1
|
Davati N, Ghorbani A. Comparison of the antibiotic resistance mechanisms in a gram-positive and a gram-negative bacterium by gene networks analysis. PLoS One 2024; 19:e0311434. [PMID: 39546505 PMCID: PMC11567557 DOI: 10.1371/journal.pone.0311434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/20/2024] [Indexed: 11/17/2024] Open
Abstract
Nowadays, the emergence of some microbial species resistant to antibiotics, both gram-positive and gram-negative bacteria, is due to changes in molecular activities, biological processes and their cellular structure in order to survive. The aim of the gene network analysis for the drug-resistant Enterococcus faecium as gram-positive and Salmonella Typhimurium as gram-negative bacteria was to gain insights into the important interactions between hub genes involved in key molecular pathways associated with cellular adaptations and the comparison of survival mechanisms of these two bacteria exposed to ciprofloxacin. To identify the gene clusters and hub genes, the gene networks in drug-resistant E. faecium and S. Typhimurium were analyzed using Cytoscape. Subsequently, the putative regulatory elements were found by examining the promoter regions of the hub genes and their gene ontology (GO) was determined. In addition, the interaction between milRNAs and up-regulated genes was predicted. RcsC and D920_01853 have been identified as the most important of the hub genes in S. Typhimurium and E. faecium, respectively. The enrichment analysis of hub genes revealed the importance of efflux pumps, and different enzymatic and binding activities in both bacteria. However, E. faecium specifically increases phospholipid biosynthesis and isopentenyl diphosphate biosynthesis, whereas S. Typhimurium focuses on phosphorelay signal transduction, transcriptional regulation, and protein autophosphorylation. The similarities in the GO findings of the promoters suggest common pathways for survival and basic physiological functions of both bacteria, including peptidoglycan production, glucose transport and cellular homeostasis. The genes with the most interactions with milRNAs include dpiB, rcsC and kdpD in S. Typhimurium and EFAU004_01228, EFAU004_02016 and EFAU004_00870 in E. faecium, respectively. The results showed that gram-positive and gram-negative bacteria have different mechanisms to survive under antibiotic stress. By deciphering their intricate adaptations, we can develop more effective therapeutic approaches and combat the challenges posed by multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Nafiseh Davati
- Faculty of Food Industry, Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran
| | - Abozar Ghorbani
- Nuclear Science and Technology Research Institute (NSTRI), Nuclear Agriculture Research School, Karaj, Iran
| |
Collapse
|
2
|
Hyeon GE, Eom YB. Totarol exhibits antibacterial effects through antibiofilm and combined interaction against vancomycin-resistant Enterococcus faecalis. Can J Microbiol 2024; 70:426-432. [PMID: 39058360 DOI: 10.1139/cjm-2024-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The rise of vancomycin-resistant enterococci (VRE) due to antibiotic overuse poses a significant threat to long-term care patients and those with impaired immune systems. Therefore, it is imperative to seek alternatives to overcome multidrug resistance. This study aimed to evaluate totarol, a natural compound derived from Podocarpus totara, for its antibacterial activity against vancomycin-resistant Enterococcus faecalis (VREF). Totarol exhibited potent antibacterial activity at a very low concentration of 0.25 µg/mL and demonstrated antibiofilm effects through biofilm inhibitory concentration and biofilm eradication concentration assays. Confocal laser scanning microscopy confirmed that totarol inhibited not only biofilm mass but also bacterial cell viability. The combinatorial use of sublethal concentrations of totarol and vancomycin showed antibacterial activity, as observed in the time-kill assay. Quantitative polymerase chain reaction assays revealed a concentration-dependent downregulation of key virulence genes (vanA, ace, asa, efaA, and esp) in VREF when exposed to totarol. In summary, totarol emerges as a promising adjuvant with vancomycin for inhibiting VREF, addressing vancomycin resistance and biofilm formation-critical challenges associated with VRE infection. Since this was an in vitro study, the role of totarol in the clinical implications of VREF treatment remains to be demonstrated.
Collapse
Affiliation(s)
- Ga-Eun Hyeon
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam, 31538, Republic of Korea
| | - Yong-Bin Eom
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam, 31538, Republic of Korea
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Chungnam, 31538, Republic of Korea
| |
Collapse
|
3
|
Raddaoui A, Chebbi Y, Frigui S, Latorre J, Ammeri RW, Abdejlil NB, Torres C, Abbassi MS, Achour W. Genetic characterization of vancomycin-resistant Enterococcus faecium isolates from neutropenic patients in Tunisia: spread of the pandemic CC17 clone associated with high genetic diversity in Tn1546-like structures. J Appl Microbiol 2024; 135:lxae225. [PMID: 39210508 DOI: 10.1093/jambio/lxae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
AIMS In Tunisia, limited research has focused on characterizing clinical vancomycin-resistant Enterococcus faecium (VREfm). This study aimed to bridge this knowledge gap by molecular characterization of antimicrobial resistance, determining the genetic elements mediating vancomycin-resistance, and whole-genome sequencing of one representative VREfm isolate. METHODS AND RESULTS Over 6 years (2011-2016), a total of eighty VREfm isolates responsible for infection or colonization were identified from hospitalized patients, with the incidence rate increasing from 2% in 2011 to 27% in 2016. All of these strains harbored the vanA gene. The screening for antimicrobial resistance genes revealed the predominance of ermB, tetM, and aac(6')-Ie-aph(2'')-Ia genes and 81.2% of strains harbored the Tn1545. Pulsed-field gel electrophoresis identified seven clusters, with two major clusters (belonging to ST117 and ST80) persisting throughout the study period. Seven Tn1546 types were detected, with type VI (truncated transposon) being the most prevalent (57.5%). Whole-genome sequencing revealed a 3 028 373 bp chromosome and five plasmids. Mobile genetic elements and a type I CRISPR-cas locus were identified. Notably, the vanA gene was carried by the classic Tn1546 transposon with ISL3 insertion on a rep17pRUM plasmid. CONCLUSION A concerning trend in the prevalence of VREfm essentially attributed to CC17 persistence and to horizontal transfer of multiple genetic variants of truncated vanA-Tn1546.
Collapse
Affiliation(s)
- Anis Raddaoui
- Laboratory Ward, National Bone Marrow Transplant Center, Tunis 1006, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Yosra Chebbi
- Laboratory Ward, National Bone Marrow Transplant Center, Tunis 1006, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Siwar Frigui
- Laboratory Ward, National Bone Marrow Transplant Center, Tunis 1006, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Javier Latorre
- Area de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño 26006, Spain
| | - Rim Werhani Ammeri
- Laboratory Ward, National Bone Marrow Transplant Center, Tunis 1006, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Nour Ben Abdejlil
- Department of hematology and transplantationtion, National Bone Marrow Transplant Center, Tunis 1006, Tunisia
| | - Carmen Torres
- Area de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño 26006, Spain
| | - Mohamed Salah Abbassi
- Faculty of Medicine of Tunis, Laboratory of Antibiotic Resistance LR99ES09, University of Tunis El Manar, Tunis 1006, Tunisia
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis1006, Tunisia
| | - Wafa Achour
- Laboratory Ward, National Bone Marrow Transplant Center, Tunis 1006, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, Tunis 1006, Tunisia
| |
Collapse
|
4
|
Milani G, Cortimiglia C, Belloso Daza MV, Greco E, Bassi D, Cocconcelli PS. Microplastic-Mediated Transfer of Tetracycline Resistance: Unveiling the Role of Mussels in Marine Ecosystems. Antibiotics (Basel) 2024; 13:727. [PMID: 39200027 PMCID: PMC11350897 DOI: 10.3390/antibiotics13080727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
The global threat of antimicrobial resistance (AMR) is exacerbated by the mobilization of antimicrobial resistance genes (ARGs) occurring in different environmental niches, including seawater. Marine environments serve as reservoirs for resistant bacteria and ARGs, further complicated by the ubiquity of microplastics (MPs). MPs can adsorb pollutants and promote bacterial biofilm formation, creating conditions favorable to the dissemination of ARGs. This study explores the dynamics of ARG transfer in the marine bivalve Mytilus galloprovincialis within a seawater model, focusing on the influence of polyethylene MPs on the mobilization of the Tn916-carrying tetM gene and plasmid-encoded ermB. Experiments revealed that biofilm formation on MPs by Enterococcus faecium and Listeria monocytogenes facilitated the transfer of the tetM resistance gene, but not the ermB gene. Furthermore, the presence of MPs significantly increased the conjugation frequency of tetM within mussels, indicating that MPs enhance the potential for ARG mobilization in marine environments. These findings highlight the role of MPs and marine organisms in ARG spread, underscoring the ecological and public health implications.
Collapse
Affiliation(s)
| | | | | | | | | | - Pier Sandro Cocconcelli
- Dipartimento di Scienze e Tecnologie Alimentari per una Filiera Agro-Alimentare Sostenibile (DISTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (G.M.); (C.C.); (M.V.B.D.); (E.G.); (D.B.)
| |
Collapse
|
5
|
Liu J, Liang Z, Zhongla M, Wang H, Sun X, Zheng J, Ding X, Yang F. Prevalence and Molecular Characteristics of Enterococci Isolated from Clinical Bovine Mastitis Cases in Ningxia. Infect Drug Resist 2024; 17:2121-2129. [PMID: 38828370 PMCID: PMC11141574 DOI: 10.2147/idr.s461587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Purpose This study aimed to investigate the prevalence and genetic characterization of enterococcal isolates (Enterococcus faecalis, Enterococcus faecium and Enterococcus hirae) isolated from clinical bovine mastitis cases in Ningxia, China. Patients and Methods The enterococci were identified by 16S rRNA amplification and sequencing. Antimicrobial resistance was determined by disc diffusion method. Virulence and antimicrobial resistance genes were detected by PCR assays. Results Overall, 198 enterococcal isolates were identified from 2897 mastitis samples, including 137 (4.7%) E. faecalis, 50 (1.7%) E. faecium and 11 (0.4%) E. hirae. E. faecalis, E. faecium and E. hirae isolates showed high resistance to tetracycline (92.7%, 68.0%, 90.9%), followed by erythromycin (86.9%, 76.0%, 72.7%). The multidrug-resistant strains of E. faecalis and E. faecium were 29 (21.2%) and 13 (26.0%), respectively. The resistance of E. faecalis, E. faecium and E. hirae isolates to tetracycline is mainly attributed to the presence of tetL (alone or combined with tetM and/or tetK), the erythromycin resistance to ermB (alone or combined with ermC and/or ermA). Moreover, cpd (94.2%), gelE (77.4%), efaAfs (93.4%), and esp (79.6%) were the most common virulence genes in E. faecalis. In E. faecium, except for the gene efaAfs (82.0%), other virulence genes are rarely found. Only two strains of E. hirae carrying asa1 gene were detected. Conclusion The results of this study can provide a reference for the prevention and treatment of bovine mastitis caused by enterococci.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| | - Zeyi Liang
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| | - Maocao Zhongla
- Gannan Animal Disease Prevention and Control Center, Hezuo, People’s Republic of China
| | - Hongsheng Wang
- Xiangyang Vocational and Technical College, Xiangyang, People’s Republic of China
| | - Xu Sun
- College of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, People’s Republic of China
| | - Juanshan Zheng
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| | - Xuezhi Ding
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| | - Feng Yang
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| |
Collapse
|
6
|
Grunnvåg JS, Hegstad K, Lentz CS. Activity-based protein profiling of serine hydrolases and penicillin-binding proteins in Enterococcus faecium. FEMS MICROBES 2024; 5:xtae015. [PMID: 38813097 PMCID: PMC11134295 DOI: 10.1093/femsmc/xtae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/18/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Enterococcus faecium is a gut commensal bacterium which is gaining increasing relevance as an opportunistic, nosocomial pathogen. Its high level of intrinsic and acquired antimicrobial resistance is causing a lack of treatment options, particularly for infections with vancomycin-resistant strains, and prioritizes the identification and functional validation of novel druggable targets. Here, we use activity-based protein profiling (ABPP), a chemoproteomics approach using functionalized covalent inhibitors, to detect active serine hydrolases across 11 E. faecium and Enterococcus lactis strains. Serine hydrolases are a big and diverse enzyme family, that includes known drug targets such as penicillin-binding proteins (PBPs), whereas other subfamilies are underexplored. Comparative gel-based ABPP using Bocillin-FL revealed strain- and growth condition-dependent variations in PBP activities. Profiling with the broadly serine hydrolase-reactive fluorescent probe fluorophosphonate-TMR showed a high similarity across E. faecium clade A1 strains, but higher variation across A2 and E. lactis strains. To identify these serine hydrolases, we used a biotinylated probe analog allowing for enrichment and identification via liquid chromatography-mass spectrometry. We identified 11 largely uncharacterized targets (α,β-hydrolases, SGNH-hydrolases, phospholipases, and amidases, peptidases) that are druggable and accessible in live vancomycin-resistant E. faecium E745 and may possess vital functions that are to be characterized in future studies.
Collapse
Affiliation(s)
- Jeanette S Grunnvåg
- Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Centre for New Antibacterial Strategies (CANS), UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
| | - Kristin Hegstad
- Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Centre for New Antibacterial Strategies (CANS), UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, P.O. Box 56, 9038 Tromsø, Norway
| | - Christian S Lentz
- Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Centre for New Antibacterial Strategies (CANS), UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
| |
Collapse
|
7
|
McCarlie SJ, du Preez LL, Hernandez JC, Boucher CE, Bragg RR. Transcriptomic signature of bacteria exposed to benzalkonium chloride. Res Microbiol 2024; 175:104151. [PMID: 37952705 DOI: 10.1016/j.resmic.2023.104151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
The COVID-19 pandemic has highlighted our reliance on biocides, the increasing prevalence of resistance to biocides is a risk to public health. Bacterial exposure to the biocide, benzalkonium chloride (BAC), resulted in a unique transcriptomic profile, characterised by both a short and long-term response. Differential gene expression was observed in four main areas: motility, membrane composition, proteostasis, and the stress response. A metabolism shift to protect the proteome and the stress response were prioritised suggesting these are main resistance mechanisms. Whereas "well-established" mechanisms, such as biofilm formation, were not found to be differentially expressed after exposure to BAC.
