4 level (r = 0.85, p < 0.001). MRI-PDFF showed good performance in assessing hepatic steatosis and was an excellent noninvasive technique for monitoring hepatic steatosis in an obese population.
Collapse
Affiliation(s)
- Pornphan Wibulpolprasert
- Department of Diagnostic and Therapeutic Radiology, Mahidol University, Bangkok, 10400, Thailand
| | - Benya Subpinyo
- Department of Diagnostic and Therapeutic Radiology, Mahidol University, Bangkok, 10400, Thailand
| | | | | | | | - Sith Phongkitkarun
- Department of Diagnostic and Therapeutic Radiology, Mahidol University, Bangkok, 10400, Thailand
| | - Chanika Sritara
- Department of Diagnostic and Therapeutic Radiology, Mahidol University, Bangkok, 10400, Thailand
| | | | - Preeda Sumritpradit
- Department of Surgery, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
3
|
Brown MG, Feller LE, Trupkiewicz JG, Hutchinson EK, Izzi JM. Comparing different strategies to reduce hepatocellular damage in obese common marmosets (Callithrix jacchus). J Med Primatol 2024; 53:e12683. [PMID: 37946549 DOI: 10.1111/jmp.12683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Obesity in common marmosets (Callithrix jacchus) can lead to various liver pathologies. In other species, reduced caloric intake and weight loss improve prognosis, and, often, hepatoprotectants are used to halt or reverse hepatocellular damage from fat deposition in the liver. There are no published therapies for reducing hepatocellular damage in obese marmosets. METHODS Fifteen obese marmosets were used to evaluate the ability of caloric restriction and pharmacologic therapy (S-adenosylmethionine + milk thistle extract, or SMT), alone and combined, to reduce elevated liver enzymes. Body weight and serum chemistries were measured every 4 weeks for 6 months. RESULTS Across treatment groups, there was a significant reduction in liver enzymes ALT and AST over time. SMT alone significantly reduced liver enzymes ALT and AST at 6 months from baseline. CONCLUSIONS Caloric restriction and SMT, alone and combined, are effective at reducing liver enzyme levels in obese marmosets.
Collapse
Affiliation(s)
- Mallory Gwendolyn Brown
- Research Animal Resources, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Laine Elizabeth Feller
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John Gregory Trupkiewicz
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric Kenneth Hutchinson
- Research Animal Resources, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jessica Marie Izzi
- Research Animal Resources, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Song Y, Yang H, Kim J, Lee Y, Kim SH, Do IG, Park CY. Gemigliptin, a DPP4 inhibitor, ameliorates nonalcoholic steatohepatitis through AMP-activated protein kinase-independent and ULK1-mediated autophagy. Mol Metab 2023; 78:101806. [PMID: 37739179 PMCID: PMC10542016 DOI: 10.1016/j.molmet.2023.101806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/16/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023] Open
Abstract
OBJECTIVE Abnormal autophagic function and activated inflammasomes are typical features in the liver of patients with non-alcoholic steatohepatitis (NASH). Here, we explored whether gemigliptin, a dipeptidyl peptidase 4 (DPP4) inhibitor for treatment of type 2 diabetes, can induce autophagy and regulate inflammasome activation as a potential NASH treatment independent of its anti-diabetic effect. METHODS Expression analysis was performed using human liver samples obtained from 18 subjects who underwent hepatectomy. We explored the function and mechanism of gemigliptin using a methionine- and choline-deficient diet (MCD)-induced NASH mouse model and HepG2 cells cultured in MCD-mimicking medium. RESULTS Autophagy was suppressed by marked decreases in the expression of ULK1 and LC3II/LC3I ratio in human NAFLD/NASH patients, a NASH mouse model, and HepG2 cells cultured with MCD-mimicking media. Surprisingly, we found that the expression of p-AMPK decreased in liver tissues from patients with steatosis but was restored in NASH patients. The expression of p-AMPK in the NASH mouse model was similar to that of the control group. Hence, these results indicate that autophagy was reduced in NASH via an AMPK-independent pathway. However, gemigliptin treatment attenuated lipid accumulation, inflammation, and fibrosis in the liver of MCD diet-fed mice with restoration of ULK1 expression and autophagy induction. In vitro, gemigliptin alleviated inflammasome activation through induction of ULK1-dependent autophagy. Furthermore, gemigliptin treatment upregulated ULK1 expression and activated AMPK even after siRNA-mediated knockdown of AMPKα1/2 and ULK1, respectively. CONCLUSIONS Collectively, these results suggest that gemigliptin ameliorated NASH via AMPK-independent, ULK1-mediated effects on autophagy.
Collapse
Affiliation(s)
- Youngmi Song
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hyekyung Yang
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Juhee Kim
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yoonjin Lee
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sung-Ho Kim
- LG Chem Life Sciences, Gangseo-gu, Seoul, South Korea
| | - In-Gu Do
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Cheol-Young Park
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| |
Collapse
|
5
|
Rasskazova MA, Vorobyev SV, Butova HN. [Possibilities for the use of ursodeoxycholic acid in the treatment of patients with type 2 diabetes mellitus and non-alcoholic fatty liver disease]. TERAPEVT ARKH 2023; 95:316-321. [PMID: 38158979 DOI: 10.26442/00403660.2023.04.202125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 01/03/2024]
Abstract
AIM To investigate the effect of ursodeoxycholic acid (UDCA) on the degree of steatosis, indicators of carbohydrate, lipid metabolism, body weight in patients with type 2 diabetes mellitus (DM) in combination with non-alcoholic fatty liver disease (NAFLD). MATERIALS AND METHODS A prospective cohort comparative study included 36 patients with DM and NAFLD. Patients received UDCA at a dose of 15 mg/kg/day for 6 months, and also followed the recommendations for lifestyle changes through diet and exercise. To compare the results obtained during the study, a control group of patients was recruited that met the criteria for inclusion in the study. The statistical analysis included an assessment of the normality of the distribution of quantitative indicators, followed by the determination of the mean values and standard deviation or medians and quartiles, depending on the nature of the distribution, the reliability coefficient was determined by the Student, by Wilcoxon. Statistical processing was carried out in the Statistica 10 program. RESULTS According to the results of the study, a positive trend was noted in the change in the severity of fatty hepatosis. During the study, a statistically significant decrease in the level of ALT, AST was achieved in the group receiving UDCA (Ursofalk). The results of our study showed that the inclusion of UDCA (Ursofalk) in complex hypoglycemic therapy provides an additional improvement in carbohydrate metabolism. The obtained indicators in the course of the study demonstrate the positive effect of UDCA on weight loss. The greatest result was achieved in reducing waist, which is a positive prognostic factor in reducing the development and progression of NAFLD, diabetes and cardiovascular diseases. Positive changes were observed in relation to the lipid profile. CONCLUSION The study demonstrated the positive effect of the drug UDCA (Ursofalk) on reducing the degree of liver steatosis, on carbohydrate, lipid metabolism, body weight in patients with DM in combination with NAFLD.
Collapse
|
6
|
Identification of Myocardial Insulin Resistance by Using Liver Tests: A Simple Approach for Clinical Practice. Int J Mol Sci 2022; 23:ijms23158783. [PMID: 35955920 PMCID: PMC9369008 DOI: 10.3390/ijms23158783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND We report that myocardial insulin resistance (mIR) occurs in around 60% of patients with type 2 diabetes (T2D) and was associated with higher cardiovascular risk in comparison with patients with insulin-sensitive myocardium (mIS). These two phenotypes (mIR vs. mIS) can only be assessed using time-consuming and expensive methods. The aim of the present study is to search a simple and reliable surrogate to identify both phenotypes. METHODS Forty-seven patients with T2D underwent myocardial [18F]FDG PET/CT at baseline and after a hyperinsulinemic-euglycemic clamp (HEC) to determine mIR were prospectively recruited. Biochemical assessments were performed before and after the HEC. Baseline hepatic steatosis index and index of hepatic fibrosis (FIB-4) were calculated. Furthermore, liver stiffness measurement was performed using transient elastography. RESULTS The best model to predict the presence of mIR was the combination of transaminases, protein levels, FIB-4 score and HOMA (AUC = 0.95; sensibility: 0.81; specificity: 0.95). We observed significantly higher levels of fibrosis in patients with mIR than in those with mIS (p = 0.034). In addition, we found that patients with mIR presented a reduced glucose uptake by the liver in comparison with patients with mIS. CONCLUSIONS The combination of HOMA, protein, transaminases and FIB-4 is a simple and reliable tool for identifying mIR in patients with T2D. This information will be useful to improve the stratification of cardiovascular risk in T2D.
Collapse
|
7
|
Forlano R, Sivakumar M, Mullish BH, Manousou P. Gut Microbiota—A Future Therapeutic Target for People with Non-Alcoholic Fatty Liver Disease: A Systematic Review. Int J Mol Sci 2022; 23:ijms23158307. [PMID: 35955434 PMCID: PMC9368436 DOI: 10.3390/ijms23158307] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents an increasing cause of liver disease, affecting one-third of the population worldwide. Despite many medications being in the pipeline to treat the condition, there is still no pharmaceutical agent licensed to treat the disease. As intestinal bacteria play a crucial role in the pathogenesis and progression of liver damage in patients with NAFLD, it has been suggested that manipulating the microbiome may represent a therapeutical option. In this review, we summarise the latest evidence supporting the manipulation of the intestinal microbiome as a potential therapy for treating liver disease in patients with NAFLD.
Collapse
Affiliation(s)
- Roberta Forlano
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W2 1NY, UK; (R.F.); (B.H.M.)
| | - Mathuri Sivakumar
- Faculty of Medicine, University of Birmingham, Birmingham B15 2TT, UK;
| | - Benjamin H. Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W2 1NY, UK; (R.F.); (B.H.M.)
| | - Pinelopi Manousou
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W2 1NY, UK; (R.F.); (B.H.M.)
- Correspondence:
| |
Collapse
|
8
|
Maevskaya M, Kotovskaya Y, Ivashkin V, Tkacheva O, Troshina E, Shestakova M, Breder V, Geyvandova N, Doschitsin V, Dudinskaya E, Ershova E, Kodzoeva K, Komshilova K, Korochanskaya N, Mayorov A, Mishina E, Nadinskaya M, Nikitin I, Pogosova N, Tarzimanova A, Shamkhalova M. The National Consensus statement on the management of adult patients with non-alcoholic fatty liver disease and main comorbidities. TERAPEVT ARKH 2022; 94:216-253. [DOI: 10.26442/00403660.2022.02.201363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 12/15/2022]
Abstract
The National Consensus was prepared with the participation of the National Medical Association for the Study of the Multimorbidity, Russian Scientific Liver Society, Russian Association of Endocrinologists, Russian Association of Gerontologists and Geriatricians, National Society for Preventive Cardiology, Professional Foundation for the Promotion of Medicine Fund PROFMEDFORUM.
The aim of the multidisciplinary consensus is a detailed analysis of the course of non-alcoholic fatty liver disease (NAFLD) and the main associated conditions. The definition of NAFLD is given, its prevalence is described, methods for diagnosing its components such as steatosis, inflammation and fibrosis are described.
