1
|
Tada Y, Shimizu A. Vascular bundle cell-specific expression of a phosphate transporter improves phosphate use efficiency of transgenic Arabidopsis without detrimental effects. Sci Rep 2024; 14:26713. [PMID: 39496723 PMCID: PMC11535314 DOI: 10.1038/s41598-024-78500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/31/2024] [Indexed: 11/06/2024] Open
Abstract
Constitutive overexpression of phosphate (Pi) transporter family 1 often results in the accumulation of toxic levels of Pi, which causes growth retardation in plants. In contrast, we had previously reported that root epidermis-specific overexpression of the phosphate transporter TaPT2 in Arabidopsis leads to improved growth and Pi use efficiency. In the present study, we used promoters AtHKT1;1 and SKOR, which are predominantly expressed in the vascular bundle tissues, to overexpress TaPT2. Transgenic lines exhibited increased shoot growth compared to wild type plants under normal- and low-Pi conditions, along with elevated root Pi and total P content, and higher xylem sap Pi concentration, specifically under low-Pi conditions. This was attributed to moderate Pi accumulation in the xylem parenchyma cells, enhancing the Pi uploading capacity to the xylem. SKOR-TaPT2, however, did not complement pho1 mutant, which was defective in uploading Pi to the xylem. The transcriptional levels of VPT1 and VPT3, which are responsible for transporting excess Pi into a vacuole, were upregulated in SKOR promoter lines under normal-Pi conditions. Our results suggested that root vascular bundle-specific expression of TaPT2 is another promising strategy for increasing biomass production, Pi uptake, and Pi use efficiency while preventing growth retardation in transgenic plants.
Collapse
Affiliation(s)
- Yuichi Tada
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan.
- Center for the Future of Food and Agriculture, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan.
| | - Aoi Shimizu
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan
| |
Collapse
|
2
|
Yan W, Lu P, Liu Y, Hou Z, Fu L, Shi J, Zhenfei G, Zhu H. Comprehensive evaluation of phosphate deficiency tolerance in common vetch germplasms and the adaption mechanism to phosphate deficiency. JOURNAL OF PLANT PHYSIOLOGY 2024; 302:154317. [PMID: 39068773 DOI: 10.1016/j.jplph.2024.154317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Common vetch (Vicia sativa L.) is widely planted as forage, green manure and food. Phosphate (Pi) deficiency is an important constraint for legume crop production. In this study, P-deficiency tolerance in 40 common vetch collections was evaluated under hydroponic condition. The collections were clustered into three groups based on the tolerance level. Physiological responses to P-deficiency in two tolerant collections (418 and 426) in comparison with one sensitive collection (415) were investigated. Greater growth inhibition was observed in sensitive collection compared with two tolerant collections, although the inorganic phosphorus (P) content in sensitive collection was higher than those in tolerant collections. The internal and external purple acid phosphatase activity in plants showed no significant difference between 418 and 415 under low phosphate condition. Transcriptomic analysis in the tolerant collection 426 in response to Pi starvation showed that many common adaptive strategies were applied and PHOSPHATE STARVATION RESPONSE (PHR)-related Pi signaling and transporter genes were altered. VsPHT1.2 had the highest expression level in root among all VsPHT1s, and it was remarkably upregulated after short time of P-deficiency treatment in tolerant collections compared with sensitive collection. In conclusion, common vetch response to P starvation by altering the expressions of core genes involved in Pi transport and signaling, and the elevated expression of VsPHT1.2 gene might contribute to higher Pi acquisition efficiency in P-deficiency tolerant collections.
Collapse
Affiliation(s)
- Wenhui Yan
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Lu
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuyan Liu
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zigang Hou
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liran Fu
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia Shi
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guo Zhenfei
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Haifeng Zhu
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Guo HL, Tian MZ, Ri X, Chen YF. Phosphorus acquisition, translocation, and redistribution in maize. J Genet Genomics 2024:S1673-8527(24)00256-X. [PMID: 39389460 DOI: 10.1016/j.jgg.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Phosphorus (P) is an essential nutrient for crop growth, making it important for maintaining food security as the global population continues to increase. Plants acquire P primarily via the uptake of inorganic phosphate (Pi) in soil through their roots. Pi, which is usually sequestered in soils, is not easily absorbed by plants and represses plant growth. Plants have developed a series of mechanisms to cope with P deficiency. Moreover, P fertilizer applications are critical for maximizing crop yield. Maize is a major cereal crop cultivated worldwide. Increasing its P-use efficiency is important for optimizing maize production. Over the past two decades, considerable progresses have been achieved in research aimed at adapting maize varieties to changes in environmental P supply. Here, we present an overview of the morphological, physiological, and molecular mechanisms involved in P acquisition, translocation, and redistribution in maize, and combine the advances in Arabidopsis and rice, to better elucidate the progress of P nutrition. Additionally, we summarize the correlation between P and abiotic stress responses. Clarifying the mechanisms relevant to improving P absorption and use in maize can guide future research on sustainable agriculture.
Collapse
Affiliation(s)
- Hui-Ling Guo
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), Center for Maize Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Meng-Zhi Tian
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), Center for Maize Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xian Ri
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), Center for Maize Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi-Fang Chen
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding (MOE), Center for Maize Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Pélissier PM, Parizot B, Jia L, De Knijf A, Goossens V, Gantet P, Champion A, Audenaert D, Xuan W, Beeckman T, Motte H. Nitrate and ammonium, the yin and yang of nitrogen uptake: a time-course transcriptomic study in rice. FRONTIERS IN PLANT SCIENCE 2024; 15:1343073. [PMID: 39246813 PMCID: PMC11377263 DOI: 10.3389/fpls.2024.1343073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/29/2024] [Indexed: 09/10/2024]
Abstract
Nitrogen is an essential nutrient for plants and a major determinant of plant growth and crop yield. Plants acquire nitrogen mainly in the form of nitrate and ammonium. Both nitrogen sources affect plant responses and signaling pathways in a different way, but these signaling pathways interact, complicating the study of nitrogen responses. Extensive transcriptome analyses and the construction of gene regulatory networks, mainly in response to nitrate, have significantly advanced our understanding of nitrogen signaling and responses in model plants and crops. In this study, we aimed to generate a more comprehensive gene regulatory network for the major crop, rice, by incorporating the interactions between ammonium and nitrate. To achieve this, we assessed transcriptome changes in rice roots and shoots over an extensive time course under single or combined applications of the two nitrogen sources. This dataset enabled us to construct a holistic co-expression network and identify potential key regulators of nitrogen responses. Next to known transcription factors, we identified multiple new candidates, including the transcription factors OsRLI and OsEIL1, which we demonstrated to induce the primary nitrate-responsive genes OsNRT1.1b and OsNIR1. Our network thus serves as a valuable resource to obtain novel insights in nitrogen signaling.
Collapse
Affiliation(s)
- Pierre-Mathieu Pélissier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Boris Parizot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Letian Jia
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Alexa De Knijf
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Vera Goossens
- Center for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
- VIB Screening Core, Ghent, Belgium
| | - Pascal Gantet
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Antony Champion
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Dominique Audenaert
- Center for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
- VIB Screening Core, Ghent, Belgium
| | - Wei Xuan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
5
|
Li J, Hu L, Luan Q, Zhang J, Feng X, Li H, Wang Z, He W. Mining key genes associated with phosphorus deficiency through genome-wide identification and characterization of cucumber SPX family genes. BMC PLANT BIOLOGY 2024; 24:699. [PMID: 39044149 PMCID: PMC11267760 DOI: 10.1186/s12870-024-05436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Proteins harboring the SPX domain are crucial for the regulation of phosphate (Pi) homeostasis in plants. This study aimed to identify and analyze the entire SPX gene family within the cucumber genome. RESULTS The cucumber genome encompassed 16 SPX domain-containing genes, which were distributed across six chromosomes and categorized into four distinct subfamilies: SPX, SPX-MFS, SPX-EXS and SPX-RING, based on their structure characteristics. Additionally, gene duplications and synteny analysis were conducted for CsSPXs, revealing that their promoter regions were enriched with a variety of hormone-responsive, biotic/abiotic stress and typical P1BS-related elements. Tissue expression profiling of CsSPX genes revealed that certain members were specifically expressed in particular organs, suggesting essential roles in cucumber growth and development. Under low Pi stress, CsSPX1 and CsSPX2 exhibited a particularly strong response to Pi starvation. It was observed that the cucumber cultivar Xintaimici displayed greater tolerance to low Pi compared to black-spined cucumber under low Pi stress conditions. Protein interaction networks for the 16 CsSPX proteins were predicted, and yeast two-hybrid assay revealed that CsPHR1 interacted with CsSPX2, CsSPX3, CsSPX4 and CsSPX5, implying their involvement in the Pi signaling pathway in conjunction with CsPHR1. CONCLUSION This research lays the foundation for further exploration of the function of the CsSPX genes in response to low Pi stress and for elucidating the underlying mechanism.
Collapse
Affiliation(s)
- Jialin Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Linyue Hu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Qianqian Luan
- Gansu Agricultural Engineering Technology Research Institute, Lanzhou, 730000, China
| | - Jingdan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Xueru Feng
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Hongmei Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Zenghui Wang
- Shandong Institute of Pomology, Tai'an, Shandong, 271000, China.
| | - Wenxing He
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
6
|
Zhuomeng L, Ji T, Chen Q, Xu C, Liu Y, Yang X, Li J, Yang F. Genome-wide identification and characterization of SPXdomain-containing genes family in eggplant. PeerJ 2024; 12:e17341. [PMID: 38827281 PMCID: PMC11141551 DOI: 10.7717/peerj.17341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/15/2024] [Indexed: 06/04/2024] Open
Abstract
Phosphorus is one of the lowest elements absorbed and utilized by plants in the soil. SPX domain-containing genes family play an important role in plant response to phosphate deficiency signaling pathway, and related to seed development, disease resistance, absorption and transport of other nutrients. However, there are no reports on the mechanism of SPX domain-containing genes in response to phosphorus deficiency in eggplant. In this study, the whole genome identification and functional analysis of SPX domain-containing genes family in eggplant were carried out. Sixteen eggplant SPX domain-containing genes were identified and divided into four categories. Subcellular localization showed that these proteins were located in different cell compartments, including nucleus and membrane system. The expression patterns of these genes in different tissues as well as under phosphate deficiency with auxin were explored. The results showed that SmSPX1, SmSPX5 and SmSPX12 were highest expressed in roots. SmSPX1, SmSPX4, SmSPX5 and SmSPX14 were significantly induced by phosphate deficiency and may be the key candidate genes in response to phosphate starvation in eggplant. Among them, SmSPX1 and SmSPX5 can be induced by auxin under phosphate deficiency. In conclusion, our study preliminary identified the SPX domain genes in eggplant, and the relationship between SPX domain-containing genes and auxin was first analyzed in response to phosphate deficiency, which will provide theoretical basis for improving the absorption of phosphorus in eggplants through molecular breeding technology.
Collapse
Affiliation(s)
- Li Zhuomeng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai an, China
| | - Tuo Ji
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, Shandong Agricultural University, Tai an, China
| | - Qi Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai an, China
| | - Chenxiao Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai an, China
| | - Yuqing Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai an, China
| | - Xiaodong Yang
- Weifang Academy of Agricultural Science, Weifang, China
| | - Jing Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, Shandong Agricultural University, Tai an, China
| | - Fengjuan Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production With High Quality and Efficiency, Shandong Agricultural University, Tai an, China
| |
Collapse
|
7
|
Yang SY, Lin WY, Hsiao YM, Chiou TJ. Milestones in understanding transport, sensing, and signaling of the plant nutrient phosphorus. THE PLANT CELL 2024; 36:1504-1523. [PMID: 38163641 PMCID: PMC11062440 DOI: 10.1093/plcell/koad326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/03/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
As an essential nutrient element, phosphorus (P) is primarily acquired and translocated as inorganic phosphate (Pi) by plant roots. Pi is often sequestered in the soil and becomes limited for plant growth. Plants have developed a sophisticated array of adaptive responses, termed P starvation responses, to cope with P deficiency by improving its external acquisition and internal utilization. Over the past 2 to 3 decades, remarkable progress has been made toward understanding how plants sense and respond to changing environmental P. This review provides an overview of the molecular mechanisms that regulate or coordinate P starvation responses, emphasizing P transport, sensing, and signaling. We present the major players and regulators responsible for Pi uptake and translocation. We then introduce how P is perceived at the root tip, how systemic P signaling is operated, and the mechanisms by which the intracellular P status is sensed and conveyed. Additionally, the recent exciting findings about the influence of P on plant-microbe interactions are highlighted. Finally, the challenges and prospects concerning the interplay between P and other nutrients and strategies to enhance P utilization efficiency are discussed. Insights obtained from this knowledge may guide future research endeavors in sustainable agriculture.
