1
|
Zhang R, Xu Y, Yi R, Shen J, Huang S. Actin cytoskeleton in the control of vesicle transport, cytoplasmic organization, and pollen tube tip growth. PLANT PHYSIOLOGY 2023; 193:9-25. [PMID: 37002825 DOI: 10.1093/plphys/kiad203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Pollen tubes extend rapidly via tip growth. This process depends on a dynamic actin cytoskeleton, which has been implicated in controlling organelle movements, cytoplasmic streaming, vesicle trafficking, and cytoplasm organization in pollen tubes. In this update review, we describe the progress in understanding the organization and regulation of the actin cytoskeleton and the function of the actin cytoskeleton in controlling vesicle traffic and cytoplasmic organization in pollen tubes. We also discuss the interplay between ion gradients and the actin cytoskeleton that regulates the spatial arrangement and dynamics of actin filaments and the organization of the cytoplasm in pollen tubes. Finally, we describe several signaling components that regulate actin dynamics in pollen tubes.
Collapse
Affiliation(s)
- Ruihui Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanan Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ran Yi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiangfeng Shen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Live Cell Imaging of Arabidopsis Root Hairs. Methods Mol Biol 2019. [PMID: 31148048 DOI: 10.1007/978-1-4939-9469-4_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Root hairs are tubular extensions from the root surface that expand by tip growth. This highly focused type of cell expansion, combined with position of root hairs on the surface of the root, makes them ideal cells for microscopic observation. This chapter describes the method that is routinely used in our laboratory for live cell imaging of Arabidopsis root hairs.
Collapse
|
3
|
Wang CX, Qi CY, Luo JH, Liu L, He Y, Chen LQ. Characterization of LRL5 as a key regulator of root hair growth in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:71-82. [PMID: 30556198 DOI: 10.1111/tpj.14200] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/05/2018] [Accepted: 11/21/2018] [Indexed: 05/27/2023]
Abstract
Root hair, a special type of tubular-shaped cell, outgrows from the root epidermal cell and plays important roles in the acquisition of nutrients and water, as well as interactions with biotic and abiotic stresses. Studies in the model plant Arabidopsis have revealed that root-hair initiation and elongation are hierarchically regulated by a group of basic helix-loop-helix (bHLH) transcription factors (TFs). However, knowledge regarding the regulatory pathways of these bHLH TFs in controlling root hair growth remains limited. In this study, RNA-seq analysis was conducted to profile the transcriptome in the elongating maize root hair and >1000 genes with preferential expression in root hair were identified. A consensus cis-element previously featured as the potential bHLH-TF binding sites was present in the regulatory regions for the majority of the root hair-preferentially expressed genes. In addition, an individual change in ZmLRL5, the highest-expressed bHLH-TF in maize root hair resulted in a dramatic reduction in the elongation of root hair, and rendered the growth of root hair hypersensitive to translational inhibition. Moreover, RNA-seq, yeast-one-hybrid and ribosome profile analysis suggested that ZmLRL5 may function as a key player in orchestrating the translational process by directly regulating the expression of translational processes/ribosomal genes during maize root hair growth.
Collapse
Affiliation(s)
- Chun-Xia Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chuang-Ye Qi
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Jin-Hong Luo
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Lin Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan He
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Li-Qun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
4
|
Paez-Garcia A, Sparks JA, de Bang L, Blancaflor EB. Plant Actin Cytoskeleton: New Functions from Old Scaffold. PLANT CELL MONOGRAPHS 2018. [DOI: 10.1007/978-3-319-69944-8_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Functions of actin-interacting protein 1 (AIP1)/WD repeat protein 1 (WDR1) in actin filament dynamics and cytoskeletal regulation. Biochem Biophys Res Commun 2017; 506:315-322. [PMID: 29056508 DOI: 10.1016/j.bbrc.2017.10.096] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 10/18/2017] [Indexed: 02/04/2023]
Abstract
Actin-depolymerizing factor (ADF)/cofilin and actin-interacting protein 1 (AIP1), also known as WD-repeat protein 1 (WDR1), are conserved among eukaryotes and play critical roles in dynamic reorganization of the actin cytoskeleton. AIP1 preferentially promotes disassembly of ADF/cofilin-decorated actin filaments but exhibits minimal effects on bare actin filaments. Therefore, AIP1 has been often considered to be an ancillary co-factor of ADF/cofilin that merely boosts ADF/cofilin activity level. However, genetic and cell biological studies show that AIP1 deficiency often causes lethality or severe abnormalities in multiple tissues and organs including muscle, epithelia, and blood, suggesting that AIP1 is a major regulator of many biological processes that depend on actin dynamics. This review summarizes recent progress in studies on the biochemical mechanism of actin filament severing by AIP1 and in vivo functions of AIP1 in model organisms and human diseases.
