1
|
Huang X, Wei X, Wang J, Yi G. Effects of dendritic Ca 2+ spike on the modulation of spike timing with transcranial direct current stimulation in cortical pyramidal neurons. J Comput Neurosci 2025; 53:25-36. [PMID: 39688634 DOI: 10.1007/s10827-024-00886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
Transcranial direct current stimulation (tDCS) generates a weak electric field (EF) within the brain, which induces opposite polarization in the soma and distal dendrite of cortical pyramidal neurons. The somatic polarization directly affects the spike timing, and dendritic polarization modulates the synaptically evoked dendritic activities. Ca2+ spike, the most dramatic dendritic activity, is crucial for synaptic integration and top-down signal transmission, thereby indirectly influencing the output spikes of pyramidal cells. Nevertheless, the role of dendritic Ca2+ spike in the modulation of neural spike timing with tDCS remains largely unclear. In this study, we use morphologically and biophysically realistic models of layer 5 pyramidal cells (L5 PCs) to simulate the dendritic Ca2+ spike and somatic Na+ spike in response to distal dendritic synaptic inputs under weak EF stimulation. Our results show that weak EFs modulate the spike timing through the modulation of dendritic Ca2+ spike and somatic polarization, and such field effects are dependent on synaptic inputs. At weak synaptic inputs, the spike timing is advanced due to the facilitation of dendritic Ca2+ spike by field-induced dendritic depolarization. Conversely, it is delayed by field-induced dendritic hyperpolarization. In this context, the Ca2+ spike exhibits heightened sensitivity to weak EFs, thereby governing the changes in spike timing. At strong synaptic inputs, somatic polarization dominates the changes in spike timing due to the decreased sensitivity of Ca2+ spike to EFs. Consequently, the spike timing is advanced/delayed by field-induced somatic depolarization/hyperpolarization. Moreover, EFs have significant effects on the changes in the timing of somatic spike and Ca2+ spike when synaptic current injection coincides with the onset of EFs. Field effects on spike timing follow a cosine dependency on the field polar angle, with maximum effects in the field direction parallel to the somato-dendritic axis. Furthermore, our results are robust to morphological and biological diversity. These findings clarify the modulation of spike timing with weak EFs and highlight the crucial role of dendritic Ca2+ spike. These predictions shed light on the neural basis of tDCS and should be considered when understanding the effect of tDCS on population dynamics and cognitive behavior.
Collapse
Affiliation(s)
- Xuelin Huang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China
| | - Xile Wei
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China
| | - Guosheng Yi
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
2
|
Moore JJ, Rashid SK, Bicker E, Johnson CD, Codrington N, Chklovskii DB, Basu J. Sub-cellular population imaging tools reveal stable apical dendrites in hippocampal area CA3. Nat Commun 2025; 16:1119. [PMID: 39875374 PMCID: PMC11775317 DOI: 10.1038/s41467-025-56289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/15/2025] [Indexed: 01/30/2025] Open
Abstract
Apical and basal dendrites of pyramidal neurons receive anatomically and functionally distinct inputs, implying compartment-level functional diversity during behavior. To test this, we imaged in vivo calcium signals from soma, apical dendrites, and basal dendrites in mouse hippocampal CA3 pyramidal neurons during head-fixed navigation. To capture compartment-specific population dynamics, we developed computational tools to automatically segment dendrites and extract accurate fluorescence traces from densely labeled neurons. We validated the method on sparsely labeled preparations and synthetic data, predicting an optimal labeling density for high experimental throughput and analytical accuracy. Our method detected rapid, local dendritic activity. Dendrites showed robust spatial tuning, similar to soma but with higher activity rates. Across days, apical dendrites remained more stable and outperformed in decoding of the animal's position. Thus, population-level apical and basal dendritic differences may reflect distinct compartment-specific input-output functions and computations in CA3. These tools will facilitate future studies mapping sub-cellular activity and their relation to behavior.
Collapse
Affiliation(s)
- Jason J Moore
- Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA.
- Center for Computational Neuroscience, Flatiron Institute, Simons Foundation, New York, NY, 10010, USA.
| | - Shannon K Rashid
- Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA
| | - Emmett Bicker
- Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA
| | - Cara D Johnson
- Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA
| | - Naomi Codrington
- Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA
| | - Dmitri B Chklovskii
- Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA
- Center for Computational Neuroscience, Flatiron Institute, Simons Foundation, New York, NY, 10010, USA
| | - Jayeeta Basu
- Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA.
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Center for Neural Science, New York University, New York, NY, 10003, USA.
| |
Collapse
|
3
|
Benezra SE, Patel KB, Perez Campos C, Hillman EMC, Bruno RM. Learning enhances behaviorally relevant representations in apical dendrites. eLife 2024; 13:RP98349. [PMID: 39727300 PMCID: PMC11677229 DOI: 10.7554/elife.98349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.
Collapse
Affiliation(s)
- Sam E Benezra
- Department of Neuroscience, Columbia UniversityNew YorkUnited States
- Kavli Institute for Brain Science, Columbia UniversityNew YorkUnited States
| | - Kripa B Patel
- Kavli Institute for Brain Science, Columbia UniversityNew YorkUnited States
- Departments of Biomedical Engineering and Radiology, Columbia UniversityNew YorkUnited States
| | - Citlali Perez Campos
- Kavli Institute for Brain Science, Columbia UniversityNew YorkUnited States
- Departments of Biomedical Engineering and Radiology, Columbia UniversityNew YorkUnited States
| | - Elizabeth MC Hillman
- Department of Neuroscience, Columbia UniversityNew YorkUnited States
- Kavli Institute for Brain Science, Columbia UniversityNew YorkUnited States
- Departments of Biomedical Engineering and Radiology, Columbia UniversityNew YorkUnited States
| | - Randy M Bruno
- Department of Neuroscience, Columbia UniversityNew YorkUnited States
- Kavli Institute for Brain Science, Columbia UniversityNew YorkUnited States
- Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
- Department of Physiology, Anatomy & Genetics, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
4
|
Senk J, Hagen E, van Albada SJ, Diesmann M. Reconciliation of weak pairwise spike-train correlations and highly coherent local field potentials across space. Cereb Cortex 2024; 34:bhae405. [PMID: 39462814 PMCID: PMC11513197 DOI: 10.1093/cercor/bhae405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Multi-electrode arrays covering several square millimeters of neural tissue provide simultaneous access to population signals such as extracellular potentials and spiking activity of one hundred or more individual neurons. The interpretation of the recorded data calls for multiscale computational models with corresponding spatial dimensions and signal predictions. Multi-layer spiking neuron network models of local cortical circuits covering about $1\,{\text{mm}^{2}}$ have been developed, integrating experimentally obtained neuron-type-specific connectivity data and reproducing features of observed in-vivo spiking statistics. Local field potentials can be computed from the simulated spiking activity. We here extend a local network and local field potential model to an area of $4\times 4\,{\text{mm}^{2}}$, preserving the neuron density and introducing distance-dependent connection probabilities and conduction delays. We find that the upscaling procedure preserves the overall spiking statistics of the original model and reproduces asynchronous irregular spiking across populations and weak pairwise spike-train correlations in agreement with experimental recordings from sensory cortex. Also compatible with experimental observations, the correlation of local field potential signals is strong and decays over a distance of several hundred micrometers. Enhanced spatial coherence in the low-gamma band around $50\,\text{Hz}$ may explain the recent report of an apparent band-pass filter effect in the spatial reach of the local field potential.
Collapse
Affiliation(s)
- Johanna Senk
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich, Germany
- Sussex AI, School of Engineering and Informatics, University of Sussex, Chichester, Falmer, Brighton BN1 9QJ, United Kingdom
| | - Espen Hagen
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich, Germany
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Ullevål Hospital, 0424 Oslo, Norway
| | - Sacha J van Albada
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich, Germany
- Institute of Zoology, University of Cologne, Zülpicher Str., 50674 Cologne, Germany
| | - Markus Diesmann
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich, Germany
- JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Pauwelsstr., 52074 Aachen, Germany
- Department of Physics, Faculty 1, RWTH Aachen University, Otto-Blumenthal-Str., 52074 Aachen, Germany
| |
Collapse
|
5
|
Hansel C, Yuste R. Neural ensembles: role of intrinsic excitability and its plasticity. Front Cell Neurosci 2024; 18:1440588. [PMID: 39144154 PMCID: PMC11322048 DOI: 10.3389/fncel.2024.1440588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Synaptic connectivity defines groups of neurons that engage in correlated activity during specific functional tasks. These co-active groups of neurons form ensembles, the operational units involved in, for example, sensory perception, motor coordination and memory (then called an engram). Traditionally, ensemble formation has been thought to occur via strengthening of synaptic connections via long-term potentiation (LTP) as a plasticity mechanism. This synaptic theory of memory arises from the learning rules formulated by Hebb and is consistent with many experimental observations. Here, we propose, as an alternative, that the intrinsic excitability of neurons and its plasticity constitute a second, non-synaptic mechanism that could be important for the initial formation of ensembles. Indeed, enhanced neural excitability is widely observed in multiple brain areas subsequent to behavioral learning. In cortical structures and the amygdala, excitability changes are often reported as transient, even though they can last tens of minutes to a few days. Perhaps it is for this reason that they have been traditionally considered as modulatory, merely supporting ensemble formation by facilitating LTP induction, without further involvement in memory function (memory allocation hypothesis). We here suggest-based on two lines of evidence-that beyond modulating LTP allocation, enhanced excitability plays a more fundamental role in learning. First, enhanced excitability constitutes a signature of active ensembles and, due to it, subthreshold synaptic connections become suprathreshold in the absence of synaptic plasticity (iceberg model). Second, enhanced excitability promotes the propagation of dendritic potentials toward the soma and allows for enhanced coupling of EPSP amplitude (LTP) to the spike output (and thus ensemble participation). This permissive gate model describes a need for permanently increased excitability, which seems at odds with its traditional consideration as a short-lived mechanism. We propose that longer modifications in excitability are made possible by a low threshold for intrinsic plasticity induction, suggesting that excitability might be on/off-modulated at short intervals. Consistent with this, in cerebellar Purkinje cells, excitability lasts days to weeks, which shows that in some circuits the duration of the phenomenon is not a limiting factor in the first place. In our model, synaptic plasticity defines the information content received by neurons through the connectivity network that they are embedded in. However, the plasticity of cell-autonomous excitability could dynamically regulate the ensemble participation of individual neurons as well as the overall activity state of an ensemble.