Collapse
Affiliation(s)
- Samantha J McCarlie
- Department of Microbiology and Biochemistry, University of the Free State, South Africa
| | - Louis L du Preez
- Research & HPC: ICT Services, University of the Free State, South Africa
| | | | - Charlotte E Boucher
- Department of Microbiology and Biochemistry, University of the Free State, South Africa
| | - Robert R Bragg
- Department of Microbiology and Biochemistry, University of the Free State, South Africa.
| |
Collapse
|
8
|
Cagnoli G, Di Paolo A, Bertelloni F, Salvucci S, Buccioni A, Marzoni Fecia di Cossato M, Ebani VV. Occurrence of Antimicrobial-Resistant Enterococcus spp. in Healthy Chickens Never Exposed to Antimicrobial Agents in Central Italy. Antibiotics (Basel) 2024; 13:417. [PMID: 38786145 PMCID: PMC11117291 DOI: 10.3390/antibiotics13050417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Enterococci are part of the natural flora of the gastrointestinal tract of mammals, including humans, birds and invertebrates. They can cause infection, mainly among hospitalized patients, as well as acquire and transfer antimicrobial resistance genes. The present study allowed the isolation of 98 Enterococcus (73.47% E. faecium, 23.47% E. faecalis, 3.06% E. avium) strains from 120-day-old healthy chickens that had never been treated with antimicrobials. Their antimicrobial resistance was evaluated by the agar disk diffusion method; high-level aminoglycoside (streptomycin and gentamicin) and vancomycin resistance were established using the microbroth dilution method. The highest percentages of resistant isolates were detected with quinupristin-dalfopristin (88.78%), rifampicin (64.29%), tetracyclines (45.92%), and enrofloxacin (41.84%). High percentages of susceptible strains were found with teicoplanin (100%), amoxicillin-clavulanic acid (97.96%), nitrofurantoin (94.90%), ampicillin (92.86%), chloramphenicol (90.82%), and linezolid (88.78%). About 60% of the strains were classified as MDR (multidrug-resistant). Moreover, PCR was carried out to investigate genes encoding for tetracyclines resistance determinants: tet(M), tet(L), tet(O), tet(K), and Int-Tn. Genes were detected in 68 (69.38%) strains: 36 were shown to be resistant with the agar disk diffusion method, while 28 were intermediate, and 2 were susceptible. The present study showed that chickens never treated with antimicrobials potentially harbor enterococci having phenotypic and genotypic characters of antimicrobial resistance.
Collapse
Affiliation(s)
- Giulia Cagnoli
- Department of Veterinary Science, University of Pisa, Viale Delle Piagge 2, 56124 Pisa, Italy; (G.C.); (A.D.P.); (F.B.); (S.S.); (M.M.F.d.C.)
| | - Alessia Di Paolo
- Department of Veterinary Science, University of Pisa, Viale Delle Piagge 2, 56124 Pisa, Italy; (G.C.); (A.D.P.); (F.B.); (S.S.); (M.M.F.d.C.)
| | - Fabrizio Bertelloni
- Department of Veterinary Science, University of Pisa, Viale Delle Piagge 2, 56124 Pisa, Italy; (G.C.); (A.D.P.); (F.B.); (S.S.); (M.M.F.d.C.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| | - Sonia Salvucci
- Department of Veterinary Science, University of Pisa, Viale Delle Piagge 2, 56124 Pisa, Italy; (G.C.); (A.D.P.); (F.B.); (S.S.); (M.M.F.d.C.)
| | - Arianna Buccioni
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Piazzale Delle Cascine 18, 50144 Florence, Italy;
| | - Margherita Marzoni Fecia di Cossato
- Department of Veterinary Science, University of Pisa, Viale Delle Piagge 2, 56124 Pisa, Italy; (G.C.); (A.D.P.); (F.B.); (S.S.); (M.M.F.d.C.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| | - Valentina Virginia Ebani
- Department of Veterinary Science, University of Pisa, Viale Delle Piagge 2, 56124 Pisa, Italy; (G.C.); (A.D.P.); (F.B.); (S.S.); (M.M.F.d.C.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
- Centre for Climate Change Impact, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
9
|
Yamba K, Mudenda S, Mpabalwani E, Mainda G, Mukuma M, Samutela MT, Lukwesa C, Chizimu J, Kaluba CK, Mutalange M, Chilengi R, Muma JB. Antibiotic prescribing patterns and carriage of antibiotic-resistant Escherichia coli and Enterococcus species in healthy individuals from selected communities in Lusaka and Ndola districts, Zambia. JAC Antimicrob Resist 2024; 6:dlae027. [PMID: 38449515 PMCID: PMC10914442 DOI: 10.1093/jacamr/dlae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024] Open
Abstract
Objectives This study assessed antibiotic prescribing patterns in primary healthcare facilities and antimicrobial resistance (AMR) profiles of commensal Escherichia coli and enterococci isolated from pregnant women and children under 5 years of age. Materials and methods This cross-sectional study was conducted in Lusaka and Ndola districts of Zambia. Prescription pattern data were obtained from hospital pharmacies. Identification and antimicrobial susceptibility profiles of E. coli and enterococci were determined by conventional methods, while confirmation of both pathogens and AMR genes were determined by PCR. Data were analysed using WHONET and SPSS version 25.0. Results Most prescribed antibiotics at the primary healthcare facilities belonged to the Access group of the WHO Access, Watch and Reserve (AWaRe) classification. All the primary healthcare facilities adhered to the AWaRe framework of ≥60% prescribed antibiotics belonging to the Access group. However, resistance was highest in the Access group of antibiotics. E. coli resistance to ampicillin ranged from 71% to 77% and to co-trimoxazole from 74% to 80%, while enterococcal resistance to tetracycline was 59%-64%. MDR was highest in E. coli (75%) isolates, while XDR was highest in enterococcal isolates (97%). The identified AMR genes in E. coli included blaCTX-M, sul2 and qnrA, while those of enterococci included erm(B), erm(C) and erm(A). Conclusions Resistance was highest in the prescribed WHO Access group of antibiotics. These findings highlight the need to use local susceptibility data to formulate country-specific treatment guidelines in line with WHO AWaRe classification and enforce regulations that prohibit easy access to antibiotics.
Collapse
Affiliation(s)
- Kaunda Yamba
- Department of Pathology & Microbiology, University Teaching Hospitals, Lusaka, Zambia
- Department of Disease Control University of Zambia, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
- Antimicrobial Resistance Cluster, Zambia National Public Health Institute, Lusaka, Zambia
| | - Steward Mudenda
- Department of Disease Control University of Zambia, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Evans Mpabalwani
- Department of Paediatrics & Child Health, School of Medicine, University of Zambia, Lusaka, Zambia
| | - Geoffrey Mainda
- Food and Agriculture Organization (FAO) of the United Nations, House No. 5, Chaholi, Off Addis Ababa Drive, Lusaka, Zambia
- Department of Veterinary Services Central Veterinary Research Institute (CVRI), Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Mercy Mukuma
- Department of Food Science, School of Agricultural Sciences and Nutrition, University of Zambia, Lusaka, Zambia
| | - Mulemba Tillika Samutela
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Chileshe Lukwesa
- Department of Pathology & Microbiology, University Teaching Hospitals, Lusaka, Zambia
| | - Joseph Chizimu
- Antimicrobial Resistance Cluster, Zambia National Public Health Institute, Lusaka, Zambia
| | - Ciluvya Kavimba Kaluba
- Department of Disease Control University of Zambia, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Matenge Mutalange
- Department of Disease Control University of Zambia, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
- Department of Pathology and Microbiology, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
| | - Roma Chilengi
- Zambia National Public Health Institute, Ministry of Health, Lusaka, Zambia
| | - John Bwalya Muma
- Department of Disease Control University of Zambia, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| |
Collapse
|
10
|
Janice J, Wagner TM, Olsen K, Hegstad J, Hegstad K. Emergence of vancomycin-resistant enterococci from vancomycin-susceptible enterococci in hospitalized patients under antimicrobial therapy. J Glob Antimicrob Resist 2024; 36:116-122. [PMID: 38128726 DOI: 10.1016/j.jgar.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
OBJECTIVES Enterococci are opportunistic pathogens with plastic genomes that evolve, acquire, and transmit antimicrobial-resistant determinants such as vancomycin resistance clusters. While vancomycin-resistant enterococci (VRE) have emerged as successful nosocomial pathogens, the mechanism by which vancomycin-susceptible enterococci (VSE) transform to VRE in hospitalized patients remains understudied. METHODS Genomes of Enterococcus faecium from two critically ill hospitalized patients subjected to multiple antibiotic therapies, including broad-spectrum antibiotics, were investigated. To identify mechanisms of resistance evolution, genomes of vancomycin-susceptible and -resistant isolates were compared. RESULTS While VSE isolates were initially identified, VRE strains emerged post-vancomycin therapy. Comparative genomics revealed horizontal transmission of mobile genetic elements containing the Tn1549 transposon, which harbours the vanB-type vancomycin resistance gene cluster. This suggests that broad-spectrum antibiotic stress promoted the transfer of resistance-conferring elements, presumably from another gut inhabitant. CONCLUSION This is one of the first studies investigating VSE and VRE isolates from the same patient. The mechanism of transmission and the within-patient evolution of vancomycin resistance via mobile genetic elements under antibiotic stress is illustrated. Our findings serve as a foundation for future studies building on this knowledge which can further elucidate the dynamics of antibiotic stress, resistance determinant transmission, and interactions within the gut microbiota.
Collapse
Affiliation(s)
- Jessin Janice
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway; Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Theresa Maria Wagner
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Karina Olsen
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Joachim Hegstad
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Kristin Hegstad
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway; Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
| |
Collapse
|
11
|
Mortezaei Y, Williams MR, Demirer GN. The fate of antibiotic resistance genes during anaerobic digestion of sewage sludge with ultrasonic pretreatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5513-5525. [PMID: 38127236 DOI: 10.1007/s11356-023-31558-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
This study investigated the effect of ultrasonic (US) pretreatment at three different contact times (30, 45, and 60 min) with a power of 240 W and frequency of 40 kHz on the fate of antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and enteric pathogens during anaerobic digestion (AD) of sludge. By using real time-qPCR, three MGEs (int1, int2, and tnpA) and seven ARGs (sul1, sul2, tetW, tetA, tetO, ermF, and aac(6')-lb) were quantified that have serious human health impacts and represent the most widely used antibiotics (tetracycline, sulfonamide, macrolide, and aminoglycoside). Results indicated that US pretreatment under different contact times improved the removal of ARGs and MGEs. Compared to 30 and 45 min of US pretreatment, 60 min of US pretreatment resulted in a higher reduction of ARGs with total ARG reduction of 41.70 ± 1.13%. Furthermore, the relative abundance of ARGs and MGEs after US pretreatment was reduced more effectively in anaerobic reactors than in a control AD without US pretreatment. The total ARGs and MGEs removal efficiency of control AD was 44.07 ± 0.72% and 63.69 ± 1.43%, and if US pretreatment at different times were applied, the total ARGs and MGEs removal efficiency of the whole pretreatment AD process improved to 59.71 ± 2.76-68.54 ± 1.58% and 69.82 ± 2.15-76.84 ± 0.22%. The highest removal of total ARGs (68.54 ± 1.58%) and MGEs (76.84 ± 0.22%) was achieved after AD with US pretreatment at 45 min. However, US pretreatment and AD with US pretreatment were not effective in inactivation of enteric pathogens (total coliforms and E. coli), suggesting that posttreatment is needed prior to land application of sludge to reduce the level of enteric pathogens. There was no detection of the studied ARGs and MGEs in the enteric pathogens after US pretreatment in subsequent AD. According to this study, long contact times of US pretreatment can mitigate ARGs and MGEs in AD processes, offering valuable insight into improving environmental safety and sustainable waste management. Additionally, the study highlights the need to investigate posttreatment techniques for reducing enteric pathogens in AD effluent, a crucial consideration for agricultural use and environmental protection.
Collapse
Affiliation(s)
- Yasna Mortezaei
- Earth and Ecosystem Science, Central Michigan University, Mount Pleasant, MI, USA
| | - Maggie R Williams
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI, USA
- Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA
| | - Goksel N Demirer
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI, USA.
- Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA.
| |
Collapse
|
12
|
Moon BY, Ali MS, Choi JH, Heo YE, Lee YH, Kang HS, Kim TS, Yoon SS, Moon DC, Lim SK. Antimicrobial Resistance Profiles of Enterococcus faecium and Enterococcus faecalis Isolated from Healthy Dogs and Cats in South Korea. Microorganisms 2023; 11:2991. [PMID: 38138136 PMCID: PMC10745814 DOI: 10.3390/microorganisms11122991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Enterococcus spp. are typically found in the gastrointestinal tracts of humans and animals. However, they have the potential to produce opportunistic infections that can be transmitted to humans or other animals, along with acquired antibiotic resistance. In this study, we aimed to investigate the antimicrobial resistance profiles of Enterococcus faecium and Enterococcus faecalis isolates obtained from companion animal dogs and cats in Korea during 2020-2022. The resistance rates in E. faecalis towards most of the tested antimicrobials were relatively higher than those in E. faecium isolated from dogs and cats. We found relatively higher resistance rates to tetracycline (65.2% vs. 75.2%) and erythromycin (39.5% vs. 49.6%) in E. faecalis isolated from cats compared to those from dogs. However, in E. faecium, the resistance rates towards tetracycline (35.6% vs. 31.5%) and erythromycin (40.3% vs. 35.2%) were comparatively higher for dog isolates than cats. No or very few E. faecium and E. faecalis isolates were found to be resistant to daptomycin, florfenicol, tigecycline, and quinupristin/dalfopristin. Multidrug resistance (MDR) was higher in E. faecalis recovered from cats (44%) and dogs (33.9%) than in E. faecium isolated from cats (24.1%) and dogs (20.5%). Moreover, MDR patterns in E. faecalis isolates from dogs (27.2%) and cats (35.2%) were shown to encompass five or more antimicrobials. However, E. faecium isolates from dogs (at 13.4%) and cats (at 14.8%) were resistant to five or more antimicrobials. Taken together, the prevalence of antimicrobial-resistant enterococci in companion animals presents a potential public health concern.