Collapse
|
6
|
Inada N. Plant actin depolymerizing factor: actin microfilament disassembly and more. JOURNAL OF PLANT RESEARCH 2017; 130:227-238. [PMID: 28044231 PMCID: PMC5897475 DOI: 10.1007/s10265-016-0899-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/14/2016] [Indexed: 05/19/2023]
Abstract
ACTIN DEPOLYMERIZING FACTOR (ADF) is a conserved protein among eukaryotes. The main function of ADF is the severing and depolymerizing filamentous actin (F-actin), thus regulating F-actin organization and dynamics and contributing to growth and development of the organisms. Mammalian genomes contain only a few ADF genes, whereas angiosperm plants have acquired an expanding number of ADFs, resulting in the differentiation of physiological functions. Recent studies have revealed functions of ADFs in plant growth and development, and various abiotic and biotic stress responses. In biotic stress responses, ADFs are involved in both susceptibility and resistance, depending on the pathogens. Furthermore, recent studies have highlighted a new role of ADF in the nucleus, possibly in the regulation of gene expression. In this review, I will summarize the current status of plant ADF research and discuss future research directions.
Collapse
Affiliation(s)
- Noriko Inada
- The Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara, 630-0192, Japan.
| |
Collapse
|
7
|
14-3-3 λ protein interacts with ADF1 to regulate actin cytoskeleton dynamics in Arabidopsis. SCIENCE CHINA-LIFE SCIENCES 2015; 58:1142-50. [DOI: 10.1007/s11427-015-4897-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/28/2015] [Indexed: 01/15/2023]
|
8
|
Kiefer CS, Claes AR, Nzayisenga JC, Pietra S, Stanislas T, Hüser A, Ikeda Y, Grebe M. Arabidopsis AIP1-2 restricted by WER-mediated patterning modulates planar polarity. Development 2014; 142:151-61. [PMID: 25428588 PMCID: PMC4299142 DOI: 10.1242/dev.111013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The coordination of cell polarity within the plane of the tissue layer (planar polarity) is crucial for the development of diverse multicellular organisms. Small Rac/Rho-family GTPases and the actin cytoskeleton contribute to planar polarity formation at sites of polarity establishment in animals and plants. Yet, upstream pathways coordinating planar polarity differ strikingly between kingdoms. In the root of Arabidopsis thaliana, a concentration gradient of the phytohormone auxin coordinates polar recruitment of Rho-of-plant (ROP) to sites of polar epidermal hair initiation. However, little is known about cytoskeletal components and interactions that contribute to this planar polarity or about their relation to the patterning machinery. Here, we show that ACTIN7 (ACT7) represents a main actin isoform required for planar polarity of root hair positioning, interacting with the negative modulator ACTIN-INTERACTING PROTEIN1-2 (AIP1-2). ACT7, AIP1-2 and their genetic interaction are required for coordinated planar polarity of ROP downstream of ethylene signalling. Strikingly, AIP1-2 displays hair cell file-enriched expression, restricted by WEREWOLF (WER)-dependent patterning and modified by ethylene and auxin action. Hence, our findings reveal AIP1-2, expressed under control of the WER-dependent patterning machinery and the ethylene signalling pathway, as a modulator of actin-mediated planar polarity. Summary: Planar polarity in Arabidopsis is shaped by ACTIN-INTERACTING PROTEIN1-2, which is under the control of WEREWOLF-dependent patterning and ethylene signalling.
