1
|
Coelho MA, David-Palma M, Marincowitz S, Aylward J, Pham NQ, Yurkov AM, Wingfield BD, Wingfield MJ, Sun S, Heitman J. Tracing the evolution and genomic dynamics of mating-type loci in Cryptococcus pathogens and closely related species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637874. [PMID: 39990455 PMCID: PMC11844451 DOI: 10.1101/2025.02.12.637874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Sexual reproduction in basidiomycete fungi is governed by MAT loci (P/R and HD), which exhibit remarkable evolutionary plasticity, characterized by expansions, rearrangements, and gene losses often associated with mating system transitions. The sister genera Cryptococcus and Kwoniella provide a powerful framework for studying MAT loci evolution owing to their diverse reproductive strategies and distinct architectures, spanning bipolar and tetrapolar systems with either linked or unlinked MAT loci. Building on recent large-scale comparative genomic analyses, we generated additional chromosome-level assemblies uncovering distinct evolutionary trajectories shaping MAT loci organization. Contrasting with the small-scale expansions and gene acquisitions observed in Kwoniella, our analyses revealed independent expansions of the P/R locus in tetrapolar Cryptococcus, possibly driven by pheromone gene duplications. Notably, these expansions coincided with an enrichment of AT-rich codons and a pronounced GC-content reduction, likely associated with recombination suppression and relaxed codon usage selection. Diverse modes of MAT locus linkage were also identified, including three previously unrecognized transitions: one resulting in a pseudobipolar arrangement and two leading to bipolarity. All the three transitions involved translocations. In the pseudobipolar configuration, the P/R and HD loci remained on the same chromosome but genetically unlinked, whereas the bipolar transitions additionally featured rearrangements that fused the two loci into a nonrecombining region. Mating assays confirmed a sexual cycle in C. decagattii, demonstrating its ability to undergo mating and sporulation. Progeny analysis in K. mangrovensis revealed substantial ploidy variation and aneuploidy, likely stemming from haploid-diploid mating, yet evidence of recombination and loss of heterozygosity indicates that meiotic exchange occurs despite irregular chromosome segregation. Our findings underscore the importance of continued diversity sampling and provides further evidence for convergent evolution of fused MAT loci in basidiomycetes, offering new insights into the genetic and chromosomal changes driving reproductive transitions.
Collapse
Affiliation(s)
- Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Seonju Marincowitz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Janneke Aylward
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Nam Q. Pham
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Andrey M. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Brenda D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
2
|
Hiltunen Thorén M, Stanojković A, Ryberg M, Johannesson H. Evolution of a bipolar sexual compatibility system in Marasmius. Mycologia 2025; 117:19-33. [PMID: 39661443 DOI: 10.1080/00275514.2024.2425583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/01/2024] [Indexed: 12/13/2024]
Abstract
Sexual compatibility in the Basidiomycota is governed by genetic identity at one or two loci, resulting in compatibility systems called bipolar and tetrapolar. The loci are known as HD and P/R, encoding homeodomain transcription factors and pheromone precursors and receptors, respectively. Bipolarity is known to evolve either by linkage of the two loci or by loss of mating-type determination of either the HD or the P/R locus. The ancestor to basidiomycete fungi is thought to have been tetrapolar, and many transitions to bipolarity have been described in different lineages. In the diverse genus Marasmius (Agaricales), both compatibility systems are found, and the system has been shown to follow the infrageneric sections of the genus, suggesting a single origin of bipolarity. Here, we tested this hypothesis using a comprehensive phylogenetic framework and investigated the mode by which bipolarity has evolved in this group. We utilized available genomic data and marker sequences to investigate evolution of sexual compatibility in Marasmius and allied genera. By generating a concatenated multilocus phylogeny, we found support for a single transition to known bipolarity within Marasmius. Furthermore, utilizing genomic data of the bipolar species Marasmius oreades, we found that the HD and P/R loci likely have remained unlinked through this transition. By comparing nucleotide diversity at the HD and P/R loci in Ma. oreades, we show that the HD locus has retained high diversity, and thus likely the function of determining sexual identity, as similarly in other bipolar mushroom-forming fungi. Finally, we describe the genomic architecture of the MAT loci of species of both sexual compatibility systems in Marasmiaceae and related families.
Collapse
Affiliation(s)
- Markus Hiltunen Thorén
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius v. 20 A, Stockholm SE-114 18, Sweden
- The Royal Swedish Academy of Sciences, Stockholm SE-114 18, Sweden
| | - Aleksandar Stanojković
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Martin Ryberg
- Department of Organismal Biology, Uppsala University, Norbyv. 18D, Uppsala SE-752 36, Sweden
| | - Hanna Johannesson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius v. 20 A, Stockholm SE-114 18, Sweden
- The Royal Swedish Academy of Sciences, Stockholm SE-114 18, Sweden
| |
Collapse
|
3
|
Roininen E, Vainio EJ, Sutela S, Poimala A, Kashif M, Piri T, Hantula J. Virus transmission frequencies in the pine root rot pathogen Heterobasidion annosum. Virus Res 2024; 350:199467. [PMID: 39299454 PMCID: PMC11736397 DOI: 10.1016/j.virusres.2024.199467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The combined use of Heterobasidion partitiviruses 13 and 15 (HetPV13-an1 and HetPV15-pa1) is considered a promising biocontrol approach against Heterobasidion root and butt rot. In a previous study, the transmission frequency of HetPV15-pa1 was found to be higher from a double partitivirus-infected donor than from a single partitivirus-infected donor. In this study, we included a wider array of recipient isolates to assess whether the phenomenon is widespread across different host strains and conducted transmission experiments on artificial media (in vitro) using a total of 45 different H. annosum donor-recipient pairs. In addition to investigating whether double partitivirus infection improves the transmission of HetPV13-an1 and HetPV15-pa1, we examined for the first time how efficiently co-infecting ssRNA viruses are concomitantly transmitted with the partitiviruses, and whether pre-existing ssRNA viruses in the recipients affect virus transmission. Generally, the transmission rates of HetPV13-an1 and HetPV15-pa1 were high from both single partitivirus-infected and double partitivirus-infected donors to most of the H. annosum recipient strains, with few exceptions. However, in contrast to previous experiments, the transmission frequency was not higher from the double partitivirus-infected donors. Also, ourmiavirus was transmitted between H. annosum strains, but the presence of another ourmiavirus in the recipient might affect the efficacy.
Collapse
Affiliation(s)
- Elina Roininen
- University of Helsinki, Viikinkaari 1, Helsinki FI-00790, Finland; Natural Resources Institute Finland (Luke), Latokartanonkaari 9, Helsinki FI-00790, Finland.
| | - Eeva Johanna Vainio
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, Helsinki FI-00790, Finland
| | - Suvi Sutela
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, Helsinki FI-00790, Finland
| | - Anna Poimala
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, Helsinki FI-00790, Finland
| | - Muhammad Kashif
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, Helsinki FI-00790, Finland
| | - Tuula Piri
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, Helsinki FI-00790, Finland
| | - Jarkko Hantula
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, Helsinki FI-00790, Finland
| |
Collapse
|
4
|
Kashif M, Poimala A, Vainio EJ, Sutela S, Piri T, Dálya LB, Hantula J. Complex transmission of partiti-, ambi- and ourmiaviruses in the forest pathogen Heterobasidion parviporum. Virus Res 2024; 350:199466. [PMID: 39384434 PMCID: PMC11736393 DOI: 10.1016/j.virusres.2024.199466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024]
Abstract
Utilizing Heterobasidion partitivirus 13 strain an1 (HetPV13-an1) and 15 strain pa1 (HetPV15-pa1) in co-infection is considered a potential biocontrol approach against Heterobasidion root and butt rot. Both partitiviruses mediate debilitating effects in most Heterobasidion host isolates and are generally transmitted efficiently between host strains. In this investigation, we conducted transmission experiments in the laboratory (in vitro) using several H. parviporum isolates to test whether using dual partitivirus infections is a more efficient way of transmitting viruses to new hosts compared to using single partitivirus infections, and whether co-occurring single-stranded RNA (ssRNA) viruses are co-transmitted during the process. The results showed that H. parviporum donors carrying both partitiviruses, HetPV13-an1 and HetPV15-pa1, transmitted HetPV15-pa1 more efficiently to recipients than the same donors infected with only HetPV15-pa1. In contrast, the transmission of HetPV13-an1 did not differ significantly between donors infected with both or only one partitivirus. Altogether, the transmission rates of HetPV13-an1 and HetPV15-pa1 were high on artificial media. Moreover, the transmission of the ssRNA viruses Heterobasidion ourmia-like virus 1(HetOlV1-pa7) and 4 (HetOlV4-an1) as well as Heterobasidion ambi-like virus 3 (HetAlV3-pa4) across different recipients were found to be variable. This study demonstrated for the first time the transmission of ambi- and ourmiaviruses between H. parviporum isolates in dual cultures and showed that H. parviporum mycelia can be cured of these ssRNA viruses using heat treatment.
Collapse
Affiliation(s)
- Muhammad Kashif
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Anna Poimala
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland.
| | - Eeva J Vainio
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Suvi Sutela
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Tuula Piri
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | | | - Jarkko Hantula
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| |
Collapse
|
5
|
Ramanenka M, Ruņģis DE, Šķipars V. Early-Stage Infection-Specific Heterobasidion annosum (Fr.) Bref. Transcripts in H. annosum- Pinus sylvestris L. Pathosystem. Int J Mol Sci 2024; 25:11375. [PMID: 39518928 PMCID: PMC11546620 DOI: 10.3390/ijms252111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Transcriptomes from stem-inoculated Scots pine saplings were analyzed to identify unique and enriched H. annosum transcripts in the early stages of infection. Comparing different time points since inoculation identified 131 differentially expressed H. annosum genes with p-values of ≤0.01. Our research supports the results of previous studies on the Norway spruce-Heterobasidion annosum s.l. pathosystem, indicating the role of carbohydrate and lignin degradation genes in pathogenesis at different time points post-inoculation and the role of lipid metabolism genes (including but not limited to the delta-12 fatty acid desaturase gene previously reported to be an important factor). The results of this study indicate that the malic enzyme could be a potential gene of interest in the context of H. annosum virulence. During this study, difficulties related to incomplete reference material of the host plant species and a low proportion of H. annosum transcripts in the RNA pool were encountered. In addition, H. annosum transcripts are currently not well annotated. Improvements in sequencing technologies (including sequencing depth) or bioinformatics focusing on small subpopulations of RNA would be welcome.
Collapse
Affiliation(s)
| | | | - Vilnis Šķipars
- Latvian State Forest Research Institute “Silava”, 111 Rīgas Street, LV-2169 Salaspils, Latvia
| |
Collapse
|
6
|
Dálya LB, Černý M, de la Peña M, Poimala A, Vainio EJ, Hantula J, Botella L. Diversity and impact of single-stranded RNA viruses in Czech Heterobasidion populations. mSystems 2024; 9:e0050624. [PMID: 39287383 PMCID: PMC11494978 DOI: 10.1128/msystems.00506-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/04/2024] [Indexed: 09/19/2024] Open
Abstract
Heterobasidion annosum sensu lato comprises some of the most devastating pathogens of conifers. Exploring virocontrol as a potential strategy to mitigate economic losses caused by these fungi holds promise for the future. In this study, we conducted a comprehensive screening for viruses in 98 H. annosum s.l. specimens from different regions of Czechia aiming to identify viruses inducing hypovirulence. Initial examination for dsRNA presence was followed by RNA-seq analyses using pooled RNA libraries constructed from H. annosum and Heterobasidion parviporum, with diverse bioinformatic pipelines employed for virus discovery. Our study uncovered 25 distinct ssRNA viruses, including two ourmia-like viruses, one mitovirus, one fusarivirus, one tobamo-like virus, one cogu-like virus, one bisegmented narna-like virus and one segment of another narna-like virus, and 17 ambi-like viruses, for which hairpin and hammerhead ribozymes were detected. Coinfections of up to 10 viruses were observed in six Heterobasidion isolates, whereas another six harbored a single virus. Seventy-three percent of the isolates analyzed by RNA-seq were virus-free. These findings show that the virome of Heterobasidion populations in Czechia is highly diverse and differs from that in the boreal region. We further investigated the host effects of certain identified viruses through comparisons of the mycelial growth rate and proteomic analyses and found that certain tested viruses caused growth reductions of up to 22% and significant alterations in the host proteome profile. Their intraspecific transmission rates ranged from 0% to 33%. Further studies are needed to fully understand the biocontrol potential of these viruses in planta.IMPORTANCEHeterobasidion annosum sensu lato is a major pathogen causing significant damage to conifer forests, resulting in substantial economic losses. This study is significant as it explores the potential of using viruses (virocontrol) to combat these fungal pathogens. By identifying and characterizing a diverse array of viruses in H. annosum populations from Czechia, the research opens new avenues for biocontrol strategies. The discovery of 25 distinct ssRNA viruses, some of which reduce fungal growth and alter proteome profiles, suggests that these viruses could be harnessed to mitigate the impact of Heterobasidion. Understanding the interactions between these viruses and their fungal hosts is crucial for developing effective, environmentally friendly methods to protect conifer forests and maintain ecosystem health. This study lays the groundwork for future research on the application of mycoviruses in forest disease management.