Collapse
Affiliation(s)
- Bo-Youn Moon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (J.-H.C.); (Y.-E.H.); (Y.-H.L.); (H.-S.K.); (S.-S.Y.)
| | - Md. Sekendar Ali
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (J.-H.C.); (Y.-E.H.); (Y.-H.L.); (H.-S.K.); (S.-S.Y.)
| | - Ji-Hyun Choi
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (J.-H.C.); (Y.-E.H.); (Y.-H.L.); (H.-S.K.); (S.-S.Y.)
| | - Ye-Eun Heo
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (J.-H.C.); (Y.-E.H.); (Y.-H.L.); (H.-S.K.); (S.-S.Y.)
| | - Yeon-Hee Lee
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (J.-H.C.); (Y.-E.H.); (Y.-H.L.); (H.-S.K.); (S.-S.Y.)
| | - Hee-Seung Kang
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (J.-H.C.); (Y.-E.H.); (Y.-H.L.); (H.-S.K.); (S.-S.Y.)
| | - Tae-Sun Kim
- Public Health and Environment Institute of Gwangju, Gwangju 14502, Republic of Korea;
| | - Soon-Seek Yoon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (J.-H.C.); (Y.-E.H.); (Y.-H.L.); (H.-S.K.); (S.-S.Y.)
| | - Dong-Chan Moon
- Division of Antimicrobial Resistance Research, Centre for Infectious Diseases Research, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (J.-H.C.); (Y.-E.H.); (Y.-H.L.); (H.-S.K.); (S.-S.Y.)
| |
Collapse
|
13
|
AL Rubaye M, Janice J, Bjørnholt JV, Kacelnik O, Haldorsen BC, Nygaard RM, Hegstad J, Sundsfjord A, Hegstad K. The population structure of vancomycin-resistant and -susceptible Enterococcus faecium in a low-prevalence antimicrobial resistance setting is highly influenced by circulating global hospital-associated clones. Microb Genom 2023; 9:001160. [PMID: 38112685 PMCID: PMC10763505 DOI: 10.1099/mgen.0.001160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
Between 2010 and 2015 the incidence of vancomycin-resistant Enterococcus faecium (VREfm) in Norway increased dramatically. Hence, we selected (1) a random subset of vancomycin-resistant enterococci (VRE) from the Norwegian Surveillance System for Communicable Diseases (2010-15; n=239) and (2) Norwegian vancomycin-susceptible E. faecium (VSEfm) bacteraemia isolates from the national surveillance system for antimicrobial resistance in microbes (2008 and 2014; n=261) for further analysis. Whole-genome sequences were collected for population structure, van gene cluster, mobile genetic element and virulome analysis, as well as antimicrobial susceptibility testing. Comparative genomic and phylogeographical analyses were performed with complete genomes of global E. faecium strains from the National Center for Biotechnology Information (NCBI) (1946-2022; n=272). All Norwegian VREfm and most of the VSEfm clustered with global hospital-associated sequence types (STs) in the phylogenetic subclade A1. The vanB2 subtype carried by chromosomal Tn1549 integrative conjugative elements was the dominant van type. The major Norwegian VREfm cluster types (CTs) were in accordance with concurrent European CTs. The dominant vanB-type VREfm CTs, ST192-CT3/26 and ST117-CT24, were mostly linked to a single hospital in Norway where the clones spread after independent chromosomal acquisition of Tn1549. The less prevalent vanA VRE were associated with more diverse CTs and vanA carrying Inc18 or RepA_N plasmids with toxin-antitoxin systems. Only 5 % of the Norwegian VRE were Enterococcus faecalis, all of which contained vanB. The Norwegian VREfm and VSEfm isolates harboured CT-specific virulence factor (VF) profiles supporting biofilm formation and colonization. The dominant VREfm CTs in general hosted more virulence determinants than VSEfm. The phylogenetic clade B VSEfm isolates (n=21), recently classified as Enterococcus lactis, harboured fewer VFs than E. faecium in general, and particularly subclade A1 isolates. In conclusion, the population structure of Norwegian E. faecium isolates mirrors the globally prevalent clones and particularly concurrent European VREfm/VSEfm CTs. Novel chromosomal acquisition of vanB2 on Tn1549 from the gut microbiota, however, formed a single major hospital VREfm outbreak. Dominant VREfm CTs contained more VFs than VSEfm.
Collapse
Affiliation(s)
- Mushtaq AL Rubaye
- Research group for Host–Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jessin Janice
- Research group for Host–Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Present address: Section for development, Department of Microbiology, Clinic for Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Jørgen Vildershøj Bjørnholt
- Department of Clinical Microbiology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Oliver Kacelnik
- Department of Antibiotic Resistance and Infection Prevention, Norwegian Institute of Public Health, Oslo, Norway
| | - Bjørg C. Haldorsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Randi M. Nygaard
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Joachim Hegstad
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Arnfinn Sundsfjord
- Research group for Host–Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Kristin Hegstad
- Research group for Host–Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - the Norwegian VRE study group
- Research group for Host–Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Microbiology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Antibiotic Resistance and Infection Prevention, Norwegian Institute of Public Health, Oslo, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Present address: Section for development, Department of Microbiology, Clinic for Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
14
|
Wardal E, Żabicka D, Skalski T, Kubiak-Pulkowska J, Hryniewicz W, Sadowy E. Characterization of a Tigecycline-, Linezolid- and Vancomycin-Resistant Clinical Enteroccoccus faecium Isolate, Carrying vanA and vanB Genes. Infect Dis Ther 2023; 12:2545-2565. [PMID: 37821741 PMCID: PMC10651664 DOI: 10.1007/s40121-023-00881-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/22/2023] [Indexed: 10/13/2023] Open
Abstract
INTRODUCTION Increasing incidence of Enterococcus faecium resistant to key antimicrobials used in therapy of hospitalized patients is a worrisome phenomenon observed worldwide. Our aim was to characterize a tigecycline-, linezolid- and vancomycin-resistant E. faecium isolate with the vanA and vanB genes, originating from a hematoma of a patient hospitalized in an intensive care unit in Poland. METHODS Antimicrobial susceptibility (a broad panel) was tested using gradient tests with predefined antibiotic concentrations. The complete genome sequence was obtained from a mixed assembly of Illumina MiSeq and Oxford Nanopore's MinION reads. The genome was analyzed with appropriate tools available at the Center for Genomic Epidemiology, PubMLST and GenBank. Transferability of oxazolidinone, tigecycline and vancomycin resistance genes was investigated by conjugation, followed by PCR screen of transconjugants for antimicrobial resistance genes and plasmid rep genes characteristic for the donor and genomic sequencing of selected transconjugants. RESULTS The isolate was resistant to most antimicrobials tested; susceptibility to daptomycin, erythromycin and chloramphenicol was significantly reduced, and only oritavancin retained the full activity. The isolate represented sequence type 18 (ST18) and carried vanA, vanB, poxtA, fexB, tet(L), tet(M), aac(6')-aph(2''), ant(6)-Ia and ant(6')-Ii. The vanA, poxtA and tet(M) genes located on ~ 40-kb plasmids were transferable by conjugation yielding transconjugants resistant to vancomycin, linezolid and tigecycline. The substitutions in LiaS, putative histidine kinase, SulP, putative sulfate transporter, RpoB and RpoC were potential determinants of an elevated daptomycin MIC. Comparative analyses of the studied isolate with E. faecium isolates from other countries revealed its similarity to ST18 isolates from Ireland and Uganda from human infections. CONCLUSIONS We provide the detailed characteristics of the genomic determinants of antimicrobial resistance of a clinical E. faecium demonstrating the concomitant presence of both vanA and vanB and resistance to vancomycin, linezolid, tigecycline and several other compounds and decreased daptomycin susceptibility. This isolate is a striking example of an accumulation of resistance determinants involving various mechanisms by a single hospital strain.
Collapse
Affiliation(s)
- Ewa Wardal
- Department of Molecular Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Dorota Żabicka
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Tomasz Skalski
- Department of Clinical Microbiology and Molecular Diagnostics, University Hospital No 2, ul. Ujejskiego 75, Bydgoszcz, Poland
| | - Joanna Kubiak-Pulkowska
- Department of Clinical Microbiology and Molecular Diagnostics, University Hospital No 2, ul. Ujejskiego 75, Bydgoszcz, Poland
| | - Waleria Hryniewicz
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Ewa Sadowy
- Department of Molecular Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland.
| |
Collapse
|
15
|
Huo W, Price VJ, Sharifi A, Zhang MQ, Palmer KL. Enterococcus faecalis Strains with Compromised CRISPR-Cas Defense Emerge under Antibiotic Selection for a CRISPR-Targeted Plasmid. Appl Environ Microbiol 2023; 89:e0012423. [PMID: 37278656 PMCID: PMC10304774 DOI: 10.1128/aem.00124-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023] Open
Abstract
Enterococcus faecalis is a Gram-positive bacterium that natively colonizes the human gastrointestinal tract and opportunistically causes life-threatening infections. Multidrug-resistant (MDR) E. faecalis strains have emerged that are replete with mobile genetic elements (MGEs). Non-MDR E. faecalis strains frequently possess CRISPR-Cas systems, which reduce the frequency of MGE acquisition. We demonstrated in previous studies that E. faecalis populations can transiently maintain both a functional CRISPR-Cas system and a CRISPR-Cas target. In this study, we used serial passage and deep sequencing to analyze these populations. In the presence of antibiotic selection for the plasmid, mutants with compromised CRISPR-Cas defense and enhanced ability to acquire a second antibiotic resistance plasmid emerged. Conversely, in the absence of selection, the plasmid was lost from wild-type E. faecalis populations but not E. faecalis populations that lacked the cas9 gene. Our results indicate that E. faecalis CRISPR-Cas can become compromised under antibiotic selection, generating populations with enhanced abilities to undergo horizontal gene transfer. IMPORTANCE Enterococcus faecalis is a leading cause of hospital-acquired infections and disseminator of antibiotic resistance plasmids among Gram-positive bacteria. We have previously shown that E. faecalis strains with an active CRISPR-Cas system can prevent plasmid acquisition and thus limit the transmission of antibiotic resistance determinants. However, CRISPR-Cas is not a perfect barrier. In this study, we observed populations of E. faecalis with transient coexistence of CRISPR-Cas and one of its plasmid targets. Our experimental data demonstrate that antibiotic selection results in compromised E. faecalis CRISPR-Cas function, thereby facilitating the acquisition of additional resistance plasmids by E. faecalis.
Collapse
Affiliation(s)
- Wenwen Huo
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Valerie J. Price
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Ardalan Sharifi
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Michael Q. Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Kelli L. Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
16
|
Kwit R, Zając M, Śmiałowska-Węglińska A, Skarżyńska M, Bomba A, Lalak A, Skrzypiec E, Wojdat D, Koza W, Mikos-Wojewoda E, Pasim P, Skóra M, Polak M, Wiącek J, Wasyl D. Prevalence of Enterococcus spp. and the Whole-Genome Characteristics of Enterococcus faecium and Enterococcus faecalis Strains Isolated from Free-Living Birds in Poland. Pathogens 2023; 12:836. [PMID: 37375526 DOI: 10.3390/pathogens12060836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Enterococci as opportunistic bacteria are important for human health. Due to the prevalence and ease of acquisition and transfer of their genes, they are an excellent indicator of environmental contamination and the spread of antimicrobial resistance. The aim of the study was to assess the prevalence of Enterococcus spp. in wild birds in Poland, determination of antimicrobial susceptibility and WGS analysis of Enterococcus (E.) faecium and E. faecalis. For this purpose, 138 samples from various species of free-living birds were tested, with 66.7% positive results. Fourteen species were detected, with E. faecalis being the most common, followed by E. casseliflavus and E. hirae. In antimicrobial susceptibility testing, 10.0% of E. faecalis and 50.0% of E. faecium showed resistance to one antimicrobial agent, in addition the MDR phenotype which was found in one E. faecium. The most common resistance phenotype included tetracycline and quinupristin/dalfopristin. The WGS analysis confirmed the significant advantage of the virulence gene diversity of E. faecalis strains over E. faecium. In addition, plasmid replicons were found in 42.0% of E. faecalis and 80.0% of E. faecium. The obtained results confirm free-living birds can be a reservoir of Enterococcus spp. with a considerable zoonotic potential.
Collapse
Affiliation(s)
- Renata Kwit
- Department of Microbiology, National Veterinary Research Institute (PIWet), 24-100 Pulawy, Poland
| | - Magdalena Zając
- Department of Microbiology, National Veterinary Research Institute (PIWet), 24-100 Pulawy, Poland
| | | | - Magdalena Skarżyńska
- Department of Microbiology, National Veterinary Research Institute (PIWet), 24-100 Pulawy, Poland
| | - Arkadiusz Bomba
- Department of Omic Analyses, National Veterinary Research Institute (PIWet), 24-100 Pulawy, Poland
| | - Anna Lalak
- Department of Microbiology, National Veterinary Research Institute (PIWet), 24-100 Pulawy, Poland
| | - Ewelina Skrzypiec
- Department of Microbiology, National Veterinary Research Institute (PIWet), 24-100 Pulawy, Poland
| | - Dominika Wojdat
- Department of Microbiology, National Veterinary Research Institute (PIWet), 24-100 Pulawy, Poland
| | - Weronika Koza
- Department of Microbiology, National Veterinary Research Institute (PIWet), 24-100 Pulawy, Poland
| | - Emilia Mikos-Wojewoda
- Department of Microbiology, National Veterinary Research Institute (PIWet), 24-100 Pulawy, Poland
| | - Paulina Pasim
- Department of Microbiology, National Veterinary Research Institute (PIWet), 24-100 Pulawy, Poland
| | - Milena Skóra
- Department of Microbiology, National Veterinary Research Institute (PIWet), 24-100 Pulawy, Poland
| | - Marcin Polak
- Department of Zoology and Nature Protection, Institute of Biological Sciences, Maria Curie-Sklodowska University (UMCS), 20-033 Lublin, Poland
| | - Jarosław Wiącek
- Department of Zoology and Nature Protection, Institute of Biological Sciences, Maria Curie-Sklodowska University (UMCS), 20-033 Lublin, Poland
| | - Dariusz Wasyl
- Department of Microbiology, National Veterinary Research Institute (PIWet), 24-100 Pulawy, Poland
- Department of Omic Analyses, National Veterinary Research Institute (PIWet), 24-100 Pulawy, Poland
| |
Collapse
|
17
|
Obioha PI, Anyogu A, Awamaria B, Ghoddusi HB, Ouoba LII. Antimicrobial Resistance of Lactic Acid Bacteria from Nono, a Naturally Fermented Milk Product. Antibiotics (Basel) 2023; 12:antibiotics12050843. [PMID: 37237746 DOI: 10.3390/antibiotics12050843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is one of the biggest threats to public health. The food chain has been recognised as a vehicle for transmitting AMR bacteria. However, information about resistant strains isolated from African traditional fermented foods remains limited. Nono is a traditional, naturally fermented milk product consumed by many pastoral communities across West Africa. The main aim of this study was to investigate and determine the AMR patterns of lactic acid bacteria (LAB) involved in the traditional fermentation of milk for Nono production, and the presence of transferable AMR determinants. METHODS One hundred (100) LAB isolates from Nono identified in a previous study as Limosilactobacillus fermentum, Lactobacillus delbrueckii, Streptococcus thermophilus, Streptococcus infantarius, Lentilactobacillus senioris, Leuconostoc pseudomesenteriodes, and Enterococcus thailandicus were investigated. The minimum inhibitory concentration (MIC) was determined for 18 antimicrobials using the micro-broth dilution method. In addition, LAB isolates were screened for 28 antimicrobial resistance genes using PCR. The ability of LAB isolates to transfer tetracycline and streptomycin resistance genes to Enterococcus faecalis was also investigated. RESULTS The experiments revealed variable antimicrobial susceptibility according to the LAB isolate and the antimicrobial tested. The tetracycline resistance genes tet(S) and tet(M) were detected in isolates Ent. thailandicus 52 and S. infantarius 10. Additionally, aad(E) encoding resistance to streptomycin was detected in Ent. thailandicus 52. The conjugation experiments suggested that the tet(S) and aad(E) genes were transferable in vitro from isolate Ent. thailandicus 52 to Ent. faecalis JH2-2. SIGNIFICANCE AND IMPACT Traditional fermented foods play a significant role in the diet of millions of people in Africa, yet their contribution to the burden of AMR is largely unknown. This study highlights that LAB involved in traditionally fermented foods could be potential reservoirs of AMR. It also underscores the relevant safety issues of Ent. thailandicus 52 and S. infantarius 10 for use as starter cultures as they carry transferable AMR genes. Starter cultures are an essential aspect of improving the safety and quality attributes of African fermented foods. However, AMR monitoring is an important safety aspect in the selection of starter cultures for improving traditional fermentation technologies.
