1
|
Nahidi M, Soleimanpour S, Emadzadeh M. Probiotics as a Promising Therapy in Improvement of Symptoms in Children With ADHD: A Systematic Review. J Atten Disord 2024; 28:1163-1172. [PMID: 38369739 DOI: 10.1177/10870547241228828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
BACKGROUND ADHD is widely recognized as the most prevalent neurodevelopmental disorder in children. Recently, the potential role of gut microbiota as an etiological factor in ADHD has gained attention. This systematic review aims to investigate the potential impact of probiotic supplements on alleviating ADHD symptoms and influencing behavior. METHODS PubMed, Web of Science, Cochrane Library, and SCOPUS were searched from inception to May 2023. Only randomized controlled trials that have suitable data of the effects of probiotics/synbiotics on children with ADHD were enrolled. The risk of bias of the included studies was assessed by Cochrane Collaboration risk of bias tool. RESULTS Five related randomized controlled trial were evaluated in the current review. Types of interventions ranged from single/multi strain probiotics to synbiotic. The duration of intervention in all of the studies were 2 to 3 months. The assessed outcomes were very diverse and different tools were used to report the symptoms in children. Among those which used Conners' Parent Rating Scale, a decrease in the total score occurred in the probiotic group, compared to the placebo group. An improvement in both intervention and control groups was seen in one study which used ADHD-Rating Scale. CONCLUSION In summary, the combined findings from the reviewed studies suggest that probiotic supplements might potentially serve as a complementary intervention for ADHD. However, given the small number of studies, limited sample sizes, and the diversity of probiotic strains, further research is needed to clarify the effects of probiotics in children with ADHD. The observed tolerability of probiotics is noteworthy as none of the studies report adverse effects.
Collapse
Affiliation(s)
- Mahsa Nahidi
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Emadzadeh
- Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Oberman LM, Benussi A. Transcranial Magnetic Stimulation Across the Lifespan: Impact of Developmental and Degenerative Processes. Biol Psychiatry 2024; 95:581-591. [PMID: 37517703 PMCID: PMC10823041 DOI: 10.1016/j.biopsych.2023.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Transcranial magnetic stimulation (TMS) has emerged as a pivotal noninvasive technique for investigating cortical excitability and plasticity across the lifespan, offering valuable insights into neurodevelopmental and neurodegenerative processes. In this review, we explore the impact of TMS applications on our understanding of normal development, healthy aging, neurodevelopmental disorders, and adult-onset neurodegenerative diseases. By presenting key developmental milestones and age-related changes in TMS measures, we provide a foundation for understanding the maturation of neurotransmitter systems and the trajectory of cognitive functions throughout the lifespan. Building on this foundation, the paper delves into the pathophysiology of neurodevelopmental disorders, including autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, and adolescent depression. Highlighting recent findings on altered neurotransmitter circuits and dysfunctional cortical plasticity, we underscore the potential of TMS as a valuable tool for unraveling underlying mechanisms and informing future therapeutic interventions. We also review the emerging role of TMS in investigating and treating the most common adult-onset neurodegenerative disorders and late-onset depression. By outlining the therapeutic applications of noninvasive brain stimulation techniques in these disorders, we discuss the growing body of evidence supporting their use as therapeutic tools for symptom management and potentially slowing disease progression. The insights gained from TMS studies have advanced our understanding of the underlying mechanisms in both healthy and disease states, ultimately informing the development of more targeted diagnostic and therapeutic strategies for a wide range of neuropsychiatric conditions.
Collapse
Affiliation(s)
- Lindsay M Oberman
- National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| |
Collapse
|
3
|
Wang Q, Yang Q, Liu X. The microbiota-gut-brain axis and neurodevelopmental disorders. Protein Cell 2023; 14:762-775. [PMID: 37166201 PMCID: PMC10599644 DOI: 10.1093/procel/pwad026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023] Open
Abstract
The gut microbiota has been found to interact with the brain through the microbiota-gut-brain axis, regulating various physiological processes. In recent years, the impacts of the gut microbiota on neurodevelopment through this axis have been increasingly appreciated. The gut microbiota is commonly considered to regulate neurodevelopment through three pathways, the immune pathway, the neuronal pathway, and the endocrine/systemic pathway, with overlaps and crosstalks in between. Accumulating studies have identified the role of the microbiota-gut-brain axis in neurodevelopmental disorders including autism spectrum disorder, attention deficit hyperactivity disorder, and Rett Syndrome. Numerous researchers have examined the physiological and pathophysiological mechanisms influenced by the gut microbiota in neurodevelopmental disorders (NDDs). This review aims to provide a comprehensive overview of advancements in research pertaining to the microbiota-gut-brain axis in NDDs. Furthermore, we analyzed both the current state of research progress and discuss future perspectives in this field.
Collapse
Affiliation(s)
- Qinwen Wang
- State Key Laboratory of Reproductive Medicine and offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Qianyue Yang
- State Key Laboratory of Reproductive Medicine and offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Xingyin Liu
- State Key Laboratory of Reproductive Medicine and offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
- Department of Microbiota Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
4
|
Kwak MJ, Kim SH, Kim HH, Tanpure R, Kim JI, Jeon BH, Park HK. Psychobiotics and fecal microbial transplantation for autism and attention-deficit/hyperactivity disorder: microbiome modulation and therapeutic mechanisms. Front Cell Infect Microbiol 2023; 13:1238005. [PMID: 37554355 PMCID: PMC10405178 DOI: 10.3389/fcimb.2023.1238005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 06/30/2023] [Indexed: 08/10/2023] Open
Abstract
Dysbiosis of the gut microbiome is thought to be the developmental origins of the host's health and disease through the microbiota-gut-brain (MGB) axis: such as immune-mediated, metabolic, neurodegenerative, and neurodevelopmental diseases. Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are common neurodevelopmental disorders, and growing evidence indicates the contribution of the gut microbiome changes and imbalances to these conditions, pointing to the importance of considering the MGB axis in their treatment. This review summarizes the general knowledge of gut microbial colonization and development in early life and its role in the pathogenesis of ASD/ADHD, highlighting a promising therapeutic approach for ASD/ADHD through modulation of the gut microbiome using psychobiotics (probiotics that positively affect neurological function and can be applied for the treatment of psychiatric diseases) and fecal microbial transplantation (FMT).
Collapse
Affiliation(s)
- Min-jin Kwak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Seung Hyun Kim
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hoo Hugo Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Rahul Tanpure
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, Seoul, Republic of Korea
- Clinical Research Institute of Developmental Medicine, Hanyang University Hospital, Seoul, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hyun-Kyung Park
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
- Clinical Research Institute of Developmental Medicine, Hanyang University Hospital, Seoul, Republic of Korea
| |
Collapse
|
5
|
Xiao L, Huo X, Wang Y, Li W, Li M, Wang C, Wang F, Sun T. A bibliometric analysis of global research status and trends in neuromodulation techniques in the treatment of autism spectrum disorder. BMC Psychiatry 2023; 23:183. [PMID: 36941549 PMCID: PMC10026211 DOI: 10.1186/s12888-023-04666-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disease which has risen to become the main cause of childhood disability, placing a heavy burden on families and society. To date, the treatment of patients with ASD remains a complicated problem, for which neuromodulation techniques are a promising solution. This study analyzed the global research situation of neuromodulation techniques in the treatment of ASD from 1992 to 2022, aiming to explore the global research status and frontier trends in this field. METHODS The Web of Science (WoS) was searched for literature related to neuromodulation techniques for ASD from 1992 to October 2022. A knowledge atlas to analyze collaboration among countries, institutions, authors, publishing journals, reference co-citation patterns, keyword co-occurrence, keyword clustering, and burst keywords was constructed using Rstudio software, CiteSpace, and VOSviewer. RESULTS In total, 392 publications related to the treatment of ASD using neuromodulation techniques were included. Despite some fluctuations, the number of publications in this field has shown a growing trend in recent years. The United States and Deakin University are the leading country and institution in this field, respectively. The greatest contributing authors are Peter G Enticott, Manuel F Casanova, and Paul B Fitzgerald et al. The most prolific and cited journal is Brain Stimulation and the most commonly co-cited journal is The Journal of Autism and Developmental Disorders. The most frequently cited article was that of Simone Rossi (Safety, ethical considerations, and application guidelines for the use of transverse magnetic stimulation in clinical practice and research, 2009). "Obsessive-compulsive disorder," "transcranial direct current stimulation," "working memory," "double blind" and "adolescent" were identified as hotspots and frontier trends of neuromodulation techniques in the treatment of ASD. CONCLUSION The application of neuromodulation techniques for ASD has attracted the attention of researchers worldwide. Restoring the social ability and improving the comorbid symptoms in autistic children and adults have always been the focus of research. Neuromodulation techniques have demonstrated significant advantages and effects on these issues. Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are new therapeutic methods introduced in recent years, and are also directions for further exploration.
Collapse
Affiliation(s)
- Lifei Xiao
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750000, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, 750000, China
| | - Xianhao Huo
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750000, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, 750000, China
| | - Yangyang Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750000, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, 750000, China
| | - Wenchao Li
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750000, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, 750000, China
| | - Mei Li
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750000, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, 750000, China
| | - Chaofan Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750000, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, 750000, China
| | - Feng Wang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750000, China.
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, 750000, China.
| |
Collapse
|
6
|
Elwyn R, Mitchell J, Kohn MR, Driver C, Hay P, Lagopoulos J, Hermens DF. Novel ketamine and zinc treatment for anorexia nervosa and the potential beneficial interactions with the gut microbiome. Neurosci Biobehav Rev 2023; 148:105122. [PMID: 36907256 DOI: 10.1016/j.neubiorev.2023.105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Anorexia nervosa (AN) is a severe illness with diverse aetiological and maintaining contributors including neurobiological, metabolic, psychological, and social determining factors. In addition to nutritional recovery, multiple psychological and pharmacological therapies and brain-based stimulations have been explored; however, existing treatments have limited efficacy. This paper outlines a neurobiological model of glutamatergic and γ-aminobutyric acid (GABA)-ergic dysfunction, exacerbated by chronic gut microbiome dysbiosis and zinc depletion at a brain and gut level. The gut microbiome is established early in development, and early exposure to stress and adversity contribute to gut microbial disturbance in AN, early dysregulation to glutamatergic and GABAergic networks, interoceptive impairment, and inhibited caloric harvest from food (e.g., zinc malabsorption, competition for zinc ions between gut bacteria and host). Zinc is a key part of glutamatergic and GABAergic networks, and also affects leptin and gut microbial function; systems dysregulated in AN. Low doses of ketamine in conjunction with zinc, could provide an efficacious combination to act on NMDA receptors and normalise glutamatergic, GABAergic and gut function in AN.
