1
|
A Vacuolar Invertase CsVI2 Regulates Sucrose Metabolism and Increases Drought Tolerance in Cucumis sativus L. Int J Mol Sci 2021; 23:ijms23010176. [PMID: 35008600 PMCID: PMC8745504 DOI: 10.3390/ijms23010176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Vacuolar invertase (VI) can irreversibly degrade sucrose into glucose and fructose and involve in plants abiotic-stress-tolerance. Cucumber (Cucumis sativus L.) is susceptible to drought stress, especially during the seedling stage. To date, the involvement of VI in drought tolerance in cucumber seedlings is in urgent need of exploration. In the present study, a cucumber vacuolar invertase gene, CsVI2, was isolated and functionally characterized. The results showed that (1) CsVI2 showed vacuolar invertase activity both in vivo and in vitro; (2) the transcript level of CsVI2, along with VI activity, was significantly induced by drought stress. Moreover, the expression of sucrose synthase 3 (CsSUS3) was increased and that of sucrose phosphate synthase 1 (CsSPS1) was decreased after exposure to drought stress, which was followed by an increase in sucrose synthase activity and a decrease in sucrose phosphate synthase activity; (3) CsVI2-overexpressing transformed cucumber seedlings showed enhanced vacuolar invertase activity and drought tolerance and 4) protein-protein interaction modelling indicated that a cucumber invertase inhibitor, CsINVINH3, can interact with CsVI2. In summary, the results indicate that CsVI2 as an invertase can regulate sucrose metabolism and enhance drought stress in cucumber seedlings.
Collapse
|
2
|
Huang X, Luo W, Wu S, Long Y, Li R, Zheng F, Greiner S, Rausch T, Zhao H. Apoplastic maize fructan exohydrolase Zm-6-FEH displays substrate specificity for levan and is induced by exposure to levan-producing bacteria. Int J Biol Macromol 2020; 163:630-639. [PMID: 32622772 DOI: 10.1016/j.ijbiomac.2020.06.254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/14/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
Fructan exohydrolases (FEHs) are structurally related to cell wall invertases. While the latter are ubiquitous in higher plants, the role of FEHs in non-fructan species has remained enigmatic. To explore possible roles of FEHs in maize, a full length putative Zm-6-FEH-encoding cDNA was cloned displaying high sequence similarity with cell wall invertases. For functional characterization, Zm-6-FEH protein was expressed in Picha pastoris and in Nicotiana benthamiana leaves. Enzyme activity of recombinant Zm-6-FEH protein showed a strong preference for levan as substrate. Expression profiling in maize seedlings revealed higher transcript amounts in the more mature leaf parts as compared to the growth zone at the base of the leaf, in good correlation with FEH enzyme activities. Subcellular localization analysis indicated Zm-6-FEH location in the apoplast. Noteworthy, incubation of leaf discs with levan and co-incubation with high levan-producing bacteria selectively up-regulated transcript levels of Zm-6-FEH, accompanied by an increase of 6-FEH enzyme activity. In summary, the results indicate that Zm-6-FEH, a novel fructan exohydrolase of a non-fructan species, may have a role in plant defense against levan-producing bacteria.
