1
|
Gao Y, Eason A, Ricoy S, Cobb A, Phung R, Kashani A, Mata MR, Sahm A, Ortiz N, Rao S, Cho HJ. High-yield atmospheric water capture via bioinspired material segregation. Proc Natl Acad Sci U S A 2024; 121:e2321429121. [PMID: 39436661 DOI: 10.1073/pnas.2321429121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/12/2024] [Indexed: 10/23/2024] Open
Abstract
Transforming atmospheric water vapor into liquid form can be a way to supply water to arid regions for uses such as drinking water, thermal management, and hydrogen generation. Many current methods rely on solid sorbents that cycle between capture and release at slow rates. We envision a radically different approach where water is transformed and directly captured into a liquid salt solution that is suitable for subsequent distillation or other processing using existing methods. In contrast to other methods utilizing hydrogels as sorbents, we do not store water within hydrogels-we use them as a transport medium. Inspired by nature, we capture atmospheric water through a hydrogel membrane "skin" at an extraordinarily high rate of 5.50 kgm[Formula: see text]d[Formula: see text] at a low humidity of 35%. and up to 16.9 kgm[Formula: see text]d[Formula: see text] at higher humidities. For a drinking-water application, calculated performance of a hypothetical one-square-meter device shows that water could be supplied to two to three people in arid environments. This work is a significant step toward providing new resources and possibilities to water-scarce regions.
Collapse
Affiliation(s)
- Yiwei Gao
- Department of Mechanical Engineering, University of Nevada-Las Vegas, Las Vegas, NV 89154
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Areianna Eason
- Department of Mechanical Engineering, University of Nevada-Las Vegas, Las Vegas, NV 89154
| | - Santiago Ricoy
- Department of Mechanical Engineering, University of Nevada-Las Vegas, Las Vegas, NV 89154
| | - Addison Cobb
- Department of Mechanical Engineering, University of Nevada-Las Vegas, Las Vegas, NV 89154
| | - Ryan Phung
- Department of Mechanical Engineering, University of Nevada-Las Vegas, Las Vegas, NV 89154
| | - Amir Kashani
- Department of Mechanical Engineering, University of Nevada-Las Vegas, Las Vegas, NV 89154
| | - Mario R Mata
- Department of Mechanical Engineering, University of Nevada-Las Vegas, Las Vegas, NV 89154
| | - Aaron Sahm
- Department of Mechanical Engineering, University of Nevada-Las Vegas, Las Vegas, NV 89154
| | - Nathan Ortiz
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Sameer Rao
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112
| | - H Jeremy Cho
- Department of Mechanical Engineering, University of Nevada-Las Vegas, Las Vegas, NV 89154
| |
Collapse
|
2
|
Kohay H, Wielinski J, Reiser J, Perkins LA, Ristroph K, Giraldo JP, Lowry GV. Nanocarrier foliar uptake pathways affect delivery of active agents and plant physiological response. ENVIRONMENTAL SCIENCE. NANO 2024:d4en00547c. [PMID: 39450293 PMCID: PMC11494269 DOI: 10.1039/d4en00547c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Layered double hydroxide (LDH) nanoparticles enable foliar delivery of genetic material, herbicides, and nutrients to promote plant growth and yield. Understanding the foliar uptake route of nanoparticles is needed to maximize their effectiveness and avoid unwanted negative effects. In this study, we investigated how delivering layered double hydroxide (d = 37 ± 1.5 nm) through the adaxial (upper) or abaxial (lower) side of leaves affects particle uptake, nutrient delivery, and photosynthesis in tomato plants. LDH applied on the adaxial side was embedded in the cuticle and accumulated at the anticlinal pegs between epidermal cells. On the abaxial side, LDH particles penetrated the cuticle less, but the presence of the stomata enables penetration to deeper leaf layers. Accordingly, the average penetration levels of LDH relative to the cuticle were 2.47 ± 0.07, 1.25 ± 0.13, and 0.75 ± 0.1 μm for adaxial, abaxial with stomata, and abaxial without stomata leaf segments, respectively. In addition, the colocalization of LDH with the cuticle was ∼2.3 times lower for the adaxial application, indicating the ability to penetrate the cuticle. Despite the low adaxial stomata density, LDH-mediated delivery of magnesium (Mg) from leaves to roots was 46% higher for the adaxial than abaxial application. In addition, adaxial application leads to ∼24% higher leaf CO2 assimilation rate and higher biomass accumulation. The lower efficiency from the abaxial side was, at least partially, a result of interference with the stomata functionality which reduced stomatal conductance and evapotranspiration by 28% and 25%, respectively, limiting plant photosynthesis. This study elucidates how foliar delivery pathways through different sides of the leaves affect their ability to deliver active agents into plants and consequently affect the plants' physiological response. That knowledge enables a more efficient use of nanocarriers for agricultural applications.
Collapse
Affiliation(s)
- Hagay Kohay
- Carnegie Mellon University, Civil & Environmental Engineering Pittsburgh PA USA
| | - Jonas Wielinski
- Carnegie Mellon University, Civil & Environmental Engineering Pittsburgh PA USA
| | - Jana Reiser
- Carnegie Mellon University, Civil & Environmental Engineering Pittsburgh PA USA
| | - Lydia A Perkins
- Molecular Biosensor & Imaging Center (MBIC), Carnegie Mellon University Pittsburgh PA USA
| | - Kurt Ristroph
- Purdue University, Agricultural & Biological Engineering West Lafayette IN USA
- Purdue University, Davidson School of Chemical Engineering West Lafayette IN USA
| | - Juan Pablo Giraldo
- University of California, Botany & Plant Sciences, Riverside Riverside CA USA
| | - Gregory V Lowry
- Carnegie Mellon University, Civil & Environmental Engineering Pittsburgh PA USA
| |
Collapse
|
3
|
Wang Y, Jia W, Wang X, Aslam MM, Li W, Shao Y. Tea polyphenols coating improves physiological properties, microstructure and chemical composition of cuticle to suppress quality deterioration of passion fruit during cold storage. Food Chem 2024; 463:141524. [PMID: 39383792 DOI: 10.1016/j.foodchem.2024.141524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/27/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
The plant cuticle plays a crucial role in modulating postharvest quality and extending shelf life of horticultural crops. Passion fruit often suffers from quality degradation primarily due to peel wrinkling after harvest. Tea polyphenols (TPs) hold potential for enhancing postharvest preservation. However, the specific effects of TPs coating on preservation of passion fruit, as well as the underlying mechanisms involving cuticle regulation, have not been thoroughly investigated. This study demonstrated that treating 'Qinmi no.9' passion fruit with TPs at a concentration of 0.1 g L-1 significantly mitigates weight loss, maintains firmness, and reduces cell membrane permeability during storage at 10 °C. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that TPs treatment notably enhances cuticle thickness and structural integrity. Furthermore, gas chromatography-mass spectrometry (GC-MS) and metabolomics analyses indicated that TPs treatment obviously promotes the accumulation of palmitic acid, stearic acid, and their derivatives-primarily 12-Octadecenoic acid and 10(E)-Octadecenoic acid-as well as increases the levels of 11-Octadecenoic acid, primary alcohols such as 1-Eicosanol, and long-chain alkanes (including C31 and C32 alkanes) in the fruit peel cuticle. These biochemical changes contribute to the quality maintenance of passion fruit during cold storage. The findings suggest that TPs treatment is a promising biological strategy for extending shelf life and mitigating quality degradation by regulating cuticle metabolism in postharvest passion fruit.
Collapse
Affiliation(s)
- Yu Wang
- College of Food Science and Engineering, Hainan University, Hai Kou 570228, PR China; Sanya Nanfan Research Institute, Hainan University, Sanya 572025, PR China
| | - Wenjun Jia
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, PR China; School of Tropical and Forestry, Hainan University, Danzhou 571018, PR China
| | - Xin Wang
- College of Food Science and Engineering, Hainan University, Hai Kou 570228, PR China; Sanya Nanfan Research Institute, Hainan University, Sanya 572025, PR China; School of Tropical and Forestry, Hainan University, Danzhou 571018, PR China
| | - Muhammad Muzammal Aslam
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, PR China; School of Tropical and Forestry, Hainan University, Danzhou 571018, PR China
| | - Wen Li
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, PR China; School of Tropical and Forestry, Hainan University, Danzhou 571018, PR China.
| | - Yuanzhi Shao
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, PR China; School of Life and Health, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
4
|
Heredia A, Benítez JJ, González Moreno A, Domínguez E. Revisiting plant cuticle biophysics. THE NEW PHYTOLOGIST 2024; 244:65-73. [PMID: 39061101 DOI: 10.1111/nph.20009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
The plant cuticle is located at the interface of the plant with the environment, thus acting as a protective barrier against biotic and abiotic external stress factors, and regulating water loss. Additionally, it modulates mechanical stresses derived from internal tissues and also from the environment. Recent advances in the understanding of the hydric, mechanical, thermal, and, to a lower extent, optical and electric properties of the cuticle, as well as their phenomenological connections and relationships are reviewed. An equilibrium based on the interaction among the different biophysical properties is essential to ensure plant growth and development. The notable variability reported in cuticle geometry, surface topography, and microchemistry affects the analysis of some biophysical properties of the cuticle. This review aimed to provide an updated view of the plant cuticle, understood as a modification of the cell wall, in order to establish the state-of-the-art biophysics of the plant cuticle, and to serve as an inspiration for future research in the field.
Collapse
Affiliation(s)
- Antonio Heredia
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Universidad de Málaga, E-29010, Málaga, Spain
| | - José J Benítez
- Instituto de Ciencia de Materiales de Sevilla, Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, E-41092, Seville, Spain
| | - Ana González Moreno
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Universidad de Málaga, E-29010, Málaga, Spain
| | - Eva Domínguez
- Departamento de Mejora Genética y Biotecnología, Estación Experimental La Mayora, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas, E-29750, Málaga, Spain
| |
Collapse
|
5
|
Shang C, Zhou Q, Nkoh JN, Liu J, Wang J, Hu Z, Hussain Q. Integrated physiological, biochemical, and transcriptomic analyses of Bruguiera gymnorhiza leaves under long-term copper stress: Stomatal size, wax crystals and composition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116609. [PMID: 38905937 DOI: 10.1016/j.ecoenv.2024.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024]
Abstract
Copper (Cu) is a necessary mineral nutrient for plant growth and development and is involved in several morphological, physiological, and biochemical processes; however, high concentrations of Cu can negatively impact these processes. The role of stomata in responding to various biotic and abiotic stimuli has not been studied in Bruguiera gymnorhiza, particularly in terms of their coordinated interactions at the molecular, physiological, and biochemical levels. Moreover, numerous plants employ strategies such as the presence of thick waxy cuticles on their leaf epidermis and the closing of stomata to reduce water loss. Thus, this study investigates the accumulation of Cu in B. gymnorhiza and its effect on leaf morphology and the molecular response under different Cu treatments (0, 200, and 400 mg L⁻¹, Cu0, Cu200, and Cu400, respectively) during a two years stress period. The results show that Cu stress affected accumulation and transport, increased the activities of peroxidase and ascorbate peroxidase, concentrations of soluble sugar, proline, and H2O2, and decreased the activity of catalase and content of malondialdehyde. Also, Cu-induced stress decreased the uptake of phosphorus and nitrogen and inhibited plant photosynthesis, which consequently led to reduced plant growth. Scanning electron microscopy combined with gas chromatography-mass spectrometry showed that B. gymnorhiza leaves had higher wax crystals and compositions under increased Cu stress, which forced the leaf's stomata to be closed. Also, the contents of alkanes, alcohols, primary alcohol levels (C26:0, C28:0, C30:0, and C32:0), n-Alkanes (C29 and C30), and other wax loads were significantly higher, while fatty acid (C12, C16, and C18) was lower in Cu200 and Cu400 compared to Cu0. Furthermore, the transcriptomic analyses revealed 1240 (771 up- and 469 downregulated), 1000 (723 up- and 277 down-regulated), and 1476 (808 up- and 668 downregulated) differentially expressed genes in Cu0 vs Cu200, Cu0 vs Cu400, and Cu200 vs Cu400, respectively. RNA-seq analyses showed that Cu mainly affected eight pathways, including photosynthesis, cutin, suberin, and wax biosynthesis. This study provides a reference for understanding mangrove response to heavy metal stress and developing novel management practices.