Collapse
Affiliation(s)
- Shu-Yi Yang
- Institute of Plant Biology, National Taiwan University, Taipei 106319, Taiwan
| | - Wei-Yi Lin
- Department of Agronomy, National Taiwan University, Taipei 106319, Taiwan
| | - Yi-Min Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115201, Taiwan
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115201, Taiwan
| |
Collapse
|
8
|
Han B, Yan J, Wu T, Yang X, Wang Y, Ding G, Hammond J, Wang C, Xu F, Wang S, Shi L. Proteomics reveals the significance of vacuole Pi transporter in the adaptability of Brassica napus to Pi deprivation. FRONTIERS IN PLANT SCIENCE 2024; 15:1340867. [PMID: 38590751 PMCID: PMC11000671 DOI: 10.3389/fpls.2024.1340867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024]
Abstract
Vacuolar Pi transporters (VPTs) have recently been identified as important regulators of cellular Pi status in Arabidopsis thaliana and Oryza sativa. In the oil crop Brassica napus, BnA09PHT5;1a and BnC09PHT5;1a are two homologs of AtPHT5;1, the vacuolar Pi influx transporter in Arabidopsis. Here, we show that Pi deficiency induces the transcription of both homologs of PHT5;1a genes in B. napus leaves. Brassica PHT5;1a double mutants (DM) had smaller shoots and higher cellular Pi concentrations than wild-type (WT, Westar 10), suggesting the potential role of BnPHT5;1a in modulating cellular Pi status in B. napus. A proteomic analysis was performed to estimate the role of BnPHT5;1a in Pi fluctuation. Results show that Pi deprivation disturbs the abundance of proteins in the physiological processes involved in carbohydrate metabolism, response to stimulus and stress in B. napus, while disruption of BnPHT5;1a genes may exacerbate these processes. Besides, the processes of cell redox homeostasis, lipid metabolic and proton transmembrane transport are supposed to be unbalanced in BnPHT5;1a DM under the -Pi condition. Noteworthy, disruption of BnPHT5;1a genes severely alters the abundance of proteins related to ATP biosynthesis, and proton/inorganic cation transmembrane under normal Pi condition, which might contribute to B. napus growth limitations. Additionally, seven new protein markers of Pi homeostasis are identified in B. napus. Taken together, this study characterizes the important regulatory role of BnPHT5;1a genes as vacuolar Pi influx transporters in Pi homeostasis in B. napus.
Collapse
Affiliation(s)
- Bei Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junjun Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Tao Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Xinyu Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Yajie Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - John Hammond
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Chuang Wang
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Baek D, Hong S, Kim HJ, Moon S, Jung KH, Yang WT, Kim DH. OsMYB58 Negatively Regulates Plant Growth and Development by Regulating Phosphate Homeostasis. Int J Mol Sci 2024; 25:2209. [PMID: 38396886 PMCID: PMC10889527 DOI: 10.3390/ijms25042209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Phosphate (Pi) starvation is a critical factor limiting crop growth, development, and productivity. Rice (Oryza sativa) R2R3-MYB transcription factors function in the transcriptional regulation of plant responses to various abiotic stresses and micronutrient deprivation, but little is known about their roles in Pi starvation signaling and Pi homeostasis. Here, we identified the R2R3-MYB transcription factor gene OsMYB58, which shares high sequence similarity with AtMYB58. OsMYB58 expression was induced more strongly by Pi starvation than by other micronutrient deficiencies. Overexpressing OsMYB58 in Arabidopsis thaliana and rice inhibited plant growth and development under Pi-deficient conditions. In addition, the overexpression of OsMYB58 in plants exposed to Pi deficiency strongly affected root development, including seminal root, lateral root, and root hair formation. Overexpressing OsMYB58 strongly decreased the expression of the rice microRNAs OsmiR399a and OsmiR399j. By contrast, overexpressing OsMYB58 strongly increased the expression of rice PHOSPHATE 2 (OsPHO2), whose expression is repressed by miR399 during Pi starvation signaling. OsMYB58 functions as a transcriptional repressor of the expression of its target genes, as determined by a transcriptional activity assay. These results demonstrate that OsMYB58 negatively regulates OsmiR399-dependent Pi starvation signaling by enhancing OsmiR399s expression.
Collapse
Affiliation(s)
- Dongwon Baek
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Soyeon Hong
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| | - Hye Jeong Kim
- College of Life Science and Natural Resources, Dong-A University, Busan 49315, Republic of Korea;
| | - Sunok Moon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (S.M.); (K.H.J.)
| | - Ki Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (S.M.); (K.H.J.)
| | - Won Tae Yang
- College of Life Science and Natural Resources, Dong-A University, Busan 49315, Republic of Korea;
| | - Doh Hoon Kim
- College of Life Science and Natural Resources, Dong-A University, Busan 49315, Republic of Korea;
| |
Collapse
|
10
|
Wan L, Huo J, Huang Q, Ji X, Song L, Zhang Z, Pan L, Fu J, Abd Elhamid MA, Soaud SA, Heakel RMY, Gao J, Wei S, El-Sappah AH. Genetics and metabolic responses of Artemisia annua L to the lake of phosphorus under the sparingly soluble phosphorus fertilizer: evidence from transcriptomics analysis. Funct Integr Genomics 2024; 24:26. [PMID: 38329581 DOI: 10.1007/s10142-024-01301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
The medicinal herb Artemisia annua L. is prized for its capacity to generate artemisinin, which is used to cure malaria. Potentially influencing the biomass and secondary metabolite synthesis of A. annua is plant nutrition, particularly phosphorus (P). However, most soil P exist as insoluble inorganic and organic phosphates, which results to low P availability limiting plant growth and development. Although plants have developed several adaptation strategies to low P levels, genetics and metabolic responses to P status remain largely unknown. In a controlled greenhouse experiment, the sparingly soluble P form, hydroxyapatite (Ca5OH(PO4)3/CaP) was used to simulate calcareous soils with low P availability. In contrast, the soluble P form KH2PO4/KP was used as a control. A. annua's morphological traits, growth, and artemisinin concentration were determined, and RNA sequencing was used to identify the differentially expressed genes (DEGs) under two different P forms. Total biomass, plant height, leaf number, and stem diameter, as well as leaf area, decreased by 64.83%, 27.49%, 30.47%, 38.70%, and 54.64% in CaP compared to KP; however, LC-MS tests showed an outstanding 37.97% rise in artemisinin content per unit biomass in CaP contrary to KP. Transcriptome analysis showed 2015 DEGs (1084 up-regulated and 931 down-regulated) between two P forms, including 39 transcription factor (TF) families. Further analysis showed that DEGs were mainly enriched in carbohydrate metabolism, secondary metabolites biosynthesis, enzyme catalytic activity, signal transduction, and so on, such as tricarboxylic acid (TCA) cycle, glycolysis, starch and sucrose metabolism, flavonoid biosynthesis, P metabolism, and plant hormone signal transduction. Meanwhile, several artemisinin biosynthesis genes were up-regulated, including DXS, GPPS, GGPS, MVD, and ALDH, potentially increasing artemisinin accumulation. Furthermore, 21 TF families, including WRKY, MYB, bHLH, and ERF, were up-regulated in reaction to CaP, confirming their importance in P absorption, internal P cycling, and artemisinin biosynthesis regulation. Our results will enable us to comprehend how low P availability impacts the parallel transcriptional control of plant development, growth, and artemisinin production in A. annua. This study could lay the groundwork for future research into the molecular mechanisms underlying A. annua's low P adaptation.
Collapse
Affiliation(s)
- Lingyun Wan
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Juan Huo
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Qiulan Huang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Xiaowen Ji
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Lisha Song
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Zhanjiang Zhang
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Limei Pan
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Jine Fu
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | | | - Salma A Soaud
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Rania M Y Heakel
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Jihai Gao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shugen Wei
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.
| | - Ahmed H El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China.
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
11
|
Guo R, Zhang Q, Qian K, Ying Y, Liao W, Gan L, Mao C, Wang Y, Whelan J, Shou H. Phosphate-dependent regulation of vacuolar trafficking of OsSPX-MFSs is critical for maintaining intracellular phosphate homeostasis in rice. MOLECULAR PLANT 2023; 16:1304-1320. [PMID: 37464739 DOI: 10.1016/j.molp.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
Vacuolar storage of inorganic phosphate (Pi) is essential for Pi homeostasis in plants. The SPX-MFS family proteins have been demonstrated to be vacuolar Pi transporters in many plant species. Transcriptional regulation of the predominant transporter among rice SPX-MFSs, OsSPX-MFS3, was only moderately suppressed by Pi starvation. Thus, post-transcriptional mechanisms were hypothesized to regulate the activity of OsSPX-MFS3. In this study, we found that the tonoplast localization of OsSPX-MFSs is inhibited under Pi-depleted conditions, resulting in their retention in the pre-vacuolar compartments (PVCs). A yeast two-hybrid screen identified that two SNARE proteins, OsSYP21 and OsSYP22, interact with the MFS domain of OsSPX-MFS3. Further genetic and cytological analyses indicate that OsSYP21 and OsSYP22 facilitate trafficking of OsSPX-MFS3 from PVCs to the tonoplast. Although a homozygous frameshift mutation in OsSYP22 appeared to be lethal, tonoplast localization of OsSPX-MFS3 was significantly inhibited in transgenic plants expressing a negative-dominant form of OsSYP22 (OsSYP22-ND), resulting in reduced vacuolar Pi concentrations in OsSYP22-ND plants. Under Pi-depleted conditions, the interaction between OsSYP22 and OsSPX-MFS3 was disrupted, and this process depended on the presence of the SPX domain. Deleting the SPX domains of OsSPX-MFSs resulted in their tonoplast localization under both Pi-depleted and Pi-replete conditions. Complementation of the osspx-mfs1/2/3 triple mutants with the MFS domain or the SPX domain of OsSPX-MFS3 confirmed that the MFS and SPX domains are responsive to Pi transport activity and Pi-dependent regulation, respectively. These data indicated that the SPX domains of OsSPX-MFSs sense cellular Pi (InsP) levels and, under Pi-depleted conditions, inhibit the interaction between OsSPX-MFSs and OsSYP21/22 and subsequent trafficking of OsSPX-MFSs from PVCs to the tonoplast.
Collapse
Affiliation(s)
- Runze Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Hainan Institute, Zhejiang University, Sanya 572025, China; The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China
| | - Qi Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China; Zhijiang lab, Hangzhou 310012, China
| | - Kun Qian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China
| | - Yinghui Ying
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Wenying Liao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Lening Gan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Yong Wang
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China
| | - James Whelan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Hainan Institute, Zhejiang University, Sanya 572025, China; The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China.
| |
Collapse
|
12
|
Chen J, Han X, Liu L, Yang B, Zhuo R, Yao X. Genome-Wide Detection of SPX Family and Profiling of CoSPX-MFS3 in Regulating Low-Phosphate Stress in Tea-Oil Camellia. Int J Mol Sci 2023; 24:11552. [PMID: 37511309 PMCID: PMC10380294 DOI: 10.3390/ijms241411552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Camellia oleifera a member of the family Theaceae, is a phosphorus (P) tolerator native to southern China. The SPX gene family critically regulates plant growth and development and maintains phosphate (Pi) homeostasis. However, the involvement of SPX genes in Pi signaling in Tea-Oil Camellia remains unknown. In this work, 20 SPX genes were identified and categorized into four subgroups. Conserved domains, motifs, gene structure, chromosomal location and gene duplication events were also investigated in the SPX gene family. Defense and stress responsiveness cis-elements were identified in the SPX gene promoters, which participated in low-Pi stress responses. Based on transcriptome data and qRT-PCR results, nine CoSPX genes had similar expression patterns and eight genes (except CoPHO1H3) were up-regulated at 30 days after exposure to low-Pi stress. CoSPX-MFS3 was selected as a key candidate gene by WGCNA analysis. CoSPX-MFS3 was a tonoplast protein. Overexpression of CoSPX-MFS3 in Arabidopsis promoted the accumulation of total P content and decreased the anthocyanin content. Overexpression of CoSPX-MFS3 could enhance low-Pi tolerance by increased biomass and organic acid contents in transgenic Arabidopsis lines. Furthermore, the expression patterns of seven phosphate starvation genes were higher in transgenic Arabidopsis than those in the wild type. These results highlight novel physiological roles of the SPX family genes in C. oleifera under low-Pi stress, and lays the foundation for a deeper knowledge of the response mechanism of C. oleifera to low-Pi stress.