Collapse
Affiliation(s)
- László Benedek Dálya
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Marcos de la Peña
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain
| | - Anna Poimala
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Eeva J. Vainio
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Jarkko Hantula
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Leticia Botella
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
7
|
Sumampong G, Feau N, Bernier L, Hamelin RC, Liu JJ, Shamoun SF. Genome sequence of Heterobasidion occidentale, a fungus that causes annosus root and butt rot among conifer trees in North America. Microbiol Resour Announc 2024; 13:e0041924. [PMID: 39177369 PMCID: PMC11492984 DOI: 10.1128/mra.00419-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
We report an annotated draft genome of Heterobasidion occidentale, a fungus (Basidiomycota, Agaricomycetes) that has pathogenic and saprophytic lifestyles. This fungus belongs to the H. annosum (Fr.) Bref. sensu lato species complex that comprises several root rot pathogens. Heterobasidion occidentale causes annosus root and butt rot primarily in true fir (Abies spp.) and spruce (Picea spp.) species throughout western North America.
Collapse
Affiliation(s)
- Grace Sumampong
- Département des
Sciences du bois et de la Forêt, Faculté de Foresterie et
Géographie, Université
Laval, Québec,
Canada
- Natural Resources
Canada, Canadian Forest Service, Pacific Forestry
Centre, Victoria,
British Columbia, Canada
| | - Nicolas Feau
- Natural Resources
Canada, Canadian Forest Service, Pacific Forestry
Centre, Victoria,
British Columbia, Canada
| | - Louis Bernier
- Département des
Sciences du bois et de la Forêt, Faculté de Foresterie et
Géographie, Université
Laval, Québec,
Canada
| | - Richard C. Hamelin
- Department of Forest
and Conservation Sciences, Faculty of Forestry, The University of
British Columbia,
Vancouver, British Columbia,
Canada
| | - Jun-Jun Liu
- Natural Resources
Canada, Canadian Forest Service, Pacific Forestry
Centre, Victoria,
British Columbia, Canada
| | - Simon F. Shamoun
- Natural Resources
Canada, Canadian Forest Service, Pacific Forestry
Centre, Victoria,
British Columbia, Canada
| |
Collapse
|
8
|
Yang Y, Xiong D, Zhao D, Huang H, Tian C. Genome sequencing of Elaeocarpus spp. stem blight pathogen Pseudocryphonectria elaeocarpicola reveals potential adaptations to colonize woody bark. BMC Genomics 2024; 25:714. [PMID: 39048950 PMCID: PMC11267912 DOI: 10.1186/s12864-024-10615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Elaeocarpus spp. stem blight, caused by Pseudocryphonectria elaeocarpicola, is a destructive disease, which will significantly reduce the productivity and longevity of Elaeocarpus spp. plants, especially in the Guangdong Province of China. However, few information is available for P. elaeocarpicola. To unravel the potential adaptation mechanism of stem adaptation, the whole genome of P. elaeocarpicola was sequenced by using the DNBSEQ and PacBio platforms. RESULTS P. elaeocarpicola harbors 44.49 Mb genome with 10,894 predicted coding genes. Genome analysis revealed that the P. elaeocarpicola genome encodes a plethora of pathogenicity-related genes. Analysis of carbohydrate-active enzymes (CAZymes) revealed a rich variety of enzymes participated in plant cell wall degradation, which could effectively degrade cellulose, hemicellulose and xyloglucans in the plant cell wall and promote the invasion of the host plant. There are 213 CAZyme families found in P. elaeocarpicola, among which glycoside hydrolase (GH) family has the largest number, far exceeding other tested fungi by 53%. Besides, P. elaeocarpicola has twice as many genes encoding chitin and cellulose degradation as Cryphonectria parasitica, which belong to the same family. The predicted typical secreted proteins of P. elaeocarpicola are numerous and functional, including many known virulence effector factors, indicating that P. elaeocarpicola has great potential to secrete virulence effectors to promote pathogenicity on host plants. AntiSMASH revealed that the genome encoded 61 secondary metabolic gene clusters including 86 secondary metabolic core genes which was much higher than C. parasitica (49). Among them, two gene cluster of P. elaeocarpicola, cluster12 and cluster52 showed 100% similarity with the mycotoxins synthesis clusters from Aspergillus steynii and Alternaria alternata, respectively. In addition, we annotated cytochrome P450 related enzymes, transporters, and transcription factors in P. elaeocarpicola, which are important virulence determinants of pathogenic fungi. CONCLUSIONS Taken together, our study represents the first genome assembly for P. elaeocarpicola and reveals the key virulence factors in the pathogenic process of P. elaeocarpicola, which will promote our understanding of its pathogenic mechanism. The acquired knowledge lays a foundation for further exploration of molecular interactions with the host and provide target for management strategies in future research.
Collapse
Affiliation(s)
- Yuchen Yang
- State Key laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
| | - Dianguang Xiong
- State Key laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China.
| | - Danyang Zhao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, Guangdong, China
| | - Huayi Huang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, Guangdong, China.
| | - Chengming Tian
- State Key laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
9
|
Figueroa-Corona L, Baesen K, Bhattarai A, Kegley A, Sniezko RA, Wegrzyn J, De La Torre AR. Transcriptional Profiling of Early Defense Response to White Pine Blister Rust Infection in Pinus albicaulis (Whitebark Pine). Genes (Basel) 2024; 15:602. [PMID: 38790231 PMCID: PMC11121556 DOI: 10.3390/genes15050602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Pathogen perception generates the activation of signal transduction cascades to host defense. White pine blister rust (WPBR) is caused by Cronartium ribicola J.C. Fisch and affects a number of species of Pinus. One of the most severely affected species is Pinus albicaulis Engelm (whitebark pine). WPBR resistance in the species is a polygenic and complex trait that requires an optimized immune response. We identified early responses in 2-year-old seedlings after four days of fungal inoculation and compared the underlying transcriptomic response with that of healthy non-inoculated individuals. A de novo transcriptome assembly was constructed with 56,796 high quality-annotations derived from the needles of susceptible and resistant individuals in a resistant half-sib family. Differential expression analysis identified 599 differentially expressed transcripts, from which 375 were upregulated and 224 were downregulated in the inoculated seedlings. These included components of the initial phase of active responses to abiotic factors and stress regulators, such as those involved in the first steps of flavonoid biosynthesis. Four days after the inoculation, infected individuals showed an overexpression of chitinases, reactive oxygen species (ROS) regulation signaling, and flavonoid intermediates. Our research sheds light on the first stage of infection and emergence of disease symptoms among whitebark pine seedlings. RNA sequencing (RNA-seq) data encoding hypersensitive response, cell wall modification, oxidative regulation signaling, programmed cell death, and plant innate immunity were differentially expressed during the defense response against C. ribicola.
Collapse
Affiliation(s)
- Laura Figueroa-Corona
- School of Forestry, Northern Arizona University, 200 E. Pine Knoll, Flagstaff, AZ 86011, USA (A.R.D.L.T.)
| | - Kailey Baesen
- School of Forestry, Northern Arizona University, 200 E. Pine Knoll, Flagstaff, AZ 86011, USA (A.R.D.L.T.)
| | - Akriti Bhattarai
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Angelia Kegley
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR 97424, USA (R.A.S.)
| | - Richard A. Sniezko
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR 97424, USA (R.A.S.)
| | - Jill Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Amanda R. De La Torre
- School of Forestry, Northern Arizona University, 200 E. Pine Knoll, Flagstaff, AZ 86011, USA (A.R.D.L.T.)
| |
Collapse
|
10
|
Auer L, Buée M, Fauchery L, Lombard V, Barry KW, Clum A, Copeland A, Daum C, Foster B, LaButti K, Singan V, Yoshinaga Y, Martineau C, Alfaro M, Castillo FJ, Imbert JB, Ramírez L, Castanera R, Pisabarro AG, Finlay R, Lindahl B, Olson A, Séguin A, Kohler A, Henrissat B, Grigoriev IV, Martin FM. Metatranscriptomics sheds light on the links between the functional traits of fungal guilds and ecological processes in forest soil ecosystems. THE NEW PHYTOLOGIST 2024; 242:1676-1690. [PMID: 38148573 DOI: 10.1111/nph.19471] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/23/2023] [Indexed: 12/28/2023]
Abstract
Soil fungi belonging to different functional guilds, such as saprotrophs, pathogens, and mycorrhizal symbionts, play key roles in forest ecosystems. To date, no study has compared the actual gene expression of these guilds in different forest soils. We used metatranscriptomics to study the competition for organic resources by these fungal groups in boreal, temperate, and Mediterranean forest soils. Using a dedicated mRNA annotation pipeline combined with the JGI MycoCosm database, we compared the transcripts of these three fungal guilds, targeting enzymes involved in C- and N mobilization from plant and microbial cell walls. Genes encoding enzymes involved in the degradation of plant cell walls were expressed at a higher level in saprotrophic fungi than in ectomycorrhizal and pathogenic fungi. However, ectomycorrhizal and saprotrophic fungi showed similarly high expression levels of genes encoding enzymes involved in fungal cell wall degradation. Transcripts for N-related transporters were more highly expressed in ectomycorrhizal fungi than in other groups. We showed that ectomycorrhizal and saprotrophic fungi compete for N in soil organic matter, suggesting that their interactions could decelerate C cycling. Metatranscriptomics provides a unique tool to test controversial ecological hypotheses and to better understand the underlying ecological processes involved in soil functioning and carbon stabilization.
Collapse
Affiliation(s)
- Lucas Auer
- Université de Lorraine, INRAE, UMR Interactions Arbres-Microorganismes, Nancy, F-54000, France
| | - Marc Buée
- Université de Lorraine, INRAE, UMR Interactions Arbres-Microorganismes, Nancy, F-54000, France
| | - Laure Fauchery
- Université de Lorraine, INRAE, UMR Interactions Arbres-Microorganismes, Nancy, F-54000, France
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques, CNRS and Aix-Marseille Université, Marseille, 13288, France
- INRAE, USC1408 Architecture et Fonction des Macromolécules Biologiques, Marseille, 13009, France
| | - Kerry W Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alicia Clum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alex Copeland
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Chris Daum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Brian Foster
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vasanth Singan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yuko Yoshinaga
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christine Martineau
- Laurentian Forestry Centre, Natural Resources Canada, Canadian Forest Service, Quebec, G1V4C7, QC, Canada
| | - Manuel Alfaro
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), Pamplona, 31006, Spain
| | - Federico J Castillo
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), Pamplona, 31006, Spain
| | - J Bosco Imbert
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), Pamplona, 31006, Spain
| | - Lucia Ramírez
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), Pamplona, 31006, Spain
| | - Raúl Castanera
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), Pamplona, 31006, Spain
| | - Antonio G Pisabarro
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), Pamplona, 31006, Spain
| | - Roger Finlay
- Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - Björn Lindahl
- Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - Ake Olson
- Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - Armand Séguin
- Laurentian Forestry Centre, Natural Resources Canada, Canadian Forest Service, Quebec, G1V4C7, QC, Canada
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR Interactions Arbres-Microorganismes, Nancy, F-54000, France
| | - Bernard Henrissat
- DTU Bioengineering, Denmarks Tekniske Universitet, Copenhagen, 2800, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Francis M Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres-Microorganismes, Nancy, F-54000, France
| |
Collapse
|
11
|
Popošek LL, Kraševec N, Bajc G, Glavač U, Hrovatin M, Perko Ž, Slavič A, Pavšič M, Sepčić K, Skočaj M. New Insights into Interactions between Mushroom Aegerolysins and Membrane Lipids. Toxins (Basel) 2024; 16:143. [PMID: 38535809 PMCID: PMC10975569 DOI: 10.3390/toxins16030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 04/25/2025] Open
Abstract
Aegerolysins are a family of proteins that recognize and bind to specific membrane lipids or lipid domains; hence they can be used as membrane lipid sensors. Although aegerolysins are distributed throughout the tree of life, the most studied are those produced by the fungal genus Pleurotus. Most of the aegerolysin-producing mushrooms code also for proteins containing the membrane attack complex/perforin (MACPF)-domain. The combinations of lipid-sensing aegerolysins and MACPF protein partners are lytic for cells harboring the aegerolysin membrane lipid receptor and can be used as ecologically friendly bioinsecticides. In this work, we have recombinantly expressed four novel aegerolysin/MACPF protein pairs from the mushrooms Heterobasidion irregulare, Trametes versicolor, Mucidula mucida, and Lepista nuda, and compared these proteins with the already studied aegerolysin/MACPF protein pair ostreolysin A6-pleurotolysin B from P. ostreatus. We show here that most of these new mushroom proteins can form active aegerolysin/MACPF cytolytic complexes upon aegerolysin binding to membrane sphingolipids. We further disclose that these mushroom aegerolysins bind also to selected glycerophospholipids, in particular to phosphatidic acid and cardiolipin; however, these interactions with glycerophospholipids do not lead to pore formation. Our results indicate that selected mushroom aegerolysins show potential as new molecular biosensors for labelling phosphatidic acid.
