1
|
Bibik JD, Sahu A, Kim B, Unda F, Andersen TB, Mansfield SD, Maravelias CT, Sharkey TD, Hamberger BR. Engineered poplar for bioproduction of the triterpene squalene. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2301-2311. [PMID: 38507185 PMCID: PMC11258972 DOI: 10.1111/pbi.14345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/30/2023] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Building sustainable platforms to produce biofuels and specialty chemicals has become an increasingly important strategy to supplement and replace fossil fuels and petrochemical-derived products. Terpenoids are the most diverse class of natural products that have many commercial roles as specialty chemicals. Poplar is a fast growing, biomassdense bioenergy crop with many species known to produce large amounts of the hemiterpene isoprene, suggesting an inherent capacity to produce significant quantities of other terpenes. Here we aimed to engineer poplar with optimized pathways to produce squalene, a triterpene commonly used in cosmetic oils, a potential biofuel candidate, and the precursor to the further diversified classes of triterpenoids and sterols. The squalene production pathways were either re-targeted from the cytosol to plastids or co-produced with lipid droplets in the cytosol. Squalene and lipid droplet co-production appeared to be toxic, which we hypothesize to be due to disruption of adventitious root formation, suggesting a need for tissue specific production. Plastidial squalene production enabled up to 0.63 mg/g fresh weight in leaf tissue, which also resulted in reductions in isoprene emission and photosynthesis. These results were also studied through a technoeconomic analysis, providing further insight into developing poplar as a production host.
Collapse
Affiliation(s)
- Jacob D. Bibik
- Cell and Molecular Biology ProgramMichigan State UniversityEast LansingMichiganUSA
- DOE Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingMichiganUSA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Abira Sahu
- DOE Plant Research LaboratoryMichigan State UniversityEast LansingMichiganUSA
- The Plant Resilience InstituteMichigan State UniversityEast LansingMichiganUSA
| | - Boeun Kim
- DOE Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingMichiganUSA
- Andlinger Center for Energy and the EnvironmentPrinceton UniversityPrincetonNew JerseyUSA
| | - Faride Unda
- DOE Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingMichiganUSA
- Department of Wood Science, Faculty of ForestryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Trine B. Andersen
- DOE Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingMichiganUSA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Shawn D. Mansfield
- DOE Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingMichiganUSA
- Department of Wood Science, Faculty of ForestryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Botany, Faculty of ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Christos T. Maravelias
- Andlinger Center for Energy and the EnvironmentPrinceton UniversityPrincetonNew JerseyUSA
- Department of Chemical and Biological EngineeringPrinceton UniversityPrincetonNew JerseyUSA
| | - Thomas D. Sharkey
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
- DOE Plant Research LaboratoryMichigan State UniversityEast LansingMichiganUSA
- The Plant Resilience InstituteMichigan State UniversityEast LansingMichiganUSA
| | - Björn R. Hamberger
- Cell and Molecular Biology ProgramMichigan State UniversityEast LansingMichiganUSA
- DOE Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingMichiganUSA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
2
|
Pollastri S, Velikova V, Castaldini M, Fineschi S, Ghirardo A, Renaut J, Schnitzler JP, Sergeant K, Winkler JB, Zorzan S, Loreto F. Isoprene-Emitting Tobacco Plants Are Less Affected by Moderate Water Deficit under Future Climate Change Scenario and Show Adjustments of Stress-Related Proteins in Actual Climate. PLANTS (BASEL, SWITZERLAND) 2023; 12:333. [PMID: 36679046 PMCID: PMC9862500 DOI: 10.3390/plants12020333] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Isoprene-emitting plants are better protected against thermal and oxidative stresses, which is a desirable trait in a climate-changing (drier and warmer) world. Here we compared the ecophysiological performances of transgenic isoprene-emitting and wild-type non-emitting tobacco plants during water stress and after re-watering in actual environmental conditions (400 ppm of CO2 and 28 °C of average daily temperature) and in a future climate scenario (600 ppm of CO2 and 32 °C of average daily temperature). Furthermore, we intended to complement the present knowledge on the mechanisms involved in isoprene-induced resistance to water deficit stress by examining the proteome of transgenic isoprene-emitting and wild-type non-emitting tobacco plants during water stress and after re-watering in actual climate. Isoprene emitters maintained higher photosynthesis and electron transport rates under moderate stress in future climate conditions. However, physiological resistance to water stress in the isoprene-emitting plants was not as marked as expected in actual climate conditions, perhaps because the stress developed rapidly. In actual climate, isoprene emission capacity affected the tobacco proteomic profile, in particular by upregulating proteins associated with stress protection. Our results strengthen the hypothesis that isoprene biosynthesis is related to metabolic changes at the gene and protein levels involved in the activation of general stress defensive mechanisms of plants.
Collapse
Affiliation(s)
- Susanna Pollastri
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Violeta Velikova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
| | - Maurizio Castaldini
- Council for Agricultural Research and Economics, Research Center for Agriculture and Environment, Via di Lanciola 12/A, 50125 Cascine del Riccio, Florence, Italy
| | - Silvia Fineschi
- Institute of Heritage Science-CNR (ISPC), National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Ghirardo
- Research Unit Environmental Simulation (EUS), Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Jenny Renaut
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Scienceand Technology (LIST), L-4362 Esch-sur-Alzette, Luxembourg
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Kjell Sergeant
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Scienceand Technology (LIST), L-4362 Esch-sur-Alzette, Luxembourg
| | - Jana Barbro Winkler
- Research Unit Environmental Simulation (EUS), Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Simone Zorzan
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Scienceand Technology (LIST), L-4362 Esch-sur-Alzette, Luxembourg
| | - Francesco Loreto
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Naples, Italy
| |
Collapse
|
3
|
Bharathi JK, Anandan R, Benjamin LK, Muneer S, Prakash MAS. Recent trends and advances of RNA interference (RNAi) to improve agricultural crops and enhance their resilience to biotic and abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:600-618. [PMID: 36529010 DOI: 10.1016/j.plaphy.2022.11.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/04/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Over the last two decades, significant advances have been made using genetic engineering technology to modify genes from various exotic origins and introduce them into plants to induce favorable traits. RNA interference (RNAi) was discovered earlier as a natural process for controlling the expression of genes across all higher species. It aims to enhance precision and accuracy in pest/pathogen resistance, quality improvement, and manipulating the architecture of plants. However, it existed as a widely used technique recently. RNAi technologies could well be used to down-regulate any genes' expression without disrupting the expression of other genes. The use of RNA interference to silence genes in various organisms has become the preferred method for studying gene functions. The establishment of new approaches and applications for enhancing desirable characters is essential in crops by gene suppression and the refinement of knowledge of endogenous RNAi mechanisms in plants. RNAi technology in recent years has become an important and choicest method for controlling insects, pests, pathogens, and abiotic stresses like drought, salinity, and temperature. Although there are certain drawbacks in efficiency of this technology such as gene candidate selection, stability of trigger molecule, choice of target species and crops. Nevertheless, from past decade several target genes has been identified in numerous crops for their improvement towards biotic and abiotic stresses. The current review is aimed to emphasize the research done on crops under biotic and abiotic stress using RNAi technology. The review also highlights the gene regulatory pathways/gene silencing, RNA interference, RNAi knockdown, RNAi induced biotic and abiotic resistance and advancements in the understanding of RNAi technology and the functionality of various components of the RNAi machinery in crops for their improvement.