Collapse
Affiliation(s)
- Juanjuan Chen
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Forestry Faculty, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaojiao Han
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Linxiu Liu
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Bingbing Yang
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Renying Zhuo
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xiaohua Yao
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| |
Collapse
|
13
|
Sehar S, Adil MF, Askri SMH, Feng Q, Wei D, Sahito FS, Shamsi IH. Pan-transcriptomic Profiling Demarcates Serendipita Indica-Phosphorus Mediated Tolerance Mechanisms in Rice Exposed to Arsenic Toxicity. RICE (NEW YORK, N.Y.) 2023; 16:28. [PMID: 37354226 DOI: 10.1186/s12284-023-00645-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/10/2023] [Indexed: 06/26/2023]
Abstract
Inadvertent accumulation of arsenic (As) in rice (Oryza sativa L.) is a concern for people depending on it for their subsistence, as it verily causes epigenetic alterations across the genome as well as in specific cells. To ensure food safety, certain attempts have been made to nullify this highest health hazard encompassing physiological, chemical and biological methods. Albeit, the use of mycorrhizal association along with nutrient reinforcement strategy has not been explored yet. Mechanisms of response and resistance of two rice genotypes to As with or without phosphorus (P) nutrition and Serendipita indica (S. indica; S.i) colonization were explored by root transcriptome profiling in the present study. Results revealed that the resistant genotype had higher auxin content and root plasticity, which helped in keeping the As accumulation and P starvation response to a minimum under alone As stress. However, sufficient P supply and symbiotic relationship switched the energy resources towards plant's developmental aspects rather than excessive root proliferation. Higher As accumulating genotype (GD-6) displayed upregulation of ethylene signaling/biosynthesis, root stunting and senescence related genes under As toxicity. Antioxidant defense system and cytokinin biosynthesis/signaling of both genotypes were strengthened under As + S.i + P, while the upregulation of potassium (K) and zinc (Zn) transporters depicted underlying cross-talk with iron (Fe) and P. Differential expression of phosphate transporters, peroxidases and GSTs, metal detoxification/transport proteins, as well as phytohormonal metabolism were responsible for As detoxification. Taken together, S. indica symbiosis fortified with adequate P-fertilizer can prove to be effective in minimizing As acquisition and accumulation in rice plants.
Collapse
Affiliation(s)
- Shafaque Sehar
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Syed Muhammad Hassan Askri
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qidong Feng
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dongming Wei
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Falak Sehar Sahito
- Dow International Medical College, Dow University of Health Sciences, Karachi, 74200, Pakistan
| | - Imran Haider Shamsi
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Lu S, Ye J, Li H, He F, Qi Y, Wang T, Wang W, Zheng L. The Splicing Factor OsSCL26 Regulates Phosphorus Homeostasis in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2326. [PMID: 37375951 DOI: 10.3390/plants12122326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
Phosphorus (P) is an essential nutrient for plant growth. However, its deficiency poses a significant challenge for crop production. To overcome the low P availability, plants have developed various strategies to regulate their P uptake and usage. In this study, we identified a splicing factor, OsSCL26, belonging to the Serine/arginine-rich (SR) proteins, that plays a crucial role in regulating P homeostasis in rice. OsSCL26 is expressed in the roots, leaves, and base nodes, with higher expression levels observed in the leaf blades during the vegetative growth stage. The OsSCL26 protein is localized in the nucleus. Mutation of OsSCL26 resulted in the accumulation of P in the shoot compared to the wild-type, and the dwarf phenotype of the osscl26 mutant was alleviated under low P conditions. Further analysis revealed that the accumulated P concentrations in the osscl26 mutant were higher in the old leaves and lower in the new leaves. Furthermore, the P-related genes, including the PHT and SPX family genes, were upregulated in the osscl26 mutant, and the exclusion/inclusion ratio of the two genes, OsSPX-MFS2 and OsNLA2, was increased compared to wild-type rice. These findings suggest that the splicing factor OsSCL26 plays a pivotal role in maintaining P homeostasis in rice by influencing the absorption and distribution of P through the regulation of the transcription and splicing of the P transport genes.
Collapse
Affiliation(s)
- Shanshan Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Ye
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengyu He
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Qi
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wujian Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Sun Y, Wu Q, Xie Z, Huang J. Transcription factor OsNAC016 negatively regulates phosphate-starvation response in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111618. [PMID: 36738935 DOI: 10.1016/j.plantsci.2023.111618] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/11/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Phosphate (Pi), the main form of inorganic phosphorus that can be absorbed by plants, is one of the most limiting macro-nutrients in plants. However, the underlying molecular mechanism determining how plants sense external Pi levels and reprogram transcriptional and adaptive responses is incompletely understood. At present, few rice NAC members have been reported to be involved in the signaling pathways of Pi homeostasis in plants. Here, our research demonstrated that OsNAC016, a Pi-starvation responsive gene in rice, was regulated by PHOSPHATE STARVATION RESPONSE protein 1 (OsPHR1) and OsPHR4. Under Pi-starvation stress, the root growth of OsNAC016-overexpression lines was inhibited more severely, and overexpression plants had lower Pi content than wild type, while osnac016 mutant was hyposensitive to Pi starvation, indicating that OsNAC016 negatively modulates rice Pi-starvation response. Chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) analysis and transient transactivation assays indicated that OsNAC016 could activate the SPX-domain-containing protein 2 (OsSPX2) gene through binding to its promoter. Further, we found that Pi starvation enhanced OsNAC016 binding to the OsSPX2 promoter, thus strongly promoting OsSPX2 expression. At the same time, Pi starvation induced OsNAC016 protein accumulation in plants. Moreover, similar to OsSPX2, OsNAC016 negatively regulates leaf inclination by repressing the cell elongation in lamina joint in rice under Pi-starvation stress. Together, our findings demonstrate that OsNAC016 negatively regulates rice phosphate-starvation response and leaf inclination by activating OsSPX2 expression under Pi-starvation conditions. These data provide a strategy to create smart crops with ideal shoot architecture and high phosphorus utilization efficiency.
Collapse
Affiliation(s)
- Ying Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Qi Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Zizhao Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
16
|
Guo R, Zhang Q, Ying Y, Liao W, Liu Y, Whelan J, Chuanzao M, Shou H. Functional characterization of the three Oryza sativa SPX-MFS proteins in maintaining phosphate homoeostasis. PLANT, CELL & ENVIRONMENT 2023; 46:1264-1277. [PMID: 35909262 DOI: 10.1111/pce.14414] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Plant vacuoles serve as the primary intracellular compartments for phosphorus (P) storage. The Oryza sativa genome contains three genes that encode SPX ( SYG1/ PHO81/ XPR1)-MFS ( Major Facility Superfamily) proteins (OsSPX-MFS1-3). The physiological roles of the three transporters under varying P conditions in laboratory and field are not known. To address this knowledge gap, we generated single, double and triple mutants for three OsSPX-MFS genes. All the mutants except Osspx-mfs2 display lower vacuolar Pi concentrations and OsSPX-MFSs overexpression plant display higher Pi accumulation, demonstrating that all OsSPX-MFSs are vacuolar Pi influx transporters. OsSPX-MFS3 plays the dominant role based on the phenotypes of single mutants in terms of growth, vacuolar and tissue Pi concentrations. OsSPX-MFS2 is the weakest and only functions as vacuole Pi sequestration in an Osspx-mfs1/3 background. The vacuolar Pi sequestration capacity was severely impaired in Osspx-mfs1/3 and Osspx-mfs1/2/3, which resulted in increased Pi allocation to aerial organs. High P in the panicle impaired panicle and fertility in Osspx-mfs1/3 and Osspx-mfs1/2/3. Osspx-mfs2 resulted in a more stable yield compared to the wild type under low P in field grown plants. The results suggest that alteration of vacuolar Pi sequestration may be a novel effective strategy to improve rice tolerance to low phosphorus in cropping systems.
Collapse
Affiliation(s)
- Runze Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Team of Seed Engineering and Industrialization, Hainan Institute, Zhejiang University, Sanya, China
| | - Qi Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Team of Seed Engineering and Industrialization, Hainan Institute, Zhejiang University, Sanya, China
| | - Yinghui Ying
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenying Liao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Team of Seed Engineering and Industrialization, Hainan Institute, Zhejiang University, Sanya, China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - James Whelan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Animal, Plant and Soil Science, School of Life Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Melbourne, Victoria, Australia
| | - Mao Chuanzao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Team of Seed Engineering and Industrialization, Hainan Institute, Zhejiang University, Sanya, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Team of Seed Engineering and Industrialization, Hainan Institute, Zhejiang University, Sanya, China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang, China
| |
Collapse
|
17
|
Chen Y, Yang W, Gao R, Chen Y, Zhou Y, Xie J, Zhang F. Genome-Wide Analysis of microRNAs and Their Target Genes in Dongxiang Wild Rice ( Oryza rufipogon Griff.) Responding to Salt Stress. Int J Mol Sci 2023; 24:ijms24044069. [PMID: 36835475 PMCID: PMC9960954 DOI: 10.3390/ijms24044069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Rice (Oryza sativa) is a staple food for more than half of the world's population, and its production is critical for global food security. Moreover, rice yield decreases when exposed to abiotic stresses, such as salinity, which is one of the most detrimental factors for rice production. According to recent trends, as global temperatures continue to rise due to climate change, more rice fields may become saltier. Dongxiang wild rice (Oryza rufipogon Griff., DXWR) is a progenitor of cultivated rice and has a high tolerance to salt stress, making it useful for studying the regulatory mechanisms of salt stress tolerance. However, the regulatory mechanism of miRNA-mediated salt stress response in DXWR remains unclear. In this study, miRNA sequencing was performed to identify miRNAs and their putative target genes in response to salt stress in order to better understand the roles of miRNAs in DXWR salt stress tolerance. A total of 874 known and 476 novel miRNAs were identified, and the expression levels of 164 miRNAs were found to be significantly altered under salt stress. The stem-loop quantitative real-time PCR (qRT-PCR) expression levels of randomly selected miRNAs were largely consistent with the miRNA sequencing results, suggesting that the sequencing results were reliable. The gene ontology (GO) analysis indicated that the predicted target genes of salt-responsive miRNAs were involved in diverse biological pathways of stress tolerance. This study contributes to our understanding of DXWR salt tolerance mechanisms regulated by miRNAs and may ultimately improve salt tolerance in cultivated rice breeding using genetic methods in the future.
Collapse
Affiliation(s)
- Yong Chen
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Wanling Yang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Rifang Gao
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Yaling Chen
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Yi Zhou
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Jiankun Xie
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
- Correspondence: (J.X.); (F.Z.)
| | - Fantao Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (J.X.); (F.Z.)
| |
Collapse
|
18
|
Park SH, Jeong JS, Huang CH, Park BS, Chua NH. Inositol polyphosphates-regulated polyubiquitination of PHR1 by NLA E3 ligase during phosphate starvation response in Arabidopsis. THE NEW PHYTOLOGIST 2023; 237:1215-1228. [PMID: 36377104 DOI: 10.1111/nph.18621] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Phosphate (Pi) availability is a major factor limiting plant growth and development. The key transcription factor controlling Pi-starvation response (PSR) is PHOSPHATE STARVATION RESPONSE 1 (PHR1) whose transcript levels do not change with changes in Pi levels. However, how PHR1 stability is regulated at the post-translational level is relatively unexplored in Arabidopsis thaliana. Inositol polyphosphates (InsPn) are important signal molecules that promote the association of stand-alone SPX domain proteins with PHR1 to regulate PSR. Here, we show that NITROGEN LIMITATION ADAPTATION (NLA) E3 ligase can associate with PHR1 through its conserved SPX domain and polyubiquitinate PHR1 in vitro. The association with PHR1 and its ubiquitination is enhanced by InsP6 but not by InsP5. Analysis of InsPn-related mutants and an overexpression plant shows PHR1 levels are more stable in itpk4-1 and vih2-4/VIH1amiRNA but less stable in ITPK4 overexpression plants. Under Pi-deficient conditions, nla seedlings contain high PHR1 levels, display long root hair and accumulate anthocyanin in shoots phenocopying PHR1 overexpression plants. By contrast, NLA overexpression plants phenocopy phr1 whose phenotypes are opposite to those of nla. Our results suggest NLA functions as a negative regulator of Pi response by modulating PHR1 stability and the NLA/PHR1 association depends on InsPn levels.