Collapse
Affiliation(s)
- Larisa Lara Popošek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (L.L.P.); (G.B.); (U.G.); (M.H.); (Ž.P.); (A.S.); (K.S.)
| | - Nada Kraševec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia;
| | - Gregor Bajc
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (L.L.P.); (G.B.); (U.G.); (M.H.); (Ž.P.); (A.S.); (K.S.)
| | - Urška Glavač
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (L.L.P.); (G.B.); (U.G.); (M.H.); (Ž.P.); (A.S.); (K.S.)
| | - Matija Hrovatin
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (L.L.P.); (G.B.); (U.G.); (M.H.); (Ž.P.); (A.S.); (K.S.)
| | - Žan Perko
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (L.L.P.); (G.B.); (U.G.); (M.H.); (Ž.P.); (A.S.); (K.S.)
| | - Ana Slavič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (L.L.P.); (G.B.); (U.G.); (M.H.); (Ž.P.); (A.S.); (K.S.)
| | - Miha Pavšič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia;
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (L.L.P.); (G.B.); (U.G.); (M.H.); (Ž.P.); (A.S.); (K.S.)
| | - Matej Skočaj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (L.L.P.); (G.B.); (U.G.); (M.H.); (Ž.P.); (A.S.); (K.S.)
| |
Collapse
|
12
|
Sahu N, Indic B, Wong-Bajracharya J, Merényi Z, Ke HM, Ahrendt S, Monk TL, Kocsubé S, Drula E, Lipzen A, Bálint B, Henrissat B, Andreopoulos B, Martin FM, Bugge Harder C, Rigling D, Ford KL, Foster GD, Pangilinan J, Papanicolaou A, Barry K, LaButti K, Virágh M, Koriabine M, Yan M, Riley R, Champramary S, Plett KL, Grigoriev IV, Tsai IJ, Slot J, Sipos G, Plett J, Nagy LG. Vertical and horizontal gene transfer shaped plant colonization and biomass degradation in the fungal genus Armillaria. Nat Microbiol 2023; 8:1668-1681. [PMID: 37550506 PMCID: PMC7615209 DOI: 10.1038/s41564-023-01448-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/11/2023] [Indexed: 08/09/2023]
Abstract
The fungal genus Armillaria contains necrotrophic pathogens and some of the largest terrestrial organisms that cause tremendous losses in diverse ecosystems, yet how they evolved pathogenicity in a clade of dominantly non-pathogenic wood degraders remains elusive. Here we show that Armillaria species, in addition to gene duplications and de novo gene origins, acquired at least 1,025 genes via 124 horizontal gene transfer events, primarily from Ascomycota. Horizontal gene transfer might have affected plant biomass degrading and virulence abilities of Armillaria, and provides an explanation for their unusual, soft rot-like wood decay strategy. Combined multi-species expression data revealed extensive regulation of horizontally acquired and wood-decay related genes, putative virulence factors and two novel conserved pathogenicity-induced small secreted proteins, which induced necrosis in planta. Overall, this study details how evolution knitted together horizontally and vertically inherited genes in complex adaptive traits of plant biomass degradation and pathogenicity in important fungal pathogens.
Collapse
Affiliation(s)
- Neha Sahu
- Biological Research Center, Synthetic and Systems Biology Unit, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Boris Indic
- Functional Genomics and Bioinformatics Group, Faculty of Forestry, Institute of Forest and Natural Resource Management, University of Sopron, Sopron, Hungary
| | - Johanna Wong-Bajracharya
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, New South Wales, Australia
| | - Zsolt Merényi
- Biological Research Center, Synthetic and Systems Biology Unit, Szeged, Hungary
| | - Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Steven Ahrendt
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Tori-Lee Monk
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- ELKH-SZTE Fungal Pathogenicity Mechanisms Research Group, University of Szeged, Szeged, Hungary
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, Marseille, France
- INRAE, UMR 1163, Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Balázs Bálint
- Biological Research Center, Synthetic and Systems Biology Unit, Szeged, Hungary
| | - Bernard Henrissat
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bill Andreopoulos
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Francis M Martin
- Université de Lorraine, INRAE, UMR 1136 'Interactions Arbres/Microorganismes', Centre INRAE Grand Est - Nancy, Champenoux, France
| | - Christoffer Bugge Harder
- Department of Biology, Section of Terrestrial Ecology, University of Copenhagen, København Ø, Denmark
- Department of Biosciences, University of Oslo, Blindern, Oslo, Norway
| | - Daniel Rigling
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Kathryn L Ford
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, UK
| | - Gary D Foster
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, UK
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Máté Virágh
- Biological Research Center, Synthetic and Systems Biology Unit, Szeged, Hungary
| | - Maxim Koriabine
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mi Yan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert Riley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Simang Champramary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Functional Genomics and Bioinformatics Group, Faculty of Forestry, Institute of Forest and Natural Resource Management, University of Sopron, Sopron, Hungary
| | - Krista L Plett
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, New South Wales, Australia
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | | | - Jason Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
| | - György Sipos
- Functional Genomics and Bioinformatics Group, Faculty of Forestry, Institute of Forest and Natural Resource Management, University of Sopron, Sopron, Hungary
| | - Jonathan Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - László G Nagy
- Biological Research Center, Synthetic and Systems Biology Unit, Szeged, Hungary.
| |
Collapse
|
13
|
Dumigan CR, Maddock S, Bray-Stone D, Deyholos MK. Hybrid Genome Assembly of Berkeleyomyces rouxiae, an Emerging Cannabis Fungal Pathogen Causing Black Root Rot in an Aeroponic Facility. PLANT DISEASE 2023; 107:2679-2686. [PMID: 36774565 DOI: 10.1094/pdis-11-22-2690-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The resurged interest in cultivation of Cannabis sativa has presented an array of new challenges. Among them are the difficult-to-control pests and pathogens that infect cannabis plants. The limited methods for disease control available to cannabis growers necessitates early detection of plant pathogens, something that molecular techniques such as DNA sequencing has greatly improved. This study reports for the first time the fungal plant pathogen Berkeleyomyces rouxiae causing black root rot in high THC-containing cannabis. Aeroponically grown cannabis plants at a licenced production facility in Cranbrook BC, Canada, rapidly displayed root discoloration and rot symptoms despite testing negative for all commercially available pathogen tests. Developing sequencing-based disease diagnostics requires genomic information, so this study presents the first whole genome sequence of the multihost, widespread black root rot pathogen B. rouxiae. Hybrid genome assembly using Oxford Nanopore long-reads and Illumina short-reads yielded a genome size of 28.2 Mb represented over 404 contigs with an N50 of 267 kb. Genome annotation predicted 6,960 protein-coding genes with 59,477 functional annotations. The availability of this genome will assist in sequence-based diagnostic development, comparative genomics, and taxonomic resolution of this globally important plant pathogen.
Collapse
Affiliation(s)
- Christopher R Dumigan
- University of British Columbia Okanagan, Irving K. Barber Faculty of Science, Kelowna, British Columbia V1V 1V7, Canada
| | - Savanna Maddock
- University of British Columbia Okanagan, Irving K. Barber Faculty of Science, Kelowna, British Columbia V1V 1V7, Canada
| | | | - Michael K Deyholos
- University of British Columbia Okanagan, Irving K. Barber Faculty of Science, Kelowna, British Columbia V1V 1V7, Canada
| |
Collapse
|
14
|
Agnestisia R, Suzuki T, Ono A, Nakamura L, Nezu I, Tanaka Y, Aiso H, Ishiguri F, Yokota S. Lignin-degrading enzymes from a pathogenic canker-rot fungus Inonotus obliquus strain IO-B2. AMB Express 2023; 13:59. [PMID: 37302091 DOI: 10.1186/s13568-023-01566-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 06/02/2023] [Indexed: 06/13/2023] Open
Abstract
Inonotus obliquus is a pathogenic fungus found in living trees and has been widely used as a traditional medicine for cancer therapy. Although lignocellulose-degrading enzymes are involved in the early stages of host infection, the parasitic life cycle of this fungus has not been fully understood. In this study, we aimed to investigate the activities of laccase (Lac), manganese peroxidase (MnP), and lignin peroxidase (LiP) from I. obliquus cultivated in Kirk's medium. The fungus was subjected to genome sequencing, and genes related to wood degradation were identified. The draft genome sequence of this fungus comprised 21,203 predicted protein-coding genes, of which 134 were estimated to be related to wood degradation. Among these, 47 genes associated with lignin degradation were found to have the highest number of mnp genes. Furthermore, we cloned the cDNA encoding a putative MnP, referred to as IoMnP1, and characterized its molecular structure. The results show that IoMnP1 has catalytic properties analogous to MnP. Phylogenetic analysis also confirmed that IoMnP1 was closely related to the MnPs from Pyrrhoderma noxium, Fomitiporia mediterranea, and Sanghuangporus baumii, which belong to the same family of Hymenochaetaceae. From the above results, we suggest that IoMnP1 is a member of MnPs.
Collapse
Affiliation(s)
- Retno Agnestisia
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
- Faculty of Mathematics and Natural Sciences, Universitas Palangka Raya, Palangka Raya, 73111, Indonesia
| | - Tomohiro Suzuki
- School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan.
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan.
| | - Akiko Ono
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Luna Nakamura
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Ikumi Nezu
- School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Yuki Tanaka
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Haruna Aiso
- Faculty of Agricultural Production and Management, Shizuoka Professional University of Agriculture, Iwata, Shizuoka, 438-0803, Japan
| | - Futoshi Ishiguri
- School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Shinso Yokota
- School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan.
| |
Collapse
|
15
|
Matsumoto R, Mehjabin JJ, Noguchi H, Miyamoto T, Takasuka TE, Hori C. Genomic and Secretomic Analyses of the Newly Isolated Fungus Perenniporia fraxinea SS3 Identified CAZymes Potentially Related to a Serious Pathogenesis of Hardwood Trees. Appl Environ Microbiol 2023; 89:e0027223. [PMID: 37098943 PMCID: PMC10231188 DOI: 10.1128/aem.00272-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/06/2023] [Indexed: 04/27/2023] Open
Abstract
Perenniporia fraxinea can colonize living trees and cause severe damage to standing hardwoods by secreting a number of carbohydrate-activate enzymes (CAZymes), unlike other well-studied Polyporales. However, significant knowledge gaps exist in understanding the detailed mechanisms for this hardwood-pathogenic fungus. To address this issue, five monokaryotic P. fraxinea strains, SS1 to SS5, were isolated from the tree species Robinia pseudoacacia, and high polysaccharide-degrading activities and the fastest growth were found for P. fraxinea SS3 among the isolates. The whole genome of P. fraxinea SS3 was sequenced, and its unique CAZyme potential for tree pathogenicity was determined in comparison to the genomes of other nonpathogenic Polyporales. These CAZyme features are well conserved in a distantly related tree pathogen, Heterobasidion annosum. Furthermore, the carbon source-dependent CAZyme secretions of P. fraxinea SS3 and a nonpathogenic and strong white-rot Polyporales member, Phanerochaete chrysosporium RP78, were compared by activity measurements and proteomic analyses. As seen in the genome comparisons, P. fraxinea SS3 exhibited higher pectin-degrading activities and higher laccase activities than P. chrysosporium RP78, which were attributed to the secretion of abundant glycoside hydrolase family 28 (GH28) pectinases and auxiliary activity family 1_1 (AA1_1) laccases, respectively. These enzymes are possibly related to fungal invasion into the tree lumens and the detoxification of tree defense substances. Additionally, P. fraxinea SS3 showed secondary cell wall degradation capabilities at the same level as that of P. chrysosporium RP78. Overall, this study suggested mechanisms for how this fungus can attack the cell walls of living trees as a serious pathogen and differs from other nonpathogenic white-rot fungi. IMPORTANCE Many studies have been done to understand the mechanisms underlying the degradation of plant cell walls of dead trees by wood decay fungi. However, little is known about how some of these fungi weaken living trees as pathogens. P. fraxinea belongs to the Polyporales, a group of strong wood decayers, and is known to aggressively attack and fell standing hardwood trees all over the world. Here, we report CAZymes potentially related to plant cell wall degradation and pathogenesis factors in a newly isolated fungus, P. fraxinea SS3, by genome sequencing in conjunction with comparative genomic and secretomic analyses. The present study provides insights into the mechanisms of the degradation of standing hardwood trees by the tree pathogen, which will contribute to the prevention of this serious tree disease.
Collapse
Affiliation(s)
- Ruy Matsumoto
- Research Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Jakia Jerin Mehjabin
- Research Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | | | - Taichi E. Takasuka
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- Global Station for Food, Land, and Water Resources, Hokkaido University, Sapporo, Japan
| | - Chiaki Hori
- Research Faculty of Engineering, Hokkaido University, Sapporo, Japan
- Research Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
16
|
Himmelstrand K, Brandström Durling M, Karlsson M, Stenlid J, Olson Å. Multiple rearrangements and low inter- and intra-species mitogenome sequence variation in the Heterobasidion annosum s.l. species complex. Front Microbiol 2023; 14:1159811. [PMID: 37275157 PMCID: PMC10234125 DOI: 10.3389/fmicb.2023.1159811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/16/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Mitochondria are essential organelles in the eukaryotic cells and responsible for the energy production but are also involved in many other functions including virulence of some fungal species. Although the evolution of fungal mitogenomes have been studied at some taxonomic levels there are still many things to be learned from studies of closely related species. Methods In this study, we have analyzed 60 mitogenomes in the five species of the Heterobasidion annosum sensu lato complex that all are necrotrophic pathogens on conifers. Results and Discussion Compared to other fungal genera the genomic and genetic variation between and within species in the complex was low except for multiple rearrangements. Several translocations of large blocks with core genes have occurred between the five species and rearrangements were frequent in intergenic areas. Mitogenome lengths ranged between 108 878 to 116 176 bp, mostly as a result of intron variation. There was a high degree of homology of introns, homing endonuclease genes, and intergenic ORFs among the five Heterobasidion species. Three intergenic ORFs with unknown function (uORF6, uORF8 and uORF9) were found in all five species and was located in conserved synteny blocks. A 13 bp long GC-containing self-complementary palindrome was discovered in many places in the five species that were optional in presence/absence. The within species variation is very low, among 48 H. parviporum mitogenomes, there was only one single intron exchange, and SNP frequency was 0.28% and indel frequency 0.043%. The overall low variation in the Heterobasidion annosum sensu lato complex suggests a slow evolution of the mitogenome.