The association of NAFLD with a number of cardio-metabolic diseases (arterial hypertension, atherosclerosis, thrombotic complications, type 2 diabetes mellitus (T2DM), obesity, dyslipidemia, etc.), chronic kidney disease (CKD) and the risk of developing hepatocellular cancer (HCC) were analyzed. The review of non-drug methods of treatment of NAFLD and modern opportunities of pharmacotherapy are presented.
The possibilities of new molecules in the treatment of NAFLD are considered: agonists of nuclear receptors, antagonists of pro-inflammatory molecules, etc. The positive properties and disadvantages of currently used drugs (vitamin E, thiazolidinediones, etc.) are described. Special attention is paid to the multi-target ursodeoxycholic acid (UDCA) molecule in the complex treatment of NAFLD as a multifactorial disease. Its anti-inflammatory, anti-oxidant and cytoprotective properties, the ability to reduce steatosis an independent risk factor for the development of cardiovascular pathology, reduce inflammation and hepatic fibrosis through the modulation of autophagy are considered.
The ability of UDCA to influence glucose and lipid homeostasis and to have an anticarcinogenic effect has been demonstrated. The Consensus statement has advanced provisions for practitioners to optimize the diagnosis and treatment of NAFLD and related common pathogenetic links of cardio-metabolic diseases.
Collapse
|
9
|
Yin H, Shi A, Wu J. Platelet-Activating Factor Promotes the Development of Non-Alcoholic Fatty Liver Disease. Diabetes Metab Syndr Obes 2022; 15:2003-2030. [PMID: 35837578 PMCID: PMC9275506 DOI: 10.2147/dmso.s367483] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifaceted clinicopathological syndrome characterised by excessive hepatic lipid accumulation that causes steatosis, excluding alcoholic factors. Platelet-activating factor (PAF), a biologically active lipid transmitter, induces platelet activation upon binding to the PAF receptor. Recent studies have found that PAF is associated with gamma-glutamyl transferase, which is an indicator of liver disease. Moreover, PAF can stimulate hepatic lipid synthesis and cause hypertriglyceridaemia. Furthermore, the knockdown of the PAF receptor gene in the animal models of NAFLD helped reduce the inflammatory response, improve glucose homeostasis and delay the development of NAFLD. These findings suggest that PAF is associated with NAFLD development. According to reports, patients with NAFLD or animal models have marked platelet activation abnormalities, mainly manifested as enhanced platelet adhesion and aggregation and altered blood rheology. Pharmacological interventions were accompanied by remission of abnormal platelet activation and significant improvement in liver function and lipids in the animal model of NAFLD. These confirm that platelet activation may accompany a critical importance in NAFLD development and progression. However, how PAFs are involved in the NAFLD signalling pathway needs further investigation. In this paper, we review the relevant literature in recent years and discuss the role played by PAF in NAFLD development. It is important to elucidate the pathogenesis of NAFLD and to find effective interventions for treatment.
Collapse
Affiliation(s)
- Hang Yin
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China
| | - Anhua Shi
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China
| | - Junzi Wu
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China
- Correspondence: Junzi Wu; Anhua Shi, Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China, Tel/Fax +86 187 8855 7524; +86 138 8885 0813, Email ;
| |
Collapse
|
10
|
Chromium picolinate balances the metabolic and clinical markers in nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled trial. Eur J Gastroenterol Hepatol 2021; 33:1298-1306. [PMID: 32804855 DOI: 10.1097/meg.0000000000001830] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Nonalcoholic fatty liver disease (NAFLD) is a complicated disease and is considered as a severe global health problem affecting 30% of adults worldwide. The present study aimed to evaluate changes in oxidative stress, adipokines, liver enzyme, and body composition following treatment with chromium picolinate (CrPic) among patients with NAFLD. PARTICIPANTS AND METHODS The current randomized, double-blind, placebo-controlled study was conducted on 46 NAFLD patients with the age range of 20-65 years. Patients were randomly classified into two groups, receiving either 400 µg CrPic tablets in two divided doses of 200 µg (23 patients) or placebo (23 patients) daily for 12 weeks. The participants' body composition and biochemical parameters were evaluated at the baseline and after 12 weeks. RESULTS Serum levels of liver enzymes reduced significantly only in the CrPic group (P < 0.05 for all), but not between the groups after the intervention. Besides, there were significant differences between the study groups regarding body weight and body fat mass, total antioxidant capacity, superoxide dismutase, malondialdehyde, leptin, and adiponectin post-intervention (P = 0.017, P = 0.032, P = 0.003, P = 0.023, P = 0.012, P = 0.003, and P = 0.042, respectively). However, glutathione peroxidase and resistin levels did not differ significantly between groups (P = 0.127 and P = 0.688, respectively). DISCUSSION AND CONCLUSION This study showed that consuming 400 µg/day of CrPic for 12 weeks in patients with NAFLD causes a significant change in leptin, adiponectin, oxidative stress (expect glutathione peroxidase), and body weight, compared to baseline. Nevertheless, it does not affect liver enzymes. Therefore, the CrPic supplementation may improve adipokines, some anthropometric indices, and oxidative stress in patients with NAFLD.
Collapse
|
11
|
Cespiati A, Petta S, Lombardi R, Di Marco V, Calvaruso V, Bertelli C, Pisano G, Fatta E, Sigon G, Iuculano F, Crapanzano L, Gibilaro G, Francione P, Craxì A, Fargion S, Fracanzani AL. Metabolic comorbidities and male sex influence steatosis in chronic hepatitis C after viral eradication by direct-acting antiviral therapy (DAAs): Evaluation by the controlled attenuation parameter (CAP). Dig Liver Dis 2021; 53:1301-1307. [PMID: 33214063 DOI: 10.1016/j.dld.2020.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic hepatitis C (CHC) is associated with hepatic steatosis, related to both a direct viral action and metabolic features. Vice-versa data on hepatic steatosis after viral eradication by direct-acting antiviral agents (DAA) are undefined although the presence of metabolic alterations could strongly influence the occurrence of steatosis as in NAFLD. The controlled attenuation parameter (CAP) (FibroscanⓇ) allows the qualitative and quantitative evaluation of fatty liver. AIM to evaluate in patients with CHC whether hepatic steatosis diagnosed by CAP modifies after DAAs-induced sustained virologic response (SVR). METHODS Data were collected the day of DAAs therapy starting and six months after SVR. CAP ≥ 248 dB/m defined the presence of steatosis. RESULTS 794 CHC SVR patients referring to 2 Italian Units were enrolled. Mean age was 64 ± 16 ys, 50% males, BMI 25.4 ± 4 kg/m2, genotype type-1 in 73%, type-3 in 8%. Prevalence of hepatic steatosis at baseline was 32% by US and 46% by CAP. De novo steatosis developed in 125 (29%), resolution in 122 (30%). At multivariate analysis de novo steatosis was independently associated with male sex (OR 1.7, CI 95% 1.09-2.67; p = 0.02) and baseline BMI (for unit increase OR 1.19, CI 95%1.11-1.29; p < 0.001). Baseline BMI (for unit increase OR 0.47, CI 95% 0.25-0.89; p = 0.02) and triglycerides (for unit increase OR 0.93, CI 95% 0.87-0.99; p = 0.03) prevented steatosis resolution after therapy. CONCLUSIONS after SVR de novo steatosis and resolution of baseline steatosis are closely related to the presence of metabolic comorbidities.
Collapse
Affiliation(s)
- Annalisa Cespiati
- Unit of Internal Medicine and Metabolic Disease, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Italy; Department of Pathophysiology and Transplantation, University of Milan, Italy
| | - Salvatore Petta
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Italy
| | - Rosa Lombardi
- Unit of Internal Medicine and Metabolic Disease, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Italy; Department of Pathophysiology and Transplantation, University of Milan, Italy.
| | - Vito Di Marco
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Italy
| | - Vincenza Calvaruso
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Italy
| | - Cristina Bertelli
- Unit of Internal Medicine and Metabolic Disease, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Italy
| | - Giuseppina Pisano
- Unit of Internal Medicine and Metabolic Disease, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Italy
| | - Erika Fatta
- Unit of Internal Medicine and Metabolic Disease, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Italy
| | - Giordano Sigon
- Unit of Internal Medicine and Metabolic Disease, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Italy; Department of Pathophysiology and Transplantation, University of Milan, Italy
| | - Federica Iuculano
- Unit of Internal Medicine and Metabolic Disease, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Italy; Department of Pathophysiology and Transplantation, University of Milan, Italy
| | - Luciano Crapanzano
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Italy
| | - Gerlando Gibilaro
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Italy
| | - Paolo Francione
- Unit of Internal Medicine and Metabolic Disease, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Italy; Department of Pathophysiology and Transplantation, University of Milan, Italy
| | - Antonio Craxì
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Italy
| | - Silvia Fargion
- Department of Pathophysiology and Transplantation, University of Milan, Italy
| | - Anna Ludovica Fracanzani
- Unit of Internal Medicine and Metabolic Disease, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Italy; Department of Pathophysiology and Transplantation, University of Milan, Italy
| |
Collapse
|
12
|
Dedov II, Shestakova MV, Melnichenko GA, Mazurina NV, Andreeva EN, Bondarenko IZ, Gusova ZR, Dzgoeva FK, Eliseev MS, Ershova EV, Zhuravleva MV, Zakharchuk TA, Isakov VA, Klepikova MV, Komshilova KA, Krysanova VS, Nedogoda SV, Novikova AM, Ostroumova OD, Pereverzev AP, Rozhivanov RV, Romantsova TI, Ruyatkina LA, Salasyuk AS, Sasunova AN, Smetanina SA, Starodubova AV, Suplotova LA, Tkacheva ON, Troshina EA, Khamoshina MV, Chechelnitskaya SM, Shestakova EA, Sheremet’eva EV. INTERDISCIPLINARY CLINICAL PRACTICE GUIDELINES "MANAGEMENT OF OBESITY AND ITS COMORBIDITIES". OBESITY AND METABOLISM 2021; 18:5-99. [DOI: 10.14341/omet12714] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | - M. S. Eliseev
- Research Institute of Rheumatogy named after V.A. Nasonova
| | | | | | | | - V. A. Isakov
- Federal Research Center of Nutrition, Biotechnology and Food Safety
| | - M. V. Klepikova
- Russian Medical Academy of Continuous Professional Education
| | | | | | | | - A. M. Novikova
- Research Institute of Rheumatogy named after V.A. Nasonova
| | - O. D. Ostroumova
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| | - A. P. Pereverzev
- Russian National Research Medical University named after N.I. Pirogov
| | | | | | | | | | - A. N. Sasunova
- Federal Research Center of Nutrition, Biotechnology and Food Safety
| | | | | | | | - O. N. Tkacheva
- Russian National Research Medical University named after N.I. Pirogov
| | | | | | | | | | | |
Collapse
|
13
|
Kedarisetty CK, Bhardwaj A, Kumar G, Rastogi A, Bihari C, Kumar M, Sarin SK. Efficacy of combining pentoxiphylline and vitamin E versus vitamin E alone in non-alcoholic steatohepatitis- A randomized pilot study. Indian J Gastroenterol 2021; 40:41-49. [PMID: 33772456 DOI: 10.1007/s12664-020-01131-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIM Non-alcoholic steatohepatitis (NASH) is the most prevalent cause of chronic liver disease. Vitamin E (VE), an anti-oxidant, has shown improvement in NAFLD activity score (NAS) but not fibrosis. Pentoxiphylline (PTX), an anti-TNF-alpha agent, has been reported to reduce hepatic inflammation and fibrosis. We evaluated combination of these drugs in NASH patients. METHODS In a prospective study, consecutive histologically proven patients with NASH were randomized to receive either PTX, 400 mg thrice daily and VE 400 IU twice daily (group PTVE, n = 36) or VE alone (group VE, n = 33). Clinical, dietary and biochemical follow-up was done till 12 months. Primary end-point was change in alanine aminotransferase (ALT) levels. RESULTS: Both groups were comparable at baseline. On a strict diet and lifestyle modification regimen, both groups had similar reduction in body mass index and waist circumference. There was a similar reduction in ALT levels in the two groups. Metabolically, patients in PTVE group had greater reduction in fasting insulin levels and homeostatic model assessment of insulin resistance (HOMA-IR) than VE group (p = 0.05). Tumor necrosis factor alpha (TNFα) levels were also significantly lower in PTVE group from 6 months onwards. Twelve (10%) patients had repeat liver biopsy (7 in group PTVE, 5 in group VE) with no difference in reduction of NAS score (p = 0.45). However, there was a significant fibrosis regression in PTVE compared to VE group (p = 0.003). CONCLUSIONS These data show greater efficacy of a combination of PTX and VE in achieving fibrosis regression compared to VE alone with better metabolic homeostasis and amelioration of the pro-inflammatory status. TRIAL REGISTRATION Clinical Trials Registry no. NCT01384578.