Collapse
Affiliation(s)
- Christian Hansel
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, IL, United States
| | - Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, United States
| |
Collapse
|
6
|
Regele-Blasco E, Palmer LM. The plasticity of pyramidal neurons in the behaving brain. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230231. [PMID: 38853566 PMCID: PMC11407500 DOI: 10.1098/rstb.2023.0231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/17/2024] [Accepted: 04/23/2024] [Indexed: 06/11/2024] Open
Abstract
Neurons are plastic. That is, they change their activity according to different behavioural conditions. This endows pyramidal neurons with an incredible computational power for the integration and processing of synaptic inputs. Plasticity can be investigated at different levels of investigation within a single neuron, from spines to dendrites, to synaptic input. Although most of our knowledge stems from the in vitro brain slice preparation, plasticity plays a vital role during behaviour by providing a flexible substrate for the execution of appropriate actions in our ever-changing environment. Owing to advances in recording techniques, the plasticity of neurons and the neural networks in which they are embedded is now beginning to be realized in the in vivo intact brain. This review focuses on the structural and functional synaptic plasticity of pyramidal neurons, with a specific focus on the latest developments from in vivo studies. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Elena Regele-Blasco
- The Florey Institute of Neuroscience and Mental Health, The Florey Department of Neuroscience and Mental Health, University of Melbourne, Victoria3052, Australia
| | - Lucy M. Palmer
- The Florey Institute of Neuroscience and Mental Health, The Florey Department of Neuroscience and Mental Health, University of Melbourne, Victoria3052, Australia
| |
Collapse
|
7
|
Verhellen J, Beshkov K, Amundsen S, Ness TV, Einevoll GT. Multitask learning of a biophysically-detailed neuron model. PLoS Comput Biol 2024; 20:e1011728. [PMID: 39083546 PMCID: PMC11318869 DOI: 10.1371/journal.pcbi.1011728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 08/12/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
The human brain operates at multiple levels, from molecules to circuits, and understanding these complex processes requires integrated research efforts. Simulating biophysically-detailed neuron models is a computationally expensive but effective method for studying local neural circuits. Recent innovations have shown that artificial neural networks (ANNs) can accurately predict the behavior of these detailed models in terms of spikes, electrical potentials, and optical readouts. While these methods have the potential to accelerate large network simulations by several orders of magnitude compared to conventional differential equation based modelling, they currently only predict voltage outputs for the soma or a select few neuron compartments. Our novel approach, based on enhanced state-of-the-art architectures for multitask learning (MTL), allows for the simultaneous prediction of membrane potentials in each compartment of a neuron model, at a speed of up to two orders of magnitude faster than classical simulation methods. By predicting all membrane potentials together, our approach not only allows for comparison of model output with a wider range of experimental recordings (patch-electrode, voltage-sensitive dye imaging), it also provides the first stepping stone towards predicting local field potentials (LFPs), electroencephalogram (EEG) signals, and magnetoencephalography (MEG) signals from ANN-based simulations. While LFP and EEG are an important downstream application, the main focus of this paper lies in predicting dendritic voltages within each compartment to capture the entire electrophysiology of a biophysically-detailed neuron model. It further presents a challenging benchmark for MTL architectures due to the large amount of data involved, the presence of correlations between neighbouring compartments, and the non-Gaussian distribution of membrane potentials.
Collapse
Affiliation(s)
| | - Kosio Beshkov
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Torbjørn V. Ness
- Department of Physics, Norwegian University of Life Sciences, Ås, Norway
| | - Gaute T. Einevoll
- Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Physics, Norwegian University of Life Sciences, Ås, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Mahon S. Variation and convergence in the morpho-functional properties of the mammalian neocortex. Front Syst Neurosci 2024; 18:1413780. [PMID: 38966330 PMCID: PMC11222651 DOI: 10.3389/fnsys.2024.1413780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Man's natural inclination to classify and hierarchize the living world has prompted neurophysiologists to explore possible differences in brain organisation between mammals, with the aim of understanding the diversity of their behavioural repertoires. But what really distinguishes the human brain from that of a platypus, an opossum or a rodent? In this review, we compare the structural and electrical properties of neocortical neurons in the main mammalian radiations and examine their impact on the functioning of the networks they form. We discuss variations in overall brain size, number of neurons, length of their dendritic trees and density of spines, acknowledging their increase in humans as in most large-brained species. Our comparative analysis also highlights a remarkable consistency, particularly pronounced in marsupial and placental mammals, in the cell typology, intrinsic and synaptic electrical properties of pyramidal neuron subtypes, and in their organisation into functional circuits. These shared cellular and network characteristics contribute to the emergence of strikingly similar large-scale physiological and pathological brain dynamics across a wide range of species. These findings support the existence of a core set of neural principles and processes conserved throughout mammalian evolution, from which a number of species-specific adaptations appear, likely allowing distinct functional needs to be met in a variety of environmental contexts.
Collapse
Affiliation(s)
- Séverine Mahon
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| |
Collapse
|
9
|
Buccino AP, Damart T, Bartram J, Mandge D, Xue X, Zbili M, Gänswein T, Jaquier A, Emmenegger V, Markram H, Hierlemann A, Van Geit W. A Multimodal Fitting Approach to Construct Single-Neuron Models With Patch Clamp and High-Density Microelectrode Arrays. Neural Comput 2024; 36:1286-1331. [PMID: 38776965 DOI: 10.1162/neco_a_01672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 02/20/2024] [Indexed: 05/25/2024]
Abstract
In computational neuroscience, multicompartment models are among the most biophysically realistic representations of single neurons. Constructing such models usually involves the use of the patch-clamp technique to record somatic voltage signals under different experimental conditions. The experimental data are then used to fit the many parameters of the model. While patching of the soma is currently the gold-standard approach to build multicompartment models, several studies have also evidenced a richness of dynamics in dendritic and axonal sections. Recording from the soma alone makes it hard to observe and correctly parameterize the activity of nonsomatic compartments. In order to provide a richer set of data as input to multicompartment models, we here investigate the combination of somatic patch-clamp recordings with recordings of high-density microelectrode arrays (HD-MEAs). HD-MEAs enable the observation of extracellular potentials and neural activity of neuronal compartments at subcellular resolution. In this work, we introduce a novel framework to combine patch-clamp and HD-MEA data to construct multicompartment models. We first validate our method on a ground-truth model with known parameters and show that the use of features extracted from extracellular signals, in addition to intracellular ones, yields models enabling better fits than using intracellular features alone. We also demonstrate our procedure using experimental data by constructing cell models from in vitro cell cultures. The proposed multimodal fitting procedure has the potential to augment the modeling efforts of the computational neuroscience community and provide the field with neuronal models that are more realistic and can be better validated.
Collapse
Affiliation(s)
- Alessio Paolo Buccino
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Tanguy Damart
- Blue Brain Project, École polytechnique fédérale de Lausanne, Campus Biotech, 1202 Geneva, Switzerland
| | - Julian Bartram
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Darshan Mandge
- Blue Brain Project, École polytechnique fédérale de Lausanne, Campus Biotech, 1202 Geneva, Switzerland
| | - Xiaohan Xue
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Mickael Zbili
- Blue Brain Project, École polytechnique fédérale de Lausanne, Campus Biotech, 1202 Geneva, Switzerland
| | - Tobias Gänswein
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Aurélien Jaquier
- Blue Brain Project, École polytechnique fédérale de Lausanne, Campus Biotech, 1202 Geneva, Switzerland
| | - Vishalini Emmenegger
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Henry Markram
- Blue Brain Project, École polytechnique fédérale de Lausanne, Campus Biotech, 1202 Geneva, Switzerland
| | - Andreas Hierlemann
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Werner Van Geit
- Blue Brain Project, École polytechnique fédérale de Lausanne, Campus Biotech, 1202 Geneva, Switzerland Present address: Foundation for Research on Information Technologies in Society (IT'IS), Zurich 8004, Switzerland
| |
Collapse
|
10
|
Granato A, Phillips WA, Schulz JM, Suzuki M, Larkum ME. Dysfunctions of cellular context-sensitivity in neurodevelopmental learning disabilities. Neurosci Biobehav Rev 2024; 161:105688. [PMID: 38670298 DOI: 10.1016/j.neubiorev.2024.105688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Pyramidal neurons have a pivotal role in the cognitive capabilities of neocortex. Though they have been predominantly modeled as integrate-and-fire point processors, many of them have another point of input integration in their apical dendrites that is central to mechanisms endowing them with the sensitivity to context that underlies basic cognitive capabilities. Here we review evidence implicating impairments of those mechanisms in three major neurodevelopmental disabilities, fragile X, Down syndrome, and fetal alcohol spectrum disorders. Multiple dysfunctions of the mechanisms by which pyramidal cells are sensitive to context are found to be implicated in all three syndromes. Further deciphering of these cellular mechanisms would lead to the understanding of and therapies for learning disabilities beyond any that are currently available.
Collapse
Affiliation(s)
- Alberto Granato
- Dept. of Veterinary Sciences. University of Turin, Grugliasco, Turin 10095, Italy.
| | - William A Phillips
- Psychology, Faculty of Natural Sciences, University of Stirling, Scotland FK9 4LA, UK
| | - Jan M Schulz
- Roche Pharma Research & Early Development, Neuroscience & Rare Diseases Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Mototaka Suzuki
- Dept. of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Matthew E Larkum
- Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Berlin 10117, Germany; Institute of Biology, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
11
|
Lin TF, Busch SE, Hansel C. Intrinsic and synaptic determinants of receptive field plasticity in Purkinje cells of the mouse cerebellum. Nat Commun 2024; 15:4645. [PMID: 38821918 PMCID: PMC11143328 DOI: 10.1038/s41467-024-48373-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 04/28/2024] [Indexed: 06/02/2024] Open
Abstract
Non-synaptic (intrinsic) plasticity of membrane excitability contributes to aspects of memory formation, but it remains unclear whether it merely facilitates synaptic long-term potentiation or plays a permissive role in determining the impact of synaptic weight increase. We use tactile stimulation and electrical activation of parallel fibers to probe intrinsic and synaptic contributions to receptive field plasticity in awake mice during two-photon calcium imaging of cerebellar Purkinje cells. Repetitive activation of both stimuli induced response potentiation that is impaired in mice with selective deficits in either synaptic or intrinsic plasticity. Spatial analysis of calcium signals demonstrated that intrinsic, but not synaptic plasticity, enhances the spread of dendritic parallel fiber response potentiation. Simultaneous dendrite and axon initial segment recordings confirm these dendritic events affect axonal output. Our findings support the hypothesis that intrinsic plasticity provides an amplification mechanism that exerts a permissive control over the impact of long-term potentiation on neuronal responsiveness.
Collapse
Affiliation(s)
- Ting-Feng Lin
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Silas E Busch
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Christian Hansel
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Mertens EJ, Leibner Y, Pie J, Galakhova AA, Waleboer F, Meijer J, Heistek TS, Wilbers R, Heyer D, Goriounova NA, Idema S, Verhoog MB, Kalmbach BE, Lee BR, Gwinn RP, Lein ES, Aronica E, Ting J, Mansvelder HD, Segev I, de Kock CPJ. Morpho-electric diversity of human hippocampal CA1 pyramidal neurons. Cell Rep 2024; 43:114100. [PMID: 38607921 PMCID: PMC11106460 DOI: 10.1016/j.celrep.2024.114100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/15/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Hippocampal pyramidal neuron activity underlies episodic memory and spatial navigation. Although extensively studied in rodents, extremely little is known about human hippocampal pyramidal neurons, even though the human hippocampus underwent strong evolutionary reorganization and shows lower theta rhythm frequencies. To test whether biophysical properties of human Cornu Amonis subfield 1 (CA1) pyramidal neurons can explain observed rhythms, we map the morpho-electric properties of individual CA1 pyramidal neurons in human, non-pathological hippocampal slices from neurosurgery. Human CA1 pyramidal neurons have much larger dendritic trees than mouse CA1 pyramidal neurons, have a large number of oblique dendrites, and resonate at 2.9 Hz, optimally tuned to human theta frequencies. Morphological and biophysical properties suggest cellular diversity along a multidimensional gradient rather than discrete clustering. Across the population, dendritic architecture and a large number of oblique dendrites consistently boost memory capacity in human CA1 pyramidal neurons by an order of magnitude compared to mouse CA1 pyramidal neurons.