Collapse
Affiliation(s)
| | | | | | | | - Åke Olson
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
17
|
Gupta YK, Marcelino-Guimarães FC, Lorrain C, Farmer A, Haridas S, Ferreira EGC, Lopes-Caitar VS, Oliveira LS, Morin E, Widdison S, Cameron C, Inoue Y, Thor K, Robinson K, Drula E, Henrissat B, LaButti K, Bini AMR, Paget E, Singan V, Daum C, Dorme C, van Hoek M, Janssen A, Chandat L, Tarriotte Y, Richardson J, Melo BDVA, Wittenberg AHJ, Schneiders H, Peyrard S, Zanardo LG, Holtman VC, Coulombier-Chauvel F, Link TI, Balmer D, Müller AN, Kind S, Bohnert S, Wirtz L, Chen C, Yan M, Ng V, Gautier P, Meyer MC, Voegele RT, Liu Q, Grigoriev IV, Conrath U, Brommonschenkel SH, Loehrer M, Schaffrath U, Sirven C, Scalliet G, Duplessis S, van Esse HP. Major proliferation of transposable elements shaped the genome of the soybean rust pathogen Phakopsora pachyrhizi. Nat Commun 2023; 14:1835. [PMID: 37005409 PMCID: PMC10067951 DOI: 10.1038/s41467-023-37551-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/22/2023] [Indexed: 04/04/2023] Open
Abstract
With >7000 species the order of rust fungi has a disproportionately large impact on agriculture, horticulture, forestry and foreign ecosystems. The infectious spores are typically dikaryotic, a feature unique to fungi in which two haploid nuclei reside in the same cell. A key example is Phakopsora pachyrhizi, the causal agent of Asian soybean rust disease, one of the world's most economically damaging agricultural diseases. Despite P. pachyrhizi's impact, the exceptional size and complexity of its genome prevented generation of an accurate genome assembly. Here, we sequence three independent P. pachyrhizi genomes and uncover a genome up to 1.25 Gb comprising two haplotypes with a transposable element (TE) content of ~93%. We study the incursion and dominant impact of these TEs on the genome and show how they have a key impact on various processes such as host range adaptation, stress responses and genetic plasticity.
Collapse
Affiliation(s)
- Yogesh K Gupta
- 2Blades, Evanston, Illinois, USA
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | | | - Cécile Lorrain
- Pathogen Evolutionary Ecology, ETH Zürich, Zürich, Switzerland
| | - Andrew Farmer
- National Center for Genome Resources, Santa Fe, New Mexico, USA
| | - Sajeet Haridas
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Everton Geraldo Capote Ferreira
- 2Blades, Evanston, Illinois, USA
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Paraná, Brazil
| | - Valéria S Lopes-Caitar
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Paraná, Brazil
| | - Liliane Santana Oliveira
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Paraná, Brazil
- Department of Computer Science, Federal University of Technology of Paraná (UTFPR), Paraná, Brazil
| | | | | | - Connor Cameron
- National Center for Genome Resources, Santa Fe, New Mexico, USA
| | - Yoshihiro Inoue
- 2Blades, Evanston, Illinois, USA
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Kathrin Thor
- 2Blades, Evanston, Illinois, USA
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Kelly Robinson
- 2Blades, Evanston, Illinois, USA
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Elodie Drula
- AFMB, Aix-Marseille Univ., INRAE, Marseille, France
- Biodiversité et Biotechnologie Fongiques, INRAE, Marseille, France
| | - Bernard Henrissat
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- DTU Bioengineering, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Aline Mara Rudsit Bini
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Paraná, Brazil
- Department of Computer Science, Federal University of Technology of Paraná (UTFPR), Paraná, Brazil
| | - Eric Paget
- Bayer SAS, Crop Science Division, Lyon, France
| | - Vasanth Singan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Christopher Daum
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Tobias I Link
- Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany
| | - Dirk Balmer
- Syngenta Crop Protection AG, Stein, Switzerland
| | - André N Müller
- Department of Plant Physiology, RWTH Aachen University, Aachen, Germany
| | - Sabine Kind
- Department of Plant Physiology, RWTH Aachen University, Aachen, Germany
| | - Stefan Bohnert
- Department of Plant Physiology, RWTH Aachen University, Aachen, Germany
| | - Louisa Wirtz
- Department of Plant Physiology, RWTH Aachen University, Aachen, Germany
| | - Cindy Chen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Mi Yan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Vivian Ng
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | - Maurício Conrado Meyer
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Paraná, Brazil
| | | | - Qingli Liu
- Syngenta Crop Protection, LLC, Research Triangle Park, Durham, NC, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Uwe Conrath
- Department of Plant Physiology, RWTH Aachen University, Aachen, Germany
| | | | - Marco Loehrer
- Department of Plant Physiology, RWTH Aachen University, Aachen, Germany
| | - Ulrich Schaffrath
- Department of Plant Physiology, RWTH Aachen University, Aachen, Germany
| | | | | | | | - H Peter van Esse
- 2Blades, Evanston, Illinois, USA.
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK.
| |
Collapse
|
18
|
Durodola B, Blumenstein K, Terhonen E. Genetic variation of Picea abies in response to the artificial inoculation of Heterobasidion parviporum. EUROPEAN JOURNAL OF FOREST RESEARCH 2023; 142:443-453. [PMID: 36721489 PMCID: PMC9880357 DOI: 10.1007/s10342-023-01534-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/29/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
UNLABELLED Norway spruce Picea abies is one of Europe's most economically important tree species. However, it is highly susceptible to the root rot fungus Heterobasidion parviporum. Climate change will benefit the pathogen as the tree host is weakened by, e.g., extended drought. Breeding can improve forest health, and several root rot genetic markers are suggested to improve the resistance of Norway spruce. This study aimed to compare the resistance (here defined as necrosis length) of Norway spruce families and genotypes against two strains of H. parviporum under different water availabilities. Our results show that the family and the genotype within the family have an impact on the necrosis length that is related to the aggressiveness of the fungal strains. Under low water conditions, the necrosis increased only in horizontal directions in phloem and sapwood. Similarly, the growth (seedling height) was not disturbed by abiotic stress (less water), indicating that the stress level (drought) was too low in this setting. The knowledge gained in this study could improve forest health in the changing climate by understanding the response of Norway spruce to pathogenic attacks under additional stress at the family level. This knowledge could be strategically used in forest breeding to improve the resistance of Norway spruce trees against root rot. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10342-023-01534-3.
Collapse
Affiliation(s)
- Blessing Durodola
- Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, Forest Pathology Research Group, Büsgen-Institute, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
- Forest Genetics and Forest Tree Breeding, Büsgen-Institute, Georg-August University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Kathrin Blumenstein
- Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, Forest Pathology Research Group, Büsgen-Institute, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
- Chair of Pathology of Trees, Faculty of Environment and Natural Resources, Institute of Forestry, University of Freiburg, Bertoldstr. 17, 79098 Freiburg, Germany
| | - Eeva Terhonen
- Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, Forest Pathology Research Group, Büsgen-Institute, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 7, 00790 Helsinki, Finland
| |
Collapse
|
19
|
Multicopper oxidases with laccase-ferroxidase activity: Classification and study of ferroxidase activity determinants in a member from Heterobasidion annosum s. l.. Comput Struct Biotechnol J 2023; 21:1041-1053. [PMID: 36733701 PMCID: PMC9880977 DOI: 10.1016/j.csbj.2023.01.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023] Open
Abstract
Multi-copper oxidases (MCO) share a common molecular architecture and the use of copper ions as cofactors to reduce O2 to H2O, but show high sequence heterogeneity and functional diversity. Many new emerging MCO genes are wrongly annotated as laccases, the largest group of MCOs, with the widest range of biotechnological applications (particularly those from basidiomycete fungi) due to their ability to oxidise aromatic compounds and lignin. Thus, comprehensive studies for a better classification and structure-function characterisation of MCO families are required. Laccase-ferroxidases (LAC-FOXs) constitute a separate and unexplored group of MCOs with proposed dual features between laccases and ferroxidases. We aim to better define this cluster and the structural determinants underlying putative hybrid activity. We performed a phylogenetic analysis of the LAC-FOXs from basidiomycete fungi, that resulted in two subgroups. This division seemed to correlate with the presence or absence of some of the three acidic residues responsible for ferroxidase activity in Fet3p from Saccharomyces cerevisiae. One of these LAC-FOXs (with only one of these residues) from the fungus Heterobasidion annosum s. l. (HaLF) was synthesised, heterologously expressed and characterised to evaluate its catalytic activity. HaLF oxidised typical laccase substrates (phenols, aryl amines and N-heterocycles), but no Fe (II). The enzyme was subjected to site-directed mutagenesis to determine the key residues that confer ferroxidase activity. The mutated HaLF variant with full restoration of the three acidic residues exhibited efficient ferroxidase activity, while it partially retained the wide-range oxidative activity of the native enzyme associated to laccases sensu stricto.
Collapse
|
20
|
Vélëz H, Gauchan DP, García-Gil MDR. Taxol and β-tubulins from endophytic fungi isolated from the Himalayan Yew, Taxus wallichiana Zucc. Front Microbiol 2022; 13:956855. [PMID: 36246258 PMCID: PMC9557061 DOI: 10.3389/fmicb.2022.956855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Paclitaxel, better known as the anticancer drug Taxol®, has been isolated from several plant species and has been shown to be produced by fungi, actinomycetes, and even bacteria isolated from marine macroalgae. Given its cytostatic effect, studies conducted in the 1990's showed that paclitaxel was toxic to many pathogenic fungi and oomycetes. Further studies led to the idea that the differences in paclitaxel sensitivity exhibited by different fungi were due to differences in the β-tubulin protein sequence. With the recent isolation of endophytic fungi from the leaves and bark of the Himalayan Yew, Taxus wallichiana Zucc., and the availability of genomes from paclitaxel-producing fungi, we decided to further explore the idea that endophytic fungi isolated from Yews should be well-adapted to their environment by encoding β-tubulin proteins that are insensitive to paclitaxel. Our results found evidence of episodic positive/diversifying selection at 10 sites (default p-value threshold of 0.1) in the β-tubulin sequences, corresponding to codon positions 33, 55, 172, 218, 279, 335, 359, 362, 379, and 406. Four of these positions (i.e., 172, 279, 359, and 362) have been implicated in the binding of paclitaxel by β-tubulin or formed part of the binding pocket. As expected, all the fungal endophytes grew in different media regardless of the paclitaxel concentration tested. Furthermore, our results also showed that Taxomyces andreanae CBS 279.92, the first fungus shown to produce paclitaxel, is a Basidiomycete fungus as the two beta tubulins encoded by the fungus clustered together with other Basidiomycete fungi.
Collapse
Affiliation(s)
- Heriberto Vélëz
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- *Correspondence: Heriberto Vélëz
| | - Dhurva Prasad Gauchan
- Department of Biotechnology, School of Science, Kathmandu University, Dhulikhel, Nepal
| | - María del Rosario García-Gil
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
21
|
Kashif M, Jurvansuu J, Hyder R, Vainio EJ, Hantula J. Phenotypic Recovery of a Heterobasidion Isolate Infected by a Debilitation-Associated Virus Is Related to Altered Host Gene Expression and Reduced Virus Titer. Front Microbiol 2022; 12:661554. [PMID: 35310390 PMCID: PMC8930199 DOI: 10.3389/fmicb.2021.661554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
The fungal genus Heterobasidion includes forest pathogenic species hosting a diverse group of partitiviruses. They include the host debilitating Heterobasidion partitivirus 13 strain an1 (HetPV13-an1), which was originally observed in a slowly growing H. annosum strain 94233. In this study, a relatively fast-growing sector strain 94233-RC3 was isolated from a highly debilitated mycelial culture of 94233, and its gene expression and virus transcript quantities as well as the genomic sequence of HetPV13-an1 were examined. The sequence of HetPV13-an1 genome in 94233-RC3 was identical to that in the original 94233, and thus not the reason for the partial phenotypic recovery. According to RNA-seq analysis, the HetPV13-an1 infected 94233-RC3 transcribed eight genes differently from the partitivirus-free 94233-32D. Three of these genes were downregulated and five upregulated. The number of differentially expressed genes was considerably lower and the changes in their expression were small compared to those of the highly debilitated original strain 94233 with the exception of the most highly upregulated ones, and therefore viral effects on the host transcriptome correlated with the degree of the virus-caused debilitation. The amounts of RdRp and CP transcripts of HetPV13-an1 were considerably lower in 94233-RC3 and also in 94233 strain infected by a closely related mildly debilitating virus HetPV13-an2, suggesting that the virus titer would have a role in determining the effect of HetPV13 viruses on their hosts.