Collapse
Affiliation(s)
- Chandan Kumar Kedarisetty
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110 070, India. .,Departments of Hepatology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600 116, India.
| | - Ankit Bhardwaj
- Department of Clinical Research, Institute of Liver and Biliary Sciences, New Delhi 110 070, India
| | - Guresh Kumar
- Department of Clinical Research, Institute of Liver and Biliary Sciences, New Delhi 110 070, India
| | - Archana Rastogi
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi 110 070, India
| | - Chhagan Bihari
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi 110 070, India
| | - Manoj Kumar
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110 070, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110 070, India.
| |
Collapse
|
14
|
Li NN, Li W, Feng JX, Zhang WW, Zhang R, Du SH, Liu SY, Xue GH, Yan C, Cui JH, Zhao HQ, Feng YL, Gan L, Zhang Q, Chen C, Liu D, Yuan J. High alcohol-producing Klebsiella pneumoniae causes fatty liver disease through 2,3-butanediol fermentation pathway in vivo. Gut Microbes 2021; 13:1979883. [PMID: 34632939 PMCID: PMC8510565 DOI: 10.1080/19490976.2021.1979883] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
High alcohol-producing Klebsiella pneumoniae (HiAlc Kpn) in the gut microbiota had been demonstrated to be the causative agent of fatty liver disease (FLD). However, the catabolic pathways for alcohol production in vivo remain unclear. Here, we characterized the genome of HiAlc and medium alcohol-producing (MedAlc) Kpn and constructed an adh (an essential gene encoding alcohol dehydrogenase) knock-out HiAlc Kpn W14 strain (W14Δadh) using CRISPR-Cas9 system. Subsequently, we established the mouse model via gavage administration of HiAlc Kpn W14 and W14 Δadh strains, respectively. Proteome and metabolome analysis showed that 10 proteins and six major metabolites involved in the 2,3-butanediol fermentation pathway exhibited at least a three-fold change or greater during intestinal growth. Compared with HiAlc Kpn W14-fed mice, W14Δadh-fed mice with weak alcohol-producing ability did not show apparent pathological changes at 4 weeks, although some steatotic hepatocytes were observed at 12 weeks. Our data demonstrated that carbohydrate substances are catabolized to produce alcohol and 2,3-butanediol via the 2,3-butanediol fermentation pathway in HiAlc Kpn, which could be a promising clinical diagnostic marker. The production of high amounts of endogenous alcohol is responsible for the observed steatosis effects in hepatocytes in vivo.
Collapse
Affiliation(s)
- Nan-Nan Li
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Wei Li
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China, Beijing, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China, Beijing, China
| | - Jun-Xia Feng
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Wei-Wei Zhang
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Rui Zhang
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Shu-Heng Du
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Shi-Yu Liu
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Guan-Hua Xue
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Chao Yan
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Jing-Hua Cui
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Han-Qing Zhao
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Yan-Ling Feng
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Lin Gan
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Qun Zhang
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Chen Chen
- Biomedical inovation center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Di Liu
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China, Beijing, China
| | - Jing Yuan
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Hepatoprotective Effects of a Novel Trihoney against Nonalcoholic Fatty Liver Disease: A Comparative Study with Atorvastatin. ScientificWorldJournal 2020; 2020:4503253. [PMID: 33132768 PMCID: PMC7568805 DOI: 10.1155/2020/4503253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 09/07/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disorder worldwide with no curative therapy. The aim of this study was to investigate the hepatoprotective effects of a novel Trihoney against biochemical and histological manifestations of NAFLD in hypercholesterolemic rabbits. Methodology. Forty-eight male New Zealand white (NZW) rabbits were grouped into normal diet (C), normal diet with 0.6 g/kg/day of Trihoney (C + H), 1% cholesterol diet (HCD), 1% cholesterol diet with 0.3 g/kg/day of Trihoney (HCD + H1), 1% cholesterol diet with 0.6 g/kg/day of Trihoney (HCD + H2), and 1% cholesterol diet with 2 mg/kg/day of atorvastatin (HCD + At.). Animals were sacrificed after 12 weeks of treatment. Serum lipids and liver function test (LFT) were measured prior to and at the endpoint of the experiment for total cholesterol (TC), low-density lipoprotein (LDL-c), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), and total bilirubin (T. Bil.). Liver was processed for histopathology study. Liver homogenate was analysed for oxidative stress parameters: superoxide dismutase (SOD), glutathione peroxidase (GPx), and malondialdehyde (MDA). Results. Lipid analysis approved the induction of hypercholesterolemia. A significant elevation (p < 0.01) of serum AST and ALT levels showed by the HCD group was compared to C and C + H groups. Trihoney exhibited a significant reduction (p < 0.001) of AST and ALT compared to the HCD group. Likewise, AST and ALT reduced significantly in the HCD + At. group (p < 0.001). Trihoney supplementation induced significant (p < 0.05) enhancement of SOD and GPx activities. Atorvastatin treatment was associated with significant (p < 0.05) reduction of SOD and GPx activities in the liver. Trihoney and atorvastatin showed marked (p < 0.001) reduction of hepatic lipid peroxidation. Trihoney showed histological protection against progression of NAFLD to nonalcoholic steatohepatitis (NASH). Atorvastatin exhibited no beneficial impact on hepatic architecture. Conclusion. Trihoney was able to maintain normal liver function and showed hepatoprotection against progression of NAFLD to NASH probably through hypocholesterolaemic and antioxidant functions.
Collapse
|
16
|
Li C, Yang J, Wang Y, Qi Y, Yang W, Li Y. Farnesoid X Receptor Agonists as Therapeutic Target for Cardiometabolic Diseases. Front Pharmacol 2020; 11:1247. [PMID: 32982723 PMCID: PMC7479173 DOI: 10.3389/fphar.2020.01247] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiometabolic diseases are characterized as a combination of multiple risk factors for cardiovascular disease (CVD) and metabolic diseases including diabetes mellitus and dyslipidemia. Cardiometabolic diseases are closely associated with cell glucose and lipid metabolism, inflammatory response and mitochondrial function. Farnesoid X Receptor (FXR), a metabolic nuclear receptor, are found to be activated by primary BAs such as chenodeoxycholic acid (CDCA), cholic acid (CA) and synthetic agonists such as obeticholic acid (OCA). FXR plays crucial roles in regulating cholesterol homeostasis, lipid metabolism, glucose metabolism, and intestinal microorganism. Recently, emerging evidence suggests that FXR agonists are functional for metabolic syndrome and cardiovascular diseases and are considered as a potential therapeutic agent. This review will discuss the pathological mechanism of cardiometabolic disease and reviews the potential mechanisms of FXR agonists in the treatment of cardiometabolic disease.
Collapse
Affiliation(s)
- Chao Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Yang
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Wang
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yingzi Qi
- School of Health, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenqing Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunlun Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China.,Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
17
|
Yan Y, Liu C, Zhao S, Wang X, Wang J, Zhang H, Wang Y, Zhao G. Probiotic Bifidobacterium lactis V9 attenuates hepatic steatosis and inflammation in rats with non-alcoholic fatty liver disease. AMB Express 2020; 10:101. [PMID: 32472368 PMCID: PMC7260323 DOI: 10.1186/s13568-020-01038-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/23/2020] [Indexed: 02/08/2023] Open
Abstract
Both steatosis and inflammation are key pathological events in the progression of non-alcoholic fatty liver disease (NAFLD). Probiotics are beneficial for the prevention and treatment of NAFLD. Bifidobacterium animalis subsp. lactis V9 (V9) is a newly isolated strain with favorable probiotic properties. The study aims to evaluate the effects and mechanisms of V9 on the hepatic steatosis and inflammatory responses in a rat model of NAFLD induced by high-fat diets (HFD). Our results showed that administration of V9 significantly attenuated the HFD-induced increases in alanine transaminase (ALT) and aspartate aminotransferase (AST) levels, resulting in alleviated hepatic steatosis. V9 supplementation reduced the accumulation of hepatic triglyceride and free fatty acid,while increasing the levels of glycogen. Serum levels of glucose were also decreased in HFD rats administrated with V9. Meanwhile, the transcription of SREBP-1c and FAS was reduced, and the hepatic expression of phosphorylated-AMPK and PPAR-α was restored after V9 administration. V9 suppressed the production of inflammatory cytokines (e.g. IL-6, IL-1β, and TNF-α) in HFD-fed rats. The anti-inflammatory effects of V9 was found to be associated with the inhibition of hepatic expression of TLR4, TLR9, NLRP3, and ASC mRNA. Furthermore, the activation of ERK, JNK, AKT and NF-κB were suppressed by V9 treatment. These results indicate that Bifidobacterium lactis V9 improves NAFLD by regulating de novo lipid synthesis and suppressing inflammation through AMPK and TLR-NF-κB pathways, respectively.
Collapse
|
18
|
Tong H, Zhang X, Tan L, Jin R, Huang S, Li X. Multitarget and promising role of dihydromyricetin in the treatment of metabolic diseases. Eur J Pharmacol 2019; 870:172888. [PMID: 31866404 DOI: 10.1016/j.ejphar.2019.172888] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/01/2019] [Accepted: 12/18/2019] [Indexed: 12/30/2022]
Abstract
Dihydromyricetin (DMY or DHM), also known as ampelopsin, is the main natural flavonol compound extracted from the plant Ampelopsis grossedentata (Hand. -Mazz) W.T. Wang. In recent years, accumulating studies have been conducted to explore the extensive biological functions of DMY, including antitumor, anti-inflammation, organ-protective, and metabolic regulation effects. DMY acts as a potential preventive or therapeutic agent in treating multiple diseases, such as diabetes mellitus, atherosclerosis, nonalcoholic fatty liver disease and osteoporosis. This review article summarizes the preventive and therapeutic potential of DMY in multiple metabolic diseases and the main signaling pathways in which DMY participates to offer a comprehensive understanding and guidance for future studies.