Collapse
Affiliation(s)
- Rosiel Elwyn
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia.
| | - Jules Mitchell
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Michael R Kohn
- AYA Medicine Westmead Hospital, CRASH (Centre for Research into Adolescent's Health) Western Sydney Local Health District, Sydney University, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Christina Driver
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Phillipa Hay
- Translational Health Research Institute (THRI) School of Medicine, Western Sydney University, Campbelltown, NSW, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
7
|
Attention-Deficit/Hyperactivity Disorder and the Gut Microbiota–Gut–Brain Axis: Closing Research Gaps through Female Inclusion in Study Design. WOMEN 2022. [DOI: 10.3390/women2030023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal tract harbors a densely populated community of microbes that exhibits sexual dimorphism. Dysbiosis of this community has been associated with chronic human disease states ranging from metabolic diseases to neuropsychiatric disorders (NPDs). The gut microbiota–gut–brain axis (GMGBA) is a bi-directional pathway that facilitates the interaction of the gut microflora with host physiological functions. Recently, research surrounding the potential roles of the GMGBA in the development of NPDs (e.g., depression, anxiety, and autism spectrum disorders (ASDs)) has increased. However, the role of the GMGBA in attention-deficit/hyperactivity disorder (ADHD), an NPD that affects an estimated 8.4% of children (5.1% of female and 11.5% of male children) and 4% of adults (with a male–female odds ratio of 1.6) in the United States, remains understudied. Herein, we synthesize the current literature regarding the GMGBA, ADHD, and the potentially relevant intersections between the GMGBA and ADHD. Recommendations are presented for pathways of future research into the role(s) of the GMGBA in ADHD etiology and symptomatology. Particular focus is given to the potential for the variable of host sex to act as an outcome modifier of the relationship between the GMGBA and ADHD.
Collapse
|
8
|
Bernardino I, Dionísio A, Violante IR, Monteiro R, Castelo-Branco M. Motor Cortex Excitation/Inhibition Imbalance in Young Adults With Autism Spectrum Disorder: A MRS-TMS Approach. Front Psychiatry 2022; 13:860448. [PMID: 35492696 PMCID: PMC9046777 DOI: 10.3389/fpsyt.2022.860448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
Excitatory/inhibitory imbalance has been suggested as a neurobiological substrate of the cognitive symptomatology in Autism Spectrum Disorder (ASD). Studies using magnetic resonance spectroscopy (MRS) attempted to characterize GABA and Glutamate brain levels in ASD. However mixed findings have been reported. Here, we characterize both neurochemical and physiological aspects of GABA system in ASD by implementing a more comprehensive approach combining MRS and transcranial magnetic stimulation (TMS). A group of 16 young ASD adults and a group of 17 controls participated in this study. We employed one MRS session to assess motor cortex GABA+ and Glutamate+Glutamine (Glx) levels using MEGAPRESS and PRESS sequences, respectively. Additionally, a TMS experiment was implemented including paired-pulse (SICI, ICF and LICI), input-output curve and cortical silent period to probe cortical excitability. Our results showed a significantly increased Glx, with unchanged GABA+ levels in the ASD group compared with controls. Single TMS measures did not differ between groups, although exploratory within-group analysis showed impaired inhibition in SICI5ms, in ASD. Importantly, we observed a correlation between GABA levels and measures of the input-output TMS recruitment curve (slope and MEP amplitude) in the control group but not in ASD, as further demonstrated by direct between group comparisons. In this exploratory study, we found evidence of increased Glx levels which may contribute to ASD excitatory/inhibitory imbalance while highlighting the relevance of conducting further larger-scale studies to investigate the GABA system from complementary perspectives, using both MRS and TMS techniques.
Collapse
Affiliation(s)
- Inês Bernardino
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Ana Dionísio
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Inês R Violante
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Raquel Monteiro
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
9
|
Kalenik A, Kardaś K, Rahnama A, Sirojć K, Wolańczyk T. Gut microbiota and probiotic therapy in ADHD: A review of current knowledge. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110277. [PMID: 33561522 DOI: 10.1016/j.pnpbp.2021.110277] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder characterized by inattention, impulsivity and hyperactivity. The etiology of the disorder is multi-factorial, with a main focus on genetic factors. However, emerging research shows the involvement of changes and imbalances in the intestinal microbiota. Evidence for the influence of gut microbiota on brain development and neurogenesis is clear. We present a review of emerging research on the microbiota in the ADHD population. The aim of this study was to summarize the current state of knowledge on ADHD, to identify gaps in knowledge, as well as to indicate the directions of new research. Thanks to the researchers that would be possible to better understand the complexity of ADHD etiology, especially the role of the intestinal microbiota in the pathogenesis of the disorder. Pubmed, Scopus and Google Scholar databases were used while writing the review. Numerous studies show that probiotic supplementation can have a positive effect on the course of neurodevelopmental disorders, including ADHD. Unfortunately, clinical studies that were identified are mostly inconclusive, and more high-quality research is needed to produce robust evidence for therapy based on interventions targeting microbiota.
Collapse
Affiliation(s)
- Anna Kalenik
- Department of Child Psychiatry, Medical University of Warsaw, Poland.
| | - Karolina Kardaś
- Department of Child Psychiatry, Medical University of Warsaw, Poland
| | - Anna Rahnama
- Department of Child Psychiatry, Medical University of Warsaw, Poland
| | - Katarzyna Sirojć
- Department of Child Psychiatry, Medical University of Warsaw, Poland
| | - Tomasz Wolańczyk
- Department of Child Psychiatry, Medical University of Warsaw, Poland
| |
Collapse
|
10
|
Zhang W, Xiong BR, Zhang LQ, Huang X, Yuan X, Tian YK, Tian XB. The Role of the GABAergic System in Diseases of the Central Nervous System. Neuroscience 2021; 470:88-99. [PMID: 34242730 DOI: 10.1016/j.neuroscience.2021.06.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
It is well known that the central nervous system (CNS) is a complex neuronal network and its function depends on the balance between excitatory and inhibitory neurons. Disruption of the excitatory/inhibitory (E/I) balance is the main cause for the majority of the CNS diseases. In this review, we will discuss roles of the inhibitory system in the CNS diseases. The GABAergic system as the main inhibitory system, is essential for the appropriate functioning of the CNS, especially as it is engaged in the formation of learning and memory. Many researchers have reported that the GABAergic system is involved in regulating synaptic plasticity, cognition and long-term potentiation. Some clinical manifestations (such as cognitive dysfunctions, attention deficits, etc.) have also been shown to emerge after abnormalities in the GABAergic system accompanied with concomitant diseases, that include Alzheimer's disease (AD), Parkinson's disease (PD), Autism spectrum disorder (ASD), Schizophrenia, etc. The GABAergic system consists of GABA, GABA transporters, GABAergic receptors and GABAergic neurons. Changes in any of these components may contribute to the dysfunctions of the CNS. In this review, we will synthesize studies which demonstrate how the GABAergic system participates in the pathogenesis of the CNS disorders, which may provide a new idea that might be used to treat the CNS diseases.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Bing-Rui Xiong
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, 430071 Wuhan, Hubei, China
| | - Long-Qing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Xian Huang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Xiaoman Yuan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Yu-Ke Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Xue-Bi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China.
| |
Collapse
|
11
|
Jannati A, Ryan MA, Block G, Kayarian FB, Oberman LM, Rotenberg A, Pascual-Leone A. Modulation of motor cortical excitability by continuous theta-burst stimulation in adults with autism spectrum disorder. Clin Neurophysiol 2021; 132:1647-1662. [PMID: 34030059 PMCID: PMC8197744 DOI: 10.1016/j.clinph.2021.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To test whether change in motor evoked potential (ΔMEP) induced by continuous theta-burst stimulation (cTBS) of motor cortex (M1) distinguishes adults with autism spectrum disorder (ASD) from neurotypicals, and to explore the contribution of two common polymorphisms related to neuroplasticity. METHODS 44 adult neurotypical (NT) participants (age 21-65, 34 males) and 19 adults with ASD (age 21-58, 17 males) prospectively underwent M1 cTBS. Their data were combined with previously obtained results from 35 NT and 35 ASD adults. RESULTS ΔMEP at 15 minutes post-cTBS (T15) was a significant predictor of diagnosis (p = 0.04) in the present sample (n=63). T15 remained a significant predictor in a larger sample (n=91) and when partially imputed based on T10-T20 from a yet-greater sample (N=133). T15 also remained a significant predictor of diagnosis among brain-derived neurotrophic factor (BDNF) Met+ and apolipoprotein E (APOE) ε4- subjects (p's < 0.05), but not among Met- or ε4+ subjects (p's > 0.19). CONCLUSIONS ΔMEP at T15 post-cTBS is a significant biomarker for adults with ASD, and its utility is modulated by BDNF and APOE polymorphisms. SIGNIFICANCE M1 cTBS response is a physiologic biomarker for adults with ASD in large samples, and controlling for BDNF and APOE polymorphisms can improve its diagnostic utility.
Collapse
Affiliation(s)
- Ali Jannati
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Mary A Ryan
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Gabrielle Block
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Fae B Kayarian
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Lindsay M Oberman
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Alexander Rotenberg
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA; Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA; Guttman Brain Health Institute, Institut Guttman de Neurorehabilitació, Universitat Autónoma de Barcelona, Badalona, Barcelona, Spain.
| |
Collapse
|
12
|
Ahtam B, Braeutigam S, Bailey A. Semantic Processing in Autism Spectrum Disorders Is Associated With the Timing of Language Acquisition: A Magnetoencephalographic Study. Front Hum Neurosci 2020; 14:267. [PMID: 32754020 PMCID: PMC7366733 DOI: 10.3389/fnhum.2020.00267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/15/2020] [Indexed: 12/23/2022] Open
Abstract
Individuals with autism show difficulties in using sentence context to identify the correct meaning of ambiguous words, such as homonyms. In this study, the brain basis of sentence context effects on word understanding during reading was examined in autism spectrum disorder (ASD) and typical development (TD) using magnetoencephalography. The correlates of a history of developmental language delay in ASD were also investigated. Event related field responses at early (150 ms after the onset of a final word) and N400 latencies are reported for three different types of sentence final words: dominant homonyms, subordinate homonyms, and unambiguous words. Clear evidence for semantic access was found at both early and conventional N400 latencies in both TD participants and individuals with ASD with no history of language delay. By contrast, modulation of evoked activity related to semantic access was weak and not significant at early latencies in individuals with ASD with a history of language delay. The reduced sensitivity to semantic context in individuals with ASD and language delay was accompanied by strong right hemisphere lateralization at early and N400 latencies; such strong activity was not observed in TD individuals and individuals with ASD without a history of language delay at either latency. These results provide new evidence and support for differential neural mechanisms underlying semantic processing in ASD, and indicate that delayed language acquisition in ASD is associated with different lateralization and processing of language.