Collapse
Affiliation(s)
| | | | - Rafiqul Hyder
- Natural Resources Institute Finland, Helsinki, Finland
| | - Eeva J Vainio
- Natural Resources Institute Finland, Helsinki, Finland
| | | |
Collapse
|
22
|
Sun YF, Lebreton A, Xing JH, Fang YX, Si J, Morin E, Miyauchi S, Drula E, Ahrendt S, Cobaugh K, Lipzen A, Koriabine M, Riley R, Kohler A, Barry K, Henrissat B, Grigoriev IV, Martin FM, Cui BK. Phylogenomics and Comparative Genomics Highlight Specific Genetic Features in Ganoderma Species. J Fungi (Basel) 2022; 8:jof8030311. [PMID: 35330313 PMCID: PMC8955403 DOI: 10.3390/jof8030311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
The Ganoderma species in Polyporales are ecologically and economically relevant wood decayers used in traditional medicine, but their genomic traits are still poorly documented. In the present study, we carried out a phylogenomic and comparative genomic analyses to better understand the genetic blueprint of this fungal lineage. We investigated seven Ganoderma genomes, including three new genomes, G. australe, G. leucocontextum, and G. lingzhi. The size of the newly sequenced genomes ranged from 60.34 to 84.27 Mb and they encoded 15,007 to 20,460 genes. A total of 58 species, including 40 white-rot fungi, 11 brown-rot fungi, four ectomycorrhizal fungi, one endophyte fungus, and two pathogens in Basidiomycota, were used for phylogenomic analyses based on 143 single-copy genes. It confirmed that Ganoderma species belong to the core polyporoid clade. Comparing to the other selected species, the genomes of the Ganoderma species encoded a larger set of genes involved in terpene metabolism and coding for secreted proteins (CAZymes, lipases, proteases and SSPs). Of note, G. australe has the largest genome size with no obvious genome wide duplication, but showed transposable elements (TEs) expansion and the largest set of terpene gene clusters, suggesting a high ability to produce terpenoids for medicinal treatment. G. australe also encoded the largest set of proteins containing domains for cytochrome P450s, heterokaryon incompatibility and major facilitator families. Besides, the size of G. australe secretome is the largest, including CAZymes (AA9, GH18, A01A), proteases G01, and lipases GGGX, which may enhance the catabolism of cell wall carbohydrates, proteins, and fats during hosts colonization. The current genomic resource will be used to develop further biotechnology and medicinal applications, together with ecological studies of the Ganoderma species.
Collapse
Affiliation(s)
- Yi-Fei Sun
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (Y.-F.S.); (J.-H.X.); (Y.-X.F.); (J.S.)
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes (IAM), Centre INRAE Grand Est-Nancy, 54280 Champenoux, France; (A.L.); (E.M.); (S.M.); (A.K.)
| | - Annie Lebreton
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes (IAM), Centre INRAE Grand Est-Nancy, 54280 Champenoux, France; (A.L.); (E.M.); (S.M.); (A.K.)
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Jia-Hui Xing
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (Y.-F.S.); (J.-H.X.); (Y.-X.F.); (J.S.)
| | - Yu-Xuan Fang
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (Y.-F.S.); (J.-H.X.); (Y.-X.F.); (J.S.)
| | - Jing Si
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (Y.-F.S.); (J.-H.X.); (Y.-X.F.); (J.S.)
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes (IAM), Centre INRAE Grand Est-Nancy, 54280 Champenoux, France; (A.L.); (E.M.); (S.M.); (A.K.)
| | - Shingo Miyauchi
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes (IAM), Centre INRAE Grand Est-Nancy, 54280 Champenoux, France; (A.L.); (E.M.); (S.M.); (A.K.)
- Max Planck Institute for Plant Breeding Research, Department of Plant Microbe Interactions, 50829 Cologne, Germany
| | - Elodie Drula
- INRAE, Aix Marseille University, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France;
| | - Steven Ahrendt
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (S.A.); (K.C.); (A.L.); (M.K.); (R.R.); (K.B.); (I.V.G.)
| | - Kelly Cobaugh
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (S.A.); (K.C.); (A.L.); (M.K.); (R.R.); (K.B.); (I.V.G.)
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (S.A.); (K.C.); (A.L.); (M.K.); (R.R.); (K.B.); (I.V.G.)
| | - Maxim Koriabine
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (S.A.); (K.C.); (A.L.); (M.K.); (R.R.); (K.B.); (I.V.G.)
| | - Robert Riley
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (S.A.); (K.C.); (A.L.); (M.K.); (R.R.); (K.B.); (I.V.G.)
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes (IAM), Centre INRAE Grand Est-Nancy, 54280 Champenoux, France; (A.L.); (E.M.); (S.M.); (A.K.)
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (S.A.); (K.C.); (A.L.); (M.K.); (R.R.); (K.B.); (I.V.G.)
| | - Bernard Henrissat
- DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
- Department of Biological Sciences, King Abdulaziz University, Jeddah 999088, Saudi Arabia
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (S.A.); (K.C.); (A.L.); (M.K.); (R.R.); (K.B.); (I.V.G.)
- Department of Microbial and Plant Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Francis M. Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes (IAM), Centre INRAE Grand Est-Nancy, 54280 Champenoux, France; (A.L.); (E.M.); (S.M.); (A.K.)
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- Correspondence: (F.M.M.); (B.-K.C.); Tel.: +33-383394080 (F.M.M.); +86-1062336309 (B.-K.C.)
| | - Bao-Kai Cui
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (Y.-F.S.); (J.-H.X.); (Y.-X.F.); (J.S.)
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- Correspondence: (F.M.M.); (B.-K.C.); Tel.: +33-383394080 (F.M.M.); +86-1062336309 (B.-K.C.)
| |
Collapse
|
23
|
Sagarika MS, Parameswaran C, Senapati A, Barala J, Mitra D, Prabhukarthikeyan SR, Kumar A, Nayak AK, Panneerselvam P. Lytic polysaccharide monooxygenases (LPMOs) producing microbes: A novel approach for rapid recycling of agricultural wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150451. [PMID: 34607097 DOI: 10.1016/j.scitotenv.2021.150451] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Out of the huge quantity of agricultural wastes produced globally, rice straw is one of the most abundant ligno-cellulosic waste. For efficient utilization of these wastes, several cost-effective biological processes are available. The practice of field level in-situ or ex-situ decomposition of rice straw is having less degree of adoption due to its poor decomposition ability within a short time span between rice harvest and sowing of the next crop. Agricultural wastes including rice straw are in general utilized by using lignocellulose degrading microbes for industrial metabolite or compost production. However, bioconversion of crystalline cellulose and lignin present in the waste, into simple molecules is a challenging task. To resolve this issue, researchers have identified a novel new generation microbial enzyme i.e., lytic polysaccharide monooxygenases (LPMOs) and reported that the combination of LPMOs with other glycolytic enzymes are found efficient. This review explains the progress made in LPMOs and their role in lignocellulose bioconversion and the possibility of exploring LPMOs producers for rapid decomposition of agricultural wastes. Also, it provides insights to identify the knowledge gaps in improving the potential of the existing ligno-cellulolytic microbial consortium for efficient utilization of agricultural wastes at industrial and field levels.
Collapse
Affiliation(s)
- Mahapatra Smruthi Sagarika
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India; Indira Gandhi Agricultural University, Raipur, Chhattisgarh 492012, India
| | | | - Ansuman Senapati
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | - Jatiprasad Barala
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | - Debasis Mitra
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | | | - Anjani Kumar
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | | | | |
Collapse
|
24
|
Sutela S, Piri T, Vainio EJ. Discovery and Community Dynamics of Novel ssRNA Mycoviruses in the Conifer Pathogen Heterobasidion parviporum. Front Microbiol 2021; 12:770787. [PMID: 34899655 PMCID: PMC8652122 DOI: 10.3389/fmicb.2021.770787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Heterobasidion species are highly destructive basidiomycetous conifer pathogens of the Boreal forest region. Earlier studies have revealed dsRNA virus infections of families Curvulaviridae and Partitiviridae in Heterobasidion strains, and small RNA deep sequencing has also identified infections of Mitoviridae members in these fungi. In this study, the virome of Heterobasidion parviporum was examined for the first time by RNA-Seq using total RNA depleted of rRNA. This method successfully revealed new viruses representing two established (+)ssRNA virus families not found earlier in Heterobasidion: Narnaviridae and Botourmiaviridae. In addition, we identified the presence of a recently described virus group tentatively named “ambiviruses” in H. parviporum. The H. parviporum isolates included in the study originated from experimental forest sites located within 0.7 km range from each other, and a population analysis including 43 isolates was conducted at one of the experimental plots to establish the prevalence of the newly identified viruses in clonally spreading H. parviporum individuals. Our results indicate that viral infections are considerably more diverse and common among Heterobasidion isolates than known earlier and include ssRNA viruses with high prevalence and interspecies variation.
Collapse
Affiliation(s)
- Suvi Sutela
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Tuula Piri
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Eeva J Vainio
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
25
|
Clergeot PH, Olson Å. Mitonuclear Genetic Interactions in the Basidiomycete Heterobasidion parviporum Involve a Non-conserved Mitochondrial Open Reading Frame. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:779337. [PMID: 37744141 PMCID: PMC10512249 DOI: 10.3389/ffunb.2021.779337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/19/2021] [Indexed: 09/26/2023]
Abstract
The mitochondrial and nuclear genomes of Eukaryotes are inherited separately and consequently follow distinct evolutionary paths. Nevertheless, the encoding of many mitochondrial proteins by the nuclear genome shows the high level of integration they have reached, which makes mitonuclear genetic interactions all the more conceivable. For each species, natural selection has fostered the evolution of coadapted alleles in both genomes, but a population-wise divergence of such alleles could lead to important phenotypic variation, and, ultimately, to speciation. In this study in the Basidiomycete Heterobasidion parviporum, we have investigated the genetic basis of phenotypic variation among laboratory-designed heterokaryons carrying the same pair of haploid nuclei, but a different mitochondrial genome. Radial growth rate data of thirteen unrelated homokaryotic parents and of their heterokaryotic offspring were combined with SNP data extracted from parental genome sequences to identify nuclear and mitochondrial loci involved in mitonuclear interactions. Two nuclear loci encoding mitochondrial proteins appeared as best candidates to engage in a genetic interaction affecting radial growth rate with a non-conserved mitochondrial open reading frame of unknown function and not reported apart from the Russulales order of Basidiomycete fungi. We believe our approach could be useful to investigate several important traits of fungal biology where mitonuclear interactions play a role, including virulence of fungal pathogens.
Collapse
Affiliation(s)
| | - Åke Olson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
26
|
Genomic and Experimental Investigations of Auriscalpium and Strobilurus Fungi Reveal New Insights into Pinecone Decomposition. J Fungi (Basel) 2021; 7:jof7080679. [PMID: 34436218 PMCID: PMC8401616 DOI: 10.3390/jof7080679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Saprophytic fungi (SPF) play vital roles in ecosystem dynamics and decomposition. However, because of the complexity of living systems, our understanding of how SPF interact with each other to decompose organic matter is very limited. Here we studied their roles and interactions in the decomposition of highly specialized substrates between the two genera Auriscalpium and Strobilurus fungi-colonized fallen pinecones of the same plant sequentially. We obtained the genome sequences from seven fungal species with three pairs: A. orientale-S. luchuensis, A. vulgare-S. stephanocystis and A. microsporum-S. pachcystidiatus/S. orientalis on cones of Pinus yunnanensis, P. sylvestris and P. armandii, respectively, and the organic profiles of substrate during decomposition. Our analyses revealed evidence for both competition and cooperation between the two groups of fungi during decomposition, enabling efficient utilization of substrates with complementary profiles of carbohydrate active enzymes (CAZymes). The Auriscalpium fungi are highly effective at utilizing the primary organic carbon, such as lignin, and hemicellulose in freshly fallen cones, facilitated the invasion and colonization by Strobilurus fungi. The Strobilurus fungi have genes coding for abundant CAZymes to utilize the remaining organic compounds and for producing an arsenal of secondary metabolites such as strobilurins that can inhibit other fungi from colonizing the pinecones.
Collapse
|
27
|
Foulongne-Oriol M, Taskent O, Kües U, Sonnenberg ASM, van Peer AF, Giraud T. Mating-Type Locus Organization and Mating-Type Chromosome Differentiation in the Bipolar Edible Button Mushroom Agaricus bisporus. Genes (Basel) 2021; 12:1079. [PMID: 34356095 PMCID: PMC8305134 DOI: 10.3390/genes12071079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
In heterothallic basidiomycete fungi, sexual compatibility is restricted by mating types, typically controlled by two loci: PR, encoding pheromone precursors and pheromone receptors, and HD, encoding two types of homeodomain transcription factors. We analysed the single mating-type locus of the commercial button mushroom variety, Agaricus bisporus var. bisporus, and of the related variety burnettii. We identified the location of the mating-type locus using genetic map and genome information, corresponding to the HD locus, the PR locus having lost its mating-type role. We found the mip1 and β-fg genes flanking the HD genes as in several Agaricomycetes, two copies of the β-fg gene, an additional HD2 copy in the reference genome of A. bisporus var. bisporus and an additional HD1 copy in the reference genome of A. bisporus var. burnettii. We detected a 140 kb-long inversion between mating types in an A. bisporus var. burnettii heterokaryon, trapping the HD genes, the mip1 gene and fragments of additional genes. The two varieties had islands of transposable elements at the mating-type locus, spanning 35 kb in the A. bisporus var. burnettii reference genome. Linkage analyses showed a region with low recombination in the mating-type locus region in the A. bisporus var. burnettii variety. We found high differentiation between β-fg alleles in both varieties, indicating an ancient event of recombination suppression, followed more recently by a suppression of recombination at the mip1 gene through the inversion in A. bisporus var. burnettii and a suppression of recombination across whole chromosomes in A. bisporus var. bisporus, constituting stepwise recombination suppression as in many other mating-type chromosomes and sex chromosomes.