Collapse
Affiliation(s)
- Haihui Tong
- Department of Pediatrics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jie Fang Avenue, Wuhan, Hubei Province, 430022, China.
| | - Xuejun Zhang
- Department of Orthopedics, The People's Hospital of China Three Gorges University, First People's Hospital of Yichang, No. 4 Hudi Street, Yichang, Hubei Province, 443000, China.
| | - Lingfang Tan
- Department of Pediatrics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jie Fang Avenue, Wuhan, Hubei Province, 430022, China.
| | - Runming Jin
- Department of Pediatrics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jie Fang Avenue, Wuhan, Hubei Province, 430022, China.
| | - Shilong Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jie Fang Avenue, Wuhan, Hubei Province, 430030, China.
| | - Xin Li
- Department of Pediatrics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jie Fang Avenue, Wuhan, Hubei Province, 430022, China.
| |
Collapse
|
19
|
Sun Y, Li L, Wu J, Gong B, Liu H. Germacrone cooperates with dexmedetomidine to alleviate high-fat diet-induced type 2 diabetes mellitus via upregulating AMPKα1 expression. Exp Ther Med 2019; 18:3514-3524. [PMID: 31602228 PMCID: PMC6777304 DOI: 10.3892/etm.2019.7990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 06/27/2019] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to investigate the effects of germacrone (GM) and dexmedetomidine (DEX) in treating type 2 diabetes mellitus (T2DM). A high-fat diet (HFD)-induced T2DM rat model was established. The experimental rats were divided into the control group, HFD group, GM treatment group, DEX treatment group and GM + DEX treatment group. In addition, adenosine monophosphate-activated protein kinase (AMPK) inhibitor compound C (CC) was used to inhibit AMPKα1 expression. All rats received their respective treatment daily for 21 days. Blood glucose and lipid levels, apoptosis of hepatic cells, and levels of inflammatory factors and oxidative stress indicators in serum samples were evaluated. Protein expression of AMPKα1 and its downstream targets were also investigated. Results demonstrated that blood glucose concentration, blood lipid indicators (endothelin, total cholesterol, triglyceride and low density lipoprotein cholesterol), cell apoptosis in liver tissues, total oxidant status, malondialdehyde, interleukin (IL)-6, tumor necrosis factor-α (TNF-α) and IL-1β levels in serum were increased in the high-fat group compared to the control but decreased following GM and/or DEX treatment. By contrast, high-density lipoprotein cholesterol and antioxidative stress indicator superoxide dismutase (SOD) were decreased in the high-fat group but increased following GM and/or DEX treatment. Protein expression of AMPKα1 and the catabolic genes carnitine palmitoyltransferase-1, peroxisome proliferator-activated receptor-α and acyl coenzyme A were decreased whilst anabolic genes, including sterol regulatory element binding protein-1c, fatty acid synthase and diacylglycerol acyltransferase-2, were increased in the HFD group. These effects were attenuated by GM and/or DEX treatment. AMPKα1 inhibition resulted in decreased SOD and increased cell apoptosis in liver tissues as well as increased IL-6, TNF-α and IL-1β levels compared with the HFD group. However, these effects were abolished following treatment with CC, GM and DEX together. Taken together these results indicated that GM worked synergistically with DEX to attenuate symptoms of high-fat-induced T2DM, with the effect potentially involving an increase in AMPKα1 expression.
Collapse
Affiliation(s)
- Yang Sun
- Department of Anesthesia, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Lanlan Li
- Department of Anesthesia, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Jun Wu
- Department of Anesthesia, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Bing Gong
- Department of Anesthesia, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Haiyan Liu
- Department of Anesthesia, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
20
|
Tang Y, Zhang J, Li J, Lei X, Xu D, Wang Y, Li C, Li X, Mao Y. Turnover of bile acids in liver, serum and caecal content by high-fat diet feeding affects hepatic steatosis in rats. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1293-1304. [DOI: 10.1016/j.bbalip.2019.05.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/22/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022]
|
21
|
Bulutoglu B, Rey-Bedón C, Kang YBA, Mert S, Yarmush ML, Usta OB. A microfluidic patterned model of non-alcoholic fatty liver disease: applications to disease progression and zonation. LAB ON A CHIP 2019; 19:3022-3031. [PMID: 31465069 PMCID: PMC6736752 DOI: 10.1039/c9lc00354a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its progressive form non-alcoholic steatohepatitis (NASH) affect 25% of the world population. NAFLD is predicted to soon become the main cause of liver morbidity and transplantation. The disease is characterized by a progressive increase of lipid accumulation in hepatocytes, which eventually induce fibrosis and inflammation, and can ultimately cause cirrhosis and hepatic carcinoma. Here, we created a patterned model of NAFLD on a chip using free fatty acid gradients to recapitulate a spectrum of disease conditions in a single continuous liver tissue. We established the NAFLD progression via quantification of intracellular lipid accumulation and transcriptional levels of fatty acid transporters and NAFLD pathogenesis markers. We then used this platform to create oxygen driven steatosis zonation mimicking the sinusoidal lipid distribution on a single continuous tissue and showed that this fat zonation disappears under progressed steatosis, in agreement with in vivo observations and recent computational studies. While we focus on free fatty acids and oxygen as the drivers of NAFLD, the microfluidic platform here is extensible to simultaneous use of other drivers.
Collapse
Affiliation(s)
- Beyza Bulutoglu
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA 02114, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Peroxiredoxin 5 ameliorates obesity-induced non-alcoholic fatty liver disease through the regulation of oxidative stress and AMP-activated protein kinase signaling. Redox Biol 2019; 28:101315. [PMID: 31505325 PMCID: PMC6736789 DOI: 10.1016/j.redox.2019.101315] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/23/2019] [Accepted: 09/01/2019] [Indexed: 12/20/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming the most common chronic liver disease globally. NAFLD—which can develop into liver fibrosis, nonalcoholic steatohepatosis, cirrhosis, and hepatocellular carcinoma—is defined as an excess accumulation of fat caused by abnormal lipid metabolism and excessive reactive oxygen species (ROS) generation in hepatocytes. Recently, we reported that Peroxiredoxin 5 (Prx5) plays an essential role in regulating adipogenesis and suggested the need to further investigation on the potential curative effects of Prx5 on obesity-induced fatty liver disease. In the present study, we focused on the role of Prx5 in fatty liver disease. We found that Prx5 overexpression significantly suppressed cytosolic and mitochondrial ROS generation. Additionally, Prx5 regulated the AMP-activated protein kinase pathway and lipogenic gene (sterol regulatory element binding protein-1 and FAS) expression; it also inhibited lipid accumulation, resulting in the amelioration of free fatty acid-induced hepatic steatosis. Silence of Prx5 triggered de novo lipogenesis and abnormal lipid accumulation in HepG2 cells. Concordantly, Prx5 knockout mice exhibited a high susceptibility to obesity-induced hepatic steatosis. Liver sections of Prx5-deletion mice fed on a high-fat diet displayed Oil Red O-stained dots and small leaky shapes due to immoderate fat deposition. Collectively, our findings suggest that Prx5 functions as a protective regulator in fatty liver disease and that it may be a valuable therapeutic target for the management of obesity-related metabolic diseases. Prx5 decreased the FFA-induced intracellular and mitochondrial ROS generation. Prx5 improved hepatic steatosis via regulation of AMP-activated protein kinase. Knockout of Prx5 aggravated obesity related fatty liver disease. Prx5 has a crucial role in hepatic lipid metabolism.
Collapse
|
23
|
Li J, Wei L, Zhao C, Li J, Liu Z, Zhang M, Wang Y. Resveratrol Maintains Lipid Metabolism Homeostasis via One of the Mechanisms Associated with the Key Circadian Regulator Bmal1. Molecules 2019; 24:E2916. [PMID: 31408938 PMCID: PMC6718980 DOI: 10.3390/molecules24162916] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022] Open
Abstract
Resveratrol (RES) possesses anti-inflammatory and anti-oxidant activities, and it can prevent liver lipid metabolism disorders in obese and diabetic individuals. This study elucidated the mechanisms of brain and muscle Arnt-like protein-1 (Bmal1) in the protective effects of RES against liver lipid metabolism disorders. The results indicated that RES ameliorated free fatty acid (FFA)-induced (oleic acid (OA): palmitic acid (PA) = 2:1) glycolipid metabolic disorders in hepatocytes. Simultaneously, RES partially reverted the relatively shallow daily oscillations of FFA-induced circadian clock gene transcription and protein expression in HepG2 cells. RES also attenuated FFA-triggered reactive oxygen species (ROS) secretion and restored mitochondrial membrane potential consumption, as well as the restoration of mitochondrial respiratory complex expression. This study provides compelling evidence that RES controls intracellular lipid metabolic imbalance in a Bmal1-dependent manner. Overall, RES may serve as a promising natural nutraceutical for the regulation of lipid metabolic disorders relevant to the circadian clock.
Collapse
Affiliation(s)
- Jing Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100089, China
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liping Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Caicai Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junyi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhigang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100089, China.
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
24
|
Affiliation(s)
- Bharath Ambale-Venkatesh
- From the Department of Radiology (B.A.V.) and School of Medicine (J.A.C.L.), Johns Hopkins University, 600 N Wolfe St, Baltimore, MD 21287
| | - Joao A. C. Lima
- From the Department of Radiology (B.A.V.) and School of Medicine (J.A.C.L.), Johns Hopkins University, 600 N Wolfe St, Baltimore, MD 21287
| |
Collapse
|
25
|
Cao X, Wu C, Tian Y, Guo P. The caffeic acid moiety plays an essential role in attenuating lipid accumulation by chlorogenic acid and its analogues. RSC Adv 2019; 9:12247-12254. [PMID: 35515874 PMCID: PMC9063487 DOI: 10.1039/c8ra09395d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/18/2019] [Indexed: 02/01/2023] Open
Abstract
Chlorogenic acid (5-caffeoylquinic, CA) possesses distinct hypolipidemic properties in vivo and in vitro, yet the structure-activity relationship (SAR) of CA on lipid metabolism remains unknown. To achieve this aim, we designed and synthesized two sets of CA analogues and evaluated their efficacies to prevent oleic acid (OA)-elicited lipid accumulation in HepG2 cells. Blockage of all hydroxyl and carboxyl groups on the quinic acid moiety did not deteriorate the hypolipidemic effect of CA while blockage of all phenolic hydroxyl groups on the caffeic acid moiety abolished the activity of CA. Further replacement of the quinic acid moiety with cyclohexane and modification of individual phenolic hydroxyl groups on the caffeic acid moiety showed that the phenolic-hydroxyl-reserved analogues displayed a more potent hypolipidemic effect than CA, whereas the analogue with no phenolic hydroxyl displayed little effect on the OA-elicited lipid accumulation. In accordance, the modulating effects of CA on the transcription of the lipogenic gene sterol-regulatory element binding protein (SREBP)1c/1a, acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS) and peroxisome proliferator-activated receptor α (PPARα) were also abolished when the phenolic hydroxyl groups on the caffeic acid moiety were blocked. Our results suggest that the phenolic hydroxyl on the caffeic acid moiety is vital for the lipid-lowering activity of CA.