Collapse
Affiliation(s)
- Banu Ahtam
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Department of Pediatrics, Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Sven Braeutigam
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Anthony Bailey
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Rothärmel M, Moulier V, Vasse M, Isaac C, Faerber M, Bendib B, Mirea-Grivel I, Opolczynski G, Rosier A, Guillin O. A Prospective Open-Label Pilot Study of Transcranial Direct Current Stimulation in High-Functioning Autistic Patients with a Dysexecutive Syndrome. Neuropsychobiology 2020; 78:189-199. [PMID: 31266030 DOI: 10.1159/000501025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/18/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Executive functions (EF) are often impaired in autism spectrum disorder (ASD). Such dysfunctions are associated with anxiety, depression, and a lack of autonomy. Transcranial direct current stimulation (tDCS) has been shown to enhance EF in healthy adults and clinical populations and to improve working memory - a component of the EF - in adults with high-functioning ASD (HF-ASD). We hypothesized that tDCS could improve the EF of HF-ASD patients. Such enhancement could improve their adaptive behaviors. METHOD Eight patients with HF-ASD received 10 consecutive cathodal tDCS sessions (2 mA) over the left dorsolateral prefrontal cortex (F3) for 15 min each in an open trial. EF (with the Stroop test, Trail Making Test [TMT] A and B, Modified Wisconsin Card Sorting Test [mWCST], and Verbal Fluency Test) and behavioral dysexecutive syndrome (with the Behavioral Dysexecutive Syndrome Inventory and the Repetitive and Restricted Behaviour scale) were assessed before and 10 days after treatment. RESULTS This study showed significant improvement in initiation (TMT-A time: p = 0.018) and cognitive flexibility (TMT-B time: p = 0.009; letter Verbal Fluency Test: p = 0.017; mWCST total errors: p = 0.028) after tDCS. Regarding behavior, the hypoactivity of the patients improved, as well as their repetitive and restrictive behaviors. In addition, this noninvasive neurostimulation technique was well tolerated. CONCLUSIONS Flexibility and initiation are the most impaired EF in autism. These are promising results which justify a randomized and placebo-controlled study in a wider population. If these results were confirmed by a randomized controlled trial, tDCS could be an easy and well-tolerated adjunctive treatment aiming to improve the quality of life and the autonomy of ASD patients.
Collapse
Affiliation(s)
- Maud Rothärmel
- University Department of Psychiatry, Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France,
| | - Virginie Moulier
- University Department of Psychiatry, Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France.,EPS Ville Evrard, Unité de Recherche Clinique, Neuilly-sur-Marne, France
| | - Marianne Vasse
- University Department of Psychiatry, Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Clémence Isaac
- EPS Ville Evrard, Unité de Recherche Clinique, Neuilly-sur-Marne, France
| | - Mathieu Faerber
- Centre Ressource Autisme Normandie Seine Eure, Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Bilal Bendib
- University Department of Psychiatry, Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Iris Mirea-Grivel
- University Department of Psychiatry, Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Gaëlle Opolczynski
- University Department of Psychiatry, Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Antoine Rosier
- Centre Ressource Autisme Normandie Seine Eure, Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Olivier Guillin
- University Department of Psychiatry, Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France.,Centre Ressource Autisme Normandie Seine Eure, Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France.,CHU de Rouen, Rouen, France.,Faculté de Médecine, Normandy University, Rouen, France
| |
Collapse
|
14
|
Ford TC, Woods W, Enticott PG, Crewther DP. Cortical excitation-inhibition ratio mediates the effect of pre-attentive auditory processing deficits on interpersonal difficulties. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109769. [PMID: 31676468 DOI: 10.1016/j.pnpbp.2019.109769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/22/2019] [Accepted: 09/27/2019] [Indexed: 11/19/2022]
Abstract
Several lines of evidence identify aberrant excitatory-inhibitory neural processes across autism and schizophrenia spectrum disorders, particularly within the psychosocial domain. Such neural processes include increased excitatory glutamate and reduced inhibitory GABA concentrations, which may affect auditory pre-attentive processing as indexed by the mismatch negativity (MMN); thus, an excitation-inhibition imbalance might lead to aberrant MMN, which might in turn drive the relationship between the MMN and psychosocial difficulties. This research has the potential to enhance the neurochemical understanding of the relationship between electrophysiology (MMN) and behavioural/clinical measures (psychosocial difficulties). Thirty-eight adults (18 male, 18-40 years) completed the Schizotypal Personality Questionnaire (SPQ) and Autism-Spectrum Quotient (AQ). Glutamate and GABA concentrations in bilateral superior temporal cortex (STC) were quantified using proton magnetic resonance spectroscopy (1H-MRS) while auditory MMN to a duration deviant was measured with magnetoencephalography. Spearman correlations probed the relationships between STC glutamate/GABA ratios, MMN amplitude and latency, and AQ and SPQ dimensions. Mediation effects of glutamate/GABA ratios on the relationship between MMN and AQ-SPQ dimensions were probed using causal mediation analysis. Only SPQ-interpersonal and AQ-communication were significantly correlated with right hemisphere glutamate/GABA ratios and MMN latency (ps < 0.05), which were themselves correlated (p = .035). Two mediation models were investigated, with right MMN latency as predictor and SPQ-interpersonal and AQ-communication as outcome variables. Right STC glutamate/GABA ratios significantly mediated the relationship between MMN latency and SPQ-interpersonal scores, but only partially mediated the relationship between MMN latency and AQ-communication scores. These findings support the growing body of literature pointing toward an excitation-inhibition imbalance that is central to psychosocial functioning across multi-dimensional spectrum disorders, such as autism and schizophrenia, and provides neurochemical indicators of the processes that underlie psychosocial dysfunction.
Collapse
Affiliation(s)
- Talitha C Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia; Centre for Human Psychopharmacology, Faculty of Heath, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia.
| | - Will Woods
- Centre for Mental Health, Faculty of Heath, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - David P Crewther
- Centre for Human Psychopharmacology, Faculty of Heath, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Kumperscak HG, Gricar A, Ülen I, Micetic-Turk D. A Pilot Randomized Control Trial With the Probiotic Strain Lactobacillus rhamnosus GG (LGG) in ADHD: Children and Adolescents Report Better Health-Related Quality of Life. Front Psychiatry 2020; 11:181. [PMID: 32256407 PMCID: PMC7092625 DOI: 10.3389/fpsyt.2020.00181] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/25/2020] [Indexed: 12/28/2022] Open
Abstract
Objectives: This double-blind pilot randomized placebo-controlled trial examined the possible effect of the probiotic strain Lactobacillus rhamnosus GG ATCC53103 (LGG) on symptoms of attention-deficit/hyperactivity disorder (ADHD), health-related quality of life (QoL), and serum levels of cytokines in children and adolescents with ADHD. Methods: This trial evaluated 32 drug-naive children and adolescents aged between four and 17 years with a diagnosis of ADHD. The study subjects were randomly assigned to either the group that received LGG or the group that received the placebo. Assessments, comprising the ADHD Parent-Report Rating Scale-IV: Home Version; the Child Self-Report and Parent Proxy-Report of the Pediatric Quality of Life Inventory TM (PedsQL TM ) 4.0 Generic Core Scale; the Parent Form (CBCL/6-18) and the Teacher Report Form (TRF) of the Child Behavior Checklist (CBCL) for ages 6-18 of the Achenbach System of Empirically Based Assessment (ASEBA); and the serum cytokines; were compared between the groups at the baseline and after 3 months. Results: Thirty-five participants were randomized, with 32 completing the study (91.4% retention). There was a significant improvement in the PedsQL Child Self-Report Total Score after 3 months of treatment in the probiotic (p = 0.021, d = 0.53), whereas there was no significant improvement in the placebo group (p = 0.563, d = 0.04). The results of psychometric parameters assessed by parents and teachers were not so straightforward. There were statistically significant differences in the levels of serum cytokines between the groups after the 3-month treatment period: IL-6 in both the probiotic (p = 0.004, d = 0.73) and the placebo groups (p = 0.035, d = 0.94); IL-10 (p = 0.035, d = 0.6); IL-12 p70 (p = 0.025, d = 0.89); and TNF-α (p = 0.046, d = 0.64) in the probiotic group only. Conclusions: Children and adolescents with ADHD who received LGG supplementation reported better health-related QoL compared to their peers who received the placebo. This suggests that LGG supplementation could be beneficial. But results with psychometric tests conducted by parents and teachers as well as differences in the levels of inflammatory cytokines were ambiguous. Based on these results, we propose some study modifications: a longer observation period (6-12 months); inclusion of more children's self-report assessments; recruitment of non-drug naive patients and the possible omission of serum cytokines measurements. Clinical Trial Registration: Medical Ethics Committee (UKC-MB-KME-19-06/16).
Collapse
Affiliation(s)
- Hojka Gregoric Kumperscak
- Pediatric Clinic, University Medical Center Maribor, Maribor, Slovenia.,Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Alja Gricar
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Ina Ülen
- Community Health Center Dr. Adolf Drolc, Maribor, Slovenia
| | | |
Collapse
|
16
|
Port RG, Oberman LM, Roberts TPL. Revisiting the excitation/inhibition imbalance hypothesis of ASD through a clinical lens. Br J Radiol 2019; 92:20180944. [PMID: 31124710 PMCID: PMC6732925 DOI: 10.1259/bjr.20180944] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/19/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorder (ASD) currently affects 1 in 59 children, although the aetiology of this disorder remains unknown. Faced with multiple seemingly disparate and noncontiguous neurobiological alterations, Rubenstein and Merzenich hypothesized that imbalances between excitatory and inhibitory neurosignaling (E/I imbalance) underlie ASD. Since this initial statement, there has been a major focus examining this exact topic spanning both clinical and preclinical realms. The purpose of this article is to review the clinical neuroimaging literature surrounding E/I imbalance as an aetiology of ASD. Evidence for E/I imbalance is presented from several complementary clinical techniques including magnetic resonance spectroscopy, magnetoencephalography and transcranial magnetic stimulation. Additionally, two GABAergic potential interventions for ASD, which explicitly attempt to remediate E/I imbalance, are reviewed. The current literature suggests E/I imbalance as a useful framework for discussing the neurobiological etiology of ASD in at least a subset of affected individuals. While not constituting a completely unifying aetiology, E/I imbalance may be relevant as one of several underlying neuropathophysiologies that differentially affect individuals with ASD. Such statements do not diminish the value of the E/I imbalance concept-instead they suggest a possible role for the characterization of E/I imbalance, as well as other underlying neuropathophysiologies, in the biologically-based subtyping of individuals with ASD for potential applications including clinical trial enrichment as well as treatment triage.