Collapse
Affiliation(s)
- Xiaojia Huang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Luo
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Silin Wu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yuming Long
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Rui Li
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Fenghua Zheng
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Steffen Greiner
- Centre for Organismal Studies Heidelberg, Department of Plant Molecular Physiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Thomas Rausch
- Centre for Organismal Studies Heidelberg, Department of Plant Molecular Physiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Hongbo Zhao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Zhao H, Greiner S, Scheffzek K, Rausch T, Wang G. A 6&1-FEH Encodes an Enzyme for Fructan Degradation and Interact with Invertase Inhibitor Protein in Maize ( Zea mays L.). Int J Mol Sci 2019; 20:E3807. [PMID: 31382684 PMCID: PMC6696269 DOI: 10.3390/ijms20153807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 01/30/2023] Open
Abstract
About 15% of higher plants have acquired the ability to convert sucrose into fructans. Fructan degradation is catalyzed by fructan exohydrolases (FEHs), which are structurally related to cell wall invertases (CWI). However, the biological function(s) of FEH enzymes in non-fructan species have remained largely enigmatic. In the present study, one maize CWI-related enzyme named Zm-6&1-FEH1, displaying FEH activity, was explored with respect to its substrate specificities, its expression during plant development, and its possible interaction with CWI inhibitor protein. Following heterologous expression in Pichia pastoris and in N. benthamiana leaves, recombinant Zm-6&1-FEH1 revealed substrate specificities of levan and inulin, and also displayed partially invertase activity. Expression of Zm-6&1-FEH1 as monitored by qPCR was strongly dependent on plant development and was further modulated by abiotic stress. To explore whether maize FEH can interact with invertase inhibitor protein, Zm-6&1-FEH1 and maize invertase inhibitor Zm-INVINH1 were co-expressed in N. benthamiana leaves. Bimolecular fluorescence complementation (BiFC) analysis and in vitro enzyme inhibition assays indicated productive complex formation. In summary, the results provide support to the hypothesis that in non-fructan species FEH enzymes may modulate the regulation of CWIs.
Collapse
Affiliation(s)
- Hongbo Zhao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Steffen Greiner
- Centre for Organismal Studies Heidelberg, Department of Plant Molecular Physiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Klaus Scheffzek
- Division Biological Chemistry, Innsbruck Medical University, Biocenter, Innrain 80, A-6020 Innsbruck, Austria
| | - Thomas Rausch
- Centre for Organismal Studies Heidelberg, Department of Plant Molecular Physiology, University of Heidelberg, 69120 Heidelberg, Germany.
| | - Guoping Wang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Wei H, Zhao H, Su T, Bausewein A, Greiner S, Harms K, Rausch T. Chicory R2R3-MYB transcription factors CiMYB5 and CiMYB3 regulate fructan 1-exohydrolase expression in response to abiotic stress and hormonal cues. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4323-4338. [PMID: 28922763 PMCID: PMC5853547 DOI: 10.1093/jxb/erx210] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/31/2017] [Indexed: 05/17/2023]
Abstract
In the biennial Cichorium intybus, inulin-type fructans accumulate in the taproot during the first year. Upon cold or drought exposure, fructans are degraded by fructan exohydrolases, affecting inulin yield and degree of polymerization. While stress-induced expression of 1-FEH genes has been thoroughly explored, the transcriptional network mediating these responses has remained unknown. In this study, several R2R3-MYB transcriptional regulators were analysed for their possible involvement in 1-FEH regulation via transient transactivation of 1-FEH target promoters and for in vivo co-expression with target genes under different stress and hormone treatments. CiMYB3 and CiMYB5 selectively enhanced promoter activities of 1-FEH1, 1-FEH2a, and 1-FEH2b genes, without affecting promoter activities of fructosyltransferase genes. Both factors recognized the MYB-core motifs (C/TNGTTA/G) that are abundantly present in 1-FEH promoters. In chicory hairy root cultures, CiMYB5 displayed co-expression with its target genes in response to different abiotic stress and phytohormone treatments, whereas correlations with CiMYB3 expression were less consistent. Oligofructan levels indicated that the metabolic response, while depending on the balance of the relative expression levels of fructan exohydrolases and fructosyltransferases, could be also affected by differential subcellular localization of different FEH isoforms. The results indicate that in chicory hairy root cultures CiMYB5 and CiMYB3 act as positive regulators of the fructan degradation pathway.