Collapse
Affiliation(s)
- Xiaoxue Cao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100193 China +86-10-5783-3235
| | - Chongming Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100193 China +86-10-5783-3235
| | - Yu Tian
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100193 China +86-10-5783-3235
| | - Peng Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100193 China +86-10-5783-3235
| |
Collapse
|
26
|
Lim S, Taskinen MR, Borén J. Crosstalk between nonalcoholic fatty liver disease and cardiometabolic syndrome. Obes Rev 2019; 20:599-611. [PMID: 30589487 DOI: 10.1111/obr.12820] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic condition characterized by fat accumulation combined with low-grade inflammation in the liver. A large body of clinical and experimental data shows that increased flux of free fatty acids from increased visceral adipose tissue and de novo lipogenesis can lead to NAFLD and insulin resistance. Thus, individuals with obesity, insulin resistance, and dyslipidaemia are at the greatest risk of developing NAFLD. Conversely, NAFLD is a phenotype of cardiometabolic syndrome. Notably, researchers have discovered a close association between NAFLD and impaired glucose metabolism and focused on the role of NAFLD in the development of type 2 diabetes. Moreover, recent studies provide substantial evidence for an association between NAFLD and atherosclerosis and cardiometabolic disorders. Even if NAFLD can progress into severe liver disorders including nonalcoholic steatohepatitis (NASH) and cirrhosis, the majority of subjects with NAFLD die from cardiovascular disease eventually. In this review, we propose a potential pathological link between NAFLD/NASH and cardiometabolic syndrome. The potential factors that can play a pivotal role in this link, such as inflammation, insulin resistance, alteration in lipid metabolism, oxidative stress, genetic predisposition, and gut microbiota are discussed.
Collapse
Affiliation(s)
- Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Marja-Riitta Taskinen
- Heart and Lung Centre, Helsinki University Central Hospital and Research Programs' Unit, Diabetes & Obesity, University of Helsinki, Helsinki, Finland
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Lab, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
27
|
Park JG, Mok JS, Han YI, Park TS, Kang KW, Choi CS, Park HD, Park J. Connectivity mapping of angiotensin-PPAR interactions involved in the amelioration of non-alcoholic steatohepatitis by Telmisartan. Sci Rep 2019; 9:4003. [PMID: 30850637 PMCID: PMC6408578 DOI: 10.1038/s41598-019-40322-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/30/2019] [Indexed: 12/18/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global health problem that is associated with various metabolic disorders. Telmisartan is a potential treatment for NAFLD due to its ability to improve insulin sensitivity and decrease hepatic fat accumulation via modulation of PPARγ, and to suppress hepatic fibrosis by blocking angiotensin II receptors. However, the underlying mechanisms of action of telmisartan have yet to be fully elucidated. In the present study, diabetic nonalcoholic steatohepatitis (NASH) mice (STAM mice) received daily administrations of telmisartan for 6 weeks to assess the improvements in NASH. Hepatic transcriptome analyses revealed that the amelioration of NASH likely occurred through the regulation of inflammatory- and fibrosis-related gene responses. An integrated network analysis including transcriptional and non-transcriptional genes regulated by telmisartan showed that the NAFLD pathway is interconnected with the dysregulated RAS-PPAR-NFκB pathways. The downstream targets of PPARα, PPARδ, and RELA in this network significantly overlapped with telmisartan-induced differentially expressed genes (DEGs), which were verified in palmitate-treated Hepa1c1c7 cell line. This transcriptome approach accompanied with cell-based molecular analyses provided the opportunity to understand the fundamental molecular mechanisms underpinning the therapeutic effects of telmisartan, and will contribute to the establishment of a novel pharmacological treatment for NASH patients.
Collapse
Affiliation(s)
| | - Jong Soo Mok
- Graduate School of International Agricultural Technology, Seoul National University, Seoul, Korea
| | - Young In Han
- Institute of Green Bio Science and Technology, Seoul National University, Seoul, Korea
| | - Tae Sub Park
- Graduate School of International Agricultural Technology, Seoul National University, Seoul, Korea.,Institute of Green Bio Science and Technology, Seoul National University, Seoul, Korea
| | - Keon Wook Kang
- College of pharmacy, Seoul National University, Seoul, Korea
| | - Cheol Soo Choi
- Korea mouse metabolic phenotyping center, Lee Gil Ya cancer and diabetes institute, Gachon University School of Medicine, Seongnam-si, Republic of Korea.,Endocrinology, Internal Medicine, Gachon University Gil Medical Center, Seongnam-si, Republic of Korea
| | | | - Joonghoon Park
- Graduate School of International Agricultural Technology, Seoul National University, Seoul, Korea. .,Institute of Green Bio Science and Technology, Seoul National University, Seoul, Korea.
| |
Collapse
|
28
|
Pacifico L, Osborn JF, Bonci E, Pierimarchi P, Chiesa C. Association between Vitamin D Levels and Nonalcoholic Fatty Liver Disease: Potential Confounding Variables. Mini Rev Med Chem 2019; 19:310-332. [PMID: 30360708 DOI: 10.2174/1389557518666181025153712] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/16/2017] [Accepted: 08/25/2017] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), historically considered to be the hepatic component of the metabolic syndrome, is a spectrum of fat-associated liver conditions, in the absence of secondary causes, that may progress to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. Disease progression is closely associated with body weight or fatness, dyslipidemia, insulin resistance, oxidative stress, and inflammation. Recently, vitamin D deficiency has been linked to the pathogenesis and severity of NAFLD because of vitamin D "pleiotropic" functions, with roles in immune modulation, cell differentiation and proliferation, and regulation of inflammation. Indeed, several studies have reported an association between vitamin D and NAFLD/NASH. However, other studies have failed to find an association. Therefore, we sought to critically review the current evidence on the association between vitamin D deficiency and NAFLD/NASH, and to analyze and discuss some key variables that may interfere with this evaluation, such as host-, environment-, and heritability-related factors regulating vitamin D synthesis and metabolism; definitions of deficient or optimal vitamin D status with respect to skeletal and nonskeletal outcomes including NAFLD/NASH; methods of measuring 25(OH)D; and methods of diagnosing NAFLD as well as quantifying adiposity, the cardinal link between vitamin D deficiency and NAFLD.
Collapse
Affiliation(s)
- Lucia Pacifico
- Policlinico Umberto I Hospital, Sapienza University of Rome, Viale Regina Elena, 324 00161-Rome, Italy
| | - John F Osborn
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale Regina Elena, 324 00161- Rome, Italy
| | - Enea Bonci
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324 00161- Rome, Italy
| | - Pasquale Pierimarchi
- Institute of Translational Pharmacology, National Research Council, Via Fosso del Cavaliere, 100 00133- Rome, Italy
| | - Claudio Chiesa
- Institute of Translational Pharmacology, National Research Council, Via Fosso del Cavaliere, 100 00133- Rome, Italy
| |
Collapse
|
29
|
Associations of Oxidative Stress and Postoperative Outcome in Liver Surgery with an Outlook to Future Potential Therapeutic Options. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3950818. [PMID: 30906502 PMCID: PMC6393879 DOI: 10.1155/2019/3950818] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/02/2019] [Indexed: 12/16/2022]
Abstract
Several types of surgical procedures have shown to elicit an inflammatory stress response, leading to substantial cytokine production and formation of oxygen-based or nitrogen-based free radicals. Chronic liver diseases including cancers are almost always characterized by increased oxidative stress, in which hepatic surgery is likely to potentiate at least in the short term and hereby furthermore impair the hepatic redox state. During liver resection, intermittent inflow occlusion is commonly applied to prevent excessive blood loss but resulting ischemia and reperfusion of the liver have been linked to increased oxidative stress, leading to impairment of cell functions and subsequent cell death. In the field of liver transplantation, ischemia/reperfusion injury has extensively been investigated in the last decades and has recently been in the scientific focus again due to increased use of marginal donor organs and new machine perfusion concepts. Therefore, given the intriguing role of oxidative stress in the pathogenesis of numerous diseases and in the perioperative setting, the interest for a therapeutic antioxidative agent has been present for several years. This review is aimed at giving an introduction to oxidative stress in surgical procedures in general and then examines the role of oxidative stress in liver surgery in particular, discussing both transplantation and resection. Results from studies in the animal and human settings are included. Finally, potential therapeutic agents that might be beneficial in reducing the burden of oxidative stress in hepatic diseases and during surgery are presented. While there is compelling evidence from animal models and a limited number of clinical studies showing that oxidative stress plays a major role in both liver resection and transplantation and several recent studies have suggested a potential for antioxidative treatment in chronic liver disease (e.g., steatosis), the search for effective antioxidants in the field of liver surgery is still ongoing.
Collapse
|
30
|
Chen H, Ng JPM, Bishop DP, Milthorpe BK, Valenzuela SM. Gold nanoparticles as cell regulators: beneficial effects of gold nanoparticles on the metabolic profile of mice with pre-existing obesity. J Nanobiotechnology 2018; 16:88. [PMID: 30390669 PMCID: PMC6215354 DOI: 10.1186/s12951-018-0414-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/25/2018] [Indexed: 02/07/2023] Open
Abstract
Background We have previously shown that intraperitoneal injection of gold nanoparticles (AuNPs, 20–30 nm) into mice, decreases high-fat diet (HFD) induced weight gain and glucose intolerance, via suppression of inflammatory responses in both fat and liver tissues. This study investigates whether AuNPs provide similar benefit to mice with pre-existing obesity. Male C57BL/6 mice were fed a HFD for 15 weeks. AuNPs (OB-EAu 0.0785 μg/g/day, OB-LAu 0.785 μg/g/day, OB-HAu7.85 μg/g/day, ip) were administered to subgroups of HFD-fed mice over the last 5 weeks. Control group was fed standard chow and administered vehicle injection. Results Only the OB-LAu group demonstrated significant weight loss (12%), while all AuNP treated groups showed improved glycaemic control and reduced blood lipid levels. In the fat tissue, mRNA expression of pro-inflammatory markers were unchanged following AuNP treatment, while glucose and lipid metabolic markers were improved in OB-LAu and OB-HAu mice. In the liver, AuNP treatment downregulated inflammatory markers and improved lipid metabolic markers, with marked effects in OB-EAu and OB-LAu groups. Conclusions AuNP treatment can improve glucose and fat metabolism in mice with long-term obesity, however weight loss was only observed in a single specific dose regime. AuNP therapy is a promising new technology for managing metabolic disorders in the obese. Electronic supplementary material The online version of this article (10.1186/s12951-018-0414-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia.,Centre for Health Technologies, University of Technology Sydney, Sydney, Australia
| | - Jane P M Ng
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - David P Bishop
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, Australia
| | - Bruce K Milthorpe
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia.,Centre for Health Technologies, University of Technology Sydney, Sydney, Australia
| | - Stella M Valenzuela
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia. .,Centre for Health Technologies, University of Technology Sydney, Sydney, Australia.
| |
Collapse
|
31
|
Guo R, Zhao B, Wang Y, Wu D, Wang Y, Yu Y, Yan Y, Zhang W, Liu Z, Liu X. Cichoric Acid Prevents Free-Fatty-Acid-Induced Lipid Metabolism Disorders via Regulating Bmal1 in HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9667-9678. [PMID: 30036051 DOI: 10.1021/acs.jafc.8b02147] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cichoric acid (CA), a polyphenol component from Echinacea purpurea, exhibits preventive effects on liver lipid-metabolism disorders in obesity. This research aimed to determine the role of circadian rhythm signaling during the process of CA-attenuated lipid accumulation in hepatocytes. In the current study, CA treatments improved cell morphology changes and hepatic lipid levels, which were triggered by free fatty acids (2:1, oleate: palmitate) in a dose-dependent way. Besides, CA (200 μM) regulated the circadian rhythm expressions of clock genes and the relatively shallow daily oscillations. Moreover, silencing Bmal1 significantly blocked the p-Akt/Akt pathway to 80.1% ± 1.5% and the p-GSK3β/GSK3β pathway to 64.7% ± 2.8% ( p < 0.05). Furthermore, silencing Bmal1 elevated the expressions of FAS and ACC to 122.4% ± 5.6% and 114.9% ± 1.7% in protein levels ( p < 0.05) and to 166.5% ± 18.5% and 131.4% ± 5.5% in mRNA levels ( p < 0.05). Therefore, our results demonstrated that CA has a Bmal1 resistance to lipid accumulation by enhancing the Akt/GSK3β signaling pathways and modulating the downstream expressions related to lipid metabolism, which indicated that CA might be useful as a natural and promising nonalcoholic fatty liver diseases (NAFLD) modulator.