Collapse
Affiliation(s)
| | - Lindsay M Oberman
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland
| | - Timothy PL Roberts
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Functional and structural asymmetry in primary motor cortex in Asperger syndrome: a navigated TMS and imaging study. Brain Topogr 2019; 32:504-518. [PMID: 30949863 PMCID: PMC6477009 DOI: 10.1007/s10548-019-00704-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/25/2019] [Indexed: 12/27/2022]
Abstract
Motor functions are frequently impaired in Asperger syndrome (AS). In this study, we examined the motor cortex structure and function using navigated transcranial magnetic stimulation (nTMS) and voxel-based morphometry (VBM) and correlated the results with the box and block test (BBT) of manual dexterity and physical activity in eight boys with AS, aged 8–11 years, and their matched controls. With nTMS, we found less focused cortical representation areas of distinct hand muscles in AS. There was hemispheric asymmetry in the motor maps, silent period duration and active MEP latency in the AS group, but not in controls. Exploratory VBM analysis revealed less gray matter in the left postcentral gyrus, especially in the face area, and less white matter in the precentral area in AS as compared to controls. On the contrary, in the right leg area, subjects with AS displayed an increased density of gray matter. The structural findings of the left hemisphere correlated negatively with BBT score in controls, whereas the structure of the right hemisphere in the AS group correlated positively with motor function as assessed by BBT. These preliminary functional (neurophysiological and behavioral) findings are indicative of asymmetry, and co-existing structural alterations may reflect the motor impairments causing the deteriorations in manual dexterity and other motor functions commonly encountered in children with AS.
Collapse
|
18
|
Masuda F, Nakajima S, Miyazaki T, Yoshida K, Tsugawa S, Wada M, Ogyu K, Croarkin PE, Blumberger DM, Daskalakis ZJ, Mimura M, Noda Y. Motor cortex excitability and inhibitory imbalance in autism spectrum disorder assessed with transcranial magnetic stimulation: a systematic review. Transl Psychiatry 2019; 9:110. [PMID: 30846682 PMCID: PMC6405856 DOI: 10.1038/s41398-019-0444-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 02/02/2019] [Accepted: 02/16/2019] [Indexed: 01/21/2023] Open
Abstract
Cortical excitation/inhibition (E/I) imbalances contribute to various clinical symptoms observed in autism spectrum disorder (ASD). However, the detailed pathophysiologic underpinning of E/I imbalance remains uncertain. Transcranial magnetic stimulation (TMS) motor-evoked potentials (MEP) are a non-invasive tool for examining cortical inhibition in ASD. Here, we conducted a systematic review on TMS neurophysiology in motor cortex (M1) such as MEPs and short-interval intracortical inhibition (SICI) between individuals with ASD and controls. Out of 538 initial records, we identified six articles. Five studies measured MEP, where four studies measured SICI. There were no differences in MEP amplitudes between the two groups, whereas SICI was likely to be reduced in individuals with ASD compared with controls. Notably, SICI largely reflects GABA(A) receptor-mediated function. Conversely, other magnetic resonance spectroscopy and postmortem methodologies assess GABA levels. The present review demonstrated that there may be neurophysiological deficits in GABA receptor-mediated function in ASD. In conclusion, reduced GABAergic function in the neural circuits could underlie the E/I imbalance in ASD, which may be related to the pathophysiology of clinical symptoms of ASD. Therefore, a novel treatment that targets the neural circuits related to GABA(A) receptor-mediated function in regions involved in the pathophysiology of ASD may be promising.
Collapse
Affiliation(s)
- Fumi Masuda
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan ,0000 0000 9747 6806grid.410827.8Department of Psychiatry, Shiga University of Medical Science, Shiga, Japan
| | - Shinichiro Nakajima
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan ,0000 0001 2157 2938grid.17063.33Multimodal Imaging Group, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Takahiro Miyazaki
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kazunari Yoshida
- 0000 0004 0459 167Xgrid.66875.3aDepartment of Psychiatry and Psychology, Mayo Clinic, Rochester, MN USA
| | - Sakiko Tsugawa
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masataka Wada
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kamiyu Ogyu
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Paul E. Croarkin
- 0000 0000 8793 5925grid.155956.bPharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Toronto, ON Canada
| | - Daniel M. Blumberger
- 0000 0001 2157 2938grid.17063.33Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Zafiris J. Daskalakis
- 0000 0001 2157 2938grid.17063.33Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Masaru Mimura
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
19
|
Cole EJ, Enticott PG, Oberman LM, Gwynette MF, Casanova MF, Jackson SLJ, Jannati A, McPartland JC, Naples AJ, Puts NAJ. The Potential of Repetitive Transcranial Magnetic Stimulation for Autism Spectrum Disorder: A Consensus Statement. Biol Psychiatry 2019; 85:e21-e22. [PMID: 30103951 PMCID: PMC6342639 DOI: 10.1016/j.biopsych.2018.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 11/15/2022]
Affiliation(s)
- Eleanor J Cole
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California.
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Victoria, Australia
| | - Lindsay M Oberman
- Neuroplasticity and Autism Spectrum Disorder Program and Department of Psychiatry and Human Behavior, E.P. Bradley Hospital and Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - M Frampton Gwynette
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Manuel F Casanova
- Department of Psychiatry and Behavioral Sciences, University of Louisville, Louisville, Kentucky
| | - Scott L J Jackson
- Child Study Center, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Ali Jannati
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - James C McPartland
- Child Study Center, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Adam J Naples
- Child Study Center, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Nicolaas A J Puts
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, Maryland
| |
Collapse
|
20
|
Masuda F, Nakajima S, Miyazaki T, Tarumi R, Ogyu K, Wada M, Tsugawa S, Croarkin PE, Mimura M, Noda Y. Clinical effectiveness of repetitive transcranial magnetic stimulation treatment in children and adolescents with neurodevelopmental disorders: A systematic review. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2019; 23:1614-1629. [PMID: 30663323 DOI: 10.1177/1362361318822502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurodevelopmental disorders, including autism spectrum disorder, are common in children and adolescents, but treatment strategies remain limited. Although repetitive transcranial magnetic stimulation has been studied for neurodevelopmental disorders, there is no clear consensus on its therapeutic effects. This systematic review examined literature on repetitive transcranial magnetic stimulation for children and adolescents with neurodevelopmental disorders published up to 2018 using the PubMed database. The search identified 264 articles and 14 articles met eligibility criteria. Twelve of these studies used conventional repetitive transcranial magnetic stimulation and two studies used theta burst stimulation. No severe adverse effects were reported in these studies. In patients with autism spectrum disorder, low-frequency repetitive transcranial magnetic stimulation and intermittent theta burst stimulation applied to the dorsolateral prefrontal cortex may have therapeutic effects on social functioning and repetitive behaviors. In patients with attention deficit/hyperactivity disorder, low-frequency repetitive transcranial magnetic stimulation applied to the left dorsolateral prefrontal cortex and high-frequency repetitive transcranial magnetic stimulation applied to the right dorsolateral prefrontal cortex may target inattention, hyperactivity, and impulsivity. In patients with tic disorders, low-frequency repetitive transcranial magnetic stimulation applied to the bilateral supplementary motor area improved tic symptom severity. This systematic review suggests that repetitive transcranial magnetic stimulation may be a promising intervention for children and adolescents with neurodevelopmental disorders. The results warrant further large randomized controlled trials of repetitive transcranial magnetic stimulation in children with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Fumi Masuda
- 1 Keio University School of Medicine, Japan.,2 Shiga University of Medical Science, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cole EJ, Barraclough NE, Enticott PG. Investigating Mirror System (MS) Activity in Adults with ASD When Inferring Others' Intentions Using Both TMS and EEG. J Autism Dev Disord 2018; 48:2350-2367. [PMID: 29453710 PMCID: PMC5996018 DOI: 10.1007/s10803-018-3492-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
ASD is associated with mentalizing deficits that may correspond with atypical mirror system (MS) activation. We investigated MS activity in adults with and without ASD when inferring others' intentions using TMS-induced motor evoked potentials (MEPs) and mu suppression measured by EEG. Autistic traits were measured for all participants. Our EEG data show, high levels of autistic traits predicted reduced right mu (8-10 Hz) suppression when mentalizing. Higher left mu (8-10 Hz) suppression was associated with superior mentalizing performances. Eye-tracking and TMS data showed no differences associated with autistic traits. Our data suggest ASD is associated with reduced right MS activity when mentalizing, TMS-induced MEPs and mu suppression measure different aspects of MS functioning and the MS is directly involved in inferring intentions.
Collapse
Affiliation(s)
- Eleanor J Cole
- The Department of Psychology, The University of York, Heslington, York, North Yorkshire, YO10 5DD, UK.
| | - Nick E Barraclough
- The Department of Psychology, The University of York, Heslington, York, North Yorkshire, YO10 5DD, UK
| | - Peter G Enticott
- Cognitive Neuroscience Unit, Faculty of Health, Deakin University Burwood Campus, 221 Burwood Highway, Melbourne, VIC, 3125, Australia
| |
Collapse
|
22
|
Kirkovski M, Suo C, Enticott PG, Yücel M, Fitzgerald PB. Short communication: Sex-linked differences in gamma-aminobutyric acid (GABA) are related to social functioning in autism spectrum disorder. Psychiatry Res Neuroimaging 2018; 274:19-22. [PMID: 29500101 DOI: 10.1016/j.pscychresns.2018.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 01/22/2018] [Accepted: 02/09/2018] [Indexed: 01/08/2023]
Abstract
Magnetic resonance spectroscopy (MRS) was utilized to investigate sex differences in gamma-aminobutyric acid (GABA) between adults with autism spectrum disorder (ASD) and neurotypical (NT) controls. GABA at the right superior temporal sulcus (STS) is reported for 12 ASD and 14 NT participants. The results show no group differences in GABA. There was, however, a significant positive association between GABA at the STS and autism-related social impairments in females with ASD. These findings provide preliminary support for sex differences in GABAergic distribution and processes that contribute to social functioning in ASD.
