1
|
Özdemіr E, Öksüz L. Effect of Staphylococcus aureus colonization and immune defects on the pathogenesis of atopic dermatitis. Arch Microbiol 2024; 206:410. [PMID: 39302484 DOI: 10.1007/s00203-024-04134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Atopic dermatitis (AD) is a common and recurrent skin disease characterized by skin barrier dysfunction, inflammation and chronic pruritus, with wide heterogeneity in terms of age of onset, clinical course and persistence over the lifespan. Although the pathogenesis of the disease are unclear, epidermal barrier dysfunction, immune and microbial dysregulation, and environmental factors are known to be critical etiologies in AD pathology. The skin microbiota represents an ecosystem consisting of numerous microbial species that interact with each other as well as host epithelial cells and immune cells. Although the skin microbiota benefits the host by supporting the basic functions of the skin and preventing the colonization of pathogens, disruption of the microbial balance (dysbiosis) can cause skin diseases such as AD. Although AD is a dermatological disease, recent evidence has shown that changes in microbiota composition in the skin and intestine contribute to the pathogenesis of AD. Environmental factors that contribute to skin barrier dysfunction and microbial dysbiosis in AD include allergens, diet, irritants, air pollution, epigenetics and microbial exposure. Knowing the microbial combination of intestin, as well as the genetic and epigenetic determinants associated with the development of autoantibodies, may help elucidate the pathophysiology of the disease. The skin of patients with AD is characterized by microbial dysbiosis as a result of reduced microbial diversity and overgrowth of the pathogens such as Staphylococcus aureus. Recent studies have revealed the importance of building a strong immune response against microorganisms during childhood and new mechanisms of microbial community dynamics in modulating the skin microbiome. Numerous microorganisms are reported to modulate host response through communication with keratinocytes, specific immune cells and adipocytes to improve skin health and barrier function. This growing insight into bioactive substances in the skin microbiota has led to novel biotherapeutic approaches targeting the skin surface for the treatment of AD. This review will provide an updated overview of the skin microbiota in AD and its complex interaction with immune response mechanisms, as well as explore possible underlying mechanisms in the pathogenesis of AD and provide insights into new therapeutic developments for the treatment of AD. It also focuses on restoring skin microbial homeostasis, aiming to reduce inflammation by repairing the skin barrier.
Collapse
Affiliation(s)
- Evrim Özdemіr
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey.
| | - Lütfiye Öksüz
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
2
|
Park CO, Kim SM, Lee KH, Bieber T. Biomarkers for phenotype-endotype relationship in atopic dermatitis: a critical review. EBioMedicine 2024; 103:105121. [PMID: 38614010 PMCID: PMC11021839 DOI: 10.1016/j.ebiom.2024.105121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024] Open
Abstract
Atopic dermatitis (AD) is the most common form of chronic skin inflammation with diverse clinical variants. Historically, various AD phenotypes have been grouped together without considering their heterogeneity. This approach has resulted in a lack of phenotype- and endotype-adapted therapeutic strategies. Comprehensive insights into AD pathogenesis have enabled precise medicinal approach for AD. These efforts aimed to redefine the endophenotype of AD and develop various biomarkers for diverse purposes. Among these endeavours, efforts are underway to elucidate the mechanisms (and related biomarkers) that lead to the emergence and progression of atopic diseases originating from AD (e.g., atopic march). This review focuses on diverse AD phenotypes and calls for a definition of endophenotypes. While awaiting scientific validation, these biomarkers ensure predicting disease onset and trajectory and tailoring therapeutic strategies for the future.
Collapse
Affiliation(s)
- Chang Ook Park
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea.
| | - Su Min Kim
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Kwang Hoon Lee
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Thomas Bieber
- Christine Kühne-Center of Allergy Research and Education, Medicine Campus, Davos, Switzerland
| |
Collapse
|
3
|
Wenger M, Grosse-Kathoefer S, Kraiem A, Pelamatti E, Nunes N, Pointner L, Aglas L. When the allergy alarm bells toll: The role of Toll-like receptors in allergic diseases and treatment. Front Mol Biosci 2023; 10:1204025. [PMID: 37426425 PMCID: PMC10325731 DOI: 10.3389/fmolb.2023.1204025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Toll-like receptors of the human immune system are specialized pathogen detectors able to link innate and adaptive immune responses. TLR ligands include among others bacteria-, mycoplasma- or virus-derived compounds such as lipids, lipo- and glycoproteins and nucleic acids. Not only are genetic variations in TLR-related genes associated with the pathogenesis of allergic diseases, including asthma and allergic rhinitis, their expression also differs between allergic and non-allergic individuals. Due to a complex interplay of genes, environmental factors, and allergen sources the interpretation of TLRs involved in immunoglobulin E-mediated diseases remains challenging. Therefore, it is imperative to dissect the role of TLRs in allergies. In this review, we discuss i) the expression of TLRs in organs and cell types involved in the allergic immune response, ii) their involvement in modulating allergy-associated or -protective immune responses, and iii) how differential activation of TLRs by environmental factors, such as microbial, viral or air pollutant exposure, results in allergy development. However, we focus on iv) allergen sources interacting with TLRs, and v) how targeting TLRs could be employed in novel therapeutic strategies. Understanding the contributions of TLRs to allergy development allow the identification of knowledge gaps, provide guidance for ongoing research efforts, and built the foundation for future exploitation of TLRs in vaccine design.
Collapse
|
4
|
Chiricozzi A, Maurelli M, Calabrese L, Peris K, Girolomoni G. Overview of Atopic Dermatitis in Different Ethnic Groups. J Clin Med 2023; 12:2701. [PMID: 37048783 PMCID: PMC10095524 DOI: 10.3390/jcm12072701] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/16/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin disease with a high prevalence worldwide, including countries from Asia, Africa, and Latin America, and in different ethnic groups. In recent years, more attention has been placed on the heterogeneity of AD associated with multiple factors, including a patient's ethnic background, resulting in an increasing body of clinical, genetic, epidemiologic, and immune-phenotypic evidence that delineates differences in AD among racial groups. Filaggrin (FLG) mutations, the strongest genetic risk factor for the development of AD, are detected in up to 50% of European and 27% of Asian AD patients, but very rarely in Africans. Th2 hyperactivation is a common attribute of all ethnic groups, though the Asian endotype of AD is also characterized by an increased Th17-mediated signal, whereas African Americans show a strong Th2/Th22 signature and an absence of Th1/Th17 skewing. In addition, the ethnic heterogeneity of AD may hold important therapeutic implications as a patient's genetic predisposition may affect treatment response and, thereby, a tailored strategy that better targets the dominant immunologic pathways in each ethnic subgroup may be envisaged. Nevertheless, white patients with AD represent the largest ethnicity enrolled and tested in clinical trials and the most treated in a real-world setting, limiting investigations about safety and efficacy across different ethnicities. The purpose of this review is to describe the heterogeneity in the pathophysiology of AD across ethnicities and its potential therapeutic implications.
Collapse
Affiliation(s)
- Andrea Chiricozzi
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Martina Maurelli
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, 37126 Verona, Italy
| | - Laura Calabrese
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ketty Peris
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giampiero Girolomoni
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, 37126 Verona, Italy
| |
Collapse
|
5
|
Broderick C, Ziehfreund S, van Bart K, Arents B, Eyerich K, Weidinger S, Rastrick J, Zink A, Flohr C. Biomarkers associated with the development of comorbidities in patients with atopic dermatitis: A systematic review. Allergy 2023; 78:84-120. [PMID: 36366871 PMCID: PMC10107168 DOI: 10.1111/all.15578] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/06/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Biomarkers associated with the development of comorbidities in atopic dermatitis (AD) patients have been reported, but have not yet been systematically reviewed. Seven electronic databases were searched, from database inception to September 2021. English language randomized controlled trials, prospective and retrospective cohort, and case-control studies that investigated the association between a biomarker and the development of comorbidities in AD patients were included. Two authors independently screened the records for eligibility, one extracted all data, and critically appraised the quality of studies and risk of bias. Fifty six articles met the inclusion criteria, evaluating 146 candidate biomarkers. The most frequently reported biomarkers were filaggrin mutations and allergen specific-IgE. Promising biomarkers include specific-IgE and/or skin prick tests predicting the development of asthma, and genetic polymorphisms predicting the occurrence of eczema herpeticum. The identified studies and biomarkers were highly heterogeneous, and associated with predominately moderate-to-high risk of bias across multiple domains. Overall, findings were inconsistent. High-quality studies assessing biomarkers associated with the development of comorbidities in people with AD are lacking. Harmonized datasets and independent validation studies are urgently needed.