Collapse
Affiliation(s)
- Chenjing Shang
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, PR China
| | - Qiao Zhou
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| | - Jackson Nkoh Nkoh
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China; Department of Chemistry, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Jing Liu
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Junjie Wang
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Zhangli Hu
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Quaid Hussain
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
6
|
Straube J, Hurtado G, Zeisler-Diehl V, Schreiber L, Knoche M. Cuticle deposition ceases during strawberry fruit development. BMC PLANT BIOLOGY 2024; 24:623. [PMID: 38951751 PMCID: PMC11218262 DOI: 10.1186/s12870-024-05327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Ideally, the barrier properties of a fruit's cuticle persist throughout its development. This presents a challenge for strawberry fruit, with their rapid development and thin cuticles. The objective was to establish the developmental time course of cuticle deposition in strawberry fruit. RESULTS Fruit mass and surface area increase rapidly, with peak growth rate coinciding with the onset of ripening. On a whole-fruit basis, the masses of cutin and wax increase but on a unit surface-area basis, they decrease. The decrease is associated with marked increases in elastic strain. The expressions of cuticle-associated genes involved in transcriptional regulation (FaSHN1, FaSHN2, FaSHN3), synthesis of cutin (FaLACS2, FaGPAT3) and wax (FaCER1, FaKCS10, FaKCR1), and those involved in transport of cutin monomers and wax constituents (FaABCG11, FaABCG32) decreased until maturity. The only exceptions were FaLACS6 and FaGPAT6 that are presumably involved in cutin synthesis, and FaCER1 involved in wax synthesis. This result was consistent across five strawberry cultivars. Strawberry cutin consists mainly of C16 and C18 monomers, plus minor amounts of C19, C20, C22 and C24 monomers, ω-hydroxy acids, dihydroxy acids, epoxy acids, primary alcohols, carboxylic acids and dicarboxylic acids. The most abundant monomer is 10,16-dihydroxyhexadecanoic acid. Waxes comprise mainly long-chain fatty acids C29 to C46, with smaller amounts of C16 to C28. Wax constituents are carboxylic acids, primary alcohols, alkanes, aldehydes, sterols and esters. CONCLUSION The downregulation of cuticle deposition during development accounts for the marked cuticular strain, for the associated microcracking, and for their high susceptibility to the disorders of water soaking and cracking.
Collapse
Affiliation(s)
- Jannis Straube
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, Hannover, 30419, Germany
| | - Grecia Hurtado
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, Hannover, 30419, Germany
| | - Viktoria Zeisler-Diehl
- Department of Ecophysiology, Institute of Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, Bonn, 53115, Germany
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, Bonn, 53115, Germany
| | - Moritz Knoche
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, Hannover, 30419, Germany.
| |
Collapse
|
7
|
Wu C, Liang Y, Jiang S, Shi Z. Mechanistic and data-driven perspectives on plant uptake of organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172415. [PMID: 38631647 DOI: 10.1016/j.scitotenv.2024.172415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Establishing reliable predictive models for plant uptake of organic pollutants is crucial for environmental risk assessment and guiding phytoremediation efforts. This study compiled an expanded dataset of plant cuticle-water partition coefficients (Kcw), a useful indicator for plant uptake, for 371 data points of 148 unique compounds and various plant species. Quantum/computational chemistry software and tools were utilized to compute various molecular descriptors, aiming to comprehensively characterize the properties and structures of each compound. Three types of models were developed to predict Kcw: a mechanism-driven pp-LFER model, a data-driven machine learning model, and an integrated mechanism-data-driven model. The mechanism-data-driven GBRT-ppLFER model exhibited superior performance, achieving RMSEtrain = 0.133 and RMSEtest = 0.301 while maintaining interpretability. The Shapley Additive Explanation analysis indicated that pp-LFER parameters, ESPI, FwRadicalmax, ExtFP607, and RDF70s are the key factors influencing plant uptake in the GBRT-ppLFER model. Overall, pp-LFER parameter, ESPI, and ExtFP607 show positive effects, while the remaining factors exhibit negative effects. Partial dependency analysis further indicated that plant uptake is not solely determined by individual factors but rather by the combined interactions of multiple factors. Specifically, compounds with ppLFER parameter >4, ESPI > -25.5, 0.098 < FwRadicalmax <0.132, and 2 < RFD70s < 3, are generally more readily taken up by plants. Besides, the predicted Kcw values from the GBRT-ppLFER model were effectively employed to estimate the plant-water partition coefficients and bioconcentration factors across different plant species and growth media (water, sand, and soil), achieving an outstanding performance with an RMSE of 0.497. This study provides effective tools for assessing plant uptake of organic pollutants and deepens our understanding of plant-environment-compound interactions.
Collapse
Affiliation(s)
- Chunya Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yuzhen Liang
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China.
| | - Shan Jiang
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Zhenqing Shi
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
8
|
Ossola R, Farmer D. The Chemical Landscape of Leaf Surfaces and Its Interaction with the Atmosphere. Chem Rev 2024; 124:5764-5794. [PMID: 38652704 PMCID: PMC11082906 DOI: 10.1021/acs.chemrev.3c00763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Atmospheric chemists have historically treated leaves as inert surfaces that merely emit volatile hydrocarbons. However, a growing body of evidence suggests that leaves are ubiquitous substrates for multiphase reactions-implying the presence of chemicals on their surfaces. This Review provides an overview of the chemistry and reactivity of the leaf surface's "chemical landscape", the dynamic ensemble of compounds covering plant leaves. We classified chemicals as endogenous (originating from the plant and its biome) or exogenous (delivered from the environment), highlighting the biological, geographical, and meteorological factors driving their contributions. Based on available data, we predicted ≫2 μg cm-2 of organics on a typical leaf, leading to a global estimate of ≫3 Tg for multiphase reactions. Our work also highlighted three major knowledge gaps: (i) the overlooked role of ambient water in enabling the leaching of endogenous substances and mediating aqueous chemistry; (ii) the importance of phyllosphere biofilms in shaping leaf surface chemistry and reactivity; (iii) the paucity of studies on the multiphase reactivity of atmospheric oxidants with leaf-adsorbed chemicals. Although biased toward available data, we hope this Review will spark a renewed interest in the leaf surface's chemical landscape and encourage multidisciplinary collaborations to move the field forward.
Collapse
Affiliation(s)
- Rachele Ossola
- Department of Chemistry, Colorado
State University, 80523 Fort Collins, Colorado (United States)
| | - Delphine Farmer
- Department of Chemistry, Colorado
State University, 80523 Fort Collins, Colorado (United States)
| |
Collapse
|
9
|
Annangudi SP, Gemperline E, Gilbert JR. Spatial and Depth Profiling of Agricultural Formulations in Leaf Tissue Using LAESI Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1007-1011. [PMID: 38613771 DOI: 10.1021/jasms.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
Formulating agrochemical products involves combining several chemical components, including the active ingredient(s), to obtain a final product with desirable efficacy. A formulated product incorporates additional components to modulate properties that enhance the efficacy of the active(s) by modifying physical properties such as viscosity, hydrophobicity, miscibility, and others. In plants, understanding the formulation's ability to spread on tissues and penetrate through the outer layer is critical in evaluating the efficacy of the final product. We have previously demonstrated the use of mass spectrometry imaging to determine spreadability. In this study, we show that laser ablation electrospray mass spectrometry (LAESI-MS) can be a valuable tool to assess the penetrability of formulations into the leaf tissues by selectively sampling various layers of leaf tissue by manipulating the laser intensity and analyzing the ablated material using a mass spectrometer. Using this technique, we were able to identify a formulation composition that can improve the penetration and uptake of active ingredients.
Collapse
Affiliation(s)
- Suresh P Annangudi
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268 United States
| | - Erin Gemperline
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268 United States
| | - Jeffrey R Gilbert
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268 United States
| |
Collapse
|
10
|
Fernández V, Almonte L, Bahamonde HA, Galindo-Bernabeu A, Sáenz-Arce G, Colchero J. Chemical and structural heterogeneity of olive leaves and their trichomes. Commun Biol 2024; 7:352. [PMID: 38519601 PMCID: PMC10960044 DOI: 10.1038/s42003-024-06053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Many biological surfaces have hairs, known as trichomes in plants. Here, the wettability and macro- and micro-scale features of olive leaves are analyzed. The upper leaf side has few trichomes, while the lower side has a high trichome density. By combining different techniques including electron and atomic force microscopy, trichome surfaces are found to be chemically (hydrophilic-hydrophobic) heterogeneous at the nano-scale. Both olive leaf surfaces are wettable by water, having a high water contact angle hysteresis and great drop adhesion. The ultra-structural pattern observed for epidermal pavement cells differs from the reticulate cuticle structure of trichomes which shows that leaf surface areas may be substantially different despite being located nearby. Our study provides evidence for the nano-scale chemical heterogeneity of a trichome which may influence the functional properties of biological surfaces, such as water and solute permeability or water capture as discussed here for plants.
Collapse
Affiliation(s)
- Victoria Fernández
- Department of Systems and Natural Resources, School of Forest Engineering, Universidad Politécnica de Madrid, C/ José Antonio Nováis, 10, 28040, Madrid, Spain.
- Centro para la Conservación de la Biodiversidad y el Desarrollo Sostenible, E.T.S.I. Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| | - Lisa Almonte
- Centro de Investigación en Óptica y Nanofísica, Departamento de Física, Campus Espinardo, Universidad de Murcia, 30100, Murcia, Spain
- Applied Physics Department, Universidad de Alicante, 03080, Alicante, Spain
| | - Héctor Alejandro Bahamonde
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Diagonal 113 No 469, 1900, La Plata, Argentina
| | - Ana Galindo-Bernabeu
- Centro de Investigación en Óptica y Nanofísica, Departamento de Física, Campus Espinardo, Universidad de Murcia, 30100, Murcia, Spain
- Universidad Técnica Nacional (UTN), Alajuela, Costa Rica
| | - Giovanni Sáenz-Arce
- Centro de Investigación en Óptica y Nanofísica, Departamento de Física, Campus Espinardo, Universidad de Murcia, 30100, Murcia, Spain
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional, Heredia, 86-3000, Costa Rica
| | - Jaime Colchero
- Centro de Investigación en Óptica y Nanofísica, Departamento de Física, Campus Espinardo, Universidad de Murcia, 30100, Murcia, Spain
| |
Collapse
|
11
|
Ruffini E, Bianchi Oltolini A, Magni M, Beretta G, Cavallaro M, Suriano R, Turri S. Crosslinked Polyesters as Fully Biobased Coatings with Cutin Monomer from Tomato Peel Wastes. Polymers (Basel) 2024; 16:682. [PMID: 38475363 DOI: 10.3390/polym16050682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Cutin, one of the main structural components of tomato peels, is a waxy biopolymer rich in hydroxylated fatty acids. In this study, 10,16-dihydroxyhexadecanoic acid (10,16-diHHDA) was extracted and isolated from tomato peels and exploited to develop fully crosslinked polyesters as potential candidates for replacing fossil-based metal protective coatings. A preliminary screening was conducted to select the base formulation, and then a design of experiments (DoE) was used as a methodology to identify the optimal composition to develop a suitable coating material. Different formulations containing 10,16-diHHDA and other biorefinery monomers, including 2,5-furandicarboxylic acid, were considered. To this end, all polyesters were characterized through differential scanning calorimetry (DSC) and gel content measurements to determine their Tg value and crosslinking efficiency. Compositions exhibiting the best trade-off between Tg value, chemical resistance, and sufficiently high 10,16-diHHDA content between 39 and 48 wt.% were used to prepare model coatings that were characterized for assessing their wettability, scratch hardness, chemical resistance, and adhesion to metal substrates. These polyester coatings showed a Tg in the range of 45-55 °C, a hydrophobic behavior with a water contact angle of around 100°, a good solvent resistance (>100 MEK double rubs), and an adhesion strength to steel higher than 2 MPa. The results obtained confirmed the potential of cutin-based resins as coatings for metal protection, meeting the requirements for ensuring physicochemical properties of the final product, as well as for optimizing the valorization of such an abundant agri-food waste as tomato peels.
Collapse
Affiliation(s)
- Eleonora Ruffini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Andrea Bianchi Oltolini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Mirko Magni
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Giangiacomo Beretta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Marco Cavallaro
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Raffaella Suriano
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Stefano Turri
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
12
|
Doose C, Hubas C. The metabolites of light: Untargeted metabolomic approaches bring new clues to understand light-driven acclimation of intertidal mudflat biofilm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168692. [PMID: 38008320 DOI: 10.1016/j.scitotenv.2023.168692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023]
Abstract
The microphytobenthos (MPB), a microbial community of primary producers, play a key role in coastal ecosystem functioning, particularly in intertidal mudflats. These mudflats experience challenging variations of irradiance, forcing the micro-organisms to develop photoprotective mechanisms to survive and thrive in this dynamic environment. Two major adaptations to light are well described in literature: the excess of light energy dissipation through non-photochemical quenching (NPQ), and the vertical migration in the sediment. These mechanisms trigger considerable scientific interest, but the biological processes and metabolic mechanisms involved in light-driven vertical migration remain largely unknown. To our knowledge, this study investigates for the first time metabolomic responses of a migrational mudflat biofilm exposed for 30 min to a light gradient of photosynthetically active radiation (PAR) from 50 to 1000 μmol photons m-2 s-1. The untargeted metabolomic analysis allowed to identify metabolites involved in two types of responses to light irradiance levels. On the one hand, the production of SFAs and MUFAs, primarily derived from bacteria, indicates a healthy photosynthetic state of MPB under low light (LL; 50 and 100 PAR) and medium light (ML; 250 PAR) conditions. Conversely, when exposed to high light (HL; 500, 750 and 1000 PAR), the MPB experienced light-induced stress, triggering the production of alka(e)nes and fatty alcohols. The physiological and ecological roles of these compounds are poorly described in literature. This study sheds new light on the topic, as it suggests that these compounds may play a crucial and previously unexplored role in light-induced stress acclimation of migrational MPB biofilms. Since alka(e)nes are produced from FAs decarboxylation, these results thus emphasize for the first time the importance of FAs pathways in microphytobenthic biofilms acclimation to light.
