1
|
Zhong R, Zhou D, Chen L, Rose JP, Wang BC, Ye ZH. Plant Cell Wall Polysaccharide O-Acetyltransferases. PLANTS (BASEL, SWITZERLAND) 2024; 13:2304. [PMID: 39204739 PMCID: PMC11360243 DOI: 10.3390/plants13162304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Plant cell walls are largely composed of polysaccharide polymers, including cellulose, hemicelluloses (xyloglucan, xylan, mannan, and mixed-linkage β-1,3/1,4-glucan), and pectins. Among these cell wall polysaccharides, xyloglucan, xylan, mannan, and pectins are often O-acetylated, and polysaccharide O-acetylation plays important roles in cell wall assembly and disease resistance. Genetic and biochemical analyses have implicated the involvement of three groups of proteins in plant cell wall polysaccharide O-acetylation: trichome birefringence-like (TBL)/domain of unknown function 231 (DUF231), reduced wall acetylation (RWA), and altered xyloglucan 9 (AXY9). Although the exact roles of RWAs and AXY9 are yet to be identified, members of the TBL/DUF231 family have been found to be O-acetyltransferases responsible for the O-acetylation of xyloglucan, xylan, mannan, and pectins. Here, we provide a comprehensive overview of the occurrence of O-acetylated cell wall polysaccharides, the biochemical properties, structural features, and evolution of cell wall polysaccharide O-acetyltransferases, and the potential biotechnological applications of manipulations of cell wall polysaccharide acetylation. Further in-depth studies of the biochemical mechanisms of cell wall polysaccharide O-acetylation will not only enrich our understanding of cell wall biology, but also have important implications in engineering plants with increased disease resistance and reduced recalcitrance for biofuel production.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Dayong Zhou
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Lirong Chen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - John P. Rose
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Bi-Cheng Wang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Stratilová B, Šesták S, Stratilová E, Vadinová K, Kozmon S, Hrmova M. Engineering of substrate specificity in a plant cell-wall modifying enzyme through alterations of carboxyl-terminal amino acid residues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1529-1544. [PMID: 37658783 DOI: 10.1111/tpj.16435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 09/05/2023]
Abstract
Structural determinants of substrate recognition remain inadequately defined in broad specific cell-wall modifying enzymes, termed xyloglucan xyloglucosyl transferases (XETs). Here, we investigate the Tropaeolum majus seed TmXET6.3 isoform, a member of the GH16_20 subfamily of the GH16 network. This enzyme recognises xyloglucan (XG)-derived donors and acceptors, and a wide spectrum of other chiefly saccharide substrates, although it lacks the activity with homogalacturonan (pectin) fragments. We focus on defining the functionality of carboxyl-terminal residues in TmXET6.3, which extend acceptor binding regions in the GH16_20 subfamily but are absent in the related GH16_21 subfamily. Site-directed mutagenesis using double to quintuple mutants in the carboxyl-terminal region - substitutions emulated on barley XETs recognising the XG/penta-galacturonide acceptor substrate pair - demonstrated that this activity could be gained in TmXET6.3. We demonstrate the roles of semi-conserved Arg238 and Lys237 residues, introducing a net positive charge in the carboxyl-terminal region (which complements a negative charge of the acidic penta-galacturonide) for the transfer of xyloglucan fragments. Experimental data, supported by molecular modelling of TmXET6.3 with the XG oligosaccharide donor and penta-galacturonide acceptor substrates, indicated that they could be accommodated in the active site. Our findings support the conclusion on the significance of positively charged residues at the carboxyl terminus of TmXET6.3 and suggest that a broad specificity could be engineered via modifications of an acceptor binding site. The definition of substrate specificity in XETs should prove invaluable for defining the structure, dynamics, and function of plant cell walls, and their metabolism; these data could be applicable in various biotechnologies.
Collapse
Affiliation(s)
- Barbora Stratilová
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538, Bratislava, Slovakia
| | - Sergej Šesták
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538, Bratislava, Slovakia
| | - Eva Stratilová
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538, Bratislava, Slovakia
| | - Kristína Vadinová
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538, Bratislava, Slovakia
| | - Stanislav Kozmon
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538, Bratislava, Slovakia
| | - Maria Hrmova
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Waite Research Precinct, Glen Osmond, South Australia, 5064, Australia
- Jiangsu Collaborative Innovation Centre for Regional Modern Agriculture and Environmental Protection, School of Life Science, Huaiyin Normal University, Huai'an, 223300, China
| |
Collapse
|
3
|
Mueller KK, Pfeifer L, Schuldt L, Szövényi P, de Vries S, de Vries J, Johnson KL, Classen B. Fern cell walls and the evolution of arabinogalactan proteins in streptophytes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:875-894. [PMID: 36891885 DOI: 10.1111/tpj.16178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 05/27/2023]
Abstract
Significant changes have occurred in plant cell wall composition during evolution and diversification of tracheophytes. As the sister lineage to seed plants, knowledge on the cell wall of ferns is key to track evolutionary changes across tracheophytes and to understand seed plant-specific evolutionary innovations. Fern cell wall composition is not fully understood, including limited knowledge of glycoproteins such as the fern arabinogalactan proteins (AGPs). Here, we characterize the AGPs from the leptosporangiate fern genera Azolla, Salvinia, and Ceratopteris. The carbohydrate moiety of seed plant AGPs consists of a galactan backbone including mainly 1,3- and 1,3,6-linked pyranosidic galactose, which is conserved across the investigated fern AGPs. Yet, unlike AGPs of angiosperms, those of ferns contained the unusual sugar 3-O-methylrhamnose. Besides terminal furanosidic arabinose, Ara (Araf), the main linkage type of Araf in the ferns was 1,2-linked Araf, whereas in seed plants 1,5-linked Araf is often dominating. Antibodies directed against carbohydrate epitopes of AGPs supported the structural differences between AGPs of ferns and seed plants. Comparison of AGP linkage types across the streptophyte lineage showed that angiosperms have rather conserved monosaccharide linkage types; by contrast bryophytes, ferns, and gymnosperms showed more variability. Phylogenetic analyses of glycosyltransferases involved in AGP biosynthesis and bioinformatic search for AGP protein backbones revealed a versatile genetic toolkit for AGP complexity in ferns. Our data reveal important differences across AGP diversity of which the functional significance is unknown. This diversity sheds light on the evolution of the hallmark feature of tracheophytes: their elaborate cell walls.
Collapse
Affiliation(s)
- Kim-Kristine Mueller
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany
| | - Lukas Pfeifer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany
| | - Lina Schuldt
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstr. 107, 8008, Zurich, Switzerland
- Zurich-Basel Plant Science Center (PSC), ETH Zürich, Tannenstrasse 1, 8092, Zürich, Switzerland
| | - Sophie de Vries
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
- Department of Applied Bioinformatics, University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Goldschmidtsr. 1, 37077, Goettingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goldschmidstr. 1, 37077, Goettingen, Germany
| | - Kim L Johnson
- Department of Animal, Plant and Soil Science, La Trobe Institute for Agriculture & Food, La Trobe University, AgriBio Building, Bundoora, Victoria, 3086, Australia
| | - Birgit Classen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany
| |
Collapse
|
4
|
Rybczyński JJ, Marczak Ł, Stobiecki M, Strugała A, Mikuła A. The Metabolite Content of the Post-Culture Medium of the Tree Fern Cyathea delgadii Sternb. Cell Suspension Cultured in the Presence of 2,4-D and BAP. Int J Mol Sci 2022; 23:ijms231911783. [PMID: 36233080 PMCID: PMC9569838 DOI: 10.3390/ijms231911783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to demonstrate the metabolic profile of post-culture medium as an expression of cell suspension metabolic activity of the tree fern Cyathea delgadii Sternb. The molecular profile of the tree fern’s cell culture has been never described, according to our knowledge. The cell suspension was established using ½ MS medium supplemented with various concentrations of 2,4-D and BAP. The optimal concentrations were 2.0 mg·L−1 and 0.2 mg·L−1, respectively. The cell suspension initially showed an organized system of cell division and later unorganized cell proliferation. LC-MS and GC-MS were used to identify the chemical composition of the post-culture medium. The LC-MS analysis results suggested that the color of liquid medium could be due to the presence of flavonoid derivatives, as this group of compounds was represented by eight compounds. After GC-MS analysis based on retention indexes and thanks to mass spectra comparison, 130 natural products were recognized, belonging to various classes of primary and secondary metabolites.
Collapse
Affiliation(s)
- Jan J. Rybczyński
- Polish Academy of Sciences Botanical Garden-Center for Biological Diversity Conservation in Powsin, 2 Prawdziwka Str., 02-973 Warsaw, Poland
- Correspondence:
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14 Noskowskiego Str, 61-704 Poznań, Poland
- European Center for Bioinformatics and Genomics, 2 Piotrowo Str., 60-965 Poznań, Poland
| | - Maciej Stobiecki
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14 Noskowskiego Str, 61-704 Poznań, Poland
| | - Aleksander Strugała
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14 Noskowskiego Str, 61-704 Poznań, Poland
| | - Anna Mikuła
- Polish Academy of Sciences Botanical Garden-Center for Biological Diversity Conservation in Powsin, 2 Prawdziwka Str., 02-973 Warsaw, Poland
| |
Collapse
|
5
|
Roig-Oliver M, Douthe C, Bota J, Flexas J. Cell wall thickness and composition are related to photosynthesis in Antarctic mosses. PHYSIOLOGIA PLANTARUM 2021; 173:1914-1925. [PMID: 34432898 DOI: 10.1111/ppl.13533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Cell wall thickness (Tcw ) has been proposed as an important anatomical trait that could determine photosynthesis through land plants' phylogeny, bryophytes being the plant group presenting the thickest walls and the lowest photosynthetic rates. Also, it has recently been suggested that cell wall composition may have the potential to influence both thickness and mesophyll conductance (gm ), representing a novel trait that could ultimately affect photosynthesis. However, only a few studies in spermatophytes have demonstrated this issue. In order to explore the role of cell wall composition in determining both Tcw and gm in mosses, we tested six species grown under field conditions in Antarctica. We performed gas exchange and chlorophyll fluorescence measurements, an anatomical characterization, and a quantitative analysis of cell wall main composition (i.e., cellulose, hemicelluloses and pectins) in these six species. We found the photosynthetic rates to vary between the species, and they also presented differences in anatomical characteristics and in cell wall composition. Whilst gm correlated negatively with Tcw and pectins content, a positive relationship between Tcw and pectins emerged, suggesting that pectins could contribute to determine cell wall porosity. Although our results do not allow us to provide conclusive statements, we suggest for the first time that cell wall composition-with pectins playing a key role-could strongly influence Tcw and gm in Antarctic mosses, ultimately defining photosynthesis.