Collapse
Affiliation(s)
- Melissa Kirkovski
- Deakin Child Study Centre, School of Psychology, Deakin University, Geelong, Australia; Monash Alfred Psychiatry Research Centre, The Alfred and Central Clinical School, Monash University, Clayton, Australia.
| | - Chao Suo
- Brain & Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Victoria, Australia
| | - Peter Gregory Enticott
- Deakin Child Study Centre, School of Psychology, Deakin University, Geelong, Australia; Monash Alfred Psychiatry Research Centre, The Alfred and Central Clinical School, Monash University, Clayton, Australia
| | - Murat Yücel
- Brain & Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Victoria, Australia
| | - Paul Bernard Fitzgerald
- Monash Alfred Psychiatry Research Centre, The Alfred and Central Clinical School, Monash University, Clayton, Australia
| |
Collapse
|
23
|
Moliadze V, Lyzhko E, Schmanke T, Andreas S, Freitag CM, Siniatchkin M. 1 mA cathodal tDCS shows excitatory effects in children and adolescents: Insights from TMS evoked N100 potential. Brain Res Bull 2018; 140:43-51. [PMID: 29625151 DOI: 10.1016/j.brainresbull.2018.03.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 03/19/2018] [Accepted: 03/30/2018] [Indexed: 11/16/2022]
Abstract
In children and adolescents, 1 mA transcranial direct current stimulation (tDCS) may cause "paradoxical" effects compared with adults: both 1 mA anodal and cathodal tDCS increase amplitude of the motor evoked potential (MEP) as revealed by a single pulse transcranial magnetic stimulation (TMS) of the motor cortex. Here, EEG based evoked potentials induced by a single pulse TMS, particularly the N100 component as marker of motor cortex inhibition, were investigated in order to explain effects of tDCS on the developing brain. In nineteen children and adolescents (11-16 years old), 1 mA anodal, cathodal, or sham tDCS was applied over the left primary motor cortex for 10 min. The TMS-evoked N100 was measured by 64-channel EEG before and immediately after stimulation as well as every 10 min after tDCS for one hour. 1 mA Cathodal stimulation suppressed the N100 amplitude compared with sham stimulation. In contrast, anodal tDCS did not modify the N100 amplitude. It seems likely that the increase of the motor cortex activity under cathodal tDCS in children and adolescents as shown in previous studies can be attributed to a reduce inhibition. Based on TMS evoked N100, the study provides an insight into neuromodulatory effects of tDCS on the developing brain.
Collapse
Affiliation(s)
- Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Hospital of Schleswig-Holstein (UKSH), Campus Kiel, Christian-Albrechts-University Kiel, Preußerstrasse 1-9, 24105, Kiel, Germany; Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy Goethe-University, Deutschordenstr, 50, D-60528, Frankfurt am Main, Germany.
| | - Ekaterina Lyzhko
- Institute of Medical Psychology and Medical Sociology, University Hospital of Schleswig-Holstein (UKSH), Campus Kiel, Christian-Albrechts-University Kiel, Preußerstrasse 1-9, 24105, Kiel, Germany
| | - Till Schmanke
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy Goethe-University, Deutschordenstr, 50, D-60528, Frankfurt am Main, Germany
| | - Saskia Andreas
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy Goethe-University, Deutschordenstr, 50, D-60528, Frankfurt am Main, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy Goethe-University, Deutschordenstr, 50, D-60528, Frankfurt am Main, Germany
| | - Michael Siniatchkin
- Institute of Medical Psychology and Medical Sociology, University Hospital of Schleswig-Holstein (UKSH), Campus Kiel, Christian-Albrechts-University Kiel, Preußerstrasse 1-9, 24105, Kiel, Germany; Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy Goethe-University, Deutschordenstr, 50, D-60528, Frankfurt am Main, Germany
| |
Collapse
|
24
|
Ameis SH, Daskalakis ZJ, Blumberger DM, Desarkar P, Drmic I, Mabbott DJ, Lai MC, Croarkin PE, Szatmari P. Repetitive Transcranial Magnetic Stimulation for the Treatment of Executive Function Deficits in Autism Spectrum Disorder: Clinical Trial Approach. J Child Adolesc Psychopharmacol 2017; 27:413-421. [PMID: 28346865 PMCID: PMC5510034 DOI: 10.1089/cap.2016.0146] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Executive function (EF) deficits in patients with autism spectrum disorder (ASD) are ubiquitous and understudied. Further, there are no effective, neuroscience-based treatments to address this impairing feature of ASD. Repetitive transcranial magnetic stimulation (rTMS) has demonstrated promise in addressing EF deficits in adult neuropsychiatric disorders. This article will outline the design of a novel randomized-controlled trial of bilateral, 20 Hz, rTMS applied to the dorsolateral prefrontal cortex (DLPFC) for treatment of EF deficits in ASD that is currently ongoing. We describe prior therapeutic rTMS research for ASD and prior rTMS trials targeting EFs in adult neuropsychiatric disorders. A neurophysiological rationale for rTMS treatment of EF deficits in ASD is presented. METHODS An ongoing protocol will enroll participants aged 16-35 with ASD and no intellectual disability. Psychotropic medications will be continued during the 4-week trial of active 20 Hz versus sham rTMS applied to the DLPFC. Twenty, active treatment sessions consisting of 25 stimulation trains at a 90% motor threshold will be administered. The primary outcome measure is the Cambridge Neuropsychological Test Automated Battery (CANTAB) spatial working memory task. At present, recruitment, enrollment, and treatment within the described clinical trial are ongoing. CONCLUSIONS EF deficits are common and impairing symptoms of ASD. There are no evidence-based treatments for EF deficits in ASD. The protocol described here will provide important preliminary data on the feasibility and efficacy of 20 Hz rTMS to DLPFC for EF deficits in ASD.
Collapse
Affiliation(s)
- Stephanie H. Ameis
- Centre for Brain and Mental Health, The Hospital for Sick Children, Toronto, Canada.,The Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Zafiris J. Daskalakis
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada.,Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Daniel M. Blumberger
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada.,Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Pushpal Desarkar
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada.,Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Irene Drmic
- Genetics and Genome Biology and Autism Research Unit, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Donald J. Mabbott
- Program in Neurosciences and Mental Health, Research Institute, The Hospital for Sick Children, Toronto, Canada.,Department of Psychology, Faculty of Graduate Studies, University of Toronto, Toronto, Canada
| | - Meng-Chuan Lai
- Centre for Brain and Mental Health, The Hospital for Sick Children, Toronto, Canada.,The Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Paul E. Croarkin
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Peter Szatmari
- Centre for Brain and Mental Health, The Hospital for Sick Children, Toronto, Canada.,The Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
25
|
Avirame K, Stehberg J, Todder D. Enhanced cognition and emotional recognition, and reduced obsessive compulsive symptoms in two adults with high-functioning autism as a result of deep Transcranial Magnetic Stimulation (dTMS): a case report. Neurocase 2017; 23:187-192. [PMID: 28786315 DOI: 10.1080/13554794.2017.1361451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We report reduced repetitive behaviors similar to obsessive compulsive disorder and improved emotional recognition and cognitive abilities in two young patients diagnosed with high-functioning Autism as a result of deep transcranial magnetic stimulation (dTMS). The patients received daily high-frequency (5 Hz) dTMS with HAUT-coil over the medial prefrontal cortex for a period of 5-6 weeks. A computerized cognitive battery, tasks for testing emotional recognition, and clinical questionnaires were used to measure the effects of treatment. TMS might have modulated networks related to metalizing abilities and self-referential processes since both patients reported improved sociability and communication skills.
Collapse
Affiliation(s)
| | - Jimmy Stehberg
- b Laboratorio de Neurobiología, Centro de Investigaciones Biomédicas , Universidad Andres Bello , Santiago , Chile
| | - Doron Todder
- a Neuroclinic Health center , Ramat Gan , Israel.,c Beersheva Mental Health Center , Beersheva , Israel.,d Zlotovsky Center for Neuroscience , Ben-Gurion University , Beersheva , Israel
| |
Collapse
|
26
|
Hameed MQ, Dhamne SC, Gersner R, Kaye HL, Oberman LM, Pascual-Leone A, Rotenberg A. Transcranial Magnetic and Direct Current Stimulation in Children. Curr Neurol Neurosci Rep 2017; 17:11. [PMID: 28229395 PMCID: PMC5962296 DOI: 10.1007/s11910-017-0719-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Promising results in adult neurologic and psychiatric disorders are driving active research into transcranial brain stimulation techniques, particularly transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), in childhood and adolescent syndromes. TMS has realistic utility as an experimental tool tested in a range of pediatric neuropathologies such as perinatal stroke, depression, Tourette syndrome, and autism spectrum disorder (ASD). tDCS has also been tested as a treatment for a number of pediatric neurologic conditions, including ASD, attention-deficit/hyperactivity disorder, epilepsy, and cerebral palsy. Here, we complement recent reviews with an update of published TMS and tDCS results in children, and discuss developmental neuroscience considerations that should inform pediatric transcranial stimulation.
Collapse
Affiliation(s)
- Mustafa Q Hameed
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Neurosurgery, Boston Children's Hospital Harvard Medical School, Boston, MA, 02115, USA
| | - Sameer C Dhamne
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Roman Gersner
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Harper L Kaye
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Lindsay M Oberman
- Neuroplasticity and Autism Spectrum Disorder Program and Department of Psychiatry and Human Behavior, E.P. Bradley Hospital and Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division for Cognitive Neurology, Beth Israel Deaconness Medical Center Harvard Medical School, Boston, MA, USA
- Institut Guttmann, Universitat Autonoma, Barcelona, Spain
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
27
|
Kirkovski M, Rogasch NC, Saeki T, Fitzgibbon BM, Enticott PG, Fitzgerald PB. Single Pulse Transcranial Magnetic Stimulation-Electroencephalogram Reveals No Electrophysiological Abnormality in Adults with High-Functioning Autism Spectrum Disorder. J Child Adolesc Psychopharmacol 2016; 26:606-16. [PMID: 27284688 DOI: 10.1089/cap.2015.0181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Neuroimaging and electrophysiological research have revealed a range of neural abnormalities in autism spectrum disorder (ASD), but a comprehensive understanding remains elusive. We utilized a novel methodology among individuals with ASD and matched controls, combining transcranial magnetic stimulation (TMS) with concurrent electroencephalogram (EEG) recording (TMS-EEG) to explore cortical function and connectivity in three sites implicated in the neuropathophysiology of ASD (dorsolateral prefrontal cortex, primary motor cortex, and temporoparietal junction). As there is evidence for neurobiological gender differences in ASD, we also examined the influence of biological sex. METHODS TMS pulses were applied to each of the three sites (right lateralized) during 20-channel EEG recording. RESULTS We did not identify any differences in the EEG response to TMS between ASD and control groups. This finding remained when data were stratified by sex. Nevertheless, traits and characteristics associated with ASD were correlated with the neurophysiological response to TMS. CONCLUSION While TMS-EEG did not appear to clarify the neuropathophysiology of ASD, the relationships identified between the neurophysiological response to TMS and clinical characteristics warrant further investigation.