Collapse
Affiliation(s)
- Hongbin Wei
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Hongbo Zhao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Anja Bausewein
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Steffen Greiner
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | | | - Thomas Rausch
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
5
|
Wei H, Bausewein A, Greiner S, Dauchot N, Harms K, Rausch T. CiMYB17, a stress-induced chicory R2R3-MYB transcription factor, activates promoters of genes involved in fructan synthesis and degradation. THE NEW PHYTOLOGIST 2017; 215:281-298. [PMID: 28452060 DOI: 10.1111/nph.14563] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/03/2017] [Indexed: 05/13/2023]
Abstract
In Cichorium intybus, inulin metabolism is mediated by fructan-active enzymes (FAZYs): sucrose:sucrose 1-fructosyltransferase (1-SST), fructan:fructan 1-fructosyltransferase (1-FFT), and fructan 1-exohydrolases 1, 2a and 2b (1-FEH1, -2a and -2b), respectively. While these enzymes have been rigorously characterized, the transcriptional network orchestrating their development- and stress-related expression has remained largely unknown. Here, the possible role of R2R3-MYB transcription factors in FAZY regulation was explored via bioinformatic identification of R2R3-MYBs (using an RNA sequencing (RNAseq) database), studies of co-expression of these factors with target genes, in vivo transient transactivation assays of FAZY target promoters (dual luciferase assay), and a yeast one-hybrid assay investigating the specificity of the binding of these factors to cis-elements. The chicory MYB transcription factor CiMYB17 specifically activated promoters of 1-SST and 1-FFT by binding to the consensus DNA-motif DTTHGGT. Unexpectedly, CiMYB17 also activated promoters of fructan exohydrolase genes. The stimulatory effect on promoter activities of sucrose transporter and cell wall invertase genes points to a general role in regulating the source-sink relationship. Co-induction of CiMYB17 with 1-SST and 1-FFT (and, less consistently, with 1-FEH1/2) in nitrogen-starved or abscisic acid (ABA)-treated chicory seedlings and in salt-stressed chicory hairy roots supports a role in stress-induced fructan metabolism, including de novo fructan synthesis and trimming of pre-existing fructans, whereas the reduced expression of CiMYB17 in developing taproots excludes a role in fructan accumulation under normal growth conditions.
Collapse
Affiliation(s)
- Hongbin Wei
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, D-69120, Germany
| | - Anja Bausewein
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, D-69120, Germany
| | - Steffen Greiner
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, D-69120, Germany
| | - Nicolas Dauchot
- Research Unit in Plant Biology, University of Namur, B-5000, Namur, Belgium
| | - Karsten Harms
- ZAFES, SÜDZUCKER AG Mannheim-Ochsenfurt, Obrigheim, D-67283, Germany
| | - Thomas Rausch
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, D-69120, Germany
| |
Collapse
|
6
|
Mellado-Mojica E, González de la Vara LE, López MG. Fructan active enzymes (FAZY) activities and biosynthesis of fructooligosaccharides in the vacuoles of Agave tequilana Weber Blue variety plants of different age. PLANTA 2017; 245:265-281. [PMID: 27730409 DOI: 10.1007/s00425-016-2602-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 09/29/2016] [Indexed: 05/28/2023]
Abstract
Biosynthesis of agave fructans occurs in mesontle vacuoles which showed fluctuations in FAZY activities and synthesized a diverse spectrum of fructooligosaccharide isomers. Agave tequilana Weber Blue variety is an important agronomic crop in Mexico. Fructan metabolism in A. tequilana exhibits changes in fructan content, type, degree of polymerization (DP), and molecular structure. Specific activities of vacuolar fructan active enzymes (FAZY) in A. tequilana plants of different age and the biosynthesis of fructooligosaccharides (FOSs) were analyzed in this work. Vacuoles from mesontle (stem) protoplasts were isolated and collected from 2- to 7-year-old plants. For the first time, agave fructans were identified in the vacuolar content by HPAEC-PAD. Several FAZY activities (1-SST, 6-SFT, 6G-FFT, 1-FFT, and FEH) with fluctuations according to the plant age were found in protein vacuolar extracts. Among vacuolar FAZY, 1-SST activities appeared in all plant developmental stages, as well as 1-FFT and FEH activities. The enzymes 6G-FFT and 6-SST showed only minimal activities. Lowest and highest FAZY activities were found in 2- and 6-year-old plants, respectively. Synthesized products (FOS) were analyzed by TLC and HPAEC-PAD. Vacuolar FAZYs yielded large FOS isomers diversity, being 7-year-old plants the ones that synthesized a greater variety of fructans with different DP, linkages, and molecular structures. Based on the above, we are proposing a model for the FAZY activities constituting the FOS biosynthetic pathways in Agave tequilana Weber Blue variety.