Collapse
Affiliation(s)
- Margalida Roig-Oliver
- Departament de Biologia, Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), INAGEA, Palma, Illes Balears, Spain
| | - Cyril Douthe
- Departament de Biologia, Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), INAGEA, Palma, Illes Balears, Spain
| | - Josefina Bota
- Departament de Biologia, Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), INAGEA, Palma, Illes Balears, Spain
| | - Jaume Flexas
- Departament de Biologia, Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), INAGEA, Palma, Illes Balears, Spain
- King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
McCubbin TJ, Braun DM. Phloem anatomy and function as shaped by the cell wall. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153526. [PMID: 34555540 DOI: 10.1016/j.jplph.2021.153526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The partitioning of assimilated carbon is a complex process that involves the loading, long-distance transport, and subsequent unloading of carbohydrates from source to sink tissues. The network of plumbing that facilitates this coordinated process is the phloem tissue. Our understanding of the physiology of phloem transport has grown tremendously since the modern theory of mass flow was first put forward, aided by the concomitant progress of technology and experimental methodologies. Recent findings have put a renewed emphasis on the underlying anatomy of the phloem, and in particular the important role that cell walls play in enabling the high-pressure flow of photoassimilates through the sieve element. This review will briefly summarize the foundational work in phloem anatomy and highlight recent work exploring the physiology of phloem cell wall structure and mechanics.
Collapse
Affiliation(s)
- Tyler J McCubbin
- Division of Plant Science and Technology, Interdisciplinary Plant Group, The Missouri Maize Center, University of Missouri,Columbia, MO, 65211, USA
| | - David M Braun
- Division of Plant Science and Technology, Interdisciplinary Plant Group, The Missouri Maize Center, University of Missouri,Columbia, MO, 65211, USA; Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
7
|
Stratilová B, Kozmon S, Stratilová E, Hrmova M. Plant Xyloglucan Xyloglucosyl Transferases and the Cell Wall Structure: Subtle but Significant. Molecules 2020; 25:E5619. [PMID: 33260399 PMCID: PMC7729885 DOI: 10.3390/molecules25235619] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Plant xyloglucan xyloglucosyl transferases or xyloglucan endo-transglycosylases (XET; EC 2.4.1.207) catalogued in the glycoside hydrolase family 16 constitute cell wall-modifying enzymes that play a fundamental role in the cell wall expansion and re-modelling. Over the past thirty years, it has been established that XET enzymes catalyse homo-transglycosylation reactions with xyloglucan (XG)-derived substrates and hetero-transglycosylation reactions with neutral and charged donor and acceptor substrates other than XG-derived. This broad specificity in XET isoforms is credited to a high degree of structural and catalytic plasticity that has evolved ubiquitously in algal, moss, fern, basic Angiosperm, monocot, and eudicot enzymes. These XET isoforms constitute gene families that are differentially expressed in tissues in time- and space-dependent manners during plant growth and development, and in response to biotic and abiotic stresses. Here, we discuss the current state of knowledge of broad specific plant XET enzymes and how their inherently carbohydrate-based transglycosylation reactions tightly link with structural diversity that underlies the complexity of plant cell walls and their mechanics. Based on this knowledge, we conclude that multi- or poly-specific XET enzymes are widespread in plants to allow for modifications of the cell wall structure in muro, a feature that implements the multifaceted roles in plant cells.
Collapse
Affiliation(s)
- Barbora Stratilová
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia; (B.S.); (S.K.); (E.S.)
- Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Comenius University, Mlynská Dolina, SK-84215 Bratislava, Slovakia
| | - Stanislav Kozmon
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia; (B.S.); (S.K.); (E.S.)
| | - Eva Stratilová
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia; (B.S.); (S.K.); (E.S.)
| | - Maria Hrmova
- School of Life Science, Huaiyin Normal University, Huai’an 223300, China
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia
| |
Collapse
|
8
|
Pfeifer L, Classen B. The Cell Wall of Seagrasses: Fascinating, Peculiar and a Blank Canvas for Future Research. FRONTIERS IN PLANT SCIENCE 2020; 11:588754. [PMID: 33193541 PMCID: PMC7644952 DOI: 10.3389/fpls.2020.588754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/07/2020] [Indexed: 05/12/2023]
Abstract
Seegrasses are a polyphyletic group of angiosperm plants, which evolved from early monocotyledonous land plants and returned to the marine environment around 140 million years ago. Today, seagrasses comprise the five families Zosteraceae, Hydrocharitaceae, Posidoniaceae, Cymodoceaceae, and Ruppiaceae and form important coastal ecosystems worldwide. Despite of this ecological importance, the existing literature on adaption of these angiosperms to the marine environment and especially their cell wall composition is limited up to now. A unique feature described for some seagrasses is the occurrence of polyanionic, low-methylated pectins mainly composed of galacturonic acid and apiose (apiogalacturonans). Furthermore, sulfated galactans have been detected in some species. Recently, arabinogalactan-proteins (AGPs), highly glycosylated proteins of the cell wall of land plants, have been isolated for the first time from a seagrass of the baltic sea. Obviously, seagrass cell walls are characterized by new combinations of structural polysaccharide and glycoprotein elements known from macroalgae and angiosperm land plants. In this review, current knowledge on cell walls of seagrasses is summarized and suggestions for future investigations are given.
Collapse
Affiliation(s)
| | - Birgit Classen
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Faculty of Mathematics and Natural Sciences, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
9
|
Shtein I, Koyfman A, Schwartz A, Popper ZA, Bar-On B. Solanales Stem Biomechanical Properties Are Primarily Determined by Morphology Rather Than Internal Structural Anatomy and Cell Wall Composition. PLANTS (BASEL, SWITZERLAND) 2020; 9:E678. [PMID: 32471114 PMCID: PMC7356250 DOI: 10.3390/plants9060678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 11/16/2022]
Abstract
Self-supporting plants and climbers exhibit differences in their structural and biomechanical properties. We hypothesized that such fundamental differences originate at the level of the material properties. In this study, we compared three non-woody members of the Solanales exhibiting different growth habits: (1) a self-supporting plant (potato, Solanum tuberosum), (2) a trailing plant (sweet potato, Ipomoea batatas), and (3) a twining climber (morning glory, Ipomoea tricolor). The mechanical properties investigated by materials analyses were combined with structural, biochemical, and immunohistochemical analyses. Generally, the plants exhibited large morphological differences, but possessed relatively similar anatomy and cell wall composition. The cell walls were primarily composed of hemicelluloses (~60%), with α-cellulose and pectins constituting ~25% and 5%-8%, respectively. Immunohistochemistry of specific cell wall components suggested only minor variation in the occurrence and localization between the species, although some differences in hemicellulose distribution were observed. According to tensile and flexural tests, potato stems were the stiffest by a significant amount and the morning glory stems were the most compliant and showed differences in two- and three-orders of magnitude; the differences between their effective Young's (Elastic) modulus values (geometry-independent parameter), on the other hand, were substantially lower (at the same order of magnitude) and sometimes not even significantly different. Therefore, although variability exists in the internal anatomy and cell wall composition between the different species, the largest differences were seen in the morphology, which appears to be the primary determinant of biomechanical function. Although this does not exclude the possibility of different mechanisms in other plant groups, there is apparently less constraint to modifying stem morphology than anatomy and cell wall composition within the Solanales.
Collapse
Affiliation(s)
| | - Alex Koyfman
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
- Nuclear Research Center-Negev, O. Box 9001, Beer-Sheva 84190, Israel
| | - Amnon Schwartz
- The Robert H. Smith Faculty of Agriculture, Food & Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel;
| | - Zoë A. Popper
- Botany and Plant Science, Ryan Institute for Environmental, Marine and Energy Research, School of Natural Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland;
| | - Benny Bar-On
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| |
Collapse
|
10
|
Pfeifer L, Shafee T, Johnson KL, Bacic A, Classen B. Arabinogalactan-proteins of Zostera marina L. contain unique glycan structures and provide insight into adaption processes to saline environments. Sci Rep 2020; 10:8232. [PMID: 32427862 PMCID: PMC7237498 DOI: 10.1038/s41598-020-65135-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Seagrasses evolved from monocotyledonous land plants that returned to the marine habitat. This transition was accomplished by substantial changes in cell wall composition, revealing habitat-driven adaption to the new environment. Whether arabinogalactan-proteins (AGPs), important signalling molecules of land plants, are present in seagrass cell walls is of evolutionary and plant development interest. AGPs of Zostera marina L. were isolated and structurally characterised by analytical and bioinformatics methods as well as by ELISA with different anti-AGP antibodies. Calcium-binding capacity of AGPs was studied by isothermal titration calorimetry (ITC) and microscopy. Bioinformatic searches of the Z. marina proteome identified 9 classical AGPs and a large number of chimeric AGPs. The glycan structures exhibit unique features, including a high degree of branching and an unusually high content of terminating 4-O-methyl-glucuronic acid (4-OMe GlcA) residues. Although the common backbone structure of land plant AGPs is conserved in Z. marina, the terminating residues are distinct with high amounts of uronic acids. These differences likely result from the glycan-active enzymes (glycosyltransferases and methyltransferases) and are essential for calcium-binding properties. The role of this polyanionic surface is discussed with regard to adaption to the marine environment.
Collapse
Affiliation(s)
- Lukas Pfeifer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany
| | - Thomas Shafee
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Kim L Johnson
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Antony Bacic
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Birgit Classen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany.
| |
Collapse
|
11
|
Wang M, Xu Z, Guo S, Zhou G, ONeill M, Kong Y. Identification of two functional xyloglucan galactosyltransferase homologs BrMUR3 and BoMUR3 in brassicaceous vegetables. PeerJ 2020; 8:e9095. [PMID: 32461829 PMCID: PMC7231499 DOI: 10.7717/peerj.9095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/09/2020] [Indexed: 11/20/2022] Open
Abstract
Xyloglucan (XyG) is the predominant hemicellulose in the primary cell walls of most dicotyledonous plants. Current models of these walls predict that XyG interacts with cellulose microfibrils to provide the wall with the rigidity and strength necessary to maintain cell integrity. Remodeling of this network is required to allow cell elongation and plant growth. In this study, homologs of Arabidopsis thaliana MURUS3 (MUR3), which encodes a XyG-specific galactosyltransferase, were obtained from Brassica rapa (BrMUR3) to Brassica oleracea (BoMUR3). Genetic complementation showed that BrMUR3 and BoMUR3 rescue the phenotypic defects of the mur3-3 mutant. Xyloglucan subunit composition analysis provided evidence that BrMUR3 and BoMUR3 encode a galactosyltransferase, which transfers a galactose residue onto XyG chains. The detection of XXFG and XLFG XyG subunits (restoration of fucosylated side chains) in mur3-3 mutants overexpressing BrMUR3 or BoMUR3 show that MUR3 from Brassica to Arabidopsis are comparable as they add Gal to the third xylosyl residue of the XXXG subunit. Our results provide additional information for functional dissection and evolutionary analysis of MUR3 genes derived from brassicaceous species.