Collapse
Affiliation(s)
- Christian S Kiefer
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå SE-90 187, Sweden
| | - Andrea R Claes
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå SE-90 187, Sweden
| | - Jean-Claude Nzayisenga
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå SE-90 187, Sweden
| | - Stefano Pietra
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå SE-90 187, Sweden
| | - Thomas Stanislas
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå SE-90 187, Sweden
| | - Anke Hüser
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå SE-90 187, Sweden
| | - Yoshihisa Ikeda
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå SE-90 187, Sweden
| | - Markus Grebe
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå SE-90 187, Sweden Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm D-14476, Germany
| |
Collapse
|
9
|
Grierson C, Nielsen E, Ketelaarc T, Schiefelbein J. Root hairs. THE ARABIDOPSIS BOOK 2014; 12:e0172. [PMID: 24982600 PMCID: PMC4075452 DOI: 10.1199/tab.0172] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair specification in Arabidopsis is determined by position-dependent signaling and molecular feedback loops causing differential accumulation of a WD-bHLH-Myb transcriptional complex. The initiation of root hairs is dependent on the RHD6 bHLH gene family and auxin to define the site of outgrowth. Root hair elongation relies on polarized cell expansion at the growing tip, which involves multiple integrated processes including cell secretion, endomembrane trafficking, cytoskeletal organization, and cell wall modifications. The study of root hair biology in Arabidopsis has provided a model cell type for insights into many aspects of plant development and cell biology.
Collapse
Affiliation(s)
- Claire Grierson
- School of Biological Sciences, University of Bristol, Bristol, UK BS8 1UG
| | - Erik Nielsen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA 48109
| | - Tijs Ketelaarc
- Laboratory of Cell Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA 48109
| |
Collapse
|
10
|
Abstract
Root hairs are tubular extensions from the root surface that expand by tip growth. This highly focused type of cell expansion, combined with position of root hairs on the surface of the root, makes them ideal cells for microscopic observation. This chapter describes the method that is routinely used in our laboratory for live cell imaging of Arabidopsis root hairs.
Collapse
|
11
|
Ketelaar T. The actin cytoskeleton in root hairs: all is fine at the tip. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:749-56. [PMID: 24446547 DOI: 10.1016/j.pbi.2013.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Filamentous actin forms characteristic bundles in plant cells that facilitate cytoplasmic streaming. In contrast, networks of actin exhibiting fast turnover are found especially near sites of rapid cell expansion. These networks may serve various functions including delivering and retaining vesicles while preventing penetration of organelles into the area where cell growth occurs thereby allowing fast turnover of vesicles to and from the plasma membrane. Root hairs elongate by polarized growth at their tips and the local accumulation of fine F-actin near the tip has provided valuable insight into the organization of these networks. Here we will sequentially focus on the role of the actin cytoskeleton in root hair tip growth and on how activities of different actin binding proteins in the apical part of growing root hairs contribute to build the fine F-actin configuration that correlates with tip growth.
Collapse
|
12
|
Augustine RC, Pattavina KA, Tüzel E, Vidali L, Bezanilla M. Actin interacting protein1 and actin depolymerizing factor drive rapid actin dynamics in Physcomitrella patens. THE PLANT CELL 2011; 23:3696-710. [PMID: 22003077 PMCID: PMC3229144 DOI: 10.1105/tpc.111.090753] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The remodeling of actin networks is required for a variety of cellular processes in eukaryotes. In plants, several actin binding proteins have been implicated in remodeling cortical actin filaments (F-actin). However, the extent to which these proteins support F-actin dynamics in planta has not been tested. Using reverse genetics, complementation analyses, and cell biological approaches, we assessed the in vivo function of two actin turnover proteins: actin interacting protein1 (AIP1) and actin depolymerizing factor (ADF). We report that AIP1 is a single-copy gene in the moss Physcomitrella patens. AIP1 knockout plants are viable but have reduced expansion of tip-growing cells. AIP1 is diffusely cytosolic and functions in a common genetic pathway with ADF to promote tip growth. Specifically, ADF can partially compensate for loss of AIP1, and AIP1 requires ADF for function. Consistent with a role in actin remodeling, AIP1 knockout lines accumulate F-actin bundles, have fewer dynamic ends, and have reduced severing frequency. Importantly, we demonstrate that AIP1 promotes and ADF is essential for cortical F-actin dynamics.