Collapse
Affiliation(s)
- Erika Mellado-Mojica
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato. Km. 9.6 Lib. Norte Carretera Irapuato-León, Apartado Postal 629, 36821, Irapuato, Gto, Mexico
| | - Luis E González de la Vara
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato. Km. 9.6 Lib. Norte Carretera Irapuato-León, Apartado Postal 629, 36821, Irapuato, Gto, Mexico
| | - Mercedes G López
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato. Km. 9.6 Lib. Norte Carretera Irapuato-León, Apartado Postal 629, 36821, Irapuato, Gto, Mexico.
| |
Collapse
|
7
|
Su T, Wolf S, Han M, Zhao H, Wei H, Greiner S, Rausch T. Reassessment of an Arabidopsis cell wall invertase inhibitor AtCIF1 reveals its role in seed germination and early seedling growth. PLANT MOLECULAR BIOLOGY 2016; 90:137-55. [PMID: 26546341 DOI: 10.1007/s11103-015-0402-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/30/2015] [Indexed: 05/19/2023]
Abstract
In higher plants, cell wall invertase (CWI) and vacuolar invertase (VI) are recognized as essential players in sugar metabolism and sugar signaling, thereby affecting source-sink interactions, plant development and responses to environmental cues. CWI and VI expression levels are transcriptionally controlled; however, both enzymes are also subject to posttranslational control by invertase inhibitor proteins. The physiological significances of inhibitor proteins during seed germination and early seedling development are not yet fully understood. Here, we demonstrate that the inhibitor isoform AtCIF1 impacted on seed germination and early seedling growth in Arabidopsis. The primary target of AtCIF1 was shown to be localized to the apoplast after expressing an AtCIF1 YFP-fusion construct in tobacco epidermis and transgenic Arabidopsis root. The analysis of expression patterns showed that AtCWI1 was co-expressed spatiotemporally with AtCIF1 within the early germinating seeds. Seed germination was observed to be accelerated independently of exogenous abscisic acid (ABA) in the AtCIF1 loss-of-function mutant cif1-1. This effect coincided with a drastic increase of CWI activity in cif1-1 mutant seeds by 24 h after the onset of germination, both in vitro and in planta. Accordingly, quantification of sugar content showed that hexose levels were significantly boosted in germinating seeds of the cif1-1 mutant. Further investigation of AtCIF1 overexpressors in Arabidopsis revealed a markedly suppressed CWI activity as well as delayed seed germination. Thus, we conclude that the posttranslational modulation of CWI activity by AtCIF1 helps to orchestrate seed germination and early seedling growth via fine-tuning sucrose hydrolysis and, possibly, sugar signaling.
Collapse
Affiliation(s)
- Tao Su
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, Heidelberg, 69120, Germany.
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| | - Sebastian Wolf
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, Heidelberg, 69120, Germany.
| | - Mei Han
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| | - Hongbo Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Hongbin Wei
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, Heidelberg, 69120, Germany.
| | - Steffen Greiner
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, Heidelberg, 69120, Germany.
| | - Thomas Rausch
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, Heidelberg, 69120, Germany.
| |
Collapse
|
8
|
ZHANG N, JIANG J, YANG YL, WANG ZH. Functional characterization of an invertase inhibitor gene involved in sucrose metabolism in tomato fruit. J Zhejiang Univ Sci B 2015; 16:845-56. [PMID: 26465132 PMCID: PMC4609536 DOI: 10.1631/jzus.b1400319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 06/08/2015] [Indexed: 11/11/2022]
Abstract
In this study, we produced tomato plants overexpressing an invertase inhibitor gene (Sly-INH) from tomato, using a simple and efficient transient transformation system. Compared with control plants, the expression of Sly-INH was highly upregulated in Sly-INH overexpressing plants, as indicated by real-time polymerase chain reaction (PCR). Physiological analysis revealed that Sly-INH inhibited the activity of cell wall invertase (CWIN), which increased sugar accumulation in tomato fruit. Furthermore, Sly-INH mediated sucrose metabolism by regulating CWIN activity. Our results suggest that invertase activity is potentially regulated by the Sly-INH inhibitor at the post-translational level, and they demonstrate that the transient transformation system is an effective method for determining the functions of genes in tomato.