Collapse
Affiliation(s)
- Eline J Mertens
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Yoni Leibner
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jean Pie
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Anna A Galakhova
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Femke Waleboer
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Julia Meijer
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Tim S Heistek
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - René Wilbers
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Djai Heyer
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Natalia A Goriounova
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Sander Idema
- Amsterdam UMC, location VUmc, Amsterdam 1081 HV, the Netherlands
| | - Matthijs B Verhoog
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | | | - Brian R Lee
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Ryder P Gwinn
- Epilepsy Surgery and Functional Neurosurgery, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Jonathan Ting
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Huibert D Mansvelder
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands.
| | - Idan Segev
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Christiaan P J de Kock
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands.
| |
Collapse
|
13
|
Theruveethi N. Impact of light-emitting diodes on visual cortex layer 5 pyramidal neurons (V1-L5PNs)-A rodent study. Mol Vis 2024; 30:67-73. [PMID: 38586606 PMCID: PMC10994679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/18/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose Light-induced neural retinal insult leads to alterations in the visual cortex neurons. We examined light-induced neuronal alterations in the visual cortex layer 5 pyramidal neurons (V1-L5PNs) of adult male Wistar rats. Methods A total of 24 rats were divided into the following groups (n=6 each): control (NC), blue (BL), white (WL), and yellow (YL). The exposure groups were subjected to light-emitting diodes (LED) exposure (450-500 lx) of differing wavelengths for 90 days (12:12 16 light-dark cycle). After LED exposure, the animals were sacrificed, and the brain tissues were removed and impregnated in freshly prepared Golgi-Cox stain for 21 days. Sholl's grading analysis was used to quantify the apical and basal dendritic branching points and intersections of the V1-L5PNs. Results There was a significant difference in the number of apical branching points among all groups (p<0.001), with a particularly notable difference between the BL and WL groups (p<0.001). A post hoc test revealed that all exposure groups (BL, WL, and YL) had fewer apical branching points (p<0.001) on an average of 3.6 µm and a significant reduction in the dendritic intersections (p<0.001) compared to the number of branching points extending from layer Va (V1) neurons. Conclusions Chronic and cumulative exposure to blue and white LEDs led to the pruning of V1-L5PNs, which might impair visual processing.
Collapse
Affiliation(s)
- Nagarajan Theruveethi
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India;
| |
Collapse
|
14
|
Kenwood MM, Souaiaia T, Kovner R, Fox AS, French DA, Oler JA, Roseboom PH, Riedel MK, Mueller SAL, Kalin NH. Gene expression in the primate orbitofrontal cortex related to anxious temperament. Proc Natl Acad Sci U S A 2023; 120:e2305775120. [PMID: 38011550 PMCID: PMC10710052 DOI: 10.1073/pnas.2305775120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/13/2023] [Indexed: 11/29/2023] Open
Abstract
Anxiety disorders are among the most prevalent psychiatric disorders, causing significant suffering and disability. Relative to other psychiatric disorders, anxiety disorders tend to emerge early in life, supporting the importance of developmental mechanisms in their emergence and maintenance. Behavioral inhibition (BI) is a temperament that emerges early in life and, when stable and extreme, is linked to an increased risk for the later development of anxiety disorders and other stress-related psychopathology. Understanding the neural systems and molecular mechanisms underlying this dispositional risk could provide insight into treatment targets for anxiety disorders. Nonhuman primates (NHPs) have an anxiety-related temperament, called anxious temperament (AT), that is remarkably similar to BI in humans, facilitating the design of highly translational models for studying the early risk for stress-related psychopathology. Because of the recent evolutionary divergence between humans and NHPs, many of the anxiety-related brain regions that contribute to psychopathology are highly similar in terms of their structure and function, particularly with respect to the prefrontal cortex. The orbitofrontal cortex plays a critical role in the flexible encoding and regulation of threat responses, in part through connections with subcortical structures like the amygdala. Here, we explore individual differences in the transcriptional profile of cells within the region, using laser capture microdissection and single nuclear sequencing, providing insight into the molecules underlying individual differences in AT-related function of the pOFC, with a particular focus on previously implicated cellular systems, including neurotrophins and glucocorticoid signaling.
Collapse
Affiliation(s)
- Margaux M. Kenwood
- Neuroscience Training Program, University of Wisconsin, Madison, WI53705
- Department of Psychiatry, University of Wisconsin, Madison, WI53719
| | - Tade Souaiaia
- Department of Cell Biology, State University of New York Downstate, New York, NY11228
| | - Rothem Kovner
- Yale School of Medicine, Yale University, New Haven, CT06510
| | - Andrew S. Fox
- Department of Psychology and California National Primate Research Center, University of California, Davis, CA95616
| | | | - Jonathan A. Oler
- Department of Psychiatry, University of Wisconsin, Madison, WI53719
| | | | | | | | - Ned H. Kalin
- Neuroscience Training Program, University of Wisconsin, Madison, WI53705
- Department of Psychiatry, University of Wisconsin, Madison, WI53719
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI53715
| |
Collapse
|
15
|
Friedenberger Z, Harkin E, Tóth K, Naud R. Silences, spikes and bursts: Three-part knot of the neural code. J Physiol 2023; 601:5165-5193. [PMID: 37889516 DOI: 10.1113/jp281510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
When a neuron breaks silence, it can emit action potentials in a number of patterns. Some responses are so sudden and intense that electrophysiologists felt the need to single them out, labelling action potentials emitted at a particularly high frequency with a metonym - bursts. Is there more to bursts than a figure of speech? After all, sudden bouts of high-frequency firing are expected to occur whenever inputs surge. The burst coding hypothesis advances that the neural code has three syllables: silences, spikes and bursts. We review evidence supporting this ternary code in terms of devoted mechanisms for burst generation, synaptic transmission and synaptic plasticity. We also review the learning and attention theories for which such a triad is beneficial.
Collapse
Affiliation(s)
- Zachary Friedenberger
- Brain and Mind Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Neural Dynamics and Artifical Intelligence, Department of Physics, University of Ottawa, Ottawa, Ontario, Ottawa
| | - Emerson Harkin
- Brain and Mind Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Katalin Tóth
- Brain and Mind Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Richard Naud
- Brain and Mind Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Neural Dynamics and Artifical Intelligence, Department of Physics, University of Ottawa, Ottawa, Ontario, Ottawa
| |
Collapse
|
16
|
Scherer JS, Sandbote K, Schultze BL, Kretzberg J. Synaptic input and temperature influence sensory coding in a mechanoreceptor. Front Cell Neurosci 2023; 17:1233730. [PMID: 37771930 PMCID: PMC10522859 DOI: 10.3389/fncel.2023.1233730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023] Open
Abstract
Many neurons possess more than one spike initiation zone (SIZ), which adds to their computational power and functional flexibility. Integrating inputs from different origins is especially relevant for sensory neurons that rely on relative spike timing for encoding sensory information. Yet, it is poorly understood if and how the propagation of spikes generated at one SIZ in response to sensory stimulation is affected by synaptic inputs triggering activity of other SIZ, and by environmental factors like temperature. The mechanosensory Touch (T) cell in the medicinal leech is an ideal model system to study these potential interactions because it allows intracellular recording and stimulation of its soma while simultaneously touching the skin in a body-wall preparation. The T cell reliably elicits spikes in response to somatic depolarization, as well as to tactile skin stimulation. Latencies of spikes elicited in the skin vary across cells, depending on the touch location relative to the cell's receptive field. However, repetitive stimulation reveals that tactilely elicited spikes are more precisely timed than spikes triggered by somatic current injection. When the soma is hyperpolarized to mimic inhibitory synaptic input, first spike latencies of tactilely induced spikes increase. If spikes from both SIZ follow shortly after each other, the arrival time of the second spike at the soma can be delayed. Although the latency of spikes increases by the same factor when the temperature decreases, the effect is considerably stronger for the longer absolute latencies of spikes propagating from the skin to the soma. We therefore conclude that the propagation time of spikes from the skin is modulated by internal factors like synaptic inputs, and by external factors like temperature. Moreover, fewer spikes are detected when spikes from both origins are expected to arrive at the soma in temporal proximity. Hence, the leech T cell might be a key for understanding how the interaction of multiple SIZ impacts temporal and rate coding of sensory information, and how cold-blooded animals can produce adequate behavioral responses to sensory stimuli based on temperature-dependent relative spike timing.
Collapse
Affiliation(s)
- Jens-Steffen Scherer
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Kevin Sandbote
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Bjarne L. Schultze
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Jutta Kretzberg
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
- Department of Neuroscience, Cluster of Excellence Hearing4all, Faculty VI, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
17
|
Lin TF, Busch SE, Hansel C. Intrinsic and synaptic determinants of receptive field plasticity in Purkinje cells of the mouse cerebellum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549760. [PMID: 37502848 PMCID: PMC10370111 DOI: 10.1101/2023.07.19.549760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Non-synaptic ('intrinsic') plasticity of membrane excitability contributes to aspects of memory formation, but it remains unclear whether it merely facilitates synaptic long-term potentiation (LTP), or whether it plays a permissive role in determining the impact of synaptic weight increase. We use tactile stimulation and electrical activation of parallel fibers to probe intrinsic and synaptic contributions to receptive field (RF) plasticity in awake mice during two-photon calcium imaging of cerebellar Purkinje cells. Repetitive activation of both stimuli induced response potentiation that is impaired in mice with selective deficits in either intrinsic plasticity (SK2 KO) or LTP (CaMKII TT305/6VA). Intrinsic, but not synaptic, plasticity expands the local, dendritic RF representation. Simultaneous dendrite and axon initial segment recordings confirm that these dendritic events affect axonal output. Our findings support the hypothesis that intrinsic plasticity provides an amplification mechanism that exerts a permissive control over the impact of LTP on neuronal responsiveness.