Collapse
Affiliation(s)
- Jothi Kanmani Bharathi
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - Ramaswamy Anandan
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - Lincy Kirubhadharsini Benjamin
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| | - Muthu Arjuna Samy Prakash
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| |
Collapse
|
4
|
Dani KGS, Pollastri S, Pinosio S, Reichelt M, Sharkey TD, Schnitzler J, Loreto F. Isoprene enhances leaf cytokinin metabolism and induces early senescence. THE NEW PHYTOLOGIST 2022; 234:961-974. [PMID: 34716577 PMCID: PMC9300082 DOI: 10.1111/nph.17833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/22/2021] [Indexed: 06/02/2023]
Abstract
Isoprene, a major biogenic volatile hydrocarbon of climate-relevance, indisputably mitigates abiotic stresses in emitting plants. However functional relevance of constitutive isoprene emission in unstressed plants remains contested. Isoprene and cytokinins (CKs) are synthesized from a common substrate and pathway in chloroplasts. It was postulated that isoprene emission may affect CK-metabolism. Using transgenic isoprene-emitting (IE) Arabidopsis and isoprene nonemitting (NE) RNA-interference grey poplars (paired with respective NE and IE genotypes), the life of individual IE and NE leaves from emergence to abscission was followed under stress-free conditions. We monitored plant growth rate, aboveground developmental phenotype, modelled leaf photosynthetic energy status, quantified the abundance of leaf CKs, analysed Arabidopsis and poplar leaf transcriptomes by RNA-sequencing in presence and absence of isoprene during leaf senescence. Isoprene emission by unstressed leaves enhanced the abundance of CKs (isopentenyl adenine and its precursor) by > 200%, significantly upregulated genes coding for CK-synthesis, CK-signalling and CK-degradation, hastened plant development, increased chloroplast metabolic rate, altered photosynthetic energy status, induced early leaf senescence in both Arabidopsis and poplar. IE leaves senesced sooner even in decapitated poplars where source-sink relationships and hormone homeostasis were perturbed. Constitutive isoprene emission significantly accelerates CK-led leaf and organismal development and induces early senescence independent of growth constraints. Isoprene emission provides an early-riser evolutionary advantage and shortens lifecycle duration to assist rapid diversification in unstressed emitters.
Collapse
Affiliation(s)
- Kaidala Ganesha Srikanta Dani
- Institute for Sustainable Plant ProtectionNational Research Council of ItalyVia Madonna del Piano 1050019Sesto FiorentinoFlorenceItaly
- Department of Biology, Agriculture and Food SciencesNational Research Council of ItalyPiazzale Aldo Moro 700185RomeItaly
| | - Susanna Pollastri
- Institute for Sustainable Plant ProtectionNational Research Council of ItalyVia Madonna del Piano 1050019Sesto FiorentinoFlorenceItaly
| | - Sara Pinosio
- Institute of Biosciences and BioresourcesNational Research Council of ItalyVia Madonna del Piano 1050019Sesto FiorentinoFlorenceItaly
- Institute for Applied GenomicsVia Jacopo Linussio 5133100UdineItaly
| | - Michael Reichelt
- Department of BiochemistryMax Planck Institute for Chemical EcologyHans‐Knöll Strasse 8D‐07745JenaGermany
| | - Thomas D. Sharkey
- MSU‐DOE Plant Research LaboratoryDepartment of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Jörg‐Peter Schnitzler
- Research Unit Environmental SimulationInstitute of Biochemical Plant PathologyHelmholtz Zentrum MünchenGerman Research Center for Environmental Health85764NeuherbergGermany
| | - Francesco Loreto
- Department of Biology, Agriculture and Food SciencesNational Research Council of ItalyPiazzale Aldo Moro 700185RomeItaly
- Department of BiologyUniversity of Naples Federico IIVia Cinthia80126NaplesItaly
| |
Collapse
|
5
|
Response of Poplar Leaf Transcriptome to Changed Management and Environmental Conditions in Pure and Mixed with Black Locust Stands. FORESTS 2022. [DOI: 10.3390/f13020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mixed cropping in short rotation coppice can be an alternative to monocultures. To design optimized mixtures, field trials are needed. Poplar, as an economically important and fast-growing species, and black locust, as a nitrogen-fixing species, are promising candidates for such studies. RNA sequencing (RNA-seq) was used to monitor effects of mixed and pure cultivations on the gene expression of poplar along with growth measurements during 2017 and 2018. Both biomass production and leaf transcriptomes revealed a strong competition pressure of black locust and the abiotic environment on poplar trees. Gene expression differed between the two study sites and pure and mixed stands. Shading effects from black locust caused the downregulation of photosynthesis and upregulation of shade avoidance genes in mixed stands in 2017. As a result of higher light availability after cutting black locust, plant organ development genes were upregulated in mixed stands in 2018. Drought conditions during the summer of 2018 and competition for water between the two species caused the upregulation of drought stress response genes in mixed stands and at the unfavorable growing site. Further investigations are required to discover the mechanisms of interspecific competition and to develop stand designs, which could increase the success and productivity of mixed plantations.
Collapse
|
6
|
Figueroa-Macías JP, García YC, Núñez M, Díaz K, Olea AF, Espinoza L. Plant Growth-Defense Trade-Offs: Molecular Processes Leading to Physiological Changes. Int J Mol Sci 2021; 22:ijms22020693. [PMID: 33445665 PMCID: PMC7828132 DOI: 10.3390/ijms22020693] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 01/01/2023] Open
Abstract
In order to survive in a hostile habitat, plants have to manage the available resources to reach a delicate balance between development and defense processes, setting up what plant scientists call a trade-off. Most of these processes are basically responses to stimuli sensed by plant cell receptors and are influenced by the environmental features, which can incredibly modify such responses and even cause changes upon both molecular and phenotypic level. Therefore, significant differences can be detected between plants of the same species living in different environments. The comprehension of plant growth-defense trade-offs from the molecular basis to the phenotypic expression is one of the fundamentals for developing sustainable agriculture, so with this review we intend to contribute to the increasing of knowledge on this topic, which have a great importance for future development of agricultural crop production.