Collapse
Affiliation(s)
- Ning ZHANG
- Key Laboratory of Protected Horticulture, Ministry of Education, College of Horticulture,Shenyang Agricultural University, Shenyang 110866, China
| | | | | | | |
Collapse
|
9
|
Zhao H, Xu L, Su T, Jiang Y, Hu L, Ma F. Melatonin regulates carbohydrate metabolism and defenses against Pseudomonas syringae pv. tomato DC3000 infection in Arabidopsis thaliana. J Pineal Res 2015; 59:109-19. [PMID: 25958775 DOI: 10.1111/jpi.12245] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 05/05/2015] [Indexed: 01/06/2023]
Abstract
Melatonin has been reported to promote plant growth and development. Our experiments with Arabidopsis thaliana showed that exogenous applications of this molecule mediated invertase inhibitor (C/VIF)-regulated invertase activity and enhanced sucrose metabolism. Hexoses were accumulated in response to elevated activities by cell wall invertase (CWI) and vacuolar invertase (VI). Analyses of sugar metabolism-related genes revealed differential expression during plant development that was modulated by melatonin. In particular, C/VIF1 and C/VIF2 were strongly down-regulated by exogenous feeding. We also found the elevated CWI activity in melatonin-treated Arabidopsis improved the factors (cellulose, xylose, and galactose) for cell wall reinforcement and callose deposition during Pseudomonas syringae pv. tomato DC3000 infection, therefore, partially induced the pathogen resistance. However, CWI did not involve in salicylic acid (SA)-regulated defense pathway. Taken together, this study reveals that melatonin plays an important role in invertase-related carbohydrate metabolism, plant growth, and pathogen defense.
Collapse
Affiliation(s)
- Hongbo Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingfei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Tao Su
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Yang Jiang
- Centre for Organismal Studies Heidelberg, Heidelberg university, Heidelberg, Germany
| | - Lingyu Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
Lothier J, Van Laere A, Prud'homme MP, Van den Ende W, Morvan-Bertrand A. Cloning and characterization of a novel fructan 6-exohydrolase strongly inhibited by sucrose in Lolium perenne. PLANTA 2014; 240:629-43. [PMID: 25023629 DOI: 10.1007/s00425-014-2110-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/17/2014] [Indexed: 05/22/2023]
Abstract
The first 6-fructan exohydrolase (6-FEH) cDNA from Lolium perenne was cloned and characterized. Following defoliation, Lp6 - FEHa transcript level unexpectedly decreased together with an increase in total FEH activity. Lolium perenne is a major forage grass species that accumulates fructans, mainly composed of β(2,6)-linked fructose units. Fructans are mobilized through strongly increased activities of fructan exohydrolases (FEHs), sustaining regrowth following defoliation. To understand the complex regulation of fructan breakdown in defoliated grassland species, the objective was to clone and characterize new FEH genes in L. perenne. To find FEH genes related to refoliation, a defoliated tiller base cDNA library was screened. Characterization of the recombinant protein was performed in Pichia pastoris. In this report, the cloning and enzymatic characterization of the first 6-FEH from L. perenne is described. Following defoliation, during fructan breakdown, Lp6-FEHa transcript level unexpectedly decreased in elongating leaf bases (ELB) and in mature leaf sheaths (tiller base) in parallel to increased total FEH activities. In comparison, transcript levels of genes coding for fructosyltransferases (FTs) involved in fructan biosynthesis also decreased after defoliation but much faster than FEH transcript levels. Since Lp6-FEHa was strongly inhibited by sucrose, mechanisms modulating FEH activities are discussed. It is proposed that differences in the regulation of FEH activity among forage grasses influence their tolerance to defoliation.