Collapse
Affiliation(s)
- Conor Broderick
- Unit for Population-Based Dermatology Research, School of Basic and Medical Biosciences, St John's Institute of Dermatology, King's College London, London, UK
| | - Stefanie Ziehfreund
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Karin van Bart
- Royal College of Physicians, National Guideline Centre, London, UK
| | - Bernd Arents
- Dutch Association for People with Atopic Dermatitis, Nijkerk, The Netherlands
| | - Kilian Eyerich
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany.,Division of Dermatology and Venerology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Stephan Weidinger
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Alexander Zink
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany.,Division of Dermatology and Venerology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Carsten Flohr
- Unit for Population-Based Dermatology Research, School of Basic and Medical Biosciences, St John's Institute of Dermatology, King's College London, London, UK
| | | |
Collapse
|
6
|
Yu L, Li L. Potential biomarkers of atopic dermatitis. Front Med (Lausanne) 2022; 9:1028694. [PMID: 36465933 PMCID: PMC9712451 DOI: 10.3389/fmed.2022.1028694] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/31/2022] [Indexed: 11/12/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic, recurrent inflammatory skin disease with a wide range of heterogeneity. Accurate biomarkers or predictors are the keys to instructing personalized tailored precise treatment. The development of technology such as transcriptomics, genomics, and proteomics provides novel insights into the possibility to find potential biomarkers. Meanwhile, emerging minimally invasive methods such as tape stripping were used to reveal different profiles of patients' skin without biopsy. Several potential biomarkers or predictors have been found. In this review, we summarized the current development of potential biomarkers of AD. Nitric oxide synthase 2/inducible nitric oxide synthase (NOS2/iNOS), human beta-defensin-2 (hBD-2), and matrix metalloproteinases 8/9 (MMP8/9) may be the candidate biomarkers for AD diagnosis. Filaggrin (FLG) gene mutation increased the occurrence risk of AD. Fatty-acid-binding protein 5 (FABP5) may serve as an effective biomarker for the atopic march (AM). Squamous cell carcinoma antigen 2 (SCCA2), serum thymus and activation-regulated chemokine (TARC), cutaneous T-cell-attracting chemokine (CTACK), eosinophil-derived neurotoxin (EDN), macrophage-derived chemokine (MDC), lactate dehydrogenase (LDH), and interleukin (IL)-18 can be the candidate biomarkers for disease severity monitoring. IL-17, IL-23, IL-33, and indoleamine 2,3-dioxygenase (IDO1) can be used as predictive biomarkers for AD comorbidities. LDH, TARC, pulmonary and activation-regulated chemokine (PARC), periostin, IL-22, eotaxin-1/3, and IL-8 may be the candidate biomarkers for monitoring treatment effects. There are still unmet needs and a long way to go for more convenient, non-invasive, and effective predictors and biomarkers to better guide personalized precise treatment.
Collapse
Affiliation(s)
- Ling Yu
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Dermatology, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Dermatology, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Linfeng Li
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Mozyrska OV, Volosovets OP, Kryvopustov SP, Goncharov SV, Kupkina AV, Iemets OV, Dosenko VE. SINGLE NUCLEOTIDE POLYMORPHISM RS4696480 OF TLR2 GENE ASSOCIATES WITH SEVERITY OF ATOPIC DERMATITIS IN CHILDREN, BUT NOT WITH IGE SENSITIZATION TO MALASSEZIA. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:1070-1076. [PMID: 35758480 DOI: 10.36740/wlek202205104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The aim: Malassezia has been linked to atopic dermatitis, and TLRs are suggested to mediate influence of Malassezia spp on human cells. The aim of the study was to examine if TLR2 rs4696480 polymorphism predisposes to atopic dermatitis, IgE sensitization to Malassezia or to severe phenotype of atopic dermatitis. PATIENTS AND METHODS Materials and methods: The study included 103 patients with eczema and 84 healthy children. Specific IgE against Malassezia mix (m227) was analyzed in 47 patients using immunochemiluminescent method on the ImmunoCAP 100 (Thermo Fisher Scientific Inc., Phadia, Sweden). Genotyping for TLR2 rs4696480 was performed by using Real-time PCR. RESULTS Results: Increased IgE to Malassezia spp. was observed in 34,3 % of children with eczema. Higher Malassezia spp.-specific IgE titre positively correlated with duration of atopic dermatitis and a higher total IgE. There were no difference in allele distribution among patients and control group (OR=1.096 (0.549- 2.191) for AT, OR=0.946 (0.430- 2.078) for TT, р > 0,05). TLR2 polymorphism rs4696480 was not associated with Malassezia spp.-sIgE. AA-genotype was significantly more frequent among patients with severe and moderate-to-severe AD (OR=6.395 (1.240-32.991). CONCLUSION Conclusions: AA variant of TLR2 rs4696480 polymorphism predisposes to severe phenotype of AD.
Collapse
Affiliation(s)
| | | | | | - Sergii V Goncharov
- BOGOMOLETS INSTITUTE OF PHYSIOLOGY OF THE NATIONAL ACADEMY OF SCIENCES OF UKRAINE, KYIV UKRAINE
| | | | | | - Victor E Dosenko
- BOGOMOLETS INSTITUTE OF PHYSIOLOGY OF THE NATIONAL ACADEMY OF SCIENCES OF UKRAINE, KYIV UKRAINE
| |
Collapse
|
8
|
Kumar V. Going, Toll-like receptors in skin inflammation and inflammatory diseases. EXCLI JOURNAL 2021; 20:52-79. [PMID: 33510592 PMCID: PMC7838829 DOI: 10.17179/excli2020-3114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
The Indian Ayurvedic physicians knew the concept of inflammation dating back to 1500 BC. The continuous progress in the immunology of inflammation has explained its undiscovered mechanisms. For example, the discovery of Toll-like receptor 4 (TLR4) in humans (1997) has revolutionized the field of infection biology and innate immunity. The laboratory mice have shown twelve TLRs and express TLR10 (CD290) as a disrupted pseudogene, and humans have ten functional TLRs. Now, it is well established that TLRs play a significant role in different infectious and inflammatory diseases. Skin inflammation and other associated inflammatory diseases, including atopic dermatitis (AD), acne vulgaris, and psoriasis, along with many skin cancers are major health problems all over the world. The continuous development in the immunopathogenesis of inflammatory skin diseases has opened the window of opportunity for TLRs in studying their role. Hence, the manuscript explores the role of different TLRs in the pathogenesis of skin inflammation and associated inflammatory diseases. The article starts with the concept of inflammation, its origin, and the impact of TLRs discovery on infection and inflammation biology. The subsequent section describes the burden of skin-associated inflammatory diseases worldwide and the effect of the geographical habitat of people affecting it. The third section explains skin as an immune organ and explains the expression of different TLRs on different skin cells, including keratinocytes, Langerhans cells (LCs), skin fibroblasts, and melanocytes. The fourth section describes the impact of TLRs on these cells in different skin-inflammatory conditions, including acne vulgaris, AD, psoriasis, and skin cancers. The article also discusses the use of different TLR-based therapeutic approaches as specific to these inflammatory skin diseases.