Collapse
Affiliation(s)
| | - Yamilet Coll García
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Habana 10400, Cuba;
- Correspondence: (Y.C.G.); (L.E.); Tel.: +56-32-2654225 (L.E.)
| | - María Núñez
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile; (M.N.); (K.D.)
| | - Katy Díaz
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile; (M.N.); (K.D.)
| | - Andres F. Olea
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, Santiago 8900000, Chile;
| | - Luis Espinoza
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile; (M.N.); (K.D.)
- Correspondence: (Y.C.G.); (L.E.); Tel.: +56-32-2654225 (L.E.)
| |
Collapse
|
7
|
Miloradovic van Doorn M, Merl-Pham J, Ghirardo A, Fink S, Polle A, Schnitzler JP, Rosenkranz M. Root isoprene formation alters lateral root development. PLANT, CELL & ENVIRONMENT 2020; 43:2207-2223. [PMID: 32495947 DOI: 10.1111/pce.13814] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Isoprene is a C5 volatile organic compound, which can protect aboveground plant tissue from abiotic stress such as short-term high temperatures and accumulation of reactive oxygen species (ROS). Here, we uncover new roles for isoprene in the plant belowground tissues. By analysing Populus x canescens isoprene synthase (PcISPS) promoter reporter plants, we discovered PcISPS promoter activity in certain regions of the roots including the vascular tissue, the differentiation zone and the root cap. Treatment of roots with auxin or salt increased PcISPS promoter activity at these sites, especially in the developing lateral roots (LR). Transgenic, isoprene non-emitting poplar roots revealed an accumulation of O2- in the same root regions where PcISPS promoter activity was localized. Absence of isoprene emission, moreover, increased the formation of LRs. Inhibition of NAD(P)H oxidase activity suppressed LR development, suggesting the involvement of ROS in this process. The analysis of the fine root proteome revealed a constitutive shift in the amount of several redox balance, signalling and development related proteins, such as superoxide dismutase, various peroxidases and linoleate 9S-lipoxygenase, in isoprene non-emitting poplar roots. Together our results indicate for isoprene a ROS-related function, eventually co-regulating the plant-internal signalling network and development processes in root tissue.
Collapse
Affiliation(s)
- Maja Miloradovic van Doorn
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Siegfried Fink
- Forest Botany, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| | - Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Maaria Rosenkranz
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
8
|
High productivity in hybrid-poplar plantations without isoprene emission to the atmosphere. Proc Natl Acad Sci U S A 2020; 117:1596-1605. [PMID: 31907313 DOI: 10.1073/pnas.1912327117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hybrid-poplar tree plantations provide a source for biofuel and biomass, but they also increase forest isoprene emissions. The consequences of increased isoprene emissions include higher rates of tropospheric ozone production, increases in the lifetime of methane, and increases in atmospheric aerosol production, all of which affect the global energy budget and/or lead to the degradation of air quality. Using RNA interference (RNAi) to suppress isoprene emission, we show that this trait, which is thought to be required for the tolerance of abiotic stress, is not required for high rates of photosynthesis and woody biomass production in the agroforest plantation environment, even in areas with high levels of climatic stress. Biomass production over 4 y in plantations in Arizona and Oregon was similar among genetic lines that emitted or did not emit significant amounts of isoprene. Lines that had substantially reduced isoprene emission rates also showed decreases in flavonol pigments, which reduce oxidative damage during extremes of abiotic stress, a pattern that would be expected to amplify metabolic dysfunction in the absence of isoprene production in stress-prone climate regimes. However, compensatory increases in the expression of other proteomic components, especially those associated with the production of protective compounds, such as carotenoids and terpenoids, and the fact that most biomass is produced prior to the hottest and driest part of the growing season explain the observed pattern of high biomass production with low isoprene emission. Our results show that it is possible to reduce the deleterious influences of isoprene on the atmosphere, while sustaining woody biomass production in temperate agroforest plantations.
Collapse
|
9
|
Lantz AT, Allman J, Weraduwage SM, Sharkey TD. Isoprene: New insights into the control of emission and mediation of stress tolerance by gene expression. PLANT, CELL & ENVIRONMENT 2019; 42:2808-2826. [PMID: 31350912 PMCID: PMC6788959 DOI: 10.1111/pce.13629] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 05/10/2023]
Abstract
Isoprene is a volatile compound produced in large amounts by some, but not all, plants by the enzyme isoprene synthase. Plants emit vast quantities of isoprene, with a net global output of 600 Tg per year, and typical emission rates from individual plants around 2% of net carbon assimilation. There is significant debate about whether global climate change resulting from increasing CO2 in the atmosphere will increase or decrease global isoprene emission in the future. We show evidence supporting predictions of increased isoprene emission in the future, but the effects could vary depending on the environment under consideration. For many years, isoprene was believed to have immediate, physical effects on plants such as changing membrane properties or quenching reactive oxygen species. Although observations sometimes supported these hypotheses, the effects were not always observed, and the reasons for the variability were not apparent. Although there may be some physical effects, recent studies show that isoprene has significant effects on gene expression, the proteome, and the metabolome of both emitting and nonemitting species. Consistent results are seen across species and specific treatment protocols. This review summarizes recent findings on the role and control of isoprene emission from plants.
Collapse
Affiliation(s)
- Alexandra T. Lantz
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
| | - Joshua Allman
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
| | - Sarathi M. Weraduwage
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
| | - Thomas D. Sharkey
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
- Great Lakes Bioenergy Research Center, Madison, MI, United States
- Plant Resilience Institute, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
10
|
Brilli F, Loreto F, Baccelli I. Exploiting Plant Volatile Organic Compounds (VOCs) in Agriculture to Improve Sustainable Defense Strategies and Productivity of Crops. FRONTIERS IN PLANT SCIENCE 2019; 10:264. [PMID: 30941152 PMCID: PMC6434774 DOI: 10.3389/fpls.2019.00264] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/19/2019] [Indexed: 05/19/2023]
Abstract
There is an urgent need for new sustainable solutions to support agriculture in facing current environmental challenges. In particular, intensification of productivity and food security needs require sustainable exploitation of natural resources and metabolites. Here, we bring the attention to the agronomic potential of volatile organic compounds (VOCs) emitted from leaves, as a natural and eco-friendly solution to defend plants from stresses and to enhance crop production. To date, application of VOCs is often limited to fight herbivores. Here we argue that potential applications of VOCs are much wider, as they can also protect from pathogens and environmental stresses. VOCs prime plant's defense mechanisms for an enhanced resistance/tolerance to the upcoming stress, quench reactive oxygen species (ROS), have potent antimicrobial as well as allelopathic effects, and might be important in regulating plant growth, development, and senescence through interactions with plant hormones. Current limits and drawbacks that may hamper the use of VOCs in open field are analyzed, and solutions for a better exploitation of VOCs in future sustainable agriculture are envisioned.