Collapse
Affiliation(s)
- Caroline Doose
- Muséum National d'Histoire Naturelle, UMR BOREA, MNHN-CNRS-UCN-UPMC-IRD-UA, Station Marine de Concarneau, Concarneau, France.
| | - Cédric Hubas
- Muséum National d'Histoire Naturelle, UMR BOREA, MNHN-CNRS-UCN-UPMC-IRD-UA, Station Marine de Concarneau, Concarneau, France.
| |
Collapse
|
13
|
La Spada P, Dominguez E, Continella A, Heredia A, Gentile A. Factors influencing fruit cracking: an environmental and agronomic perspective. FRONTIERS IN PLANT SCIENCE 2024; 15:1343452. [PMID: 38434425 PMCID: PMC10904461 DOI: 10.3389/fpls.2024.1343452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024]
Abstract
Fruit cracking, a widespread physiological disorder affecting various fruit crops and vegetables, has profound implications for fruit quality and marketability. This mini review delves into the multifaceted factors contributing to fruit cracking and emphasizes the pivotal roles of environmental and agronomic factors in its occurrence. Environmental variables such as temperature, relative humidity, and light exposure are explored as determinants factors influencing fruit cracking susceptibility. Furthermore, the significance of mineral nutrition and plant growth regulators in mitigating fruit cracking risk is elucidated, being calcium deficiency identified as a prominent variable in various fruit species. In recent years, precision farming and monitoring systems have emerged as valuable tools for managing environmental factors and optimizing fruit production. By meticulously tracking parameters such as temperature, humidity, soil moisture, and fruit skin temperature, growers can make informed decisions to prevent or alleviate fruit cracking. In conclusion, effective prevention of fruit cracking necessitates a comprehensive approach that encompasses both environmental and agronomic factors.
Collapse
Affiliation(s)
- Paolo La Spada
- Dipartimento Agricoltura, Alimentazione e Ambiente (Di3A) - Università degli Studi di Catania, Catania, Italy
| | - Eva Dominguez
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - Alberto Continella
- Dipartimento Agricoltura, Alimentazione e Ambiente (Di3A) - Università degli Studi di Catania, Catania, Italy
| | - Antonio Heredia
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - Alessandra Gentile
- Dipartimento Agricoltura, Alimentazione e Ambiente (Di3A) - Università degli Studi di Catania, Catania, Italy
| |
Collapse
|
14
|
Sumbur B, Zhou M, Dorjee T, Bing J, Ha S, Xu X, Zhou Y, Gao F. Chemical and Transcriptomic Analyses of Leaf Cuticular Wax Metabolism in Ammopiptanthus mongolicus under Osmotic Stress. Biomolecules 2024; 14:227. [PMID: 38397464 PMCID: PMC10886927 DOI: 10.3390/biom14020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Plant cuticular wax forms a hydrophobic structure in the cuticle layer covering epidermis as the first barrier between plants and environments. Ammopiptanthus mongolicus, a leguminous desert shrub, exhibits high tolerances to multiple abiotic stress. The physiological, chemical, and transcriptomic analyses of epidermal permeability, cuticular wax metabolism and related gene expression profiles under osmotic stress in A. mongolicus leaves were performed. Physiological analyses revealed decreased leaf epidermal permeability under osmotic stress. Chemical analyses revealed saturated straight-chain alkanes as major components of leaf cuticular wax, and under osmotic stress, the contents of total wax and multiple alkane components significantly increased. Transcriptome analyses revealed the up-regulation of genes involved in biosynthesis of very-long-chain fatty acids and alkanes and wax transportation under osmotic stress. Weighted gene co-expression network analysis identified 17 modules and 6 hub genes related to wax accumulation, including 5 enzyme genes coding KCS, KCR, WAX2, FAR, and LACS, and an ABCG transporter gene. Our findings indicated that the leaf epidermal permeability of A. mongolicus decreased under osmotic stress to inhibit water loss via regulating the expression of wax-related enzyme and transporter genes, further promoting cuticular wax accumulation. This study provided new evidence for understanding the roles of cuticle lipids in abiotic stress tolerance of desert plants.
Collapse
Affiliation(s)
- Batu Sumbur
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Minqi Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Tashi Dorjee
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jie Bing
- College of Life Sciences, Beijing Normal University, Beijing 100080, China;
| | - Sijia Ha
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xiaojing Xu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yijun Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Fei Gao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
15
|
Aldana JA, Moa B, Mattsson J, Russell JH, Hawkins BJ. Histological, chemical and gene expression differences between western redcedar seedlings resistant and susceptible to cedar leaf blight. FRONTIERS IN PLANT SCIENCE 2024; 15:1309762. [PMID: 38379949 PMCID: PMC10878471 DOI: 10.3389/fpls.2024.1309762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/08/2024] [Indexed: 02/22/2024]
Abstract
Introduction Western redcedar (Thuja plicata) is an important species in the Cupressaceae both at economic and cultural levels in the Pacific Northwest of North America. In adult trees, the species produces one of the most weathering-resistant heartwoods among conifers, making it one of the preferred species for outdoor applications. However, young T. plicata plants are susceptible to infection with cedar leaf blight (Didymascella thujina), an important foliar pathogen that can be devastating in nurseries and small-spaced plantations. Despite that, variability in the resistance against D. thujina in T. plicata has been documented, and such variability can be used to breed T. plicata for resistance against the pathogen. Objective This investigation aimed to discern the phenotypic and gene expression differences between resistant and susceptible T. plicata seedlings to shed light on the potential constitutive resistance mechanisms against cedar leaf blight in western redcedar. Methods The study consisted of two parts. First, the histological differences between four resistant and four susceptible families that were never infected with the pathogen were investigated. And second, the differences between one resistant and one susceptible family that were infected and not infected with the pathogen were analyzed at the chemical (C, N, mineral nutrients, lignin, fiber, starch, and terpenes) and gene expression (RNA-Seq) levels. Results The histological part showed that T. plicata seedlings resistant to D. thujina had constitutively thicker cuticles and lower stomatal densities than susceptible plants. The chemical analyses revealed that, regardless of their infection status, resistant plants had higher foliar concentrations of sabinene and α-thujene, and higher levels of expression of transcripts that code for leucine-rich repeat receptor-like protein kinases and for bark storage proteins. Conclusion The data collected in this study shows that constitutive differences at the phenotypic (histological and chemical) and gene expression level exist between T. plicata seedlings susceptible and resistant to D. thujina. Such differences have potential use for marker-assisted selection and breeding for resistance against cedar leaf blight in western redcedar in the future.
Collapse
Affiliation(s)
- Juan A. Aldana
- School of Arts, Science, and Education, Medicine Hat College, Medicine Hat, AB, Canada
| | - Belaid Moa
- Electrical and Computer Engineering Department, University of Victoria, Victoria, BC, Canada
| | - Jim Mattsson
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - John H. Russell
- British Columbia Ministry of Forests, Mesachie Lake, BC, Canada
| | | |
Collapse
|
16
|
Arrieta-Baez D, Quezada Huerta C, Rojas-Torres GS, Perea-Flores MDJ, Mendoza-León HF, Gómez-Patiño MB. Structural Studies of Mexican Husk Tomato ( Physalis ixocarpa) Fruit Cutin. Molecules 2023; 29:184. [PMID: 38202766 PMCID: PMC10780591 DOI: 10.3390/molecules29010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Green tomato (Physalis ixocarpa) is a specie native to Mexico, and it is known as "tomatillo" or "husk tomato". The fruit contains vitamins, minerals, phenolic compounds, and steroidal lactones, presenting antimicrobial activity and antinarcotic effects. Therefore, it is not only used in traditional Mexican cuisine, but also in traditional medicine to relieve some discomforts such as fever, cough, and amygdalitis. However, it is a perishable fruit whose shelf life is very short. As a part of the peel, cuticle, and epicuticular waxes represent the most important part in plant protection, and the specific composition and structural characterization are significant to know how this protective biopolymer keeps quality characteristics in fresh fruits. P. ixocarpa cutin was obtained by enzymatic treatments (cellulase, hemicellulose, and pectinase) and different concentrations of TFA, and studied through Cross Polarization Magic Angle Spinning Nuclear Magnetic Resonance (CPMAS 13C NMR), Ultra-High Performance Liquid Chromatography coupled to Mass Spectrometry (UHPLC-MS), and was morphologically characterized by Confocal Laser Scanning Microscopy (CLSM) and Scanning Electron Microscopy (SEM). The main constituents identified under the basis of UHPLC-MS analysis were 9,10,18-trihydroxy-octadecanoic acid and 9,10-epoxy-18-hydroxy-octadecanoic acid with 44.7 and 37.5%, respectively. The C16 absence and low occurrence of phenolic compounds, besides the presence of glandular trichomes, which do not allow a continuous layer on the surface of the fruit, could be related to a lower shelf life compared with other common fruits such as tomato (Solanum lycopersicum).
Collapse
Affiliation(s)
- Daniel Arrieta-Baez
- Instituto Politécnico Nacional—(Centro de Nanociencias y Micro y Nanotecnologías), Unidad Profesional Adolfo López Mateos, Col. Zacatenco, Mexico City 07738, Mexico; (D.A.-B.); (M.d.J.P.-F.); (H.F.M.-L.)
| | - Camila Quezada Huerta
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, Unidad Profesional Adolfo López Mateos, Av. Luis Enrique Erro S/N, Colonia Lindavista 07738, Mexico; (C.Q.H.); (G.S.R.-T.)
| | - Giovana Simone Rojas-Torres
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, Unidad Profesional Adolfo López Mateos, Av. Luis Enrique Erro S/N, Colonia Lindavista 07738, Mexico; (C.Q.H.); (G.S.R.-T.)
| | - María de Jesús Perea-Flores
- Instituto Politécnico Nacional—(Centro de Nanociencias y Micro y Nanotecnologías), Unidad Profesional Adolfo López Mateos, Col. Zacatenco, Mexico City 07738, Mexico; (D.A.-B.); (M.d.J.P.-F.); (H.F.M.-L.)
| | - Héctor Francisco Mendoza-León
- Instituto Politécnico Nacional—(Centro de Nanociencias y Micro y Nanotecnologías), Unidad Profesional Adolfo López Mateos, Col. Zacatenco, Mexico City 07738, Mexico; (D.A.-B.); (M.d.J.P.-F.); (H.F.M.-L.)
| | - Mayra Beatriz Gómez-Patiño
- Instituto Politécnico Nacional—(Centro de Nanociencias y Micro y Nanotecnologías), Unidad Profesional Adolfo López Mateos, Col. Zacatenco, Mexico City 07738, Mexico; (D.A.-B.); (M.d.J.P.-F.); (H.F.M.-L.)
| |
Collapse
|
17
|
Hurtado G, Knoche M. Microcracking of strawberry fruit cuticles: mechanism and factors. Sci Rep 2023; 13:19376. [PMID: 37938590 PMCID: PMC10632442 DOI: 10.1038/s41598-023-46366-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023] Open
Abstract
Microscopic cracks in the cuticle (microcracks) are the first symptom of the strawberry fruit disorder 'water soaking' in which the fruit surface appears watery, translucent, and pale. Water soaking severely impacts fruit quality. The objective was to investigate the factors and mechanisms of cuticular microcracking in strawberry. Fluorescence microscopy revealed numerous microcracks in the achene depressions, on the rims between depressions and at the bases of trichomes. Microcracks in the achene depressions and on the rims were either parallel or transversely oriented relative to a radius drawn from the rim to the point of attachment of the achene. In the achene depression, the frequency of microcracks with parallel orientation decreased from the calyx end of the fruit, towards the fruit tip, while the frequency of those with transverse orientation remained constant. Most microcracks occurred above the periclinal cell walls of the epidermal cells. The long axes of the epidermal cells were primarily parallel-oriented. Microcracking increased during fruit development. Cuticle mass per fruit remained constant as fruit surface area increased but cuticle thickness decreased. When fruit developed under high relative humidity (RH) conditions, the cuticle had more microcracks than under low RH conditions. Exposing the fruit surface to increasing RHs, increased microcracking, especially above 75% RH. Liquid-phase water on the fruit surface was markedly more effective in inducing microcracking than high vapor-phase water (high RH). The results demonstrate that a combination of surface area growth strain and water exposure is causal in inducing microcracking of the strawberry cuticle.