Collapse
Affiliation(s)
- Meng Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Zongchang Xu
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Shuaiqiang Guo
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Gongke Zhou
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Malcolm ONeill
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Yingzhen Kong
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
12
|
Chernova T, Ageeva M, Mikshina P, Trofimova O, Kozlova L, Lev-Yadun S, Gorshkova T. The Living Fossil Psilotum nudum Has Cortical Fibers With Mannan-Based Cell Wall Matrix. FRONTIERS IN PLANT SCIENCE 2020; 11:488. [PMID: 32411161 PMCID: PMC7199214 DOI: 10.3389/fpls.2020.00488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/31/2020] [Indexed: 05/13/2023]
Abstract
Cell wall thickening and development of secondary cell walls was a major step in plant terrestrialization that provided the mechanical support, effective functioning of water-conducting elements and fortification of the surface tissues. Despite its importance, the diversity, emergence and evolution of secondary cell walls in early land plants have been characterized quite poorly. Secondary cell walls can be present in different cell types with fibers being among the major ones. The necessity for mechanical support upon increasing plant height is widely recognized; however, identification of fibers in land plants of early taxa is quite limited. In an effort to partially fill this gap, we studied the fibers and the composition of cell walls in stems of the sporophyte of the living fossil Psilotum nudum. Various types of light microscopy, combined with partial tissue maceration demonstrated that this perennial, rootless, fern-like vascular plant, has abundant fibers located in the middle cortex. Extensive immunodetection of cell wall polymers together with various staining and monosaccharide analysis of cell wall constituents revealed that in P. nudum, the secondary cell wall of its cortical fibers is distinct from that of its tracheids. Primary cell walls of all tissues in P. nudum shoots are based on mannan, which is also common in other extant early land plants. Besides, the primary cell wall contains epitope for LM15 specific for xyloglucan and JIM7 that binds methylesterified homogalacturonans, two polymers common in the primary cell walls of higher plants. Xylan and lignin were detected as the major polymers in the secondary cell walls of P. nudum tracheids. However, the secondary cell wall in its cortical fibers is quite similar to their primary cell walls, i.e., enriched in mannan. The innermost secondary cell wall layer of its fibers but not its tracheids has epitope to bind the LM15, LM6, and LM5 antibodies recognizing, respectively, xyloglucan, arabinan and galactan. Together, our data provide the first description of a mannan-based cell wall in sclerenchyma fibers, and demonstrate in detail that the composition and structure of secondary cell wall in early land plants are not uniform in different tissues.
Collapse
Affiliation(s)
- Tatyana Chernova
- The Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Marina Ageeva
- Microscopy Cabinet, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Polina Mikshina
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Oksana Trofimova
- The Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Liudmila Kozlova
- The Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Simcha Lev-Yadun
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa-Oranim, Tivon, Israel
| | - Tatyana Gorshkova
- The Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| |
Collapse
|
13
|
Zavyalov AV, Rykov SV, Lunina NA, Sushkova VI, Yarotsky SV, Berezina OV. Plant Polysaccharide Xyloglucan and Enzymes That Hydrolyze It (Review). RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019070148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Zhong R, Cui D, Ye ZH. Evolutionary origin of O-acetyltransferases responsible for glucomannan acetylation in land plants. THE NEW PHYTOLOGIST 2019; 224:466-479. [PMID: 31183872 DOI: 10.1111/nph.15988] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
Mannans are an abundant cell wall polysaccharide in bryophytes, seedless vascular plants and gymnosperms. A previous study has shown that mannan acetylation in Arabidopsis and konjac is mediated by mannan O-acetyltransferases belonging to the Domain of Unknown Function (DUF) 231 family. However, little is known about the acetylation patterns of mannans in bryophytes and seedless vascular plants, and the evolutionary origin of mannan O-acetyltransferases in land plants has not yet been studied. Phylogenetic analysis of the DUF231 family revealed that DUF231 members were present in the charophycean green algae and evolved to form overlapped and divergent phylogenetic groups in different taxa of land plants. Acetyltransferase activity assays of recombinant proteins demonstrated that a number of group II DUF231 members from moss, Selaginella, pine, spruce, rice and poplar were mannan 2-O- and 3-O-acetyltransferases, whereas the two group I DUF231 members from the alga Klebsormidium nitens were not. Structural analysis of mannans from moss and Selaginella showed they were composed of mannosyl and glucosyl residues and the mannosyl residues were acetylated at O-2 and O-3. These findings indicate that although the DUF231 genes originated in algae, their recruitment as mannan O-acetyltransferases probably occurred in bryophytes, and the biochemical functions of these O-acetyltransferases are evolutionarily conserved throughout land plants.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Dongtao Cui
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
15
|
Gago J, Carriquí M, Nadal M, Clemente-Moreno MJ, Coopman RE, Fernie AR, Flexas J. Photosynthesis Optimized across Land Plant Phylogeny. TRENDS IN PLANT SCIENCE 2019; 24:947-958. [PMID: 31362860 DOI: 10.1016/j.tplants.2019.07.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 05/08/2023]
Abstract
Until recently, few data were available on photosynthesis and its underlying mechanistically limiting factors in plants, other than crops and model species. Currently, a new large pool of data from extant representatives of basal terrestrial plant groups is emerging, allowing exploration of how photosynthetic capacity (Amax) increases from minimum values in bryophytes to maximum in tracheophytes, which is associated to an optimization of the balance between its limiting factors. From predominant mesophyll conductance limitation (lm) in bryophytes and lycophytes (fern allies) to stomatal conductance (ls) and lm colimitation in pteridophytes (ferns) and gymnosperms, a balanced colimitation by the three limitations is finally reached in angiosperms. We discuss the implications of this new knowledge for future biotechnological attempts to improve crop photosynthesis.
Collapse
Affiliation(s)
- Jorge Gago
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears / Institute of Agro-Environmental Research and Water Economy -INAGEA, Carretera de Valldemossa, 07122, Palma, Spain.
| | - Marc Carriquí
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears / Institute of Agro-Environmental Research and Water Economy -INAGEA, Carretera de Valldemossa, 07122, Palma, Spain
| | - Miquel Nadal
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears / Institute of Agro-Environmental Research and Water Economy -INAGEA, Carretera de Valldemossa, 07122, Palma, Spain
| | - María José Clemente-Moreno
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears / Institute of Agro-Environmental Research and Water Economy -INAGEA, Carretera de Valldemossa, 07122, Palma, Spain
| | - Rafael Eduardo Coopman
- Ecophysiology Laboratory for Forest Conservation, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Campus Isla Teja, Casilla 567, Valdivia, Chile
| | - Alisdair Robert Fernie
- Central Metabolism Group, Molecular Physiology Department, Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears / Institute of Agro-Environmental Research and Water Economy -INAGEA, Carretera de Valldemossa, 07122, Palma, Spain.
| |
Collapse
|
16
|
Leroux O, Eder M, Saxe F, Dunlop JWC, Popper ZA, Viane RLL, Knox JP. Comparative in situ analysis reveals the dynamic nature of sclerenchyma cell walls of the fern Asplenium rutifolium. ANNALS OF BOTANY 2018; 121:345-358. [PMID: 29293865 PMCID: PMC5808801 DOI: 10.1093/aob/mcx167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 11/14/2017] [Indexed: 06/01/2023]
Abstract
Background and Aims A key structural adaptation of vascular plants was the evolution of specialized vascular and mechanical tissues, innovations likely to have generated novel cell wall architectures. While collenchyma is a strengthening tissue typically found in growing organs of angiosperms, a similar tissue occurs in the petiole of the fern Asplenium rutifolium. Methods The in situ cell wall (ultra)structure and composition of this tissue was investigated and characterized mechanically as well as structurally through nano-indentation and wide-angle X-ray diffraction, respectively. Key Results Structurally the mechanical tissue resembles sclerenchyma, while its biomechanical properties and molecular composition both share more characteristics with angiosperm collenchyma. Cell wall thickening only occurs late during cell expansion or after cell expansion has ceased. Conclusions If the term collenchyma is reserved for walls that thicken during expansive growth, the mechanical tissue in A. rutifolium represents sclerenchyma that mimics the properties of collenchyma and has the ability to modify its mechanical properties through sclerification. These results support the view that collenchyma does not occur in ferns and most probably evolved in angiosperms.
Collapse
Affiliation(s)
- Olivier Leroux
- Department of Biology, Ghent University, K.L. Ledeganckstraat, Gent, Belgium
| | - Michaela Eder
- Department of Biomaterials, Max-Planck-Institute of Colloids and Interfaces, Wissenschaftspark Golm, Am Muhlenberg, Potsdam, Germany
| | - Friederike Saxe
- Department of Biomaterials, Max-Planck-Institute of Colloids and Interfaces, Wissenschaftspark Golm, Am Muhlenberg, Potsdam, Germany
| | - John W C Dunlop
- Department of Biomaterials, Max-Planck-Institute of Colloids and Interfaces, Wissenschaftspark Golm, Am Muhlenberg, Potsdam, Germany
| | - Zoë A Popper
- Botany and Plant Science and The Ryan Institute for Environmental, Marine and Energy Research, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Ronald L L Viane
- Department of Biology, Ghent University, K.L. Ledeganckstraat, Gent, Belgium
| | - J Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
17
|
Bartels D, Classen B. Structural investigations on arabinogalactan-proteins from a lycophyte and different monilophytes (ferns) in the evolutionary context. Carbohydr Polym 2017; 172:342-351. [DOI: 10.1016/j.carbpol.2017.05.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 01/30/2023]
|
18
|
Shtein I, Shelef Y, Marom Z, Zelinger E, Schwartz A, Popper ZA, Bar-On B, Harpaz-Saad S. Stomatal cell wall composition: distinctive structural patterns associated with different phylogenetic groups. ANNALS OF BOTANY 2017; 119:1021-1033. [PMID: 28158449 PMCID: PMC5604698 DOI: 10.1093/aob/mcw275] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/05/2016] [Indexed: 05/18/2023]
Abstract
Background and Aims Stomatal morphology and function have remained largely conserved throughout ∼400 million years of plant evolution. However, plant cell wall composition has evolved and changed. Here stomatal cell wall composition was investigated in different vascular plant groups in attempt to understand their possible effect on stomatal function. Methods A renewed look at stomatal cell walls was attempted utilizing digitalized polar microscopy, confocal microscopy, histology and a numerical finite-elements simulation. The six species of vascular plants chosen for this study cover a broad structural, ecophysiological and evolutionary spectrum: ferns ( Asplenium nidus and Platycerium bifurcatum ) and angiosperms ( Arabidopsis thaliana and Commelina erecta ) with kidney-shaped stomata, and grasses (angiosperms, family Poaceae) with dumbbell-shaped stomata ( Sorghum bicolor and Triticum aestivum ). Key Results Three distinct patterns of cellulose crystallinity in stomatal cell walls were observed: Type I (kidney-shaped stomata, ferns), Type II (kidney-shaped stomata, angiosperms) and Type III (dumbbell-shaped stomata, grasses). The different stomatal cell wall attributes investigated (cellulose crystallinity, pectins, lignin, phenolics) exhibited taxon-specific patterns, with reciprocal substitution of structural elements in the end-walls of kidney-shaped stomata. According to a numerical bio-mechanical model, the end walls of kidney-shaped stomata develop the highest stresses during opening. Conclusions The data presented demonstrate for the first time the existence of distinct spatial patterns of varying cellulose crystallinity in guard cell walls. It is also highly intriguing that in angiosperms crystalline cellulose appears to have replaced lignin that occurs in the stomatal end-walls of ferns serving a similar wall strengthening function. Such taxon-specific spatial patterns of cell wall components could imply different biomechanical functions, which in turn could be a consequence of differences in environmental selection along the course of plant evolution.