Collapse
Affiliation(s)
- Vijay Kumar
- Children Health Clinical Unit, Faculty of Medicine and Biomedical Sciences, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia
| |
Collapse
|
9
|
Miller LS, Fowler VG, Shukla SK, Rose WE, Proctor RA. Development of a vaccine against Staphylococcus aureus invasive infections: Evidence based on human immunity, genetics and bacterial evasion mechanisms. FEMS Microbiol Rev 2020; 44:123-153. [PMID: 31841134 PMCID: PMC7053580 DOI: 10.1093/femsre/fuz030] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022] Open
Abstract
Invasive Staphylococcus aureus infections are a leading cause of morbidity and mortality in both hospital and community settings, especially with the widespread emergence of virulent and multi-drug resistant methicillin-resistant S. aureus strains. There is an urgent and unmet clinical need for non-antibiotic immune-based approaches to treat these infections as the increasing antibiotic resistance is creating a serious threat to public health. However, all vaccination attempts aimed at preventing S. aureus invasive infections have failed in human trials, especially all vaccines aimed at generating high titers of opsonic antibodies against S. aureus surface antigens to facilitate antibody-mediated bacterial clearance. In this review, we summarize the data from humans regarding the immune responses that protect against invasive S. aureus infections as well as host genetic factors and bacterial evasion mechanisms, which are important to consider for the future development of effective and successful vaccines and immunotherapies against invasive S. aureus infections in humans. The evidence presented form the basis for a hypothesis that staphylococcal toxins (including superantigens and pore-forming toxins) are important virulence factors, and targeting the neutralization of these toxins are more likely to provide a therapeutic benefit in contrast to prior vaccine attempts to generate antibodies to facilitate opsonophagocytosis.
Collapse
Affiliation(s)
- Lloyd S Miller
- Immunology, Janssen Research and Development, 1400 McKean Road, Spring House, PA, 19477, USA.,Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Cancer Research Building 2, Suite 209, Baltimore, MD, 21231, USA.,Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, 1830 East Monument Street, Baltimore, MD, 21287, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, MD, 21287, USA.,Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Vance G Fowler
- Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, 315 Trent Drive, Hanes House, Durham, NC, 27710, USA.,Duke Clinical Research Institute, Duke University Medical Center, 40 Duke Medicine Circle, Durham, NC, 27710, USA
| | - Sanjay K Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, 1000 North Oak Avenue, Marshfield, WI, 54449, USA.,Computation and Informatics in Biology and Medicine, University of Wisconsin, 425 Henry Mall, Room 3445, Madison, WI, 53706, USA
| | - Warren E Rose
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA.,Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, 4123 Rennebohm Hall, Madison, WI, 53705 USA
| | - Richard A Proctor
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA.,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, 1550 Linden Drive, Microbial Sciences Building, Room 1334, Madison, WI, 53705, USA
| |
Collapse
|
10
|
Potaczek DP, Przytulska-Szczerbik A, Bazan-Socha S, Nastałek M, Wojas-Pelc A, Okumura K, Nishiyama C, Jurczyszyn A, Undas A, Wypasek E. Interaction between functional polymorphisms in FCER1A and TLR2 and the severity of atopic dermatitis. Hum Immunol 2020; 81:709-713. [PMID: 32883546 DOI: 10.1016/j.humimm.2020.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 11/20/2022]
Abstract
Dendritic cell toll-like receptors (TLRs) and the high-affinity immunoglobulin E (IgE) receptor (FcεRI) may biologically interact with regard to atopic dermatitis (AD) development and, especially, severity. Our aim here was to test if such interaction can be detected on the genetic level. The combined effect of the TLR2 gene (TLR2) rs4696480 and the FcεRI α-chain gene (FCER1A) rs2252226 and rs2251746 polymorphisms on the AD severity as measured by SCORAD was assessed. The FCER1A rs2252226 and TLR2 rs4696480 polymorphisms interacted with regard to SCORAD. Higher SCORAD was observed in patients being the TLR2 rs4696480 major homozygotes and carrying at the same time the FCER1A rs2252226 minor allele, compared to those characterized by (any other of) the remaining combined rs2252226 and rs4696480 genotypes. The observation of the epistatic effect of TLR2 and FCER1A genetic variants on SCORAD is in line with the involvement of the interaction TLRs-FcεRI in the pathophysiology of AD.
Collapse
Affiliation(s)
- Daniel P Potaczek
- Institute of Laboratory Medicine and Pathobiochemistry, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany; Krakow Center for Medical Research and Technology, John Paul II Hospital, Krakow, Poland
| | | | - Stanisława Bazan-Socha
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Nastałek
- Faculty of Rehabilitation, University of Physical Education in Krakow, Poland
| | - Anna Wojas-Pelc
- Department of Dermatology, Jagiellonian University Medical College, Krakow, Poland
| | - Ko Okumura
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Chiharu Nishiyama
- Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Artur Jurczyszyn
- Department of Hematology, Jagiellonian University Medical College, Krakow, Poland
| | - Anetta Undas
- Krakow Center for Medical Research and Technology, John Paul II Hospital, Krakow, Poland; Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Ewa Wypasek
- Krakow Center for Medical Research and Technology, John Paul II Hospital, Krakow, Poland; Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland.
| |
Collapse
|
11
|
Nomura T, Wu J, Kabashima K, Guttman-Yassky E. Endophenotypic Variations of Atopic Dermatitis by Age, Race, and Ethnicity. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 8:1840-1852. [DOI: 10.1016/j.jaip.2020.02.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/11/2020] [Accepted: 02/25/2020] [Indexed: 12/21/2022]
|
12
|
Martin MJ, Estravís M, García-Sánchez A, Dávila I, Isidoro-García M, Sanz C. Genetics and Epigenetics of Atopic Dermatitis: An Updated Systematic Review. Genes (Basel) 2020; 11:E442. [PMID: 32325630 PMCID: PMC7231115 DOI: 10.3390/genes11040442] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Atopic dermatitis is a common inflammatory skin disorder that affects up to 15-20% of the population and is characterized by recurrent eczematous lesions with intense itching. As a heterogeneous disease, multiple factors have been suggested to explain the nature of atopic dermatitis (AD), and its high prevalence makes it necessary to periodically compile and update the new information available. In this systematic review, the focus is set at the genetic and epigenetic studies carried out in the last years. METHODS A systematic literature review was conducted in three scientific publication databases (PubMed, Cochrane Library, and Scopus). The search was restricted to publications indexed from July 2016 to December 2019, and keywords related to atopic dermatitis genetics and epigenetics were used. RESULTS A total of 73 original papers met the inclusion criteria established, including 9 epigenetic studies. A total of 62 genes and 5 intergenic regions were described as associated with AD. CONCLUSION Filaggrin (FLG) polymorphisms are confirmed as key genetic determinants for AD development, but also epigenetic regulation and other genes with functions mainly related to the immune system and extracellular matrix, reinforcing the notion of skin homeostasis breakage in AD.
Collapse
Affiliation(s)
- Maria J Martin
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.J.M.); (M.E.); (I.D.); (C.S.)
- Network for Cooperative Research in Health–RETICS ARADyAL, 37007 Salamanca, Spain
| | - Miguel Estravís
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.J.M.); (M.E.); (I.D.); (C.S.)
- Network for Cooperative Research in Health–RETICS ARADyAL, 37007 Salamanca, Spain
- Department of Biomedical and Diagnostics Sciences, University of Salamanca, 37007 Salamanca, Spain
| | - Asunción García-Sánchez
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.J.M.); (M.E.); (I.D.); (C.S.)
- Network for Cooperative Research in Health–RETICS ARADyAL, 37007 Salamanca, Spain
- Department of Biomedical and Diagnostics Sciences, University of Salamanca, 37007 Salamanca, Spain
| | - Ignacio Dávila
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.J.M.); (M.E.); (I.D.); (C.S.)
- Network for Cooperative Research in Health–RETICS ARADyAL, 37007 Salamanca, Spain
- Department of Immunoallergy, Salamanca University Hospital, 37007 Salamanca, Spain
| | - María Isidoro-García
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.J.M.); (M.E.); (I.D.); (C.S.)