Collapse
Affiliation(s)
- Ting-Feng Lin
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Silas E Busch
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Christian Hansel
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
18
|
Shu Y, Hasenstaub A, McCormick DA. The h-current controls cortical recurrent network activity through modulation of dendrosomatic communication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548753. [PMID: 37502942 PMCID: PMC10370005 DOI: 10.1101/2023.07.12.548753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A fundamental feature of the cerebral cortex is the ability to rapidly turn on and off maintained activity within ensembles of neurons through recurrent excitation balanced by inhibition. Here we demonstrate that reduction of the h-current, which is especially prominent in pyramidal cell dendrites, strongly increases the ability of local cortical networks to generate maintained recurrent activity. Reduction of the h-current resulted in hyperpolarization and increase in input resistance of both the somata and apical dendrites of layer 5 pyramidal cells, while strongly increasing the dendrosomatic transfer of low (<20 Hz) frequencies, causing an increased responsiveness to dynamic clamp-induced recurrent network-like activity injected into the dendrites and substantially increasing the duration of spontaneous Up states. We propose that modulation of the h-current may strongly control the ability of cortical networks to generate recurrent persistent activity and the formation and dissolution of neuronal ensembles.
Collapse
Affiliation(s)
- Yousheng Shu
- The Fudan University Fenglin Campus, 131 Dong’an Road, Xuhui District, Shanghai
| | - Andrea Hasenstaub
- Department of Otolaryngology-Head and Neck Surgery (OHNS), University of California, San Francisco, 675 Nelson Rising Lane, #514B, San Francisco CA 94158
| | - David A. McCormick
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510; Institute of Neuroscience, University of Oregon, Eugene, OR 97403
| |
Collapse
|
19
|
Gillon CJ, Lecoq JA, Pina JE, Ahmed R, Billeh YN, Caldejon S, Groblewski P, Henley TM, Kato I, Lee E, Luviano J, Mace K, Nayan C, Nguyen TV, North K, Perkins J, Seid S, Valley MT, Williford A, Bengio Y, Lillicrap TP, Zylberberg J, Richards BA. Responses of pyramidal cell somata and apical dendrites in mouse visual cortex over multiple days. Sci Data 2023; 10:287. [PMID: 37198203 DOI: 10.1038/s41597-023-02214-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
The apical dendrites of pyramidal neurons in sensory cortex receive primarily top-down signals from associative and motor regions, while cell bodies and nearby dendrites are heavily targeted by locally recurrent or bottom-up inputs from the sensory periphery. Based on these differences, a number of theories in computational neuroscience postulate a unique role for apical dendrites in learning. However, due to technical challenges in data collection, little data is available for comparing the responses of apical dendrites to cell bodies over multiple days. Here we present a dataset collected through the Allen Institute Mindscope's OpenScope program that addresses this need. This dataset comprises high-quality two-photon calcium imaging from the apical dendrites and the cell bodies of visual cortical pyramidal neurons, acquired over multiple days in awake, behaving mice that were presented with visual stimuli. Many of the cell bodies and dendrite segments were tracked over days, enabling analyses of how their responses change over time. This dataset allows neuroscientists to explore the differences between apical and somatic processing and plasticity.
Collapse
Affiliation(s)
- Colleen J Gillon
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Mila, Montréal, Québec, Canada
| | | | - Jason E Pina
- Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
- Centre for Vision Research, York University, Toronto, Ontario, Canada
| | - Ruweida Ahmed
- Allen Institute, MindScope Program, Seattle, WA, USA
| | | | | | | | - Timothy M Henley
- Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
- Centre for Vision Research, York University, Toronto, Ontario, Canada
| | - India Kato
- Allen Institute, MindScope Program, Seattle, WA, USA
| | - Eric Lee
- Allen Institute, MindScope Program, Seattle, WA, USA
| | | | - Kyla Mace
- Allen Institute, MindScope Program, Seattle, WA, USA
| | - Chelsea Nayan
- Allen Institute, MindScope Program, Seattle, WA, USA
| | | | - Kat North
- Allen Institute, MindScope Program, Seattle, WA, USA
| | - Jed Perkins
- Allen Institute, MindScope Program, Seattle, WA, USA
| | - Sam Seid
- Allen Institute, MindScope Program, Seattle, WA, USA
| | | | - Ali Williford
- Allen Institute, MindScope Program, Seattle, WA, USA
| | - Yoshua Bengio
- Mila, Montréal, Québec, Canada
- Département d'informatique et de recherche opérationnelle, Université de Montréal, Montréal, Québec, Canada
- Learning in Machines and Brains Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Timothy P Lillicrap
- DeepMind, Inc, London, UK
- Centre for Computation, Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, UK
| | - Joel Zylberberg
- Department of Physics and Astronomy, York University, Toronto, Ontario, Canada.
- Centre for Vision Research, York University, Toronto, Ontario, Canada.
- Learning in Machines and Brains Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada.
- Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada.
| | - Blake A Richards
- Mila, Montréal, Québec, Canada.
- Learning in Machines and Brains Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada.
- School of Computer Science, McGill University, Montréal, Québec, Canada.
- Department of Neurology & Neurosurgery, McGill University, Montréal, Québec, Canada.
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
20
|
Moore JJ, Rashid SK, Johnson CD, Codrington N, Chklovskii DB, Basu J. Sub-cellular population imaging tools reveal stable apical dendrites in hippocampal area CA3. RESEARCH SQUARE 2023:rs.3.rs-2733660. [PMID: 37131789 PMCID: PMC10153397 DOI: 10.21203/rs.3.rs-2733660/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Anatomically segregated apical and basal dendrites of pyramidal neurons receive functionally distinct inputs, but it is unknown if this results in compartment-level functional diversity during behavior. Here we imaged calcium signals from apical dendrites, soma, and basal dendrites of pyramidal neurons in area CA3 of mouse hippocampus during head-fixed navigation. To examine dendritic population activity, we developed computational tools to identify dendritic regions of interest and extract accurate fluorescence traces. We identified robust spatial tuning in apical and basal dendrites, similar to soma, though basal dendrites had reduced activity rates and place field widths. Across days, apical dendrites were more stable than soma or basal dendrites, resulting in better decoding of the animal's position. These population-level dendritic differences may reflect functionally distinct input streams leading to different dendritic computations in CA3. These tools will facilitate future studies of signal transformations between cellular compartments and their relation to behavior.
Collapse
Affiliation(s)
- Jason J Moore
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
- Center for Computational Neuroscience, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Shannon K Rashid
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Cara D. Johnson
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Naomi Codrington
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Dmitri B Chklovskii
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
- Center for Computational Neuroscience, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Jayeeta Basu
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
| |
Collapse
|
21
|
Higher-order thalamic nuclei facilitate the generalization and maintenance of spike-and-wave discharges of absence seizures. Neurobiol Dis 2023; 178:106025. [PMID: 36731682 DOI: 10.1016/j.nbd.2023.106025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/12/2023] [Accepted: 01/29/2023] [Indexed: 02/03/2023] Open
Abstract
Spike-and-wave discharges (SWDs), generated by the cortico-thalamo-cortical (CTC) network, are pathological, large amplitude oscillations and the hallmark of absence seizures (ASs). SWDs begin in a cortical initiation network in both humans and animal models, including the Genetic Absence Epilepsy Rats from Strasbourg (GAERS), where it is located in the primary somatosensory cortex (S1). The behavioral manifestation of an AS occurs when SWDs spread from the cortical initiation site to the whole brain, however, the mechanisms behind this rapid propagation remain unclear. Here we investigated these processes beyond the principal CTC network, in higher-order (HO) thalamic nuclei (lateral posterior (LP) and posterior (PO) nuclei) since their diffuse connectivity and known facilitation of intracortical communications make these nuclei key candidates to support SWD generation and maintenance. In freely moving GAERS, multi-site LFP in LP, PO and multiple cortical regions revealed a novel feature of SWDs: during SWDs there are short periods (named SWD-breaks) when cortical regions far from S1, such the primary visual cortex (V1), become transiently unsynchronized from the ongoing EEG rhythm. Inactivation of HO nuclei with local muscimol injections or optogenetic perturbation of HO nuclei activity increased the occurrence of SWD-breaks and the former intervention also increased the SWD propagation-time from S1. The neural underpinnings of these findings were explored further by silicon probe recordings from single units of PO which uncovered two previously unknown groups of excitatory neurons based on their burst firing dynamics at SWD onset. Moreover, a switch from tonic to burst firing at SWD onset was shown to be an important feature since it was much less prominent for non-generalized events, i.e. SWDs that remained local to S1. Additionally, one group of neurons showed a reverse of this switch during SWD-breaks, demonstrating the importance of this firing pattern throughout the SWD. In summary, these results support the view that multiple HO thalamic nuclei are utilized at SWD onset and contribute to cortical synchrony throughout the paroxysmal discharge.
Collapse
|
22
|
Smirnov IV, Malyshev AY. Paired optogenetic and visual stimulation can change the orientation selectivity of visual cortex neurons. Biochem Biophys Res Commun 2023; 646:63-69. [PMID: 36706707 DOI: 10.1016/j.bbrc.2023.01.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Synaptic plasticity is currently considered the main mechanism underlying the plastic modification of neural networks. The vast majority of studies of synaptic plasticity are carried out on reduced preparations, but the situation in vivo is fundamentally different from that in vitro. In this work, we used the Hebbian paradigm, which is known to induce long-term changes in synaptic strength in vitro, to manipulate the properties of a single pyramidal neuron in the mouse visual cortex. We have shown that optogenetic stimulation of a ChR2-expressing pyramidal neuron in the primary visual cortex of Thy-ChR2 mice paired with the presentation of a visual stimulus of non-optimal orientation induces long-term changes in the properties of the receptive field, manifested in alteration of the orientation selectivity of the cell. Non-paired stimulation did not lead to changes in the properties of the receptive field of the neuron during the experiment. Thus, we have demonstrated the role of associative plasticity in the dynamic organization of the receptive fields of neurons in the visual cortex.
Collapse
Affiliation(s)
- Ivan V Smirnov
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, 117485, Russia
| | - Alexey Y Malyshev
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, 117485, Russia.
| |
Collapse
|
23
|
Traub RD, Whittington MA. Processing of cell assemblies in the lateral entorhinal cortex. Rev Neurosci 2022; 33:829-847. [PMID: 35447022 DOI: 10.1515/revneuro-2022-0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022]
Abstract
There is evidence that olfactory cortex responds to its afferent input with the generation of cell assemblies: collections of principal neurons that fire together over a time scale of tens of ms. If such assemblies form an odor representation, then a fundamental question is how each assembly then induces neuronal activity in downstream structures. We have addressed this question in a detailed model of superficial layers of lateral entorhinal cortex, a recipient of input from olfactory cortex and olfactory bulb. Our results predict that the response of the fan cell subpopulation can be approximated by a relatively simple Boolean process, somewhat along the lines of the McCulloch/Pitts scheme; this is the case because of the sparsity of recurrent excitation amongst fan cells. However, because of recurrent excitatory connections between layer 2 and layer 3 pyramidal cells, synaptic and probably also gap junctional, the response of pyramidal cell subnetworks cannot be so approximated. Because of the highly structured anatomy of entorhinal output projections, our model suggests that downstream targets of entorhinal cortex (dentate gyrus, hippocampal CA3, CA1, piriform cortex, olfactory bulb) receive differentially processed information.