Collapse
Affiliation(s)
- Su-Hyun Park
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore City, 117604, Singapore
| | - Jin Seo Jeong
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore City, 117604, Singapore
| | - Chung-Hao Huang
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore City, 117604, Singapore
| | - Bong Soo Park
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore City, 117604, Singapore
| | - Nam-Hai Chua
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore City, 117604, Singapore
| |
Collapse
|
19
|
Du K, Yang Y, Li J, Wang M, Jiang J, Wu J, Fang Y, Xiang Y, Wang Y. Functional Analysis of Bna-miR399c- PHO2 Regulatory Module Involved in Phosphorus Stress in Brassica napus. Life (Basel) 2023; 13:life13020310. [PMID: 36836667 PMCID: PMC9965056 DOI: 10.3390/life13020310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Phosphorus stress is one of the important factors restricting plant growth and development, and the microRNA (miRNA) family is involved in the regulation of the response to plant nutrient stress by repressing the expression of target genes at the post-transcriptional or translational level. miR399 is involved in the transportation of phosphate in multiple plants by improving tolerance to low Pi conditions. However, the effect of miR399 on the response of low Pi stress in rapeseed (Brassica napus L.) is unclear. The present study showed a significant increase in taproot length and lateral root number of plants overexpressing Bna-miR399c, while the biomass and Pi accumulation in shoots and roots increased, and the anthocyanin content decreased and chlorophyll content improved under low Pi stress. The results illustrate that Bna-miR399c could enhance the uptake and transportation of Pi in soil, thus making B. napus more tolerant to low Pi stress. Furthermore, we confirmed that BnPHO2 is one of the targets of Bna-miR399c, and the rejection of Pi in rapeseed seedlings increased due to the overexpression of BnPHO2. Hence, we suggest that miR399c-PHO2 module can effectively regulate the homeostasis of Pi in B. napus. Our study can also provide the theoretical basis for germplasm innovation and the design of intelligent crops with low nutrient input and high yield to achieve the dual objectives of income and yield increase and environmental protection in B. napus.
Collapse
Affiliation(s)
- Kun Du
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yang Yang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Jinping Li
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Ming Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Jinjin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Jian Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yujie Fang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yang Xiang
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550008, China
| | - Youping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-514-87997303; Fax: +86-514-87991747
| |
Collapse
|
20
|
Han B, Wang C, Wu T, Yan J, Jiang A, Liu Y, Luo Y, Cai H, Ding G, Dong X, White PJ, Xu F, Wang S, Shi L. Identification of vacuolar phosphate influx transporters in Brassica napus. PLANT, CELL & ENVIRONMENT 2022; 45:3338-3353. [PMID: 35986580 DOI: 10.1111/pce.14423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Recent progress has shown that vacuolar Pi transporters (VPTs) are important for cellular Pi homoeostasis in Arabidopsis thaliana and Oryza sativa under fluctuating external Pi supply, but the identity and involvement of VPTs in cellular Pi homoeostasis in Brassica napus is poorly understood. Here, we identified two vacuolar Pi influx transporters B. napus, BnA09PHT5;1b and BnCnPHT5;1b, and uncovered their necessity for cellular Pi homoeostasis through functional analysis. Both Brassica proteins are homologs of Arabidopsis AtPHT5;1 with a similar sequence, structure, tonoplast localization, and VPT activity. Brassica pht5;1b double mutants had smaller shoots and larger shoot cellular Pi concentrations than wild-type B. napus, which contrasts with a previous study of the Arabidopsis pht5;1 mutant, suggesting that PHT5;1-VPTs play different roles in cellular Pi homoeostasis in seedlings of B. napus and A. thaliana. Disruption of BnPHT5;1b genes also caused Pi toxicity in floral organs, reduced seed yield and impacted seed traits, consistent with the proposed role of AtPHT5;1 in floral Pi homoeostasis in Arabidopsis. Taken together, our studies identified two vacuolar Pi influx transporters in B. napus and revealed the distinct and conserved roles of BnPHT5;1bs in cellular Pi homoeostasis in this plant species.
Collapse
Affiliation(s)
- Bei Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Chuang Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Tao Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Junjun Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Aosheng Jiang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yu Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Hongmei Cai
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Xu Dong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Philip J White
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- The James Hutton Institute, Invergowrie, Dundee, UK
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
21
|
Song J, Xu D, Dong Y, Li F, Bian Y, Li L, Luo X, Fei S, Li L, Zhao C, Zhang Y, Xia X, Ni Z, He Z, Cao S. Fine mapping and characterization of a major QTL for grain weight on wheat chromosome arm 5DL. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3237-3246. [PMID: 35904627 DOI: 10.1007/s00122-022-04182-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
We fine mapped QTL QTKW.caas-5DL for thousand kernel weight in wheat, predicted candidate genes and developed a breeding-applicable marker. Thousand kernel weight (TKW) is an important yield component trait in wheat, and identification of the underlying genetic loci is helpful for yield improvement. We previously identified a stable quantitative trait locus (QTL) QTKW.caas-5DL for TKW in a Doumai/Shi4185 recombinant inbred line (RIL) population. Here we performed fine mapping of QTKW.caas-5DL using secondary populations derived from 15 heterozygous recombinants and delimited the QTL to an approximate 3.9 Mb physical interval from 409.9 to 413.8 Mb according to the Chinese Spring (CS) reference genome. Analysis of genomic synteny showed that annotated genes in the physical interval had high collinearity among CS and eight other wheat genomes. Seven genes with sequence variation and/or differential expression between parents were predicted as candidates for QTKW.caas-5DL based on whole-genome resequencing and transcriptome assays. A kompetitive allele-specific PCR (KASP) marker for QTKW.caas-5DL was developed, and genotyping confirmed a significant association with TKW but not with other yield component traits in a panel of elite wheat cultivars. The superior allele of QTKW.caas-5DL was frequent in a panel of cultivars, suggesting that it had undergone positive selection. These findings not only lay a foundation for map-based cloning of QTKW.caas-5DL but also provide an efficient tool for marker-assisted selection.
Collapse
Affiliation(s)
- Jie Song
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100094, China
| | - Dengan Xu
- Shandong Province Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Yan Dong
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Faji Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong, China
| | - Yingjie Bian
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Lingli Li
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xumei Luo
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Shuaipeng Fei
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Lei Li
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Cong Zhao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yong Zhang
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhongfu Ni
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100094, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China.
| | - Shuanghe Cao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
22
|
Aslam MM, Waseem M, Xu W, Ying L, Zhang J, Yuan W. Global Identification of White Lupin lncRNAs Reveals Their Role in Cluster Roots under Phosphorus Deficiency. Int J Mol Sci 2022; 23:9012. [PMID: 36012274 PMCID: PMC9409226 DOI: 10.3390/ijms23169012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Phosphorus (P) deficiency heterogeneously affected plant nutritional status and physiological performance, ultimately leading to a severe yield reduction. A few putative long non-coding RNAs (lncRNAs) responding to P-starvation in the model crops Arabidopsis thaliana and Oryza sativa have been characterized. White lupin (Lupinus albus) is of prime importance, and is a legume with increasing agronomic value as a protein crop as it exhibits extreme tolerance to nutrient deficiency, particularly P deficiency. Despite its adapted nature to P deficiency, nothing is known about low P-induced lncRNAs in white lupin roots. To address this issue, we identified 39,840 mRNA and 2028 lncRNAs in the eight developmental stages of white lupin root (S0-S7 and lateral root, LR) grown under P deficiency. From these 2028 lncRNAs, 1564 were intergenic and 464 natural antisense intergenic transcript (NAT) lncRNAs. We further predicted six potential targets of miRNAs with twelve lncRNAs, which may regulate P-deficiency-related processes. Moreover, the weighted gene co-expression network analysis (WGCNA) revealed seven modules that were correlated with the expression pattern of lncRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed 606 GO terms and 27 different pathways including signal transduction, energy synthesis, detoxification, and Pi transport. In addition, we screened 13 putative lncRNAs that showed a distinct expression pattern in each root, indicating their role in the P deficiency regulatory network. Therefore, white lupin may be a reference legume to characterize P-deficiency-responsive novel lncRNAs, which would highlight the role of lncRNAs in the regulation of plant responses to P deficiency.
Collapse
Affiliation(s)
- Mehtab Muhammad Aslam
- College of Agriculture, Yangzhou University, Yangzhou 225009, China
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
- Joint International Research Laboratory of Water and Nutrient in Crop, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Muhammad Waseem
- Department of Botany, University of Narowal, Narowal 51601, Pakistan
| | - Weifeng Xu
- College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Water and Nutrient in Crop, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Ying
- College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Jianhua Zhang
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Wei Yuan
- Joint International Research Laboratory of Water and Nutrient in Crop, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
23
|
Li Y, Yang X, Liu H, Wang W, Wang C, Ding G, Xu F, Wang S, Cai H, Hammond JP, White PJ, Shabala S, Yu M, Shi L. Local and systemic responses conferring acclimation of Brassica napus roots to low phosphorus conditions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4753-4777. [PMID: 35511123 DOI: 10.1093/jxb/erac177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Due to the non-uniform distribution of inorganic phosphate (Pi) in the soil, plants modify their root architecture to improve acquisition of this nutrient. In this study, a split-root system was employed to assess the nature of local and systemic signals that modulate root architecture of Brassica napus grown with non-uniform Pi availability. Lateral root (LR) growth was regulated systemically by non-uniform Pi distribution, by increasing the second-order LR (2°LR) density in compartments with high Pi supply but decreasing it in compartments with low Pi availability. Transcriptomic profiling identified groups of genes regulated, both locally and systemically, by Pi starvation. The number of systemically induced genes was greater than the number of genes locally induced, and included genes related to abscisic acid (ABA) and jasmonic acid (JA) signalling pathways, reactive oxygen species (ROS) metabolism, sucrose, and starch metabolism. Physiological studies confirmed the involvement of ABA, JA, sugars, and ROS in the systemic Pi starvation response. Our results reveal the mechanistic basis of local and systemic responses of B. napus to Pi starvation and provide new insights into the molecular and physiological basis of root plasticity.
Collapse
Affiliation(s)
- Yalin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Xinyu Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - HaiJiang Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Wei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Chuang Wang
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Hongmei Cai
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - John P Hammond
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Philip J White
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- The James Hutton Institute, Invergowrie, Dundee, UK
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas, Australia
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China
| | - Min Yu
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
Zhang L, Chu C. Selenium Uptake, Transport, Metabolism, Reutilization, and Biofortification in Rice. RICE (NEW YORK, N.Y.) 2022; 15:30. [PMID: 35701545 PMCID: PMC9198118 DOI: 10.1186/s12284-022-00572-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/29/2022] [Indexed: 05/13/2023]
Abstract
Selenium (Se) is an essential trace element for humans and other animals. The human body mainly acquires Se from plant foods, especially cereal grains. Rice is the staple food for more than half of the world's population. Increasing the Se concentration of rice grains can increase the average human dietary Se intake. This review summarizes recent advances in the molecular mechanisms of Se uptake, transport, subcellular distribution, retranslocation, volatilization, and Se-containing protein degradation in plants, especially rice. The strategies for improving Se concentration in rice grains by increasing Se accumulation, reducing Se volatilization, and optimizing Se form were proposed, which provide new insight into Se biofortification in rice by improving the utilization efficiency of Se.