Collapse
Affiliation(s)
- Federico Brilli
- Institute for Sustainable Plant Protection, National Research Council of Italy, Florence, Italy
- *Correspondence: Federico Brilli,
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, National Research Council of Italy, Rome, Italy
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection, National Research Council of Italy, Florence, Italy
- Ivan Baccelli,
| |
Collapse
|
11
|
Moritz F, Kaling M, Schnitzler JP, Schmitt-Kopplin P. Characterization of poplar metabotypes via mass difference enrichment analysis. PLANT, CELL & ENVIRONMENT 2017; 40:1057-1073. [PMID: 27943315 DOI: 10.1111/pce.12878] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 06/06/2023]
Abstract
Instrumentation technology for metabolomics has advanced drastically in recent years in terms of sensitivity and specificity. Despite these technical advances, data analytical strategies are still in their infancy in comparison with other 'omics'. Plants are known to possess an immense diversity of secondary metabolites. Typically, more than 70% of metabolomics data are not amenable to systems biological interpretation because of poor database coverage. Here, we propose a new general strategy for mass-spectrometry-based metabolomics that incorporates all exact mass features with known sum formulas into the evaluation and interpretation of metabolomics studies. We extend the use of mass differences, commonly used for feature annotation, by redefining them as variables that reflect the remaining 'omic' domains. The strategy uses exact mass difference network analyses exemplified for the metabolomic description of two grey poplar (Populus × canescens) genotypes that differ in their capability to emit isoprene. This strategy established a direct connection between the metabotype and the non-isoprene-emitting phenotype, as mass differences pertaining to prenylation reactions were over-represented in non-isoprene-emitting poplars. Not only was the analysis of mass differences able to grasp the known chemical biology of poplar, but it also improved the interpretability of yet unknown biochemical relationships.
Collapse
Affiliation(s)
- Franco Moritz
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München (HMGU), Neuherberg, Germany
| | - Moritz Kaling
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München (HMGU), Neuherberg, Germany
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München (HMGU), Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München (HMGU), Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München (HMGU), Neuherberg, Germany
- Chair of Analytical Food Chemistry, Technische Universität München (TUM), Freising, Germany
| |
Collapse
|
12
|
Strauss SH, Jones KN, Lu H, Petit JD, Klocko AL, Betts MG, Brosi BJ, Fletcher RJ, Needham MD. Reproductive modification in forest plantations: impacts on biodiversity and society. THE NEW PHYTOLOGIST 2017; 213:1000-1021. [PMID: 28079940 DOI: 10.1111/nph.14374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/26/2016] [Indexed: 05/20/2023]
Abstract
1000 I. 1000 II. 1001 III. 1014 IV. 1015 V. 1016 1016 References 1016 SUMMARY: Genetic engineering (GE) can be used to improve forest plantation productivity and tolerance of biotic and abiotic stresses. However, gene flow from GE forest plantations is a large source of ecological, social and legal controversy. The use of genetic technologies to mitigate or prevent gene flow has been discussed widely and should be technically feasible in a variety of plantation taxa. However, potential ecological effects of such modifications, and their social acceptability, are not well understood. Focusing on Eucalyptus, Pinus, Populus and Pseudotsuga - genera that represent diverse modes of pollination and seed dispersal - we conducted in-depth reviews of ecological processes associated with reproductive tissues. We also explored potential impacts of various forms of reproductive modification at stand and landscape levels, and means for mitigating impacts. We found little research on potential reactions by the public and other stakeholders to reproductive modification in forest plantations. However, there is considerable research on related areas that suggest key dimensions of concern and support. We provide detailed suggestions for research to understand the biological and social dimensions of containment technologies, and consider the role of regulatory and market restrictions that obstruct necessary ecological and genetic research.
Collapse
Affiliation(s)
- Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Kristin N Jones
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Haiwei Lu
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Joshua D Petit
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Amy L Klocko
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Matthew G Betts
- Forest Biodiversity Research Network, Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Berry J Brosi
- Department of Environmental Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Robert J Fletcher
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, 32611, USA
| | - Mark D Needham
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
13
|
Allwright MR, Taylor G. Molecular Breeding for Improved Second Generation Bioenergy Crops. TRENDS IN PLANT SCIENCE 2016; 21:43-54. [PMID: 26541073 DOI: 10.1016/j.tplants.2015.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/18/2015] [Accepted: 10/02/2015] [Indexed: 05/24/2023]
Abstract
There is increasing urgency to develop and deploy sustainable sources of energy to reduce our global dependency on finite, high-carbon fossil fuels. Lignocellulosic feedstocks, used in power and liquid fuel generation, are valuable sources of non-food plant biomass. They are cultivated with minimal inputs on marginal or degraded lands to prevent competition with arable agriculture and offer significant potential for sustainable intensification (the improvement of yield without the necessity for additional inputs) through advanced molecular breeding. This article explores progress made in next generation sequencing, advanced genotyping, association genetics, and genetic modification in second generation bioenergy production. Using poplar as an exemplar where most progress has been made, a suite of target traits is also identified giving insight into possible routes for crop improvement and deployment in the immediate future.