Collapse
Affiliation(s)
- Robert C. Augustine
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003
| | - Kelli A. Pattavina
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003
| | - Erkan Tüzel
- Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| | - Luis Vidali
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| | - Magdalena Bezanilla
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003
- Address correspondence to
| |
Collapse
|
13
|
Libault M, Brechenmacher L, Cheng J, Xu D, Stacey G. Root hair systems biology. TRENDS IN PLANT SCIENCE 2010; 15:641-50. [PMID: 20851035 DOI: 10.1016/j.tplants.2010.08.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/19/2010] [Accepted: 08/23/2010] [Indexed: 05/20/2023]
Abstract
Plant functional genomic studies have largely measured the response of whole plants, organs and tissues, resulting in the dilution of the signal from individual cells. Methods are needed where the full repertoire of functional genomic tools can be applied to a single plant cell. Root hair cells are an attractive model to study the biology of a single, differentiated cell type because of their ease of isolation, polar growth, and role in water and nutrient uptake, as well as being the site of infection by nitrogen-fixing bacteria. This review highlights the recent advances in our understanding of plant root hair biology and examines whether the root hair has potential as a model for plant cell systems biology.
Collapse
Affiliation(s)
- Marc Libault
- Division of Plant Sciences, National Center for Soybean Biotechnology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | |
Collapse
|
14
|
Beck M, Komis G, Müller J, Menzel D, Šamaj J. Arabidopsis homologs of nucleus- and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essential for microtubule organization. THE PLANT CELL 2010; 22:755-71. [PMID: 20215588 PMCID: PMC2861451 DOI: 10.1105/tpc.109.071746] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 02/08/2010] [Accepted: 02/27/2010] [Indexed: 05/18/2023]
Abstract
A double homozygous recessive mutant in the Arabidopsis thaliana homologs of nucleus- and phragmoplast-localized kinase 2 (ANP2) and 3 (ANP3) genes and a homozygous recessive mutant in the mitogen-activated protein kinase 4 (MPK4) gene of Arabidopsis exhibit deficiencies in the overall microtubule (MT) organization, which result in abnormal cell growth patterns, such as branching of root hairs and swelling of diffusely growing epidermal cells. Genetic, pharmacological, molecular, cytological, and biochemical analyses show that the major underlying mechanism for these phenotypes is excessive MT stabilization manifested in both mutants as heavy MT bundling, disorientation, and drug stability. The above defects in MAPK signaling result in the adverse regulation of members of the microtubule-associated protein (MAP65) protein family, including strongly diminished phosphorylation of MAP65-1. These data suggest that ANP2/ANP3, MPK4, and the microtubule-associated protein MAP65-1, a putative target of MPK4 signaling, are all essential for the proper organization of cortical microtubules in Arabidopsis epidermal cells.
Collapse
Affiliation(s)
- Martina Beck
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
| | - George Komis
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
- Department of Botany, Faculty of Biology, University of Athens, GR-15784 Athens, Greece
| | - Jens Müller
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
| | - Diedrik Menzel
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
| | - Jozef Šamaj
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 01 Olomouc, Czech Republic
- Address correspondence to
| |
Collapse
|
15
|
Thomas C, Tholl S, Moes D, Dieterle M, Papuga J, Moreau F, Steinmetz A. Actin bundling in plants. ACTA ACUST UNITED AC 2009; 66:940-57. [DOI: 10.1002/cm.20389] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Clément M, Ketelaar T, Rodiuc N, Banora MY, Smertenko A, Engler G, Abad P, Hussey PJ, de Almeida Engler J. Actin-depolymerizing factor2-mediated actin dynamics are essential for root-knot nematode infection of Arabidopsis. THE PLANT CELL 2009; 21:2963-79. [PMID: 19794115 PMCID: PMC2768942 DOI: 10.1105/tpc.109.069104] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 08/14/2009] [Accepted: 09/01/2009] [Indexed: 05/19/2023]
Abstract
Reorganization of the actin and microtubule networks is known to occur in targeted vascular parenchymal root cells upon infection with the nematode Meloidogyne incognita. Here, we show that actin-depolymerizing factor (ADF) is upregulated in the giant feeding cells of Arabidopsis thaliana that develop upon nematode infection and that knockdown of a specific ADF isotype inhibits nematode proliferation. Analysis of the levels of transcript and the localization of seven ADF genes shows that five are upregulated in galls that result from the infection and that ADF2 expression is particularly increased between 14 and 21 d after nematode inoculation. Further analysis of ADF2 function in inducible RNA interference lines designed to knock down ADF2 expression reveals that this protein is required for normal cell growth and plant development. The net effect of decreased levels of ADF2 is F-actin stabilization in cells, resulting from decreased F-actin turnover. In nematode-infected plants with reduced levels of ADF2, the galls containing the giant feeding cells and growing nematodes do not develop due to the arrest in growth of the giant multinucleate feeding cells, which in turn is due to an aberrant actin network.