Collapse
Affiliation(s)
- Ilana Shtein
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Yaniv Shelef
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ziv Marom
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Einat Zelinger
- The Interdepartmental Equipment Unit, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Amnon Schwartz
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Zoë A. Popper
- Botany and Plant Science, Ryan Institute for Environmental, Marine and Energy Research, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Benny Bar-On
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Smadar Harpaz-Saad
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
19
|
Simmons TJ, Fry SC. Bonds broken and formed during the mixed-linkage glucan : xyloglucan endotransglucosylase reaction catalysed by Equisetum hetero-trans-β-glucanase. Biochem J 2017; 474:1055-1070. [PMID: 28108640 PMCID: PMC5341106 DOI: 10.1042/bcj20160935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/12/2017] [Accepted: 01/19/2017] [Indexed: 11/17/2022]
Abstract
Mixed-linkage glucan∶xyloglucan endotransglucosylase (MXE) is one of the three activities of the recently characterised hetero-trans-β-glucanase (HTG), which among land plants is known only from Equisetum species. The biochemical details of the MXE reaction were incompletely understood - details that would promote understanding of MXE's role in vivo and enable its full technological exploitation. We investigated HTG's site of attack on one of its donor substrates, mixed-linkage (1→3),(1→4)-β-d-glucan (MLG), with radioactive oligosaccharides of xyloglucan as the acceptor substrate. Comparing three different MLG preparations, we showed that the enzyme favours those with a high content of cellotetraose blocks. The reaction products were analysed by enzymic digestion, thin-layer chromatography (TLC), high-pressure liquid chromatography (HPLC) and gel-permeation chromatography (GPC). Equisetum HTG consistently cleaved the MLG at the third consecutive β-(1→4)-bond following (towards the reducing terminus) a β-(1→3)-bond. It then formed a β-(1→4)-bond between the MLG and the non-reducing terminal glucose residue of the xyloglucan oligosaccharide, consistent with its xyloglucan endotransglucosylase/hydrolase subfamily membership. Using size-homogeneous barley MLG as the donor substrate, we showed that HTG does not favour any particular region of the MLG chain relative to the polysaccharide's reducing and non-reducing termini; rather, it selects its target cellotetraosyl unit stochastically along the MLG molecule. This work improves our understanding of how enzymes can exhibit promiscuous substrate specificities and provides the foundations to explore strategies for engineering novel substrate specificities into transglycanases.
Collapse
Affiliation(s)
- Thomas J Simmons
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, U.K
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, U.K.
| |
Collapse
|
20
|
López-Palacios C, Peña-Valdivia CB, Rodríguez-Hernández AI, Reyes-Agüero JA. Rheological Flow Behavior of Structural Polysaccharides from Edible Tender Cladodes of Wild, Semidomesticated and Cultivated 'Nopal' (Opuntia) of Mexican Highlands. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2016; 71:388-395. [PMID: 27498130 DOI: 10.1007/s11130-016-0573-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The aim of this study was to quantify the content of polysaccharides of edible tender cladodes (nopalitos) of three species of Opuntia and to evaluate the rheological flow behavior of isolated polysaccharides. A completely randomized experimental design was used to characterize a wild (O. streptacantha), a semidomesticated (O. megacantha) and a domesticated (O. ficus-indica) species. Mucilage content was higher (4.93 to 12.43 g 100 g-1 dry matter), tightly bound hemicelluloses were lower (3.32 to 1.81 g 100 g-1 dry matter) and pectins and loosely bound hemicelluloses were not different in wild than in domesticated species. Aqueous solution/suspensions of mucilage, pectins, hemicellulose and cellulose of all species showed non-Newtonian behavior under simple shear flow. The flow behavior of the structural polysaccharides was well described by the Ostwald de-Waele model. Pectins and mucilages exhibited the highest consistency indexes (K values ranged from 0.075 to 0.177 Pasn) with a moderated shear-thinning behavior (n values ranged from 0.53 to 0.67). Cellulose dispersions exhibited the most shear-thinning behavior (n values ranged from 0.17 to 0.41) and hemicelluloses showed a tendency to Newtonian flow (n values ranged from 0.82 to 0.97). The rheological flow properties of these polysaccharides may be useful to improve the textural and sensory qualities of some foods and pharmaceutical materials. Moreover, they can emerge as functional ingredients mainly due to the nutraceutical properties that have been attributed to nopalitos.
Collapse
Affiliation(s)
- C López-Palacios
- Botánica, Colegio de Postgraduados, Carretera México-Texcoco km 36.5, Texcoco, 56230, México, México
| | - C B Peña-Valdivia
- Botánica, Colegio de Postgraduados, Carretera México-Texcoco km 36.5, Texcoco, 56230, México, México.
| | - A I Rodríguez-Hernández
- Instituto de Ciencias Agropecuarias, UAEH, Av. Universidad km 1, Rancho Universitario, 43600, Tulancingo, Hgo, México
| | - J A Reyes-Agüero
- Instituto de Investigación de Zonas Desérticas, UASLP, Altair 200, San Luis Potosí, S.L.P., Mexico
| |
Collapse
|
21
|
Iurlaro A, De Caroli M, Sabella E, De Pascali M, Rampino P, De Bellis L, Perrotta C, Dalessandro G, Piro G, Fry SC, Lenucci MS. Drought and Heat Differentially Affect XTH Expression and XET Activity and Action in 3-Day-Old Seedlings of Durum Wheat Cultivars with Different Stress Susceptibility. FRONTIERS IN PLANT SCIENCE 2016; 7:1686. [PMID: 27891140 PMCID: PMC5102909 DOI: 10.3389/fpls.2016.01686] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/26/2016] [Indexed: 05/20/2023]
Abstract
Heat and drought stress have emerged as major constraints for durum wheat production. In the Mediterranean area, their negative effect on crop productivity is expected to be exacerbated by the occurring climate change. Xyloglucan endotransglucosylase/hydrolases (XTHs) are chief enzymes in cell wall remodeling, whose relevance in cell expansion and morphogenesis suggests a central role in stress responses. In this work the potential role of XTHs in abiotic stress tolerance was investigated in durum wheat. The separate effects of dehydration and heat exposure on XTH expression and its endotransglucosylase (XET) in vitro activity and in vivo action have been monitored, up to 24 h, in the apical and sub-apical root regions and shoots excised from 3-day-old seedlings of durum wheat cultivars differing in stress susceptibility/tolerance. Dehydration and heat stress differentially influence the XTH expression profiles and the activity and action of XET in the wheat seedlings, depending on the degree of susceptibility/tolerance of the cultivars, the organ, the topological region of the root and, within the root, on the gradient of cell differentiation. The root apical region was the zone mainly affected by both treatments in all assayed cultivars, while no change in XET activity was observed at shoot level, irrespective of susceptibility/tolerance, confirming the pivotal role of the root in stress perception, signaling, and response. Conflicting effects were observed depending on stress type: dehydration evoked an overall increase, at least in the apical region of the root, of XET activity and action, while a significant inhibition was caused by heat treatment in most cultivars. The data suggest that differential changes in XET action in defined portions of the root of young durum wheat seedlings may have a role as a response to drought and heat stress, thus contributing to seedling survival and crop establishment. A thorough understanding of the mechanisms underlying these variations could represent the theoretical basis for implementing breeding strategies to develop new highly productive hybrids adapted to future climate scenarios.
Collapse
Affiliation(s)
- Andrea Iurlaro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Monica De Caroli
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Erika Sabella
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Mariarosaria De Pascali
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Patrizia Rampino
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Luigi De Bellis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Carla Perrotta
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Giuseppe Dalessandro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Gabriella Piro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| | - Stephen C. Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of EdinburghEdinburgh, UK
| | - Marcello S. Lenucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del SalentoLecce, Italy
| |
Collapse
|
22
|
Sotiriou P, Giannoutsou E, Panteris E, Apostolakos P, Galatis B. Cell wall matrix polysaccharide distribution and cortical microtubule organization: two factors controlling mesophyll cell morphogenesis in land plants. ANNALS OF BOTANY 2016; 117:401-19. [PMID: 26802013 PMCID: PMC4765543 DOI: 10.1093/aob/mcv187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/27/2015] [Accepted: 11/05/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS This work investigates the involvement of local differentiation of cell wall matrix polysaccharides and the role of microtubules in the morphogenesis of mesophyll cells (MCs) of three types (lobed, branched and palisade) in the dicotyledon Vigna sinensis and the fern Asplenium nidus. METHODS Homogalacturonan (HGA) epitopes recognized by the 2F4, JIM5 and JIM7 antibodies and callose were immunolocalized in hand-made leaf sections. Callose was also stained with aniline blue. We studied microtubule organization by tubulin immunofluorescence and transmission electron microscopy. RESULTS In both plants, the matrix cell wall polysaccharide distribution underwent definite changes during MC differentiation. Callose constantly defined the sites of MC contacts. The 2F4 HGA epitope in V. sinensis first appeared in MC contacts but gradually moved towards the cell wall regions facing the intercellular spaces, while in A. nidus it was initially localized at the cell walls delimiting the intercellular spaces, but finally shifted to MC contacts. In V. sinensis, the JIM5 and JIM7 HGA epitopes initially marked the cell walls delimiting the intercellular spaces and gradually shifted in MC contacts, while in A. nidus they constantly enriched MC contacts. In all MC types examined, the cortical microtubules played a crucial role in their morphogenesis. In particular, in palisade MCs, cortical microtubule helices, by controlling cellulose microfibril orientation, forced these MCs to acquire a truncated cone-like shape. Unexpectedly in V. sinensis, the differentiation of colchicine-affected MCs deviated completely, since they developed a cell wall ingrowth labyrinth, becoming transfer-like cells. CONCLUSIONS The results of this work and previous studies on Zea mays (Giannoutsou et al., Annals of Botany 2013; 112: : 1067-1081) revealed highly controlled local cell wall matrix differentiation in MCs of species belonging to different plant groups. This, in coordination with microtubule-dependent cellulose microfibril alignment, spatially controlled cell wall expansion, allowing MCs to acquire their particular shape.