Collapse
Affiliation(s)
- Grecia Hurtado
- Institute of Horticultural Production Systems, Leibniz University Hanover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Moritz Knoche
- Institute of Horticultural Production Systems, Leibniz University Hanover, Herrenhäuser Straße 2, 30419, Hannover, Germany.
| |
Collapse
|
18
|
Islam MT, Sain M, Stark C, Fefer M, Liu J, Hoare T, Ckurshumova W, Rosa C. Overview of methods and considerations for the photodynamic inactivation of microorganisms for agricultural applications. Photochem Photobiol Sci 2023; 22:2675-2686. [PMID: 37530937 DOI: 10.1007/s43630-023-00466-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
Abstract
Antimicrobial resistance in agriculture is a global concern and carries huge financial consequences. Despite that, practical solutions for growers that are sustainable, low cost and environmentally friendly have been sparse. This has created opportunities for the agrochemical industry to develop pesticides with novel modes of action. Recently the use of photodynamic inactivation (PDI), classically used in cancer treatments, has been explored in agriculture as an alternative to traditional chemistries, mainly as a promising new approach for the eradication of pesticide resistant strains. However, applications in the field pose unique challenges and call for new methods of evaluation to adequately address issues specific to PDI applications in plants and challenges faced in the field. The aim of this review is to summarize in vitro, ex vivo, and in vivo/in planta experimental strategies and methods used to test and evaluate photodynamic agents as photo-responsive pesticides for applications in agriculture. The review highlights some of the strategies that have been explored to overcome challenges in the field.
Collapse
Affiliation(s)
- Md Tariqul Islam
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Madeline Sain
- Department of Chemical Engineering, McMaster University, 1280 Main Street, Hamilton, ON, Canada
| | - Colin Stark
- Department of Chemical Engineering, McMaster University, 1280 Main Street, Hamilton, ON, Canada
| | - Michael Fefer
- Suncor AgroScience, 2489 North Sheridan Way, Mississauga, ON, L5K 1A8, Canada
| | - Jun Liu
- Suncor AgroScience, 2489 North Sheridan Way, Mississauga, ON, L5K 1A8, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street, Hamilton, ON, Canada
| | | | - Cristina Rosa
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
19
|
Pérez-López AV, Lim SD, Cushman JC. Tissue succulence in plants: Carrying water for climate change. JOURNAL OF PLANT PHYSIOLOGY 2023; 289:154081. [PMID: 37703768 DOI: 10.1016/j.jplph.2023.154081] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Tissue succulence in plants involves the storage of water in one or more organs or tissues to assist in maintaining water potentials on daily or seasonal time scales. This drought-avoidance or drought-resistance strategy allows plants to occupy diverse environments including arid regions, regions with rocky soils, epiphytic habitats, and saline soils. Climate-resilient strategies are of increasing interest in the context of the global climate crisis, which is leading to hotter and drier conditions in many regions throughout the globe. Here, we describe a short history of succulent plants, the basic concepts of tissue succulence, the anatomical diversity of succulent morphologies and associated adaptive traits, the evolutionary, phylogenetic, and biogeographical diversity of succulent plants, extinction risks to succulents due to poaching from their natural environments, and the myriad uses and applications of economically important succulent species and the products derived from them. Lastly, we discuss current prospects for engineering tissue succulence to improve salinity and drought tolerance in crops.
Collapse
Affiliation(s)
- Arely V Pérez-López
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557-0330, USA.
| | - Sung Don Lim
- Department of Plant Life and Resource Science, Sangji University, Gangwon-do, 26339, South Korea.
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557-0330, USA.
| |
Collapse
|
20
|
Pereira H, Simões R, Miranda I. Cuticular Waxes and Cutin in Terminalia catappa Leaves from the Equatorial São Tomé and Príncipe Islands. Molecules 2023; 28:6365. [PMID: 37687194 PMCID: PMC10489119 DOI: 10.3390/molecules28176365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
This study presents for the first time an analysis of the content and chemical composition of the cuticular waxes and cutin in the leaves of the widespread and important tropical species Terminalia catappa. The leaves were collected in the equatorial Atlantic islands of São Tomé and Príncipe, in the Gulf of Guinea. The epicuticular and intracuticular waxes were determined via dichloromethane extraction and their chemical composition via GC-MS analysis, and the content and monomeric composition of cutin were determined after depolymerization via methanolysis. The leaves contained an epidermal cuticular coverage of 52.8 μg cm-2 of the cuticular waxes (1.4% of mass) and 63.3 μg cm-2 (1.5% of mass) of cutin. Cuticular waxes include mainly n-alkanols and fatty acids, with a substantial proportion of terpenes in the more easily solubilized fraction, and sterols in the more embedded waxes. Cutin is mostly constituted by C16 fatty acids and dihydroxyacids, also including aromatic monomers, suggesting a largely linear macromolecular arrangement. The high proportion of triacontanol, α-amyrin, β-amyrin, germanicol, and lupeol in the easily solubilized cuticular fraction may explain the bioactive properties attributed to the T. catappa leaves via the popular medicine, which allows us to consider them as a potential source for the extraction of these compounds.
Collapse
Affiliation(s)
- Helena Pereira
- Centro de Estudos Florestais (CEF), Laboratório Associado Terra, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (R.S.); (I.M.)
| | | | | |
Collapse
|
21
|
Koçak E, Esmer OK, Sahiner A. Optimization of the conditions of alkaline extraction of tomato peels and characterization of tomato peel extracts obtained under atmospheric and oxygen free conditions. AN ACAD BRAS CIENC 2023; 95:e20220077. [PMID: 37646709 DOI: 10.1590/0001-3765202320220077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/13/2023] [Indexed: 09/01/2023] Open
Abstract
This study aims to optimize the extraction conditions to obtain the highest yield, to characterize tomato peel extract (TPE) under optimized conditions, and also to determine the effect of ambient oxygen on the properties of TPE. Optimisation were performed at three temperatures (60 °C, 80 °C, 100 °C) and three periods (2, 4, 6 h) by the response surface methodology. The properties of the extract under atmospheric and oxygen-free conditions (AC, OFC) were analysed to determine whether the characteristics of both extracts changed depending on the presence of oxygen; moreover, the morphological, chemical, thermal, biochemical, and antimicrobial properties were analysed. The maximum yield was 31.3% at 100 °C/6 h. A quadratic model was used to create the best fit. Both TPE samples exhibited similar morphological structure, similar weight losses at three stages of TGA curve, similar band assignments in FTIR spectra. GC-MS analysis showed that both samples mainly consisted of cutin in abundance of 70.45% and 68.14% for AC and OFC, respectively. OFC had higher total phenolic content possibly depending on the absence of oxygen. AC and OFC extracts exhibited substantial antimicrobial activity against S. aureus, E. coli, C. albicans, and A. brasiliensis with a MIC value of 100 μg TPE/ mL.
Collapse
Affiliation(s)
- Erinç Koçak
- Ege University, Engineering Faculty, Food Engineering Department, Ankara Str., 1992, 35050 Bornova-Izmir, Türkiye
| | - Ozlem K Esmer
- Ege University, Engineering Faculty, Food Engineering Department, Ankara Str., 1992, 35050 Bornova-Izmir, Türkiye
| | - Asli Sahiner
- Ege University, Science Faculty, Biology Department, Ankara Str., 1992, 35050 Bornova-Izmir, Türkiye
| |
Collapse
|
22
|
Gao Y, Zhang Z, Wang S, Ma N, Wang Y. Transcriptome analysis reveals wax and phytohormone metabolism potentially involved in shooting shrivelling of apple branches overwinter. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:540-558. [PMID: 37160284 DOI: 10.1071/fp22283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/27/2023] [Indexed: 05/11/2023]
Abstract
Shoot shrivelling severely threatens growth and development of deciduous trees in the northern hemisphere, and we observed that there was a significant difference in shoot shrivelling rate between different apple varieties in practice. In this study, we investigated the anatomical and physiological characteristics of branches from different germplasm resources combined with an analysis of the transcriptome. Transcriptomes of samples treated in the initial dormancy, deep dormancy and freeze-thaw periods were generated and characterised. In three different periods, 7233 differentially expressed genes (DEGs) were identified including 3538 upregulated genes and 3695 downregulated genes. DEGs related to plant hormone signal transduction, starch and sucrose metabolism, cutin, suberin and wax biosynthesis were significantly enriched. Physiological characterisation showed that dormancy overwinter can induce the accumulation of soluble sugar and starch, shoot shrivelling rate of 'Fuji' was 2.31times that of the 'Delicious'; and the critical water content of 'Delicious' was significantly higher than 'Fuji'. Phytohormone contents and proportions varied irregularly according to the overwintering phase among two varieties. Wax content, morphology and composition also exhibited difference. In conclusion, branch microstructure, phytohormone and wax metabolism all determined the overwintering performance of trees and phytohormones can regulate wax metabolism to ensure normal overwintering of trees.
Collapse
Affiliation(s)
- Yanlong Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhongxing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuangcheng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Naiying Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanxiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
23
|
Borgatta J, Shen Y, Tamez C, Green C, Hedlund Orbeck JK, Cahill MS, Protter C, Deng C, Wang Y, Elmer W, White JC, Hamers RJ. Influence of CuO Nanoparticle Aspect Ratio and Surface Charge on Disease Suppression in Tomato ( Solanum lycopersicum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:9644-9655. [PMID: 37321591 PMCID: PMC10312190 DOI: 10.1021/acs.jafc.2c09153] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/17/2023]
Abstract
Nanoparticles (NPs) have been shown to deliver micronutrients to plants to improve health, increase biomass, and suppress disease. Nanoscale properties such as morphology, size, composition, and surface chemistry have all been shown to impact nanomaterial interactions with plant systems. An organic-ligand-free synthesis method was used to prepare positively charged copper oxide (CuO) nanospikes, negatively charged CuO nanospikes, and negatively charged CuO nanosheets with exposed (001) crystal faces. X-ray photoelectron spectroscopy measurements show that the negative charge correlates to increased surface concentration of O on the NP surface, whereas relatively higher Cu concentrations are observed on the positively charged surfaces. The NPs were then used to treat tomato (Solanum lycopersicum) grown in soil infested with Fusarium oxysporum f. sp. lycopersici under greenhouse conditions. The negatively charged CuO significantly reduced disease progression and increased biomass, while the positively charged NPs and a CuSO4 salt control had little impact on the plants. Self-assembled monolayers were used to mimic the leaf surface to understand the intermolecular interactions between the NPs and the plant leaf; the data demonstrate that NP electrostatics and hydrogen-bonding interactions play an important role in adsorption onto leaf surfaces. These findings have important implications for the tunable design of materials as a strategy for the use of nano-enabled agriculture to increase food production.
Collapse
Affiliation(s)
- Jaya Borgatta
- The
NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Connecticut
Agricultural Experiment Station, 123 Huntington Street, New
Haven, Connecticut 06511, United States
| | - Yu Shen
- Connecticut
Agricultural Experiment Station, 123 Huntington Street, New
Haven, Connecticut 06511, United States
| | - Carlos Tamez
- Connecticut
Agricultural Experiment Station, 123 Huntington Street, New
Haven, Connecticut 06511, United States
| | - Curtis Green
- The
NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jenny K. Hedlund Orbeck
- The
NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Meghan S. Cahill
- Connecticut
Agricultural Experiment Station, 123 Huntington Street, New
Haven, Connecticut 06511, United States
| | - Connor Protter
- The
NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Chaoyi Deng
- The
NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Connecticut
Agricultural Experiment Station, 123 Huntington Street, New
Haven, Connecticut 06511, United States
| | - Yi Wang
- Connecticut
Agricultural Experiment Station, 123 Huntington Street, New
Haven, Connecticut 06511, United States
| | - Wade Elmer
- Connecticut
Agricultural Experiment Station, 123 Huntington Street, New
Haven, Connecticut 06511, United States
| | - Jason C. White
- Connecticut
Agricultural Experiment Station, 123 Huntington Street, New
Haven, Connecticut 06511, United States
| | - Robert J. Hamers
- The
NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
24
|
Watanabe D, Hashimoto W. Adaptation of yeast Saccharomyces cerevisiae to grape-skin environment. Sci Rep 2023; 13:9279. [PMID: 37340058 DOI: 10.1038/s41598-023-35734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/23/2023] [Indexed: 06/22/2023] Open
Abstract
Saccharomyces cerevisiae, an essential player in alcoholic fermentation during winemaking, is rarely found in intact grapes. Although grape-skin environment is unsuitable for S. cerevisiae's stable residence, Saccharomycetaceae-family fermentative yeasts can increase population on grape berries after colonization during raisin production. Here, we addressed adaptation of S. cerevisiae to grape-skin ecosystem. The yeast-like fungus Aureobasidium pullulans, a major grape-skin resident, exhibited broad spectrum assimilation of plant-derived carbon sources, including ω-hydroxy fatty acid, arising from degradation of plant cuticles. In fact, A. pullulans encoded and secreted possible cutinase-like esterase for cuticle degradation. When intact grape berries were used as a sole carbon source, such grape-skin associated fungi increased the accessibility to fermentable sugars by degrading and assimilating the plant cell wall and cuticle compounds. Their ability seems also helpful for S. cerevisiae to obtain energy through alcoholic fermentation. Thus, degradation and utilization of grape-skin materials by resident microbiota may account for their residence on grape-skin and S. cerevisiae's possible commensal behaviors. Conclusively, this study focused on the symbiosis between grape-skin microbiota and S. cerevisiae from the perspective of winemaking origin. Such plant-microbe symbiotic interaction may be a prerequisite for triggering spontaneous food fermentation.