Collapse
Affiliation(s)
- Rui Guo
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 22 , Yangling 712100 , China
| | - Beita Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 22 , Yangling 712100 , China
| | - Yijie Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 22 , Yangling 712100 , China
| | - Dandan Wu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 22 , Yangling 712100 , China
| | - Yutang Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 22 , Yangling 712100 , China
| | - Yafan Yu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 22 , Yangling 712100 , China
| | - Yuchen Yan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 22 , Yangling 712100 , China
| | - Wentong Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 22 , Yangling 712100 , China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 22 , Yangling 712100 , China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 22 , Yangling 712100 , China
| |
Collapse
|
32
|
Shtriker MG, Peri I, Taieb E, Nyska A, Tirosh O, Madar Z. Galactomannan More than Pectin Exacerbates Liver Injury in Mice Fed with High-Fat, High-Cholesterol Diet. Mol Nutr Food Res 2018; 62:e1800331. [DOI: 10.1002/mnfr.201800331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/15/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Miriam G. Shtriker
- Institute of Biochemistry; Food Science and Nutrition; Robert H. Smith Faculty of Agriculture; Food and Environment; The Hebrew University of Jerusalem; Rehovot 76100 Israel
| | - Irena Peri
- Institute of Biochemistry; Food Science and Nutrition; Robert H. Smith Faculty of Agriculture; Food and Environment; The Hebrew University of Jerusalem; Rehovot 76100 Israel
| | - Elise Taieb
- Institute of Biochemistry; Food Science and Nutrition; Robert H. Smith Faculty of Agriculture; Food and Environment; The Hebrew University of Jerusalem; Rehovot 76100 Israel
| | - Abraham Nyska
- Sackler School of Medicine; Tel Aviv University, and Consultant in Toxicologic Pathology; Timrat 36576 Israel
| | - Oren Tirosh
- Institute of Biochemistry; Food Science and Nutrition; Robert H. Smith Faculty of Agriculture; Food and Environment; The Hebrew University of Jerusalem; Rehovot 76100 Israel
| | - Zecharia Madar
- Institute of Biochemistry; Food Science and Nutrition; Robert H. Smith Faculty of Agriculture; Food and Environment; The Hebrew University of Jerusalem; Rehovot 76100 Israel
| |
Collapse
|
33
|
Zarzour RHA, Alshawsh MA, Asif M, Al-Mansoub MA, Mohamed Z, Ahmad M, Majid AMSA, Asmawi MZ, Kaur G, Al-Dualimi DW, Yam MF. Adipocytokine Regulation and Antiangiogenic Activity Underlie the Molecular Mechanisms of Therapeutic Effects of Phyllanthus niruri against Non-Alcoholic Fatty Liver Disease. Nutrients 2018; 10:E1057. [PMID: 30096951 PMCID: PMC6115813 DOI: 10.3390/nu10081057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 12/23/2022] Open
Abstract
The growth of adipose tissues is considered angiogenesis-dependent during non-alcoholic fatty liver disease (NAFLD). We have recently reported that our standardized 50% methanolic extract (ME) of Phyllanthus niruri (50% ME of P. niruri) has alleviated NAFLD in Sprague⁻Dawley rats. This study aimed to assess the molecular mechanisms of action, and to further evaluate the antiangiogenic effect of this extract. NAFLD was induced by eight weeks of high-fat diet, and treatment was applied for four weeks. Antiangiogenic activity was assessed by aortic ring assay and by in vitro tests. Our findings demonstrated that the therapeutic effects of 50% ME among NAFLD rats, were associated with a significant increase in serum adiponectin, reduction in the serum levels of RBP4, vaspin, progranulin, TNF-α, IL-6, and significant downregulation of the hepatic gene expression of PPARγ, SLC10A2, and Collα1. Concomitantly, 50% ME of P. niruri has exhibited a potent antiangiogenic activity on ring assay, cell migration, vascular endothelial growth factor (VEGF), and tube formation, without any cytotoxic effect. Together, our findings revealed that the protective effects of P. niruri against NAFLD might be attributed to its antiangiogenic effect, as well as to the regulation of adipocytokines and reducing the expression of adipogenic genes.
Collapse
Affiliation(s)
- Raghdaa Hamdan Al Zarzour
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia.
| | - Mohammed A Alshawsh
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Muhammad Asif
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia.
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Majed Ahmed Al-Mansoub
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia.
| | - Zahurin Mohamed
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Mariam Ahmad
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia.
| | - Amin Malik Shah Abdul Majid
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia.
| | - Mohd Zaini Asmawi
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia.
| | - Gurjeet Kaur
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden 11800, Penang, Malaysia.
| | - Dhamraa Waleed Al-Dualimi
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia.
| | - Mun Fei Yam
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia.
| |
Collapse
|
34
|
Meidan E, Kolesnikov Y, Tirosh O. High Fat Diets Composed of Palm Stearin and Olive Oil Equally Exacerbate Liver Inflammatory Damage and Metabolic Stress in Mice. Mol Nutr Food Res 2018; 62:e1700915. [PMID: 29733507 DOI: 10.1002/mnfr.201700915] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/22/2018] [Indexed: 12/15/2022]
Abstract
SCOPE People with fatty liver could be subject to acute infections such as sepsis. The aim of the study is to evaluate the effect of high fat diets (HFD) of olive oil and palm stearin on liver inflammation induced by lipopolysaccharides (LPS). METHODS AND RESULTS C57BL/6J male mice were treated with high fat diets with different sources of oils: palm stearin and olive oil for 8 weeks followed by LPS injection. The proinflammatory effect of olive oil was also studied using gavage treatment and IP injection of LPS. Animals fed with HFDs showed an increase in body weight, elevated blood glucose levels, and fatty liver phenotype. HFDs aggravated the effect of LPS treatment to induce inflammatory response compared to low fat diet (LFD) effect. Following HFD supplementation, LPS induced hyperinsulinemia, more liver damage than in animals that consumed LFD. In addition, both gavage and long-term feeding with high lipids in the presence of LPS resulted in inhibition of gluconeogenic genes expression. CONCLUSION HFDs of both monounsaturated and saturated fat potentiated liver inflammation induced by LPS treatment indicate that the total amount of fat consumed is the main proinflammatory factor rather than the type of fat.
Collapse
Affiliation(s)
- Elena Meidan
- Institute of Biochemistry, Food Science and Nutrition, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Yula Kolesnikov
- Institute of Biochemistry, Food Science and Nutrition, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Oren Tirosh
- Institute of Biochemistry, Food Science and Nutrition, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| |
Collapse
|
35
|
Borrelli A, Bonelli P, Tuccillo FM, Goldfine ID, Evans JL, Buonaguro FM, Mancini A. Role of gut microbiota and oxidative stress in the progression of non-alcoholic fatty liver disease to hepatocarcinoma: Current and innovative therapeutic approaches. Redox Biol 2018; 15:467-479. [PMID: 29413959 PMCID: PMC5975181 DOI: 10.1016/j.redox.2018.01.009] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents the most common chronic liver disease in industrialized countries. NAFLD progresses through the inflammatory phase of non-alcoholic steatohepatitis (NASH) to fibrosis and cirrhosis, with some cases developing liver failure or hepatocellular carcinoma (HCC). Liver biopsy remains the gold standard approach to a definitive diagnosis of NAFLD and the distinction between simple steatosis and NASH. The pathogenesis of NASH is still not clear. Several theories have been proposed ranging from the "Two Hit Theory" to the "Multiple Hit Theory". However, the general consensus is that the gut microbiota, oxidative stress, and mitochondrial damage play key roles in the pathogenesis of NASH. The interaction between the gut epithelia and some commensal bacteria induces the rapid generation of reactive oxygen species (ROS). The main goal of any therapy addressing NASH is to reverse or prevent progression to liver fibrosis/cirrhosis. This problem represents the first "Achilles' heel" of the new molecules being evaluated in most ongoing clinical trials. The second is the inability of these molecules to reach the mitochondria, the primary sites of energy production and ROS generation. Recently, a variety of non-pharmacological and pharmacological treatment approaches for NASH have been evaluated including vitamin E, the thiazolidinediones, and novel molecules related to NASH pathogenesis (including obeticholic acid and elafibranor). Recently, a new isoform of human manganese superoxide dismutase (MnSOD) was isolated and obtained in a synthetic recombinant form designated rMnSOD. This protein has been shown to be a powerful antioxidant capable of mediating ROS dismutation, penetrating biological barriers via its uncleaved leader peptide, and reducing portal hypertension and fibrosis in rats affected by liver cirrhosis. Based on these distinctive characteristics, it can be hypothesized that this novel recombinant protein (rMnSOD) potentially represents a new and highly efficient adjuvant therapy to counteract the progression from NASH to HCC.