- Network for Cooperative Research in Health–RETICS ARADyAL, 37007 Salamanca, Spain
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain
- Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Catalina Sanz
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.J.M.); (M.E.); (I.D.); (C.S.)
- Network for Cooperative Research in Health–RETICS ARADyAL, 37007 Salamanca, Spain
- Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
13
|
Ruffner MA, Song L, Maurer K, Shi L, Carroll MC, Wang JX, Muir AB, Spergel JM, Sullivan KE. Toll-like receptor 2 stimulation augments esophageal barrier integrity. Allergy 2019; 74:2449-2460. [PMID: 31267532 PMCID: PMC7083217 DOI: 10.1111/all.13968] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Germline-encoded innate immune pattern recognition receptors (PRR) are expressed at epithelial surfaces and modulate epithelial defenses. Evidence suggests that stimulation of the Toll-like receptor (TLR) family of PRR may regulate epithelial barrier integrity by upregulating tight junction (TJ) complex protein expression, but it is not known whether this mechanism is utilized in esophageal epithelial cells. TJ complex proteins maintain intact barrier function and are dysregulated in atopic disorders including eosinophilic esophagitis. METHODS Pattern recognition receptors expression was assessed in EoE and control primary esophageal epithelial cells, demonstrating robust expression of TLR2 and TLR3. The three-dimensional air-liquid interface culture (ALI) model was used to test whether TLR2 or TLR3 stimulation alters epithelial barrier function using an in vitro model of human epithelium. Transepithelial electrical resistance (TEER) and FITC-Dextran permeability were evaluated to assess membrane permeability. ALI cultures were evaluated by histology, immunohistochemistry, Western blotting, and chromatin immunoprecipitation (ChIP). RESULTS TLR3 stimulation did not change TEER in the ALI model. TLR2 stimulation increased TEER (1.28- to 1.31-fold) and decreased paracellular permeability to FITC-Dextran, and this effect was abolished by treatment with anti-TLR2 blocking antibody. TJ complex proteins claudin-1 and zonula occludens-1 were upregulated following TLR2 stimulation, and ChIP assay demonstrated altered histone 4 acetyl binding at the TJP1 enhancer and CLDN1 enhancer and promoter following zymosan treatment, implying the occurrence of durable chromatin changes. CONCLUSIONS Our findings implicate the TLR2 pathway as a potential regulator of esophageal epithelial barrier function and suggest that downstream chromatin modifications are associated with this effect.
Collapse
Affiliation(s)
- Melanie A Ruffner
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - Li Song
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kelly Maurer
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lihua Shi
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Margaret C Carroll
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joshua X Wang
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amanda B Muir
- Department of Pediatrics, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jonathan M Spergel
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Replicated methylation changes associated with eczema herpeticum and allergic response. Clin Epigenetics 2019; 11:122. [PMID: 31443688 PMCID: PMC6706929 DOI: 10.1186/s13148-019-0714-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/22/2019] [Indexed: 01/06/2023] Open
Abstract
Background Although epigenetic mechanisms are important risk factors for allergic disease, few studies have evaluated DNA methylation differences associated with atopic dermatitis (AD), and none has focused on AD with eczema herpeticum (ADEH+). We will determine how methylation varies in AD individuals with/without EH and associated traits. We modeled differences in genome-wide DNA methylation in whole blood cells from 90 ADEH+, 83 ADEH−, and 84 non-atopic, healthy control subjects, replicating in 36 ADEH+, 53 ADEH−, and 55 non-atopic healthy control subjects. We adjusted for cell-type composition in our models and used genome-wide and candidate-gene approaches. Results We replicated one CpG which was significantly differentially methylated by severity, with suggestive replication at four others showing differential methylation by phenotype or severity. Not adjusting for eosinophil content, we identified 490 significantly differentially methylated CpGs (ADEH+ vs healthy controls, genome-wide). Many of these associated with severity measures, especially eosinophil count (431/490 sites). Conclusions We identified a CpG in IL4 associated with serum tIgE levels, supporting a role for Th2 immune mediating mechanisms in AD. Changes in eosinophil level, a measure of disease severity, are associated with methylation changes, providing a potential mechanism for phenotypic changes in immune response-related traits. Electronic supplementary material The online version of this article (10.1186/s13148-019-0714-1) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Gür Çetinkaya P, Şahiner ÜM. Childhood atopic dermatitis: current developments, treatment approaches, and future expectations. Turk J Med Sci 2019; 49:963-984. [PMID: 31408293 PMCID: PMC7018348 DOI: 10.3906/sag-1810-105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disorder of childhood. Underlying factors that contribute to AD are impaired epithelial barrier, alterations in the lipid composition of the skin, immunological imbalance including increased Th2/Th1 ratio, proinflammatory cytokines, decreased T regulatory cells, genetic mutations, and epigenetic alterations. Atopic dermatitis is a multifactorial disease with a particularly complicated pathophysiology. Discoveries to date may be considered the tip of the iceberg, and the increasing number of studies in this field indicate that there are many points to be elucidated in AD pathophysiology. In this review, we aimed to illustrate the current understanding of the underlying pathogenic mechanisms in AD, to evaluate available treatment options with a focus on recently discovered therapeutic agents, and to determine the personal, familial, and economic burdens of the disease, which are frequently neglected issues in AD. Currently available therapies only provide transient solutions and cannot fully cure the disease. However, advances in the understanding of the pathogenic mechanisms of the disease have led to the production of new treatment options, while ongoing drug trials also have had promising results.
Collapse
Affiliation(s)
- Pınar Gür Çetinkaya
- Division of Pediatric Allergy and Asthma Unit, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ümit Murat Şahiner
- Division of Pediatric Allergy and Asthma Unit, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
16
|
Brunner PM, Guttman-Yassky E. Racial differences in atopic dermatitis. Ann Allergy Asthma Immunol 2019; 122:449-455. [PMID: 30465859 DOI: 10.1016/j.anai.2018.11.015] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/04/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To summarize studies investigating ethnical and racial differences in atopic dermatitis (AD) epidemiology, clinical features, and skin and blood phenotypes. DATA SOURCES PubMed literature review (years 2000-2018). STUDY SELECTIONS Articles discussing primarily human disease. RESULTS Higher overall rates of AD were found in Africa and Oceania as opposed to India and Northern and Eastern Europe. In the United States, AD prevalence was found to be higher in African American (19.3%) compared with European American (16.1%) children. Although several studies have consistently found FLG loss-of-function mutations in up to 50% of European and 27% of Asian patients with AD, FLG mutations were 6 times less common in African American than in European American patients, even in patients with severe AD. Thus, FLG mutations seem to play less a pathogenic role in patients of African origin than in individuals of European or Asian ancestry. The immune phenotype of all ethnic groups was characterized by strong TH2 activation, but important differences in immune polarization exist among the different ethnicities. Asian patients with AD had stronger TH17/TH22 activation than African American and European American patients with AD, whereas African American patients had the highest serum IgE levels among all groups, while largely lacking TH1 and TH17 activation. CONCLUSION AD is a heterogeneous disease that has differences among various ethnic and racial groups, which might be important for the development of future, targeted treatments and for personalized medicine approaches.