Collapse
Affiliation(s)
| | - Ozgur Taskent
- Ecologie Systématique Evolution, Bâtiment 360, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France;
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Goettingen Center for Molecular Biosciences (GZMB), Büsgen-Institute, University of Goettingen, Büsgenweg 2, 37077 Goettingen, Germany;
| | - Anton S. M. Sonnenberg
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (A.S.M.S.); (A.F.v.P.)
| | - Arend F. van Peer
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (A.S.M.S.); (A.F.v.P.)
| | - Tatiana Giraud
- Ecologie Systématique Evolution, Bâtiment 360, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France;
| |
Collapse
|
28
|
Draft Genome Sequence of the Ectomycorrhizal Fungus Astraeus odoratus from Northern Thailand. Microbiol Resour Announc 2021; 10:e0004421. [PMID: 34197189 PMCID: PMC8248864 DOI: 10.1128/mra.00044-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
We report the draft genome sequence of Astraeus odoratus, an edible ectomycorrhizal fungus from northern Thailand. The assembled genome has a size of 45.1 Mb and 13,403 annotated protein-coding genes. This reference genome will provide a better understanding of the biology of mushroom-forming ectomycorrhizal fungi in the family Diplocystidiaceae.
Collapse
|
29
|
Hage H, Rosso MN, Tarrago L. Distribution of methionine sulfoxide reductases in fungi and conservation of the free-methionine-R-sulfoxide reductase in multicellular eukaryotes. Free Radic Biol Med 2021; 169:187-215. [PMID: 33865960 DOI: 10.1016/j.freeradbiomed.2021.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Methionine, either as a free amino acid or included in proteins, can be oxidized into methionine sulfoxide (MetO), which exists as R and S diastereomers. Almost all characterized organisms possess thiol-oxidoreductases named methionine sulfoxide reductase (Msr) enzymes to reduce MetO back to Met. MsrA and MsrB reduce the S and R diastereomers of MetO, respectively, with strict stereospecificity and are found in almost all organisms. Another type of thiol-oxidoreductase, the free-methionine-R-sulfoxide reductase (fRMsr), identified so far in prokaryotes and a few unicellular eukaryotes, reduces the R MetO diastereomer of the free amino acid. Moreover, some bacteria possess molybdenum-containing enzymes that reduce MetO, either in the free or protein-bound forms. All these Msrs play important roles in the protection of organisms against oxidative stress. Fungi are heterotrophic eukaryotes that colonize all niches on Earth and play fundamental functions, in organic matter recycling, as symbionts, or as pathogens of numerous organisms. However, our knowledge on fungal Msrs is still limited. Here, we performed a survey of msr genes in almost 700 genomes across the fungal kingdom. We show that most fungi possess one gene coding for each type of methionine sulfoxide reductase: MsrA, MsrB, and fRMsr. However, several fungi living in anaerobic environments or as obligate intracellular parasites were devoid of msr genes. Sequence inspection and phylogenetic analyses allowed us to identify non-canonical sequences with potentially novel enzymatic properties. Finaly, we identified several ocurences of msr horizontal gene transfer from bacteria to fungi.
Collapse
Affiliation(s)
- Hayat Hage
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Marie-Noëlle Rosso
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Lionel Tarrago
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France.
| |
Collapse
|
30
|
Prigigallo MI, De Stradis A, Anand A, Mannerucci F, L'Haridon F, Weisskopf L, Bubici G. Basidiomycetes Are Particularly Sensitive to Bacterial Volatile Compounds: Mechanistic Insight Into the Case Study of Pseudomonas protegens Volatilome Against Heterobasidion abietinum. Front Microbiol 2021; 12:684664. [PMID: 34220771 PMCID: PMC8248679 DOI: 10.3389/fmicb.2021.684664] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/06/2021] [Indexed: 11/23/2022] Open
Abstract
Volatile organic compounds (VOCs) play an important role in the communication among organisms, including plants, beneficial or pathogenic microbes, and pests. In vitro, we observed that the growth of seven out of eight Basidiomycete species tested was inhibited by the VOCs of the biocontrol agent Pseudomonas protegens strain CHA0. In the Ascomycota phylum, only some species were sensitive (e.g., Sclerotinia sclerotiorum, Botrytis cinerea, etc.) but others were resistant (e.g., Fusarium oxysporum f. sp. cubense, Verticillium dahliae, etc.). We further discovered that CHA0 as well as other ten beneficial or phytopathogenic bacterial strains were all able to inhibit Heterobasidion abietinum, which was used in this research as a model species. Moreover, such an inhibition occurred only when bacteria grew on media containing digested proteins like peptone or tryptone (e.g., Luria-Bertani agar or LBA). Also, the inhibition co-occurred with a pH increase of the agar medium where the fungus grew. Therefore, biogenic ammonia originating from protein degradation by bacteria was hypothesized to play a major role in fungus inhibition. Indeed, when tested as a synthetic compound, it was highly toxic to H. abietinum (effective concentration 50% or EC50 = 1.18 M; minimum inhibitory concentration or MIC = 2.14 M). Using gas chromatography coupled to mass spectrometry (GC/MS), eight VOCs were found specifically emitted by CHA0 grown on LBA compared to the bacterium grown on potato dextrose agar (PDA). Among them, two compounds were even more toxic than ammonia against H. abietinum: dimethyl trisulfide had EC50 = 0.02 M and MIC = 0.2 M, and 2-ethylhexanol had EC50 = 0.33 M and MIC = 0.77 M. The fungus growth inhibition was the result of severe cellular and sub-cellular alterations of hyphae occurring as early as 15 min of exposure to VOCs, as evidenced by transmission and scanning electron microscopy observations. Transcriptome reprogramming of H. abietinum induced by CHA0’s VOCs pointed out that detrimental effects occurred on ribosomes and protein synthesis while the cells tried to react by activating defense mechanisms, which required a lot of energy diverted from the growth and development (fitness cost).
Collapse
Affiliation(s)
- Maria Isabella Prigigallo
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Angelo De Stradis
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Abhishek Anand
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Francesco Mannerucci
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | | | - Laure Weisskopf
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Giovanni Bubici
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| |
Collapse
|
31
|
Sillo F, Garbelotto M, Giordano L, Gonthier P. Genic introgression from an invasive exotic fungal forest pathogen increases the establishment potential of a sibling native pathogen. NEOBIOTA 2021. [DOI: 10.3897/neobiota.65.64031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significant hybridization between the invasive North American fungal plant pathogen Heterobasidion irregulare and its Eurasian sister species H. annosum is ongoing in Italy. Whole genomes of nine natural hybrids were sequenced, assembled and compared with those of three genotypes each of the two parental species. Genetic relationships among hybrids and their level of admixture were determined. A multi-approach pipeline was used to assign introgressed genomic blocks to each of the two species. Alleles that introgressed from H. irregulare to H. annosum were associated with pathways putatively related to saprobic processes, while alleles that introgressed from the native to the invasive species were mainly linked to gene regulation. There was no overlap of allele categories introgressed in the two directions. Phenotypic experiments documented a fitness increase in H. annosum genotypes characterized by introgression of alleles from the invasive species, supporting the hypothesis that hybridization results in putatively adaptive introgression. Conversely, introgression from the native into the exotic species appeared to be driven by selection on genes favoring genome stability. Since the introgression of specific alleles from the exotic H. irregulare into the native H. annosum increased the invasiveness of the latter species, we propose that two invasions may be co-occurring: the first one by genotypes of the exotic species, and the second one by alleles belonging to the exotic species. Given that H. irregulare represents a threat to European forests, monitoring programs need to track not only exotic genotypes in native forest stands, but also exotic alleles introgressed in native genotypes.
Collapse
|
32
|
Dhillon B, Hamelin RC, Rollins JA. Transcriptional profile of oil palm pathogen, Ganoderma boninense, reveals activation of lignin degradation machinery and possible evasion of host immune response. BMC Genomics 2021; 22:326. [PMID: 33952202 PMCID: PMC8097845 DOI: 10.1186/s12864-021-07644-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The white-rot fungi in the genus Ganoderma interact with both living and dead angiosperm tree hosts. Two Ganoderma species, a North American taxon, G. zonatum and an Asian taxon, G. boninense, have primarily been found associated with live palm hosts. During the host plant colonization process, a massive transcriptional reorganization helps the fungus evade the host immune response and utilize plant cell wall polysaccharides. RESULTS A publicly available transcriptome of G. boninense - oil palm interaction was surveyed to profile transcripts that were differentially expressed in planta. Ten percent of the G. boninense transcript loci had altered expression as it colonized oil palm plants one-month post inoculation. Carbohydrate active enzymes (CAZymes), particularly those with a role in lignin degradation, and auxiliary enzymes that facilitate lignin modification, like cytochrome P450s and haloacid dehalogenases, were up-regulated in planta. Several lineage specific proteins and secreted proteins that lack known functional domains were also up-regulated in planta, but their role in the interaction could not be established. A slowdown in G. boninense respiration during the interaction can be inferred from the down-regulation of proteins involved in electron transport chain and mitochondrial biogenesis. Additionally, pathogenicity related genes and chitin degradation machinery were down-regulated during the interaction indicating G. boninense may be evading detection by the host immune system. CONCLUSIONS This analysis offers an overview of the dynamic processes at play in G. boninense - oil palm interaction and provides a framework to investigate biology of Ganoderma fungi across plantations and landscape.
Collapse
Affiliation(s)
- Braham Dhillon
- Department of Plant Pathology, University of Florida, Fort Lauderdale Research and Education Center, Davie, FL, 33314, USA.
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey A Rollins
- Department of Plant Pathology, University of Florida, 1453 Fifield Hall, Gainesville, FL, 32611-0680, USA
| |
Collapse
|
33
|
Biocatalytic potential of basidiomycetes: Relevance, challenges and research interventions in industrial processes. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
34
|
Šķipars V, Ruņģis D. Transcript Dynamics in Wounded and Inoculated Scots Pine. Int J Mol Sci 2021; 22:ijms22041505. [PMID: 33546141 PMCID: PMC7913219 DOI: 10.3390/ijms22041505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 11/16/2022] Open
Abstract
Comparative transcriptome analysis provides a useful tool for the exploration of plant-pathogen interaction by allowing in-depth comparison of gene expression between unaffected, inoculated and wounded organisms. Here we present the results of comparative transcriptome analysis in genetically identical one-year-old Scots pine ramets after wounding and inoculation with Heterobasidion annosum. We identified 230 genes that were more than 2-fold upregulated in inoculated samples (compared to controls) and 116 downregulated genes. Comparison of inoculated samp les with wounded samples identified 32 differentially expressed genes (30 were upregulated after inoculation). Several of the genes upregulated after inoculation are involved in protection from oxidative stress, while genes involved in photosynthesis, water transport and drought stress tolerance were downregulated. An NRT3 family protein was the most upregulated transcript in response to both inoculation and wounding, while a U-box domain-containing protein gene was the most upregulated gene comparing inoculation to wounding. The observed transcriptome dynamics suggest involvement of auxin, ethylene, jasmonate, gibberellin and reactive oxygen species pathways and cell wall modification regulation in response to H. annosum infection. The results are compared to methyl jasmonate induced transcriptome dynamics.
Collapse
|
35
|
Spitzer CM, Lindahl B, Wardle DA, Sundqvist MK, Gundale MJ, Fanin N, Kardol P. Root trait-microbial relationships across tundra plant species. THE NEW PHYTOLOGIST 2021; 229:1508-1520. [PMID: 33007155 PMCID: PMC7821200 DOI: 10.1111/nph.16982] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/10/2020] [Indexed: 05/12/2023]
Abstract
Fine roots, and their functional traits, influence associated rhizosphere microorganisms via root exudation and root litter quality. However, little information is known about their relationship with rhizosphere microbial taxa and functional guilds. We investigated the relationships of 11 fine root traits of 20 sub-arctic tundra meadow plant species and soil microbial community composition, using phospholipid fatty acids (PLFAs) and high-throughput sequencing. We primarily focused on the root economics spectrum, as it provides a useful framework to examine plant strategies by integrating the co-ordination of belowground root traits along a resource acquisition-conservation trade-off axis. We found that the chemical axis of the fine root economics spectrum was positively related to fungal to bacterial ratios, but negatively to Gram-positive to Gram-negative bacterial ratios. However, this spectrum was unrelated to the relative abundance of functional guilds of soil fungi. Nevertheless, the relative abundance of arbuscular mycorrhizal fungi was positively correlated to root carbon content, but negatively to the numbers of root forks per root length. Our results suggest that the fine root economics spectrum is important for predicting broader groups of soil microorganisms (i.e. fungi and bacteria), while individual root traits may be more important for predicting soil microbial taxa and functional guilds.