Collapse
Affiliation(s)
- P Sotiriou
- Department of Botany, Faculty of Biology, University of Athens, Athens 15784, Greece and
| | - E Giannoutsou
- Department of Botany, Faculty of Biology, University of Athens, Athens 15784, Greece and
| | - E Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - P Apostolakos
- Department of Botany, Faculty of Biology, University of Athens, Athens 15784, Greece and
| | - B Galatis
- Department of Botany, Faculty of Biology, University of Athens, Athens 15784, Greece and
| |
Collapse
|
23
|
Zhou X, Broadbelt L, Vinu R. Mechanistic Understanding of Thermochemical Conversion of Polymers and Lignocellulosic Biomass. THERMOCHEMICAL PROCESS ENGINEERING 2016. [DOI: 10.1016/bs.ache.2016.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
24
|
|
25
|
O'Rourke C, Gregson T, Murray L, Sadler IH, Fry SC. Sugar composition of the pectic polysaccharides of charophytes, the closest algal relatives of land-plants: presence of 3-O-methyl-D-galactose residues. ANNALS OF BOTANY 2015; 116:225-36. [PMID: 26113633 PMCID: PMC4512192 DOI: 10.1093/aob/mcv089] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/13/2015] [Accepted: 04/28/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS During evolution, plants have acquired and/or lost diverse sugar residues as cell-wall constituents. Of particular interest are primordial cell-wall features that existed, and in some cases abruptly changed, during the momentous step whereby land-plants arose from charophytic algal ancestors. METHODS Polysaccharides were extracted from four charophyte orders [Chlorokybales (Chlorokybus atmophyticus), Klebsormidiales (Klebsormidium fluitans, K. subtile), Charales (Chara vulgaris, Nitella flexilis), Coleochaetales (Coleochaete scutata)] and an early-diverging land-plant (Anthoceros agrestis). 'Pectins' and 'hemicelluloses', operationally defined as extractable in oxalate (100 °C) and 6 m NaOH (37 °C), respectively, were acid- or Driselase-hydrolysed, and the monosaccharides analysed chromatographically. One unusual monosaccharide, 'U', was characterized by (1)H/(13)C-nuclear magnetic resonance spectroscopy and also enzymically. KEY RESULTS 'U' was identified as 3-O-methyl-D-galactose (3-MeGal). All pectins, except in Klebsormidium, contained acid- and Driselase-releasable galacturonate, suggesting homogalacturonan. All pectins, without exception, released rhamnose and galactose on acid hydrolysis; however, only in 'higher' charophytes (Charales, Coleochaetales) and Anthoceros were these sugars also efficiently released by Driselase, suggesting rhamnogalacturonan-I. Pectins of 'higher' charophytes, especially Chara, contained little arabinose, instead possessing 3-MeGal. Anthoceros hemicelluloses were rich in glucose, xylose, galactose and arabinose (suggesting xyloglucan and arabinoxylan), none of which was consistently present in charophyte hemicelluloses. CONCLUSIONS Homogalacturonan is an ancient streptophyte feature, albeit secondarily lost in Klebsormidium. When conquering the land, the first embryophytes already possessed rhamnogalacturonan-I. In contrast, charophyte and land-plant hemicelluloses differ substantially, indicating major changes during terrestrialization. The presence of 3-MeGal in charophytes and lycophytes but not in the 'intervening' bryophytes confirms that cell-wall chemistry changed drastically between major phylogenetic grades.
Collapse
Affiliation(s)
- Christina O'Rourke
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK and
| | - Timothy Gregson
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK and
| | - Lorna Murray
- EastChem School of Chemistry, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3JJ, UK
| | - Ian H Sadler
- EastChem School of Chemistry, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3JJ, UK
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK and
| |
Collapse
|
26
|
Dos Santos CR, Cordeiro RL, Wong DWS, Murakami MT. Structural basis for xyloglucan specificity and α-d-Xylp(1 → 6)-D-Glcp recognition at the -1 subsite within the GH5 family. Biochemistry 2015; 54:1930-42. [PMID: 25714929 DOI: 10.1021/acs.biochem.5b00011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
GH5 is one of the largest glycoside hydrolase families, comprising at least 20 distinct activities within a common structural scaffold. However, the molecular basis for the functional differentiation among GH5 members is still not fully understood, principally for xyloglucan specificity. In this work, we elucidated the crystal structures of two novel GH5 xyloglucanases (XEGs) retrieved from a rumen microflora metagenomic library, in the native state and in complex with xyloglucan-derived oligosaccharides. These results provided insights into the structural determinants that differentiate GH5 XEGs from parental cellulases and a new mode of action within the GH5 family related to structural adaptations in the -1 subsite. The oligosaccharide found in the XEG5A complex, permitted the mapping, for the first time, of the positive subsites of a GH5 XEG, revealing the importance of the pocket-like topology of the +1 subsite in conferring the ability of some GH5 enzymes to attack xyloglucan. Complementarily, the XEG5B complex covered the negative subsites, completing the subsite mapping of GH5 XEGs at high resolution. Interestingly, XEG5B is, to date, the only GH5 member able to cleave XXXG into XX and XG, and in the light of these results, we propose that a modification in the -1 subsite enables the accommodation of a xylosyl side chain at this position. The stereochemical compatibility of the -1 subsite with a xylosyl moiety was also reported for other structurally nonrelated XEGs belonging to the GH74 family, indicating it to be an essential attribute for this mode of action.
Collapse
Affiliation(s)
- Camila Ramos Dos Santos
- †Brazilian Biosciences National Laboratory, National Center of Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Rosa Lorizolla Cordeiro
- †Brazilian Biosciences National Laboratory, National Center of Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Dominic W S Wong
- ‡Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, United States
| | - Mário Tyago Murakami
- †Brazilian Biosciences National Laboratory, National Center of Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| |
Collapse
|
27
|
Carriquí M, Cabrera HM, Conesa MÀ, Coopman RE, Douthe C, Gago J, Gallé A, Galmés J, Ribas-Carbo M, Tomás M, Flexas J. Diffusional limitations explain the lower photosynthetic capacity of ferns as compared with angiosperms in a common garden study. PLANT, CELL & ENVIRONMENT 2015; 38:448-60. [PMID: 24995519 DOI: 10.1111/pce.12402] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 05/19/2023]
Abstract
Ferns are thought to have lower photosynthetic rates than angiosperms and they lack fine stomatal regulation. However, no study has directly compared photosynthesis in plants of both groups grown under optimal conditions in a common environment. We present a common garden comparison of seven angiosperms and seven ferns paired by habitat preference, with the aims of (1) confirming that ferns do have lower photosynthesis capacity than angiosperms and quantifying these differences; (2) determining the importance of diffusional versus biochemical limitations; and (3) analysing the potential implication of leaf anatomical traits in setting the photosynthesis capacity in both groups. On average, the photosynthetic rate of ferns was about half that of angiosperms, and they exhibited lower stomatal and mesophyll conductance to CO2 (gm ), maximum velocity of carboxylation and electron transport rate. A quantitative limitation analysis revealed that stomatal and mesophyll conductances were co-responsible for the lower photosynthesis of ferns as compared with angiosperms. However, gm alone was the most constraining factor for photosynthesis in ferns. Consistently, leaf anatomy showed important differences between angiosperms and ferns, especially in cell wall thickness and the surface of chloroplasts exposed to intercellular air spaces.
Collapse
Affiliation(s)
- M Carriquí
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Palma de Mallorca Illes Balears, 07122, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Leroux O, Sørensen I, Marcus SE, Viane RLL, Willats WGT, Knox JP. Antibody-based screening of cell wall matrix glycans in ferns reveals taxon, tissue and cell-type specific distribution patterns. BMC PLANT BIOLOGY 2015; 15:56. [PMID: 25848828 PMCID: PMC4351822 DOI: 10.1186/s12870-014-0362-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/01/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND While it is kno3wn that complex tissues with specialized functions emerged during land plant evolution, it is not clear how cell wall polymers and their structural variants are associated with specific tissues or cell types. Moreover, due to the economic importance of many flowering plants, ferns have been largely neglected in cell wall comparative studies. RESULTS To explore fern cell wall diversity sets of monoclonal antibodies directed to matrix glycans of angiosperm cell walls have been used in glycan microarray and in situ analyses with 76 fern species and four species of lycophytes. All major matrix glycans were present as indicated by epitope detection with some variations in abundance. Pectic HG epitopes were of low abundance in lycophytes and the CCRC-M1 fucosylated xyloglucan epitope was largely absent from the Aspleniaceae. The LM15 XXXG epitope was detected widely across the ferns and specifically associated with phloem cell walls and similarly the LM11 xylan epitope was associated with xylem cell walls. The LM5 galactan and LM6 arabinan epitopes, linked to pectic supramolecules in angiosperms, were associated with vascular structures with only limited detection in ground tissues. Mannan epitopes were found to be associated with the development of mechanical tissues. We provided the first evidence for the presence of MLG in leptosporangiate ferns. CONCLUSIONS The data sets indicate that cell wall diversity in land plants is multifaceted and that matrix glycan epitopes display complex spatio-temporal and phylogenetic distribution patterns that are likely to relate to the evolution of land plant body plans.
Collapse
Affiliation(s)
- Olivier Leroux
- />Pteridology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, Ghent, B-9000 Belgium
| | - Iben Sørensen
- />Department of Plant Biology and Biotechnology, Copenhagen University, Thorvaldsensvej 40, Frederiksberg, 1871 Denmark
- />Department of Plant Biology, Cornell University, Ithaca, NY 14853 USA
| | - Susan E Marcus
- />Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT UK
| | - Ronnie LL Viane
- />Pteridology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, Ghent, B-9000 Belgium
| | - William GT Willats
- />Department of Plant Biology and Biotechnology, Copenhagen University, Thorvaldsensvej 40, Frederiksberg, 1871 Denmark
| | - J Paul Knox
- />Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT UK
| |
Collapse
|
29
|
|
30
|
Eeckhout S, Leroux O, Willats WGT, Popper ZA, Viane RLL. Comparative glycan profiling of Ceratopteris richardii 'C-Fern' gametophytes and sporophytes links cell-wall composition to functional specialization. ANNALS OF BOTANY 2014; 114:1295-307. [PMID: 24699895 PMCID: PMC4195545 DOI: 10.1093/aob/mcu039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/14/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS Innovations in vegetative and reproductive characters were key factors in the evolutionary history of land plants and most of these transformations, including dramatic changes in life cycle structure and strategy, necessarily involved cell-wall modifications. To provide more insight into the role of cell walls in effecting changes in plant structure and function, and in particular their role in the generation of vascularization, an antibody-based approach was implemented to compare the presence and distribution of cell-wall glycan epitopes between (free-living) gametophytes and sporophytes of Ceratopteris richardii 'C-Fern', a widely used model system for ferns. METHODS Microarrays of sequential diamino-cyclohexane-tetraacetic acid (CDTA) and NaOH extractions of gametophytes, spores and different organs of 'C-Fern' sporophytes were probed with glycan-directed monoclonal antibodies. The same probes were employed to investigate the tissue- and cell-specific distribution of glycan epitopes. KEY RESULTS While monoclonal antibodies against pectic homogalacturonan, mannan and xyloglucan widely labelled gametophytic and sporophytic tissues, xylans were only detected in secondary cell walls of the sporophyte. The LM5 pectic galactan epitope was restricted to sporophytic phloem tissue. Rhizoids and root hairs showed similarities in arabinogalactan protein (AGP) and xyloglucan epitope distribution patterns. CONCLUSIONS The differences and similarities in glycan cell-wall composition between 'C-Fern' gametophytes and sporophytes indicate that the molecular design of cell walls reflects functional specialization rather than genetic origin. Glycan epitopes that were not detected in gametophytes were associated with cell walls of specialized tissues in the sporophyte.