Collapse
Affiliation(s)
- Promiselynda I Obioha
- Microbiology Research Unit, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
| | - Amarachukwu Anyogu
- Food Safety and Security, School of Biomedical Sciences, University of West London, St. Marys Road, London W5 5RF, UK
| | - Brigitte Awamaria
- Microbiology Research Unit, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
| | - Hamid B Ghoddusi
- Microbiology Research Unit, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
| | - Labia Irene I Ouoba
- Microbiology Research Unit, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
- Independent Senior Research Scientist & Consultant, Ouoba-Consulting, London SW16 2DY, UK
| |
Collapse
|
18
|
Rodríguez-Lucas C, Ladero V. Enterococcal Phages: Food and Health Applications. Antibiotics (Basel) 2023; 12:antibiotics12050842. [PMID: 37237745 DOI: 10.3390/antibiotics12050842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Enterococcus is a diverse genus of Gram-positive bacteria belonging to the lactic acid bacteria (LAB) group. It is found in many environments, including the human gut and fermented foods. This microbial genus is at a crossroad between its beneficial effects and the concerns regarding its safety. It plays an important role in the production of fermented foods, and some strains have even been proposed as probiotics. However, they have been identified as responsible for the accumulation of toxic compounds-biogenic amines-in foods, and over the last 20 years, they have emerged as important hospital-acquired pathogens through the acquisition of antimicrobial resistance (AMR). In food, there is a need for targeted measures to prevent their growth without disturbing other LAB members that participate in the fermentation process. Furthermore, the increase in AMR has resulted in the need for the development of new therapeutic options to treat AMR enterococcal infections. Bacteriophages have re-emerged in recent years as a precision tool for the control of bacterial populations, including the treatment of AMR microorganism infections, being a promising weapon as new antimicrobials. In this review, we focus on the problems caused by Enterococcus faecium and Enterococcus faecalis in food and health and on the recent advances in the discovery and applications of enterococcus-infecting bacteriophages against these bacteria, with special attention paid to applications against AMR enterococci.
Collapse
Affiliation(s)
- Carlos Rodríguez-Lucas
- Microbiology Laboratory, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Translational Microbiology Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Victor Ladero
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA CSIC, 33300 Villaviciosa, Spain
- Molecular Microbiology Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
19
|
Codelia-Anjum A, Lerner LB, Elterman D, Zorn KC, Bhojani N, Chughtai B. Enterococcal Urinary Tract Infections: A Review of the Pathogenicity, Epidemiology, and Treatment. Antibiotics (Basel) 2023; 12:antibiotics12040778. [PMID: 37107140 PMCID: PMC10135011 DOI: 10.3390/antibiotics12040778] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Urinary tract infections (UTIs) are among the most common causes of infections worldwide and can be caused by numerous uropathogens. Enterococci are Gram-positive, facultative anaerobic commensal organisms of the gastrointestinal tract that are known uropathogens. Enterococcus spp. has become a leading cause of healthcare associated infections, ranging from endocarditis to UTIs. In recent years, there has been an increase in multidrug resistance due to antibiotic misuse, especially in enterococci. Additionally, infections due to enterococci pose a unique challenge due to their ability to survive in extreme environments, intrinsic antimicrobial resistance, and genomic malleability. Overall, this review aims to highlight the pathogenicity, epidemiology, and treatment recommendations (according to the most recent guidelines) of enterococci.
Collapse
Affiliation(s)
- Alia Codelia-Anjum
- Department of Urology, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY 10065, USA
| | - Lori B Lerner
- Department of Urology, VA Boston Healthcare System, Boston, MA 02132, USA
| | - Dean Elterman
- Division of Urology, Department of Surgery, University Health Network, University of Toronto, Toronto, ON M5T 2SB, Canada
| | - Kevin C Zorn
- Division of Urology, Centre Hospitalier de l'Université de Monstréal, Montreal, QC H2X 0A9, Canada
| | - Naeem Bhojani
- Division of Urology, Centre Hospitalier de l'Université de Monstréal, Montreal, QC H2X 0A9, Canada
| | - Bilal Chughtai
- Department of Urology, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY 10065, USA
| |
Collapse
|
20
|
Haas W, Singh N, Lainhart W, Mingle L, Nazarian E, Mitchell K, Nattanmai G, Kohlerschmidt D, Dickinson MC, Kacica M, Dumas N, Musser KA. Genomic Analysis of Vancomycin-Resistant Staphylococcus aureus Isolates from the 3rd Case Identified in the United States Reveals Chromosomal Integration of the vanA Locus. Microbiol Spectr 2023; 11:e0431722. [PMID: 36975781 PMCID: PMC10100801 DOI: 10.1128/spectrum.04317-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Vancomycin-resistant Staphylococcus aureus (VRSA) is a human pathogen of significant public health concern. Although the genome sequences of individual VRSA isolates have been published over the years, very little is known about the genetic changes of VRSA within a patient over time. A total of 11 VRSA, 3 vancomycin-resistant enterococci (VRE), and 4 methicillin-resistant S. aureus (MRSA) isolates, collected over a period of 4.5 months in 2004 from a patient in a long-term-care facility in New York State, were sequenced. A combination of long- and short-read sequencing technologies was used to obtain closed assemblies for chromosomes and plasmids. Our results indicate that a VRSA isolate emerged as the result of the transfer of a multidrug resistance plasmid from a coinfecting VRE to an MRSA isolate. The plasmid then integrated into the chromosome via homologous recombination mediated between two regions derived from remnants of transposon Tn5405. Once integrated, the plasmid underwent further reorganization in one isolate, while two others lost the staphylococcal cassette chromosome mec element (SCCmec) determinant that confers methicillin-resistance. The results presented here explain how a few recombination events can lead to multiple pulsed-field gel electrophoresis (PFGE) patterns that could be mistaken for vastly different strains. A vanA gene cluster that is located on a multidrug resistance plasmid that is integrated into the chromosome could result in the continuous propagation of resistance, even in the absence of selective pressure from antibiotics. The genome comparison presented here sheds light on the emergence and evolution of VRSA within a single patient that will enhance our understanding VRSA genetics. IMPORTANCE High-level vancomycin-resistant Staphylococcus aureus (VRSA) began to emerge in the United States in 2002 and has since then been reported worldwide. Our study reports the closed genome sequences of multiple VRSA isolates obtained in 2004 from a single patient in New York State. Our results show that the vanA resistance locus is located on a mosaic plasmid that confers resistance to multiple antibiotics. In some isolates, this plasmid integrated into the chromosome via homologous recombination between two ant(6)-sat4-aph(3') antibiotic resistance loci. This is, to our knowledge, the first report of a chromosomal vanA locus in VRSA; the effect of this integration event on MIC values and plasmid stability in the absence of antibiotic selection remains poorly understood. These findings highlight the need for a better understanding of the genetics of the vanA locus and plasmid maintenance in S. aureus to address the increase of vancomycin resistance in the health care setting.
Collapse
Affiliation(s)
- Wolfgang Haas
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Navjot Singh
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - William Lainhart
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Lisa Mingle
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Elizabeth Nazarian
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Kara Mitchell
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Geetha Nattanmai
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Donna Kohlerschmidt
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | | | - Marilyn Kacica
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Nellie Dumas
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Kimberlee A. Musser
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| |
Collapse
|
21
|
Kalpana S, Lin WY, Wang YC, Fu Y, Lakshmi A, Wang HY. Antibiotic Resistance Diagnosis in ESKAPE Pathogens-A Review on Proteomic Perspective. Diagnostics (Basel) 2023; 13:1014. [PMID: 36980322 PMCID: PMC10047325 DOI: 10.3390/diagnostics13061014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Antibiotic resistance has emerged as an imminent pandemic. Rapid diagnostic assays distinguish bacterial infections from other diseases and aid antimicrobial stewardship, therapy optimization, and epidemiological surveillance. Traditional methods typically have longer turn-around times for definitive results. On the other hand, proteomic studies have progressed constantly and improved both in qualitative and quantitative analysis. With a wide range of data sets made available in the public domain, the ability to interpret the data has considerably reduced the error rates. This review gives an insight on state-of-the-art proteomic techniques in diagnosing antibiotic resistance in ESKAPE pathogens with a future outlook for evading the "imminent pandemic".
Collapse
Affiliation(s)
- Sriram Kalpana
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | | | - Yu-Chiang Wang
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yiwen Fu
- Department of Medicine, Kaiser Permanente Santa Clara Medical Center, Santa Clara, CA 95051, USA
| | - Amrutha Lakshmi
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Hsin-Yao Wang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| |
Collapse
|
22
|
Deshamukhya C, Bhowmik D, Dhar (Chanda) D, Bhattacharjee A. Tn5406, a staphylococcal transposon associated with macrolide-lincosamide-streptograminb resistance in clinical isolates of Staphylococcus aureus. Indian J Med Microbiol 2023; 42:30-33. [PMID: 36967212 DOI: 10.1016/j.ijmmb.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023]
Abstract
PURPOSE In this study, we aimed to investigate the occurrence of MLSb resistance in clinical isolates of Staphylococcus aureus with respect to their association with transposons. METHODS The present study was performed with clinical isolates of S. aureus. The MLSb resistant phenotypes in the obtained isolates were determined by D zone test or double disc diffusion test as per CLSI 2020 guidelines. MLSb resistance encoding genes were detected by PCR. The genes tested were ermA, ermB, ermC, msrA, mphC, vga, vgb and lnuB. The MLSb resistant Staphylococcal isolates were selected to analyze the association of the genes with mobile genetic elements Tn554, Tn5406, Tn917, Tn6133, Tn551 by PCR based method. Primer pairs were designed using sequences from transposons and the resistance genes, respectively. RESULTS During this study, 268 isolates of S. aureus were obtained of which 233 (86.94%) isolates exhibited different MLSb resistant phenotypes. The predominant gene among the MLSb resistant isolates was msrA followed by vgaA and mphC genes. PCR assay was employed to determine whether the genes msrA, mphC and vgaA were carried by Tn554, Tn5406, Tn917, Tn6133, Tn551 transposons. PCR amplification with the designed primer pairs revealed vgaA gene being part of Tn5406. CONCLUSION The presence of Tn5406 in all the vgaA harboring isolates highlights its potential of spread across isolates. Moreover, the co-existence of different MLSb resistance encoding genes observed in the study shows that the combination of genes involved in different mechanism mediated the nature of MLSb resistance.
Collapse
|
23
|
Caneschi A, Bardhi A, Barbarossa A, Zaghini A. The Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine, a Complex Phenomenon: A Narrative Review. Antibiotics (Basel) 2023; 12:antibiotics12030487. [PMID: 36978354 PMCID: PMC10044628 DOI: 10.3390/antibiotics12030487] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
As warned by Sir Alexander Fleming in his Nobel Prize address: “the use of antimicrobials can, and will, lead to resistance”. Antimicrobial resistance (AMR) has recently increased due to the overuse and misuse of antibiotics, and their use in animals (food-producing and companion) has also resulted in the selection and transmission of resistant bacteria. The epidemiology of resistance is complex, and factors other than the overall quantity of antibiotics consumed may influence it. Nowadays, AMR has a serious impact on society, both economically and in terms of healthcare. This narrative review aimed to provide a scenario of the state of the AMR phenomenon in veterinary medicine related to the use of antibiotics in different animal species; the impact that it can have on animals, as well as humans and the environment, was considered. Providing some particular instances, the authors tried to explain the vastness of the phenomenon of AMR in veterinary medicine due to many and diverse aspects that cannot always be controlled. The veterinarian is the main reference point here and has a high responsibility towards the human–animal–environment triad. Sharing such a burden with human medicine and cooperating together for the same purpose (fighting and containing AMR) represents an effective example of the application of the One Health approach.
Collapse
Affiliation(s)
| | - Anisa Bardhi
- Correspondence: (A.B.); (A.B.); Tel.: +39-051-2097-500 (Andrea Barbarossa)
| | - Andrea Barbarossa
- Correspondence: (A.B.); (A.B.); Tel.: +39-051-2097-500 (Andrea Barbarossa)
| | | |
Collapse
|
24
|
Vancomycin-Resistant Enterococcus faecium and the emergence of new Sequence Types associated with Hospital Infection. Res Microbiol 2023; 174:104046. [PMID: 36858192 DOI: 10.1016/j.resmic.2023.104046] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023]
Abstract
Enterococcus faecium is a major cause of vancomycin-resistant enterococcal (VRE) infection. New variants of the pathogen have emerged and become dominant in healthcare settings. Two such examples, vanB ST796 and vanA ST1421 sequence types, originally arose in Australia and proceeded to cause VRE outbreaks in other countries. Of concern is the detection of a vancomycin variable enterococcal (VVE) variant of ST1421 in Europe that exhibits a vancomycin-susceptible phenotype but which can revert to resistant in the presence of vancomycin. The recent application of genome sequencing for increasing our understanding of the evolution and spread of VRE is also explored here.