Collapse
Affiliation(s)
- Clydecia M. Spitzer
- Department of Forest Ecology and ManagementSwedish University of Agricultural SciencesSkogsmarksgrändUmeå901 83Sweden
| | - Björn Lindahl
- Department of Soil and EnvironmentSwedish University of Agricultural SciencesBox 7014Uppsala750 07Sweden
| | - David A. Wardle
- Asian School of the EnvironmentNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Maja K. Sundqvist
- Department of Forest Ecology and ManagementSwedish University of Agricultural SciencesSkogsmarksgrändUmeå901 83Sweden
| | - Michael J. Gundale
- Department of Forest Ecology and ManagementSwedish University of Agricultural SciencesSkogsmarksgrändUmeå901 83Sweden
| | - Nicolas Fanin
- INRAEBordeaux Sciences AgroUMR 1391 ISPA71 Avenue Edouard BourlauxVillenave‐d’Ornon CedexCS20032, F33882France
| | - Paul Kardol
- Department of Forest Ecology and ManagementSwedish University of Agricultural SciencesSkogsmarksgrändUmeå901 83Sweden
| |
Collapse
|
36
|
Xue X, Suvorov A, Fujimoto S, Dilman AR, Adams BJ. Genome analysis of Plectus murrayi, a nematode from continental Antarctica. G3-GENES GENOMES GENETICS 2021; 11:6044189. [PMID: 33561244 PMCID: PMC8022722 DOI: 10.1093/g3journal/jkaa045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/08/2020] [Indexed: 01/23/2023]
Abstract
Plectus murrayi is one of the most common and locally abundant invertebrates of continental Antarctic ecosystems. Because it is readily cultured on artificial medium in the laboratory and highly tolerant to an extremely harsh environment, P. murrayi is emerging as a model organism for understanding the evolutionary origin and maintenance of adaptive responses to multiple environmental stressors, including freezing and desiccation. The de novo assembled genome of P. murrayi contains 225.741 million base pairs and a total of 14,689 predicted genes. Compared to Caenorhabditis elegans, the architectural components of P. murrayi are characterized by a lower number of protein-coding genes, fewer transposable elements, but more exons, than closely related taxa from less harsh environments. We compared the transcriptomes of lab-reared P. murrayi with wild-caught P. murrayi and found genes involved in growth and cellular processing were up-regulated in lab-cultured P. murrayi, while a few genes associated with cellular metabolism and freeze tolerance were expressed at relatively lower levels. Preliminary comparative genomic and transcriptomic analyses suggest that the observed constraints on P. murrayi genome architecture and functional gene expression, including genome decay and intron retention, may be an adaptive response to persisting in a biotically simplified, yet consistently physically harsh environment.
Collapse
Affiliation(s)
- Xia Xue
- Precision Medicine Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China.,Department of Biology, Evolutionary Ecology Laboratories, and Monte L. Bean Museum, Brigham Young University, Provo, UT, USA
| | - Anton Suvorov
- Department of Biology, Evolutionary Ecology Laboratories, and Monte L. Bean Museum, Brigham Young University, Provo, UT, USA
| | - Stanley Fujimoto
- Department of Computer Science, Brigham Young University, Provo, UT, USA
| | - Adler R Dilman
- Department of Nematology, University of California, Riverside, CA, USA
| | - Byron J Adams
- Department of Biology, Evolutionary Ecology Laboratories, and Monte L. Bean Museum, Brigham Young University, Provo, UT, USA
| |
Collapse
|
37
|
Sahu N, Merényi Z, Bálint B, Kiss B, Sipos G, Owens RA, Nagy LG. Hallmarks of Basidiomycete Soft- and White-Rot in Wood-Decay -Omics Data of Two Armillaria Species. Microorganisms 2021; 9:149. [PMID: 33440901 PMCID: PMC7827401 DOI: 10.3390/microorganisms9010149] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/01/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Wood-decaying Basidiomycetes are among the most efficient degraders of plant cell walls, making them key players in forest ecosystems, global carbon cycle, and in bio-based industries. Recent insights from -omics data revealed a high functional diversity of wood-decay strategies, especially among the traditional white-rot and brown-rot dichotomy. We examined the mechanistic bases of wood-decay in the conifer-specialists Armillaria ostoyae and Armillaria cepistipes using transcriptomic and proteomic approaches. Armillaria spp. (Fungi, Basidiomycota) include devastating pathogens of temperate forests and saprotrophs that decay wood. They have been discussed as white-rot species, though their response to wood deviates from typical white-rotters. While we observed an upregulation of a diverse suite of plant cell wall degrading enzymes, unlike white-rotters, they possess and express an atypical wood-decay repertoire in which pectinases and expansins are enriched, whereas lignin-decaying enzymes (LDEs) are generally downregulated. This combination of wood decay genes resembles the soft-rot of Ascomycota and appears widespread among Basidiomycota that produce a superficial white rot-like decay. These observations are consistent with ancestral soft-rot decay machinery conserved across asco- and Basidiomycota, a gain of efficient lignin-degrading ability in white-rot fungi and repeated, complete, or partial losses of LDE encoding gene repertoires in brown- and secondarily soft-rot fungi.
Collapse
Affiliation(s)
- Neha Sahu
- Biological Research Center, Synthetic and Systems Biology Unit, 6726 Szeged, Hungary; (N.S.); (Z.M.); (B.B.); (B.K.)
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Zsolt Merényi
- Biological Research Center, Synthetic and Systems Biology Unit, 6726 Szeged, Hungary; (N.S.); (Z.M.); (B.B.); (B.K.)
| | - Balázs Bálint
- Biological Research Center, Synthetic and Systems Biology Unit, 6726 Szeged, Hungary; (N.S.); (Z.M.); (B.B.); (B.K.)
| | - Brigitta Kiss
- Biological Research Center, Synthetic and Systems Biology Unit, 6726 Szeged, Hungary; (N.S.); (Z.M.); (B.B.); (B.K.)
| | - György Sipos
- Research Center for Forestry and Wood Industry, Functional Genomics and Bioinformatics Group, University of Sopron, 9400 Sopron, Hungary;
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Rebecca A. Owens
- Department of Biology, Maynooth University, W23 F2H6 Kildare, Ireland;
| | - László G. Nagy
- Biological Research Center, Synthetic and Systems Biology Unit, 6726 Szeged, Hungary; (N.S.); (Z.M.); (B.B.); (B.K.)
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
38
|
Castaño C, Berlin A, Brandström Durling M, Ihrmark K, Lindahl BD, Stenlid J, Clemmensen KE, Olson Å. Optimized metabarcoding with Pacific biosciences enables semi-quantitative analysis of fungal communities. THE NEW PHYTOLOGIST 2020; 228:1149-1158. [PMID: 32531109 DOI: 10.1111/nph.16731] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Recent studies have questioned the use of high-throughput sequencing of the nuclear ribosomal internal transcribed spacer (ITS) region to derive a semi-quantitative representation of fungal community composition. However, comprehensive studies that quantify biases occurring during PCR and sequencing of ITS amplicons are still lacking. We used artificially assembled communities consisting of 10 ITS-like fragments of varying lengths and guanine-cytosine (GC) contents to evaluate and quantify biases during PCR and sequencing with Illumina MiSeq, PacBio RS II and PacBio Sequel I technologies. Fragment length variation was the main source of bias in observed community composition relative to the template, with longer fragments generally being under-represented for all sequencing platforms. This bias was three times higher for Illumina MiSeq than for PacBio RS II and Sequel I. All 10 fragments in the artificial community were recovered when sequenced with PacBio technologies, whereas the three longest fragments (> 447 bases) were lost when sequenced with Illumina MiSeq. Fragment length bias also increased linearly with increasing number of PCR cycles but could be mitigated by optimization of the PCR setup. No significant biases related to GC content were observed. Despite lower sequencing output, PacBio sequencing was better able to reflect the community composition of the template than Illumina MiSeq sequencing.
Collapse
Affiliation(s)
- Carles Castaño
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, SE-75007, Sweden
| | - Anna Berlin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, SE-75007, Sweden
| | - Mikael Brandström Durling
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, SE-75007, Sweden
| | - Katharina Ihrmark
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, SE-75007, Sweden
| | - Björn D Lindahl
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, SE-75007, Sweden
| | - Jan Stenlid
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, SE-75007, Sweden
| | - Karina E Clemmensen
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, SE-75007, Sweden
| | - Åke Olson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, SE-75007, Sweden
| |
Collapse
|
39
|
Comparative Genomics Analyses of Lifestyle Transitions at the Origin of an Invasive Fungal Pathogen in the Genus Cryphonectria. mSphere 2020; 5:5/5/e00737-20. [PMID: 33055257 PMCID: PMC7565894 DOI: 10.1128/msphere.00737-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Forest and agroecosystems, as well as animal and human health, are threatened by emerging pathogens. Following decimation of chestnuts in the United States, the fungal pathogen Cryphonectria parasitica colonized Europe. After establishment, the pathogen population gave rise to a highly successful lineage that spread rapidly across the continent. Core to our understanding of what makes a successful pathogen is the genetic repertoire enabling the colonization and exploitation of host species. Here, we have assembled >100 genomes across two related genera to identify key genomic determinants leading to the emergence of chestnut blight. We found subtle yet highly specific changes in the transition from saprotrophy to latent pathogenicity mostly determined by enzymes involved in carbohydrate metabolism. Large-scale genomic analyses of genes underlying key nutrition modes can facilitate the detection of species with the potential to emerge as pathogens. Emerging fungal pathogens are a threat to forest and agroecosystems, as well as animal and human health. How pathogens evolve from nonpathogenic ancestors is still poorly understood, making the prediction of future outbreaks challenging. Most pathogens have evolved lifestyle adaptations, which were enabled by specific changes in the gene content of the species. Hence, understanding transitions in the functions encoded by genomes gives valuable insight into the evolution of pathogenicity. Here, we studied lifestyle evolution in the genus Cryphonectria, including the prominent invasive pathogen Cryphonectria parasitica, the causal agent of chestnut blight on Castanea species. We assembled and compared the genomes of pathogenic and putatively nonpathogenic Cryphonectria species, as well as sister group pathogens in the family Cryphonectriaceae (Diaporthales, Ascomycetes), to investigate the evolution of genome size and gene content. We found a striking loss of genes associated with carbohydrate metabolism (CAZymes) in C. parasitica compared to other Cryphonectriaceae. Despite substantial CAZyme gene loss, experimental data suggest that C. parasitica has retained wood colonization abilities shared with other Cryphonectria species. Putative effectors substantially varied in number, cysteine content, and protein length among species. In contrast, secondary metabolite gene clusters show a high degree of conservation within the genus. Overall, our results underpin the recent lifestyle transition of C. parasitica toward a more pathogenic lifestyle. Our findings suggest that a CAZyme loss may have promoted pathogenicity of C. parasitica on Castanea species. Analyzing gene complements underlying key nutrition modes can facilitate the detection of species with the potential to emerge as pathogens. IMPORTANCE Forest and agroecosystems, as well as animal and human health, are threatened by emerging pathogens. Following decimation of chestnuts in the United States, the fungal pathogen Cryphonectria parasitica colonized Europe. After establishment, the pathogen population gave rise to a highly successful lineage that spread rapidly across the continent. Core to our understanding of what makes a successful pathogen is the genetic repertoire enabling the colonization and exploitation of host species. Here, we have assembled >100 genomes across two related genera to identify key genomic determinants leading to the emergence of chestnut blight. We found subtle yet highly specific changes in the transition from saprotrophy to latent pathogenicity mostly determined by enzymes involved in carbohydrate metabolism. Large-scale genomic analyses of genes underlying key nutrition modes can facilitate the detection of species with the potential to emerge as pathogens.
Collapse
|
40
|
Eagar AC, Cosgrove CR, Kershner MW, Blackwood CB. Dominant community mycorrhizal types influence local spatial structure between adult and juvenile temperate forest tree communities. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew C. Eagar
- Department of Biological Sciences Kent State University Kent OH USA
| | | | - Mark W. Kershner
- Department of Biological Sciences Kent State University Kent OH USA
| | | |
Collapse
|
41
|
Akulova VS, Sharov VV, Aksyonova AI, Putintseva YA, Oreshkova NV, Feranchuk SI, Kuzmin DA, Pavlov IN, Litovka YA, Krutovsky KV. De novo sequencing, assembly and functional annotation of Armillaria borealis genome. BMC Genomics 2020; 21:534. [PMID: 32912216 PMCID: PMC7487993 DOI: 10.1186/s12864-020-06964-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Massive forest decline has been observed almost everywhere as a result of negative anthropogenic and climatic effects, which can interact with pests, fungi and other phytopathogens and aggravate their effects. Climatic changes can weaken trees and make fungi, such as Armillaria more destructive. Armillaria borealis (Marxm. & Korhonen) is a fungus from the Physalacriaceae family (Basidiomycota) widely distributed in Eurasia, including Siberia and the Far East. Species from this genus cause the root white rot disease that weakens and often kills woody plants. However, little is known about ecological behavior and genetics of A. borealis. According to field research data, A. borealis is less pathogenic than A. ostoyae, and its aggressive behavior is quite rare. Mainly A. borealis behaves as a secondary pathogen killing trees already weakened by other factors. However, changing environment might cause unpredictable effects in fungus behavior. RESULTS The de novo genome assembly and annotation were performed for the A. borealis species for the first time and presented in this study. The A. borealis genome assembly contained ~ 68 Mbp and was comparable with ~ 60 and ~ 79.5 Mbp for the A. ostoyae and A. mellea genomes, respectively. The N50 for contigs equaled 50,544 bp. Functional annotation analysis revealed 21,969 protein coding genes and provided data for further comparative analysis. Repetitive sequences were also identified. The main focus for further study and comparative analysis will be on the enzymes and regulatory factors associated with pathogenicity. CONCLUSIONS Pathogenic fungi such as Armillaria are currently one of the main problems in forest conservation. A comprehensive study of these species and their pathogenicity is of great importance and needs good genomic resources. The assembled genome of A. borealis presented in this study is of sufficiently good quality for further detailed comparative study on the composition of enzymes in other Armillaria species. There is also a fundamental problem with the identification and classification of species of the Armillaria genus, where the study of repetitive sequences in the genomes of basidiomycetes and their comparative analysis will help us identify more accurately taxonomy of these species and reveal their evolutionary relationships.