Collapse
Affiliation(s)
- Patrick M Brunner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
17
|
Chan CWH, Leung TF, Chow KM, Wong CL, Choi KC, Chan JYW. Association of toll-like receptor 5 polymorphisms (rs5744174 and rs851139) and eczema: a pilot birth cohort study in Hong Kong newborn babies. Int J Dermatol 2018; 57:e134-e135. [PMID: 30074616 DOI: 10.1111/ijd.14177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/17/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Carmen Wing Han Chan
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Ting Fan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Ka Ming Chow
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Cho Lee Wong
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Kai Chow Choi
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Judy Yuet Wa Chan
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
18
|
Kaufman BP, Guttman-Yassky E, Alexis AF. Atopic dermatitis in diverse racial and ethnic groups-Variations in epidemiology, genetics, clinical presentation and treatment. Exp Dermatol 2018; 27:340-357. [DOI: 10.1111/exd.13514] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Bridget P. Kaufman
- Department of Dermatology; Mount Sinai St. Luke's and Mount Sinai West; New York NY USA
| | - Emma Guttman-Yassky
- Department of Dermatology and the Laboratory for Inflammatory Skin Diseases; Icahn School of Medicine at Mount Sinai; New York NY USA
| | - Andrew F. Alexis
- Department of Dermatology; Mount Sinai St. Luke's and Mount Sinai West; New York NY USA
| |
Collapse
|
19
|
|
20
|
Can C, Yazıcıoğlu M, Gürkan H, Tozkır H, Görgülü A, Süt NH. Lack of Association Between Toll-like Receptor 2 Polymorphisms (R753Q and A-16934T) and Atopic Dermatitis in Children from Thrace Region of Turkey. Balkan Med J 2017; 34:232-238. [PMID: 28443596 PMCID: PMC5450863 DOI: 10.4274/balkanmedj.2015.1253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/31/2016] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Atopic dermatitis is the most common chronic inflammatory skin disease. A complex interaction of both genetic and environmental factors is thought to contribute to the disease. AIMS To evaluate whether single nucleotide polymorphisms in the TLR2 gene c.2258C>T (R753Q) (rs5743708) and TLR2 c.-148+1614T>A (A-16934T) (rs4696480) (NM_0032643) are associated with atopic dermatitis in Turkish children. STUDY DESIGN Case-control study. METHODS The study was conducted on 70 Turkish children with atopic dermatitis aged 0.5-18 years. The clinical severity of atopic dermatitis was evaluated by the severity scoring of atopic dermatitis index. Serum total IgE levels, specific IgE antibodies to inhalant and food allergens were measured in both atopic dermatitis patients and controls, skin prick tests were done on 70 children with atopic dermatitis. Genotyping for TLR2 (R753Q and A-16934T) single nucleotide polymorphisms was performed in both atopic dermatitis patients and controls. RESULTS Cytosine-cytosine and cytosin-thymine genotype frequencies of the TLR2 R753Q single nucleotide polymorphism in the atopic dermatitis group were determined as being 98.6% and 1.4%, cytosine allele frequency for TLR2 R753Q single nucleotide polymorphism was determined as 99.29% and the thymine allele frequency was 0.71%, thymine-thymine, thymine-adenine, and adenine-adenine genotype frequencies of the TLR2 A-16934T single nucleotide polymorphism were 24.3%, 44.3%, and 31.4%. The thymine allele frequency for the TLR2 A-16934T single nucleotide polymorphism in the atopic dermatitis group was 46.43%, and the adenine allele frequency was 53.57%, respectively. There was not statistically significant difference between the groups for all investigated polymorphisms (p>0.05). For all single nucleotide polymorphisms studied, allelic distribution was analogous among atopic dermatitis patients and controls, and no significant statistical difference was observed. No homozygous carriers of the TLR2 R753Q single nucleotide polymorphism were found in the atopic dermatitis and control groups. CONCLUSION The TLR2 (R753Q and A-16934T) single nucleotide polymorphisms are not associated with atopic dermatitis in a group of Turkish patients.
Collapse
Affiliation(s)
- Ceren Can
- Department of Pediatric Allergy and Immunology, Trakya University School of Medicine, Edirne, Turkey
| | - Mehtap Yazıcıoğlu
- Department of Pediatric Allergy and Immunology, Trakya University School of Medicine, Edirne, Turkey
| | - Hakan Gürkan
- Department of Genetics, Trakya University School of Medicine, Edirne, Turkey
| | - Hilmi Tozkır
- Department of Genetics, Trakya University School of Medicine, Edirne, Turkey
| | - Adnan Görgülü
- Department of Dermatology, Trakya University School of Medicine, Edirne, Turkey
| | - Necdet Hilmi Süt
- Department of Biostatistics, Trakya University School of Medicine, Edirne, Turkey
| |
Collapse
|
21
|
Gao Y, Xiao H, Wang Y, Xu F. Association of single-nucleotide polymorphisms in toll-like receptor 2 gene with asthma susceptibility: A meta-analysis. Medicine (Baltimore) 2017; 96:e6822. [PMID: 28514297 PMCID: PMC5440134 DOI: 10.1097/md.0000000000006822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND An increasing number of studies have been carried out on the relationship between polymorphisms in toll-like receptor 2 (TLR2) gene and asthma risk. However, the results were controversial. With the purpose of yielding a more reliable estimation of the association, we conducted the present meta-analysis. METHODS Multiple electronic databases up to August 22, 2016 were searched for literature retrieval. The association between the asthma susceptibility and the rs5743708 polymorphism, rs3804099 polymorphism, rs3804100 polymorphism, and rs4696480 polymorphism in TLR2 gene was appraised. The odds ratios (ORs) with 95% confidence intervals (CIs) under different genetic models were calculated. RESULTS A total of 13 studies were eligible in our meta-analysis according to the predefined inclusion and exclusion criteria. There was no significant association between asthma risk and rs5743708, rs3804099, and rs3804100 polymorphisms in TLR2 gene under any genetic model. With respect to the TLR2 rs4696480 polymorphism, significant association was detected between asthma susceptibility and TLR2 rs4696480 polymorphism under dominant model (OR = 2.455, 95% CI = 1.235-4.88, P = .01) and codominant 3 model (OR = 2.776, 95% CI = 1.199-6.427, = 0.017). CONCLUSIONS Our meta-analysis reveals that the TLR2 rs4696480 polymorphism is significantly associated with asthma susceptibility, and the TLR2 rs4696480 polymorphism is a risk factor for asthma.
Collapse
Affiliation(s)
| | - Hanyan Xiao
- Department of Neurology, Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang, Heilongjiang Province, China
| | | | | |
Collapse
|
22
|
Lau MYZ, Dharmage SC, Burgess JA, Win AK, Lowe AJ, Lodge C, Perret J, Hui J, Thomas PS, Morrison S, Giles GG, Hopper J, Abramson MJ, Walters EH, Matheson MC. The interaction between farming/rural environment and TLR2, TLR4, TLR6 and CD14 genetic polymorphisms in relation to early- and late-onset asthma. Sci Rep 2017; 7:43681. [PMID: 28262750 PMCID: PMC5337969 DOI: 10.1038/srep43681] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/24/2017] [Indexed: 12/22/2022] Open
Abstract
Asthma phenotypes based on age-of-onset may be differently influenced by the interaction between variation in toll-like receptor (TLR)/CD14 genes and environmental microbes. We examined the associations between single-nucleotide polymorphisms (SNP) in the TLR/CD14 genes and asthma, and their interaction with proxies of microbial exposure (childhood farm exposure and childhood rural environment). Ten SNPs in four genes (TLR2, TLR4, TLR6, CD14) were genotyped for 1,116 participants from the Tasmanian Longitudinal Health Study (TAHS). Using prospectively collected information, asthma was classified as never, early- (before 13 years) or late-onset (after 13 years). Information on childhood farm exposure/childhood rural environment was collected at baseline. Those with early-onset asthma were more likely to be males, had a family history of allergy and a personal history of childhood atopy. We found significant interaction between TLR6 SNPs and childhood farm exposure. For those with childhood farm exposure, carriers of the TLR6-rs1039559 T-allele (p-interaction = 0.009) and TLR6-rs5743810 C-allele (p-interaction = 0.02) were associated with lower risk of early-onset asthma. We suggest the findings to be interpreted as hypothesis-generating as the interaction effect did not withstand correction for multiple testing. In this large, population-based longitudinal study, we found that the risk of early- and late-onset asthma is differently influenced by the interaction between childhood farming exposure and genetic variations.