Collapse
Affiliation(s)
- Mike R Allwright
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, SO17 1BJ Southampton, UK
| | - Gail Taylor
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, SO17 1BJ Southampton, UK.
| |
Collapse
|
14
|
Rosenkranz M, Pugh TAM, Schnitzler JP, Arneth A. Effect of land-use change and management on biogenic volatile organic compound emissions--selecting climate-smart cultivars. PLANT, CELL & ENVIRONMENT 2015; 38:1896-1912. [PMID: 25255900 DOI: 10.1111/pce.12453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 06/03/2023]
Abstract
Land-use change (LUC) has fundamentally altered the form and function of the terrestrial biosphere. Increasing human population, the drive for higher living standards and the potential challenges of mitigating and adapting to global environmental change mean that further changes in LUC are unavoidable. LUC has direct consequences on climate not only via emissions of greenhouse gases and changing the surface energy balance but also by affecting the emission of biogenic volatile organic compounds (BVOCs). Isoprenoids, which dominate global BVOC emissions, are highly reactive and strongly modify atmospheric composition. The effects of LUC on BVOC emissions and related atmospheric chemistry have been largely ignored so far. However, compared with natural ecosystems, most tree species used in bioenergy plantations are strong BVOC emitters, whereas intensively cultivated crops typically emit less BVOCs. Here, we summarize the current knowledge on LUC-driven BVOC emissions and how these might affect atmospheric composition and climate. We further discuss land management and plant-breeding strategies, which could be taken to move towards climate-friendly BVOC emissions while simultaneously maintaining or improving key ecosystem functions such as crop yield under a changing environment.
Collapse
Affiliation(s)
- Maaria Rosenkranz
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Thomas A M Pugh
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, 82467, Garmisch-Partenkirchen, Germany
| | - Jörg-Peter Schnitzler
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Almut Arneth
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, 82467, Garmisch-Partenkirchen, Germany
| |
Collapse
|
15
|
Ashworth K, Wild O, Eller ASD, Hewitt CN. Impact of Biofuel Poplar Cultivation on Ground-Level Ozone and Premature Human Mortality Depends on Cultivar Selection and Planting Location. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8566-8575. [PMID: 26098452 DOI: 10.1021/acs.est.5b00266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Isoprene and other volatile organic compounds emitted from vegetation play a key role in governing the formation of ground-level ozone. Emission rates of such compounds depend critically on the plant species. The cultivation of biofuel feedstocks will contribute to future land use change, altering the distribution of plant species and hence the magnitude and distribution of emissions. Here we use relationships between biomass yield and isoprene emissions derived from experimental data for 29 commercially available poplar hybrids to assess the impact that the large-scale cultivation of poplar for use as a biofuel feedstock will have on air quality, specifically ground-level ozone concentrations, in Europe. We show that the increases in ground-level ozone across Europe will increase the number of premature deaths attributable to ozone pollution each year by up to 6%. Substantial crop losses (up to ∼9 Mt y(-1) of wheat and maize) are also projected. We further demonstrate that these impacts are strongly dependent on the location of the poplar plantations, due to the prevailing meteorology, the population density, and the dominant crop type of the region. Our findings indicate the need for a concerted and centralized decision-making process that considers all aspects of future land use change in Europe, and not just the effect on greenhouse gas emissions.
Collapse
Affiliation(s)
- Kirsti Ashworth
- †Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, U.K
| | - Oliver Wild
- †Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, U.K
| | - Allyson S D Eller
- ‡Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - C Nick Hewitt
- †Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, U.K
| |
Collapse
|
16
|
Müller A, Kaling M, Faubert P, Gort G, Smid HM, Van Loon JJA, Dicke M, Kanawati B, Schmitt-Kopplin P, Polle A, Schnitzler JP, Rosenkranz M. Isoprene emission by poplar is not important for the feeding behaviour of poplar leaf beetles. BMC PLANT BIOLOGY 2015; 15:165. [PMID: 26122266 PMCID: PMC4486431 DOI: 10.1186/s12870-015-0542-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/05/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND Chrysomela populi (poplar leaf beetle) is a common herbivore in poplar plantations whose infestation causes major economic losses. Because plant volatiles act as infochemicals, we tested whether isoprene, the main volatile organic compound (VOC) produced by poplars (Populus x canescens), affects the performance of C. populi employing isoprene emitting (IE) and transgenic isoprene non-emitting (NE) plants. Our hypothesis was that isoprene is sensed and affects beetle orientation or that the lack of isoprene affects plant VOC profiles and metabolome with consequences for C. populi feeding. RESULTS Electroantennographic analysis revealed that C. populi can detect higher terpenes, but not isoprene. In accordance to the inability to detect isoprene, C. populi showed no clear preference for IE or NE poplar genotypes in the choice experiments, however, the beetles consumed a little bit less leaf mass and laid fewer eggs on NE poplar trees in field experiments. Slight differences in the profiles of volatile terpenoids between IE and NE genotypes were detected by gas chromatography - mass spectrometry. Non-targeted metabolomics analysis by Fourier Transform Ion Cyclotron Resonance Mass Spectrometer revealed genotype-, time- and herbivore feeding-dependent metabolic changes both in the infested and adjacent undamaged leaves under field conditions. CONCLUSIONS We show for the first time that C. populi is unable to sense isoprene. The detected minor differences in insect feeding in choice experiments and field bioassays may be related to the revealed changes in leaf volatile emission and metabolite composition between the IE and NE poplars. Overall our results indicate that lacking isoprene emission is of minor importance for C. populi herbivory under natural conditions, and that the lack of isoprene is not expected to change the economic losses in poplar plantations caused by C. populi infestation.
Collapse
Affiliation(s)
- Anna Müller
- Büsgen Institute, Forest Botany and Tree Physiology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany.
| | - Moritz Kaling
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.
| | - Patrick Faubert
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
- Département des Sciences Fondamentales, Chaire en éco-conseil, Université du Québec à Chicoutimi, 555, boul. de l'Université, Chicoutimi, Qc, G7H 2B1, Canada.
| | - Gerrit Gort
- Mathematical and Statistical Methods Group, Wageningen University, P.O. Box 100, 6700 AC, Wageningen, Netherlands.
| | - Hans M Smid
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, NL-6700 EH, Wageningen, Netherlands.
| | - Joop J A Van Loon
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, NL-6700 EH, Wageningen, Netherlands.
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, NL-6700 EH, Wageningen, Netherlands.
| | - Basem Kanawati
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.
| | - Andrea Polle
- Büsgen Institute, Forest Botany and Tree Physiology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany.