Collapse
Affiliation(s)
- Roger D Traub
- AI Foundations, IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA.,Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
24
|
Hagen E, Magnusson SH, Ness TV, Halnes G, Babu PN, Linssen C, Morrison A, Einevoll GT. Brain signal predictions from multi-scale networks using a linearized framework. PLoS Comput Biol 2022; 18:e1010353. [PMID: 35960767 PMCID: PMC9401172 DOI: 10.1371/journal.pcbi.1010353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/24/2022] [Accepted: 07/02/2022] [Indexed: 12/04/2022] Open
Abstract
Simulations of neural activity at different levels of detail are ubiquitous in modern neurosciences, aiding the interpretation of experimental data and underlying neural mechanisms at the level of cells and circuits. Extracellular measurements of brain signals reflecting transmembrane currents throughout the neural tissue remain commonplace. The lower frequencies (≲ 300Hz) of measured signals generally stem from synaptic activity driven by recurrent interactions among neural populations and computational models should also incorporate accurate predictions of such signals. Due to limited computational resources, large-scale neuronal network models (≳ 106 neurons or so) often require reducing the level of biophysical detail and account mainly for times of action potentials (‘spikes’) or spike rates. Corresponding extracellular signal predictions have thus poorly accounted for their biophysical origin. Here we propose a computational framework for predicting spatiotemporal filter kernels for such extracellular signals stemming from synaptic activity, accounting for the biophysics of neurons, populations, and recurrent connections. Signals are obtained by convolving population spike rates by appropriate kernels for each connection pathway and summing the contributions. Our main results are that kernels derived via linearized synapse and membrane dynamics, distributions of cells, conduction delay, and volume conductor model allow for accurately capturing the spatiotemporal dynamics of ground truth extracellular signals from conductance-based multicompartment neuron networks. One particular observation is that changes in the effective membrane time constants caused by persistent synapse activation must be accounted for. The work also constitutes a major advance in computational efficiency of accurate, biophysics-based signal predictions from large-scale spike and rate-based neuron network models drastically reducing signal prediction times compared to biophysically detailed network models. This work also provides insight into how experimentally recorded low-frequency extracellular signals of neuronal activity may be approximately linearly dependent on spiking activity. A new software tool LFPykernels serves as a reference implementation of the framework. Understanding the brain’s function and activity in healthy and pathological states across spatial scales and times spanning entire lives is one of humanity’s great undertakings. In experimental and clinical work probing the brain’s activity, a variety of electric and magnetic measurement techniques are routinely applied. However interpreting the extracellularly measured signals remains arduous due to multiple factors, mainly the large number of neurons contributing to the signals and complex interactions occurring in recurrently connected neuronal circuits. To understand how neurons give rise to such signals, mechanistic modeling combined with forward models derived using volume conductor theory has proven to be successful, but this approach currently does not scale to the systems level (encompassing millions of neurons or more) where simplified or abstract neuron representations typically are used. Motivated by experimental findings implying approximately linear relationships between times of neuronal action potentials and extracellular population signals, we provide a biophysics-based method for computing causal filters relating spikes and extracellular signals that can be applied with spike times or rates of large-scale neuronal network models for predictions of population signals without relying on ad hoc approximations.
Collapse
Affiliation(s)
- Espen Hagen
- Department of Data Science, Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
- * E-mail: (EH); (GTE)
| | - Steinn H. Magnusson
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Torbjørn V. Ness
- Department of Physics, Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Geir Halnes
- Department of Physics, Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Pooja N. Babu
- Simulation & Data Lab Neuroscience, Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC), Jülich Research Centre, Jülich, Germany
| | - Charl Linssen
- Simulation & Data Lab Neuroscience, Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC), Jülich Research Centre, Jülich, Germany
- Institute of Neuroscience and Medicine (INM-6); Computational and Systems Neuroscience & Institute for Advanced Simulation (IAS-6); Theoretical Neuroscience & JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre and JARA, Jülich, Germany
| | - Abigail Morrison
- Simulation & Data Lab Neuroscience, Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC), Jülich Research Centre, Jülich, Germany
- Institute of Neuroscience and Medicine (INM-6); Computational and Systems Neuroscience & Institute for Advanced Simulation (IAS-6); Theoretical Neuroscience & JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre and JARA, Jülich, Germany
- Software Engineering, Department of Computer Science 3, RWTH Aachen University, Aachen, Germany
| | - Gaute T. Einevoll
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Physics, Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
- * E-mail: (EH); (GTE)
| |
Collapse
|
25
|
Siebner HR, Funke K, Aberra AS, Antal A, Bestmann S, Chen R, Classen J, Davare M, Di Lazzaro V, Fox PT, Hallett M, Karabanov AN, Kesselheim J, Beck MM, Koch G, Liebetanz D, Meunier S, Miniussi C, Paulus W, Peterchev AV, Popa T, Ridding MC, Thielscher A, Ziemann U, Rothwell JC, Ugawa Y. Transcranial magnetic stimulation of the brain: What is stimulated? - A consensus and critical position paper. Clin Neurophysiol 2022; 140:59-97. [PMID: 35738037 PMCID: PMC9753778 DOI: 10.1016/j.clinph.2022.04.022] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 03/14/2022] [Accepted: 04/15/2022] [Indexed: 12/11/2022]
Abstract
Transcranial (electro)magnetic stimulation (TMS) is currently the method of choice to non-invasively induce neural activity in the human brain. A single transcranial stimulus induces a time-varying electric field in the brain that may evoke action potentials in cortical neurons. The spatial relationship between the locally induced electric field and the stimulated neurons determines axonal depolarization. The induced electric field is influenced by the conductive properties of the tissue compartments and is strongest in the superficial parts of the targeted cortical gyri and underlying white matter. TMS likely targets axons of both excitatory and inhibitory neurons. The propensity of individual axons to fire an action potential in response to TMS depends on their geometry, myelination and spatial relation to the imposed electric field and the physiological state of the neuron. The latter is determined by its transsynaptic dendritic and somatic inputs, intrinsic membrane potential and firing rate. Modeling work suggests that the primary target of TMS is axonal terminals in the crown top and lip regions of cortical gyri. The induced electric field may additionally excite bends of myelinated axons in the juxtacortical white matter below the gyral crown. Neuronal excitation spreads ortho- and antidromically along the stimulated axons and causes secondary excitation of connected neuronal populations within local intracortical microcircuits in the target area. Axonal and transsynaptic spread of excitation also occurs along cortico-cortical and cortico-subcortical connections, impacting on neuronal activity in the targeted network. Both local and remote neural excitation depend critically on the functional state of the stimulated target area and network. TMS also causes substantial direct co-stimulation of the peripheral nervous system. Peripheral co-excitation propagates centrally in auditory and somatosensory networks, but also produces brain responses in other networks subserving multisensory integration, orienting or arousal. The complexity of the response to TMS warrants cautious interpretation of its physiological and behavioural consequences, and a deeper understanding of the mechanistic underpinnings of TMS will be critical for advancing it as a scientific and therapeutic tool.
Collapse
Affiliation(s)
- Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Klaus Funke
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Aman S Aberra
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Sven Bestmann
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Robert Chen
- Krembil Brain Institute, University Health Network and Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Marco Davare
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Anke N Karabanov
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Nutrition and Exercise, University of Copenhagen, Copenhagen, Denmark
| | - Janine Kesselheim
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Mikkel M Beck
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Non-invasive Brain Stimulation Unit, Laboratorio di NeurologiaClinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - David Liebetanz
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Sabine Meunier
- Sorbonne Université, Faculté de Médecine, INSERM U 1127, CNRS 4 UMR 7225, Institut du Cerveau, F-75013, Paris, France
| | - Carlo Miniussi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy; Cognitive Neuroscience Section, IRCCS Centro San Giovanni di DioFatebenefratelli, Brescia, Italy
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Angel V Peterchev
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Psychiatry & Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA; Department of Electrical & Computer Engineering, Duke University, Durham, NC, USA; Department of Neurosurgery, School of Medicine, Duke University, Durham, NC, USA
| | - Traian Popa
- Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Michael C Ridding
- University of South Australia, IIMPACT in Health, Adelaide, Australia
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ulf Ziemann
- Department of Neurology & Stroke, University Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Yoshikazu Ugawa
- Department of Neurology, Fukushima Medical University, Fukushima, Japan; Fukushima Global Medical Science Centre, Advanced Clinical Research Centre, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
26
|
Medalla M, Chang W, Ibañez S, Guillamon-Vivancos T, Nittmann M, Kapitonava A, Busch SE, Moore TL, Rosene DL, Luebke JI. Layer-specific pyramidal neuron properties underlie diverse anterior cingulate cortical motor and limbic networks. Cereb Cortex 2022; 32:2170-2196. [PMID: 34613380 PMCID: PMC9113240 DOI: 10.1093/cercor/bhab347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
The laminar cellular and circuit mechanisms by which the anterior cingulate cortex (ACC) exerts flexible control of motor and affective information for goal-directed behavior have not been elucidated. Using multimodal tract-tracing, in vitro patch-clamp recording and computational approaches in rhesus monkeys (M. mulatta), we provide evidence that specialized motor and affective network dynamics can be conferred by layer-specific biophysical and structural properties of ACC pyramidal neurons targeting two key downstream structures -the dorsal premotor cortex (PMd) and the amygdala (AMY). AMY-targeting neurons exhibited significant laminar differences, with L5 more excitable (higher input resistance and action potential firing rates) than L3 neurons. Between-pathway differences were found within L5, with AMY-targeting neurons exhibiting greater excitability, apical dendritic complexity, spine densities, and diversity of inhibitory inputs than PMd-targeting neurons. Simulations using a pyramidal-interneuron network model predict that these layer- and pathway-specific single-cell differences contribute to distinct network oscillatory dynamics. L5 AMY-targeting networks are more tuned to slow oscillations well-suited for affective and contextual processing timescales, while PMd-targeting networks showed strong beta/gamma synchrony implicated in rapid sensorimotor processing. These findings are fundamental to our broad understanding of how layer-specific cellular and circuit properties can drive diverse laminar activity found in flexible behavior.
Collapse
Affiliation(s)
- Maria Medalla
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Wayne Chang
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Sara Ibañez
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Teresa Guillamon-Vivancos
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Instituto de Neurociencias de Alicante, Alicante, Spain
| | - Mathias Nittmann
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- University of South Florida, Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Anastasia Kapitonava
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Silas E Busch
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | - Tara L Moore
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Douglas L Rosene
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Jennifer I Luebke
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
27
|
Almeida VN. The neural hierarchy of consciousness. Neuropsychologia 2022; 169:108202. [PMID: 35271856 DOI: 10.1016/j.neuropsychologia.2022.108202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 01/08/2023]
Abstract
The chief undertaking in the studies of consciousness is that of unravelling "the minimal set of neural processes that are together sufficient for the conscious experience of a particular content - the neural correlates of consciousness". To this day, this crusade remains at an impasse, with a clash of two main theories: consciousness may arise either in a graded and cortically-localised fashion, or in an all-or-none and widespread one. In spite of the long-lasting theoretical debates, neurophysiological theories of consciousness have been mostly dissociated from them. Herein, a theoretical review will be put forth with the aim to change that. In its first half, we will cover the hard available evidence on the neurophysiology of consciousness, whereas in its second half we will weave a series of considerations on both theories and substantiate a novel take on conscious awareness: the levels of processing approach, partitioning the conscious architecture into lower- and higher-order, graded and nonlinear.