Collapse
|
25
|
Occult Vancomycin-Resistant Enterococcus faecium ST117 Displaying a Highly Mutated vanB2 Operon. Antibiotics (Basel) 2023; 12:antibiotics12030476. [PMID: 36978343 PMCID: PMC10044008 DOI: 10.3390/antibiotics12030476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Rare information is available on clinical Enterococcus faecium encountered in Sardinia, Italy. This study investigated the antimicrobial susceptibility profiles and genotypic characteristics of E. faecium isolated at the University Hospital of Sassari, Italy, using the Vitek2 system and PCR, MLST, or WGS. Vitek2 revealed two VanB-type vancomycin-resistant Enterococcus faecium (VREfm) isolates (MICs mg/L = 8 and ≥32) but failed to detect vancomycin resistance in one isolate (MIC mg/L ≤ 1) despite positive genotypic confirmation of vanB gene, which proved to be vancomycin resistant by additional phenotypic methods (MICs mg/L = 8). This vanB isolate was able to increase its vancomycin MIC after exposure to vancomycin, unlike the “classic” occult vanB-carrying E. faecium, becoming detectable by Vitek 2 (MICs mg/L ≥ 32). All three E. faecium had highly mutated vanB2 operons, as part of a chromosomally integrated Tn1549 transposon, with common missense mutations in VanH and VanB2 resistance proteins and specific missense mutations in the VanW accessory protein. There were additional missense mutations in VanS, VanH, and VanB proteins in the vanB2-carrying VREfm isolates compared to Vitek2. The molecular typing revealed a polyclonal hospital-associated E. faecium population from Clade A1, and that vanB2-VREfm, and nearly half of vancomycin-susceptible E. faecium (VSEfm) analyzed, belonged to ST117. Based on core genome-MLST, ST117 strains had different clonal types (CT), excluding nosocomial transmission of specific CT. Detecting vanB2-carrying VREfm isolates by Vitek2 may be problematic, and alternative methods are needed to prevent therapeutic failure and spread.
Collapse
|
26
|
Prevalence of Class 1 Integron and In Vitro Effect of Antibiotic Combinations of Multidrug-Resistant Enterococcus Species Recovered from the Aquatic Environment in the Eastern Cape Province, South Africa. Int J Mol Sci 2023; 24:ijms24032993. [PMID: 36769316 PMCID: PMC9917988 DOI: 10.3390/ijms24032993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Enterococci are regarded as a better indication of faecal pollution in freshwater and marine waters. Their levels in seawater are positively connected with swimming-related gastrointestinal disorders. This study used an Enterococcus-specific polymerase chain reaction (PCR) to characterize the isolates. Classes 1 and 2 integrons were examined for environmental Enterococcus isolates using a standard biological procedure. All strains were assessed against a panel of 12 antibiotics from various classes using disc diffusion methods. The microdilution method was used to work out the minimum inhibitory concentration (MIC) according to the CLSI guiding principles. The combination therapy of the resistant drugs was evaluated using a checkerboard assay and a time-dependent test for assessing their bactericidal or bacteriostatic activity. The gene diversity of the tested organisms was analyzed with the aid of Enterobacterial Repetitive Intergenic Consensus (ERIC) PCR. In total, 57 Enterococcus spp. environmental samples were recovered, in which Enterococcus faecalis (33.33%) and Enterococcus faecium (59.65%) were the dominant species. Resistance to linezolid, ciprofloxacin, erythromycin, gentamicin, vancomycin, rifampicin, and tetracycline was prevalent. Fifty (50) strains tested positive for class 1 integron, more frequent in Enterococcus faecium and Enterococcus faecalis isolates, with no gene cassette array discovered. A combination of gentamicin (MIC 4 µg/mL) with vancomycin (MIC 256 µg/mL) antibiotics against Enterococcus faecalis showed antibacterial activity. In contrast, the combination of ciprofloxacin (1 µg/mL) with Ampicillin (16 µg/mL) antibiotics against Enterococcus faecalis showed a bacteriostatic effect. The ERIC-PCR analysis pointed out that most of the assessed isolates have close genetic similarities.
Collapse
|
27
|
The Regulations of Essential WalRK Two-Component System on Enterococcus faecalis. J Clin Med 2023; 12:jcm12030767. [PMID: 36769415 PMCID: PMC9917794 DOI: 10.3390/jcm12030767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Enterococcus faecalis (E. faecalis) is a Gram-positive, facultative anaerobic bacterium that is highly adaptable to its environment. In humans, it can cause serious infections with biofilm formation. With increasing attention on its health threat, prevention and control of biofilm formation in E. faecalis have been observed. Many factors including polysaccharides as well as autolysis, proteases, and eDNA regulate biofilm formation. Those contributors are regulated by several important regulatory systems involving the two-component signal transduction system (TCS) for its adaptation to the environment. Highly conserved WalRK as one of 17 TCSs is the only essential TCS in E. faecalis. In addition to biofilm formation, various metabolisms, including cell wall construction, drug resistance, as well as interactions among regulatory systems and resistance to the host immune system, can be modulated by the WalRK system. Therefore, WalRK has been identified as a key target for E. faecalis infection control. In the present review, the regulation of WalRK on E. faecalis pathogenesis and associated therapeutic strategies are demonstrated.
Collapse
|
28
|
Shen J, Long X, Jiang Q, Xu H, Wei Q, Shi Q, Liu Y, Xu S, Ma X, Li L. Genomic Characterization of a Vancomycin-Resistant Strain of Enterococcus faecium Harboring a rep2 Plasmid. Infect Drug Resist 2023; 16:1153-1158. [PMID: 36875226 PMCID: PMC9983603 DOI: 10.2147/idr.s398913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
Purpose In China, vancomycin-resistant enterococci (VRE) was not a common occurrence, and research on the genetic context and transmission mechanism of vanA-plasmid was scarce. The aim of this study was to molecularly characterise a vancomycin-resistant Enterococcus faecium isolate from a bloodstream infection and determine the genetic environment and delivery pattern of the plasmid carrying vancomycin-resistant gene. Materials and Methods In May 2022, a vancomycin-resistant strain of Enterococci was identified during routine screening for VRE bacteria at the First Affiliated Hospital, Zhejiang University School of Medicine. Utilizing matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), the isolate was accurately identified. Antimicrobial susceptibility and whole-genome sequencing (WGS) were employed to perform phenotypic and genomic analysis, respectively. Further bioinformatics analyses was carried out to characterize the vanA-bearing plasmid. Results The antimicrobial susceptibility test showed that SJ2 strain was resistant to multiple antimicrobials, including ampicillin, benzylpenicillin, ciprofloxacin, erythromycin, levofloxacin, streptomycin, and vancomycin. Whole-genome analysis revealed that SJ2 strain carries several antimicrobial resistance genes and virulence determinants. MLST analysis found that SJ2 strain belongs to an unknown ST type. Plasmid analysis confirmed that the vanA gene was located on a variant of ~50 kb rep2 plasmid. Conclusion Our study found that vanA-bearing rep2 plasmid is a potential source of dissemination and outbreak, and continuous surveillance is necessary to control its spread in Hangzhou, China.
Collapse
Affiliation(s)
- Jie Shen
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xiao Long
- Department of Orthopedics, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Qi Jiang
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Qinming Wei
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yi Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Shanshan Xu
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xiaolu Ma
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
29
|
Tao S, Zhou D, Chen H, Li N, Zheng L, Fang Y, Xu Y, Jiang Q, Liang W. Analysis of genetic structure and function of clustered regularly interspaced short palindromic repeats loci in 110 Enterococcus strains. Front Microbiol 2023; 14:1177841. [PMID: 37168121 PMCID: PMC10165109 DOI: 10.3389/fmicb.2023.1177841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/05/2023] [Indexed: 05/13/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and their CRISPR-associated proteins (Cas) are an adaptive immune system involved in specific defenses against the invasion of foreign mobile genetic elements, such as plasmids and phages. This study aims to analyze the gene structure and to explore the function of the CRISPR system in the Enterococcus genome, especially with regard to drug resistance. The whole genome information of 110 enterococci was downloaded from the NCBI database to analyze the distribution and the structure of the CRISPR-Cas system including the Cas gene, repeat sequences, and spacer sequence of the CRISPR-Cas system by bioinformatics methods, and to find drug resistance-related genes and analyze the relationship between them and the CRISPR-Cas system. Multilocus sequence typing (MLST) of enterococci was performed against the reference MLST database. Information on the drug resistance of Enterococcus was retrieved from the CARD database, and its relationship to the presence or absence of CRISPR was statistically analyzed. Among the 110 Enterococcus strains, 39 strains (35.45%) contained a complete CRISPR-Cas system, 87 CRISPR arrays were identified, and 62 strains contained Cas gene clusters. The CRISPR system in the Enterococcus genome was mainly type II-A (59.68%), followed by type II-C (33.87%). The phylogenetic analysis of the cas1 gene sequence was basically consistent with the typing of the CRISPR-Cas system. Of the 74 strains included in the study for MLST typing, only 19 (25.68%) were related to CRISPR-Cas typing, while the majority of the strains (74.32%) of MLST typing were associated with the untyped CRISPR system. Additionally, the CRISPR-Cas system may only be related to the carrying rate of some drug-resistant genes and the drug-resistant phenotype. In conclusion, the distribution of the enterococcus CRISPR-Cas system varies greatly among different species and the presence of CRISPR loci reduces the horizontal transfer of some drug resistance genes.
Collapse
Affiliation(s)
- Shuan Tao
- School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, China
| | - Dongdong Zhou
- Department of General Medicine, Ningbo First Hospital, Ningbo, China
| | - Huimin Chen
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Na Li
- Bengbu Medical College, Bengbu, China
| | - Lin Zheng
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, China
| | - Yewei Fang
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, China
| | - Yao Xu
- School of Medicine, Ningbo University, Ningbo, China
| | - Qi Jiang
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, China
- *Correspondence: Qi Jiang,
| | - Wei Liang
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, China
- Wei Liang,
| |
Collapse
|
30
|
El-Kafrawy SA, Abbas AT, Oelkrug C, Tahoon M, Ezzat S, Zumla A, Azhar EI. IgY antibodies: The promising potential to overcome antibiotic resistance. Front Immunol 2023; 14:1065353. [PMID: 36742328 PMCID: PMC9896010 DOI: 10.3389/fimmu.2023.1065353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
Antibiotic resistant bacteria are a growing threat to global health security. Whilst the emergence of antimicrobial resistance (AMR) is a natural phenomenon, it is also driven by antibiotic exposure in health care, agriculture, and the environment. Antibiotic pressure and inappropriate use of antibiotics are important factors which drive resistance. Apart from their use to treat bacterial infections in humans, antibiotics also play an important role in animal husbandry. With limited antibiotic options, alternate strategies are required to overcome AMR. Passive immunization through oral, nasal and topical administration of egg yolk-derived IgY antibodies from immunized chickens were recently shown to be effective for treating bacterial infections in animals and humans. Immunization of chickens with specific antigens offers the possibility of creating specific antibodies targeting a wide range of antibiotic-resistant bacteria. In this review, we describe the growing global problem of antimicrobial resistance and highlight the promising potential of the use of egg yolk IgY antibodies for the treatment of bacterial infections, particularly those listed in the World Health Organization priority list.
Collapse
Affiliation(s)
- Sherif A El-Kafrawy
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Clinical Pathology, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Aymn T Abbas
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Biotechnology Research Laboratories, Gastroenterology, Surgery Centre, Mansoura University, Mansoura, Egypt
| | | | - Marwa Tahoon
- Epidemiology and Preventive Medicine Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Sameera Ezzat
- Epidemiology and Preventive Medicine Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt.,MARC for Medical Services and Scientific Research, 6th of October City, Giza, Egypt
| | - Alimuddin Zumla
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Infection, Division of Infection and Immunity, Centre for Clinical Microbiology, University College London, London, United Kingdom.,National Institute for Health and Care Research (NIHR) Biomedical Research Centre, University College London Hospitals, London, United Kingdom
| | - Esam I Azhar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
31
|
Mudenda S, Matafwali SK, Malama S, Munyeme M, Yamba K, Katemangwe P, Siluchali G, Mainda G, Mukuma M, Bumbangi FN, Mirisho R, Muma JB. Prevalence and antimicrobial resistance patterns of Enterococcus species isolated from laying hens in Lusaka and Copperbelt provinces of Zambia: a call for AMR surveillance in the poultry sector. JAC Antimicrob Resist 2022; 4:dlac126. [PMID: 36570686 PMCID: PMC9772873 DOI: 10.1093/jacamr/dlac126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Background The use of antimicrobials in layer poultry production for improved production, growth promotion, prophylaxis and treatment purposes has contributed to the development of antimicrobial resistance (AMR) in poultry. In Zambia, there is a paucity of information on the prevalence and AMR patterns of Enterococcus species isolated from laying hens. Objectives This study investigated the prevalence and AMR patterns of enterococci isolated in layer hens in Lusaka and Copperbelt provinces of Zambia. Methods A cross-sectional study was conducted from September 2020 to April 2021. Three hundred and sixty-five pooled cloacal swab samples were collected from 77 layer poultry farms. Enterococci identification and confirmation were performed using Analytical Profile Index (API 20 STREP) and 16S rRNA sequencing, respectively. A panel of nine antibiotics was used for antibiotic susceptibility testing and interpreted according to the CLSI 2020 guidelines. Data were analysed using SPSS version 23 and WHONET 2020. Results A total of 308 (83%) single Enterococcus species isolates were obtained and showed resistance to tetracycline (80.5%), erythromycin (53.6%), quinupristin/dalfopristin (53.2%), ampicillin (36.72%), vancomycin (32.8%), linezolid (30.2%), ciprofloxacin (11.0%), nitrofurantoin (6.5%) and chloramphenicol (3.9%). The prevalence of enterococci resistant to at least one antibiotic was 99.4% (n = 306), of which 86% (n = 265) were MDR. Conclusions This study found a high prevalence of antimicrobial-resistant enterococci. The presence of MDR requires urgent intervention and implementation of AMR surveillance strategies and antimicrobial stewardship programmes in layer poultry production in Zambia.