Collapse
Affiliation(s)
- Daisuke Watanabe
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
- Laboratory of Applied Stress Microbiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan.
| |
Collapse
|
25
|
Composition, metabolism and postharvest function and regulation of fruit cuticle: A review. Food Chem 2023; 411:135449. [PMID: 36669336 DOI: 10.1016/j.foodchem.2023.135449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/19/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
The cuticle of plants, a hydrophobic membrane that covers their aerial organs, is crucial to their ability to withstand biotic and abiotic stressors. Fruit is the reproductive organ of plants, and an important dietary source that can offer a variety of nutrients for the human body, and fruit cuticle performs a crucial protective role in fruit development and postharvest quality. This review discusses the universality and diversity of the fruit cuticle composition, and systematically summarizes the metabolic process of fruit cuticle, including the biosynthesis, transport and regulatory factors (including transcription factors, phytohormones and environmental elements) of fruit cuticle. Additionally, we emphasize the postharvest functions and postharvest regulatory technologies of fruit cuticle, and propose future research directions for fruit cuticle.
Collapse
|
26
|
Ji D, Liu W, Jiang L, Chen T. Cuticles and postharvest life of tomato fruit: A rigid cover for aerial epidermis or a multifaceted guard of freshness? Food Chem 2023; 411:135484. [PMID: 36682164 DOI: 10.1016/j.foodchem.2023.135484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
Fruit cuticle is a specialized cell wall hydrophobic architecture covering the aerial surfaces of fruit, which forms the interface between the fruit and its environment. As a specialized seed-bearing organ, fruit utilize cuticles as physical barriers, water permeation regulator and resistance to pathogens, thus appealing extensive research interests for its potential values in developing postharvest freshness-keeping strategies. Here, we provide an overview for the composition and functions of fruit cuticles, mainly focusing on its functions in mechanical support, water permeability barrier and protection over pathogens, further introduce key mechanisms implicated in fruit cuticle biosynthesis. Moreover, currently available state-of-art techniques for examining compositional diversity and architecture of fruit are also compared.
Collapse
Affiliation(s)
- Dongchao Ji
- School of Life Sciences and Medicine, Shandong University of Technology, Xincun West Road 266, Zhangdian District, Zibo, Shandong 255049, China; Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19(A), Shijingshan District, Beijing 100049, China
| | - Wei Liu
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19(A), Shijingshan District, Beijing 100049, China
| | - Libo Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Xincun West Road 266, Zhangdian District, Zibo, Shandong 255049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19(A), Shijingshan District, Beijing 100049, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China.
| |
Collapse
|
27
|
Li HJ, Bai WP, Liu LB, Liu HS, Wei L, Garant TM, Kalinger RS, Deng YX, Wang GN, Bao AK, Ma Q, Rowland O, Wang SM. Massive increases in C31 alkane on Zygophyllum xanthoxylum leaves contribute to its excellent abiotic stress tolerance. ANNALS OF BOTANY 2023; 131:723-736. [PMID: 36848247 PMCID: PMC10147333 DOI: 10.1093/aob/mcad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/24/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Desert plants possess excellent water-conservation capacities to survive in extreme environments. Cuticular wax plays a pivotal role in reducing water loss through plant aerial surfaces. However, the role of cuticular wax in water retention by desert plants is poorly understood. METHODS We investigated leaf epidermal morphology and wax composition of five desert shrubs from north-west China and characterized the wax morphology and composition for the typical xerophyte Zygophyllum xanthoxylum under salt, drought and heat treatments. Moreover, we examined leaf water loss and chlorophyll leaching of Z. xanthoxylum and analysed their relationships with wax composition under the above treatments. KEY RESULTS The leaf epidermis of Z. xanthoxylum was densely covered by cuticular wax, whereas the other four desert shrubs had trichomes or cuticular folds in addition to cuticular wax. The total amount of cuticular wax on leaves of Z. xanthoxylum and Ammopiptanthus mongolicus was significantly higher than that of the other three shrubs. Strikingly, C31 alkane, the most abundant component, composed >71 % of total alkanes in Z. xanthoxylum, which was higher than for the other four shrubs studied here. Salt, drought and heat treatments resulted in significant increases in the amount of cuticular wax. Of these treatments, the combined drought plus 45 °C treatment led to the largest increase (107 %) in the total amount of cuticular wax, attributable primarily to an increase of 122 % in C31 alkane. Moreover, the proportion of C31 alkane within total alkanes remained >75 % in all the above treatments. Notably, the water loss and chlorophyll leaching were reduced, which was negatively correlated with C31 alkane content. CONCLUSION Zygophyllum xanthoxylum could serve as a model desert plant for study of the function of cuticular wax in water retention because of its relatively uncomplicated leaf surface and because it accumulates C31 alkane massively to reduce cuticular permeability and resist abiotic stressors.
Collapse
Affiliation(s)
- Hu-Jun Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Wan-Peng Bai
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Lin-Bo Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Hai-Shuang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Li Wei
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Timothy M Garant
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Rebecca S Kalinger
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Yu-Xuan Deng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Gai-Ni Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Ai-Ke Bao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Qing Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Owen Rowland
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Suo-Min Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| |
Collapse
|
28
|
Righetti GIC, Nasti R, Beretta G, Levi M, Turri S, Suriano R. Unveiling the Hidden Properties of Tomato Peels: Cutin Ester Derivatives as Bio-Based Plasticizers for Polylactic Acid. Polymers (Basel) 2023; 15:polym15081848. [PMID: 37111995 PMCID: PMC10144934 DOI: 10.3390/polym15081848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/28/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Polylactic acid (PLA) is one of the most important biopolymers employed on the market due to its good mechanical strength and barrier properties. On the other hand, this material presents a rather low flexibility, limiting its employment. The valorization of bio-based agro-food waste for the modification of bioplastics is a highly appealing approach for the replacement of petrol-based materials. The aim of this work is to employ cutin fatty acids derived from a biopolymer (i.e., cutin), present in waste tomato peels and its bio-based derivatives as new plasticizers to enhance PLA flexibility. In particular, pure 10,16-dihydroxy hexadecanoic acid was extracted and isolated from tomato peels and then functionalized to give the desired compounds. All the molecules developed in this study were characterized by NMR and ESI-MS. Blends at different concentrations (10, 20, 30, and 40% w/w) the flexibility (Tg measurements with differential scanning calorimetry-DSC) of the final material. Furthermore, the physical behavior of two blends obtained by mechanical mixing of PLA and 16-methoxy,16-oxohexadecane-1,7-diyl diacetate was investigated through thermal and tensile tests. The data collected by DSC show a lowering in the Tg of all the blends of PLA with functionalized fatty acids, in comparison with pure PLA. Lastly, the tensile tests highlighted how PLA blended with 16-methoxy,16-oxohexadecane-1,7-diyl diacetate (20% w/w) can efficiently enhance its flexibility.
Collapse
Affiliation(s)
- Grazia Isa C Righetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Rita Nasti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Giangiacomo Beretta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Marinella Levi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Firenze, Italy
| | - Stefano Turri
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Firenze, Italy
| | - Raffaella Suriano
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
29
|
Wang L, Teplitski M. Microbiological food safety considerations in shelf-life extension of fresh fruits and vegetables. Curr Opin Biotechnol 2023; 80:102895. [PMID: 36689852 DOI: 10.1016/j.copbio.2023.102895] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/11/2022] [Accepted: 12/23/2022] [Indexed: 01/22/2023]
Abstract
There are a number of opportunities for reducing loss and waste, and extending shelf life of fresh produce that go beyond cold chain optimization. For example, plant genotype (including ripening-related genes), presence of phytopathogens, maturity at harvest, and environmental conditions close to the harvest time, storage conditions, and postharvest treatments (washing, cutting, and waxing) all impact both shelf life of produce and food safety outcomes. Therefore, loss can be reduced and shelf life of fresh produce can be extended with plant breeding to manipulate ripening-related traits, or with pre- and postharvest treatments delaying senescence and decay. Food safety considerations of these applications are discussed.
Collapse
Affiliation(s)
- Luxin Wang
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, United States
| | - Max Teplitski
- International Fresh Produce Association, Washington, DC, United States.
| |
Collapse
|
30
|
Wang H, Lu Z, Xu Y, Zhang J, Han L, Chai M, Wang ZY, Yang X, Lu S, Tong J, Xiao L, Wen J, Mysore KS, Zhou C. Roles of very long-chain fatty acids in compound leaf patterning in Medicago truncatula. PLANT PHYSIOLOGY 2023; 191:1751-1770. [PMID: 36617225 PMCID: PMC10022625 DOI: 10.1093/plphys/kiad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Plant cuticles are composed of hydrophobic cuticular waxes and cutin. Very long-chain fatty acids (VLCFAs) are components of epidermal waxes and the plasma membrane and are involved in organ morphogenesis. By screening a barrelclover (Medicago truncatula) mutant population tagged by the transposable element of tobacco (Nicotiana tabacum) cell type1 (Tnt1), we identified two types of mutants with unopened flower phenotypes, named unopened flower1 (uof1) and uof2. Both UOF1 and UOF2 encode enzymes that are involved in the biosynthesis of VLCFAs and cuticular wax. Comparative analysis of the mutants indicated that the mutation in UOF1, but not UOF2, leads to the increased number of leaflets in M. truncatula. UOF1 was specifically expressed in the outermost cell layer (L1) of the shoot apical meristem (SAM) and leaf primordia. The uof1 mutants displayed defects in VLCFA-mediated plasma membrane integrity, resulting in the disordered localization of the PIN-FORMED1 (PIN1) ortholog SMOOTH LEAF MARGIN1 (SLM1) in M. truncatula. Our work demonstrates that the UOF1-mediated biosynthesis of VLCFAs in L1 is critical for compound leaf patterning, which is associated with the polarization of the auxin efflux carrier in M. truncatula.