Collapse
Affiliation(s)
- Melisa Y Z Lau
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, the University of Melbourne, Victoria, Australia
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, the University of Melbourne, Victoria, Australia.,Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - John A Burgess
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, the University of Melbourne, Victoria, Australia
| | - Aung K Win
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, the University of Melbourne, Victoria, Australia
| | - Adrian J Lowe
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, the University of Melbourne, Victoria, Australia.,Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Caroline Lodge
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, the University of Melbourne, Victoria, Australia.,Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Jennifer Perret
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, the University of Melbourne, Victoria, Australia
| | - Jennie Hui
- School of Population Health, the University of Western Australia, Perth, Australia
| | - Paul S Thomas
- Inflammation and Infection Research Centre, University of New South Wales, Australia
| | - Stephen Morrison
- Department of Medicine, the University of Queensland, Queensland, Australia
| | - Graham G Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Victoria, Australia.,School of Public Health &Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - John Hopper
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, the University of Melbourne, Victoria, Australia
| | - Michael J Abramson
- School of Public Health &Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - E Haydn Walters
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, the University of Melbourne, Victoria, Australia.,School of Medicine, University of Tasmania, Tasmania, Australia
| | - Melanie C Matheson
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, the University of Melbourne, Victoria, Australia.,Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Liang Y, Chang C, Lu Q. The Genetics and Epigenetics of Atopic Dermatitis-Filaggrin and Other Polymorphisms. Clin Rev Allergy Immunol 2017; 51:315-328. [PMID: 26385242 DOI: 10.1007/s12016-015-8508-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease caused by a combination of genetic and environmental factors. Genetic evidences depict a complex network comprising by epidermal barrier dysfunctions and dysregulation of innate and adaptive immunity in the pathogenesis of AD. Mutations in the human filaggrin gene (FLG) are the most significant and well-replicated genetic mutation associated with AD, and other mutations associated with epidermal barriers such as SPINK5, FLG-2, SPRR3, and CLDN1 have all been linked to AD. Gene variants may also contribute to the abnormal innate and adaptive responses found in AD, including mutations in PRRs and AMPs, TSLP and TSLPR, IL-1 family cytokines and receptors genes, vitamin D pathway genes, FCER1A, and Th2 and other cytokines genes. GWAS and Immunochip analysis have identified a total of 19 susceptibility loci for AD. Candidate genes at these susceptibility loci identified by GWAS and Immunochip analysis also suggest roles for epidermal barrier functions, innate and adaptive immunity, interleukin-1 family signaling, regulatory T cells, the vitamin D pathway, and the nerve growth factor pathway in the pathogenesis of AD. Increasing evidences show the modern lifestyle (i.e., the hygiene hypothesis, Western diet) and other environmental factors such as pollution and environmental tobacco smoke (ETS) lead to the increasing prevalence of AD with the development of industrialization. Epigenetic alterations in response to these environmental factors, including DNA methylation and microRNA related to immune system and skin barriers, have been found to contribute to the pathogenesis of AD. Genetic variants and epigenetic alteration might be the key tools for the molecular taxonomy of AD and provide the background for the personalized management.
Collapse
Affiliation(s)
- Yunsheng Liang
- Hunan Key Laboratory of Medical Epigenomics & Department of Dermatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Rd, Changsha, Hunan, 410011, China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, 95616, USA
| | - Qianjin Lu
- Hunan Key Laboratory of Medical Epigenomics & Department of Dermatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Rd, Changsha, Hunan, 410011, China.
| |
Collapse
|
24
|
Abstract
Atopic dermatitis is one of the most common chronic inflammatory skin diseases. It usually begins in childhood, has a considerable impact on patients' quality of life, and incurs substantial healthcare costs. The standard-of-care treatments for patients with moderate to severe disease are very limited and have variable and typically insufficient efficacy and many side effects, some of which are quite serious. However, over the last decade, considerable advances in our understanding of the pathogenesis of atopic dermatitis have paved the way for a number of new treatments. Most notable are the drugs that target the Th2-polarized immune system, which is thought to play a key role in many of the signs and symptoms characteristic of this disease. In this article, we briefly review the pathophysiology of atopic dermatitis, while noting that each patient's disease phenotype is likely due to a unique interplay of several disease-specific dysregulated pathways. Lastly, we cover emerging therapies for atopic dermatitis, focusing on those that target specific components of the immune system, which are altered in atopic dermatitis. The hope is that these new biologics or small-molecule antagonists, which have high specificity for their target molecules, will decrease the undesirable side effects caused by off-target effects commonly observed with current immunosuppressive agents that are characterized by broad biological actions.
Collapse
|
25
|
Molecular Mechanisms of Cutaneous Inflammatory Disorder: Atopic Dermatitis. Int J Mol Sci 2016; 17:ijms17081234. [PMID: 27483258 PMCID: PMC5000632 DOI: 10.3390/ijms17081234] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/21/2016] [Accepted: 07/26/2016] [Indexed: 02/06/2023] Open
Abstract
Atopic dermatitis (AD) is a multifactorial inflammatory skin disease resulting from interactions between genetic susceptibility and environmental factors. The pathogenesis of AD is poorly understood, and the treatment of recalcitrant AD is still challenging. There is accumulating evidence for new gene polymorphisms related to the epidermal barrier function and innate and adaptive immunity in patients with AD. Newly-found T cells and dendritic cell subsets, cytokines, chemokines and signaling pathways have extended our understanding of the molecular pathomechanism underlying AD. Genetic changes caused by environmental factors have been shown to contribute to the pathogenesis of AD. We herein present a review of the genetics, epigenetics, barrier dysfunction and immunological abnormalities in AD with a focus on updated molecular biology.
Collapse
|
26
|
López-Álvarez MR, Jiang W, Jones DC, Jayaraman J, Johnson C, Cookson WO, Moffatt MF, Trowsdale J, Traherne JA. LILRA6 copy number variation correlates with susceptibility to atopic dermatitis. Immunogenetics 2016; 68:743-7. [PMID: 27333811 PMCID: PMC5026711 DOI: 10.1007/s00251-016-0924-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/10/2016] [Indexed: 02/06/2023]
Abstract
Leukocyte immunoglobulin-like receptors (LILR) are expressed mostly on myelomonocytic cells where they are mediators of immunological tolerance. Two LILR genes, LILRA3 and LILRA6, exhibit marked copy number variation. We assessed the contribution of these genes to atopic dermatitis (AD) by analysing transmission in 378 AD families. The data indicated that copies of LILRA6 were over-transmitted to affected patients. They are consistent with a contribution of LILR genes to AD. They could affect the equilibrium between activating and inhibitory signals in the immune response.
Collapse
Affiliation(s)
- M R López-Álvarez
- Immunology Division, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - W Jiang
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - D C Jones
- Immunology Division, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - J Jayaraman
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - C Johnson
- Immunology Division, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.,Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.,Molecular Genetics and Genomics Section, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK
| | - W O Cookson
- Molecular Genetics and Genomics Section, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK
| | - M F Moffatt
- Molecular Genetics and Genomics Section, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK
| | - J Trowsdale
- Immunology Division, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.,Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - J A Traherne
- Immunology Division, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK. .,Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
27
|
Yu Y, Zhang Y, Zhang J, Dou X, Yang H, Shao Y, Wang K, Yu B, Zhang W, Lau HYA. Impaired Toll-like receptor 2-mediated Th1 and Th17/22 cytokines secretion in human peripheral blood mononuclear cells from patients with atopic dermatitis. J Transl Med 2015; 13:384. [PMID: 26682905 PMCID: PMC4683963 DOI: 10.1186/s12967-015-0744-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/30/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Impaired Toll-like receptor 2 (TLR2) function has been associated with the pathogenesis of atopic dermatitis (AD). However, there are only few studies reporting on the TLR2-induced immunological responses of circulating leucocytes of AD patients. We thus investigated the expression and secretion of Th1, Th2 and Th17/22 cytokines triggered by TLR2 ligands in human peripheral blood mononuclear cells (PBMCs) from AD patients. Expression of TLR2, 1, 6 and high-affinity receptor for IgE (FcεRI) were further investigated to evaluate the outcome of immune response in AD. METHODS Expression of TLR2, 1, 6 and FcεRI in PBMCs from AD patients and healthy individuals were measured by qPCR. Subsequent to stimulation with TLR2 ligands PGN and Pam3CSK4, expression and secretion of Th1, Th2 and Th17/22 cytokines were investigated by qPCR and ELISA. RESULTS The levels of TLR2, 1, 6 mRNA were not altered in both groups of subjects while that of FcεRI was increased in AD patients. Subsequent to the activation by TLR2 ligands, PBMCs from AD patients significantly released less IFN-γ, IL-17F and IL-22 than those from healthy controls while no detectable level of release was observed with the other cytokines. In contrast, significantly higher levels of mRNA expression for TNF-α, IL5, IL-17A and IL-22 were observed in TLR2 activated PBMCs of AD patients than those of healthy control. CONCLUSIONS PBMCs from AD patients are defective in the secretion of Th1 and Th17/22 cytokines in response to TLR2 ligands. The inconsistent increased expression of the mRNA for the corresponding Th1 cytokines and the Th2 cytokines IL-5 suggested that there may be alterations of downstream signaling events in the cytokine release mechanisms of PBMCs that are associated with the development of AD.