Collapse
Affiliation(s)
- Antonella Borrelli
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G Pascale", 80131 Napoli, Italy.
| | - Patrizia Bonelli
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G Pascale", 80131 Napoli, Italy
| | - Franca Maria Tuccillo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G Pascale", 80131 Napoli, Italy
| | | | | | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G Pascale", 80131 Napoli, Italy
| | - Aldo Mancini
- Leadhexa Biotechnologies Inc., Belvedere, CA, USA
| |
Collapse
|
36
|
Haiyan W, Linyi L, Lingling Q, Dongchao W, Yueying J, Xinli W, Tunhai X, Tonghua L. Mixture of five herbal extracts ameliorates pioglitazone-induced aggravation of hepatic steatosis via activating the adiponectin receptor 2/AMP-activated protein kinase signal pathway in diabetic KKAy mice. J TRADIT CHIN MED 2017. [DOI: 10.1016/s0254-6272(17)30311-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Alqasim AA, Noureldin EEM, Hammadi SH, Esheba GE. Effect of melatonin versus vitamin D as antioxidant and Hepatoprotective agents in STZ-induced diabetic rats. J Diabetes Metab Disord 2017; 16:41. [PMID: 29021975 PMCID: PMC5622449 DOI: 10.1186/s40200-017-0322-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 09/24/2017] [Indexed: 12/20/2022]
Abstract
Background Diabetes mellitus (DM) is a serious chronic disease, with multiple complications including hepatopathy associated with imbalance of the oxidative status. The purpose of this study is to observe possible protective effects of vitamin-D and melatonin on glucose profile, antioxidant-oxidant status, lipid peroxidation, and histopathological protection of the liver in streptozotocin-induced diabetic rats. Methods Eighty three male albino rats were divided into nine groups as follows: G1 (n = 10) Normal control rats; G2 (n = 8) were normal rats treated with melatonin only; G3 (n = 10) were normal rats treated with vitamin D only; G4 (n = 9) were diabetic rats, which received no medications; G5 (n = 8) were diabetic rat treated with insulin only; G6 (n = 10) were diabetic rats treated with melatonin only; G7 (n = 9) were diabetic rats treated with melatonin and insulin; G8 (n = 9) were diabetic rats treated with vitamin D only; G9 (n = 10) were diabetic rats treated with vitamin D and insulin. Two months post treatment, blood was collected to measure: Fasting blood sugar (FBS), glycosylated hemoglobin (HbA1c), fructosamine (FA), total antioxidant capacity (TAC), malondialdahyde (MDA). livers were isolated for histopathological study. Results As compared to normal rats, our results demonstrate that glucose, fructosamine and HbA1c levels is increased in diabetic groups and declined to lesser levels in treated groups. TAC level of diabetic rats is not significantly changed. Vitamin D administration significantly increased TAC while it is not changed with melatonin either in treated or non-treated groups. The liver of diabetic rats shows only mild focal microvesicular fatty degeneration. The liver of diabetic rats treated with insulin shows degeneration of cell edema in the stroma. The liver of diabetic rats treated with melatonin with or without insulin, exhibited marked improvement. The liver of diabetic rats treated with vitamin D with or without insulin, shows degeneration of cells and edema in the stroma. Conclusion Our results demonstrated the beneficial antioxidant effect of vitamin D administration to normal and diabetic rats as compared to melatonin. Nevertheless, melatonin still shows more therapeutic effect on liver cell injury induced by induction of diabetes.
Collapse
Affiliation(s)
- Abdulmonim A Alqasim
- Department of Physiology, College of Medicine, Umm Alqura University, Makkah, Saudi Arabia
| | - Essam Eldin M Noureldin
- Department of Biochemistry, College of Medicine, Umm Alqura University, Makkah, Saudi Arabia
| | - Sami H Hammadi
- Department of Internal Medicine, College of Medicine, Umm Alqura university, Makkah, Saudi Arabia
| | - Ghada E Esheba
- Department of Pathology, College of Medicine, Umm Alqura University, Makkah, Saudi Arabia
| |
Collapse
|
38
|
Kang JY, Kim M, Kang Y, Lee W, Ha TK, Seo JH, Son YG, Ha E. Thyroidectomy stimulates glucagon-like peptide-1 secretion and attenuates hepatic steatosis in high-fat fed rats. Biochem Biophys Res Commun 2017; 493:548-555. [PMID: 28870812 DOI: 10.1016/j.bbrc.2017.08.154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 02/07/2023]
Abstract
Thyroid hormones (THs) as a therapeutic intervention to treat obesity has been tried but the effect of THs on body weight and the mechanistic details of which are far from clear. This study was designed to determine and elucidate the mechanistic details of metabolic action of THs in high-fat diet (HFD) fed Sprague Dawley (SD) rats. Rats were made surgically hypothyroid (thyroidectomy, Thx). Body weights and food and water intake profoundly decreased in HFD fed thyroidectomized group (HN Thx). Results showed that delayed insulin response, increased total cholesterol, high-density lipoprotein, and low-density lipoprotein in HN Thx. Unexpectedly, however, Thx reduced serum and hepatic triglyceride concentrations. Further studies revealed that Thx dramatically increased circulating GLP-1 as well as increased expressions of GLP-1 in small intestine. Diminished hepatic expressions of lipogenic genes, were observed in HN Thx group. Beta-catenin and glutamine synthetase, a known target of β-catenin, were up-regulated in the liver of HN Thx group. The expressions of gluconeogenic genes G6P and PCK were reduced in the liver of HN Thx group. The results may suggest that surgery-induced hypothyroidism increases GLP-1, the actions of which may in part be responsible for the reduction in water intake, appetite and hepatic steatosis.
Collapse
Affiliation(s)
- Jong Yeon Kang
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Mikyung Kim
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Yuna Kang
- Department of Pathology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Wonmok Lee
- Department of Laboratory Medicine, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Tae Kyung Ha
- Department of Surgery, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Young Gil Son
- Department of Surgery, School of Medicine, Keimyung University, Daegu, Republic of Korea.
| | - Eunyoung Ha
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, Republic of Korea.
| |
Collapse
|
39
|
Abstract
非酒精性脂肪肝病(non-alcoholic fatty liver disease, NAFLD)是一种除饮酒以及其他肝损害因素外所致的以肝实质细胞脂肪变性及贮积为特征的临床病理综合征. 近年来, 随着人们生活方式的改变, NAFLD已成为全球公共健康问题, 其发生率与肥胖、2型糖尿病等代谢综合征相关. 越来越多文献表明肠道菌群与NAFLD的发生发展关系密切: (1)肠道菌群失调可促进宿主吸收更多的能量; (2)肠道菌群失调可诱导机体脂质代谢紊乱, 肝细胞脂质蓄积; (3)肠道菌群失调可增加肠黏膜通透性、促发炎症. 因此, 本文就肠道菌群与NAFLD关系进行整理, 为寻找治疗NAFLD的药物提供新靶点进行简要综述.
Collapse
|
40
|
Abnormal lipid/lipoprotein metabolism and high plasma testosterone levels in male but not female aromatase-knockout mice. Arch Biochem Biophys 2017; 622:47-58. [DOI: 10.1016/j.abb.2017.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 03/18/2017] [Accepted: 03/20/2017] [Indexed: 01/04/2023]
|
41
|
Deleterious effect of n-3 polyunsaturated fatty acids in non-alcoholic steatohepatitis in the fat-1 mouse model. CLINICAL NUTRITION EXPERIMENTAL 2017. [DOI: 10.1016/j.yclnex.2016.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
42
|
Im AR, Kim YH, Lee HW, Song KH. Water Extract of Dolichos lablab Attenuates Hepatic Lipid Accumulation in a Cellular Nonalcoholic Fatty Liver Disease Model. J Med Food 2017; 19:495-503. [PMID: 27152979 DOI: 10.1089/jmf.2015.3623] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that is rising in prevalence worldwide. Therapeutic strategies for patients with NAFLD are limited by a lack of effective drugs. In this report, we show that Dolichos lablab water extract (DLL-Ex) protects against free fatty acid (FFA)-induced lipid accumulation and attenuates expression of genes involved in lipid droplet accumulation in cellular NAFLD models. The hepatoprotective effects and underlying mechanism of DLL-Ex were assessed using an in vitro cellular model in which NAFLD was simulated by inducing excessive FFA influx into hepatocytes. HepG2 cells were treated with DLL-Ex and FFAs for 24 h, after which intracellular lipid content was observed by using Nile Red and Oil Red O staining. Quantitative real-time polymerase chain reaction was used to measure expression levels of genes related to FFA-mediated cellular energy depletion. Western blotting was used to measure protein levels of phosphorylated c-Jun N-terminal kinase, AMP-activated protein kinase alpha (AMPKα), and peroxisome proliferator-activated receptor γ coactivator 1 alpha. In HepG2 cells, DLL-Ex inhibited expression of CD36, which regulates fatty acid uptake, as well as BODIPY-labeled fatty acid uptake. Additionally, DLL-Ex significantly attenuated FFA-mediated cellular energy depletion and mitochondrial membrane depolarization. Furthermore, DLL-Ex enhanced phosphorylation of AMPK, indicating that AMPK is a critical regulator of DLL-Ex-mediated inhibition of hepatic lipid accumulation, possibly through its antioxidative effect. These results demonstrate that DLL-Ex exerts potent anti-NAFLD activity, suggesting that it could be a potential adjuvant treatment for patients with NAFLD.
Collapse
Affiliation(s)
- A-Rang Im
- 1 KM Convergence Research Division, Korea Institute of Oriental Medicine , Daejeon, Korea
| | - Yun Hee Kim
- 1 KM Convergence Research Division, Korea Institute of Oriental Medicine , Daejeon, Korea
| | - Hye Won Lee
- 1 KM Convergence Research Division, Korea Institute of Oriental Medicine , Daejeon, Korea
| | - Kwang Hoon Song
- 2 Mibyeong Research Center, Korea Institute of Oriental Medicine , Daejeon, Korea.,3 University of Science and Technology , Daejeon, Korea
| |
Collapse
|
43
|
Shi M, Loftus H, McAinch AJ, Su XQ. Blueberry as a source of bioactive compounds for the treatment of obesity, type 2 diabetes and chronic inflammation. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.12.036] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
44
|
Del Chierico F, Nobili V, Vernocchi P, Russo A, De Stefanis C, Gnani D, Furlanello C, Zandonà A, Paci P, Capuani G, Dallapiccola B, Miccheli A, Alisi A, Putignani L. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach. Hepatology 2017; 65:451-464. [PMID: 27028797 DOI: 10.1002/hep.28572] [Citation(s) in RCA: 496] [Impact Index Per Article: 70.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 03/19/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED There is evidence that nonalcoholic fatty liver disease (NAFLD) is affected by gut microbiota. Therefore, we investigated its modifications in pediatric NAFLD patients using targeted metagenomics and metabolomics. Stools were collected from 61 consecutive patients diagnosed with nonalcoholic fatty liver (NAFL), nonalcoholic steatohepatitis (NASH), or obesity and 54 healthy controls (CTRLs), matched in a case-control fashion. Operational taxonomic units were pyrosequenced targeting 16S ribosomal RNA and volatile organic compounds determined by solid-phase microextraction gas chromatography-mass spectrometry. The α-diversity was highest in CTRLs, followed by obese, NASH, and NAFL patients; and β-diversity distinguished between patients and CTRLs but not NAFL and NASH. Compared to CTRLs, in NAFLD patients Actinobacteria were significantly increased and Bacteroidetes reduced. There were no significant differences among the NAFL, NASH, and obese groups. Overall NAFLD patients had increased levels of Bradyrhizobium, Anaerococcus, Peptoniphilus, Propionibacterium acnes, Dorea, and Ruminococcus and reduced proportions of Oscillospira and Rikenellaceae compared to CTRLs. After reducing metagenomics and metabolomics data dimensionality, multivariate analyses indicated a decrease of Oscillospira in NAFL and NASH groups and increases of Ruminococcus, Blautia, and Dorea in NASH patients compared to CTRLs. Of the 292 volatile organic compounds, 26 were up-regulated and 2 down-regulated in NAFLD patients. Multivariate analyses found that combination of Oscillospira, Rickenellaceae, Parabacteroides, Bacteroides fragilis, Sutterella, Lachnospiraceae, 4-methyl-2-pentanone, 1-butanol, and 2-butanone could discriminate NAFLD patients from CTRLs. Univariate analyses found significantly lower levels of Oscillospira and higher levels of 1-pentanol and 2-butanone in NAFL patients compared to CTRLs. In NASH, lower levels of Oscillospira were associated with higher abundance of Dorea and Ruminococcus and higher levels of 2-butanone and 4-methyl-2-pentanone compared to CTRLs. CONCLUSION An Oscillospira decrease coupled to a 2-butanone up-regulation and increases in Ruminococcus and Dorea were identified as gut microbiota signatures of NAFL onset and NAFL-NASH progression, respectively. (Hepatology 2017;65:451-464).