Collapse
Affiliation(s)
- Hongfeng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266101, China
| | - Zhichao Lu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266101, China
| | - Yiteng Xu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266101, China
| | - Jing Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266101, China
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266101, China
| | - Maofeng Chai
- Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao 266109, China
| | - Zeng-Yu Wang
- Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao 266109, China
| | - Xianpeng Yang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Shiyou Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jianhua Tong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Jiangqi Wen
- Institute of Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA
| | - Kirankumar S Mysore
- Institute of Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266101, China
| |
Collapse
|
31
|
Molina I, Bueno A, Heredia A, Domínguez E. Editorial: Plant cuticle: From biosynthesis to ecological functions. FRONTIERS IN PLANT SCIENCE 2023; 14:1154255. [PMID: 36875608 PMCID: PMC9975735 DOI: 10.3389/fpls.2023.1154255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Isabel Molina
- Department of Biology, School of Life Sciences and the Environment, Algoma University, Sault Ste Marie, ON, Canada
| | - Amauri Bueno
- Chair of Botany II – Ecophysiology and Vegetation Ecology, Julius von Sachs Institute of Biological Sciences, University of Würzburg, Würzburg, Germany
| | - Antonio Heredia
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Eva Domínguez
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental La Mayora, Málaga, Spain
| |
Collapse
|
32
|
Zarea MJ, Karimi N. Grain yield and quality of wheat are improved through post-flowering foliar application of zinc and 6- benzylaminopurine under water deficit condition. FRONTIERS IN PLANT SCIENCE 2023; 13:1068649. [PMID: 36714766 PMCID: PMC9879624 DOI: 10.3389/fpls.2022.1068649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Zinc (Zn) as an essential micronutrient and cytokinin as phytohormone not only regulate plant growth but also play fundamental roles in plant tolerance against drought stress. Understating the function and the role of cytokinin in combined with an essential micronutrient, Zn, could improve the choice of a sustainable strategy for improvement of plant drought stress. The objective of this field research was to determine the effect of post-flowering foliar application of ZnSO4 and 6-benzylaminopurine (6-BAP) on grain yield and quality of winter wheat under water deficit condition. METHODS Experiments were conducted under filed condition. Drought was imposed by with holding irrigation at the beginning of flowering till the signs of temporary wilting/leaf rolling appeared, after which all plots were irrigated to field capacity. The foliar treatment consisted of (1) foliar application of water, as control treatment; (2) foliar application of 10 g ha-1 6-BAP; (3) Foliar application of 20 g ha-1 6-BAP; (4) Foliar application of 10 g ha-1 6-BAP plus foliar application of 6 kg ha-1 ZnSO4 solution and (5) foliar application of 10 g ha-1 6-BAP plus foliar application of 6 kg ha-1 ZnSO4 solution 2 days before drought imposition. Data were collected on grain and straw yield, yield attributes, harvest index, flag leaf fresh matter and dry matter weight, TaCKX6-D1 expression, phytic acid content in grains, mycorrhiza colonization rate and succinate dehydrogenase (SD) activity. RESULTS According to ANOVA, the factor 'Zn' significantly affected leaf relative water content (p < 0.001). Relative water content for plants foliar applied with 6-BAP was not statistically significant. Applying Zn increased yield, straw dry weight, and kernel weight relative to plants sprayed with water alone. Increased grain yield due to foliar application of Zn was associated with decrease in cytokinin oxidase/dehydrogenase (TaCKX) and increase in kernel weight. Results showed that the drought stress significantly decreased 1000-grain weight that was accompanied with over-expression of cytokinin oxidase/dehydrogenase (TaCKX). Foliar application of Zn increased the concentration of Zn in grains. The experimental data on the zinc content of grain indicated no significant difference between the 6-BAP at 10 mg L-1 and control treatment. The phytate to Zn molar ratio was significantly affected by foliar applied Zn, but not significantly by applied 6-BAP. In the present study, SD activity of the hyphae of indigenous arbuscular mycorrhizal fungi (IAMF) associated with plant roots was also assayed. Results disclose that SD activity of IAMF was significantly affected by Zn treatments during grain filling stages. DISCUSSION In summary, both foliar applied Zn and 6-BAP had the significant effects on all measured parameters in winter wheat. However, spike number, harvest index and mycorrhizal colonization rate were neither significantly affected by Zn nor 6- BAP. Foliar application of Zn at 0.6% (6 kg ha-1) and higher 6-BAP (20 mg L-1 m-2) promoted wheat growth and performances under imposed drought stress condition. Plant that only foliar sprayed with water showed higher level of TaCKX6-D1 expression as compared to Zn treated plants, indicating these plants were more affected by imposed drought relative to those plants treated with Zn. The results of this study provides evidence that a combination of Zn and 6-BAP could be an effective in improvement of drought tolerance of wheat and prevents grain yield from further reduction in terms of quality and quantity due to drought stress.
Collapse
|
33
|
González Moreno A, Domínguez E, Mayer K, Xiao N, Bock P, Heredia A, Gierlinger N. 3D (x-y-t) Raman imaging of tomato fruit cuticle: Microchemistry during development. PLANT PHYSIOLOGY 2023; 191:219-232. [PMID: 35972400 PMCID: PMC9806558 DOI: 10.1093/plphys/kiac369] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/15/2022] [Indexed: 05/20/2023]
Abstract
The cuticle is a protective extracellular matrix that covers the above-ground epidermis of land plants. Here, we studied the cuticle of tomato (Solanum lycopersicum L.) fruits in situ using confocal Raman microscopy. Microsections from cuticles isolated at different developmental stages were scanned to visualize cuticle components with a spatial resolution of 342 nm by univariate and multivariate data analysis. Three main components, cutin, polysaccharides, and aromatics, were identified, with the latter exhibiting the strongest Raman scattering intensity. Phenolic acids and flavonoids were differentiated within the cuticle, and three schematic cuticle models were identified during development. Phenolic acids were found across the entire cuticle at the earliest stage of development, i.e. during the formation of the procuticle layer. Based on a mixture analysis with reference component spectra, the phenolic acids were identified as mainly esterified p-coumaric acid together with free p-hydroxybenzoic acid. During the cell expansion period of growth, phenolic acids accumulated in an outermost layer of the cuticle and in the middle region of the pegs. In these stages of development, cellulose and pectin were detected next to the inner cuticle region, close to the epidermal cell where flavonoid impregnation started during ripening. In the first ripening stage, chalconaringenin was observed, while methoxylated chalcones were chosen by the algorithm to fit the mature cuticle spectra. The colocation of carbohydrates, esterified p-coumaric acid, and methoxylated chalconaringenin suggests that the latter two link polysaccharide and cutin domains. Elucidating the different distribution of aromatics within the cuticle, suggests important functions: (1) overall impregnation conferring mechanical and thermal functions (2) the outermost phenolic acid layer displaying UV-B protection of the plant tissue.
Collapse
Affiliation(s)
| | - Eva Domínguez
- IHSM-UMA-CSIC La Mayora, Plant breeding and Biotechnology, CSIC, 29750 Algarrobo-Costa, Málaga, Spain
| | - Konrad Mayer
- Department of Nanobiotechnology, BOKU-University of Natural Resources and Life Science, Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Nannan Xiao
- Department of Nanobiotechnology, BOKU-University of Natural Resources and Life Science, Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Peter Bock
- Department of Nanobiotechnology, BOKU-University of Natural Resources and Life Science, Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Antonio Heredia
- IHSM-UMA-CSIC La Mayora, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071, Málaga, Spain
| | | |
Collapse
|
34
|
Lin X, Huang S, Huber DJ, Zhang Q, Wan X, Peng J, Luo D, Dong X, Zhu S. Melatonin Treatment Affects Wax Composition and Maintains Storage Quality in 'Kongxin' Plum ( Prunus salicina L. cv) during Postharvest. Foods 2022; 11:foods11243972. [PMID: 36553714 PMCID: PMC9778571 DOI: 10.3390/foods11243972] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Cuticular wax is an essential barrier against biological and abiotic stress and is also an important factor affecting fruit storage quality. This paper investigated the effect of melatonin treatment on cuticular wax and the storage quality of plum fruit at low temperature storage of 4 ± 1 °C. 'Kongxin' plum was treated with 150 μmol·L-1 melatonin, dried overnight at room temperature 25 ± 1 °C, and then stored at 4 ± 1 °C for 40 d. The microstructure of the fruit epidermis was examined after 0, 20, and 40 d of storage, and the wax composition and fruit storage quality were measured at 10 d intervals. The results demonstrated that melatonin promoted the disintegration and thickening of rod-shaped waxy crystals of 'Kongxin' plum fruit and inhibited the combination of disintegrated wax and inner wax. Melatonin maintained fruit firmness and decreased the correlation between fruit firmness and other storage quality parameters. The correlation between firmness and wax composition was enhanced. Melatonin promoted long-chain alkanes that were positively correlated with firmness and water retention and strengthened the correlation between the length of the alkane chain and storage quality parameters but reduced the difference between alkane isomers and storage quality parameters.
Collapse
Affiliation(s)
- Xin Lin
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guizhou 550025, China
| | - Shian Huang
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guizhou 550025, China
- Guiyang Agricultural Reclamation Investment Development Group Co., Ltd., Guizhou 550001, China
| | - Donald J. Huber
- Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611-0690, USA
| | - Qin Zhang
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guizhou 550025, China
| | - Xuan Wan
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guizhou 550025, China
| | - Junsen Peng
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guizhou 550025, China
| | - Dengcan Luo
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guizhou 550025, China
| | - Xiaoqing Dong
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guizhou 550025, China
- Correspondence: (X.D.); (S.Z.)
| | - Shouliang Zhu
- Guizhou Workstation for Fruit and Vegetables, Guizhou 550025, China
- Correspondence: (X.D.); (S.Z.)
| |
Collapse
|
35
|
The role of cuticle in fruit shelf-life. Curr Opin Biotechnol 2022; 78:102802. [PMID: 36162185 DOI: 10.1016/j.copbio.2022.102802] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 12/14/2022]
Abstract
Ensuring the availability of high-quality fresh fruits requires the development of strategies to maintain prolonged shelf-life. The plant cuticle is a modification of the outer epidermal cell wall and, as such, acts as a barrier with the environment. Understanding how the cuticle naturally changes during postharvest is crucial to address the potential effect of different storage conditions on the cuticle biophysical properties. The impact of different cuticle traits in fruit water loss, its relevance in several fruit-skin disorders, and its participation in postharvest decay caused by pathogens are discussed. Future challenges to study in vivo the physicochemical properties of the cuticle are also addressed.
Collapse
|
36
|
Matos TM, Cruz R, Peralta DF, Melo-de-Pinna GFDA, dos Santos DYAC. Cuticle structure and chemical composition of waxes in Phaeoceros laevis (L.) Prosk (Notothyladaceae, Anthocerotophyta). FRONTIERS IN PLANT SCIENCE 2022; 13:785812. [PMID: 36340379 PMCID: PMC9634757 DOI: 10.3389/fpls.2022.785812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The development of a hydrophobic cuticle covering the epidermis was a crucial evolutionary novelty ensuring the establishment of land plants. However, there is little information about its structure and chemical composition, as well as its functional implications in avascular lineages such as Anthocerotophyta. The main goal of the present study was to compare the gametophyte and sporophyte cuticles of Phaeoceros laevis. Semithin sections were analyzed through light microscopy (LM), cuticle structure was evaluated by transmission electron microscopy (TEM) and epicuticular wax morphology was analyzed by scanning electron microscopy (SEM). Total waxes were analyzed by CG/MS, and the components were identified based on the mass spectra. A thin lipophilic layer was detected on the sporophyte surface, structured as a stratified cuticular layer, similar to the well-known structure described for vascular plants. On the other hand, the gametophyte cuticle was observed only with TEM as a thin osmiophilic layer. SEM analyses showed a film-type wax on the surface of both life phases. The wax layer was eight-fold thicker on the sporophyte (0.8 µg cm-2) than on gametophyte (0.1 µg cm-2). Possible mechanical and/or drought protection are discussed. Fatty acids, primary alcohols, and steroids were identified in both life phases, while the kauren-16-ene diterpene (3%) was detected only on the sporophyte. Although no alkanes were detected in P. laevis, our findings unveil great similarity of the sporophyte cuticle of this hornwort species with the general data described for vascular plants, reinforcing the conservative condition of this character and supporting the previous idea that the biosynthetic machinery involved in the synthesis of wax compounds is conserved since the ancestor of land plants.
Collapse
Affiliation(s)
- Tamara Machado Matos
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Cruz
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | |
Collapse
|
37
|
Su K, Sun J, Han J, Zheng T, Sun B, Liu S. Combined morphological and multi-omics analyses to reveal the developmental mechanism of Zanthoxylum bungeanum prickles. FRONTIERS IN PLANT SCIENCE 2022; 13:950084. [PMID: 36072325 PMCID: PMC9441855 DOI: 10.3389/fpls.2022.950084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Zanthoxylum bungeanum Maxim. as an important economic forest, its epidermis bears prickles which complicate the harvesting process and increase the labor costs. To explore the developmental mechanism of prickles, three varieties of Zanthoxylum bungeanum (PZB, SZB, GSZB) were selected for morphological and multi-omics analyses. The absorption spectra of prickles and stems were detected using Fourier-transform infrared spectroscopy (FTIR), and they were found different at 1617, 1110, 3319, and 1999 cm-1. The morphology of prickles and stems were observed using light microscopy and transmission electron microscopy (TEM). The growth direction of cells on the prickle side and stem side were perpendicular to each other, and there was a resembling abscission zone (RAZ) between them. The vacuolar deposits of prickle cells were much more than stem cells, indicating that the lignification degree of prickles was higher than stems. In addition, 9 candidate genes (ZbYABBY2, ZbYABBY1, ZbYABBY5, ZbWRKY, ZbLOG5, ZbAZG2, ZbGh16, ZbIAA33, and ZbGh16X1) were screened out and validated base on transcriptome and qRT-PCA. As well as, 30 key metabolites were found related to prickle development base on metabolome analysis. Among them, 4-hydroxy-2-oxopentanoate, trans-2-hydroxy-cinnamate, trans-cinnamate, polyhydroxy-fatty acid, 10,16-dihydroxypalmitate, cinnamic acid were related to the biosynthesis of cutin, suberine and wax. Indole-3-acetate, tryptamine, anthranilate, fromylanthranilate, N6-(delta2-isopentenyl)-adenine were related to plant hormone signal transduction. Generally, this is the first study to reveal the developmental mechanism of prickles. The results of this study lay the foundation for the breeding of non-prickle Zanthoxylum bungeanum.