Collapse
Affiliation(s)
- Victor N Almeida
- Faculdade de Letras, Universidade Federal de Minas Gerais (UFMG), Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
28
|
Larkum M. Are dendrites conceptually useful? Neuroscience 2022; 489:4-14. [DOI: 10.1016/j.neuroscience.2022.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 02/10/2022] [Accepted: 03/05/2022] [Indexed: 12/13/2022]
|
29
|
Larkum ME, Wu J, Duverdin SA, Gidon A. The guide to dendritic spikes of the mammalian cortex in vitro and in vivo. Neuroscience 2022; 489:15-33. [PMID: 35182699 DOI: 10.1016/j.neuroscience.2022.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 12/23/2022]
Abstract
Half a century since their discovery by Llinás and colleagues, dendritic spikes have been observed in various neurons in different brain regions, from the neocortex and cerebellum to the basal ganglia. Dendrites exhibit a terrifically diverse but stereotypical repertoire of spikes, sometimes specific to subregions of the dendrite. Despite their prevalence, we only have a glimpse into their role in the behaving animal. This article aims to survey the full range of dendritic spikes found in excitatory and inhibitory neurons, compare them in vivo versus in vitro, and discuss new studies describing dendritic spikes in the human cortex. We focus on dendritic spikes in neocortical and hippocampal neurons and present a roadmap to identify and understand the broader role of dendritic spikes in single-cell computation.
Collapse
Affiliation(s)
- Matthew E Larkum
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany; NeuroCure Cluster, Charité - Universitätsmedizin Berlin, Germany
| | - Jiameng Wu
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Sarah A Duverdin
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany; Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Albert Gidon
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
30
|
Beaulieu-Laroche L, Brown NJ, Hansen M, Toloza EHS, Sharma J, Williams ZM, Frosch MP, Cosgrove GR, Cash SS, Harnett MT. Allometric rules for mammalian cortical layer 5 neuron biophysics. Nature 2021; 600:274-278. [PMID: 34759318 DOI: 10.1038/s41586-021-04072-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/29/2021] [Indexed: 11/09/2022]
Abstract
The biophysical properties of neurons are the foundation for computation in the brain. Neuronal size is a key determinant of single neuron input-output features and varies substantially across species1-3. However, it is unknown whether different species adapt neuronal properties to conserve how single neurons process information4-7. Here we characterize layer 5 cortical pyramidal neurons across 10 mammalian species to identify the allometric relationships that govern how neuronal biophysics change with cell size. In 9 of the 10 species, we observe conserved rules that control the conductance of voltage-gated potassium and HCN channels. Species with larger neurons, and therefore a decreased surface-to-volume ratio, exhibit higher membrane ionic conductances. This relationship produces a conserved conductance per unit brain volume. These size-dependent rules result in large but predictable changes in somatic and dendritic integrative properties. Human neurons do not follow these allometric relationships, exhibiting much lower voltage-gated potassium and HCN conductances. Together, our results in layer 5 neurons identify conserved evolutionary principles for neuronal biophysics in mammals as well as notable features of the human cortex.
Collapse
Affiliation(s)
- Lou Beaulieu-Laroche
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Norma J Brown
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marissa Hansen
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Enrique H S Toloza
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Jitendra Sharma
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.,Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ziv M Williams
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew P Frosch
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Sydney S Cash
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Mark T Harnett
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
31
|
Ahmadian Y, Miller KD. What is the dynamical regime of cerebral cortex? Neuron 2021; 109:3373-3391. [PMID: 34464597 PMCID: PMC9129095 DOI: 10.1016/j.neuron.2021.07.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 07/05/2021] [Accepted: 07/30/2021] [Indexed: 01/13/2023]
Abstract
Many studies have shown that the excitation and inhibition received by cortical neurons remain roughly balanced across many conditions. A key question for understanding the dynamical regime of cortex is the nature of this balancing. Theorists have shown that network dynamics can yield systematic cancellation of most of a neuron's excitatory input by inhibition. We review a wide range of evidence pointing to this cancellation occurring in a regime in which the balance is loose, meaning that the net input remaining after cancellation of excitation and inhibition is comparable in size with the factors that cancel, rather than tight, meaning that the net input is very small relative to the canceling factors. This choice of regime has important implications for cortical functional responses, as we describe: loose balance, but not tight balance, can yield many nonlinear population behaviors seen in sensory cortical neurons, allow the presence of correlated variability, and yield decrease of that variability with increasing external stimulus drive as observed across multiple cortical areas.
Collapse
Affiliation(s)
- Yashar Ahmadian
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK.
| | - Kenneth D Miller
- Center for Theoretical Neuroscience, Swartz Program in Theoretical Neuroscience, Kavli Institute for Brain Science, and Department of Neuroscience, College of Physicians and Surgeons and Morton B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
32
|
Leleo EG, Segev I. Burst control: Synaptic conditions for burst generation in cortical layer 5 pyramidal neurons. PLoS Comput Biol 2021; 17:e1009558. [PMID: 34727124 PMCID: PMC8589150 DOI: 10.1371/journal.pcbi.1009558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 11/12/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022] Open
Abstract
The output of neocortical layer 5 pyramidal cells (L5PCs) is expressed by a train of single spikes with intermittent bursts of multiple spikes at high frequencies. The bursts are the result of nonlinear dendritic properties, including Na+, Ca2+, and NMDA spikes, that interact with the ~10,000 synapses impinging on the neuron's dendrites. Output spike bursts are thought to implement key dendritic computations, such as coincidence detection of bottom-up inputs (arriving mostly at the basal tree) and top-down inputs (arriving mostly at the apical tree). In this study we used a detailed nonlinear model of L5PC receiving excitatory and inhibitory synaptic inputs to explore the conditions for generating bursts and for modulating their properties. We established the excitatory input conditions on the basal versus the apical tree that favor burst and show that there are two distinct types of bursts. Bursts consisting of 3 or more spikes firing at < 200 Hz, which are generated by stronger excitatory input to the basal versus the apical tree, and bursts of ~2-spikes at ~250 Hz, generated by prominent apical tuft excitation. Localized and well-timed dendritic inhibition on the apical tree differentially modulates Na+, Ca2+, and NMDA spikes and, consequently, finely controls the burst output. Finally, we explored the implications of different burst classes and respective dendritic inhibition for regulating synaptic plasticity.
Collapse
Affiliation(s)
- Eilam Goldenberg Leleo
- The Edmond and Lily Safra Center for Brain Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Idan Segev
- The Edmond and Lily Safra Center for Brain Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, the Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
33
|
Marvan T, Polák M, Bachmann T, Phillips WA. Apical amplification-a cellular mechanism of conscious perception? Neurosci Conscious 2021; 2021:niab036. [PMID: 34650815 PMCID: PMC8511476 DOI: 10.1093/nc/niab036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/09/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
We present a theoretical view of the cellular foundations for network-level processes involved in producing our conscious experience. Inputs to apical synapses in layer 1 of a large subset of neocortical cells are summed at an integration zone near the top of their apical trunk. These inputs come from diverse sources and provide a context within which the transmission of information abstracted from sensory input to their basal and perisomatic synapses can be amplified when relevant. We argue that apical amplification enables conscious perceptual experience and makes it more flexible, and thus more adaptive, by being sensitive to context. Apical amplification provides a possible mechanism for recurrent processing theory that avoids strong loops. It makes the broadcasting hypothesized by global neuronal workspace theories feasible while preserving the distinct contributions of the individual cells receiving the broadcast. It also provides mechanisms that contribute to the holistic aspects of integrated information theory. As apical amplification is highly dependent on cholinergic, aminergic, and other neuromodulators, it relates the specific contents of conscious experience to global mental states and to fluctuations in arousal when awake. We conclude that apical dendrites provide a cellular mechanism for the context-sensitive selective amplification that is a cardinal prerequisite of conscious perception.
Collapse
Affiliation(s)
- Tomáš Marvan
- Department of Analytic Philosophy, Institute of Philosophy, Czech Academy of Sciences, Jilská 1, Prague 110 00, Czech Republic
| | - Michal Polák
- Department of Philosophy, University of West Bohemia, Sedláčkova 19, Pilsen 306 14, Czech Republic
| | - Talis Bachmann
- School of Law and Cognitive Neuroscience Laboratory, University of Tartu (Tallinn branch), Kaarli pst 3, Tallinn 10119, Estonia
| | - William A Phillips
- Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
34
|
Kaiser J, Billaudelle S, Müller E, Tetzlaff C, Schemmel J, Schmitt S. EMULATING DENDRITIC COMPUTING PARADIGMS ON ANALOG NEUROMORPHIC HARDWARE. Neuroscience 2021; 489:290-300. [PMID: 34428499 DOI: 10.1016/j.neuroscience.2021.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
BrainScaleS-2 is an accelerated and highly configurable neuromorphic system with physical models of neurons and synapses. Beyond networks of spiking point neurons, it allows for the implementation of user-defined neuron morphologies. Both passive propagation of electric signals between compartments as well as dendritic spikes and plateau potentials can be emulated. In this paper, three multi-compartment neuron morphologies are chosen to demonstrate passive propagation of postsynaptic potentials, spatio-temporal coincidence detection of synaptic inputs in a dendritic branch, and the replication of the BAC burst firing mechanism found in layer 5 pyramidal neurons of the neocortex.
Collapse
Affiliation(s)
- Jakob Kaiser
- Heidelberg University, Kirchhoff-Institute for Physics, Germany
| | | | - Eric Müller
- Heidelberg University, Kirchhoff-Institute for Physics, Germany
| | | | | | | |
Collapse
|
35
|
Francioni V, Harnett MT. Rethinking Single Neuron Electrical Compartmentalization: Dendritic Contributions to Network Computation In Vivo. Neuroscience 2021; 489:185-199. [PMID: 34116137 DOI: 10.1016/j.neuroscience.2021.05.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/11/2021] [Accepted: 05/29/2021] [Indexed: 12/15/2022]
Abstract
Decades of experimental and theoretical work support a now well-established theory that active dendritic processing contributes to the computational power of individual neurons. This theory is based on the high degree of electrical compartmentalization observed in the dendrites of single neurons in ex vivo preparations. Compartmentalization allows dendrites to conduct semi-independent operations on their inputs before final integration and output at the axon, producing a "network-in-a-neuron." However, recent in vivo functional imaging experiments in mouse cortex have reported surprisingly little evidence for strong dendritic compartmentalization. In this review, we contextualize these new findings and discuss their impact on the future of the field. Specifically, we consider how highly coordinated, and thus less compartmentalized, activity in soma and dendrites can contribute to cortical computations including nonlinear mixed selectivity, prediction/expectation, multiplexing, and credit assignment.