Collapse
Affiliation(s)
- Yangyang Yu
- School of Medicine, Shenzhen University, Shenzhen, Guangdong, China.
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, No. 1120, Lianhua Road, Futian District, Shenzhen, 518036, Guangdong, China.
| | - Yarui Zhang
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, No. 1120, Lianhua Road, Futian District, Shenzhen, 518036, Guangdong, China.
| | - Jie Zhang
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China.
| | - Xia Dou
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China.
| | - Hong Yang
- Department of Clinical Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China.
| | - Yong Shao
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, No. 1120, Lianhua Road, Futian District, Shenzhen, 518036, Guangdong, China.
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China.
| | - Kepeng Wang
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, No. 1120, Lianhua Road, Futian District, Shenzhen, 518036, Guangdong, China.
| | - Bo Yu
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, No. 1120, Lianhua Road, Futian District, Shenzhen, 518036, Guangdong, China.
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China.
| | - Wei Zhang
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, No. 1120, Lianhua Road, Futian District, Shenzhen, 518036, Guangdong, China.
| | - Hang Yung Alaster Lau
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
28
|
The role of innate immune signaling in the pathogenesis of atopic dermatitis and consequences for treatments. Semin Immunopathol 2015; 38:29-43. [DOI: 10.1007/s00281-015-0544-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/02/2015] [Indexed: 01/09/2023]
|
29
|
McKinney C, Stamp LK, Dalbeth N, Topless RK, Day RO, Kannangara DR, Williams KM, Janssen M, Jansen TL, Joosten LA, Radstake TR, Riches PL, Tausche AK, Lioté F, So A, Merriman TR. Multiplicative interaction of functional inflammasome genetic variants in determining the risk of gout. Arthritis Res Ther 2015; 17:288. [PMID: 26462562 PMCID: PMC4604627 DOI: 10.1186/s13075-015-0802-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 09/26/2015] [Indexed: 02/07/2023] Open
Abstract
Introduction The acute gout flare results from a localised self-limiting innate immune response to monosodium urate (MSU) crystals deposited in joints in hyperuricaemic individuals. Activation of the caspase recruitment domain-containing protein 8 (CARD8) NOD-like receptor pyrin-containing 3 (NLRP3) inflammasome by MSU crystals and production of mature interleukin-1β (IL-1β) is central to acute gouty arthritis. However very little is known about genetic control of the innate immune response involved in acute gouty arthritis. Therefore our aim was to test functional single nucleotide polymorphism (SNP) variants in the toll-like receptor (TLR)-inflammasome-IL-1β axis for association with gout. Methods 1,494 gout cases of European and 863 gout cases of New Zealand (NZ) Polynesian (Māori and Pacific Island) ancestry were included. Gout was diagnosed by the 1977 ARA gout classification criteria. There were 1,030 Polynesian controls and 10,942 European controls including from the publicly-available Atherosclerosis Risk in Communities (ARIC) and Framingham Heart (FHS) studies. The ten SNPs were either genotyped by Sequenom MassArray or by Affymetrix SNP array or imputed in the ARIC and FHS datasets. Allelic association was done by logistic regression adjusting by age and sex with European and Polynesian data combined by meta-analysis. Sample sets were pooled for multiplicative interaction analysis, which was also adjusted by sample set. Results Eleven SNPs were tested in the TLR2, CD14, IL1B, CARD8, NLRP3, MYD88, P2RX7, DAPK1 and TNXIP genes. Nominally significant (P < 0.05) associations with gout were detected at CARD8 rs2043211 (OR = 1.12, P = 0.007), IL1B rs1143623 (OR = 1.10, P = 0.020) and CD14 rs2569190 (OR = 1.08; P = 0.036). There was significant multiplicative interaction between CARD8 and IL1B (P = 0.005), with the IL1B risk genotype amplifying the risk effect of CARD8. Conclusion There is evidence for association of gout with functional variants in CARD8, IL1B and CD14. The gout-associated allele of IL1B increases expression of IL-1β – the multiplicative interaction with CARD8 would be consistent with a synergy of greater inflammasome activity (resulting from reduced CARD8) combined with higher levels of pre-IL-1β expression leading to increased production of mature IL-1β in gout. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0802-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cushla McKinney
- Department of Biochemistry, University of Otago, Box 56, Dunedin, 9054, New Zealand.
| | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch, New Zealand.
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand.
| | - Ruth K Topless
- Department of Biochemistry, University of Otago, Box 56, Dunedin, 9054, New Zealand.
| | - Richard O Day
- School of Medical Sciences, University of New South Wales, Sydney, Australia. .,Department of Clinical Pharmacology & Toxicology, St Vincent's Hospital, Sydney, Australia.
| | - Diluk Rw Kannangara
- School of Medical Sciences, University of New South Wales, Sydney, Australia. .,Department of Clinical Pharmacology & Toxicology, St Vincent's Hospital, Sydney, Australia.
| | - Kenneth M Williams
- School of Medical Sciences, University of New South Wales, Sydney, Australia. .,Department of Clinical Pharmacology & Toxicology, St Vincent's Hospital, Sydney, Australia.
| | - Matthijs Janssen
- Department of Rheumatology, Rijnstate Hospital, Arnhem, The Netherlands.
| | - Timothy L Jansen
- Department of IQ HealthCare, VieCuri Medical Centre, Venlo, The Netherlands. .,Scientific Institute of Quality in HealthCare, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Leo A Joosten
- Department of Internal Medicine and Radboud Institute of Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Timothy R Radstake
- Department of Rheumatology and Clinical Immunology, Laboratory of Translational Immunology, University Medical Centre Utrecht, PO Box 85500, 3508, GA, Utrecht, The Netherlands. .,Department of Immunology, University Medical Centre Utrecht, PO Box 85500, 3508, GA, Utrecht, The Netherlands.
| | - Philip L Riches
- Rheumatic Diseases Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| | - Anne-Kathrin Tausche
- Department of Rheumatology, University Clinic Carl-Gustav-Carus", Dresden, Germany.
| | - Frederic Lioté
- INSERM, UMR-S 1132, Hospital Lariboisière, F-75010, Paris, France. .,University Paris Diderot (UFR de Médecine), Sorbonne Paris Cité, F-75205, Paris, France.
| | - Alexander So
- DAL, Service of Rheumatology, Laboratory of Rheumatology, University of Lausanne, CHUV, Nestlé 05-5029, 1011, Lausanne, Switzerland.