Collapse
Affiliation(s)
- Melissa Kirkovski
- 1 Cognitive Neuroscience Unit, School of Psychology, Deakin University , Geelong, Australia .,2 Monash Alfred Psychiatry Research Centre, The Alfred and Central Clinical School, Monash University , Clayton, Australia
| | - Nigel C Rogasch
- 2 Monash Alfred Psychiatry Research Centre, The Alfred and Central Clinical School, Monash University , Clayton, Australia .,3 Monash Clinical and Imaging Neuroscience, School of Psychological Sciences and Monash Biomedical Imaging, Monash University , Clayton, Australia
| | - Takashi Saeki
- 2 Monash Alfred Psychiatry Research Centre, The Alfred and Central Clinical School, Monash University , Clayton, Australia .,4 Department of Psychiatry, Yokohama City University School of Medicine , Yokohama, Japan
| | - Bernadette M Fitzgibbon
- 2 Monash Alfred Psychiatry Research Centre, The Alfred and Central Clinical School, Monash University , Clayton, Australia
| | - Peter G Enticott
- 1 Cognitive Neuroscience Unit, School of Psychology, Deakin University , Geelong, Australia .,2 Monash Alfred Psychiatry Research Centre, The Alfred and Central Clinical School, Monash University , Clayton, Australia
| | - Paul B Fitzgerald
- 2 Monash Alfred Psychiatry Research Centre, The Alfred and Central Clinical School, Monash University , Clayton, Australia
| |
Collapse
|
28
|
Pedapati EV, Gilbert DL, Erickson CA, Horn PS, Shaffer RC, Wink LK, Laue CS, Wu SW. Abnormal Cortical Plasticity in Youth with Autism Spectrum Disorder: A Transcranial Magnetic Stimulation Case-Control Pilot Study. J Child Adolesc Psychopharmacol 2016; 26:625-31. [PMID: 27007257 PMCID: PMC5035833 DOI: 10.1089/cap.2015.0183] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE This case-control study investigated the use of a low-intensity repetitive transcranial magnetic stimulation (rTMS) protocol to measure motor cortex (M1) plasticity in youth with autism spectrum disorder (ASD) compared with typically developing children (TDC). We hypothesized that impairments in long-term potentiation-like properties represent a neurophysiological biomarker of abnormal cortical function in ASD. METHODS We studied youth with ASD aged 11-18 years and matched controls (TDC). Intermittent theta burst stimulation (iTBS) was delivered to the dominant M1 at an intensity of 70% of resting motor threshold. Suprathreshold single-pulse TMS was performed to compare amplitudes of motor-evoked potentials (MEP) measured from surface electromyography electrodes on a target muscle before (20 pulses) and after (10 pulses/time point) iTBS at predefined timepoints (up to 30 minutes) to measure any potentiation effects. A linear mixed model was used to examine group differences in MEP amplitudes over time following iTBS. RESULTS Nine youth with ASD (mean age 15.6; 7 males; 6 right-hand dominant) and 9 TDC (mean age 14.5; 5 males; 9 right-hand dominant) participated. All subjects tolerated the procedure well. Both groups had a mean increase in excitability after iTBS for 30 minutes; however, the time course of excitability changes differed (F9,144 = 2.05; p = 0.038). Post-hoc testing identified a significant decrease in amplitude of the ASD group at 20 minutes following iTBS compared with the TDC after correcting for multiple comparisons. CONCLUSION In this study, we demonstrate early evidence for a potential physiological biomarker of cortical plasticity in youth with ASD using a rapid low-intensity rTMS protocol with a discriminate measure at 20 minutes following stimulation. The procedure was well tolerated by all 18 participants. Future work will include modification of the protocol to improve the ability to distinguish subtypes of ASD based on behavioral and cognitive testing.
Collapse
Affiliation(s)
- Ernest V. Pedapati
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Donald L. Gilbert
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Craig A. Erickson
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Paul S. Horn
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rebecca C. Shaffer
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Logan K. Wink
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Cameron S. Laue
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Steve W. Wu
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
29
|
Jarczok TA, Fritsch M, Kröger A, Schneider AL, Althen H, Siniatchkin M, Freitag CM, Bender S. Maturation of interhemispheric signal propagation in autism spectrum disorder and typically developing controls: a TMS-EEG study. J Neural Transm (Vienna) 2016; 123:925-35. [DOI: 10.1007/s00702-016-1550-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 04/05/2016] [Indexed: 01/31/2023]
|
30
|
D'Urso G, Bruzzese D, Ferrucci R, Priori A, Pascotto A, Galderisi S, Altamura AC, Bravaccio C. Transcranial direct current stimulation for hyperactivity and noncompliance in autistic disorder. World J Biol Psychiatry 2016; 16:361-6. [PMID: 25800799 DOI: 10.3109/15622975.2015.1014411] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES To evaluate the safety, efficacy, and feasibility of inhibitory transcranial direct current stimulation (tDCS) for the treatment of behavioural abnormalities of autistic patients. METHODS Twelve young adult patients with autistic disorder were enrolled. All subjects presented intellectual disability and most of them had speech impairment. The Aberrant Behavior Checklist (ABC) was administered as the primary outcome measure before and after a 2-week tDCS course. All subjects received 10 daily applications of 20 min/1.5 mA/cathodal (inhibitory) tDCS over the left dorso-lateral pre-frontal cortex. RESULTS Eight out of 10 study completers improved in their abnormal behaviours, reaching an average reduction of 26.7% of the total ABC score. The remaining two patients showed no changes. In the whole group of completers, among the five subscales contributing to the significant reduction of the total score, the most remarkable and statistically significant change was seen in the subscale assessing hyperactivity and non-compliance (-35.9%, P = 0.002). No adverse effects were reported. CONCLUSIONS Inhibitory tDCS improved the ABC rating scores for autistic behaviours. Owing to its ease of use, cost-effectiveness and the limited availability of specific treatment strategies, tDCS might be a valid therapeutic option to be tested in autistic patients.
Collapse
Affiliation(s)
- Giordano D'Urso
- Dipartimento di Salute Mentale e Fisica e Medicina Preventiva, Seconda Università di Napoli , Naples , Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Beas BS, McQuail JA, Ban Uelos C, Setlow B, Bizon JL. Prefrontal cortical GABAergic signaling and impaired behavioral flexibility in aged F344 rats. Neuroscience 2016; 345:274-286. [PMID: 26873002 DOI: 10.1016/j.neuroscience.2016.02.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 02/07/2023]
Abstract
The prefrontal cortex (PFC) is critical for the ability to flexibly adapt established patterns of behavior in response to a change in environmental contingencies. Impaired behavioral flexibility results in maladaptive strategies such as perseveration on response options that no longer produce a desired outcome. Pharmacological manipulations of prefrontal cortical GABAergic signaling modulate behavioral flexibility in animal models, and prefrontal cortical interneuron dysfunction is implicated in impaired behavioral flexibility that accompanies neuropsychiatric disease. As deficits in behavioral flexibility also emerge during the normal aging process, the goal of this study was to determine the role of GABAergic signaling, specifically via prefrontal cortical GABA(B) receptors, in such age-related deficits. Young and aged rats were trained in a set shifting task performed in operant chambers. First, rats learned to discriminate between two response levers to obtain a food reward on the basis of a cue light illuminated above the correct lever. Upon acquisition of this initial discrimination, the contingencies were shifted such that rats had to ignore the cue light and respond on the levers according to their left/right positions. Both young and aged rats acquired the initial discrimination similarly; however, aged rats were impaired relative to young following the set shift. Among aged rats, GABA(B) receptor expression in the medial prefrontal cortex (mPFC) was strongly correlated with set shifting, such that lower expression was associated with worse performance. Subsequent experiments showed that intra-mPFC administration of the GABA(B) receptor agonist baclofen enhanced set shifting performance in aged rats. These data directly link GABAergic signaling via GABA(B) receptors to impaired behavioral flexibility associated with normal aging.
Collapse
Affiliation(s)
- B S Beas
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States.
| | - J A McQuail
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States.
| | - C Ban Uelos
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States.
| | - B Setlow
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States; Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, United States; Department of Psychology, University of Florida, Gainesville, FL, United States.
| | - J L Bizon
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States; Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, United States.
| |
Collapse
|
32
|
Oberman LM, Enticott PG, Casanova MF, Rotenberg A, Pascual-Leone A, McCracken JT. Transcranial magnetic stimulation in autism spectrum disorder: Challenges, promise, and roadmap for future research. Autism Res 2015; 9:184-203. [PMID: 26536383 DOI: 10.1002/aur.1567] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/25/2015] [Accepted: 09/01/2015] [Indexed: 12/26/2022]
Abstract
Autism Spectrum Disorder (ASD) is a behaviorally defined complex neurodevelopmental syndrome characterized by impairments in social communication, by the presence of restricted and repetitive behaviors, interests and activities, and by abnormalities in sensory reactivity. Transcranial magnetic stimulation (TMS) is a promising, emerging tool for the study and potential treatment of ASD. Recent studies suggest that TMS measures provide rapid and noninvasive pathophysiological ASD biomarkers. Furthermore, repetitive TMS (rTMS) may represent a novel treatment strategy for reducing some of the core and associated ASD symptoms. However, the available literature on the TMS use in ASD is preliminary, composed of studies with methodological limitations. Thus, off-label clinical rTMS use for therapeutic interventions in ASD without an investigational device exemption and outside of an IRB approved research trial is premature pending further, adequately powered and controlled trials. Leaders in this field have gathered annually for a two-day conference (prior to the 2014 and 2015 International Meeting for Autism Research, IMFAR) to share recent progress, promote collaboration across laboratories, and establish consensus on protocols. Here we review the literature in the use of TMS in ASD in the context of the unique challenges required for the study and exploration of treatment strategies in this population. We also suggest future directions for this field of investigations. While its true potential in ASD has yet to be delineated, TMS represents an innovative research tool and a novel, possibly transformative approach to the treatment of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lindsay M Oberman
- Neuroplasticity and Autism Spectrum Disorder Program and Department of Psychiatry and Human Behavior, E.P. Bradley Hospital and Warren Alpert Medical School, Brown University, Providence, Rhode, Island
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia
| | - Manuel F Casanova
- Department of Psychiatry and Behavioral Science, University of Louisville, Louisville, Kentucky
| | - Alexander Rotenberg
- Neuromodulation Program, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Alvaro Pascual-Leone
- Neuromodulation Program, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - James T McCracken
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California
| | | |
Collapse
|
33
|
Oberman LM, Rotenberg A, Pascual-Leone A. Use of transcranial magnetic stimulation in autism spectrum disorders. J Autism Dev Disord 2015; 45:524-36. [PMID: 24127165 DOI: 10.1007/s10803-013-1960-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The clinical, social and financial burden of autism spectrum disorder (ASD) is staggering. We urgently need valid and reliable biomarkers for diagnosis and effective treatments targeting the often debilitating symptoms. Transcranial magnetic stimulation (TMS) is beginning to be used by a number of centers worldwide and may represent a novel technique with both diagnostic and therapeutic potential. Here we critically review the current scientific evidence for the use of TMS in ASD. Though preliminary data suggests promise, there is simply not enough evidence yet to conclusively support the clinical widespread use of TMS in ASD, neither diagnostically nor therapeutically. Carefully designed and properly controlled clinical trials are warranted to evaluate the true potential of TMS in ASD.