Collapse
Affiliation(s)
- Lianhe Zhang
- Luoyang Key Laboratory of Plant Nutrition and Environmental Ecology, Agricultural College, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Chengcai Chu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture and Technology, Guangzhou, 510642, China.
| |
Collapse
|
25
|
Xing X, Du H, Yang Z, Li X, Kong Y, Li W, Zhang C. GmSPX8, a nodule-localized regulator confers nodule development and nitrogen fixation under phosphorus starvation in soybean. BMC PLANT BIOLOGY 2022; 22:161. [PMID: 35365088 PMCID: PMC8973899 DOI: 10.1186/s12870-022-03556-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 03/23/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND Biological nitrogen fixation (BNF) is an important nitrogen source for legume plants, and highly efficient nitrogen fixation requires sufficient phosphorus (P). However, the mechanism of maintaining nitrogen fixation of the legume nodules under low P concentration remains largely unknown. RESULTS A nodule-localized SPX protein, GmSPX8, was discovered by transcriptome and functional analysis of its role in N2 fixation was characterized in soybean nodules. GmSPX8 was preferentially expressed in nodules and its expression was gradually increased during nodule development. And also the expression pattern was investigated using reporter gene β-glucuronidase (GUS) driven by the promoter of GmSPX8. GmSPX8 was greatly induced and the GUS activity was increased by 12.2% under P deficiency. Overexpression of GmSPX8 in transgenic plants resulted in increased nodule number, nodule fresh weight and nitrogenase activity by 15.0%, 16.0%, 42.5%, subsequently leading to increased N and P content by 17.0% and 19.0%, while suppression of GmSPX8 showed significantly impaired nodule development and nitrogen fixation efficiency under low P stress. These data indicated that GmSPX8 conferred nodule development and nitrogen fixation under low P condition. By yeast two-hybrid screening, GmPTF1 was identified as a potential interacting protein of GmSPX8, which was further confirmed by BiFC, Y2H and pull down assay. Transcript accumulation of GmPTF1 and its downstream genes such as GmEXLB1 and EXPB2 were increased in GmSPX8 overexpressed transgenic nodules, and in the presence of GmSPX8, the transcriptional activity of GmPTF1 in yeast cells and tobacco leaves was greatly enhanced. CONCLUSIONS In summary, these findings contribute novel insights towards the role of GmSPX8 in nodule development and nitrogen fixation partly through interacting with GmPTF1 in soybean under low P condition.
Collapse
Affiliation(s)
- Xinzhu Xing
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
| | - Hui Du
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
| | - Zhanwu Yang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
| | - Xihuan Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
| | - Youbin Kong
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
| | - Wenlong Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071000, China
| | - Caiying Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071000, China.
| |
Collapse
|
26
|
Dai C, Dai X, Qu H, Men Q, Liu J, Yu L, Gu M, Xu G. The rice phosphate transporter OsPHT1;7 plays a dual role in phosphorus redistribution and anther development. PLANT PHYSIOLOGY 2022; 188:2272-2288. [PMID: 35088867 PMCID: PMC8968348 DOI: 10.1093/plphys/kiac030] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 05/08/2023]
Abstract
Inorganic phosphate (Pi) is the predominant form of phosphorus (P) readily accessible to plants, and Pi Transporter 1 (PHT1) genes are the major contributors to root Pi uptake. However, the mechanisms underlying the transport and recycling of Pi within plants, which are vital for optimizing P use efficiency, remain elusive. Here, we characterized a functionally unknown rice (Oryza sativa) PHT1 member barely expressed in roots, OsPHT1;7. Yeast complementation and Xenopus laevis oocyte assay demonstrated that OsPHT1;7 could mediate Pi transport. Reverse-transcription quantitative polymerase chain reaction and histochemical analyses showed that OsPHT1;7 was preferentially expressed in source leaves and nodes. A further fine-localization analysis by immunostaining showed that OsPHT1;7 expression was restricted in the vascular bundle (VB) sheath and phloem of source leaves as well as in the phloem of regular/diffuse- and enlarged-VBs of nodes. In accordance with this expression pattern, mutation of OsPHT1;7 led to increased and decreased P distribution in source (old leaves) and sink organs (new leaves/panicles), respectively, indicating that OsPHT1;7 is involved in P redistribution. Furthermore, OsPHT1;7 showed an overwhelmingly higher transcript abundance in anthers than other PHT1 members, and ospht1;7 mutants were impaired in P accumulation in anthers but not in pistils or husks. Moreover, the germination of pollen grains was significantly inhibited upon OsPHT1;7 mutation, leading to a >80% decrease in seed-setting rate and grain yield. Taken together, our results provide evidence that OsPHT1;7 is a crucial Pi transporter for Pi transport and recycling within rice plants, stimulating both vegetative and reproductive growth.
Collapse
Affiliation(s)
- Changrong Dai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoli Dai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095 China
| | - Hongye Qu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095 China
| | - Qin Men
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingyang Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095 China
| | | | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095 China
| |
Collapse
|
27
|
MicroRNA Mediated Plant Responses to Nutrient Stress. Int J Mol Sci 2022; 23:ijms23052562. [PMID: 35269700 PMCID: PMC8910084 DOI: 10.3390/ijms23052562] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/18/2023] Open
Abstract
To complete their life cycles, plants require several minerals that are found in soil. Plant growth and development can be affected by nutrient shortages or high nutrient availability. Several adaptations and evolutionary changes have enabled plants to cope with inappropriate growth conditions and low or high nutrient levels. MicroRNAs (miRNAs) have been recognized for transcript cleavage and translational reduction, and can be used for post-transcriptional regulation. Aside from regulating plant growth and development, miRNAs play a crucial role in regulating plant’s adaptations to adverse environmental conditions. Additionally, miRNAs are involved in plants’ sensory functions, nutrient uptake, long-distance root transport, and physiological functions related to nutrients. It may be possible to develop crops that can be cultivated in soils that are either deficient in nutrients or have extreme nutrient supplies by understanding how plant miRNAs are associated with nutrient stress. In this review, an overview is presented regarding recent advances in the understanding of plants’ responses to nitrogen, phosphorus, potassium, sulfur, copper, iron, boron, magnesium, manganese, zinc, and calcium deficiencies via miRNA regulation. We conclude with future research directions emphasizing the modification of crops for improving future food security.
Collapse
|
28
|
The Genetic Basis of Phosphorus Utilization Efficiency in Plants Provide New Insight into Woody Perennial Plants Improvement. Int J Mol Sci 2022; 23:ijms23042353. [PMID: 35216469 PMCID: PMC8877309 DOI: 10.3390/ijms23042353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 01/01/2023] Open
Abstract
Soil nutrient restrictions are the main environmental conditions limiting plant growth, development, yield, and quality. Phosphorus (P), an essential macronutrient, is one of the most significant factors that vastly restrains the growth and development of plants. Although the total P is rich in soil, its bio-available concentration is still unable to meet the requirements of plants. To maintain P homeostasis, plants have developed lots of intricate responsive and acclimatory mechanisms at different levels, which contribute to administering the acquisition of inorganic phosphate (Pi), translocation, remobilization, and recycling of Pi. In recent years, significant advances have been made in the exploration of the utilization of P in annual plants, while the research progress in woody perennial plants is still vague. In the meanwhile, compared to annual plants, relevant reviews about P utilization in woody perennial plants are scarce. Therefore, based on the importance of P in the growth and development of plants, we briefly reviewed the latest advances on the genetic and molecular mechanisms of plants to uphold P homeostasis, P sensing, and signaling, ion transporting and metabolic regulation, and proposed the possible sustainable management strategies to fasten the P cycle in modern agriculture and new directions for future studies.
Collapse
|
29
|
Li C, You Q, Zhao P. Genome-wide identification and characterization of SPX-domain-containing protein gene family in Solanum lycopersicum. PeerJ 2022; 9:e12689. [PMID: 35036163 PMCID: PMC8710047 DOI: 10.7717/peerj.12689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/03/2021] [Indexed: 01/24/2023] Open
Abstract
The SYG1, PHO81, and XPR1 (SPX) domain is named after the suppressor of yeast gpa1 (Syg1), yeast phosphatase (Pho81) and the human Xenotropic and Polytrophic Retrovirus receptor1 (XPR1). SPX-domain-containing proteins play pivotal roles in maintaining phosphate ions (Pi) homeostasis in plant. This study was to genome-wide identification and analysis of Solanum lycopersicum SPX-domain-containing protein gene family. The Solanum lycopersicum genome contains 19 SPX-domain-containing protein genes. These SPX-domain-containing protein genes were located in seven of the 12 chromosomes. According to the different conserved domains, the proteins encoded by those genes could be divided into four SPX-domain-containing protein families, which included SPX Family, SPX-ERD1/XPR1/SYG1(SPX-EXS) Family, SPX-Major Facilitator Superfamily (SPX-MFS) Family and SPX-Really Interesting New Gene (SPX-RING) Family. Phylogenetic analysis of SPX-domain-containing protein genes in Arabidopsis thaliana, Solanum tuberosum, Capsicum annuum and Solanum lycopersicum classified these genes into eight clades. Expression profiles derived from transcriptome (RNA-seq) data analysis showed 19 SPX-domain-containing protein genes displayed various expression patterns. SPX-domain-containing protein may play different roles in phosphate nutrition of Solanum lycopersicum different tissues and development stages. And, this study can provide the selection of candidate genes for functional research and genome editing in Solanum lycopersicum phosphate ions (Pi) nutrition.
Collapse
Affiliation(s)
- Chunwei Li
- Nanchang Normal University, Nanchang, China
| | - Qiuye You
- Shanghai Center for Plant Stress Biology, Shanghai, China
| | | |
Collapse
|
30
|
Paz-Ares J, Puga MI, Rojas-Triana M, Martinez-Hevia I, Diaz S, Poza-Carrión C, Miñambres M, Leyva A. Plant adaptation to low phosphorus availability: Core signaling, crosstalks, and applied implications. MOLECULAR PLANT 2022; 15:104-124. [PMID: 34954444 DOI: 10.1016/j.molp.2021.12.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/11/2021] [Accepted: 12/20/2021] [Indexed: 05/25/2023]
Abstract
Phosphorus (P) is an essential nutrient for plant growth and reproduction. Plants preferentially absorb P as orthophosphate (Pi), an ion that displays low solubility and that is readily fixed in the soil, making P limitation a condition common to many soils and Pi fertilization an inefficient practice. To cope with Pi limitation, plants have evolved a series of developmental and physiological responses, collectively known as the Pi starvation rescue system (PSR), aimed to improve Pi acquisition and use efficiency (PUE) and protect from Pi-starvation-induced stress. Intensive research has been carried out during the last 20 years to unravel the mechanisms underlying the control of the PSR in plants. Here we review the results of this research effort that have led to the identification and characterization of several core Pi starvation signaling components, including sensors, transcription factors, microRNAs (miRNAs) and miRNA inhibitors, kinases, phosphatases, and components of the proteostasis machinery. We also refer to recent results revealing the existence of intricate signaling interplays between Pi and other nutrients and antagonists, N, Fe, Zn, and As, that have changed the initial single-nutrient-centric view to a more integrated view of nutrient homeostasis. Finally, we discuss advances toward improving PUE and future research priorities.
Collapse
Affiliation(s)
- Javier Paz-Ares
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain.
| | - Maria Isabel Puga
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Monica Rojas-Triana
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Iris Martinez-Hevia
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Sergio Diaz
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Cesar Poza-Carrión
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Miguel Miñambres
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Antonio Leyva
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| |
Collapse
|
31
|
Bhadouria J, Giri J. Purple acid phosphatases: roles in phosphate utilization and new emerging functions. PLANT CELL REPORTS 2022; 41:33-51. [PMID: 34402946 DOI: 10.1007/s00299-021-02773-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Plants strive for phosphorus (P), which is an essential mineral for their life. Since P availability is limiting in most of the world's soils, plants have evolved with a complex network of genes and their regulatory mechanisms to cope with soil P deficiency. Among them, purple acid phosphatases (PAPs) are predominantly associated with P remobilization within the plant and acquisition from the soil by hydrolyzing organic P compounds. P in such compounds remains otherwise unavailable to plants for assimilation. PAPs are ubiquitous in plants, and similar enzymes exist in bacteria, fungi, mammals, and unicellular eukaryotes, but having some differences in their catalytic center. In the recent past, PAPs' roles have been extended to multiple plant processes like flowering, seed development, senescence, carbon metabolism, response to biotic and abiotic stresses, signaling, and root development. While new functions have been assigned to PAPs, the underlying mechanisms remained understood poorly. Here, we review the known functions of PAPs, the regulatory mechanisms, and their relevance in crop improvement for P-use-efficiency. We then discuss the mechanisms behind their functions and propose areas worthy of future research. Finally, we argue that PAPs could be a potential target for improving P utilization in crops. In turn, this is essential for sustainable agriculture.