Collapse
Affiliation(s)
- Mathilde Clément
- Unité Mixte de Recherches Interactions Biotiques et Santé Végétale, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université de Nice-Sophia Antipolis, F-06903 Sophia Antipolis, France
| | - Tijs Ketelaar
- Laboratory of Plant Cell Biology, Wageningen University, 6703 BD Wageningen, The Netherlands
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, United Kingdom
| | - Natalia Rodiuc
- Unité Mixte de Recherches Interactions Biotiques et Santé Végétale, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université de Nice-Sophia Antipolis, F-06903 Sophia Antipolis, France
| | - Mohamed Youssef Banora
- Unité Mixte de Recherches Interactions Biotiques et Santé Végétale, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université de Nice-Sophia Antipolis, F-06903 Sophia Antipolis, France
| | - Andrei Smertenko
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, United Kingdom
| | - Gilbert Engler
- Unité Mixte de Recherches Interactions Biotiques et Santé Végétale, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université de Nice-Sophia Antipolis, F-06903 Sophia Antipolis, France
| | - Pierre Abad
- Unité Mixte de Recherches Interactions Biotiques et Santé Végétale, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université de Nice-Sophia Antipolis, F-06903 Sophia Antipolis, France
| | - Patrick J. Hussey
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, United Kingdom
| | - Janice de Almeida Engler
- Unité Mixte de Recherches Interactions Biotiques et Santé Végétale, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université de Nice-Sophia Antipolis, F-06903 Sophia Antipolis, France
- Address correspondence to
| |
Collapse
|
17
|
Brechenmacher L, Lee J, Sachdev S, Song Z, Nguyen THN, Joshi T, Oehrle N, Libault M, Mooney B, Xu D, Cooper B, Stacey G. Establishment of a protein reference map for soybean root hair cells. PLANT PHYSIOLOGY 2009; 149:670-82. [PMID: 19036831 PMCID: PMC2633823 DOI: 10.1104/pp.108.131649] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 11/24/2008] [Indexed: 05/19/2023]
Abstract
Root hairs are single tubular cells formed from the differentiation of epidermal cells on roots. They are involved in water and nutrient uptake and represent the infection site on leguminous roots by rhizobia, soil bacteria that establish a nitrogen-fixing symbiosis. Root hairs develop by polar cell expansion or tip growth, a unique mode of plant growth shared only with pollen tubes. A more complete characterization of root hair cell biology will lead to a better understanding of tip growth, the rhizobial infection process, and also lead to improvements in plant water and nutrient uptake. We analyzed the proteome of isolated soybean (Glycine max) root hair cells using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and shotgun proteomics (1D-PAGE-liquid chromatography and multidimensional protein identification technology) approaches. Soybean was selected for this study due to its agronomic importance and its root size. The resulting soybean root hair proteome reference map identified 1,492 different proteins. 2D-PAGE followed by mass spectrometry identified 527 proteins from total cell contents. A complementary shotgun analysis identified 1,134 total proteins, including 443 proteins that were specific to the microsomal fraction. Only 169 proteins were identified by the 2D-PAGE and shotgun methods, which highlights the advantage of using both methods. The proteins identified are involved not only in basic cell metabolism but also in functions more specific to the single root hair cell, including water and nutrient uptake, vesicle trafficking, and hormone and secondary metabolism. The data presented provide useful insight into the metabolic activities of a single, differentiated plant cell type.