Collapse
Affiliation(s)
- Lindsay M Oberman
- Berenson-Allen Center for Noninvasive Brain Stimulation, and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, KS 158, Boston, MA, 02215, USA
| | | | | |
Collapse
|
34
|
Narayana S, Papanicolaou AC, McGregor A, Boop FA, Wheless JW. Clinical Applications of Transcranial Magnetic Stimulation in Pediatric Neurology. J Child Neurol 2015; 30:1111-24. [PMID: 25342309 DOI: 10.1177/0883073814553274] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/07/2014] [Indexed: 11/15/2022]
Abstract
Noninvasive brain stimulation is now an accepted technique that is used as a diagnostic aid and in the treatment of neuropsychiatric disorders in adults, and is being increasingly used in children. In this review, we will discuss the basic principles and safety of one noninvasive brain stimulation method, transcranial magnetic stimulation. Improvements in the spatial accuracy of transcranial magnetic stimulation are described in the context of image-guided transcranial magnetic stimulation. The article describes and provides examples of the current clinical applications of transcranial magnetic stimulation in children as an aid in the diagnosis and treatment of neuropsychiatric disorders and discusses future potential applications. Transcranial magnetic stimulation is a noninvasive tool that is safe for use in children and adolescents for functional mapping and treatment, and for many children it aids in the preoperative evaluation and the risk-benefit decision making.
Collapse
Affiliation(s)
- Shalini Narayana
- Division of Clinical Neurosciences, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA Department of Neurobiology and Anatomy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Andrew C Papanicolaou
- Division of Clinical Neurosciences, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA Department of Neurobiology and Anatomy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Amy McGregor
- Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Frederick A Boop
- Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | - James W Wheless
- Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
35
|
A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: a randomized trial. Pediatr Res 2015; 77:823-8. [PMID: 25760553 DOI: 10.1038/pr.2015.51] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 11/21/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Recent experimental evidence suggests that gut microbiota may alter function within the nervous system providing new insight on the mechanism of neuropsychiatric disorders. METHODS Seventy-five infants who were randomized to receive Lactobacillus rhamnosus GG (ATCC 53103) or placebo during the first 6 mo of life were followed-up for 13 y. Gut microbiota was assessed at the age of 3 wk, 3, 6, 12, 18, 24 mo, and 13 y using fluorescein in situ hybridization (FISH) and qPCR, and indirectly by determining the blood group secretor type at the age of 13 y. The diagnoses of attention deficit hyperactivity disorder (ADHD) and Asperger syndrome (AS) by a child neurologist or psychiatrist were based on ICD-10 diagnostic criteria. RESULTS At the age of 13 y, ADHD or AS was diagnosed in 6/35 (17.1%) children in the placebo and none in the probiotic group (P = 0.008). The mean (SD) numbers of Bifidobacterium species bacteria in feces during the first 6 mo of life was lower in affected children 8.26 (1.24) log cells/g than in healthy children 9.12 (0.64) log cells/g; P = 0.03. CONCLUSION Probiotic supplementation early in life may reduce the risk of neuropsychiatric disorder development later in childhood possible by mechanisms not limited to gut microbiota composition.
Collapse
|
36
|
Sivaratnam CS, Newman LK, Tonge BJ, Rinehart NJ. Attachment and Emotion Processing in Children with Autism Spectrum Disorders: Neurobiological, Neuroendocrine, and Neurocognitive Considerations. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2015. [DOI: 10.1007/s40489-015-0048-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Desarkar P, Rajji TK, Ameis SH, Daskalakis ZJ. Assessing and Stabilizing Aberrant Neuroplasticity in Autism Spectrum Disorder: The Potential Role of Transcranial Magnetic Stimulation. Front Psychiatry 2015; 6:124. [PMID: 26441685 PMCID: PMC4563147 DOI: 10.3389/fpsyt.2015.00124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/25/2015] [Indexed: 11/13/2022] Open
Abstract
Exciting developments have taken place in the neuroscience research in autism spectrum disorder (ASD), and results from these studies indicate that brain in ASD is associated with aberrant neuroplasticity. Transcranial magnetic stimulation (TMS) has rapidly evolved to become a widely used, safe, and non-invasive neuroscientific tool to investigate a variety of neurophysiological processes, including neuroplasticity. The diagnostic and therapeutic potential of TMS in ASD is beginning to be realized. In this article, we briefly reviewed evidence of aberrant neuroplasticity in ASD, suggested future directions in assessing neuroplasticity using repetitive TMS (rTMS), and discussed the potential of rTMS in rectifying aberrant neuroplasticity in ASD.
Collapse
Affiliation(s)
- Pushpal Desarkar
- Department of Psychiatry, Centre for Addiction and Mental Health, University of Toronto , Toronto, ON , Canada ; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health , Toronto, ON , Canada
| | - Tarek K Rajji
- Department of Psychiatry, Centre for Addiction and Mental Health, University of Toronto , Toronto, ON , Canada ; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health , Toronto, ON , Canada
| | - Stephanie H Ameis
- Department of Psychiatry, Centre for Addiction and Mental Health, University of Toronto , Toronto, ON , Canada ; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health , Toronto, ON , Canada ; Department of Psychiatry, The Hospital for Sick Children, University of Toronto , Toronto, ON , Canada ; Research Imaging Centre, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health (CAMH) , Toronto, ON , Canada
| | - Zafiris Jeff Daskalakis
- Department of Psychiatry, Centre for Addiction and Mental Health, University of Toronto , Toronto, ON , Canada ; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health , Toronto, ON , Canada
| |
Collapse
|
38
|
Sokhadze EM, El-Baz AS, Tasman A, Sears LL, Wang Y, Lamina EV, Casanova MF. Neuromodulation integrating rTMS and neurofeedback for the treatment of autism spectrum disorder: an exploratory study. Appl Psychophysiol Biofeedback 2014; 39:237-57. [PMID: 25267414 PMCID: PMC4221494 DOI: 10.1007/s10484-014-9264-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Autism spectrum disorder (ASD) is a pervasive developmental disorder characterized by deficits in social interaction, language, stereotyped behaviors, and restricted range of interests. In previous studies low frequency repetitive transcranial magnetic stimulation (rTMS) has been used, with positive behavioral and electrophysiological results, for the experimental treatment in ASD. In this study we combined prefrontal rTMS sessions with electroencephalographic (EEG) neurofeedback (NFB) to prolong and reinforce TMS-induced EEG changes. The pilot trial recruited 42 children with ASD (~14.5 years). Outcome measures included behavioral evaluations and reaction time test with event-related potential (ERP) recording. For the main goal of this exploratory study we used rTMS-neurofeedback combination (TMS-NFB, N = 20) and waitlist (WTL, N = 22) groups to examine effects of 18 sessions of integrated rTMS-NFB treatment or wait period) on behavioral responses, stimulus and response-locked ERPs, and other functional and clinical outcomes. The underlying hypothesis was that combined TMS-NFB will improve executive functions in autistic patients as compared to the WTL group. Behavioral and ERP outcomes were collected in pre- and post-treatment tests in both groups. Results of the study supported our hypothesis by demonstration of positive effects of combined TMS-NFB neurotherapy in active treatment group as compared to control WTL group, as the TMS-NFB group showed significant improvements in behavioral and functional outcomes as compared to the WTL group.
Collapse
Affiliation(s)
- Estate M Sokhadze
- University of Louisville, 401 E Chestnut Street, Suite 600, Louisville, KY, 40202, USA,
| | | | | | | | | | | | | |
Collapse
|
39
|
Effect of anodal transcranial direct current stimulation on autism: a randomized double-blind crossover trial. Behav Neurol 2014; 2014:173073. [PMID: 25530675 PMCID: PMC4230001 DOI: 10.1155/2014/173073] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to evaluate the Childhood Autism Rating Scale (CARS), Autism Treatment Evaluation Checklist (ATEC), and Children's Global Assessment Scale (CGAS) after anodal transcranial direct current stimulation (tDCS) in individuals with autism. Twenty patients with autism received 5 consecutive days of both sham and active tDCS stimulation (1 mA) in a randomized double-blind crossover trial over the left dorsolateral prefrontal cortex (F3) for 20 minutes in different orders. Measures of CARS, ATEC, and CGAS were administered before treatment and at 7 days posttreatment. The result showed statistical decrease in CARS score (P < 0.001). ATEC total was decreased from 67.25 to 58 (P < 0.001). CGAS was increased at 7 days posttreatment (P = 0.042). Our study suggests that anodal tDCS over the F3 may be a useful clinical tool in autism.
Collapse
|
40
|
Abstract
This review focuses on identifying up-to-date number of publications that compared DSM-IV/ICD-10 Asperger's disorder (AspD) to Autistic Disorder/High-functioning Autism (AD/HFA). One hundred and twenty-eight publications were identified through an extensive search of major electronic databases and journals. Based on more than 90 clinical variables been investigated, 94 publications concluded that there were statistically significant or near significant level of quantitative and/or qualitative differences between AspD and AD/HFA groups; 4 publications found both similarities and differences between the two groups; 30 publications concluded with no differences between the two groups. Although DSM-5 ASD will eliminate Asperger's disorder. However, it is plausible to predict that the field of ASD would run full circle during the next decade or two and that AspD will be back in the next edition of DSM.