Collapse
Affiliation(s)
- Jyoti Bhadouria
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
32
|
Chen W, Zhou M, Zhao M, Chen R, Tigabu M, Wu P, Li M, Ma X. Transcriptome analysis provides insights into the root response of Chinese fir to phosphorus deficiency. BMC PLANT BIOLOGY 2021; 21:525. [PMID: 34758730 PMCID: PMC8579613 DOI: 10.1186/s12870-021-03245-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Phosphorus is one of the essential elements for plant growth and development, but available phosphorus (Pi) content in many soil types is low. As a fast-growing tree species for timber production, Chinese fir is in great demand of Pi, and the lack of Pi in soil restricts the increase of productivity of Chinese fir plantation. Root morphology and the synthesis and secretion of organic acids play an important role in the uptake of phosphorus, but the molecular mechanisms of Chinese fir root responses to Pi deficiency are largely unexplored. In this study, seedlings of Yang 061 clone were grown under three Pi supply levels (0, 5 and 10 mg·L-1 P) and morphological attributes, organic acid content and enzyme activity were measured. The transcriptome data of Chinese fir root system were obtained and the expression levels of phosphorus responsive genes and organic acid synthesis related genes on citric acid and glyoxylate cycle pathway were determined. RESULTS We annotated 50,808 Unigenes from the transcriptome of Chinese fir roots. Among differentially expressed genes, seven genes of phosphate transporter family and 17 genes of purple acid phosphatase family were up-regulated by Pi deficiency, two proteins of SPX domain were up-regulated and one was down-regulated. The metabolic pathways of the citric acid and glyoxylate cycle pathway were mapped, and the expression characteristics of the related Unigenes under different phosphorus treatments were analyzed. The genes involved in malic acid and citric acid synthesis were up-regulated, and the activities of the related enzymes were significantly enhanced under long-term Pi stress. The contents of citric acid and malic acid in the roots of Chinese fir increased after 30 days of Pi deficiency. CONCLUSION Chinese fir roots showed increased expression of genes related with phosphorus starvation, citrate and malate synthesis genes, increased content of organic acids, and enhanced activities of related enzymes under Pi deficiency. The results provide a new insight for revealing the molecular mechanism of adaption to Pi deficiency and the pathway of organic acid synthesis in Chinese fir roots.
Collapse
Affiliation(s)
- Wanting Chen
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Chinese Fir Engineering and Technological Research Center, National Forestry and Grassland Administration, Fuzhou, 350002, Fujian, China
| | - Mengyan Zhou
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Mingzhen Zhao
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Ranhong Chen
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Mulualem Tigabu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Chinese Fir Engineering and Technological Research Center, National Forestry and Grassland Administration, Fuzhou, 350002, Fujian, China
- Southern Swedish Forest Research Center, Faculty of Forest Science, Swedish University of Agricultural Sciences, PO Box 49, Alnarp, SE-230 53, Uppsala, Sweden
| | - Pengfei Wu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Chinese Fir Engineering and Technological Research Center, National Forestry and Grassland Administration, Fuzhou, 350002, Fujian, China
| | - Ming Li
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- Chinese Fir Engineering and Technological Research Center, National Forestry and Grassland Administration, Fuzhou, 350002, Fujian, China.
| | - Xiangqing Ma
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- Chinese Fir Engineering and Technological Research Center, National Forestry and Grassland Administration, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
33
|
Wang Y, Wang F, Lu H, Liu Y, Mao C. Phosphate Uptake and Transport in Plants: An Elaborate Regulatory System. PLANT & CELL PHYSIOLOGY 2021; 62:564-572. [PMID: 33508131 DOI: 10.1093/pcp/pcab011] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/12/2021] [Indexed: 05/18/2023]
Abstract
Phosphorus (P) is an essential macronutrient for plant growth and development. Low inorganic phosphate (Pi) availability is a limiting factor for plant growth and yield. To cope with a complex and changing environment, plants have evolved elaborate mechanisms for regulating Pi uptake and use. Recently, the molecular mechanisms of plant Pi signaling have become clearer. Plants absorb Pi from the soil through their roots and transfer Pi to various organs or tissues through phosphate transporters, which are precisely controlled at the transcript and protein levels. Here, we summarize recent progress on the molecular regulatory mechanism of phosphate transporters in Arabidopsis and rice, including the characterization of functional transporters, regulation of transcript levels, protein localization and turnover of phosphate transporters. A more in-depth understanding of plant adaptation to a changing Pi environment will facilitate the genetic improvement of plant P efficiency.
Collapse
Affiliation(s)
- Yan Wang
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, 572025, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fei Wang
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, 572025, China
| | - Hong Lu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chuanzao Mao
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, 572025, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
34
|
|
35
|
Torres-Rodríguez JV, Salazar-Vidal MN, Chávez Montes RA, Massange-Sánchez JA, Gillmor CS, Sawers RJH. Low nitrogen availability inhibits the phosphorus starvation response in maize (Zea mays ssp. mays L.). BMC PLANT BIOLOGY 2021; 21:259. [PMID: 34090337 PMCID: PMC8178920 DOI: 10.1186/s12870-021-02997-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Nitrogen (N) and phosphorus (P) are macronutrients essential for crop growth and productivity. In cultivated fields, N and P levels are rarely sufficient, contributing to the gap between realized and potential production. Fertilizer application increases nutrient availability, but is not available to all farmers, nor are current rates of application sustainable or environmentally desirable. Transcriptomic studies of cereal crops have revealed dramatic responses to either low N or low P single stress treatments. In the field, however, levels of both N and P may be suboptimal. The interaction between N and P starvation responses remains to be fully characterized. RESULTS We characterized growth and root and leaf transcriptomes of young maize plants under nutrient replete, low N, low P or combined low NP conditions. We identified 1555 genes to respond to our nutrient treatments, in one or both tissues. A large group of genes, including many classical P starvation response genes, were regulated antagonistically between low N and P conditions. An additional experiment over a range of N availability indicated that a mild reduction in N levels was sufficient to repress the low P induction of P starvation genes. Although expression of P transporter genes was repressed under low N or low NP, we confirmed earlier reports of P hyper accumulation under N limitation. CONCLUSIONS Transcriptional responses to low N or P were distinct, with few genes responding in a similar way to the two single stress treatments. In combined NP stress, the low N response dominated, and the P starvation response was largely suppressed. A mild reduction in N availability was sufficient to repress the induction of P starvation associated genes. We conclude that activation of the transcriptional response to P starvation in maize is contingent on N availability.
Collapse
Affiliation(s)
- J Vladimir Torres-Rodríguez
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, C.P, 36824, Guanajuato, Mexico
| | - M Nancy Salazar-Vidal
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, C.P, 36824, Guanajuato, Mexico
- Department of Evolution and Ecology, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA
- Division of Plant Sciences, Univ. of Missouri, Columbia, MO, 65211, USA
| | - Ricardo A Chávez Montes
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, C.P, 36824, Guanajuato, Mexico
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, 79409, USA
| | - Julio A Massange-Sánchez
- Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ) Subsede Zapopan, Guadalajara, Mexico
| | - C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, C.P, 36824, Guanajuato, Mexico
| | - Ruairidh J H Sawers
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, C.P, 36824, Guanajuato, Mexico.
- Department of Plant Science, The Pennsylvania State University, State College, PA, USA.
| |
Collapse
|
36
|
Sega P, Kruszka K, Bielewicz D, Karlowski W, Nuc P, Szweykowska-Kulinska Z, Pacak A. Pi-starvation induced transcriptional changes in barley revealed by a comprehensive RNA-Seq and degradome analyses. BMC Genomics 2021; 22:165. [PMID: 33750301 PMCID: PMC7941915 DOI: 10.1186/s12864-021-07481-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/25/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Small RNAs (sRNAs) are 20-30 nt regulatory elements which are responsible for plant development regulation and participate in many plant stress responses. Insufficient inorganic phosphate (Pi) concentration triggers plant responses to balance the internal Pi level. RESULTS In this study, we describe Pi-starvation-responsive small RNAs and transcriptome changes in barley (Hordeum vulgare L.) using Next-Generation Sequencing (NGS) RNA-Seq data derived from three different types of NGS libraries: (i) small RNAs, (ii) degraded RNAs, and (iii) functional mRNAs. We find that differentially and significantly expressed miRNAs (DEMs, Bonferroni adjusted p-value < 0.05) are represented by 15 molecules in shoot and 13 in root; mainly various miR399 and miR827 isomiRs. The remaining small RNAs (i.e., those without perfect match to reference sequences deposited in miRBase) are considered as differentially expressed other sRNAs (DESs, p-value Bonferroni correction < 0.05). In roots, a more abundant and diverse set of other sRNAs (DESs, 1796 unique sequences, 0.13% from the average of the unique small RNA expressed under low-Pi) contributes more to the compensation of low-Pi stress than that in shoots (DESs, 199 unique sequences, 0.01%). More than 80% of differentially expressed other sRNAs are up-regulated in both organs. Additionally, in barley shoots, up-regulation of small RNAs is accompanied by strong induction of two nucleases (S1/P1 endonuclease and 3'-5' exonuclease). This suggests that most small RNAs may be generated upon nucleolytic cleavage to increase the internal Pi pool. Transcriptomic profiling of Pi-starved barley shoots identifies 98 differentially expressed genes (DEGs). A majority of the DEGs possess characteristic Pi-responsive cis-regulatory elements (P1BS and/or PHO element), located mostly in the proximal promoter regions. GO analysis shows that the discovered DEGs primarily alter plant defense, plant stress response, nutrient mobilization, or pathways involved in the gathering and recycling of phosphorus from organic pools. CONCLUSIONS Our results provide comprehensive data to demonstrate complex responses at the RNA level in barley to maintain Pi homeostasis and indicate that barley adapts to Pi-starvation through elicitation of RNA degradation. Novel P-responsive genes were selected as putative candidates to overcome low-Pi stress in barley plants.
Collapse
Affiliation(s)
- Pawel Sega
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Katarzyna Kruszka
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Dawid Bielewicz
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| | - Wojciech Karlowski
- Department of Computational Biology, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Przemyslaw Nuc
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Andrzej Pacak
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
37
|
Dissanayaka DMSB, Ghahremani M, Siebers M, Wasaki J, Plaxton WC. Recent insights into the metabolic adaptations of phosphorus-deprived plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:199-223. [PMID: 33211873 DOI: 10.1093/jxb/eraa482] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Inorganic phosphate (Pi) is an essential macronutrient required for many fundamental processes in plants, including photosynthesis and respiration, as well as nucleic acid, protein, and membrane phospholipid synthesis. The huge use of Pi-containing fertilizers in agriculture demonstrates that the soluble Pi levels of most soils are suboptimal for crop growth. This review explores recent advances concerning the understanding of adaptive metabolic processes that plants have evolved to alleviate the negative impact of nutritional Pi deficiency. Plant Pi starvation responses arise from complex signaling pathways that integrate altered gene expression with post-transcriptional and post-translational mechanisms. The resultant remodeling of the transcriptome, proteome, and metabolome enhances the efficiency of root Pi acquisition from the soil, as well as the use of assimilated Pi throughout the plant. We emphasize how the up-regulation of high-affinity Pi transporters and intra- and extracellular Pi scavenging and recycling enzymes, organic acid anion efflux, membrane remodeling, and the remarkable flexibility of plant metabolism and bioenergetics contribute to the survival of Pi-deficient plants. This research field is enabling the development of a broad range of innovative and promising strategies for engineering phosphorus-efficient crops. Such cultivars are urgently needed to reduce inputs of unsustainable and non-renewable Pi fertilizers for maximum agronomic benefit and long-term global food security and ecosystem preservation.