Collapse
Affiliation(s)
- Sharon Eeckhout
- Research Group Pteridology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Olivier Leroux
- Research Group Pteridology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium Botany and Plant Science and The Ryan Institute for Environmental, Marine and Energy Research, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| | - William G T Willats
- Department of Plant Biology and Biochemistry, Faculty of Life Sciences, University of Copenhagen, Buelowsvej 17-1870 Frederiksberg, Denmark
| | - Zoë A Popper
- Botany and Plant Science and The Ryan Institute for Environmental, Marine and Energy Research, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| | - Ronald L L Viane
- Research Group Pteridology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| |
Collapse
|
31
|
Mikkelsen MD, Harholt J, Ulvskov P, Johansen IE, Fangel JU, Doblin MS, Bacic A, Willats WGT. Evidence for land plant cell wall biosynthetic mechanisms in charophyte green algae. ANNALS OF BOTANY 2014; 114:1217-36. [PMID: 25204387 PMCID: PMC4195564 DOI: 10.1093/aob/mcu171] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 07/08/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIMS The charophyte green algae (CGA) are thought to be the closest living relatives to the land plants, and ancestral CGA were unique in giving rise to the land plant lineage. The cell wall has been suggested to be a defining structure that enabled the green algal ancestor to colonize land. These cell walls provide support and protection, are a source of signalling molecules, and provide developmental cues for cell differentiation and elongation. The cell wall of land plants is a highly complex fibre composite, characterized by cellulose cross-linked by non-cellulosic polysaccharides, such as xyloglucan, embedded in a matrix of pectic polysaccharides. How the land plant cell wall evolved is currently unknown: early-divergent chlorophyte and prasinophyte algae genomes contain a low number of glycosyl transferases (GTs), while land plants contain hundreds. The number of GTs in CGA is currently unknown, as no genomes are available, so this study sought to give insight into the evolution of the biosynthetic machinery of CGA through an analysis of available transcriptomes. METHODS Available CGA transcriptomes were mined for cell wall biosynthesis GTs and compared with GTs characterized in land plants. In addition, gene cloning was employed in two cases to answer important evolutionary questions. KEY RESULTS Genetic evidence was obtained indicating that many of the most important core cell wall polysaccharides have their evolutionary origins in the CGA, including cellulose, mannan, xyloglucan, xylan and pectin, as well as arabino-galactan protein. Moreover, two putative cellulose synthase-like D family genes (CSLDs) from the CGA species Coleochaete orbicularis and a fragment of a putative CSLA/K-like sequence from a CGA Spirogyra species were cloned, providing the first evidence that all the cellulose synthase/-like genes present in early-divergent land plants were already present in CGA. CONCLUSIONS The results provide new insights into the evolution of cell walls and support the notion that the CGA were pre-adapted to life on land by virtue of the their cell wall biosynthetic capacity. These findings are highly significant for understanding plant cell wall evolution as they imply that some features of land plant cell walls evolved prior to the transition to land, rather than having evolved as a result of selection pressures inherent in this transition.
Collapse
Affiliation(s)
- Maria D Mikkelsen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Jesper Harholt
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Peter Ulvskov
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Ida E Johansen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Jonatan U Fangel
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Monika S Doblin
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Victoria 3010, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Victoria 3010, Australia
| | - William G T Willats
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| |
Collapse
|
32
|
|
33
|
|
34
|
Simmons TJ, Uhrín D, Gregson T, Murray L, Sadler IH, Fry SC. An unexpectedly lichenase-stable hexasaccharide from cereal, horsetail and lichen mixed-linkage β-glucans (MLGs): implications for MLG subunit distribution. PHYTOCHEMISTRY 2013; 95:322-332. [PMID: 24025426 DOI: 10.1016/j.phytochem.2013.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/02/2013] [Accepted: 08/08/2013] [Indexed: 06/02/2023]
Abstract
Mixed-linkage (1→3),(1→4)-β-d-glucan (MLG) is a biologically and technologically important hemicellulose, known to occur in three widely separated lineages: the Poales (including grasses and cereals), Equisetum (fern-allies), and some lichens e.g. Iceland moss (Cetraria islandica). Lichenase (E.C. 3.2.1.73) is widely assumed to hydrolyse all (1→4) bonds that immediately follow (1→3) bonds in MLG, generating predominantly the tetrasaccharide β-d-Glcp-(1→4)-β-d-Glcp-(1→4)-β-d-Glcp-(1→3)-d-Glc (G4G4G3G; MLG4), the corresponding trisaccharide (G4G3G; MLG3), and sometimes also laminaribiose (G3G; MLG2). The ratio of the oligosaccharides produced characterises each polysaccharide. We report here that digestion of MLG from barley (Hordeum vulgare), Equisetum arvense and C. islandica by Bacillus subtilis lichenase also yields the unexpectedly stable hexasaccharide, β-d-Glcp-(1→3)-β-d-Glcp-(1→4)-β-d-Glcp-(1→4)-β-d-Glcp-(1→4)-β-d-Glcp-(1→3)-d-Glc (G3G4G4G4G3G, i.e. MLG2-MLG4), identified by thin-layer chromatography, gel-permeation chromatography, HPLC (HPAEC), β-glucosidase digestion, (1)H/(13)C-NMR spectroscopy and mass spectrometry. On HPLC, G3G4G4G4G3G is the major constituent of a peak previously ascribed solely to the nonasaccharide G4G4G4G4G4G4G4G3G. Because it was widely presumed that lichenase would cleave G3G4G4G4G3G to MLG2+MLG4, our data both redefine the substrate specificity of Bacillus lichenase and show previous attempts to characterise MLGs by HPLC of lichenase-digests to be flawed. MLG2 subunits are particularly underestimated; often reported as negligible, they are here shown to be an appreciable constituent of MLGs from all three lineages. We also show that there is no appreciable yield of water-soluble lichenase products with DP>9; potential identities of products previously labelled DP>9 are suggested. Finally, this discovery also provides a opportunity to investigate the spatial distribution of subunits along the MLG chain. We show that MLG2 subunits in barley and Cetraria MLG are not randomly distributed, but predominantly found at the non-reducing end of MLG4 subunits.
Collapse
Affiliation(s)
- Thomas J Simmons
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3JH, UK
| | | | | | | | | | | |
Collapse
|
35
|
Leroux O, Eeckhout S, Viane RLL, Popper ZA. Ceratopteris richardii (C-fern): a model for investigating adaptive modification of vascular plant cell walls. FRONTIERS IN PLANT SCIENCE 2013; 4:367. [PMID: 24065974 PMCID: PMC3779834 DOI: 10.3389/fpls.2013.00367] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/29/2013] [Indexed: 05/22/2023]
Abstract
Plant cell walls are essential for most aspects of plant growth, development, and survival, including cell division, expansive cell growth, cell-cell communication, biomechanical properties, and stress responses. Therefore, characterizing cell wall diversity contributes to our overall understanding of plant evolution and development. Recent biochemical analyses, concomitantly with whole genome sequencing of plants located at pivotal points in plant phylogeny, have helped distinguish between homologous characters and those which might be more derived. Most plant lineages now have at least one fully sequenced representative and although genome sequences for fern species are in progress they are not yet available for this group. Ferns offer key advantages for the study of developmental processes leading to vascularisation and complex organs as well as the specific differences between diploid sporophyte tissues and haploid gametophyte tissues and the interplay between them. Ceratopteris richardii has been well investigated building a body of knowledge which combined with the genomic and biochemical information available for other plants will progress our understanding of wall diversity and its impact on evolution and development.
Collapse
Affiliation(s)
- Olivier Leroux
- Botany and Plant Science and The Ryan Institute for Environmental, Marine and Energy Research, School of Natural Sciences, National University of IrelandGalway, Ireland
- Department of Biology, Research Group Pteridology, Ghent UniversityGhent, Belgium
| | - Sharon Eeckhout
- Department of Biology, Research Group Pteridology, Ghent UniversityGhent, Belgium
| | - Ronald L. L. Viane
- Department of Biology, Research Group Pteridology, Ghent UniversityGhent, Belgium
| | - Zoë A. Popper
- Botany and Plant Science and The Ryan Institute for Environmental, Marine and Energy Research, School of Natural Sciences, National University of IrelandGalway, Ireland
| |
Collapse
|
36
|
Franková L, Fry SC. Biochemistry and physiological roles of enzymes that 'cut and paste' plant cell-wall polysaccharides. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3519-50. [PMID: 23956409 DOI: 10.1093/jxb/ert201] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The plant cell-wall matrix is equipped with more than 20 glycosylhydrolase activities, including both glycosidases and glycanases (exo- and endo-hydrolases, respectively), which between them are in principle capable of hydrolysing most of the major glycosidic bonds in wall polysaccharides. Some of these enzymes also participate in the 'cutting and pasting' (transglycosylation) of sugar residues-enzyme activities known as transglycosidases and transglycanases. Their action and biological functions differ from those of the UDP-dependent glycosyltransferases (polysaccharide synthases) that catalyse irreversible glycosyl transfer. Based on the nature of the substrates, two types of reaction can be distinguished: homo-transglycosylation (occurring between chemically similar polymers) and hetero-transglycosylation (between chemically different polymers). This review focuses on plant cell-wall-localized glycosylhydrolases and the transglycosylase activities exhibited by some of these enzymes and considers the physiological need for wall polysaccharide modification in vivo. It describes the mechanism of transglycosylase action and the classification and phylogenetic variation of the enzymes. It discusses the modulation of their expression in plants at the transcriptional and translational levels, and methods for their detection. It also critically evaluates the evidence that the enzyme proteins under consideration exhibit their predicted activity in vitro and their predicted action in vivo. Finally, this review suggests that wall-localized glycosylhydrolases with transglycosidase and transglycanase abilities are widespread in plants and play important roles in the mechanism and control of plant cell expansion, differentiation, maturation, and wall repair.
Collapse
Affiliation(s)
- Lenka Franková
- Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JH, UK
| | | |
Collapse
|
37
|
Leroux O, Leroux F, Mastroberti AA, Santos-Silva F, Van Loo D, Bagniewska-Zadworna A, Van Hoorebeke L, Bals S, Popper ZA, de Araujo Mariath JE. Heterogeneity of silica and glycan-epitope distribution in epidermal idioblast cell walls in Adiantum raddianum laminae. PLANTA 2013; 237:1453-64. [PMID: 23430352 DOI: 10.1007/s00425-013-1856-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/01/2013] [Indexed: 05/06/2023]
Abstract
Laminae of Adiantum raddianum Presl., a fern belonging to the family Pteridaceae, are characterised by the presence of epidermal fibre-like cells under the vascular bundles. These cells were thought to contain silica bodies, but their thickened walls leave no space for intracellular silica suggesting it may actually be deposited within their walls. Using advanced electron microscopy in conjunction with energy dispersive X-ray microanalysis we showed the presence of silica in the cell walls of the fibre-like idioblasts. However, it was specifically localised to the outer layers of the periclinal wall facing the leaf surface, with the thick secondary wall being devoid of silica. Immunocytochemical experiments were performed to ascertain the respective localisation of silica deposition and glycan polymers. Epitopes characteristic for pectic homogalacturonan and the hemicelluloses xyloglucan and mannan were detected in most epidermal walls, including the silica-rich cell wall layers. The monoclonal antibody, LM6, raised against pectic arabinan, labelled the silica-rich primary wall of the epidermal fibre-like cells and the guard cell walls, which were also shown to contain silica. We hypothesise that the silicified outer wall layers of the epidermal fibre-like cells support the lamina during cell expansion prior to secondary wall formation. This implies that silicification does not impede cell elongation. Although our results suggest that pectic arabinan may be implicated in silica deposition, further detailed analyses are needed to confirm this. The combinatorial approach presented here, which allows correlative screening and in situ localisation of silicon and cell wall polysaccharide distribution, shows great potential for future studies.