Collapse
Affiliation(s)
- Jérémy Lothier
- Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Université d'Angers), Université d'Angers, SFR 149 QUASAV, 49045, Angers, France
| | | | | | | | | |
Collapse
|
11
|
van Arkel J, Vergauwen R, Sévenier R, Hakkert JC, van Laere A, Bouwmeester HJ, Koops AJ, van der Meer IM. Sink filling, inulin metabolizing enzymes and carbohydrate status in field grown chicory (Cichorium intybus L.). JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1520-9. [PMID: 22795678 DOI: 10.1016/j.jplph.2012.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 06/19/2012] [Accepted: 06/22/2012] [Indexed: 05/05/2023]
Abstract
Inulin is a fructose-based polymer that is isolated from chicory (Cichorium intybus L.) taproots. The degree of polymerization (DP) determines its application and hence the value of the crop. The DP is highly dependent on the field conditions and harvest time. Therefore, the present study was carried out with the objective to understand the regulation of inulin metabolism and the process that determines the chain length and inulin yield throughout the whole growing season. Metabolic aspects of inulin production and degradation in chicory were monitored in the field and under controlled conditions. The following characteristics were determined in taproots: concentrations of glucose, fructose and sucrose, the inulin mean polymer length (mDP), yield, gene expression and activity of enzymes involved in inulin metabolism. Inulin synthesis, catalyzed by sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99) (1-SST) and fructan:fructan 1-fructosyltransferase (EC 2.4.1.100) (1-FFT), started at the onset of taproot development. Inulin yield as a function of time followed a sigmoid curve reaching a maximum in November. Inulin reached a maximum mDP of about 15 in September, than gradually decreased. Based on the changes observed in the pattern of inulin accumulation, we defined three different phases in the growing season and analyzed product formation, enzyme activity and gene expression in these defined periods. The results were validated by performing experiments under controlled conditions in climate rooms. Our results show that the decrease in 1-SST that starts in June is not regulated by day length and temperature. From mid-September onwards, the mean degree of polymerization (mDP) decreased gradually although inulin yield still increased. The decrease in mDP combined with increased yield results from fructan exohydrolase activity, induced by low temperature, and the back transfer activity of 1-FFT. Overall, this study provides background information on how to improve inulin yield and quality in chicory.
Collapse
Affiliation(s)
- Jeroen van Arkel
- Plant Research International, Wageningen UR, Droevendaalsesteeg 1, 6708 PD Wageningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Pectin methylesterase and its proteinaceous inhibitor: a review. Carbohydr Res 2010; 345:2583-95. [DOI: 10.1016/j.carres.2010.10.002] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 09/30/2010] [Accepted: 10/03/2010] [Indexed: 11/23/2022]
|
13
|
Bonfig KB, Gabler A, Simon UK, Luschin-Ebengreuth N, Hatz M, Berger S, Muhammad N, Zeier J, Sinha AK, Roitsch T. Post-translational derepression of invertase activity in source leaves via down-regulation of invertase inhibitor expression is part of the plant defense response. MOLECULAR PLANT 2010; 3:1037-48. [PMID: 20833735 DOI: 10.1093/mp/ssq053] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
There is increasing evidence that pathogens do not only elicit direct defense responses, but also cause pronounced changes in primary carbohydrate metabolism. Cell-wall-bound invertases belong to the key regulators of carbohydrate partitioning and source-sink relations. Whereas studies have focused so far only on the transcriptional induction of invertase genes in response to pathogen infection, the role of post-translational regulation of invertase activity has been neglected and was the focus of the present study. Expression analyses revealed that the high mRNA level of one out of three proteinaceous invertase inhibitors in source leaves of Arabidopsis thaliana is strongly repressed upon infection by a virulent strain of Pseudomonas syringae pv. tomato DC3000. This repression is paralleled by a decrease in invertase inhibitor