Collapse
Affiliation(s)
- Valerio Francioni
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Mark T Harnett
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
36
|
Sex-Specific Disruption of Distinct mPFC Inhibitory Neurons in Spared-Nerve Injury Model of Neuropathic Pain. Cell Rep 2021; 31:107729. [PMID: 32521254 DOI: 10.1016/j.celrep.2020.107729] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/13/2020] [Accepted: 05/13/2020] [Indexed: 12/27/2022] Open
Abstract
The medial prefrontal cortex (mPFC) modulates a range of behaviors, including responses to noxious stimuli. While various pain modalities alter mPFC function, our understanding of changes to specific cell types underlying pain-induced mPFC dysfunction remains incomplete. Proper activity of cortical GABAergic interneurons is essential for normal circuit function. We find that nerve injury increases excitability of layer 5 parvalbumin-expressing neurons in the prelimbic (PL) region of the mPFC from male, but not female, mice. Conversely, nerve injury dampens excitability in somatostatin-expressing neurons in layer 2/3 of the PL region; however, effects are differential between males and females. Nerve injury slightly increases the frequency of spontaneous excitatory post-synaptic currents (sEPSCs) in layer 5 parvalbumin-expressing neurons in males but reduces frequency of sEPSCs in layer 2/3 somatostatin-expressing neurons in females. Our findings provide key insight into how nerve injury drives maladaptive and sex-specific alterations to GABAergic circuits in cortical regions implicated in chronic pain.
Collapse
|
37
|
Born RT, Bencomo GM. Illusions, Delusions, and Your Backwards Bayesian Brain: A Biased Visual Perspective. BRAIN, BEHAVIOR AND EVOLUTION 2021; 95:272-285. [PMID: 33784667 PMCID: PMC8238803 DOI: 10.1159/000514859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/27/2021] [Indexed: 12/29/2022]
Abstract
The retinal image is insufficient for determining what is "out there," because many different real-world geometries could produce any given retinal image. Thus, the visual system must infer which external cause is most likely, given both the sensory data and prior knowledge that is either innate or learned via interactions with the environment. We will describe a general framework of "hierarchical Bayesian inference" that we and others have used to explore the role of cortico-cortical feedback in the visual system, and we will further argue that this approach to "seeing" makes our visual systems prone to perceptual errors in a variety of different ways. In this deliberately provocative and biased perspective, we argue that the neuromodulator, dopamine, may be a crucial link between neural circuits performing Bayesian inference and the perceptual idiosyncrasies of people with schizophrenia.
Collapse
Affiliation(s)
- Richard T Born
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Gianluca M Bencomo
- Department of Computer Science, Whittier College, Whittier, California, USA
| |
Collapse
|
38
|
Mantegazza M, Cestèle S, Catterall WA. Sodium channelopathies of skeletal muscle and brain. Physiol Rev 2021; 101:1633-1689. [PMID: 33769100 DOI: 10.1152/physrev.00025.2020] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium channels initiate action potentials in nerve, skeletal muscle, and other electrically excitable cells. Mutations in them cause a wide range of diseases. These channelopathy mutations affect every aspect of sodium channel function, including voltage sensing, voltage-dependent activation, ion conductance, fast and slow inactivation, and both biosynthesis and assembly. Mutations that cause different forms of periodic paralysis in skeletal muscle were discovered first and have provided a template for understanding structure, function, and pathophysiology at the molecular level. More recent work has revealed multiple sodium channelopathies in the brain. Here we review the well-characterized genetics and pathophysiology of the periodic paralyses of skeletal muscle and then use this information as a foundation for advancing our understanding of mutations in the structurally homologous α-subunits of brain sodium channels that cause epilepsy, migraine, autism, and related comorbidities. We include studies based on molecular and structural biology, cell biology and physiology, pharmacology, and mouse genetics. Our review reveals unexpected connections among these different types of sodium channelopathies.
Collapse
Affiliation(s)
- Massimo Mantegazza
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France.,INSERM, Valbonne-Sophia Antipolis, France
| | - Sandrine Cestèle
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France
| | | |
Collapse
|
39
|
Schuman B, Dellal S, Prönneke A, Machold R, Rudy B. Neocortical Layer 1: An Elegant Solution to Top-Down and Bottom-Up Integration. Annu Rev Neurosci 2021; 44:221-252. [PMID: 33730511 DOI: 10.1146/annurev-neuro-100520-012117] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many of our daily activities, such as riding a bike to work or reading a book in a noisy cafe, and highly skilled activities, such as a professional playing a tennis match or a violin concerto, depend upon the ability of the brain to quickly make moment-to-moment adjustments to our behavior in response to the results of our actions. Particularly, they depend upon the ability of the neocortex to integrate the information provided by the sensory organs (bottom-up information) with internally generated signals such as expectations or attentional signals (top-down information). This integration occurs in pyramidal cells (PCs) and their long apical dendrite, which branches extensively into a dendritic tuft in layer 1 (L1). The outermost layer of the neocortex, L1 is highly conserved across cortical areas and species. Importantly, L1 is the predominant input layer for top-down information, relayed by a rich, dense mesh of long-range projections that provide signals to the tuft branches of the PCs. Here, we discuss recent progress in our understanding of the composition of L1 and review evidence that L1 processing contributes to functions such as sensory perception, cross-modal integration, controlling states of consciousness, attention, and learning.
Collapse
Affiliation(s)
- Benjamin Schuman
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA;
| | - Shlomo Dellal
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA;
| | - Alvar Prönneke
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA;
| | - Robert Machold
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA;
| | - Bernardo Rudy
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA; .,Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
40
|
|
41
|
A Minimal Biophysical Model of Neocortical Pyramidal Cells: Implications for Frontal Cortex Microcircuitry and Field Potential Generation. J Neurosci 2020; 40:8513-8529. [PMID: 33037076 PMCID: PMC7605414 DOI: 10.1523/jneurosci.0221-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 09/08/2020] [Accepted: 09/29/2020] [Indexed: 11/21/2022] Open
Abstract
Ca2+ spikes initiated in the distal trunk of layer 5 pyramidal cells (PCs) underlie nonlinear dynamic changes in the gain of cellular response, critical for top-down control of cortical processing. Detailed models with many compartments and dozens of ionic channels can account for this Ca2+ spike-dependent gain and associated critical frequency. However, current models do not account for all known Ca2+-dependent features. Previous attempts to include more features have required increasing complexity, limiting their interpretability and utility for studying large population dynamics. We overcome these limitations in a minimal two-compartment biophysical model. In our model, a basal-dendrites/somatic compartment included fast-inactivating Na+ and delayed-rectifier K+ conductances, while an apical-dendrites/trunk compartment included persistent Na+, hyperpolarization-activated cation (I h ), slow-inactivating K+, muscarinic K+, and Ca2+ L-type. The model replicated the Ca2+ spike morphology and its critical frequency plus three other defining features of layer 5 PC synaptic integration: linear frequency-current relationships, back-propagation-activated Ca2+ spike firing, and a shift in the critical frequency by blocking I h Simulating 1000 synchronized layer 5 PCs, we reproduced the current source density patterns evoked by Ca2+ spikes and describe resulting medial-frontal EEG on a male macaque monkey. We reproduced changes in the current source density when I h was blocked. Thus, a two-compartment model with five crucial ionic currents in the apical dendrites reproduces all features of these neurons. We discuss the utility of this minimal model to study the microcircuitry of agranular areas of the frontal lobe involved in cognitive control and responsible for event-related potentials, such as the error-related negativity.SIGNIFICANCE STATEMENT A minimal model of layer 5 pyramidal cells replicates all known features crucial for distal synaptic integration in these neurons. By redistributing voltage-gated and returning transmembrane currents in the model, we establish a theoretical framework for the investigation of cortical microcircuit contribution to intracranial local field potentials and EEG. This tractable model will enable biophysical evaluation of multiscale electrophysiological signatures and computational investigation of cortical processing.
Collapse
|
42
|
Suzuki M, Larkum ME. General Anesthesia Decouples Cortical Pyramidal Neurons. Cell 2020; 180:666-676.e13. [PMID: 32084339 DOI: 10.1016/j.cell.2020.01.024] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 11/15/2019] [Accepted: 01/15/2020] [Indexed: 10/25/2022]
Abstract
The mystery of general anesthesia is that it specifically suppresses consciousness by disrupting feedback signaling in the brain, even when feedforward signaling and basic neuronal function are left relatively unchanged. The mechanism for such selectiveness is unknown. Here we show that three different anesthetics have the same disruptive influence on signaling along apical dendrites in cortical layer 5 pyramidal neurons in mice. We found that optogenetic depolarization of the distal apical dendrites caused robust spiking at the cell body under awake conditions that was blocked by anesthesia. Moreover, we found that blocking metabotropic glutamate and cholinergic receptors had the same effect on apical dendrite decoupling as anesthesia or inactivation of the higher-order thalamus. If feedback signaling occurs predominantly through apical dendrites, the cellular mechanism we found would explain not only how anesthesia selectively blocks this signaling but also why conscious perception depends on both cortico-cortical and thalamo-cortical connectivity.
Collapse
Affiliation(s)
- Mototaka Suzuki
- NeuroCure Cluster of Excellence, Institute for Biology, Humboldt University of Berlin, Chariteplatz 1, 10117 Berlin, Germany.
| | - Matthew E Larkum
- NeuroCure Cluster of Excellence, Institute for Biology, Humboldt University of Berlin, Chariteplatz 1, 10117 Berlin, Germany
| |
Collapse
|
43
|
Aru J, Suzuki M, Larkum ME. Cellular Mechanisms of Conscious Processing. Trends Cogn Sci 2020; 24:814-825. [PMID: 32855048 DOI: 10.1016/j.tics.2020.07.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 01/08/2023]
Abstract
Recent breakthroughs in neurobiology indicate that the time is ripe to understand how cellular-level mechanisms are related to conscious experience. Here, we highlight the biophysical properties of pyramidal cells, which allow them to act as gates that control the evolution of global activation patterns. In conscious states, this cellular mechanism enables complex sustained dynamics within the thalamocortical system, whereas during unconscious states, such signal propagation is prohibited. We suggest that the hallmark of conscious processing is the flexible integration of bottom-up and top-down data streams at the cellular level. This cellular integration mechanism provides the foundation for Dendritic Information Theory, a novel neurobiological theory of consciousness.
Collapse
Affiliation(s)
- Jaan Aru
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany; Institute of Computer Science, University of Tartu, Tartu, Estonia.
| | - Mototaka Suzuki
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - Matthew E Larkum
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany; Neurocure Center for Excellence, Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
44
|
Abstract
I-waves represent high-frequency (~ 600 Hz) repetitive discharge of corticospinal fibers elicited by single-pulse stimulation of motor cortex. First detected and examined in animal preparations, this multiple discharge can also be recorded in humans from the corticospinal tract with epidural spinal electrodes. The exact underpinning neurophysiology of I-waves is still unclear, but there is converging evidence that they originate at the cortical level through synaptic input from specific excitatory interneuronal circuitries onto corticomotoneuronal cells, controlled by GABAAergic interneurons. In contrast, there is at present no supportive evidence for the alternative hypothesis that I-waves are generated by high-frequency oscillations of the membrane potential of corticomotoneuronal cells upon initial strong depolarization. Understanding I-wave physiology is essential for understanding how TMS activates the motor cortex.