Collapse
Affiliation(s)
- Kexing Su
- College of Science, Northwest Agriculture and Forestry University, Xianyang, China
| | - Jiaqian Sun
- Powerchina Northwest Engineering Corporation Limited, Xi’an, China
- Shaanxi Union Research Center of University and Enterprise for River and Lake Ecosystems Protection and Restoration, Xi’an, China
| | - Jun Han
- Forestry and Grassland Bureau of Xunhua County, Qinghai, China
| | - Tao Zheng
- College of Science, Northwest Agriculture and Forestry University, Xianyang, China
| | - Bingyin Sun
- Department of Ecological Engineering, Yangling Vocational and Technical College, Xianyang, China
| | - Shuming Liu
- College of Science, Northwest Agriculture and Forestry University, Xianyang, China
| |
Collapse
|
38
|
Hydrogel-extraction technique for non-invasive detection of blue fluorescent substances in plant leaves. Sci Rep 2022; 12:13598. [PMID: 35948743 PMCID: PMC9365774 DOI: 10.1038/s41598-022-17785-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/31/2022] [Indexed: 11/26/2022] Open
Abstract
This paper reports a new hydrogel extraction technique for detecting blue fluorescent substances in plant leaves. These blue fluorescent substances were extracted by placing a hydrogel film on the leaf of a cherry tomato plant infected with Ralstonia solanacearum; herein, chlorogenic acid was confirmed to be a blue fluorescent substance. The wavelength at the maximum fluorescence intensity of the film after the hydrogel extraction was similar to that of the methanolic extract obtained from the infected cherry tomato leaves. Chlorophyll was not extracted from the hydrogel film because no fluorescence peak was observed at 680 nm. Accordingly, the blue fluorescence of the substances extracted from the hydrogel film was not quenched by the strong absorption of chlorophyll in the blue light region. This hydrogel extraction technique can potentially detect small amounts of blue fluorescent substances and the changes in its amount within the leaves of infected plants. These changes in the amount of blue fluorescent substances in the early stages of infection can be used to detect presymptomatic infections. Therefore, hydrogel extraction is a promising technique for the noninvasive detection of infections before onset.
Collapse
|
39
|
Liu L, Wang X, Chang C. Toward a smart skin: Harnessing cuticle biosynthesis for crop adaptation to drought, salinity, temperature, and ultraviolet stress. FRONTIERS IN PLANT SCIENCE 2022; 13:961829. [PMID: 35958191 PMCID: PMC9358614 DOI: 10.3389/fpls.2022.961829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Drought, salinity, extreme temperatures, and ultraviolet (UV) radiation are major environmental factors that adversely affect plant growth and crop production. As a protective shield covering the outer epidermal cell wall of plant aerial organs, the cuticle is mainly composed of cutin matrix impregnated and sealed with cuticular waxes, and greatly contributes to the plant adaption to environmental stresses. Past decades have seen considerable progress in uncovering the molecular mechanism of plant cutin and cuticular wax biosynthesis, as well as their important roles in plant stress adaptation, which provides a new direction to drive strategies for stress-resilient crop breeding. In this review, we highlighted the recent advances in cuticle biosynthesis in plant adaptation to drought, salinity, extreme temperatures, and UV radiation stress, and discussed the current status and future directions in harnessing cuticle biosynthesis for crop improvement.
Collapse
|
40
|
Pereira RFP, Rocha J, Nunes P, Fernandes T, Ravishankar AP, Cruz R, Fernandes M, Anand S, Casal S, de Zea Bermudez V, Crespí AL. Vicariance Between Cercis siliquastrum L. and Ceratonia siliqua L. Unveiled by the Physical-Chemical Properties of the Leaves' Epicuticular Waxes. FRONTIERS IN PLANT SCIENCE 2022; 13:890647. [PMID: 35860538 PMCID: PMC9289549 DOI: 10.3389/fpls.2022.890647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Classically, vicariant phenomena have been essentially identified on the basis of biogeographical and ecological data. Here, we report unequivocal evidences that demonstrate that a physical-chemical characterization of the epicuticular waxes of the surface of plant leaves represents a very powerful strategy to get rich insight into vicariant events. We found vicariant similarity between Cercis siliquastrum L. (family Fabaceae, subfamily Cercidoideae) and Ceratonia siliqua L. (family Fabaceae, subfamily Caesalpinoideae). Both taxa converge in the Mediterranean basin (C. siliquastrum on the north and C. siliqua across the south), in similar habitats (sclerophyll communities of maquis) and climatic profiles. These species are the current representation of their subfamilies in the Mediterranean basin, where they overlap. Because of this biogeographic and ecological similarity, the environmental pattern of both taxa was found to be very significant. The physical-chemical analysis performed on the epicuticular waxes of C. siliquastrum and C. siliqua leaves provided relevant data that confirm the functional proximity between them. A striking resemblance was found in the epicuticular waxes of the abaxial surfaces of C. siliquastrum and C. siliqua leaves in terms of the dominant chemical compounds (1-triacontanol (C30) and 1-octacosanol (C28), respectively), morphology (intricate network of randomly organized nanometer-thick and micrometer-long plates), wettability (superhydrophobic character, with water contact angle values of 167.5 ± 0.5° and 162 ± 3°, respectively), and optical properties (in both species the light reflectance/absorptance of the abaxial surface is significantly higher/lower than that of the adaxial surface, but the overall trend in reflectance is qualitatively similar). These results enable us to include for the first time C. siliqua in the vicariant process exhibited by C. canadensis L., C. griffithii L., and C. siliquastrum.
Collapse
Affiliation(s)
- Rui F. P. Pereira
- Chemistry Department and Chemistry Centre, University of Minho, Braga, Portugal
| | - João Rocha
- CQ-VR, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Herbarium and Botanical Garden, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Paulo Nunes
- CQ-VR, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Tânia Fernandes
- Chemistry Department and Chemistry Centre, University of Minho, Braga, Portugal
| | - Ajith P. Ravishankar
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Albanova University Centre, Stockholm, Sweden
| | - Rebeca Cruz
- LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, Laboratory of Bromatology and Hydrology, University of Porto, Porto, Portugal
| | - Mariana Fernandes
- CQ-VR, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Department of Chemistry, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Srinivasan Anand
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Albanova University Centre, Stockholm, Sweden
| | - Susana Casal
- LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, Laboratory of Bromatology and Hydrology, University of Porto, Porto, Portugal
| | - Verónica de Zea Bermudez
- CQ-VR, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Department of Chemistry, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - António L. Crespí
- Herbarium and Botanical Garden, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- CITAB, Department of Biological and Environmental Engineering, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| |
Collapse
|
41
|
Shen Y, Borgatta J, Ma C, Singh G, Tamez C, Schultes NP, Zhang Z, Dhankher OP, Elmer WH, He L, Hamers RJ, White JC. Role of Foliar Biointerface Properties and Nanomaterial Chemistry in Controlling Cu Transfer into Wild-Type and Mutant Arabidopsis thaliana Leaf Tissue. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4267-4278. [PMID: 35362318 DOI: 10.1021/acs.jafc.1c07873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Seven Arabidopsis thaliana mutants with differences in cuticle thickness and stomatal density were foliar exposed to 50 mg L-1 Cu3(PO4)2 nanosheets (NS), CuO NS, CuO nanoparticles, and CuSO4. Three separate fractions of Cu (surface-attached, cuticle, interior leaf) were isolated from the leaf at 0.25, 2, 4, and 8 h. Cu transfer from the surface through the cuticle and into the leaf varied with mutant and particle type. The Cu content on the surface decreased significantly over 8 h but increased in the cuticle. Cu derived from the ionic form had the greatest cuticle concentration, suggesting greater difficulty in moving across this barrier and into the leaf. Leaf Cu in the increased-stomatal mutants was 8.5-44.9% greater than the decreased stomatal mutants, and abscisic acid to close the stomata decreased Cu in the leaf. This demonstrates the importance of nanomaterial entry through the stomata and enables the optimization of materials for nanoenabled agriculture.
Collapse
Affiliation(s)
- Yu Shen
- The NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jaya Borgatta
- The NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Chuanxin Ma
- The NSF Center for Sustainable Nanotechnology, Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06504, United States
| | - Gurpal Singh
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Carlos Tamez
- The NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Neil P Schultes
- The NSF Center for Sustainable Nanotechnology, Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06504, United States
| | - Zhiyun Zhang
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Wade H Elmer
- The NSF Center for Sustainable Nanotechnology, Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06504, United States
| | - Lili He
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Robert J Hamers
- The NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jason C White
- The NSF Center for Sustainable Nanotechnology, Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06504, United States
| |
Collapse
|
42
|
González Moreno A, de Cózar A, Prieto P, Domínguez E, Heredia A. Radiationless mechanism of UV deactivation by cuticle phenolics in plants. Nat Commun 2022; 13:1786. [PMID: 35379806 PMCID: PMC8979964 DOI: 10.1038/s41467-022-29460-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 03/10/2022] [Indexed: 12/31/2022] Open
Abstract
Hydroxycinnamic acids present in plant cuticles, the interphase and the main protective barrier between the plant and the environment, exhibit singular photochemical properties that could allow them to act as a UV shield. Here, we employ transient absorption spectroscopy on isolated cuticles and leaf epidermises to study in situ the photodynamics of these molecules in the excited state. Based on quantum chemical calculations on p-coumaric acid, the main phenolic acid present in the cuticle, we propose a model in which cuticle phenolics display a photoprotective mechanism based in an ultrafast and non-radiative excited state deactivation combined with fluorescence emission. As such, the cuticle can be regarded as the first and foremost protective barrier against UV radiation. This photostable and photodynamic mechanism seems to be universal in land plants giving a special role and function to the presence of different aromatic domains in plant cuticles and epidermises. Phenolics are abundant in plant cuticles. Here, via transient absorption spectroscopy and quantum chemical calculations, the authors propose a model by which cuticle phenolics provide photoprotection due to ultrafast and non-radiative excited state deactivation combined with fluorescence emission.
Collapse
|
43
|
Yang SL, Tran N, Tsai MY, Ho CMK. Misregulation of MYB16 expression causes stomatal cluster formation by disrupting polarity during asymmetric cell divisions. THE PLANT CELL 2022; 34:455-476. [PMID: 34718767 PMCID: PMC8774054 DOI: 10.1093/plcell/koab260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/19/2021] [Indexed: 05/02/2023]
Abstract
Stomatal pores and the leaf cuticle regulate evaporation from the plant body and balance the tradeoff between photosynthesis and water loss. MYB16, encoding a transcription factor involved in cutin biosynthesis, is expressed in stomatal lineage ground cells, suggesting a link between cutin biosynthesis and stomatal development. Here, we show that the downregulation of MYB16 in meristemoids is directly mediated by the stomatal master transcription factor SPEECHLESS (SPCH) in Arabidopsis thaliana. The suppression of MYB16 before an asymmetric division is crucial for stomatal patterning, as its overexpression or ectopic expression in meristemoids increased stomatal density and resulted in the formation of stomatal clusters, as well as affecting the outer cell wall structure. Expressing a cutinase gene in plants ectopically expressing MYB16 reduced stomatal clustering, suggesting that cutin affects stomatal signaling or the polarity setup in asymmetrically dividing cells. The clustered stomatal phenotype was rescued by overexpressing EPIDERMAL PATTERNING FACTOR2, suggesting that stomatal signaling was still functional in these plants. Growing seedlings ectopically expressing MYB16 on high-percentage agar plates to modulate tensile strength rescued the polarity and stomatal cluster defects of these seedlings. Therefore, the inhibition of MYB16 expression by SPCH in the early stomatal lineage is required to correctly place the polarity protein needed for stomatal patterning during leaf morphogenesis.
Collapse
Affiliation(s)
- Shao-Li Yang
- Institute of Plant and Microbial Biology, Academia Sinica, Nangang, Taipei, Taiwan
| | - Ngan Tran
- Institute of Plant and Microbial Biology, Academia Sinica, Nangang, Taipei, Taiwan
| | - Meng-Ying Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Nangang, Taipei, Taiwan
| | | |
Collapse
|
44
|
Benítez JJ, González Moreno A, Guzmán-Puyol S, Heredia-Guerrero JA, Heredia A, Domínguez E. The Response of Tomato Fruit Cuticle Membranes Against Heat and Light. FRONTIERS IN PLANT SCIENCE 2022; 12:807723. [PMID: 35069665 PMCID: PMC8777011 DOI: 10.3389/fpls.2021.807723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/16/2021] [Indexed: 05/29/2023]
Abstract
Two important biophysical properties, the thermal and UV-Vis screening capacity, of isolated tomato fruit cuticle membranes (CM) have been studied by differential scanning calorimetry (DSC) and UV-Vis spectrometry, respectively. A first order melting, corresponding to waxes, and a second order glass transition (T g ) thermal events have been observed. The glass transition was less defined and displaced toward higher temperatures along the fruit ripening. In immature and mature green fruits, the CM was always in the viscous and more fluid state but, in ripe fruits, daily and seasonal temperature fluctuations may cause the transition between the glassy and viscous states altering the mass transfer between the epidermal plant cells and the environment. CM dewaxing reduced the T g value, as derived from the role of waxes as fillers. T g reduction was more intense after polysaccharide removal due to their highly interwoven distribution within the cutin matrix that restricts the chain mobility. Such effect was amplified by the presence of phenolic compounds in ripe cuticle membranes. The structural rigidity induced by phenolics in tomato CMs was directly reflected in their mechanical elastic modulus. The heat capacity (Cp rev ) of cuticle membranes was found to depend on the developmental stage of the fruits and was higher in immature and green stages. The average Cp rev value was above the one of air, which confers heat regulation capacity to CM. Cuticle membranes screened the UV-B light by 99% irrespectively the developmental stage of the fruit. As intra and epicuticular waxes contributed very little to the UV screening, this protection capacity is attributed to the absorption by cinnamic acid derivatives. However, the blocking capacity toward UV-A is mainly due to the CM thickness increment during growth and to the absorption by flavone chalconaringenin accumulated during ripening. The build-up of phenolic compounds was found to be an efficient mechanism to regulate both the thermal and UV screening properties of cuticle membranes.