Collapse
Affiliation(s)
- Laurent Brechenmacher
- National Center for Soybean Biotechnology, Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
|
20
|
Yoo CM, Wen J, Motes CM, Sparks JA, Blancaflor EB. A class I ADP-ribosylation factor GTPase-activating protein is critical for maintaining directional root hair growth in Arabidopsis. PLANT PHYSIOLOGY 2008; 147:1659-74. [PMID: 18539780 PMCID: PMC2492602 DOI: 10.1104/pp.108.119529] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2008] [Accepted: 05/27/2008] [Indexed: 05/18/2023]
Abstract
Membrane trafficking and cytoskeletal dynamics are important cellular processes that drive tip growth in root hairs. These processes interact with a multitude of signaling pathways that allow for the efficient transfer of information to specify the direction in which tip growth occurs. Here, we show that AGD1, a class I ADP ribosylation factor GTPase-activating protein, is important for maintaining straight growth in Arabidopsis (Arabidopsis thaliana) root hairs, since mutations in the AGD1 gene resulted in wavy root hair growth. Live cell imaging of growing agd1 root hairs revealed bundles of endoplasmic microtubules and actin filaments extending into the extreme tip. The wavy phenotype and pattern of cytoskeletal distribution in root hairs of agd1 partially resembled that of mutants in an armadillo repeat-containing kinesin (ARK1). Root hairs of double agd1 ark1 mutants were more severely deformed compared with single mutants. Organelle trafficking as revealed by a fluorescent Golgi marker was slightly inhibited, and Golgi stacks frequently protruded into the extreme root hair apex of agd1 mutants. Transient expression of green fluorescent protein-AGD1 in tobacco (Nicotiana tabacum) epidermal cells labeled punctate bodies that partially colocalized with the endocytic marker FM4-64, while ARK1-yellow fluorescent protein associated with microtubules. Brefeldin A rescued the phenotype of agd1, indicating that the altered activity of an AGD1-dependent ADP ribosylation factor contributes to the defective growth, organelle trafficking, and cytoskeletal organization of agd1 root hairs. We propose that AGD1, a regulator of membrane trafficking, and ARK1, a microtubule motor, are components of converging signaling pathways that affect cytoskeletal organization to specify growth orientation in Arabidopsis root hairs.
Collapse
Affiliation(s)
- Cheol-Min Yoo
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | | | | | | | | |
Collapse
|
21
|
Milillo SR, Badamo JM, Boor KJ, Wiedmann M. Growth and persistence of Listeria monocytogenes isolates on the plant model Arabidopsis thaliana. Food Microbiol 2008; 25:698-704. [DOI: 10.1016/j.fm.2008.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 02/29/2008] [Accepted: 03/01/2008] [Indexed: 11/26/2022]
|
22
|
Hardham AR, Takemoto D, White RG. Rapid and dynamic subcellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack. BMC PLANT BIOLOGY 2008; 8:63. [PMID: 18513448 PMCID: PMC2435237 DOI: 10.1186/1471-2229-8-63] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 06/02/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plant cells respond to the presence of potential fungal or oomycete pathogens by mounting a basal defence response that involves aggregation of cytoplasm, reorganization of cytoskeletal, endomembrane and other cell components and development of cell wall appositions beneath the infection site. This response is induced by non-adapted, avirulent and virulent pathogens alike, and in the majority of cases achieves penetration resistance against the microorganism on the plant surface. To explore the nature of signals that trigger this subcellular response and to determine the timing of its induction, we have monitored the reorganization of GFP-tagged actin, microtubules, endoplasmic reticulum (ER) and peroxisomes in Arabidopsis plants - after touching the epidermal surface with a microneedle. RESULTS Within 3 to 5 minutes of touching the surface of Arabidopsis cotyledon epidermal cells with fine glass or tungsten needles, actin microfilaments, ER and peroxisomes began to accumulate beneath the point of contact with the needle. Formation of a dense patch of actin was followed by focusing of actin cables on the site of contact. Touching the cell surface induced localized depolymerization of microtubules to form a microtubule-depleted zone surrounding a dense patch of GFP-tubulin beneath the needle tip. The concentration of actin, GFP-tubulin, ER and peroxisomes remained focused on the contact site as the needle moved across the cell surface and quickly dispersed when the needle was removed. CONCLUSION Our results show that plant cells can detect the gentle pressure of a microneedle on the epidermal cell surface and respond by reorganizing subcellular components in a manner similar to that induced during attack by potential fungal or oomycete pathogens. The results of our study indicate that during plant-pathogen interactions, the basal defence response may be induced by the plant's perception of the physical force exerted by the pathogen as it attempts to invade the epidermal cell surface.