Collapse
Affiliation(s)
- Olivier Leroux
- Botany and Plant Science and Ryan Institute for Environmental, Marine and Energy Research, School of Natural Sciences, National University of Ireland, Galway, University Road, Galway, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lenucci MS, Durante M, Anna M, Dalessandro G, Piro G. Possible use of the carbohydrates present in tomato pomace and in byproducts of the supercritical carbon dioxide lycopene extraction process as biomass for bioethanol production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:3683-3692. [PMID: 23517025 DOI: 10.1021/jf4005059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This study provides information about the carbohydrate present in tomato pomace (skins, seeds, and vascular tissues) as well as in the byproducts of the lycopene supercritical carbon dioxide extraction (SC-CO₂) such as tomato serum and exhausted matrix and reports their conversion into bioethanol. The pomace, constituting approximately 4% of the tomato fruit fresh weight, and the SC-CO₂-exhausted matrix were enzyme saccharified with 0.1% Driselase leading to sugar yields of ~383 and ~301 mg/g dw, respectively. Aliquots of the hydrolysates and of the serum (80% tomato sauce fw) were fermented by Saccharomyces cerevisiae . The bioethanol produced from each waste was usually >50% of the calculated theoretical amount, with the exception of the exhausted matrix hydolysate, where a sugar concentration >52.8 g/L inhibited the fermentation process. Furthermore, no differences in the chemical solubility of cell wall polysaccharides were evidenced between the SC-CO₂-lycopene extracted and unextracted matrices. The deduced glycosyl linkage composition and the calculated amount of cell wall polysaccharides remained similar in both matrices, indicating that the SC-CO₂ extraction technology does not affect their structure. Therefore, tomato wastes may well be considered as potential alternatives and low-cost feedstock for bioethanol production.
Collapse
Affiliation(s)
- Marcello S Lenucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Lecce, Italy.
| | | | | | | | | |
Collapse
|
39
|
Simmons TJ. Considerations in the search for mixed-linkage (1→3),(1→4)-β-D-glucan-active endotransglycosylases. PLANT SIGNALING & BEHAVIOR 2013; 8:e23835. [PMID: 23425852 PMCID: PMC7030212 DOI: 10.4161/psb.23835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Xyloglucan endotransglucosylase, catalyzed by XTH subfamily members, is thought to play crucial roles in plant cell wall physiology. Recent discovery of endotransglycosylases active on other hemicelluloses extend our understanding of the physiological scope of endotransglycosylation in general. Discovery in Poaceaen XTHs of endotransglycosylases which act on Poaceaen-prevalent hemicelluloses, such as MLG, could reconcile the apparent incongruence between the large size of Poaceaen putative XTH families and the low xyloglucan content of their cell walls. Here, I speculate on hypothetical MLG-active endotransglycosylases and highlight potential hindrances to their discovery. It is suggested that because the location of β-(1→3) bonds within MLG oligosaccharides (MLGOs) could define their ability to act as endotranglycosylase acceptor substrates: a) thorough probing of substrate specificities necessitates the use of MLGOs created using different endo-glycanases; and b) endogenous plant exo-glycosidases, which can hinder endotranglycosylase assays by degrading acceptor substrates, might prove particularly troublesome where MLGOs are concerned.
Collapse
Affiliation(s)
- Thomas J. Simmons
- The Edinburgh Cell Wall Group; Institute of Molecular Plant Sciences; School of Biological Sciences; The University of Edinburgh; Edinburgh, U.K
| |
Collapse
|
40
|
Funk JL, Amatangelo KL. Physiological mechanisms drive differing foliar calcium content in ferns and angiosperms. Oecologia 2013; 173:23-32. [DOI: 10.1007/s00442-013-2591-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 01/04/2013] [Indexed: 11/24/2022]
|
41
|
Mohler KE, Simmons TJ, Fry SC. Mixed-linkage glucan:xyloglucan endotransglucosylase (MXE) re-models hemicelluloses in Equisetum shoots but not in barley shoots or Equisetum callus. THE NEW PHYTOLOGIST 2013; 197:111-122. [PMID: 23078260 DOI: 10.1111/j.1469-8137.2012.04371.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/31/2012] [Indexed: 05/09/2023]
Abstract
Among land-plant hemicelluloses, xyloglucan is ubiquitous, whereas mixed-linkage (1→3),(1→4)-β-D-glucan (MLG) is confined to the Poales (e.g. cereals) and Equisetales (horsetails). The enzyme MLG:xyloglucan endotransglucosylase (MXE) grafts MLG to xyloglucan. In Equisetum, MXE often exceeds extractable xyloglucan endotransglucosylase (XET) activity; curiously, cereals lack extractable MXE. We investigated whether barley possesses inextractable MXE. Grafting of endogenous MLG or xyloglucan onto exogenous [(3)H]xyloglucan oligosaccharides in vivo indicated MXE and XET action, respectively. Extractable MXE and XET activities were assayed in vitro. MXE and XET actions were both detectable in living Equisetum fluviatile shoots, the MXE : XET ratio increasing with age. However, only XET action was observed in barley coleoptiles, leaves and roots (which all contained MLG) and in E. fluviatile intercalary meristems and callus (which lacked MLG). In E. fluviatile, extractable MXE activity was high in mature shoots, but extremely low in callus and young shoots; in E. arvense strobili, it was undetectable. Barley possesses neither extractable nor inextractable MXE, despite containing both of its substrates and high XET activity. As the Poales are xyloglucan-poor, the role of their abundant endotransglucosylases remains enigmatic. The distribution of MXE action and activity within Equisetum suggests a strengthening role in ageing tissues.
Collapse
Affiliation(s)
- Kyle E Mohler
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JH, UK
| | - Thomas J Simmons
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JH, UK
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JH, UK
| |
Collapse
|
42
|
Cuthbertson D, Piljac-Žegarac J, Lange BM. Validation of a microscale extraction and high-throughput UHPLC-QTOF-MS analysis method for huperzine A in Huperzia. Biomed Chromatogr 2012; 26:1191-5. [PMID: 22275140 PMCID: PMC3337887 DOI: 10.1002/bmc.2677] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 11/11/2011] [Accepted: 11/14/2011] [Indexed: 11/12/2022]
Abstract
Herein we report on an improved method for the microscale extraction of huperzine A (HupA), an acetylcholinesterase-inhibiting alkaloid, from as little as 3 mg of tissue homogenate from the clubmoss Huperzia squarrosa (G. Forst.) Trevis with 99.95% recovery. We also validated a novel UHPLC-QTOF-MS method for the high-throughput analysis of H. squarrosa extracts in only 6 min, which, in combination with the very low limit of detection (20 pg on column) and the wide linear range for quantification (20-10,000 pg on column), allow for a highly efficient screening of extracts containing varying amounts of HupA. Utilization of this methodology has the potential to conserve valuable plant resources.
Collapse
Affiliation(s)
- Daniel Cuthbertson
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340
| | - Jasenka Piljac-Žegarac
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340
- Department of Molecular Biology, Institute Ruđer Bošković, P.O. Box 180, 10,000 Zagreb, Croatia
| | - Bernd Markus Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340
| |
Collapse
|
43
|
Prakash R, Johnston SL, Boldingh HL, Redgwell RJ, Atkinson RG, Melton LD, Brummell DA, Schröder R. Mannans in tomato fruit are not depolymerized during ripening despite the presence of endo-β-mannanase. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1125-1133. [PMID: 22658221 DOI: 10.1016/j.jplph.2012.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 03/22/2012] [Accepted: 03/23/2012] [Indexed: 06/01/2023]
Abstract
Cell walls of tomato fruit contain hemicellulosic mannans that may fulfill a structural role. Two populations were purified from cell walls of red ripe tomato tissue and named galactoglucomannan-glucuronoxylan I and II (GGM-GX I and II), respectively. Both polysaccharides not only consisted of mannose, glucose and galactose, indicating the presence of GGM, but also contained xylose and glucuronic acid, indicating the presence of GX. Treatment of both polysaccharides with xylanase or endo-β-mannanase showed that the GX and the GGM were associated in a complex. The composition of GGM-GX II changed slightly during tomato ripening, but both GGM-GX I and II showed no change in molecular weight, indicating that they were not hydrolyzed during ripening. Ripe tomato fruit also possess an endo-β-mannanase, an enzyme that in vitro was capable of either hydrolyzing GGM-GX I and II (endo-β-mannanase activity), or transglycosylating them in the presence of mannan oligosaccharides (mannan transglycosylase activity). The lack of evidence for hydrolysis of these potential substrates in vivo suggests either that the enzyme and potential substrates are not accessible to each other for some reason, or that the main activity of endo-β-mannanase is not hydrolysis but transglycosylation, a reaction in which polysaccharide substrates and end-products are indistinguishable. Transglycosylation would remodel rather than weaken the cell wall and allow the fruit epidermis to possibly retain flexibility and plasticity to resist cracking and infection when the fruit is ripe.
Collapse
Affiliation(s)
- Roneel Prakash
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Hsieh YSY, Harris PJ. Structures of xyloglucans in primary cell walls of gymnosperms, monilophytes (ferns sensu lato) and lycophytes. PHYTOCHEMISTRY 2012; 79:87-101. [PMID: 22537406 DOI: 10.1016/j.phytochem.2012.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/16/2012] [Accepted: 03/22/2012] [Indexed: 05/02/2023]
Abstract
Little is known about the structures of the xyloglucans in the primary cell walls of vascular plants (tracheophytes) other than angiosperms. Xyloglucan structures were examined in 13 species of gymnosperms, 13 species of monilophytes (ferns sensu lato), and two species of lycophytes. Wall preparations were obtained, extracted with 6 M sodium hydroxide, and the extracts treated with a xyloglucan-specific endo-(1→4)-β-glucanase preparation. The oligosaccharides released were analysed by matrix-assisted laser-desorption ionisation time-of-flight mass spectrometry and by high-performance anion-exchange chromatography. The xyloglucan oligosaccharide profiles from the gymnosperm walls were similar to those from the walls of most eudicotyledons and non-commelinid monocotyledons, indicating that the xyloglucans were fucogalactoxyloglucans, containing the fucosylated units XXFG and XLFG. The xyloglucan oligosaccharide profiles for six of the monilophyte species were similar to those of the gymnosperms, indicating they were also fucogalactoxyloglucans. Phylogenetically, these monilophyte species were from both basal and more derived orders. However, the profiles for the other monilophyte species showed various significant differences, including additional oligosaccharides. In three of the species, these additional oligosaccharides contained arabinosyl residues which were most abundant in the profile of Equisetum hyemale. The two species of lycophytes examined, Selaginella kraussiana and Lycopodium cernuum, had quite different xyloglucan oligosaccharide profiles, but neither were fucogalactoxyloglucans. The S. kraussiana profile had abundant oligosaccharides containing arabinosyl residues. The L. cernuum profile indicated the xyloglucan had a very complex structure.