Collapse
Affiliation(s)
- Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia.,Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Scott Kaba Matafwali
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Sydney Malama
- Department of Biological Sciences, School of Natural Sciences, University of Zambia, Lusaka, Zambia
| | - Musso Munyeme
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Kaunda Yamba
- Department of Pathology & Microbiology Laboratory, University Teaching Hospitals, Lusaka, Zambia
| | - Patrick Katemangwe
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Godfrey Siluchali
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia.,Department of Anatomy and Physiological Sciences, Institute of Basic and Biomedical Sciences, Levy Mwanawasa Medical University, Lusaka, Zambia
| | - Geoffrey Mainda
- Department of Veterinary Services, Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Mercy Mukuma
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Zambia, Lusaka, Zambia
| | - Flavien Nsoni Bumbangi
- Department of Medicine, School of Medicine, Eden University, P.O. Box 37727, Lusaka, Zambia
| | - Robert Mirisho
- Department of Public Health, St Francis University College of Health and Allied Sciences, Ifakara, Tanzania
| | - John Bwalya Muma
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| |
Collapse
|
32
|
Davis BC, Keenum I, Calarco J, Liguori K, Milligan E, Pruden A, Harwood VJ. Towards the standardization of Enterococcus culture methods for waterborne antibiotic resistance monitoring: A critical review of trends across studies. WATER RESEARCH X 2022; 17:100161. [PMID: 36466738 PMCID: PMC9712764 DOI: 10.1016/j.wroa.2022.100161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Antibiotic resistance is a major 21st century One Health (humans, animals, environment) challenge whose spread limits options to treat bacterial infections. There is growing interest in monitoring water environments, including surface water and wastewater, which have been identified as key recipients, pathways, and sources of antibiotic resistant bacteria (ARB). Aquatic environments also facilitate the transmission and amplification of ARB. Enterococcus spp. often carry clinically-important antibiotic resistance genes and are of interest as environmental monitoring targets. Enterococcus spp. are Gram-positive bacteria that are typically of fecal origin; however, they are also found in relevant environmental niches, with various species and strains that are opportunistic human pathogens. Although the value of environmental monitoring of antibiotic-resistant Enterococcus has been recognized by both national and international organizations, lack of procedural standardization has hindered generation of comparable data needed to implement integrated surveillance programs. Here we provide a comprehensive methodological review to assess the techniques used for the culturing and characterization of antibiotic-resistant Enterococcus across water matrices for the purpose of environmental monitoring. We analyzed 117 peer-reviewed articles from 33 countries across six continents. The goal of this review is to provide a critical analysis of (i) the various methods applied globally for isolation, confirmation, and speciation of Enterococcus isolates, (ii) the different methods for profiling antibiotic resistance among enterococci, and (iii) the current prevalence of resistance to clinically-relevant antibiotics among Enterococcus spp. isolated from various environments. Finally, we provide advice regarding a path forward for standardizing culturing of Enterococcus spp. for the purpose of antibiotic resistance monitoring in wastewater and wastewater-influenced waters within a global surveillance framework.
Collapse
Affiliation(s)
- Benjamin C. Davis
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia
| | - Ishi Keenum
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia
| | - Jeannette Calarco
- Department of Integrative Biology, University of South Florida, Tampa, Florida
| | - Krista Liguori
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia
| | - Erin Milligan
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia
| | - Valerie J. Harwood
- Department of Integrative Biology, University of South Florida, Tampa, Florida
| |
Collapse
|
33
|
Mushtaq A, Nawaz H, Irfan Majeed M, Rashid N, Tahir M, Zaman Nawaz M, Shahzad K, Dastgir G, Zaki Abdul Bari R, Ul Haq A, Saleem M, Akhtar F. Surface-enhanced Raman spectroscopy (SERS) for monitoring colistin-resistant and susceptible E. coli strains. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121315. [PMID: 35576839 DOI: 10.1016/j.saa.2022.121315] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/21/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
The emergence of drug-resistant bacteria is a precarious global health concern. In this study, surface-enhanced Raman spectroscopy (SERS) is used to characterize colistin-resistant and susceptible E. coli strains based on their distinguished SERS spectral features for the development of rapid and cost-effective detection and differentiation methods. For this purpose, three colistin-resistant and three colistin susceptible E. coli strains were analyzed by comparing their SERS spectral signatures. Moreover, multivariate data analysis techniques including Principal component analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA) were used to examine the SERS spectral data of colistin-resistant and susceptible strains. PCA technique was employed for differentiating colistin susceptible and resistant E.coli strains due to alteration in biochemical compositions of the bacterial cell. PLS-DA is employed on SERS spectral data sets for discrimination of these resistant and susceptible E. coli strains with 100% specificity, 100% accuracy, 99.8% sensitivity, and 86% area under receiver operating characteristics (AUROC) curve.
Collapse
Affiliation(s)
- Aqsa Mushtaq
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Nosheen Rashid
- Department of Chemistry, University of Education, Faisalabad Campus, Faisalabad 38000, Pakistan.
| | - Muhammad Tahir
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Zaman Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Kashif Shahzad
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Ghulam Dastgir
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Rana Zaki Abdul Bari
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Anwar Ul Haq
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Mudassar Saleem
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Farwa Akhtar
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
34
|
Di Cesare A, Frangipani E, Citterio B, Sabatino R, Corno G, Fontaneto D, Mangiaterra G, Bencardino D, Zoppi S, Di Blasio A, Desiato R, Ru G, Marchis D. Class 1 integron and Enterococcus spp. abundances in swine farms from the " Suckling piglets" to the "Fatteners" production category. Vet Microbiol 2022; 274:109576. [PMID: 36155350 DOI: 10.1016/j.vetmic.2022.109576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/05/2022] [Accepted: 09/16/2022] [Indexed: 10/31/2022]
Abstract
Swine farms are considered a hotspot of antimicrobial resistance and may contribute to the spread of antibiotic-resistant and/or pathogenic bacteria into the environment as well as to farm workers. In this study, swine fecal samples have been collected over the primary production, selecting three categories, i.e., "Suckling piglets", "Weaning pigs" and "Fatteners", in six intensive swine farms, for two years. Feces were analysed for the detection and abundance of class 1 integrons (used as proxy of antibiotic resistance and of anthropogenic pollution), and of enterococci [fecal indicator bacteria (FIB) and potentially pathogenic for humans] by quantitative Real Time PCR. Furthermore, Enterococcus faecalis and Enterococcus faecium were isolated, analysed for the presence of the intI1 gene by Real Time PCR and genetically typed by Pulsed-Field Gel Electrophoresis. Both enterococci and class 1 integrons were significantly more abundant in the Suckling piglets (p = 0.0316 and 0.0242, respectively). About 8% of the isolated enterococci were positive for the intI1 gene by Real Time PCR. E. faecalis and E. faecium were found genetically heterogeneous and no specific pattern could be identified as the driver for their presence along the pig primary production. These findings suggest that the "Suckling piglets" category of production represents the key point where to mitigate the risk of transmission of enterococci and class 1 integrons with associated antibiotic resistance genes to humans and spread into the environment.
Collapse
Affiliation(s)
- Andrea Di Cesare
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy.
| | - Emanuela Frangipani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Barbara Citterio
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Raffaella Sabatino
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| | - Gianluca Corno
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| | - Diego Fontaneto
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| | | | - Daniela Bencardino
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Simona Zoppi
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Alessia Di Blasio
- S.C. Sanità Animale, Servizio Veterinario ASL TO3, Pinerolo, Torino, Italy
| | - Rosanna Desiato
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Giuseppe Ru
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Daniela Marchis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| |
Collapse
|
35
|
Sanderson H, Gray KL, Manuele A, Maguire F, Khan A, Liu C, Navanekere Rudrappa C, Nash JHE, Robertson J, Bessonov K, Oloni M, Alcock BP, Raphenya AR, McAllister TA, Peacock SJ, Raven KE, Gouliouris T, McArthur AG, Brinkman FSL, Fink RC, Zaheer R, Beiko RG. Exploring the mobilome and resistome of Enterococcus faecium in a One Health context across two continents. Microb Genom 2022; 8. [PMID: 36129737 DOI: 10.1099/mgen.0.000880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enterococcus faecium is a ubiquitous opportunistic pathogen that is exhibiting increasing levels of antimicrobial resistance (AMR). Many of the genes that confer resistance and pathogenic functions are localized on mobile genetic elements (MGEs), which facilitate their transfer between lineages. Here, features including resistance determinants, virulence factors and MGEs were profiled in a set of 1273 E. faecium genomes from two disparate geographic locations (in the UK and Canada) from a range of agricultural, clinical and associated habitats. Neither lineages of E. faecium, type A and B, nor MGEs are constrained by geographic proximity, but our results show evidence of a strong association of many profiled genes and MGEs with habitat. Many features were associated with a group of clinical and municipal wastewater genomes that are likely forming a new human-associated ecotype within type A. The evolutionary dynamics of E. faecium make it a highly versatile emerging pathogen, and its ability to acquire, transmit and lose features presents a high risk for the emergence of new pathogenic variants and novel resistance combinations. This study provides a workflow for MGE-centric surveillance of AMR in Enterococcus that can be adapted to other pathogens.
Collapse
Affiliation(s)
- Haley Sanderson
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | - Kristen L Gray
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Colombia, Canada
| | - Alexander Manuele
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada.,Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Finlay Maguire
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada.,Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Community Health & Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Amjad Khan
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada.,Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Chaoyue Liu
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada.,Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Mathematics & Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Chandana Navanekere Rudrappa
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada.,Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John H E Nash
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph and Toronto, Ontario, Canada
| | - James Robertson
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph and Toronto, Ontario, Canada
| | - Kyrylo Bessonov
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph and Toronto, Ontario, Canada
| | - Martins Oloni
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.,David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Brian P Alcock
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.,David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Amogelang R Raphenya
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.,David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | | | - Kathy E Raven
- Department of Medicine, Cambridge University, Cambridge, UK
| | | | - Andrew G McArthur
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.,David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Fiona S L Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Colombia, Canada
| | - Ryan C Fink
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada.,Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Robert G Beiko
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada.,Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
36
|
Shan X, Li XS, Schwarz S, Chen Y, Xu C, Du XD. Plasmid-Assisted Horizontal Transfer of a Large lsa(E)-Carrying Genomic Island in Enterococcus faecalis. Microbiol Spectr 2022; 10:e0015422. [PMID: 35863017 PMCID: PMC9430800 DOI: 10.1128/spectrum.00154-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
The horizontal transfer of genomic islands is essential for the adaptation and evolution of Enterococcus faecalis. In this study, three porcine E. faecalis strains, each harboring a large lsa(E)-carrying genomic island, were identified. When using the E. faecalis OG1RF as the recipient, the horizontal transfer of the lsa(E)-carrying genomic island occurred only from E. faecalis E512, which also harbored a pheromone-responsive conjugative plasmid, but not from the other two E. faecalis strains, E533 and E509, which lacked such a plasmid. Subsequently, through plasmid curing of E. faecalis E512 and plasmid introduction into E. faecalis E533, the pheromone-responsive conjugative plasmid was identified to be indispensable for the horizontal transfer of the lsa(E)-carrying genomic island and a subsequent homologous recombination between the chromosomal DNA of the donor and the recipient. In addition, the presence of a chromosomally-located conjugative transposon, Tn916, in E. faecalis E509 could not mediate the horizontal transfer of the lsa(E)-carrying genomic island, although Tn916 itself could transfer by conjugation. Thus, these data highlight the role of the pheromone-responsive conjugative plasmid in the transfer of the lsa(E)-carrying genomic island in E. faecalis, thereby establishing the dual role of pheromone-responsive conjugative plasmids in contributing to the dissemination of both plasmid-borne resistance genes and chromosomally-located genomic islands. IMPORTANCE In this study, it was shown that a pheromone-responsive conjugative plasmid played an indispensable role in the horizontal transfer of a lsa(E)-carrying genomic island. This finding indicates a dual role of the pheromone-responsive conjugative plasmid in disseminating both plasmid-borne resistance genes and chromosomally-located genomic islands. The role of the pheromone-responsive conjugative plasmid in disseminating chromosomal genomic islands is suggested to be essential in the genomic evolution of E. faecalis, which has become one of the leading nosocomial pathogens worldwide.
Collapse
Affiliation(s)
- Xinxin Shan
- College of Veterinary Medicine, Zhengzhou, People’s Republic of China
| | - Xin-Sheng Li
- College of Veterinary Medicine, Zhengzhou, People’s Republic of China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre of Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Yuxia Chen
- College of Veterinary Medicine, Zhengzhou, People’s Republic of China
| | - Chunyan Xu
- College of Veterinary Medicine, Zhengzhou, People’s Republic of China
| | - Xiang-Dang Du
- College of Veterinary Medicine, Zhengzhou, People’s Republic of China
| |
Collapse
|
37
|
Chakraborty N, Jha D, Roy I, Kumar P, Gaurav SS, Marimuthu K, Ng OT, Lakshminarayanan R, Verma NK, Gautam HK. Nanobiotics against antimicrobial resistance: harnessing the power of nanoscale materials and technologies. J Nanobiotechnology 2022; 20:375. [PMID: 35953826 PMCID: PMC9371964 DOI: 10.1186/s12951-022-01573-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Given the spasmodic increment in antimicrobial resistance (AMR), world is on the verge of “post-antibiotic era”. It is anticipated that current SARS-CoV2 pandemic would worsen the situation in future, mainly due to the lack of new/next generation of antimicrobials. In this context, nanoscale materials with antimicrobial potential have a great promise to treat deadly pathogens. These functional materials are uniquely positioned to effectively interfere with the bacterial systems and augment biofilm penetration. Most importantly, the core substance, surface chemistry, shape, and size of nanomaterials define their efficacy while avoiding the development of AMR. Here, we review the mechanisms of AMR and emerging applications of nanoscale functional materials as an excellent substitute for conventional antibiotics. We discuss the potential, promises, challenges and prospects of nanobiotics to combat AMR.
Collapse
Affiliation(s)
- Nayanika Chakraborty
- Department of Chemistry, University of Delhi, New Delhi, 110007, India.,Department of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi, 110025, India
| | - Diksha Jha
- Department of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Indrajit Roy
- Department of Chemistry, University of Delhi, New Delhi, 110007, India
| | - Pradeep Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, 110007, New Delhi, India
| | - Shailendra Singh Gaurav
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Kalisvar Marimuthu
- National Centre for Infectious Diseases (NCID), Singapore, 308442, Singapore.,Tan Tock Seng Hospital (TTSH), 308433, Singapore, Singapore
| | - Oon-Tek Ng
- National Centre for Infectious Diseases (NCID), Singapore, 308442, Singapore.,Tan Tock Seng Hospital (TTSH), 308433, Singapore, Singapore
| | - Rajamani Lakshminarayanan
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Singapore, 169856, Singapore. .,Department of Pharmacy, National University of Singapore, Singapore, 117543, Singapore. .,Academic Clinical Program in Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, 169857, Singapore.