Collapse
Affiliation(s)
- Adrienne R Hardham
- Plant Cell Biology Group, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia
| | - Daigo Takemoto
- Plant Cell Biology Group, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia
- Plant Pathology Laboratory, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Rosemary G White
- Division of Plant Industry, C.S.I.R.O., Canberra, ACT 2601, Australia
| |
Collapse
|
23
|
Backues SK, Konopka CA, McMichael CM, Bednarek SY. Bridging the divide between cytokinesis and cell expansion. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:607-15. [PMID: 17936678 DOI: 10.1016/j.pbi.2007.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 08/15/2007] [Accepted: 08/23/2007] [Indexed: 05/14/2023]
Abstract
Two of the most fundamental processes in plant development are cytokinesis, by which new cells are formed, and cell expansion, by which existing cells grow and establish their functional morphology. In this review we summarize recent progress in understanding the pathways necessary for cytokinesis and cell expansion, including the role of the cytoskeleton, cell wall biogenesis, and membrane trafficking. Here, we focus on genes and lipids that are involved in both cytokinesis and cell expansion and bridge the divide between these two processes. In addition, we discuss our understanding of and controversies surrounding the role of endocytosis in both of these processes.
Collapse
Affiliation(s)
- Steven K Backues
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
24
|
Wang YS, Yoo CM, Blancaflor EB. Improved imaging of actin filaments in transgenic Arabidopsis plants expressing a green fluorescent protein fusion to the C- and N-termini of the fimbrin actin-binding domain 2. THE NEW PHYTOLOGIST 2007; 177:525-536. [PMID: 18028299 DOI: 10.1111/j.1469-8137.2007.02261.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The role of the actin cytoskeleton in plant development is intimately linked to its dynamic behavior. Therefore it is essential to continue refining methods for studying actin organization in living plant cells. The discovery of green fluorescent protein (GFP) has popularized the use of translational fusions of GFP with actin filament (F-actin) side-binding proteins to visualize in vivo actin organization in plants. The most recent of these live cell F-actin reporters are GFP fusions to the actin-binding domain 2 (ABD2) of Arabidopsis fimbrin 1 (ABD2-GFP). To improve ABD2-GFP fluorescence for enhanced in vivo F-actin imaging, transgenic Arabidopsis plants were generated expressing a construct with GFP fused to both the C- and N-termini of ABD2 under the control of the CaMV 35S promoter (35S::GFP-ABD2-GFP). The 35S::GFP-ABD2-GFP lines had significantly increased fluorescence compared with the original 35S::ABD2-GFP lines. The enhanced fluorescence of the 35S::GFP-ABD2-GFP-expressing lines allowed the acquisition of highly resolved images of F-actin in different plant organs and stages of development because of the reduced confocal microscope excitation settings needed for data collection. This simple modification to the ABD2-GFP construct presents an important tool for studying actin function during plant development.
Collapse
Affiliation(s)
- Yuh-Shuh Wang
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Cheol-Min Yoo
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Elison B Blancaflor
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| |
Collapse
|
25
|
Deeks MJ, Rodrigues C, Dimmock S, Ketelaar T, Maciver SK, Malhó R, Hussey PJ. Arabidopsis CAP1 – a key regulator of actin organisation and development. J Cell Sci 2007; 120:2609-18. [PMID: 17635992 DOI: 10.1242/jcs.007302] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maintenance of F-actin turnover is essential for plant cell morphogenesis. Actin-binding protein mutants reveal that plants place emphasis on particular aspects of actin biochemistry distinct from animals and fungi. Here we show that mutants in CAP1, an A. thaliana member of the cyclase-associated protein family, display a phenotype that establishes CAP1 as a fundamental facilitator of actin dynamics over a wide range of plant tissues. Plants homozygous for cap1 alleles show a reduction in stature and morphogenetic disruption of multiple cell types. Pollen grains exhibit reduced germination efficiency, and cap1 pollen tubes and root hairs grow at a decreased rate and to a reduced length. Live cell imaging of growing root hairs reveals actin filament disruption and cytoplasmic disorganisation in the tip growth zone. Mutant cap1 alleles also show synthetic phenotypes when combined with mutants of the Arp2/3 complex pathway, which further suggests a contribution of CAP1 to in planta actin dynamics. In yeast, CAP interacts with adenylate cyclase in a Ras signalling cascade; but plants do not have Ras. Surprisingly, cap1 plants show disruption in plant signalling pathways required for co-ordinated organ expansion suggesting that plant CAP has evolved to attain plant-specific signalling functions.
Collapse
Affiliation(s)
- Michael J Deeks
- The Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK
| | | | | | | | | | | | | |
Collapse
|