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
30
|
Howell MD, Parker ML, Mustelin T, Ranade K. Past, present, and future for biologic intervention in atopic dermatitis. Allergy 2015; 70:887-96. [PMID: 25879391 DOI: 10.1111/all.12632] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2015] [Indexed: 12/31/2022]
Abstract
Atopic dermatitis (AD) is a debilitating disease that significantly alters the quality of life for one in four children and one in 10 adults. Current management of AD utilizes combinations of treatments to symptomatically alleviate disease by suppressing the inflammatory response and restoring barrier function in the skin, reducing disease exacerbation and flare, and preventing secondary skin infections. Resolution is temporary and long-term usage of these treatments can be associated with significant side-effects. Antibody therapies previously approved for inflammatory diseases have been opportunistically evaluated in patients with atopic dermatitis; however, they often failed to demonstrate a significant clinical benefit. Monoclonal antibodies currently in development offer hope to those individuals suffering from the disease by specifically targeting immune and molecular pathways important for the pathogenesis of atopic dermatitis. Here, we review the underlying biological pathways and the state of the art in therapeutics in AD.
Collapse
Affiliation(s)
| | | | | | - K Ranade
- MedImmune, LLC, Gaithersburg, MD, USA
| |
Collapse
|
31
|
Matin N, Tabatabaie O, Mohammadinejad P, Rezaei N. Therapeutic targeting of Toll-like receptors in cutaneous disorders. Expert Opin Ther Targets 2015; 19:1651-63. [DOI: 10.1517/14728222.2015.1069275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
32
|
Unravelling the complex genetic background of atopic dermatitis: from genetic association results towards novel therapeutic strategies. Arch Dermatol Res 2015; 307:659-70. [PMID: 25693656 DOI: 10.1007/s00403-015-1550-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/14/2015] [Accepted: 01/31/2015] [Indexed: 02/06/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease arising from complex interaction between genetic and environmental factors. As the starting point of the so-called "atopic march", e.g. the progression towards allergic asthma in some but not all affected children, AD has come into focus for potential disease-modifying strategies. To elucidate the genetic factors influencing AD development, linkage, association as well as genome-wide association studies have been performed over the last two decades. The results suggest that besides variation in immune-mediated pathways, an intact skin barrier function plays a key role in AD development. Mutations in the gene encoding filaggrin, a major structural protein in the epidermis, have been consistently associated with AD, especially the early-onset persistent form of disease, and are regarded as the most significant known risk factor for AD development to date. Additionally, variation in some other genes involved in skin integrity and barrier function have shown association with AD. However, the known genetic risk factors can only explain a small part of the heritability at the moment. Whole-exome or whole-genome sequencing studies have not been reported yet, but will probably soon evaluate the influence of rare variations for AD development. Additionally, large multi-centre studies comprehensively incorporating gene-gene and gene-environment interactions as well as epigenetic mechanisms might further elucidate the genetic factors underlying AD pathogenesis and, thus, open the way for a more individualized treatment in the future.
Collapse
|
33
|
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease with specific genetic and immunological mechanisms. The rapid development of new techniques in molecular biology had ushered in new discoveries on the role of cytokines, chemokines, and immune cells in the pathogenesis of AD. New polymorphisms of AD are continually being reported in different populations. The physical and immunological barrier of normal intact skin is an important part of the innate immune system that protects the host against microbials and allergens that are associated with AD. Defects in the filaggrin gene FLG may play a role in facilitating exposure to allergens and microbial pathogens, which may induce Th2 polarization. Meanwhile, Th22 cells also play roles in skin barrier impairment through IL-22, and AD is often considered to be a Th2/Th22-dominant allergic disease. Mast cells and eosinophils are also involved in the inflammation via Th2 cytokines. Release of pruritogenic substances by mast cells induces scratching that further disrupts the skin barrier. Th1 and Th17 cells are mainly involved in chronic phase of AD. Keratinocytes also produce proinflammatory cytokines such as thymic stromal lymphopoietin (TSLP), which can further affect Th cells balance. The immunological characteristics of AD may differ for various endotypes and phenotypes. Due to the heterogeneity of the disease, and the redundancies of these mechanisms, our knowledge of the pathophysiology of the disease is still incomplete, which is reflected by the absence of a cure for the disease.
Collapse
Affiliation(s)
- Zhanglei Mu
- Department of Dermatology, Peking University People's Hospital, No11, Xizhimen South Street, Beijing, 100044, China
| | | | | | | | | |
Collapse
|
34
|
Y. ZX, M. L, L. X, X. ZC, J. Z, C. Y, D. DX, L. LJ, P. HD, H. XX. Detection of polymorphisms and protein domain architectures in rabbit toll-like receptor 2. WORLD RABBIT SCIENCE 2014. [DOI: 10.4995/wrs.2014.1457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
35
|
Potaczek DP. Links between allergy and cardiovascular or hemostatic system. Int J Cardiol 2013; 170:278-85. [PMID: 24315352 DOI: 10.1016/j.ijcard.2013.11.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 11/03/2013] [Accepted: 11/17/2013] [Indexed: 12/28/2022]
Abstract
In addition to a well-known immunologic background of atherosclerosis and influences of inflammation on arterial and venous thrombosis, there is growing evidence for the presence of links between allergy and vascular or thrombotic disorders. In this interpretative review, five pretty well-documented areas of such overlap are described and discussed, including: (1) links between atherosclerosis and immunoglobulin E or atopy, (2) mutual effects of blood lipids and allergy, (3) influence of atopy and related disorders on venous thromboembolism, (4) the role of platelets in allergic diseases, and (5) the functions of protein C system in atopic disorders.
Collapse
Affiliation(s)
- Daniel P Potaczek
- Institute of Laboratory Medicine, Philipps-Universität Marburg, Marburg, Germany; John Paul II Hospital, Krakow, Poland.
| |
Collapse
|
36
|
Kuo IH, Yoshida T, De Benedetto A, Beck LA. The cutaneous innate immune response in patients with atopic dermatitis. J Allergy Clin Immunol 2013; 131:266-78. [PMID: 23374259 DOI: 10.1016/j.jaci.2012.12.1563] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/13/2012] [Indexed: 12/28/2022]
Abstract
Orchestrating when and how the cutaneous innate immune system should respond to commensal or pathogenic microbes is a critical function of the epithelium. The cutaneous innate immune system is a key determinant of the physical, chemical, microbial, and immunologic barrier functions of the epidermis. A malfunction in this system can lead to an inadequate host response to a pathogen or a persistent inflammatory state. Atopic dermatitis is the most common inflammatory skin disorder and characterized by abnormalities in both skin barrier structures (stratum corneum and tight junctions), a robust T(H)2 response to environmental antigens, defects in innate immunity, and an altered microbiome. Many of these abnormalities may occur as the consequence of epidermal dysfunction. The epidermis directly interfaces with the environment and, not surprisingly, expresses many pattern recognition receptors that make it a key player in cutaneous innate immune responses to skin infections and injury. This review will discuss the role epidermal innate receptors play in regulation of skin barriers and, where possible, discuss the relevance of these findings for patients with atopic dermatitis.
Collapse
Affiliation(s)
- I-Hsin Kuo
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
37
|
Bieber T. Atopic dermatitis 2.0: from the clinical phenotype to the molecular taxonomy and stratified medicine. Allergy 2012; 67:1475-82. [PMID: 23106343 DOI: 10.1111/all.12049] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2012] [Indexed: 11/29/2022]
Abstract
Atopic dermatitis (AD) is a paradigmatic inflammatory chronic skin disease. As for other chronic skin diseases, (i) the spectrum of the clinical phenotype and severity as well as (ii) the genetic background and (iii) the underlying mechanisms strongly suggest a high degree of pathophysiological heterogeneity yet leading to a similar clinical pattern, that is, the eczematous skin lesion, but showing distinct progression patterns. This review suggests to exploit the recent knowledge about AD for a novel approach proposing a tentative first molecular taxonomy of this disease based on the genotype and endophenotype. The consequences in terms of personalized prevention and management are delineated.
Collapse
Affiliation(s)
- Th. Bieber
- Department of Dermatology and Allergy; University of Bonn; Bonn; Germany
| |
Collapse
|