Collapse
Affiliation(s)
- Yves S Y Hsieh
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | |
Collapse
|
45
|
Zabotina OA. Xyloglucan and its biosynthesis. FRONTIERS IN PLANT SCIENCE 2012; 3:134. [PMID: 22737157 PMCID: PMC3382260 DOI: 10.3389/fpls.2012.00134] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/05/2012] [Indexed: 05/07/2023]
Abstract
The hemicellulosic polysaccharide xyloglucan (XyG), found in the primary cell walls of most plant tissues, is important for structural organization of the cell wall and regulation of growth and development. Significant recent progress in structural characterization of XyGs from different plant species has shed light on the diversification of XyG during plant evolution. Also, identification of XyG biosynthetic enzymes and examination of their interactions suggests the involvement of a multiprotein complex in XyG biosynthesis. This mini-review presents an updated overview of the diversity of XyG structures in plant taxa and recent findings on XyG biosynthesis.
Collapse
Affiliation(s)
- Olga A Zabotina
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University Ames, IA, USA
| |
Collapse
|
46
|
Rodríguez-Gacio MDC, Iglesias-Fernández R, Carbonero P, Matilla AJ. Softening-up mannan-rich cell walls. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3976-88. [PMID: 22553284 DOI: 10.1093/jxb/ers096] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The softening and degradation of the cell wall (CW), often mannan enriched, is involved in several processes during development of higher plants, such as meristematic growth, fruit ripening, programmed cell death, and endosperm rupture upon germination. Mannans are also the predominant hemicellulosic CW polymers in many genera of green algae. The endosperm CWs of dry seeds often contain mannan polymers, sometimes in the form of galactomannans (Gal-mannans). The endo-β-mannanases (MANs) that catalyse the random hydrolysis of the β-linkage in the mannan backbone are one of the main hydrolytic enzymes involved in the loosening and remodelling of CWs. In germinating seeds, the softening of the endosperm seed CWs facilitates the emergence of the elongating radicle. Hydrolysis and mobilization of endosperm Gal-mannans by MANs also provides a source of nutrients for early seedling growth, since Gal-mannan, besides its structural role, serves as a storage polysaccharide. Therefore, the role of mannans and of their hydrolytic enzymes is decisive in the life cycle of seeds. This review updates and discusses the significance of mannans and MANs in seeds and explores the increasing biotechnological potential of MAN enzymes.
Collapse
|
47
|
Xue X, Fry SC. Evolution of mixed-linkage (1 -> 3, 1 -> 4)-β-D-glucan (MLG) and xyloglucan in Equisetum (horsetails) and other monilophytes. ANNALS OF BOTANY 2012; 109:873-86. [PMID: 22378839 PMCID: PMC3310500 DOI: 10.1093/aob/mcs018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 01/13/2012] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Horsetails (Equisetopsida) diverged from other extant eusporangiate monilophytes in the Upper Palaeozoic. They are the only monilophytes known to contain the hemicellulose mixed-linkage (1 → 3, 1 → 4)-β-d-glucan (MLG), whereas all land plants possess xyloglucan. It has been reported that changes in cell-wall chemistry often accompanied major evolutionary steps. We explored changes in hemicelluloses occurring during Equisetum evolution. METHODS Hemicellulose from numerous monilophytes was treated with lichenase and xyloglucan endoglucanase. Lichenase digests MLG to di-, tri- and tetrasaccharide repeat-units, resolvable by thin-layer chromatography. KEY RESULTS Among monilophytes, MLG was confined to horsetails. Our analyses support a basal trichotomy of extant horsetails: MLG was more abundant in subgenus Equisetum than in subgenus Hippochaete, and uniquely the sister group E. bogotense yielded almost solely the tetrasaccharide repeat-unit (G4G4G3G). Other species also gave the disaccharide, whereas the trisaccharide was consistently very scarce. Tetrasaccharide : disaccharide ratios varied interspecifically, but with no consistent difference between subgenera. Xyloglucan was scarce in Psilotum and subgenus Equisetum, but abundant in subgenus Hippochaete and in the eusporangiate ferns Marattia and Angiopteris; leptosporangiate ferns varied widely. All monilophytes shared a core pattern of xyloglucan repeat-units, major XEG products co-chromatographing on thin-layer chromatography with non-fucosylated hepta-, octa- and nonasaccharides and fucose-containing nona- and decasaccharides. CONCLUSIONS G4G4G3G is the ancestral repeat-unit of horsetail MLG. Horsetail evolution was accompanied by quantitative and qualitative modification of MLG; variation within subgenus Hippochaete suggests that the structure and biosynthesis of MLG is evolutionarily plastic. Xyloglucan quantity correlates negatively with abundance of other hemicelluloses; but qualitatively, all monilophyte xyloglucans conform to a core pattern of repeat-unit sizes.
Collapse
Affiliation(s)
| | - Stephen C. Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JH, UK
| |
Collapse
|
48
|
Silva GB, Ionashiro M, Carrara TB, Crivellari AC, Tiné MAS, Prado J, Carpita NC, Buckeridge MS. Cell wall polysaccharides from fern leaves: evidence for a mannan-rich Type III cell wall in Adiantum raddianum. PHYTOCHEMISTRY 2011; 72:2352-60. [PMID: 21955619 DOI: 10.1016/j.phytochem.2011.08.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 07/02/2011] [Accepted: 08/16/2011] [Indexed: 05/08/2023]
Abstract
Primary cell walls from plants are composites of cellulose tethered by cross-linking glycans and embedded in a matrix of pectins. Cell wall composition varies between plant species, reflecting in some instances the evolutionary distance between them. In this work the monosaccharide compositions of isolated primary cell walls of nine fern species and one lycophyte were characterized and compared with those from Equisetum and an angiosperm dicot. The relatively high abundance of mannose in these plants suggests that mannans may constitute the major cross-linking glycan in the primary walls of pteridophytes and lycophytes. Pectin-related polysaccharides contained mostly rhamnose and uronic acids, indicating the presence of rhamnogalacturonan I highly substituted with galactose and arabinose. Structural and fine-structural analyses of the hemicellulose fraction of leaves of Adiantum raddianum confirmed this hypothesis. Linkage analysis showed that the mannan contains mostly 4-Man with very little 4,6-Man, indicating a low percentage of branching with galactose. Treatment of the mannan-rich fractions with endo-β-mannanase produced characteristic mannan oligosaccharides. Minor amounts of xyloglucan and xylans were also detected. These data and those of others suggest that all vascular plants contain xyloglucans, arabinoxylans, and (gluco)mannans, but in different proportions that define cell wall types. Whereas xyloglucan and pectin-rich walls define Type I walls of dicots and many monocots, arabinoxylans and lower proportion of pectin define the Type II walls of commelinoid monocots. The mannan-rich primary walls with low pectins of many ferns and a lycopod indicate a fundamentally different wall type among land plants, the Type III wall.
Collapse
Affiliation(s)
- Giovanna B Silva
- Laboratório de Fisiologia Ecológica de Plantas (LAFIECO), Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Franková L, Fry SC. Phylogenetic variation in glycosidases and glycanases acting on plant cell wall polysaccharides, and the detection of transglycosidase and trans-β-xylanase activities. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:662-81. [PMID: 21554451 DOI: 10.1111/j.1365-313x.2011.04625.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Wall polysaccharide chemistry varies phylogenetically, suggesting a need for variation in wall enzymes. Although plants possess the genes for numerous putative enzymes acting on wall carbohydrates, the activities of the encoded proteins often remain conjectural. To explore phylogenetic differences in demonstrable enzyme activities, we extracted proteins from 57 rapidly growing plant organs with three extractants, and assayed their ability to act on six oligosaccharides 'modelling' selected cell-wall polysaccharides. Based on reaction products, we successfully distinguished exo- and endo-hydrolases and found high taxonomic variation in all hydrolases screened: β-D-xylosidase, endo-(1→4)-β-D-xylanase, β-D-mannosidase, endo-(1→4)-β-D-mannanase, α-D-xylosidase, β-D-galactosidase, α-L-arabinosidase and α-L-fucosidase. The results, as GHATAbase, a searchable compendium in Excel format, also provide a compilation for selecting rich sources of enzymes acting on wall carbohydrates. Four of the hydrolases were accompanied, sometimes exceeded, by transglycosylase activities, generating products larger than the substrate. For example, during β-xylosidase assays on (1→4)-β-D-xylohexaose (Xyl₆), Marchantia, Selaginella and Equisetum extracts gave negligible free xylose but approximately equimolar Xyl₅ and Xyl₇, indicating trans-β-xylosidase activity, also found in onion, cereals, legumes and rape. The yield of Xyl₉ often exceeded that of Xyl₇₋₈, indicating that β-xylanase was accompanied by an endotransglycosylase activity, here called trans-β-xylanase, catalysing the reaction 2Xyl₆ → Xyl₃ + Xyl₉. Similar evidence also revealed trans-α-xylosidase, trans-α-arabinosidase and trans-α-arabinanase activities acting on xyloglucan oligosaccharides and (1→5)-α-L-arabino-oligosaccharides. In conclusion, diverse plants differ dramatically in extractable enzymes acting on wall carbohydrate, reflecting differences in wall polysaccharide composition. Besides glycosidase and glycanase activities, five new transglycosylase activities were detected. We propose that such activities function in the assembly and re-structuring of the wall matrix.
Collapse
Affiliation(s)
- Lenka Franková
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH93JH, UK
| | | |
Collapse
|
50
|
Leroux O, Knox JP, Masschaele B, Bagniewska-Zadworna A, Marcus SE, Claeys M, van Hoorebeke L, Viane RLL. An extensin-rich matrix lines the carinal canals in Equisetum ramosissimum, which may function as water-conducting channels. ANNALS OF BOTANY 2011; 108:307-19. [PMID: 21752793 PMCID: PMC3143055 DOI: 10.1093/aob/mcr161] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS The anatomy of Equisetum stems is characterized by the occurrence of vallecular and carinal canals. Previous studies on the carinal canals in several Equisetum species suggest that they convey water from one node to another. METHODS Cell wall composition and ultrastructure have been studied using immunocytochemistry and electron microscopy, respectively. Serial sectioning and X-ray computed tomography were employed to examine the internode-node-internode transition of Equisetum ramosissimum. KEY RESULTS The distribution of the LM1 and JIM20 extensin epitopes is restricted to the lining of carinal canals. The monoclonal antibodies JIM5 and LM19 directed against homogalacturonan with a low degree of methyl esterification and the CBM3a probe recognizing crystalline cellulose also bound to this lining. The xyloglucan epitopes recognized by LM15 and CCRC-M1 were only detected in this lining after pectate lyase treatment. The carinal canals, connecting consecutive rings of nodal xylem, are formed by the disruption and dissolution of protoxylem elements during elongation of the internodes. Their inner surface appears smooth compared with that of vallecular canals. CONCLUSIONS The carinal canals in E. ramosissimum have a distinctive lining containing pectic homogalacturonan, cellulose, xyloglucan and extensin. These canals might function as water-conducting channels which would be especially important during the elongation of the internodes when protoxylem is disrupted and the metaxylem is not yet differentiated. How the molecularly distinct lining relates to the proposed water-conducting function of the carinal canals requires further study. Efforts to elucidate the spatial and temporal distribution of cell wall polymers in a taxonomically broad range of plants will probably provide more insight into the structural-functional relationships of individual cell wall components or of specific configurations of cell wall polymers.
Collapse
Affiliation(s)
- O Leroux
- Pteridology, Department of Biology, Ghent University, KL Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|