Collapse
Affiliation(s)
- D M S B Dissanayaka
- Department of Crop Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - Mina Ghahremani
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Meike Siebers
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jun Wasaki
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - William C Plaxton
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
38
|
Takehisa H, Sato Y. Transcriptome-based approaches for clarification of nutritional responses and improvement of crop production. BREEDING SCIENCE 2021; 71:76-88. [PMID: 33762878 PMCID: PMC7973498 DOI: 10.1270/jsbbs.20098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
Genome-wide transcriptome profiling is a powerful tool for identifying key genes and pathways involved in plant development and physiological processes. This review summarizes studies that have used transcriptome profiling mainly in rice to focus on responses to macronutrients such as nitrogen, phosphorus and potassium, and spatio-temporal root profiling in relation to the regulation of root system architecture as well as nutrient uptake and transport. We also discuss strategies based on meta- and co-expression analyses with different attributed transcriptome data, which can be used for investigating the regulatory mechanisms and dynamics of nutritional responses and adaptation, and speculate on further advances in transcriptome profiling that could have potential application to crop breeding and cultivation.
Collapse
Affiliation(s)
- Hinako Takehisa
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Yutaka Sato
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|
39
|
Marzec M, Situmorang A, Brewer PB, Brąszewska A. Diverse Roles of MAX1 Homologues in Rice. Genes (Basel) 2020; 11:E1348. [PMID: 33202900 PMCID: PMC7709044 DOI: 10.3390/genes11111348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Cytochrome P450 enzymes encoded by MORE AXILLARY GROWTH1 (MAX1)-like genes produce most of the structural diversity of strigolactones during the final steps of strigolactone biosynthesis. The diverse copies of MAX1 in Oryza sativa provide a resource to investigate why plants produce such a wide range of strigolactones. Here we performed in silico analyses of transcription factors and microRNAs that may regulate each rice MAX1, and compared the results with available data about MAX1 expression profiles and genes co-expressed with MAX1 genes. Data suggest that distinct mechanisms regulate the expression of each MAX1. Moreover, there may be novel functions for MAX1 homologues, such as the regulation of flower development or responses to heavy metals. In addition, individual MAX1s could be involved in specific functions, such as the regulation of seed development or wax synthesis in rice. Our analysis reveals potential new avenues of strigolactone research that may otherwise not be obvious.
Collapse
Affiliation(s)
- Marek Marzec
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland;
| | - Apriadi Situmorang
- ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia; (A.S.); (P.B.B.)
| | - Philip B. Brewer
- ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia; (A.S.); (P.B.B.)
| | - Agnieszka Brąszewska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland;
| |
Collapse
|
40
|
Lhamo D, Shao Q, Tang R, Luan S. Genome-Wide Analysis of the Five Phosphate Transporter Families in Camelina sativa and Their Expressions in Response to Low-P. Int J Mol Sci 2020; 21:ijms21218365. [PMID: 33171866 PMCID: PMC7664626 DOI: 10.3390/ijms21218365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Phosphate transporters (PHTs) play pivotal roles in phosphate (Pi) acquisition from the soil and distribution throughout a plant. However, there is no comprehensive genomic analysis of the PHT families in Camelina sativa, an emerging oilseed crop. In this study, we identified 73 CsPHT members belonging to the five major PHT families. A whole-genome triplication event was the major driving force for CsPHT expansion, with three homoeologs for each Arabidopsis ortholog. In addition, tandem gene duplications on chromosome 11, 18 and 20 further enlarged the CsPHT1 family beyond the ploidy norm. Phylogenetic analysis showed clustering of the CsPHT1 and CsPHT4 family members into four distinct groups, while CsPHT3s and CsPHT5s were clustered into two distinct groups. Promoter analysis revealed widespread cis-elements for low-P response (P1BS) specifically in CsPHT1s, consistent with their function in Pi acquisition and translocation. In silico RNA-seq analysis revealed more ubiquitous expression of several CsPHT1 genes in various tissues, whereas CsPHT2s and CsPHT4s displayed preferential expression in leaves. While several CsPHT3s were expressed in germinating seeds, most CsPHT5s were expressed in floral and seed organs. Suneson, a popular Camelina variety, displayed better tolerance to low-P than another variety, CS-CROO, which could be attributed to the higher expression of several CsPHT1/3/4/5 family genes in shoots and roots. This study represents the first effort in characterizing CsPHT transporters in Camelina, a promising polyploid oilseed crop that is highly tolerant to abiotic stress and low-nutrient status, and may populate marginal soils for biofuel production.
Collapse
Affiliation(s)
- Dhondup Lhamo
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94720, USA; (Q.S.); (R.T.)
- Correspondence: (D.L.); (S.L.)
| | - Qiaolin Shao
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94720, USA; (Q.S.); (R.T.)
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Renjie Tang
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94720, USA; (Q.S.); (R.T.)
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94720, USA; (Q.S.); (R.T.)
- Correspondence: (D.L.); (S.L.)
| |
Collapse
|
41
|
Abstract
In the human-pathogenic fungus Cryptococcus neoformans, the inositol polyphosphate signaling pathway is critical for virulence. We recently demonstrated the key role of the inositol pyrophosphate IP7 (isomer 5-PP-IP5) in driving fungal virulence; however, the mechanism of action remains elusive. Using genetic and biochemical approaches, and mouse infection models, we show that IP7 synthesized by Kcs1 regulates fungal virulence by binding to a conserved lysine surface cluster in the SPX domain of Pho81. Pho81 is the cyclin-dependent kinase (CDK) inhibitor of the phosphate signaling (PHO) pathway. We also provide novel mechanistic insight into the role of IP7 in PHO pathway regulation by demonstrating that IP7 functions as an intermolecular "glue" to stabilize Pho81 association with Pho85/Pho80 and, hence, promote PHO pathway activation and phosphate acquisition. Blocking IP7-Pho81 interaction using site-directed mutagenesis led to a dramatic loss of fungal virulence in a mouse infection model, and the effect was similar to that observed following PHO81 gene deletion, highlighting the key importance of Pho81 in fungal virulence. Furthermore, our findings provide additional evidence of evolutionary divergence in PHO pathway regulation in fungi by demonstrating that IP7 isomers have evolved different roles in PHO pathway control in C. neoformans and nonpathogenic yeast.IMPORTANCE Invasive fungal diseases pose a serious threat to human health globally with >1.5 million deaths occurring annually, 180,000 of which are attributable to the AIDS-related pathogen, Cryptococcus neoformans Here, we demonstrate that interaction of the inositol pyrophosphate, IP7, with the CDK inhibitor protein, Pho81, is instrumental in promoting fungal virulence. IP7-Pho81 interaction stabilizes Pho81 association with other CDK complex components to promote PHO pathway activation and phosphate acquisition. Our data demonstrating that blocking IP7-Pho81 interaction or preventing Pho81 production leads to a dramatic loss in fungal virulence, coupled with Pho81 having no homologue in humans, highlights Pho81 function as a potential target for the development of urgently needed antifungal drugs.
Collapse
|
42
|
Systemic induction of phosphatidylinositol-based signaling in leaves of arbuscular mycorrhizal rice plants. Sci Rep 2020; 10:15896. [PMID: 32985595 PMCID: PMC7522983 DOI: 10.1038/s41598-020-72985-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/09/2020] [Indexed: 11/29/2022] Open
Abstract
Most land plants form beneficial associations with arbuscular mycorrhizal (AM) fungi which improves mineral nutrition, mainly phosphorus, in the host plant in exchange for photosynthetically fixed carbon. Most of our knowledge on the AM symbiosis derives from dicotyledonous species. We show that inoculation with the AM fungus Funneliformis mosseae stimulates growth and increases Pi content in leaves of rice plants (O. sativa, cv Loto, ssp japonica). Although rice is a host for AM fungi, the systemic transcriptional responses to AM inoculation, and molecular mechanisms underlying AM symbiosis in rice remain largely elusive. Transcriptomic analysis identified genes systemically regulated in leaves of mycorrhizal rice plants, including genes with functions associated with the biosynthesis of phospholipids and non-phosphorus lipids (up-regulated and down-regulated, respectively). A coordinated regulation of genes involved in the biosynthesis of phospholipids and inositol polyphosphates, and genes involved in hormone biosynthesis and signaling (jasmonic acid, ethylene) occurs in leaves of mycorrhizal rice. Members of gene families playing a role in phosphate starvation responses and remobilization of Pi were down-regulated in leaves of mycorrhizal rice. These results demonstrated that the AM symbiosis is accompanied by systemic transcriptional responses, which are potentially important to maintain a stable symbiotic relationship in rice plants.
Collapse
|
43
|
Xu L, Wang F, Li R, Deng M, Fu M, Teng H, Yi K. OsCYCP4s coordinate phosphate starvation signaling with cell cycle progression in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1017-1033. [PMID: 31697021 DOI: 10.1111/jipb.12885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Phosphate starvation leads to a strong reduction in shoot growth and yield in crops. The reduced shoot growth is caused by extensive gene expression reprogramming triggered by phosphate deficiency, which is not itself a direct consequence of low levels of shoot phosphorus. However, how phosphate starvation inhibits shoot growth in rice is still unclear. In this study, we determined the role of OsCYCP4s in the regulation of shoot growth in response to phosphate starvation in rice. We demonstrate that the expression levels of OsCYCP4s, except OsCYCP4;3, were induced by phosphate starvation. Overexpression of the phosphate starvation induced OsCYCP4s could compete with the other cyclins for the binding with cyclin-dependent kinases, therefore suppressing growth by reducing cell proliferation. The phosphate starvation induced growth inhibition in the loss-of-function mutants cycp4;1, cycp4;2, and cycp4;4 is partially compromised. Furthermore, the expression of some phosphate starvation inducible genes is negatively modulated by these cyclins, which indicates that these OsCYCP4s may also be involved in phosphate starvation signaling. We conclude that phosphate starvation induced OsCYCP4s might coordinate phosphate starvation signaling and cell cycle progression under phosphate starvation stress.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ruili Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Minjuan Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Meilan Fu
- The Semi-arid Agriculture Engineering & Technology Research Center of P. R. China, Shijiazhuang, 050000, China
| | - Huiying Teng
- The Semi-arid Agriculture Engineering & Technology Research Center of P. R. China, Shijiazhuang, 050000, China
| | - Keke Yi
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
44
|
Zhang Y, Wu X, Yuan L. Distinct non-coding RNAs confer root-dependent sense transgene-induced post-transcriptional gene silencing and nitrogen-dependent post-transcriptional regulation to AtAMT1;1 transcripts in Arabidopsis roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:823-837. [PMID: 31901180 DOI: 10.1111/tpj.14667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
High-affinity ammonium uptake in roots mediate by AMT1-type ammonium transporters, which are tightly controlled at multiple regulatory levels for adapting various nitrogen availability. For Arabidopsis AtAMT1;1 gene, in addition to the transcriptional and post-translational controls, an organ-dependent and N-dependent post-transcriptional regulation was suggested as an additional regulatory step for fine tuning ammonium uptake, but the underlying mechanisms remain to be elucidated. Here, we showed that degradation of AtAMT1;1 transcript in roots of Pro35s:AtAMT1;1-transformed atamt1;1-1 Arabidopsis plants resulted from RDR6-dependent sense transgene-induced post-transcriptional gene silencing (S-PTGS). The siRNAs for S-PTGS may derive from the aberrant RNA, of which the production was co-determined by sequence feature and excessive expression of AtAMT1;1. Switching to the expression of AtAMT1;1 driven by ProAtUBQ10 or of AtAMT1;1 mutated at two siRNA-targeted hotspots reduced AtAMT1;1-specific siRNAs and overcame S-PTGS in roots. In roots of these lines, however, the steady-state transcript levels of AtAMT1;1 still significantly decreased under conditions of N-sufficiency compared with N-deficiency, confirming a N-dependent post-transcriptional regulatory manner. A crucial role of the 207-bp 3'-end sequence of AtAMT1;1 was further demonstrated by N-dependent accumulation of chimeric-AtAMT1;1 transcript in T-DNA insertion lines and of GFP-tagged chimeric-AtAMT1;1 transcript in transgenic lines. A novel non-coding RNA (ncRNA), which was highly abundant in N-sufficient roots, may target the above-identified 3'-end region for the degrading AtAMT1;1 transcript. This degradation could be prevented by a mutation on the AtAMT1;1 transcript at a potential cleavage site (+1458). These results suggested two distinct mechanisms of regulating AtAMT1;1 mRNA turnover by ncRNA for strictly control of ammonium uptake in roots.