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore. .,National Skin Centre, Singapore, 308205, Singapore.
| | - Hemant K Gautam
- Department of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi, 110025, India.
| |
Collapse
|
38
|
Malaka De Silva P, Stenhouse GE, Blackwell GA, Bengtsson RJ, Jenkins C, Hall JPJ, Baker KS. A tale of two plasmids: contributions of plasmid associated phenotypes to epidemiological success among Shigella. Proc Biol Sci 2022; 289:20220581. [PMID: 35919999 PMCID: PMC9346365 DOI: 10.1098/rspb.2022.0581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dissemination of antimicrobial resistance (AMR) genes by horizontal gene transfer (HGT) mediated through plasmids is a major global concern. Genomic epidemiology studies have shown varying success of different AMR plasmids during outbreaks, but the underlying reasons for these differences are unclear. Here, we investigated two Shigella plasmids (pKSR100 and pAPR100) that circulated in the same transmission network but had starkly contrasting epidemiological outcomes to identify plasmid features that may have contributed to the differences. We used plasmid comparative genomics to reveal divergence between the two plasmids in genes encoding AMR, SOS response alleviation and conjugation. Experimental analyses revealed that these genomic differences corresponded with reduced conjugation efficiencies for the epidemiologically successful pKSR100, but more extensive AMR, reduced fitness costs, and a reduced SOS response in the presence of antimicrobials, compared with the less successful pAPR100. The discrepant phenotypes between the two plasmids are consistent with the hypothesis that plasmid-associated phenotypes contribute to determining the epidemiological outcome of AMR HGT and suggest that phenotypes relevant in responding to antimicrobial pressure and fitness impact may be more important than those around conjugation in this setting. Plasmid phenotypes could thus be valuable tools in conjunction with genomic epidemiology for predicting AMR dissemination.
Collapse
Affiliation(s)
- P. Malaka De Silva
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - George E. Stenhouse
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Grace A. Blackwell
- EMBL-EBI, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB101SA, UK,Department of Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB101SA, UK
| | - Rebecca J. Bengtsson
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Claire Jenkins
- Gastro and Food Safety (One Health) Division, UK Health Security Agency (UKHSA), Colindale, London, UK
| | - James P. J. Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kate S. Baker
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
39
|
Udaondo Z, Abram KZ, Kothari A, Jun SR. Insertion sequences and other mobile elements associated with antibiotic resistance genes in Enterococcus isolates from an inpatient with prolonged bacteraemia. Microb Genom 2022; 8. [PMID: 35921144 PMCID: PMC9484755 DOI: 10.1099/mgen.0.000855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Insertion sequences (ISs) and other transposable elements are associated with the mobilization of antibiotic resistance determinants and the modulation of pathogenic characteristics. In this work, we aimed to investigate the association between ISs and antibiotic resistance genes, and their role in the dissemination and modification of the antibiotic-resistant phenotype. To that end, we leveraged fully resolved Enterococcus faecium and Enterococcus faecalis genomes of isolates collected over 5 days from an inpatient with prolonged bacteraemia. Isolates from both species harboured similar IS family content but showed significant species-dependent differences in copy number and arrangements of ISs throughout their replicons. Here, we describe two inter-specific IS-mediated recombination events and IS-mediated excision events in plasmids of E. faecium isolates. We also characterize a novel arrangement of the ISs in a Tn1546-like transposon in E. faecalis isolates likely implicated in a vancomycin genotype–phenotype discrepancy. Furthermore, an extended analysis revealed a novel association between daptomycin resistance mutations in liaSR genes and a putative composite transposon in E. faecium, offering a new paradigm for the study of daptomycin resistance and novel insights into its dissemination. In conclusion, our study highlights the role ISs and other transposable elements play in the rapid adaptation and response to clinically relevant stresses such as aggressive antibiotic treatment in enterococci.
Collapse
Affiliation(s)
- Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kaleb Z Abram
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Atul Kothari
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Arkansas Dept of Health, Healthcare Associated Infections and Outbreak Response Sections, Little Rock, AR 72205, USA
| | - Se-Ran Jun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
40
|
Zhou X, Zeng X, Wang L, Zheng Y, Zhang G, Cheng W. The Structure and Function of Biomaterial Endolysin EFm1 from E. faecalis Phage. MATERIALS 2022; 15:ma15144879. [PMID: 35888345 PMCID: PMC9316690 DOI: 10.3390/ma15144879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 01/17/2023]
Abstract
The endolysin EFm1 from the E. faecalis 002 (002) phage IME-EF1 efficiently lyses E. faecalis, a gram-positive bacterium that severely threatens human health. Here, the structure and lytic activity of EFm1 toward E. faecalis were further investigated. Lytic activity shows that EFm1 specifically lyses 002 and 22 other clinically isolated E. faecalis, but not E. faecalis 945. Therefore, EFm1 may be an alternative biomaterial to prevent and treat diseases caused by E. faecalis. A structural analysis showed that EFm1D166Q is a tetramer consisting of one full-length unit with additional C-terminal domains (CTDs), while EFm1166–237 aa is an octamer in an asymmetric unit. Several crucial domains and novel residues affecting the lytic activity of EFm1 were identified, including calcium-binding sites (D20, D22 and D31), a putative classic amidohydrolase catalytic triad (C29, H90 and D108), a tetramerization site (M168 and M227), putative ion channel sites (IGGK, 186–198 aa), and other residues (R208 and Y209). Furthermore, EFm1 exhibited no significant activity when expressed alone in vivo, and IME-EF1 lytic activity decreased when efm1 was knocked down. These findings provide valuable insights into the molecule mechanism of a potential functional biomaterial for the treatment of the disease caused by the opportunistic pathogen E. faecalis.
Collapse
Affiliation(s)
- Xuerong Zhou
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China; (X.Z.); (L.W.)
| | - Xiaotao Zeng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China; (X.Z.); (Y.Z.)
| | - Li Wang
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China; (X.Z.); (L.W.)
| | - Yanhui Zheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China; (X.Z.); (Y.Z.)
| | - Guixiang Zhang
- Laboratory of Bariatric and Metabolic Surgery, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, No. 37, Chengdu 610041, China;
| | - Wei Cheng
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China; (X.Z.); (L.W.)
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China; (X.Z.); (Y.Z.)
- Correspondence:
| |
Collapse
|
41
|
George PBL, Leclerc S, Turgeon N, Veillette M, Duchaine C. Conifer Needle Phyllosphere as a Potential Passive Monitor of Bioaerosolised Antibiotic Resistance Genes. Antibiotics (Basel) 2022; 11:907. [PMID: 35884161 PMCID: PMC9312085 DOI: 10.3390/antibiotics11070907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 01/29/2023] Open
Abstract
Monitoring antibiotic resistance genes (ARGs) is vital to the One Health approach to tackling the antibiotic resistance crisis. It has been suggested that conifer needles can be used as passive bioaerosol samplers. Here, the use of conifer needles as biomonitors of ARGs in bioaerosols was assessed as a proof-of-concept. Needles were collected from trees surrounding pig farms, villages, and forest sites in Québec, Canada. Needles were homogenised and DNA was extracted. Results of qPCR analyses showed biomass estimates were consistent across samples. Number and quantity of ARGs was significantly lower in forest sites when compared to the farm and village, comprising a distinct resistome. Consistent with previous findings, the most common ARGs were tetracyclines and sulfonamides, which were found close to agricultural activities. Although results were limited, there is great potential for using the conifer phyllosphere as a passive bioaerosol sampler. This method represents an accessible way to promote ARG surveillance over long distances from point sources.
Collapse
Affiliation(s)
- Paul B. L. George
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (S.L.); (C.D.)
| | - Samantha Leclerc
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (S.L.); (C.D.)
| | - Nathalie Turgeon
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (N.T.); (M.V.)
| | - Marc Veillette
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (N.T.); (M.V.)
| | - Caroline Duchaine
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (S.L.); (C.D.)
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (N.T.); (M.V.)
| |
Collapse
|
42
|
Wang Y, Taylor SL, Choo JM, Papanicolas LE, Keating R, Hindmarsh K, Thomson RM, Morgan L, Rogers GB, Burr LD. Carriage and Transmission of Macrolide Resistance Genes in Patients With Chronic Respiratory Conditions and Their Close Contacts. Chest 2022; 162:56-65. [DOI: 10.1016/j.chest.2022.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/17/2021] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
|
43
|
Antimicrobial-Resistant Enterococcus spp. in Wild Avifauna from Central Italy. Antibiotics (Basel) 2022; 11:antibiotics11070852. [PMID: 35884106 PMCID: PMC9311988 DOI: 10.3390/antibiotics11070852] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Bacteria of the genus Enterococcus are opportunistic pathogens, part of the normal intestinal microflora of animals, able to acquire and transfer antimicrobial resistance genes. The aim of this study was to evaluate the possible role of wild avifauna as a source of antimicrobial-resistant enterococci. To assess this purpose, 103 Enterococcus spp. strains were isolated from the feces of wild birds of different species; they were tested for antimicrobial resistance against 21 molecules, vancomycin resistance, and high-level aminoglycosides resistance (HLAR). Furthermore, genes responsible for vancomycin, tetracycline, and HLAR were searched. E. faecium was the most frequently detected species (60.20% of isolates), followed by E. faecalis (34.95% of isolates). Overall, 99.02% of the isolated enterococci were classified as multidrug-resistant, with 19.41% extensively drug-resistant, and 2.91% possible pan drug-resistant strains. Most of the isolates were susceptible to amoxicillin/clavulanic acid (77.67%) and ampicillin (75.73%), with only 5.83% of isolates showing an ampicillin MIC ≥ 64 mg/L. HLAR was detected in 35.92% of isolates, mainly associated with the genes ant(6)-Ia and aac(6′)-Ie-aph(2″)-Ia. Few strains (4.85%) were resistant to vancomycin, and the genes vanA and vanB were not detected. A percentage of 54.37% of isolates showed resistance to tetracycline; tet(M) was the most frequently detected gene in these strains. Wild birds may contribute to the spreading of antimicrobial-resistant enterococci, which can affect other animals and humans. Constant monitoring is essential to face up to the evolving antimicrobial resistance issue, and monitoring programs should include wild avifauna, too.
Collapse
|
44
|
Cho S, McMillan EA, Barrett JB, Hiott LM, Woodley TA, House SL, Frye JG, Jackson CR. Distribution and Transfer of Plasmid Replicon Families among Multidrug-Resistant Enterococcus faecalis and Enterococcus faecium from Poultry. Microorganisms 2022; 10:microorganisms10061244. [PMID: 35744761 PMCID: PMC9228330 DOI: 10.3390/microorganisms10061244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
The presence and transfer of plasmids from commensal bacteria to more pathogenic bacteria may contribute to the dissemination of antimicrobial resistance. However, the prevalence of plasmids from commensal bacteria, such as the enterococci, in food animals remains largely unknown. In this study, the diversity and prevalence of plasmid families from multidrug-resistant (MDR; resistance to three or more antimicrobials) enterococci from poultry carcasses were determined. Plasmid-positive MDR enterococci were also tested for the ability to transfer plasmids to other enterococci using conjugation. MDR Enterococcus faecalis (n = 98) and Enterococcus faecium (n = 696) that were isolated from poultry carcass rinsates between 2004 and 2011 were tested for the presence of 21 plasmid replicon (rep) families using multiplex PCR. Approximately 48% of E. faecalis (47/98) and 16% of E. faecium (110/696) were positive for at least one rep-family. Fourteen rep-families were detected overall, and ten rep-families were shared between E. faecalis and E. faecium. The rep7 and rep17 families were unique to E. faecalis, while the rep5 and rep8 families were unique to E. faecium. The rep9 family was predominant in both E. faecalis and E. faecium for all the years tested. The greatest number of rep-families detected was in 2005 (n = 10), and the least was in 2009 (n = 1). Eight rep-families were transferred from E. faecalis donors to the E. faecalis JH2-2 recipient using conjugation. Results from this study showed that E. faecalis and E. faecium from poultry carcasses contain numerous and diverse rep-families that are capable of conjugal transfer.
Collapse
Affiliation(s)
- Sohyun Cho
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, GA 30605, USA; (S.C.); (E.A.M.); (J.B.B.); (L.M.H.); (T.A.W.); (S.L.H.); (J.G.F.)
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Elizabeth A. McMillan
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, GA 30605, USA; (S.C.); (E.A.M.); (J.B.B.); (L.M.H.); (T.A.W.); (S.L.H.); (J.G.F.)
| | - John B. Barrett
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, GA 30605, USA; (S.C.); (E.A.M.); (J.B.B.); (L.M.H.); (T.A.W.); (S.L.H.); (J.G.F.)
| | - Lari M. Hiott
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, GA 30605, USA; (S.C.); (E.A.M.); (J.B.B.); (L.M.H.); (T.A.W.); (S.L.H.); (J.G.F.)
| | - Tiffanie A. Woodley
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, GA 30605, USA; (S.C.); (E.A.M.); (J.B.B.); (L.M.H.); (T.A.W.); (S.L.H.); (J.G.F.)
| | - Sandra L. House
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, GA 30605, USA; (S.C.); (E.A.M.); (J.B.B.); (L.M.H.); (T.A.W.); (S.L.H.); (J.G.F.)
| | - Jonathan G. Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, GA 30605, USA; (S.C.); (E.A.M.); (J.B.B.); (L.M.H.); (T.A.W.); (S.L.H.); (J.G.F.)
| | - Charlene R. Jackson
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, U.S. National Poultry Research Center, Athens, GA 30605, USA; (S.C.); (E.A.M.); (J.B.B.); (L.M.H.); (T.A.W.); (S.L.H.); (J.G.F.)
- Correspondence: ; Tel.: +1-(706)-546-3604; Fax: +1-(706)-546-3616
| |
Collapse
|
45
|
Jaroš P, Timkina E, Michailidu J, Maršík D, Kulišová M, Kolouchová I, Demnerová K. Boswellic Acids as Effective Antibacterial Antibiofilm Agents. Molecules 2022; 27:3795. [PMID: 35744925 PMCID: PMC9228269 DOI: 10.3390/molecules27123795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022] Open
Abstract
Boswellic acids are biologically active pentacyclic terpenoid compounds derived from Boswellia sp. plants. Extracts containing these acids have a number of positive effects on human health, especially in the treatment of inflammation, arthritis, or asthma. With increasing resistance to common antibiotics, boswellic acid-containing extracts could serve as an alternative or work in synergy with commonly available preparations. This study aims to determine the effect of boswellic acids on suspension cells and biofilms of Staphylococcus epidermidis, Enterococcus faecalis, and Escherichia coli. The antimicrobial and antibiofilm effect found was compared with commonly available antibiotics to control these undesirable microorganisms. The synergistic effect of boswellic acids and common antibiotics on the growth of these microorganisms was also determined. All tested microorganisms showed a positive additive effect of antibiotics and boswellic acid extract. The most significant effect was found in Enterococcus faecalis ATCC 29212 in a combination of 0.2 × MIC80 erythromycin (0.2 mg/L) and 0.8 × MIC80 boswellic acid extract (16 mg/L).