activity. The physiological role of this regulatory mechanism is revealed by the finding that in situ invertase activity was detectable only upon infection by P. syringae. In contrast, a high invertase activity could be measured in vitro in crude and cell wall extracts prepared from both infected and non-infected leaves. The discrepancy between the in situ and in vitro invertase activity of control leaves and the high in situ invertase activity in infected leaves can be explained by the pathogen-dependent repression of invertase inhibitor expression and a concomitant reduction in invertase inhibitor activity. The functional importance of the release of invertase from post-translational inhibition for the defense response was substantiated by the application of the competitive chemical invertase inhibitor acarbose. Post-translational inhibition of extracellular invertase activity by infiltration of acarbose in leaves was shown to increase the susceptibility to P. syringae. The impact of invertase inhibition on spatial and temporal dynamics of the repression of photosynthesis and promotion of bacterial growth during pathogen infection supports a role for extracellular invertase in plant defense. The acarbose-mediated increase in susceptibility was also detectable in sid2 and cpr6 mutants and resulted in slightly elevated levels of salicylic acid, demonstrating that the effect is independent of the salicylic acid-regulated defense pathway. These findings provide an explanation for high extractable invertase activity found in source leaves that is kept inhibited in situ by post-translational interaction between invertase and the invertase inhibitor proteins. Upon pathogen infection, the invertase activity is released by repression of invertase inhibitor expression, thus linking the local induction of sink strength to the plant defense response.
Collapse
Affiliation(s)
- Katharina B Bonfig
- Julius-von-Sachs-Institut fuer Biowissenschaften, Lehrstuhl für Pharmazeutische Biologie, Universitaet Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kusch U, Greiner S, Steininger H, Meyer AD, Corbière-Divialle H, Harms K, Rausch T. Dissecting the regulation of fructan metabolism in chicory (Cichorium intybus) hairy roots. THE NEW PHYTOLOGIST 2009; 184:127-140. [PMID: 19563442 DOI: 10.1111/j.1469-8137.2009.02924.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Fifteen per cent of higher plants accumulate fructans. Plant development, nutritional status and stress exposure all affect fructan metabolism, and while fructan biochemistry is well understood, knowledge of its regulation has remained fragmentary. Here, we have explored chicory (Cichorium intybus) hairy root cultures (HRCs) to study the regulation of fructan metabolism in sink tissues in response to environmental cues. In standard medium (SM), HRCs did not accumulate inulin. However, upon transfer to high-carbon (C)/low-nitrogen (N) medium, expression of sucrose:sucrose 1-fructosyltransferase (1-SST) and fructan:fructan 1-fructosyltransferase (1-FFT) was strongly induced and inulin accumulated. Upon return to SM, inulin was degraded, together with a coordinate decline of 1-SST and 1-FFT expression. In HRCs, cold-induced expression of fructan 1-exohydrolases (1-FEH I and IIa) was similar to cold induction in taproots, even in the absence of accumulated inulin. For high-C/low-N induction of 1-SST and 1-FFT, and cold induction of 1-FEH I and IIa, the signaling pathways were addressed. While 1-SST and 1-FFT induction was similarly prevented by inhibitors of Ca(2+) signaling, protein kinases and phosphatases, cold induction of 1-FEH I and IIa revealed distinct signaling pathways. In summary, this study has established chicory HRCs as a convenient experimental system with which to study the regulation of fructan active enzyme (FAZY) expression in heterotrophic cells.
Collapse
Affiliation(s)
- Ute Kusch
- HIP, Heidelberg University, INF 360, Heidelberg D-69120, Germany
| | - Steffen Greiner
- HIP, Heidelberg University, INF 360, Heidelberg D-69120, Germany
| | - Heike Steininger
- HIP, Heidelberg University, INF 360, Heidelberg D-69120, Germany
| | | | | | - Karsten Harms
- ZAFES, Südzucker AG Mannheim-Ochsenfurt, Obrigheim D-67283, Germany
| | - Thomas Rausch
- HIP, Heidelberg University, INF 360, Heidelberg D-69120, Germany
| |
Collapse
|