Collapse
Affiliation(s)
- Vasilina S Akulova
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036, Krasnoyarsk, Russia
- Laboratory of Genomic Research and Biotechnology, Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", 660036, Krasnoyarsk, Russia
| | - Vadim V Sharov
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036, Krasnoyarsk, Russia
- Laboratory of Genomic Research and Biotechnology, Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", 660036, Krasnoyarsk, Russia
- Department of High Performance Computing, Institute of Space and Information Technologies, Siberian Federal University, 660074, Krasnoyarsk, Russia
| | - Anastasiya I Aksyonova
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036, Krasnoyarsk, Russia
| | - Yuliya A Putintseva
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036, Krasnoyarsk, Russia
| | - Natalya V Oreshkova
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036, Krasnoyarsk, Russia
- Laboratory of Genomic Research and Biotechnology, Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", 660036, Krasnoyarsk, Russia
- Laboratory of Forest Genetics and Selection, V. N. Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, 660036, Krasnoyarsk, Russia
| | - Sergey I Feranchuk
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036, Krasnoyarsk, Russia
- Department of Informatics, National Research Technical University, 664074, Irkutsk, Russia
- Limnological Institute, Siberian Branch of Russian Academy of Sciences, 664033, Irkutsk, Russia
| | - Dmitry A Kuzmin
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036, Krasnoyarsk, Russia
- Department of High Performance Computing, Institute of Space and Information Technologies, Siberian Federal University, 660074, Krasnoyarsk, Russia
| | - Igor N Pavlov
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036, Krasnoyarsk, Russia
- Laboratory of Reforestation, Mycology and Plant Pathology, V. N. Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, 660036, Krasnoyarsk, Russia
- Department of Chemical Technology of Wood and Biotechnology, Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, 660049, Russia
| | - Yulia A Litovka
- Laboratory of Reforestation, Mycology and Plant Pathology, V. N. Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, 660036, Krasnoyarsk, Russia
- Department of Chemical Technology of Wood and Biotechnology, Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, 660049, Russia
| | - Konstantin V Krutovsky
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036, Krasnoyarsk, Russia.
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37077, Göttingen, Germany.
- Center for Integrated Breeding Research, George-August University of Göttingen, 37075, Göttingen, Germany.
- Laboratory of Population Genetics, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333, Moscow, Russia.
- Department of Ecosystem Science and Management, Texas A&M University, College Station, TX, 77843-2138, USA.
| |
Collapse
|
42
|
Evaluation of nutritional requirements of medicinal fungus, Pyrofomes demidoffii under submerged fermentation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Zanne AE, Powell JR, Flores-Moreno H, Kiers ET, van 't Padje A, Cornwell WK. Finding fungal ecological strategies: Is recycling an option? FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2019.100902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Kölle M, Horta MAC, Nowrousian M, Ohm RA, Benz JP, Pilgård A. Degradative Capacity of Two Strains of Rhodonia placenta: From Phenotype to Genotype. Front Microbiol 2020; 11:1338. [PMID: 32625194 PMCID: PMC7314958 DOI: 10.3389/fmicb.2020.01338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/25/2020] [Indexed: 01/23/2023] Open
Abstract
Brown rot fungi, such as Rhodonia placenta (previously Postia placenta), occur naturally in northern coniferous forest ecosystems and are known to be the most destructive group of decay fungi, degrading wood faster and more effectively than other wood-degrading organisms. It has been shown that brown rot fungi not only rely on enzymatic degradation of lignocellulose, but also use low molecular weight oxidative agents in a non-enzymatic degradation step prior to the enzymatic degradation. R. placenta is used in standardized decay tests in both Europe and North America. However, two different strains are employed (FPRL280 and MAD-698, respectively) for which differences in colonization-rate, mass loss, as well as in gene expression have been observed, limiting the comparability of results. To elucidate the divergence between both strains, we investigated the phenotypes in more detail and compared their genomes. Significant phenotypic differences were found between the two strains, and no fusion was possible. MAD-698 degraded scots pine more aggressively, had a more constant growth rate and produced mycelia faster than FPRL280. After sequencing the genome of FPRL280 and comparing it with the published MAD-698 genome we found 660,566 SNPs, resulting in 98.4% genome identity. Specific analysis of the carbohydrate-active enzymes, encoded by the genome (CAZome) identified differences in many families related to plant biomass degradation, including SNPs, indels, gaps or insertions within structural domains. Four genes belonging to the AA3_2 family could not be found in or amplified from FPRL280 gDNA, suggesting the absence of these genes. Differences in other CAZy encoding genes that could potentially affect the lignocellulolytic activity of the strains were also predicted by comparison of genome assemblies (e.g., GH2, GH3, GH5, GH10, GH16, GH78, GT2, GT15, and CBM13). Overall, these mutations help to explain the phenotypic differences observed between both strains as they could interfere with the enzymatic activities, substrate binding ability or protein folding. The investigation of the molecular reasons that make these two strains distinct contributes to the understanding of the development of this important brown rot reference species and will help to put the data obtained from standardized decay tests across the globe into a better biological context.
Collapse
Affiliation(s)
- Martina Kölle
- Chair of Wood Science, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Maria Augusta Crivelente Horta
- Professorship for Wood Bioprocesses, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Bochum, Germany
| | - Robin A Ohm
- Department of Biology, Microbiology, Utrecht University, Utrecht, Netherlands
| | - J Philipp Benz
- Professorship for Wood Bioprocesses, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.,Institute of Advanced Study, Technical University of Munich, Garching, Germany
| | - Annica Pilgård
- Chair of Wood Science, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.,Biobased Materials, Bioeconomy, RISE Research Institutes of Sweden, Borås, Sweden
| |
Collapse
|
45
|
Gong W, Wang Y, Xie C, Zhou Y, Zhu Z, Peng Y. Whole genome sequence of an edible and medicinal mushroom, Hericium erinaceus (Basidiomycota, Fungi). Genomics 2020; 112:2393-2399. [DOI: 10.1016/j.ygeno.2020.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/31/2019] [Accepted: 01/20/2020] [Indexed: 02/06/2023]
|
46
|
Morris H, Hietala AM, Jansen S, Ribera J, Rosner S, Salmeia KA, Schwarze FWMR. Using the CODIT model to explain secondary metabolites of xylem in defence systems of temperate trees against decay fungi. ANNALS OF BOTANY 2020; 125:701-720. [PMID: 31420666 PMCID: PMC7182590 DOI: 10.1093/aob/mcz138] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/12/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND In trees, secondary metabolites (SMs) are essential for determining the effectiveness of defence systems against fungi and why defences are sometimes breached. Using the CODIT model (Compartmentalization of Damage/Dysfunction in Trees), we explain defence processes at the cellular level. CODIT is a highly compartmented defence system that relies on the signalling, synthesis and transport of defence compounds through a three-dimensional lattice of parenchyma against the spread of decay fungi in xylem. SCOPE The model conceptualizes 'walls' that are pre-formed, formed during and formed after wounding events. For sapwood, SMs range in molecular size, which directly affects performance and the response times in which they can be produced. When triggered, high-molecular weight SMs such as suberin and lignin are synthesized slowly (phytoalexins), but can also be in place at the time of wounding (phytoanticipins). In contrast, low-molecular weight phenolic compounds such as flavonoids can be manufactured de novo (phytoalexins) rapidly in response to fungal colonization. De novo production of SMs can be regulated in response to fungal pathogenicity levels. The protective nature of heartwood is partly based on the level of accumulated antimicrobial SMs (phytoanticipins) during the transitionary stage into a normally dead substance. Effectiveness against fungal colonization in heartwood is largely determined by the genetics of the host. CONCLUSION Here we review recent advances in our understanding of the role of SMs in trees in the context of CODIT, with emphasis on the relationship between defence, carbohydrate availability and the hydraulic system.We also raise the limitations of the CODIT model and suggest its modification, encompassing other defence theory concepts. We envisage the development of a new defence system that is modular based and incorporates all components (and organs) of the tree from micro- to macro-scales.
Collapse
Affiliation(s)
- Hugh Morris
- Laboratory for Cellulose & Wood Materials, Empa-Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Ari M Hietala
- Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - Javier Ribera
- Laboratory for Cellulose & Wood Materials, Empa-Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | | | - Khalifah A Salmeia
- Laboratory of Advanced Fibers, Empa-Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Francis W M R Schwarze
- Laboratory for Cellulose & Wood Materials, Empa-Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| |
Collapse
|
47
|
Hu Y, Elfstrand M, Stenlid J, Durling MB, Olson Å. The conifer root rot pathogens Heterobasidion irregulare and Heterobasidion occidentale employ different strategies to infect Norway spruce. Sci Rep 2020; 10:5884. [PMID: 32246017 PMCID: PMC7125170 DOI: 10.1038/s41598-020-62521-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 03/10/2020] [Indexed: 11/16/2022] Open
Abstract
Heterobasidion irregulare and H. occidentale are two closely related conifer root rot pathogens in the H. annosum sensu lato (s.l.) species complex. The two species H. irregulare and H. occidentale have different host preference with pine and non-pine tree species favored, respectively. The comparison of transcriptomes of H. irregulare and H. occidentale growing in Norway spruce bark, a susceptible host non-native to North America, showed large differences in gene expression. Heterobasidion irregulare induced more genes involved in detoxification of host compounds and in production of secondary metabolites, while the transcriptome induced in H. occidentale was more oriented towards carbohydrate degradation. Along with their separated evolutionary history, the difference might be driven by their host preferences as indicated by the differentially expressed genes enriched in particular Gene Ontology terms.
Collapse
Affiliation(s)
- Yang Hu
- Zhejiang Academy of Forestry, Liuhe Road, 310023, Hangzhou, China.,Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 750 05, Uppsala, Sweden
| | - Malin Elfstrand
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 750 05, Uppsala, Sweden
| | - Jan Stenlid
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 750 05, Uppsala, Sweden
| | - Mikael Brandström Durling
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 750 05, Uppsala, Sweden
| | - Åke Olson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 750 05, Uppsala, Sweden.
| |
Collapse
|
48
|
Luchi N, Ioos R, Santini A. Fast and reliable molecular methods to detect fungal pathogens in woody plants. Appl Microbiol Biotechnol 2020; 104:2453-2468. [PMID: 32006049 PMCID: PMC7044139 DOI: 10.1007/s00253-020-10395-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/10/2020] [Accepted: 01/19/2020] [Indexed: 12/11/2022]
Abstract
Plant diseases caused by pathogenic microorganisms represent a serious threat to plant productivity, food security, and natural ecosystems. An effective framework for early warning and rapid response is a crucial element to mitigate or prevent the impacts of biological invasions of plant pathogens. For these reasons, detection tools play an important role in monitoring plant health, surveillance, and quantitative pathogen risk assessment, thus improving best practices to mitigate and prevent microbial threats. The need to reduce the time of diagnosis has prompted plant pathologists to move towards more sensitive and rapid methods such as molecular techniques. Considering prevention to be the best strategy to protect plants from diseases, this review focuses on fast and reliable molecular methods to detect the presence of woody plant pathogens at early stage of disease development before symptoms occur in the host. A harmonized pool of novel technical, methodological, and conceptual solutions is needed to prevent entry and establishment of new diseases in a country and mitigate the impact of both invasive and indigenous organisms to agricultural and forest ecosystem biodiversity and productivity.
Collapse
Affiliation(s)
- Nicola Luchi
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Via Madonna del Piano, 10, I-50019, Sesto Fiorentino (Firenze), Italy.
| | - Renaud Ioos
- ANSES Plant Health Laboratory, Unit of Mycology, Domaine de Pixérécourt, 54220, Malzéville, France
| | - Alberto Santini
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Via Madonna del Piano, 10, I-50019, Sesto Fiorentino (Firenze), Italy
| |
Collapse
|
49
|
Mäkelä MR, Hildén K, Kowalczyk JE, Hatakka A. Progress and Research Needs of Plant Biomass Degradation by Basidiomycete Fungi. GRAND CHALLENGES IN FUNGAL BIOTECHNOLOGY 2020. [DOI: 10.1007/978-3-030-29541-7_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
50
|
Hamelin RC, Roe AD. Genomic biosurveillance of forest invasive alien enemies: A story written in code. Evol Appl 2020; 13:95-115. [PMID: 31892946 PMCID: PMC6935587 DOI: 10.1111/eva.12853] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/30/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022] Open
Abstract
The world's forests face unprecedented threats from invasive insects and pathogens that can cause large irreversible damage to the ecosystems. This threatens the world's capacity to provide long-term fiber supply and ecosystem services that range from carbon storage, nutrient cycling, and water and air purification, to soil preservation and maintenance of wildlife habitat. Reducing the threat of forest invasive alien species requires vigilant biosurveillance, the process of gathering, integrating, interpreting, and communicating essential information about pest and pathogen threats to achieve early detection and warning and to enable better decision-making. This process is challenging due to the diversity of invasive pests and pathogens that need to be identified, the diverse pathways of introduction, and the difficulty in assessing the risk of establishment. Genomics can provide powerful new solutions to biosurveillance. The process of invasion is a story written in four chapters: transport, introduction, establishment, and spread. The series of processes that lead to a successful invasion can leave behind a DNA signature that tells the story of an invasion. This signature can help us understand the dynamic, multistep process of invasion and inform management of current and future introductions. This review describes current and future application of genomic tools and pipelines that will provide accurate identification of pests and pathogens, assign outbreak or survey samples to putative sources to identify pathways of spread, and assess risk based on traits that impact the outbreak outcome.
Collapse
Affiliation(s)
- Richard C. Hamelin
- Department of Forest and Conservation SciencesThe University of British ColumbiaVancouverBCCanada
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
- Département des sciences du bois et de la forêt, Faculté de Foresterie et GéographieUniversité LavalQuébecQCCanada
| | - Amanda D. Roe
- Great Lakes Forestry CenterNatural Resources CanadaSault Ste. MarieONCanada
| |
Collapse
|