Collapse
Affiliation(s)
| | - Valerio Nobili
- Hepato-Metabolic Disease Unit, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy.,Liver Research Unit, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| | - Pamela Vernocchi
- Human Microbiome Unit, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| | - Alessandra Russo
- Human Microbiome Unit, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| | | | - Daniela Gnani
- Liver Research Unit, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| | - Cesare Furlanello
- Predictive Models for Biomedicine and Environment Unit, Fondazione Bruno Kessler, Trento, Italy
| | - Alessandro Zandonà
- Predictive Models for Biomedicine and Environment Unit, Fondazione Bruno Kessler, Trento, Italy
| | - Paola Paci
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, 00185, Rome, Italy.,SysBio Centre for Systems Biology, 00185, Rome, Italy
| | | | - Bruno Dallapiccola
- Scientific Directorate, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| | | | - Anna Alisi
- Liver Research Unit, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Human Microbiome Unit, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy.,Parasitology Unit, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
45
|
Satapathy SK, Kuwajima V, Nadelson J, Atiq O, Sanyal AJ. Drug-induced fatty liver disease: An overview of pathogenesis and management. Ann Hepatol 2016; 14:789-806. [PMID: 26436351 DOI: 10.5604/16652681.1171749] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the past decades, many drugs have been identified, that can potentially induce steatohepatitis in the predisposed individual. Classically this has been incriminated to amiodarone, perhexiline, and 4,4'-diethylaminoethoxyhexestrol (DH), all of which have been found to independently induce the histologic picture of non-alcoholic steatohepatitis (NASH). Pathogenetic mechanisms of hepatotoxicity although still evolving, demonstrate that mitochondrial dysfunction, deranged ATP production and fatty acid catabolism likely play an important role. Drugs like steroid hormones can exacerbate the pathogenetic mechanisms that lead to NASH, and other drugs like tamoxifen, cisplatin and irenotecan have been shown to precipitate latent fatty liver as well. Further research aiming to elucidate the pathogenesis of drug-induced steatosis and steatohepatitis is needed in order to better design therapeutic targets.
Collapse
Affiliation(s)
- Sanjaya K Satapathy
- Methodist University Hospital Transplant Institute, Division of Surgery, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Vanessa Kuwajima
- Division of Gastroenterology and Hepatology, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Jeffrey Nadelson
- Division of Gastroenterology and Hepatology, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Omair Atiq
- University of Texas Southwestern, Dallas, Texas, USA
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University Health System, Richmond, Virginia, USA
| |
Collapse
|
46
|
Dihydromyricetin ameliorates oleic acid-induced lipid accumulation in L02 and HepG2 cells by inhibiting lipogenesis and oxidative stress. Life Sci 2016; 157:131-139. [PMID: 27265384 DOI: 10.1016/j.lfs.2016.06.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/12/2022]
Abstract
AIMS Dihydromyricetin (DMY), a flavonoid component isolated from Ampelopsis grossedentata, was recently reported to ameliorate nonalcoholic fatty liver disease (NAFLD) in patients. However, the underlying mechanisms of this action remain unknown. Here, we evaluate the effect of DMY on an in vitro model of NAFLD and investigate the signal transduction pathways underlying DMY treatment. MAIN METHODS Oleic acid (OA) induced hepatic steatosis was established in L02 and HepG2 cells as in vitro model of NAFLD. Cell apoptosis, lipid accumulation and oxide stress were evaluated by flow cytometry, oil red O staining, and cellular biochemical assays, respectively. Signaling pathways involved in lipid metabolism including PPARγ, AMPK, and AKT were investigated by Western blot and RT-qPCR. KEY FINDINGS DMY protected cells against apoptosis and lipid accumulation induced by oleic acid. DMY decreased the levels of cellular triglycerides (TG), cholesterol (TC) and malondialdehyde (MDA), while at the same time increasing the level of superoxide dismutase (SOD). DMY suppressed the expression of PPARγ and the phosphorylation of AKT, and promoted the phosphorylation of AMPK. SIGNIFICANCE Our study suggests that DMY ameliorates OA-induced hepatic steatosis by inhibiting cell apoptosis, lipid accumulation and oxide stress. Furthermore, the effect of DMY is likely associated with its role in the regulating of PPARγ, AMPK and AKT signaling pathways.
Collapse
|
47
|
Li L, Liu DW, Yan HY, Wang ZY, Zhao SH, Wang B. Obesity is an independent risk factor for non-alcoholic fatty liver disease: evidence from a meta-analysis of 21 cohort studies. Obes Rev 2016; 17:510-9. [PMID: 27020692 DOI: 10.1111/obr.12407] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/07/2016] [Accepted: 02/15/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND The association between obesity and nonalcoholic fatty liver disease (NAFLD) has not been fully quantified, and the magnitude of NAFLD risk associated with obesity is still unclear. A meta-analysis of cohort studies was performed to elucidate the NAFLD risk associated with obesity. METHODS Pubmed, Web of Science and Embase were searched for cohort studies assessing NAFLD risk associated with obesity or increased body mass index (BMI). Relative risks (RRs) with 95% confidence intervals (95%CIs) were pooled using random-effects model of meta-analysis. RESULTS Twenty-one cohort studies including 13 prospective studies and 8 retrospective studies were finally included. There were a total of 381,655 participants in the meta-analysis. Compared with normal weight, obesity independently led to a 3.5-fold increased risk of developing NAFLD (RR = 3.53, 95%CI 2.48 to 5.03, P < 0.001). Meta-analysis also suggested an obvious dose-dependent relationship between BMI and NAFLD risk (per 1-unit increment in BMI: RR = 1.20, 95%CI 1.14 to 1.26, P < 0.001). Subgroup analyses further identified the robustness of the association above. No obvious risk of publication bias was observed. CONCLUSION Obese individuals have a 3.5-fold increased risk of developing NAFLD, and there is an obvious dose-dependent relationship between BMI and NAFLD risk. © 2016 World Obesity.
Collapse
Affiliation(s)
- L Li
- Department of Endocrinology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - D-W Liu
- Department of Urinary Surgery, Southwest Hospital Affiliated to Third Military Medical University, Chongqing, China
| | - H-Y Yan
- Department of Gastroenterology, 210 Hospital of PLA, Dalian, China
| | - Z-Y Wang
- Surgical Center, Zhucheng People's Hospital, Zhucheng, China
| | - S-H Zhao
- Department of Endocrinology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - B Wang
- Department of Endocrinology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
48
|
Liu W, Baker RD, Bhatia T, Zhu L, Baker SS. Pathogenesis of nonalcoholic steatohepatitis. Cell Mol Life Sci 2016; 73:1969-87. [PMID: 26894897 PMCID: PMC11108381 DOI: 10.1007/s00018-016-2161-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/19/2016] [Accepted: 02/09/2016] [Indexed: 02/06/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a severe form of nonalcoholic fatty liver disease and a risk factor for cirrhosis and hepatocellular carcinoma. The pathological features of NASH include steatosis, hepatocyte injury, inflammation, and various degrees of fibrosis. Steatosis reflects disordered lipid metabolism. Insulin resistance and excessive fatty acid influx to the liver are two important contributing factors. Steatosis is also likely associated with lipotoxicity and cellular stresses such as oxidative stress and endoplasmic reticulum stress, which result in hepatocyte injury. Inflammation and fibrosis are frequently triggered by various signals such as proinflammatory cytokines and chemokines, released by injuried hepatocytes and activated Kupffer cells. Although much progress has been made, the pathogenesis of NASH is not fully elucidated. The purpose of this review is to discuss the current understanding of NASH pathogenesis, mainly focusing on factors contributing to steatosis, hepatocyte injury, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Wensheng Liu
- Department of Pediatrics, Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo (SUNY Buffalo), 3435 Main Street, 422 BRB, Buffalo, NY, 14214, USA.
| | - Robert D Baker
- Department of Pediatrics, Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo (SUNY Buffalo), 3435 Main Street, 422 BRB, Buffalo, NY, 14214, USA
| | - Tavleen Bhatia
- Department of Pediatrics, Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo (SUNY Buffalo), 3435 Main Street, 422 BRB, Buffalo, NY, 14214, USA
| | - Lixin Zhu
- Department of Pediatrics, Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo (SUNY Buffalo), 3435 Main Street, 422 BRB, Buffalo, NY, 14214, USA
| | - Susan S Baker
- Department of Pediatrics, Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo (SUNY Buffalo), 3435 Main Street, 422 BRB, Buffalo, NY, 14214, USA.
| |
Collapse
|
49
|
Abstract
Hepatocellular carcinoma (HCC) is the second commonest cause of cancer death worldwide. Rather than falling as a result of prevention and treatments for viral hepatitis, an increase is evident in developed nations consequent to the rising prevalence of obesity and type 2 diabetes mellitus (T2DM)-the two major risk factors for nonalcoholic fatty liver disease (NAFLD). The majority of patients with HCC complicating these conditions present with advanced disease as the tools for surveillance are inadequate, and the "at-risk" population is not well characterized. This review will summarize the epidemiological evidence linking obesity, T2DM, and NAFLD with HCC, what is known about the pathogenic mechanisms involved, as well as their relevance for clinicians managing patients at risk. There will also be an overview of the "unmet needs" surrounding this topic, with suggestions for the direction translational research should take in order to prevent progression of NAFLD to HCC, to improve early detection of HCC in those with NAFLD, as well as to improve outcomes for those affected.
Collapse
|
50
|
Wang Y, Zhao L, Wang D, Huo Y, Ji B. Anthocyanin-rich extracts from blackberry, wild blueberry, strawberry, and chokeberry: antioxidant activity and inhibitory effect on oleic acid-induced hepatic steatosis in vitro. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2494-2503. [PMID: 26250597 DOI: 10.1002/jsfa.7370] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/18/2015] [Accepted: 08/01/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Limited information is available regarding the relationship between the chemical structures and inhibitory effects of anthocyanin (ACN) on triglyceride (TG) overaccumulation. Thus this study investigated the antioxidant activity and inhibitory effect of blackberry, wild blueberry, strawberry, and chokeberry ACN-rich extracts, with different structural characteristics, on oleic acid-induced hepatic steatosis in vitro. Four major ACNs from these berries, with different aglycones, namely cyanidin-3-glucoside (Cy-3-glu), delphinidin-3-glucoside, pelargonidin-3-glucoside, and malvidin-3-glucoside, were also investigated. RESULTS Blackberry ACN-rich extract exhibited the most significant inhibitory effect on TG clearance (30.5% ± 3.4%) and reactive oxygen species generation. TG clearance was significantly correlated with total phenolic content (r = 0.991, P < 0.05) and oxygen radical absorbance capacity value (r = 0.961, P < 0.05). Furthermore, Cy-3-glu showed the highest inhibitory effect on intracellular TG overaccumulation, with a maximum TG clearance of 61.3% at 40 µg mL(-1) . CONCLUSION Our findings suggest that the inhibitory effects of different ACNs on oleic acid-induced hepatic steatosis significantly vary. Cy-3-glu, which contains the ortho hydroxyl group in its B ring, possibly confers the protective effects of antioxidants and inhibits TG accumulation in HepG2 cells. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yong Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Liang Zhao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Dan Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Yazhen Huo
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Baoping Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| |
Collapse
|