Collapse
Affiliation(s)
- Yongjian Zhang
- Key Laboratory of Plant-Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| | - Xiangyu Wu
- Key Laboratory of Plant-Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| | - Lixing Yuan
- Key Laboratory of Plant-Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| |
Collapse
|
45
|
Zhang Z, Gao S, Chu C. Improvement of nutrient use efficiency in rice: current toolbox and future perspectives. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1365-1384. [PMID: 31919537 DOI: 10.1007/s00122-019-03527-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/24/2019] [Indexed: 05/03/2023]
Abstract
Modern agriculture relies heavily on chemical fertilizers, especially in terms of cereal production. The excess application of fertilizers not only increases production cost, but also causes severe environmental problems. As one of the major cereal crops, rice (Oryza sativa L.) provides the staple food for nearly half of population worldwide, especially in developing countries. Therefore, improving rice yield is always the priority for rice breeding. Macronutrients, especially nitrogen (N) and phosphorus (P), are two most important players for the grain yield of rice. However, with economic development and improved living standard, improving nutritional quality such as micronutrient contents in grains has become a new goal in order to solve the "hidden hunger." Micronutrients, such as iron (Fe), zinc (Zn), and selenium (Se), are critical nutritional elements for human health. Therefore, breeding the rice varieties with improved nutrient use efficiency (NUE) is thought to be one of the most feasible ways to increase both grain yield and nutritional quality with limited fertilizer input. In this review, we summarized the progresses in molecular dissection of genes for NUE by reverse genetics on macronutrients (N and P) and micronutrients (Fe, Zn, and Se), exploring natural variations for improving NUE in rice; and also, the current genetic toolbox and future perspectives for improving rice NUE are discussed.
Collapse
Affiliation(s)
- Zhihua Zhang
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shaopei Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
46
|
Yang J, Zhou J, Zhou HJ, Wang MM, Liu MM, Ke YZ, Li PF, Li JN, Du H. Global Survey and Expressions of the Phosphate Transporter Gene Families in Brassica napus and Their Roles in Phosphorus Response. Int J Mol Sci 2020; 21:E1752. [PMID: 32143436 PMCID: PMC7084545 DOI: 10.3390/ijms21051752] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 01/24/2023] Open
Abstract
Phosphate (Pi) transporters play critical roles in Pi acquisition and homeostasis. However, currently little is known about these genes in oil crops. In this study, we aimed to characterize the five Pi transporter gene families (PHT1-5) in allotetraploid Brassica napus. We identified and characterized 81 putative PHT genes in B. napus (BnaPHTs), including 45 genes in PHT1 family (BnaPHT1s), four BnaPHT2s, 10 BnaPHT3s, 13 BnaPHT4s and nine BnaPHT5s. Phylogenetic analyses showed that the largest PHT1 family could be divided into two groups (Group I and II), while PHT4 may be classified into five, Groups I-V. Gene structure analysis revealed that the exon-intron pattern was conservative within the same family or group. The sequence characteristics of these five families were quite different, which may contribute to their functional divergence. Transcription factor (TF) binding network analyses identified many potential TF binding sites in the promoter regions of candidates, implying their possible regulating patterns. Collinearity analysis demonstrated that most BnaPHTs were derived from an allopolyploidization event (~40.7%) between Brassica rapa and Brassica oleracea ancestors, and small-scale segmental duplication events (~39.5%) in the descendant. RNA-Seq analyses proved that many BnaPHTs were preferentially expressed in leaf and flower tissues. The expression profiles of most colinearity-pairs in B. napus are highly correlated, implying functional redundancy, while a few pairs may have undergone neo-functionalization or sub-functionalization during evolution. The expression levels of many BnaPHTs tend to be up-regulated by different hormones inductions, especially for IAA, ABA and 6-BA treatments. qRT-PCR assay demonstrated that six BnaPHT1s (BnaPHT1.11, BnaPHT1.14, BnaPHT1.20, BnaPHT1.35, BnaPHT1.41, BnaPHT1.44) were significantly up-regulated under low- and/or rich- Pi conditions in B. napus roots. This work analyzes the evolution and expression of the PHT family in Brassica napus, which will help further research on their role in Pi transport.
Collapse
Affiliation(s)
- Jin Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (J.Y.); (J.Z.); (H.-J.Z.); (M.-M.W.); (M.-M.L.); (Y.-Z.K.); (P.-F.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jie Zhou
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (J.Y.); (J.Z.); (H.-J.Z.); (M.-M.W.); (M.-M.L.); (Y.-Z.K.); (P.-F.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Hong-Jun Zhou
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (J.Y.); (J.Z.); (H.-J.Z.); (M.-M.W.); (M.-M.L.); (Y.-Z.K.); (P.-F.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Mang-Mang Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (J.Y.); (J.Z.); (H.-J.Z.); (M.-M.W.); (M.-M.L.); (Y.-Z.K.); (P.-F.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Ming-Ming Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (J.Y.); (J.Z.); (H.-J.Z.); (M.-M.W.); (M.-M.L.); (Y.-Z.K.); (P.-F.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Yun-Zhuo Ke
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (J.Y.); (J.Z.); (H.-J.Z.); (M.-M.W.); (M.-M.L.); (Y.-Z.K.); (P.-F.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Peng-Feng Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (J.Y.); (J.Z.); (H.-J.Z.); (M.-M.W.); (M.-M.L.); (Y.-Z.K.); (P.-F.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jia-Na Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (J.Y.); (J.Z.); (H.-J.Z.); (M.-M.W.); (M.-M.L.); (Y.-Z.K.); (P.-F.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Hai Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (J.Y.); (J.Z.); (H.-J.Z.); (M.-M.W.); (M.-M.L.); (Y.-Z.K.); (P.-F.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|
47
|
Sega P, Kruszka K, Szewc Ł, Szweykowska-Kulińska Z, Pacak A. Identification of transcription factors that bind to the 5'-UTR of the barley PHO2 gene. PLANT MOLECULAR BIOLOGY 2020; 102:73-88. [PMID: 31745747 DOI: 10.1007/s11103-019-00932-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
In barley and other higher plants, phosphate homeostasis is maintained by a regulatory network involving the PHO2 (PHOSPHATE2) encoding ubiquitin-conjugating (UBC) E2 enzyme, the PHR1 (PHOSPHATE STARVATION RESPONSE 1) transcription factor (TF), IPS1 (INDUCED BYPHOSPHATESTARVATION1) RNA, and miR399. During phosphate ion (Pi) deprivation, PHR1 positively regulates MIR399 expression, after transcription and processing mature miR399 guides the Ago protein to the 5'-UTR of PHO2 transcripts. Non-coding IPS1 RNA is highly expressed during Pi starvation, and the sequestration of miR399 molecules protects PHO2 mRNA from complete degradation. Here, we reveal new cis- and trans-regulatory elements that are crucial for efficient PHO2 gene expression in barley. We found that the 5'-UTR of PHO2 contains two PHR1 binding sites (P1BSs) and one Pi-responsive PHO element. Using a yeast one-hybrid (Y1H) assay, we identified two candidate proteins that might mediate this transcriptional regulation: a barley PHR1 ortholog and a TF containing an uncharacterized MYB domain. Additional results classified this new potential TF as belonging to the APL (ALTERED PHLOEM DEVELOPMENT) protein family, and we observed its nuclear localization in barley protoplasts. Pi starvation induced the accumulation of barley APL transcripts in both the shoots and roots. Interestingly, the deletion of the P1BS motif from the first intron of the barley 5'-UTR led to a significant increase in the transcription of a downstream β-glucuronidase (GUS) reporter gene in tobacco leaves. Our work extends the current knowledge about putative cis- and trans-regulatory elements that may affect the expression of the barley PHO2 gene.
Collapse
Affiliation(s)
- Paweł Sega
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Katarzyna Kruszka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Łukasz Szewc
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Zofia Szweykowska-Kulińska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Andrzej Pacak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
48
|
Kumar A, Sharma M, Gahlaut V, Nagaraju M, Chaudhary S, Kumar A, Tyagi P, Gajula MP, Singh KP. Genome-wide identification, characterization, and expression profiling of SPX gene family in wheat. Int J Biol Macromol 2019; 140:17-32. [DOI: 10.1016/j.ijbiomac.2019.08.105] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 01/11/2023]
|
49
|
Huang Y, Xu PH, Hou BZ, Shen YY. Strawberry tonoplast transporter, FaVPT1, controls phosphate accumulation and fruit quality. PLANT, CELL & ENVIRONMENT 2019; 42:2715-2729. [PMID: 31151133 DOI: 10.1111/pce.13598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 05/13/2023]
Abstract
Phosphorus (P) is essential for plant growth and development, and the vacuole is an important organelle for phosphate storage. However, the tonoplast phosphate transporter in fleshy fruits remains unknown. In this study, based on the strawberry (Fragaria × ananassa) fruit transcriptome data, a tonoplast-localized vacuolar phosphate transporter with SPX and major facilitator superfamily domains, FaVPT1, was identified. FaVPT1 expression was highest in the fruits and could be induced by sucrose. Using transient transgenic systems in strawberry fruit, the downregulation and upregulation of FaVPT1 inhibited and promoted ripening, respectively, and affected phosphate contents, fruit firmness, sugar and anthocyanin contents, and ripening-related gene transcription. FaVPT1 could rescue Pi absorption in both yeast and the Arabidopsis atvpt1 mutant, confirming the similar function of FaVPT1 and AtVPT1, a previously identified tonoplast phosphate transporter in Arabidopsis. The Escherichia coli-expressed SPX domain of FaVPT1 could strongly bind to InsP6 with a Kd of 3.5 μM. The results demonstrate that FaVPT1 is a tonoplast phosphate transporter and regulates strawberry fruit ripening and quality, to a large extent, via sucrose.
Collapse
Affiliation(s)
- Yun Huang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Bei Jing Bei Nong Enterprise Management Co., Ltd., Beijing, 102206, China
| | - Peng-Hao Xu
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Bing-Zhu Hou
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Yuan-Yue Shen
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
50
|
Ruan W, Guo M, Wang X, Guo Z, Xu Z, Xu L, Zhao H, Sun H, Yan C, Yi K. Two RING-Finger Ubiquitin E3 Ligases Regulate the Degradation of SPX4, An Internal Phosphate Sensor, for Phosphate Homeostasis and Signaling in Rice. MOLECULAR PLANT 2019; 12:1060-1074. [PMID: 31002982 DOI: 10.1016/j.molp.2019.04.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 05/13/2023]
Abstract
SPX-domain-containing proteins (SPXs) play an important role in inorganic phosphate (Pi) sensing, signaling, and transport in eukaryotes. In plants, SPXs are known to integrate cellular Pi status and negatively regulate the activity of Pi central regulators, the PHOSPATE STARVATION RESPONSE proteins (PHRs). The stability of SPXs, such as SPX4, is reduced under Pi-deficient conditions. However, the mechanisms by which SPXs are degraded remain unclear. In this study, using a yeast-two-hybrid screen we identified two RING-finger ubiquitin E3 ligases regulating SPX4 degradation, designated SDEL1 and SDEL2, which were post-transcriptionally induced by Pi starvation. We found that both SDELs were located in the nucleus and cytoplasm, had ubiquitin E3 ligase activity, and directly ubiquitinated the K213 and K299 lysine residues in SPX4 to regulate its stability. Furthermore, we found that PHR2, a Pi central regulator in rice, could compete with SDELs by interacting with SPX4 under Pi-sufficient conditions, which protected SPX4 from ubiquitination and degradation. Consistent with the biochemical function of SDEL1 and SDEL2, overexpression of SDEL1 or SDEL2 resulted in Pi overaccumulation and induced Pi-starvation signaling even under Pi-sufficient conditions. Conversely, their loss-of-function mutants displayed decreased Pi accumulation and reduced Pi-starvation signaling. Collectively, our study revealed that SDEL1 and SDEL2 facilitate the degradation of SPX4 to modulate PHR2 activity and regulate Pi homeostasis and Pi signaling in response to external Pi availability in rice.
Collapse
Affiliation(s)
- Wenyuan Ruan
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Meina Guo
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xueqing Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhenhui Guo
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhuang Xu
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lei Xu
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongyu Zhao
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiji Sun
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Chengqi Yan
- Ningbo Academy of Agriculture Sciences, 19 Dehou Street, Ningbo City 315000, China
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|