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| | - Maaria Rosenkranz
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| |
Collapse
|
17
|
Kaling M, Kanawati B, Ghirardo A, Albert A, Winkler JB, Heller W, Barta C, Loreto F, Schmitt-Kopplin P, Schnitzler JP. UV-B mediated metabolic rearrangements in poplar revealed by non-targeted metabolomics. PLANT, CELL & ENVIRONMENT 2015; 38:892-904. [PMID: 24738572 DOI: 10.1111/pce.12348] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 05/04/2023]
Abstract
Plants have to cope with various abiotic stresses including UV-B radiation (280-315 nm). UV-B radiation is perceived by a photoreceptor, triggers morphological responses and primes plant defence mechanisms such as antioxidant levels, photoreapir or accumulation of UV-B screening pigments. As poplar is an important model system for trees, we elucidated the influence of UV-B on overall metabolite patterns in poplar leaves grown under high UV-B radiation. Combining non-targeted metabolomics with gas exchange analysis and confocal microscopy, we aimed understanding how UV-B radiation triggers metabolome-wide changes, affects isoprene emission, photosynthetic performance, epidermal light attenuation and finally how isoprene-free poplars adjust their metabolome under UV-B radiation. Exposure to UV-B radiation caused a comprehensive rearrangement of the leaf metabolome. Several hundreds of metabolites were up- and down-regulated over various pathways. Our analysis, revealed the up-regulation of flavonoids, anthocyanins and polyphenols and the down-regulation of phenolic precursors in the first 36 h of UV-B treatment. We also observed a down-regulation of steroids after 12 h. The accumulation of phenolic compounds leads to a reduced light transmission in UV-B-exposed plants. However, the accumulation of phenolic compounds was reduced in non-isoprene-emitting plants suggesting a metabolic- or signalling-based interaction between isoprenoid and phenolic pathways.
Collapse
Affiliation(s)
- Moritz Kaling
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Porth I, El-Kassaby YA. Using Populus as a lignocellulosic feedstock for bioethanol. Biotechnol J 2015; 10:510-24. [PMID: 25676392 DOI: 10.1002/biot.201400194] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/11/2014] [Accepted: 12/30/2014] [Indexed: 11/10/2022]
Abstract
Populus species along with species from the sister genus Salix will provide valuable feedstock resources for advanced second-generation biofuels. Their inherent fast growth characteristics can particularly be exploited for short rotation management, a time and energy saving cultivation alternative for lignocellulosic feedstock supply. Salicaceae possess inherent cell wall characteristics with favorable cellulose to lignin ratios for utilization as bioethanol crop. We review economically important traits relevant for intensively managed biofuel crop plantations, genomic and phenotypic resources available for Populus, breeding strategies for forest trees dedicated to bioenergy provision, and bioprocesses and downstream applications related to opportunities using Salicaceae as a renewable resource. Challenges need to be resolved for every single step of the conversion process chain, i.e., starting from tree domestication for improved performance as a bioenergy crop, bioconversion process, policy development for land use changes associated with advanced biofuels, and harvest and supply logistics associated with industrial-scale biorefinery plants using Populus as feedstock. Significant hurdles towards cost and energy efficiency, environmental friendliness, and yield maximization with regards to biomass pretreatment, saccharification, and fermentation of celluloses and the sustainability of biorefineries as a whole still need to be overcome.
Collapse
Affiliation(s)
- Ilga Porth
- Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
19
|
Rodríguez A, Shimada T, Cervera M, Redondo A, Alquézar B, Rodrigo MJ, Zacarías L, Palou L, López MM, Peña L. Resistance to pathogens in terpene down-regulated orange fruits inversely correlates with the accumulation of D-limonene in peel oil glands. PLANT SIGNALING & BEHAVIOR 2015; 10:e1028704. [PMID: 26023857 PMCID: PMC4622707 DOI: 10.1080/15592324.2015.1028704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 05/28/2023]
Abstract
Volatile organic compounds (VOCs) are secondary metabolites acting as a language for the communication of plants with the environment. In orange fruits, the monoterpene D-limonene accumulates at very high levels in oil glands from the peel. Drastic down-regulation of D-limonene synthase gene expression in the peel of transgenic oranges harboring a D-limonene synthase transgene in antisense (AS) configuration altered the monoterpene profile in oil glands, mainly resulting in reduced accumulation of D-limonene. This led to fruit resistance against Penicillium digitatum (Pd), Xanthomonas citri subsp. citri (Xcc) and other specialized pathogens. Here, we analyze resistance to pathogens in independent AS and empty vector (EV) lines, which have low, medium or high D-limonene concentrations and show that the level of resistance is inversely related to the accumulation of D-limonene in orange peels, thus explaining the need of high D-limonene accumulation in mature oranges in nature for the efficient attraction of specialized microorganism frugivores.
Collapse
Affiliation(s)
- Ana Rodríguez
- Fundo de Defesa da Citricultura; São Paulo, Brazil
- Instituto de Biología Molecular y Celular de Plantas; Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia; Valencia, Spain
| | - Takehiko Shimada
- Okitsu Citrus Research Station; National Institute of Fruit Tree Science; National Agricultural Research Organization; Shizuoka, Japan
| | - Magdalena Cervera
- Centro de Protección Vegetal y Biotecnología; Instituto Valenciano de Investigaciones Agrarias; Carretera Moncada-Náquera; Valencia, Spain
| | - Ana Redondo
- Centro de Protección Vegetal y Biotecnología; Instituto Valenciano de Investigaciones Agrarias; Carretera Moncada-Náquera; Valencia, Spain
| | - Berta Alquézar
- Fundo de Defesa da Citricultura; São Paulo, Brazil
- Instituto de Biología Molecular y Celular de Plantas; Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia; Valencia, Spain
| | - María Jesús Rodrigo
- Departamento de Ciencia de los Alimentos; Instituto de Agroquímica y Tecnología de Alimentos-Consejo Superior de Investigaciones Científicas; Valencia, Spain
| | - Lorenzo Zacarías
- Departamento de Ciencia de los Alimentos; Instituto de Agroquímica y Tecnología de Alimentos-Consejo Superior de Investigaciones Científicas; Valencia, Spain
| | - Lluís Palou
- Centro de Tecnología Postcosecha; Instituto Valenciano de Investigaciones Agrarias
| | - María M López
- Centro de Protección Vegetal y Biotecnología; Instituto Valenciano de Investigaciones Agrarias; Carretera Moncada-Náquera; Valencia, Spain
| | - Leandro Peña
- Fundo de Defesa da Citricultura; São Paulo, Brazil
- Instituto de Biología Molecular y Celular de Plantas; Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia; Valencia, Spain
| |
Collapse
|
20
|
|
21
|
Ghirardo A, Wright LP, Bi Z, Rosenkranz M, Pulido P, Rodríguez-Concepción M, Niinemets Ü, Brüggemann N, Gershenzon J, Schnitzler JP. Metabolic flux analysis of plastidic isoprenoid biosynthesis in poplar leaves emitting and nonemitting isoprene. PLANT PHYSIOLOGY 2014; 165:37-51. [PMID: 24590857 PMCID: PMC4012595 DOI: 10.1104/pp.114.236018] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/03/2014] [Indexed: 05/20/2023]
Abstract
The plastidic 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope 13C-labeling technique, we analyzed the carbon fluxes through the MEP pathway and into the major plastidic isoprenoid products in isoprene-emitting and transgenic isoprene-nonemitting (NE) gray poplar (Populus×canescens). We assessed the dependence on temperature, light intensity, and atmospheric [CO2]. Isoprene biosynthesis was by far (99%) the main carbon sink of MEP pathway intermediates in mature gray poplar leaves, and its production required severalfold higher carbon fluxes compared with NE leaves with almost zero isoprene emission. To compensate for the much lower demand for carbon, NE leaves drastically reduced the overall carbon flux within the MEP pathway. Feedback inhibition of 1-deoxy-D-xylulose-5-phosphate synthase activity by accumulated plastidic dimethylallyl diphosphate almost completely explained this reduction in carbon flux. Our data demonstrate that short-term biochemical feedback regulation of 1-deoxy-d-xylulose-5-phosphate synthase activity by plastidic dimethylallyl diphosphate is an important regulatory mechanism of the MEP pathway. Despite being relieved from the large carbon demand of isoprene biosynthesis, NE plants redirected only approximately 0.5% of this saved carbon toward essential nonvolatile isoprenoids, i.e. β-carotene and lutein, most probably to compensate for the absence of isoprene and its antioxidant properties.