Collapse
Affiliation(s)
- José J. Benítez
- Instituto de Ciencia de Materiales de Sevilla, Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Seville, Spain
| | - Ana González Moreno
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Susana Guzmán-Puyol
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental La Mayora, Málaga, Spain
| | - José A. Heredia-Guerrero
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental La Mayora, Málaga, Spain
| | - Antonio Heredia
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Eva Domínguez
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental La Mayora, Málaga, Spain
| |
Collapse
|
45
|
Simões R, Miranda I, Pereira H. Cutin extraction and composition determined under differing depolymerisation conditions in cork oak leaves. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:127-135. [PMID: 34155712 DOI: 10.1002/pca.3075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Cutin is a biopolyester involved in waterproofing aerial plant organs, including leaves. Cutin quantification and compositional profiling require depolymerisation, namely by methanolysis, but specific protocols are not available. OBJECTIVES Investigate how different methanolysis conditions regarding catalyst concentration effect cutin depolymerisation and monomer release, to better define protocols for cutin content determination and composition profiling. MATERIAL AND METHODS Cork oak (Quercus suber) dewaxed leaves were reacted with five sodium methoxide (NaOMe) concentrations. Extracts were analysed: glycerol by high-performance liquid chromatography (HPLC) and long-chain lipids by gas chromatography-mass spectrometry (GC-MS). RESULTS Cutin was completely removed by 3% NaOMe (8.4% of dewaxed leaves), while mild 0.1% and 0.01% NaOMe methanolysis only depolymerised 14% of total cutin. Reactivity of cutin ester bonds is not homogeneous and glyceridic ester bonds are more easily cleaved, releasing the existing glycerol already under the mildest conditions (0.53% with 0.01% NaOMe and 0.41% with 3% NaOMe). The composition of cutin extracts varies with depolymerisation extent, with easier release of alkanoic acids and alkanols, respectively, 34.9% and 8.8% of total monomers at 0.1% NaOMe, while ω-hydroxyacids (49.3% of total monomers) and α,ω-diacids (9.0% of the monomers) are solubilised under more intensive reactive conditions. CONCLUSION Cutin of Quercus suber leaves is confirmed as a glyceridic polyester of ω-hydroxyacids and alkanoic acids, with minor content of α,ω-diacids, and including coumarate moieties. The protocol for the determination of cutin content and compositional profiling was established regarding catalyst concentration. The molar composition of cutin suggests a macromolecular assembly based on glycerol linked to lipid oligomeric chains with moderate cross-linking.
Collapse
Affiliation(s)
- Rita Simões
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Miranda
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Helena Pereira
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
46
|
Carvajal F, Castro-Cegrí A, Jiménez-Muñoz R, Jamilena M, Garrido D, Palma F. Changes in Morphology, Metabolism and Composition of Cuticular Wax in Zucchini Fruit During Postharvest Cold Storage. FRONTIERS IN PLANT SCIENCE 2021; 12:778745. [PMID: 34950169 PMCID: PMC8691734 DOI: 10.3389/fpls.2021.778745] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
Cuticle composition is an important economic trait in agriculture, as it is the first protective barrier of the plant against environmental conditions. The main goal of this work was to study the role of the cuticular wax in maintaining the postharvest quality of zucchini fruit, by comparing two commercial varieties with contrasting behavior against low temperatures; the cold-tolerant variety 'Natura', and the cold-sensitive 'Sinatra', as well as 'Sinatra' fruit with induced-chilling tolerance through a preconditioning treatment (15°C for 48 h). The freshly-harvested 'Natura' fruit had a well-detectable cuticle with a significant lower permeability and a subset of 15 up-regulated cuticle-related genes. SEM showed that zucchini epicuticular waxes mainly consisted of round-shaped crystals and clusters of them, and areas with more dense crystal deposition were found in fruit of 'Natura' and of preconditioned 'Sinatra'. The cuticular wax load per surface was higher in 'Natura' than in 'Sinatra' fruit at harvest and after 14 days at 4°C. In addition, total cuticular wax load only increased in 'Natura' and preconditioned 'Sinatra' fruit with cold storage. With respect to the chemical composition of the waxes, the most abundant components were alkanes, in both 'Natura' and 'Sinatra', with similar values at harvest. The total alkane content only increased in 'Natura' fruit and in the preconditioned 'Sinatra' fruit after cold storage, whereas the amount of total acids decreased, with the lowest values observed in the fruit that showed less chilling injury (CI) and weight loss. Two esters were detected, and their content also decreased with the storage in both varieties, with a greater reduction observed in the cold-tolerant variety in response to low temperature. Gene expression analysis showed significant differences between varieties, especially in CpCER1-like and CpCER3-like genes, involved in alkane production, as well as in the transcription factors CpWIN1-like and CpFUL1-like, associated with cuticle development and epidermal wax accumulation in other species. These results suggest an important role of the alkane biosynthetic pathway and cuticle morphology in maintaining the postharvest quality of zucchini fruit during the storage at low temperatures.
Collapse
Affiliation(s)
- Fátima Carvajal
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Granada, Spain
| | - Alejandro Castro-Cegrí
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Granada, Spain
| | - Raquel Jiménez-Muñoz
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Granada, Spain
| | - Manuel Jamilena
- Department of Biology and Geology, Agrifood Campus of International Excellence (CeiA3), University of Almería, Almería, Spain
| | - Dolores Garrido
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Granada, Spain
| | - Francisco Palma
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Granada, Spain
| |
Collapse
|
47
|
Surapaneni VA, Aust T, Speck T, Thielen M. Polarity in cuticular ridge development and insect attachment on leaf surfaces of Schismatoglottis calyptrata (Araceae). BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:1326-1338. [PMID: 34934607 PMCID: PMC8649201 DOI: 10.3762/bjnano.12.98] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
The plant cuticle is a multifunctional barrier that separates the organs of the plant from the surrounding environment. Cuticular ridges are microscale wrinkle-like cuticular protrusions that occur on many flower and leaf surfaces. These microscopic ridges can help against pest insects by reducing the frictional forces experienced when they walk on the leaves and might also provide mechanical stability to the growing plant organs. Here, we have studied the development of cuticular ridges on adaxial leaf surfaces of the tropical Araceae Schismatoglottis calyptrata. We used polymer replicas of adaxial leaf surfaces at various ontogenetic stages to study the morphological changes occurring on the leaf surfaces. We characterized the replica surfaces by using confocal laser scanning microscopy and commercial surface analysis software. The development of cuticular ridges is polar and the ridge progression occurs basipetally with a specific inclination to the midrib on Schismatoglottis calyptrata leaves. Using Colorado potato beetles as model species, we performed traction experiments on freshly unrolled and adult leaves and found low walking frictional forces of insects on both of these surfaces. The changes in the micro- and macroscale morphology of the leaves should improve our understanding of the way that plants defend themselves against insect herbivores.
Collapse
Affiliation(s)
- Venkata A Surapaneni
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
- FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- FMF, Freiburg Materials Research Center, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany
| | - Tobias Aust
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Thomas Speck
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
- FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- FMF, Freiburg Materials Research Center, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany
- Cluster of Excellence livMatS@ FIT- Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Marc Thielen
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
- FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- FMF, Freiburg Materials Research Center, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany
| |
Collapse
|
48
|
Almonte L, Pimentel C, Rodríguez‐Cañas E, Abad J, Fernández V, Colchero J. Rose petal effect: A subtle combination of nano‐scale roughness and chemical variability. NANO SELECT 2021. [DOI: 10.1002/nano.202100193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Lisa Almonte
- Centro de Investigación en Óptica y Nanofísica Departamento de Física Universidad de Murcia Murcia Spain
| | - Carlos Pimentel
- Instituto Andaluz de Ciencias de la Tierra (CSIC‐UGR) Armilla Spain
| | - Enrique Rodríguez‐Cañas
- Laboratorio de Microscopía Electrónica de Barrido Instituto de Investigación Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) Universidad Miguel Hernández Elche Spain
| | - José Abad
- Applied Physics Department Technical University of Cartagena Cartagena Spain
| | - Victoria Fernández
- Department of Systems and Natural Resources School of Forest Engineering Technical University of Madrid Madrid Spain
| | - Jaime Colchero
- Centro de Investigación en Óptica y Nanofísica Departamento de Física Universidad de Murcia Murcia Spain
| |
Collapse
|
49
|
Chen M. The Tea Plant Leaf Cuticle: From Plant Protection to Tea Quality. FRONTIERS IN PLANT SCIENCE 2021; 12:751547. [PMID: 34659320 PMCID: PMC8519587 DOI: 10.3389/fpls.2021.751547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/30/2021] [Indexed: 05/29/2023]
Abstract
Camellia sinensis (tea tree) is a perennial evergreen woody crop that has been planted in more than 50 countries worldwide; its leaves are harvested to make tea, which is one of the most popular nonalcoholic beverages. The cuticle is the major transpiration barrier to restrict nonstomatal water loss and it affects the drought tolerance of tea plants. The cuticle may also provide molecular cues for the interaction with herbivores and pathogens. The tea-making process almost always includes a postharvest withering treatment to reduce leaf water content, and many studies have demonstrated that withering treatment-induced metabolite transformation is essential to shape the quality of the tea made. Tea leaf cuticle is expected to affect its withering properties and the dynamics of postharvest metabolome remodeling. In addition, it has long been speculated that the cuticle may contribute to the aroma quality of tea. However, concrete experimental evidence is lacking to prove or refute this hypothesis. Even though its relevance to the abiotic and biotic stress tolerance and postharvest processing properties of tea tree, tea cuticle has long been neglected. Recently, there are several studies on the tea cuticle regarding its structure, wax composition, transpiration barrier organization, environmental stresses-induced wax modification, and structure-function relations. This review is devoted to tea cuticle, the recent research progresses were summarized and unresolved questions and future research directions were also discussed.
Collapse
Affiliation(s)
- Mingjie Chen
- College of Life Sciences, Henan Provincial Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, China
| |
Collapse
|
50
|
Vega C, Valbuena-Carabaña M, Gil L, Fernández V. Water Sorption and Desorption of Isolated Cuticles From Three Woody Species With Focus on Ilex aquifolium. FRONTIERS IN PLANT SCIENCE 2021; 12:728627. [PMID: 34671373 PMCID: PMC8522496 DOI: 10.3389/fpls.2021.728627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
The cuticle is a lipid-rich layer that protects aerial plant organs against multiple stress factors such as dehydration. In this study, cuticle composition and structure in relation to water loss are examined in a broad ecophysiological context, taking into consideration leaf age and side from Ilex aquifolium (holly) in comparison with Eucalyptus globulus (eucalypt) and Prunus laurocerasus (cherry laurel). Enzymatically isolated cuticular membranes from holly leaves were studied under three treatment conditions: natural (no chemical treatment), after dewaxing, and after methanolysis, and the rate of water loss was assessed. Structural and chemical changes were evaluated using different microscopy techniques and by Fourier transform infrared (FTIR) spectroscopy. The potential mechanisms of solute absorption by holly leaves were additionally evaluated, also testing if its prickly leaf margin may facilitate uptake. The results indicate that the treatment conditions led to structural changes, and that chemical composition was hardly affected because of the occurrence of cutan. Structural changes led to more hydrophilic adaxial surfaces, which retained more water and were more efficient than natural cuticles, while changes were not significant for abaxial surfaces. Across natural cuticles, age was a significant factor for eucalypt but not for holly. Young eucalypt cuticles were the group that absorbed more water and had the lowest water loss rate. When comparing older leaf cuticles of the three species, cherry laurel was found to absorb more water, which was, however, lost more slowly, compared with the other species. Evidence was gained that holly leaves can absorb foliar-applied solutes (traced after calcium chloride application) through the adaxial and abaxial surfaces, the adaxial mid veins, and to a lower extent, the spines. In conclusion, for the species examined, the results show variations in leaf cuticle composition and structure in relation to leaf ontogeny, and water sorption and desorption capacity.
Collapse
|