Collapse
Affiliation(s)
- Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
45
|
Ugawa Y, Rothwell JC, Paulus W. Possible role of backpropagating action potentials in corticospinal neurons in I-wave periodicity following a TMS pulse. Neurosci Res 2020; 156:234-236. [DOI: 10.1016/j.neures.2019.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022]
|
46
|
Kanari L, Ramaswamy S, Shi Y, Morand S, Meystre J, Perin R, Abdellah M, Wang Y, Hess K, Markram H. Objective Morphological Classification of Neocortical Pyramidal Cells. Cereb Cortex 2020; 29:1719-1735. [PMID: 30715238 PMCID: PMC6418396 DOI: 10.1093/cercor/bhy339] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/20/2018] [Indexed: 12/22/2022] Open
Abstract
A consensus on the number of morphologically different types of pyramidal cells (PCs) in the neocortex has not yet been reached, despite over a century of anatomical studies, due to the lack of agreement on the subjective classifications of neuron types, which is based on expert analyses of neuronal morphologies. Even for neurons that are visually distinguishable, there is no common ground to consistently define morphological types. The objective classification of PCs can be achieved with methods from algebraic topology, and the dendritic arborization is sufficient for the reliable identification of distinct types of cortical PCs. Therefore, we objectively identify 17 types of PCs in the rat somatosensory cortex. In addition, we provide a solution to the challenging problem of whether 2 similar neurons belong to different types or to a continuum of the same type. Our topological classification does not require expert input, is stable, and helps settle the long-standing debate on whether cell-types are discrete or continuous morphological variations of each other.
Collapse
Affiliation(s)
- Lida Kanari
- Blue Brain Project, Brain and Mind Institute, EPFL, Campus Biotech: CH 1202, Geneva, Switzerland
| | - Srikanth Ramaswamy
- Blue Brain Project, Brain and Mind Institute, EPFL, Campus Biotech: CH 1202, Geneva, Switzerland
| | - Ying Shi
- Blue Brain Project, Brain and Mind Institute, EPFL, Campus Biotech: CH 1202, Geneva, Switzerland
| | - Sebastien Morand
- Laboratory for Topology and Neuroscience, Brain Mind Institute, EPFL, CH 1015, Lausanne, Switzerland
| | - Julie Meystre
- Laboratory of Neural Microcircuitry, Brain Mind Institute, EPFL, CH 1015, Lausanne, Switzerland
| | - Rodrigo Perin
- Laboratory of Neural Microcircuitry, Brain Mind Institute, EPFL, CH 1015, Lausanne, Switzerland
| | - Marwan Abdellah
- Blue Brain Project, Brain and Mind Institute, EPFL, Campus Biotech: CH 1202, Geneva, Switzerland
| | - Yun Wang
- School of Optometry and Ophthalmology, Wenzhou Medical College, Wenzhou, Zhejiang, PR China.,Allen Institute for Brain Science, Seattle, WA, USA
| | - Kathryn Hess
- Laboratory for Topology and Neuroscience, Brain Mind Institute, EPFL, CH 1015, Lausanne, Switzerland
| | - Henry Markram
- Blue Brain Project, Brain and Mind Institute, EPFL, Campus Biotech: CH 1202, Geneva, Switzerland.,Laboratory of Neural Microcircuitry, Brain Mind Institute, EPFL, CH 1015, Lausanne, Switzerland
| |
Collapse
|
47
|
Michiels M. Electrophysiology prediction of single neurons based on their morphology.. [DOI: 10.1101/2020.02.04.933697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractElectrophysiology data acquisition of single neurons represents a key factor for the understanding of neuronal dynamics. However, the traditional method to acquire this data is through patch-clamp technology, which presents serious scalability flaws due to its slowness and complexity to record at fine-grained spatial precision (dendrites and axon).In silico biophysical models are therefore created for simulating hundreds of experiments that would be impractical to recreate in vitro. The optimal way to create these models is based on the knowledge of the morphological and electrical features for each neuron. Since large-scale data acquisition is often unfeasible for electrical data, previous expert knowledge can be used but it must have an acceptable degree of similarity with the type of neurons that we are trying to model.Here, we present a data-driven machine learning approach to predict the electrophysiological features of single neurons in case of only having their morphology available. To solve this multi-output regression problem, we use an artificial neural network that has the particularity of providing a probability distribution for every output feature, to incorporate uncertainty. Input data to train the model is obtained from from the Allen Cell Types database. The electrical properties can depend on the morphology, whose acquisition technology is highly automated and scalable so there exist large data sets of them. We also provide integrations with the BluePyOpt library to create a biophysical model using the original morphology and the predicted electrical features. Finally, we connect the resulting biophysical model with the Geppetto UI software to run all the simulations in a sophisticated user interface.
Collapse
|
48
|
Gidon A, Zolnik TA, Fidzinski P, Bolduan F, Papoutsi A, Poirazi P, Holtkamp M, Vida I, Larkum ME. Dendritic action potentials and computation in human layer 2/3 cortical neurons. Science 2020; 367:83-87. [DOI: 10.1126/science.aax6239] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/22/2019] [Indexed: 01/10/2023]
Abstract
The active electrical properties of dendrites shape neuronal input and output and are fundamental to brain function. However, our knowledge of active dendrites has been almost entirely acquired from studies of rodents. In this work, we investigated the dendrites of layer 2 and 3 (L2/3) pyramidal neurons of the human cerebral cortex ex vivo. In these neurons, we discovered a class of calcium-mediated dendritic action potentials (dCaAPs) whose waveform and effects on neuronal output have not been previously described. In contrast to typical all-or-none action potentials, dCaAPs were graded; their amplitudes were maximal for threshold-level stimuli but dampened for stronger stimuli. These dCaAPs enabled the dendrites of individual human neocortical pyramidal neurons to classify linearly nonseparable inputs—a computation conventionally thought to require multilayered networks.
Collapse
|
49
|
Soldado-Magraner S, Brandalise F, Honnuraiah S, Pfeiffer M, Moulinier M, Gerber U, Douglas R. Conditioning by subthreshold synaptic input changes the intrinsic firing pattern of CA3 hippocampal neurons. J Neurophysiol 2019; 123:90-106. [PMID: 31721636 DOI: 10.1152/jn.00506.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Unlike synaptic strength, intrinsic excitability is assumed to be a stable property of neurons. For example, learning of somatic conductances is generally not incorporated into computational models, and the discharge pattern of neurons in response to test stimuli is frequently used as a basis for phenotypic classification. However, it is increasingly evident that signal processing properties of neurons are more generally plastic on the timescale of minutes. Here we demonstrate that the intrinsic firing patterns of CA3 neurons of the rat hippocampus in vitro undergo rapid long-term plasticity in response to a few minutes of only subthreshold synaptic conditioning. This plasticity on the spike timing could also be induced by intrasomatic injection of subthreshold depolarizing pulses and was blocked by kinase inhibitors, indicating that discharge dynamics are modulated locally. Cluster analysis of firing patterns before and after conditioning revealed systematic transitions toward adapting and intrinsic burst behaviors, irrespective of the patterns initially exhibited by the cells. We used a conductance-based model to decide appropriate pharmacological blockade and found that the observed transitions are likely due to recruitment of low-voltage calcium and Kv7 potassium conductances. We conclude that CA3 neurons adapt their conductance profile to the subthreshold activity of their input, so that their intrinsic firing pattern is not a static signature, but rather a reflection of their history of subthreshold activity. In this way, recurrent output from CA3 neurons may collectively shape the temporal dynamics of their embedding circuits.NEW & NOTEWORTHY Although firing patterns are widely conserved across the animal phyla, it is still a mystery why nerve cells present such diversity of discharge dynamics upon somatic step currents. Adding a new timing dimension to the intrinsic plasticity literature, here we show that CA3 neurons rapidly adapt through the space of known firing patterns in response to the subthreshold signals that they receive from their embedding circuit, potentially adjusting their network processing to the temporal statistics of their circuit.
Collapse
Affiliation(s)
| | - Federico Brandalise
- Brain Research Institute, University of Zurich, Switzerland.,Department of Fundamental Neurosciences, University of Geneva, Switzerland
| | - Suraj Honnuraiah
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Switzerland
| | - Michael Pfeiffer
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Switzerland
| | - Marie Moulinier
- Department of Fundamental Neurosciences, University of Geneva, Switzerland
| | - Urs Gerber
- Brain Research Institute, University of Zurich, Switzerland
| | - Rodney Douglas
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Switzerland
| |
Collapse
|
50
|
Yi G, Fan Y, Wang J. Metabolic Cost of Dendritic Ca 2+ Action Potentials in Layer 5 Pyramidal Neurons. Front Neurosci 2019; 13:1221. [PMID: 31780891 PMCID: PMC6861219 DOI: 10.3389/fnins.2019.01221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/29/2019] [Indexed: 01/15/2023] Open
Abstract
Pyramidal neurons consume most signaling-related energy to generate action potentials (APs) and perform synaptic integration. Dendritic Ca2+ spike is an important integration mechanism for coupling inputs from different cortical layers. Our objective was to quantify the metabolic energy associated with the generation of Ca2+ APs in the dendrites. We used morphology-based computational models to simulate the dendritic Ca2+ spikes in layer 5 pyramidal neurons. We calculated the energy cost by converting Ca2+ influx into the number of ATP required to restore and maintain the homeostasis of intracellular Ca2+ concentrations. We quantified the effects of synaptic inputs, dendritic voltage, back-propagating Na+ spikes, and Ca2+ inactivation on Ca2+ spike cost. We showed that much more ATP molecules were required for reversing Ca2+ influx in the dendrites than for Na+ ion pumping in the soma during a Ca2+ AP. Increasing synaptic input increased the rate of dendritic depolarization and underlying Ca2+ influx, resulting in higher ATP consumption. Depolarizing dendritic voltage resulted in the inactivation of Ca2+ channels and reduced the ATP cost, while dendritic hyperpolarization increased the spike cost by de-inactivating Ca2+ channels. A back-propagating Na+ AP initiated in the soma increased Ca2+ spike cost in the apical dendrite when it coincided with a synaptic input within a time window of several milliseconds. Increasing Ca2+ inactivation rate reduced Ca2+ spike cost, while slowing Ca2+ inactivation increased the spike cost. The results revealed that the energy demand of a Ca2+ AP was dynamically dependent on the state of dendritic activity. These findings were important for predicting the energy budget for signaling in pyramidal cells, interpreting functional imaging data, and designing energy-efficient neuromorphic devices.
Collapse
Affiliation(s)
- Guosheng Yi
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Yaqin Fan
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| |
Collapse
|