Collapse
Affiliation(s)
- Andrea Ghirardo
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany (A.G., Z.B., M.R., J.-P.S.)
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.)
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain (P.P., M.R.-C.)
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (Ü.N.); and
- Institute of Bio- and Geosciences-Agrosphere (IBG-3), Forschungszentrum Jülich, 52425 Juelich, Germany (N.B.)
| | - Louwrance Peter Wright
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany (A.G., Z.B., M.R., J.-P.S.)
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.)
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain (P.P., M.R.-C.)
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (Ü.N.); and
- Institute of Bio- and Geosciences-Agrosphere (IBG-3), Forschungszentrum Jülich, 52425 Juelich, Germany (N.B.)
| | - Zhen Bi
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany (A.G., Z.B., M.R., J.-P.S.)
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.)
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain (P.P., M.R.-C.)
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (Ü.N.); and
- Institute of Bio- and Geosciences-Agrosphere (IBG-3), Forschungszentrum Jülich, 52425 Juelich, Germany (N.B.)
| | - Maaria Rosenkranz
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany (A.G., Z.B., M.R., J.-P.S.)
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.)
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain (P.P., M.R.-C.)
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (Ü.N.); and
- Institute of Bio- and Geosciences-Agrosphere (IBG-3), Forschungszentrum Jülich, 52425 Juelich, Germany (N.B.)
| | - Pablo Pulido
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany (A.G., Z.B., M.R., J.-P.S.)
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.)
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain (P.P., M.R.-C.)
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (Ü.N.); and
- Institute of Bio- and Geosciences-Agrosphere (IBG-3), Forschungszentrum Jülich, 52425 Juelich, Germany (N.B.)
| | - Manuel Rodríguez-Concepción
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany (A.G., Z.B., M.R., J.-P.S.)
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.)
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain (P.P., M.R.-C.)
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (Ü.N.); and
- Institute of Bio- and Geosciences-Agrosphere (IBG-3), Forschungszentrum Jülich, 52425 Juelich, Germany (N.B.)
| | - Ülo Niinemets
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany (A.G., Z.B., M.R., J.-P.S.)
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.)
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain (P.P., M.R.-C.)
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (Ü.N.); and
- Institute of Bio- and Geosciences-Agrosphere (IBG-3), Forschungszentrum Jülich, 52425 Juelich, Germany (N.B.)
| | - Nicolas Brüggemann
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany (A.G., Z.B., M.R., J.-P.S.)
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.)
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain (P.P., M.R.-C.)
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (Ü.N.); and
- Institute of Bio- and Geosciences-Agrosphere (IBG-3), Forschungszentrum Jülich, 52425 Juelich, Germany (N.B.)
| | - Jonathan Gershenzon
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany (A.G., Z.B., M.R., J.-P.S.)
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.)
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain (P.P., M.R.-C.)
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (Ü.N.); and
- Institute of Bio- and Geosciences-Agrosphere (IBG-3), Forschungszentrum Jülich, 52425 Juelich, Germany (N.B.)
| | | |
Collapse
|
22
|
Ryan AC, Hewitt CN, Possell M, Vickers CE, Purnell A, Mullineaux PM, Davies WJ, Dodd IC. Isoprene emission protects photosynthesis but reduces plant productivity during drought in transgenic tobacco (Nicotiana tabacum) plants. THE NEW PHYTOLOGIST 2014; 201:205-216. [PMID: 24102245 DOI: 10.1111/nph.12477] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/30/2013] [Indexed: 05/26/2023]
Abstract
Isoprene protects the photosynthetic apparatus of isoprene-emitting plants from oxidative stress. The role of isoprene in the response of plants to drought is less clear. Water was withheld from transgenic isoprene-emitting and non-emitting tobacco (Nicotiana tabacum) plants, to examine: the response of isoprene emission to plant water deficit; a possible relationship between concentrations of the drought-induced phytohormone abscisic acid (ABA) and isoprene; and whether isoprene affected foliar reactive oxygen species (ROS) and lipid peroxidation levels. Isoprene emission did not affect whole-plant water use, foliar ABA concentration or leaf water potential under water deficit. Compared with well-watered controls, droughted non-emitting plants significantly increased ROS content (31-46%) and lipid peroxidation (30-47%), concomitant with decreased operating and maximum efficiencies of photosystem II photochemistry and lower leaf and whole-plant water use efficiency (WUE). Droughted isoprene-emitting plants showed no increase in ROS content or lipid peroxidation relative to well-watered controls, despite isoprene emission decreasing before leaf wilting. Although isoprene emission protected the photosynthetic apparatus and enhanced leaf and whole-plant WUE, non-emitting plants had 8-24% more biomass under drought, implying that isoprene emission incurred a yield penalty.