Collapse
Affiliation(s)
- Petr Jaroš
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 16628 Prague, Czech Republic; (P.J.); (K.D.)
| | - Elizaveta Timkina
- Department of Biotechnology, University of Chemistry and Technology, 16628 Prague, Czech Republic; (J.M.); (D.M.); (M.K.); (I.K.)
| | - Jana Michailidu
- Department of Biotechnology, University of Chemistry and Technology, 16628 Prague, Czech Republic; (J.M.); (D.M.); (M.K.); (I.K.)
| | - Dominik Maršík
- Department of Biotechnology, University of Chemistry and Technology, 16628 Prague, Czech Republic; (J.M.); (D.M.); (M.K.); (I.K.)
| | - Markéta Kulišová
- Department of Biotechnology, University of Chemistry and Technology, 16628 Prague, Czech Republic; (J.M.); (D.M.); (M.K.); (I.K.)
| | - Irena Kolouchová
- Department of Biotechnology, University of Chemistry and Technology, 16628 Prague, Czech Republic; (J.M.); (D.M.); (M.K.); (I.K.)
| | - Kateřina Demnerová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 16628 Prague, Czech Republic; (P.J.); (K.D.)
| |
Collapse
|
46
|
Le Neindre K, Dejoies L, Reissier S, Guérin F, Felden B, Cattoir V. Small RNA-mediated regulation of the tet(M) resistance gene expression in Enterococcus faecium. Res Microbiol 2022; 173:103941. [PMID: 35395390 DOI: 10.1016/j.resmic.2022.103941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/24/2022]
Abstract
We investigated the role of a novel small RNA expressed in Enterococcus faecium (named Ern0030). We revealed that ern0030 was encoded within the 5'untranslated region of tet(M), a gene conferring tetracycline resistance through ribosomal protection. By RACE mapping, we accurately determined the boundaries of ern0030, which corresponded to Ptet. This upstream sequence of tet(M), Ptet, was previously described within transcriptional attenuation mechanism. Here, Northern blot analyses revealed three transcripts of different lengths (ca. 230, 150 and 100 nucleotides) expressed from Ptet. Phenotypically, the total deletion of ern0030 conferred a decrease in tetracycline MICs that was consistent with gene expression data showing no significant tet(M) induction under tetracycline SIC in ern0030-deleted mutant as opposed to a 10-fold increase of tet(M) expression in the wild-type strain. We investigated the transcriptional attenuation mechanism by toeprint assay. Whereas the expected tet(M) RBS was detected, the RBS of the putative leader peptide was not highlighted by toeprint assay, suggesting the transcriptional attenuation was unlikely. Here, we demonstrate that Ern0030 has a role in regulation of tet(M) expression and propose a novel model of tet(M) regulation alternative or complementary to transcriptional attenuation.
Collapse
Affiliation(s)
- Killian Le Neindre
- Unité Inserm U1230, Université de Rennes 1, Rennes, France; Service de Bactériologie-Hygiène hospitalière, CHU de Rennes, Rennes, France.
| | - Loren Dejoies
- Unité Inserm U1230, Université de Rennes 1, Rennes, France; Service de Bactériologie-Hygiène hospitalière, CHU de Rennes, Rennes, France.
| | | | - François Guérin
- Service de Bactériologie-Hygiène hospitalière, CHU de Rennes, Rennes, France; CNR de la Résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), Rennes, France.
| | - Brice Felden
- Unité Inserm U1230, Université de Rennes 1, Rennes, France.
| | - Vincent Cattoir
- Unité Inserm U1230, Université de Rennes 1, Rennes, France; Service de Bactériologie-Hygiène hospitalière, CHU de Rennes, Rennes, France; CNR de la Résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), Rennes, France.
| |
Collapse
|
47
|
Werner KA, Schneider D, Poehlein A, Diederich N, Feyen L, Axtmann K, Hübner T, Brüggemann N, Prost K, Daniel R, Grohmann E. Metagenomic Insights Into the Changes of Antibiotic Resistance and Pathogenicity Factor Pools Upon Thermophilic Composting of Human Excreta. Front Microbiol 2022; 13:826071. [PMID: 35432262 PMCID: PMC9009411 DOI: 10.3389/fmicb.2022.826071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/17/2022] [Indexed: 01/12/2023] Open
Abstract
In times of climate change, practicing a form of sustainable, climate-resilient and productive agriculture is of primordial importance. Compost could be one form of sustainable fertilizer, which is increasing humus, water holding capacity, and nutrient contents of soils. It could thereby strengthen agriculture toward the adverse effects of climate change, especially when additionally combined with biochar. To get access to sufficient amounts of suitable materials for composting, resources, which are currently treated as waste, such as human excreta, could be a promising option. However, the safety of the produced compost regarding human pathogens, pharmaceuticals (like antibiotics) and related resistance genes must be considered. In this context, we have investigated the effect of 140- and 154-days of thermophilic composting on the hygienization of human excreta and saw dust from dry toilets together with straw and green cuttings with and without addition of biochar. Compost samples were taken at the beginning and end of the composting process and metagenomic analysis was conducted to assess the fate of antibiotic resistance genes (ARGs) and pathogenicity factors of the microbial community over composting. Potential ARGs conferring resistance to major classes of antibiotics, such as beta-lactam antibiotics, vancomycin, the MLSB group, aminoglycosides, tetracyclines and quinolones were detected in all samples. However, relative abundance of ARGs decreased from the beginning to the end of composting. This trend was also found for genes encoding type III, type IV, and type VI secretion systems, that are involved in pathogenicity, protein effector transport into eukaryotic cells and horizontal gene transfer between bacteria, respectively. The results suggest that the occurrence of potentially pathogenic microorganisms harboring ARGs declines during thermophilic composting. Nevertheless, ARG levels did not decline below the detection limit of quantitative PCR (qPCR). Thresholds for the usage of compost regarding acceptable resistance gene levels are yet to be evaluated and defined.
Collapse
Affiliation(s)
- Katharina A. Werner
- Department of Microbiology, Faculty of Life Sciences and Technology, Berliner Hochschule für Technik, Berlin, Germany
| | - Dominik Schneider
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Nina Diederich
- Department of Microbiology, Faculty of Life Sciences and Technology, Berliner Hochschule für Technik, Berlin, Germany
| | - Lara Feyen
- Department of Microbiology, Faculty of Life Sciences and Technology, Berliner Hochschule für Technik, Berlin, Germany
| | - Katharina Axtmann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Tobias Hübner
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH—Umweltforschungszentrum Leipzig (UFZ), Leipzig, Germany
| | - Nicolas Brüggemann
- Institute of Bio- and Geosciences—Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany
| | - Katharina Prost
- Institute of Bio- and Geosciences—Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Elisabeth Grohmann
- Department of Microbiology, Faculty of Life Sciences and Technology, Berliner Hochschule für Technik, Berlin, Germany
- *Correspondence: Elisabeth Grohmann,
| |
Collapse
|
48
|
Antimicrobial Resistance, Biofilm Formation, and Virulence Genes in Enterococcus Species from Small Backyard Chicken Flocks. Antibiotics (Basel) 2022; 11:antibiotics11030380. [PMID: 35326843 PMCID: PMC8944505 DOI: 10.3390/antibiotics11030380] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023] Open
Abstract
Backyard birds are small flocks that are more common in developing countries. They are used for poultry meat and egg production. However, they are also implicated in the maintenance and transmission of several zoonotic diseases, including multidrug-resistant bacteria. Enterococci are one of the most common zoonotic bacteria. They colonize numerous body sites and cause a wide range of serious nosocomial infections in humans. Therefore, the objective of the present study was to investigate the diversity in Enterococcus spp. in healthy birds and to determine the occurrence of multidrug resistance (MDR), multi-locus sequence types, and virulence genes and biofilm formation. From March 2019 to December 2020, cloacal swabs were collected from 15 healthy backyard broiler flocks. A total of 90 enterococci strains were recovered and classified according to the 16S rRNA sequence into Enterococcus faecalis (50%); Enterococcus faecium (33.33%), Enterococcus hirae (13.33%), and Enterococcus avium (3.33%). The isolates exhibited high resistance to tetracycline (55.6%), erythromycin (31.1%), and ampicillin (30%). However, all of the isolates were susceptible to linezolid. Multidrug resistance (MDR) was identified in 30 (33.3%) isolates. The enterococci AMR-associated genes ermB, ermA, tetM, tetL, vanA, cat, and pbp5 were identified in 24 (26.6%), 11 (12.2%), 39 (43.3%), 34 (37.7%), 1 (1.1%), 4 (4.4%), and 23 (25.5%) isolates, respectively. Of the 90 enterococci, 21 (23.3%), 27 (30%), and 36 (40%) isolates showed the presence of cylA, gelE, and agg virulence-associated genes, respectively. Seventy-three (81.1%) isolates exhibited biofilm formation. A statistically significant correlation was obtained for biofilm formation versus the MAR index and MDR. Multi-locus sequence typing (MLST) identified eleven and eight different STs for E. faecalis and E. faecium, respectively. Seven different rep-family plasmid genes (rep1–2, rep3, rep5–6, rep9, and rep11) were detected in the MDR enterococci. Two-thirds (20/30; 66.6%) of the enterococci were positive for one or two rep-families. In conclusion, the results show that healthy backyard chickens could act as a reservoir for MDR and virulent Enterococcus spp. Thus, an effective antimicrobial stewardship program and further studies using a One Health approach are required to investigate the role of backyard chickens as vectors for AMR transmission to humans.
Collapse
|
49
|
Jozefíková A, Valček A, Šoltys K, Nováková E, Bujdáková H. Persistence and multi-ward dissemination of vancomycin resistant Enterococcus faecium ST17 clone in hospital settings in Slovakia from 2017 to 2020. Int J Antimicrob Agents 2022; 59:106561. [PMID: 35271995 DOI: 10.1016/j.ijantimicag.2022.106561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/19/2022] [Accepted: 02/27/2022] [Indexed: 11/16/2022]
Abstract
Hospital vancomycin-resistant Enterococcus faecium (VREfm) were evaluated in term of resistance and phylogenetic relatedness to estimate the location and possible route of transmission of resistance determinants. Hospital VREfm (n=49) were collected in the northern part of Slovakia during the years 2017 to 2020. The collection was analyzed for the presence of the van operon and 10 representatives were subjected to whole-genome sequencing using Illumina MiSeq platform. Obtained sequences were de novo assembled and the draft genome assemblies were analyzed with respect to sequence type (ST), plasmid content, resistance and virulence genes, and the phylogenetic relatedness in single nucleotide polymorphisms (SNP). All strains possessed the vanA operon. Ten selected evaluated isolates belonged to the clinically relevant clonal complex (CC) 17 and carried the vanHAX gene cluster conferring vancomycin resistance on mobile genetic elements, except for the isolate M17773 carrying the vanHAX gene cluster chromosomally. All isolates encoded resistance to quinolones (gyrA and parC mutations) and aminoglycosides [aac(6')-aph(2'')]. Four isolates from different wards and patients belonging to ST17 were closely related (6 - 50 SNP), suggesting a long-term persistence of VREfm ST17 in the hospital settings. VREfm proved to harbor many genetic determinants of antimicrobial resistance. The plasmids carrying the vanA genes belonged to the conjugative broad-host families Inc18 and RepA_N posing a threat to human health, especially in hospital settings. Moreover, 4 clinical isolates were phylogenetically related pointing towards a stable circulation of ST17 VREfm clone in the hospital setting underlining the necessity of continuous surveillance of glycopeptide-resistant pathogens.
Collapse
Affiliation(s)
- Anna Jozefíková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Slovakia
| | - Adam Valček
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Slovakia; Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Katarína Šoltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Slovakia
| | - Elena Nováková
- Institute of Microbiology and Immunology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia
| | - Helena Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Slovakia.
| |
Collapse
|
50
|
Pitcher NP, Harjani JR, Zhao Y, Jin J, Knight DR, Li L, Putsathit P, Riley TV, Carter GP, Baell JB. Development of 1,2,4-Oxadiazole Antimicrobial Agents to Treat Enteric Pathogens within the Gastrointestinal Tract. ACS OMEGA 2022; 7:6737-6759. [PMID: 35252669 PMCID: PMC8892681 DOI: 10.1021/acsomega.1c06294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Colonization of the gastrointestinal (GI) tract with pathogenic bacteria is an important risk factor for the development of certain potentially severe and life-threatening healthcare-associated infections, yet efforts to develop effective decolonization agents have been largely unsuccessful thus far. Herein, we report modification of the 1,2,4-oxadiazole class of antimicrobial compounds with poorly permeable functional groups in order to target bacterial pathogens within the GI tract. We have identified that the quaternary ammonium functionality of analogue 26a results in complete impermeability in Caco-2 cell monolayers while retaining activity against GI pathogens Clostridioides difficile and multidrug-resistant (MDR) Enterococcus faecium. Low compound recovery levels after oral administration in rats were observed, which suggests that the analogues may be susceptible to degradation or metabolism within the gut, highlighting a key area for optimization in future efforts. This study demonstrates that modified analogues of the 1,2,4-oxadiazole class may be potential leads for further development of colon-targeted antimicrobial agents.
Collapse
Affiliation(s)
- Noel P. Pitcher
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jitendra R. Harjani
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Yichao Zhao
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jianwen Jin
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Daniel R. Knight
- School
of Medical and Health Sciences, Edith Cowan
University, Joondalup, Western Australia 6027, Australia
- School of
Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Queen Elizabeth
II Medical Centre, Nedlands, Western Australia 6009, Australia
- Medical,
Molecular and Forensic Sciences, Murdoch
University, Murdoch, Western Australia 6150, Australia
- Department
of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Lucy Li
- Department
of Microbiology & Immunology, Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Papanin Putsathit
- School
of Medical and Health Sciences, Edith Cowan
University, Joondalup, Western Australia 6027, Australia
- School of
Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Queen Elizabeth
II Medical Centre, Nedlands, Western Australia 6009, Australia
- Medical,
Molecular and Forensic Sciences, Murdoch
University, Murdoch, Western Australia 6150, Australia
- Department
of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Thomas V. Riley
- School
of Medical and Health Sciences, Edith Cowan
University, Joondalup, Western Australia 6027, Australia
- School of
Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Queen Elizabeth
II Medical Centre, Nedlands, Western Australia 6009, Australia
- Medical,
Molecular and Forensic Sciences, Murdoch
University, Murdoch, Western Australia 6150, Australia
- Department
of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Glen P. Carter
- Department
of Microbiology & Immunology, Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Jonathan B. Baell
- School
of Pharmaceutical Sciences, Nanjing Tech
University, No. 30 South
Puzhu Road, Nanjing 211816, People’s Republic of China
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Australian
Translational Medicinal Chemistry Facility (ATMCF), Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|