Collapse
Affiliation(s)
- Annette C Ryan
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - C Nicholas Hewitt
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Malcolm Possell
- Faculty of Agriculture and Environment, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Claudia E Vickers
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Anna Purnell
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | | | - William J Davies
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Ian C Dodd
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
23
|
Way DA, Ghirardo A, Kanawati B, Esperschütz J, Monson RK, Jackson RB, Schmitt-Kopplin P, Schnitzler JP. Increasing atmospheric CO2 reduces metabolic and physiological differences between isoprene- and non-isoprene-emitting poplars. THE NEW PHYTOLOGIST 2013; 200:534-546. [PMID: 23822651 DOI: 10.1111/nph.12391] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/24/2013] [Indexed: 05/12/2023]
Abstract
Isoprene, a volatile organic compound produced by some plant species, enhances abiotic stress tolerance under current atmospheric CO2 concentrations, but its biosynthesis is negatively correlated with CO2 concentrations. We hypothesized that losing the capacity to produce isoprene would require stronger up-regulation of other stress tolerance mechanisms at low CO2 than at higher CO2 concentrations. We compared metabolite profiles and physiological performance in poplars (Populus × canescens) with either wild-type or RNAi-suppressed isoprene emission capacity grown at pre-industrial low, current atmospheric, and future high CO2 concentrations (190, 390 and 590 ppm CO2 , respectively). Suppression of isoprene biosynthesis led to significant rearrangement of the leaf metabolome, increasing stress tolerance responses such as xanthophyll cycle pigment de-epoxidation and antioxidant levels, as well as altering lipid, carbon and nitrogen metabolism. Metabolic and physiological differences between isoprene-emitting and suppressed lines diminished as growth CO2 concentrations rose. The CO2 dependence of our results indicates that the effects of isoprene biosynthesis are strongest at pre-industrial CO2 concentrations. Rising CO2 may reduce the beneficial effects of biogenic isoprene emission, with implications for species competition. This has potential consequences for future climate warming, as isoprene emitted from vegetation has strong effects on global atmospheric chemistry.
Collapse
Affiliation(s)
- Danielle A Way
- Nicholas School of the Environment and Department of Biology, Duke University, Durham, NC, 27708, USA
- Department of Biology, Western University, London, ON, Canada, N6A 5B7
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Basem Kanawati
- Research Unit Biogeochemistry and Analytics, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Jürgen Esperschütz
- Center of Life and Food Sciences Weihenstephan, Chair of Soil Ecology, Technische Universität München, 85764, Neuherberg, Germany
- Research Unit Environmental Genomics, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Russell K Monson
- School of Natural Resources and the Environment and Laboratory for Tree Ring Research, University of Arizona, Tucson, AZ, 85721, USA
| | - Robert B Jackson
- Nicholas School of the Environment and Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Philippe Schmitt-Kopplin
- Research Unit Biogeochemistry and Analytics, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| |
Collapse
|
24
|
Müller A, Volmer K, Mishra-Knyrim M, Polle A. Growing poplars for research with and without mycorrhizas. FRONTIERS IN PLANT SCIENCE 2013; 4:332. [PMID: 23986772 PMCID: PMC3753594 DOI: 10.3389/fpls.2013.00332] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/06/2013] [Indexed: 05/03/2023]
Abstract
During the last decades the importance of the genus Populus increased because the poplar genome has been sequenced and molecular tools for basic research have become available. Poplar species occur in different habitats and harbor large genetic variation, which can be exploited for economic applications and for increasing our knowledge on the basic molecular mechanisms of the woody life style. Poplars are, therefore, employed to unravel the molecular mechanisms of wood formation, stress tolerance, tree nutrition and interaction with other organisms such as pathogens or mycorrhiza. The basis of these investigations is the reproducible production of homogeneous plant material. In this method paper we describe techniques and growth conditions for the in vitro propagation of different poplar species (Populus × canescens, P. trichocarpa, P. tremula, and P. euphratica) and ectomycorrhizal fungi (Laccaria bicolor, Paxillus involutus) as well as for their co-cultivation for ectomycorrhizal synthesis. Maintenance and plant preparation require different multiplication and rooting media. Growth systems to cultivate poplars under axenic conditions in agar and sand cultures with and without mycorrhizal fungi are described. Transfer of the plants from in vitro to in situ conditions is critical and hardening is important to prevent high mortality. Growth and vitality of the trees in vitro and outdoors with and without ectomycorrhizas are reported.
Collapse
Affiliation(s)
| | | | | | - Andrea Polle
- Forest Botany and Tree Physiology, Büsgen-Institut, Georg-August Universität GöttingenGöttingen, Germany
| |
Collapse
|
25
|
Holopainen JK. Loss of isoprene-emitting capacity: deleterious for trees? TREE PHYSIOLOGY 2013; 33:559-561. [PMID: 23704254 DOI: 10.1093/treephys/tpt036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Affiliation(s)
- Jarmo K Holopainen
- Department of Environmental Science, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
26
|
Poplar genetic engineering: promoting desirable wood characteristics and pest resistance. Appl Microbiol Biotechnol 2013; 97:5669-79. [DOI: 10.1007/s00253-013-4940-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 10/26/2022]
|
27
|
Porter WC, Barsanti KC, Baughman EC, Rosenstiel TN. Considering the air quality impacts of bioenergy crop production: a case study involving Arundo donax. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:9777-9784. [PMID: 22852528 DOI: 10.1021/es3013084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The expanding production of bioenergy crops may impact regional air quality through the production of volatile organic compounds such as isoprene. To investigate the effects of isoprene-emitting crops on air quality, specifically ozone (O(3)) and secondary organic aerosol (SOA) formation, we performed a series of model runs using the Weather Research and Forecasting model with Chemistry (WRF/Chem) coupled with the Model of Emissions of Gases and Aerosols from Nature (MEGAN) simulating a proposed cropland conversion to the giant cane Arundo donax for biomass production. Cultivation of A. donax in the relatively clean air of northeastern Oregon resulted in an average increase in 8 h O(3) levels of 0.52 ppb, while SOA was largely unaffected (<+0.01 μg m(-3)). Conversions in U.S. regions with reduced air quality (eastern Texas and northern Illinois) resulted in average 8 h O(3) increases of 2.46 and 3.97 ppb, respectively, with daily increases up to 15 ppb in the Illinois case, and daytime SOA increases up to 0.57 μg m(-3). While cultivation of isoprene-emitting bioenergy crops may be appropriate at some scales and in some regions, other areas may experience increased O(3) and SOA, highlighting the need to consider isoprene emissions when evaluating potential regional impacts of bioenergy crop production.
Collapse
Affiliation(s)
- William C Porter
- Department of Physics, Portland State University, Portland, Oregon 97201, United States.
| | | | | | | |
Collapse
|
28
|
Ellis BE. Bringing trees into the fuel line. THE NEW PHYTOLOGIST 2012; 194:1-3. [PMID: 22364116 DOI: 10.1111/j.1469-8137.2012.04085.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Brian E Ellis
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada (tel +1 604 822 3451; email )
| |
Collapse
|