Collapse
Affiliation(s)
- Luke Y Tsai
- Department of Psychiatry, University of Michigan Medical School, 2385 Placid Way, Ann Arbor, MI, 48105, USA,
| |
Collapse
|
41
|
D'Urso G, Ferrucci R, Bruzzese D, Pascotto A, Priori A, Altamura CA, Galderisi S, Bravaccio C. Transcranial direct current stimulation for autistic disorder. Biol Psychiatry 2014; 76:e5-6. [PMID: 24342925 DOI: 10.1016/j.biopsych.2013.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Giordano D'Urso
- Dipartimento di Salute Mentale e Fisica e Medicina Preventiva, Seconda Università di Napoli, Naples.
| | - Roberta Ferrucci
- Dipartimento di Fisiopatologia Medico Chirurgica e dei Trapianti, Università di Milano, Centro di Neurostimolazione e Disordini del Movimento, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan
| | - Dario Bruzzese
- Dipartimento di Sanità Pubblica, Università di Napoli Federico II, Naples
| | - Antonio Pascotto
- Dipartimento di Salute Mentale e Fisica e Medicina Preventiva, Seconda Università di Napoli, Naples
| | - Alberto Priori
- Dipartimento di Fisiopatologia Medico Chirurgica e dei Trapianti, Università di Milano, Centro di Neurostimolazione e Disordini del Movimento, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan
| | - Carlo Alfredo Altamura
- Dipartimento di Psichiatria, Università di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan
| | - Silvana Galderisi
- Dipartimento di Salute Mentale e Fisica e Medicina Preventiva, Seconda Università di Napoli, Naples
| | - Carmela Bravaccio
- Dipartimento di Pediatria, Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
42
|
Sokhadze EM, El-Baz AS, Sears LL, Opris I, Casanova MF. rTMS neuromodulation improves electrocortical functional measures of information processing and behavioral responses in autism. Front Syst Neurosci 2014; 8:134. [PMID: 25147508 PMCID: PMC4123734 DOI: 10.3389/fnsys.2014.00134] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 07/09/2014] [Indexed: 11/13/2022] Open
Abstract
Objectives: Reports in autism spectrum disorders (ASD) of a minicolumnopathy with consequent deficits of lateral inhibition help explain observed behavioral and executive dysfunctions. We propose that neuromodulation based on low frequency repetitive Transcranial Magnetic Stimulation (rTMS) will enhance lateral inhibition through activation of inhibitory double bouquet interneurons and will be accompanied by improvements in the prefrontal executive functions. In addition we proposed that rTMS will improve cortical excitation/inhibition ratio and result in changes manifested in event-related potential (ERP) recorded during cognitive tests. Materials and Methods: Along with traditional clinical behavioral evaluations the current study used ERPs in a visual oddball task with illusory figures. We compared clinical, behavioral and electrocortical outcomes in two groups of children with autism (TMS, wait-list group). We predicted that 18 session long course in autistic patients will have better behavioral and ERP outcomes as compared to age- and IQ-matched WTL group. We used 18 sessions of 1 Hz rTMS applied over the dorso-lateral prefrontal cortex in 27 individuals with ASD diagnosis. The WTL group was comprised of 27 age-matched subjects with ASD tested twice. Both TMS and WTL groups were assessed at the baseline and after completion of 18 weekly sessions of rTMS (or wait period) using clinical behavioral questionnaires and during performance on visual oddball task with Kanizsa illusory figures. Results: Post-TMS evaluations showed decreased irritability and hyperactivity on the Aberrant Behavior Checklist (ABC), and decreased stereotypic behaviors on the Repetitive Behavior Scale (RBS-R). Following rTMS course we found decreased amplitude and prolonged latency in the frontal and fronto-central N100, N200 and P300 (P3a) ERPs to non-targets in active TMS treatment group. TMS resulted in increase of P2d (P2a to targets minus P2a to non-targets) amplitude. These ERP changes along with increased centro-parietal P100 and P300 (P3b) to targets are indicative of more efficient processing of information post-TMS treatment. Another important finding was decrease of the latency and increase of negativity of error-related negativity (ERN) during commission errors that may reflect improvement in error monitoring and correction function. Enhanced information processing was also manifested in lower error rate. In addition we calculated normative post-error treaction time (RT) slowing response in both groups and found that rTMS treatment was accompanied by post-error RT slowing and higher accuracy of responses, whereas the WTL group kept on showing typical for ASD post-error RT speeding and higher commission and omission error rates. Conclusion: Results from our study indicate that rTMS improves executive functioning in ASD as evidenced by normalization of ERP responses and behavioral reactions (RT, accuracy) during executive function test, and also by improvements in clinical evaluations.
Collapse
Affiliation(s)
- Estate M Sokhadze
- Department of Psychiatry and Behavioral Sciences, University of Louisville Louisville, KY, USA
| | - Ayman S El-Baz
- Department of Bioengineering, University of Louisville Louisville, KY, USA
| | - Lonnie L Sears
- Department of Pediatrics, University of Louisville Louisville, KY, USA
| | - Ioan Opris
- Department of Physiology and Pharmacology, Wake Forest University Winston-Salem, NC, USA
| | - Manuel F Casanova
- Department of Psychiatry and Behavioral Sciences, University of Louisville Louisville, KY, USA
| |
Collapse
|
43
|
Luckhardt C, Jarczok TA, Bender S. Elucidating the neurophysiological underpinnings of autism spectrum disorder: new developments. J Neural Transm (Vienna) 2014; 121:1129-44. [PMID: 25059455 DOI: 10.1007/s00702-014-1265-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 06/19/2014] [Indexed: 12/11/2022]
Abstract
The study of neurophysiological approaches together with rare and common risk factors for Autism Spectrum Disorder (ASD) allows elucidating the specific underlying neurobiology of ASD. Whereas most neurophysiologically based research in ASD to date has focussed on case-control differences based on the DSM- or ICD-based categorical ASD diagnosis, more recent studies have aimed at studying genetically and/or neurophysiologically defined homogeneous ASD subgroups for specific neuronal biomarkers. This review addresses the neurophysiological investigation of ASD by evoked and event-related potentials, by EEG/MEG connectivity measures such as coherence, and transcranial magnetic stimulation. As an example of classical neurophysiological studies in ASD, we report event-related potential studies which have illustrated which brain areas and processing stages are affected in the visual perception of socially relevant stimuli. However, a paradigm shift has taken place in recent years focussing on how these findings can be tracked down to basic neuronal functions such as deficits in cortico-cortical connectivity and the interaction between brain areas. Disconnectivity, for example, can again be related to genetically induced shifts in the excitation/inhibition balance. Genetic causes of ASD may be grouped by their effects on the brain's system level to identify ASD subgroups which respond differentially to therapeutic interventions.
Collapse
Affiliation(s)
- C Luckhardt
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, JW Goethe University Frankfurt, Deutschordenstraße 50, 60528, Frankfurt am Main, Germany,
| | | | | |
Collapse
|
44
|
Wang X, Bey AL, Chung L, Krystal AD, Jiang YH. Therapeutic approaches for shankopathies. Dev Neurobiol 2013; 74:123-35. [PMID: 23536326 DOI: 10.1002/dneu.22084] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/21/2013] [Indexed: 12/13/2022]
Abstract
Despite recent advances in understanding the molecular mechanisms of autism spectrum disorders (ASD), the current treatments for these disorders are mostly focused on behavioral and educational approaches. The considerable clinical and molecular heterogeneity of ASD present a significant challenge to the development of an effective treatment targeting underlying molecular defects. Deficiency of SHANK family genes causing ASD represent an exciting opportunity for developing molecular therapies because of strong genetic evidence for SHANK as causative genes in ASD and the availability of a panel of Shank mutant mouse models. In this article, we review the literature suggesting the potential for developing therapies based on molecular characteristics and discuss several exciting themes that are emerging from studying Shank mutant mice at the molecular level and in terms of synaptic function.
Collapse
Affiliation(s)
- Xiaoming Wang
- Department of Pediatrics, Duke University School of Medicine Durham, North Carolina, 27710
| | | | | | | | | |
Collapse
|
45
|
Panerai S, Tasca D, Lanuzza B, Trubia G, Ferri R, Musso S, Alagona G, Di Guardo G, Barone C, Gaglione MP, Elia M. Effects of repetitive transcranial magnetic stimulation in performing eye-hand integration tasks: four preliminary studies with children showing low-functioning autism. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2013; 18:638-50. [PMID: 24113340 DOI: 10.1177/1362361313495717] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This report, based on four studies with children with low-functioning autism, aimed at evaluating the effects of repetitive transcranial magnetic stimulation delivered on the left and right premotor cortices on eye-hand integration tasks; defining the long-lasting effects of high-frequency repetitive transcranial magnetic stimulation; and investigating the real efficacy of high-frequency repetitive transcranial magnetic stimulation by comparing three kinds of treatments (high-frequency repetitive transcranial magnetic stimulation, a traditional eye-hand integration training, and both treatments combined). Results showed a significant increase in eye-hand performances only when high-frequency repetitive transcranial magnetic stimulation was delivered on the left premotor cortex; a persistent improvement up to 1 h after the end of the stimulation; better outcomes in the treatment combining high-frequency repetitive transcranial magnetic stimulation and eye-hand integration training. Based on these preliminary findings, further evaluations on the usefulness of high-frequency repetitive transcranial magnetic stimulation in rehabilitation of children with autism are strongly recommended.
Collapse
Affiliation(s)
| | | | | | - Grazia Trubia
- IRCCS Associazione Oasi Maria SS., Tronia (EN), Italy
| | | | - Sabrina Musso
- IRCCS Associazione Oasi Maria SS., Tronia (EN), Italy
| | | | | | | | | | - Maurizio Elia
- IRCCS Associazione Oasi Maria SS., Tronia (EN), Italy
| |
Collapse
|
46
|
Jung NH, Janzarik WG, Delvendahl I, Münchau A, Biscaldi M, Mainberger F, Bäumer T, Rauh R, Mall V. Impaired induction of long-term potentiation-like plasticity in patients with high-functioning autism and Asperger syndrome. Dev Med Child Neurol 2013; 55:83-9. [PMID: 23157428 DOI: 10.1111/dmcn.12012] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM We aimed to investigate the induction of long-term potentiation (LTP)-like plasticity by paired associative stimulation (PAS) in patients with high-functioning autism and Asperger syndrome (HFA/AS). METHOD PAS with an interstimulus interval between electrical and transcranial magnetic stimulation of 25 ms (PAS(25)) was performed in patients with HFA/AS (n=9; eight males, one female; mean age 17 y 11 mo, SD 4 y 5 mo) and in typically developing age-matched volunteers (n=9; five males, four females; mean age 22 y 4 mo, SD 5 y 2 mo). The amplitude of motor-evoked potentials was measured before PAS(25), immediately after stimulation, and 30 minutes and 60 minutes later. A PAS protocol adapted to individual N20 latency (PAS(N20+2)) was performed in six additional patients with HFA/AS. Short-interval intracortical inhibition was measured using paired-pulse stimulation. RESULTS In contrast to the typically developing participants, the patients with HFA/AS did not show a significant increase in motor-evoked potentials after PAS(25). This finding could also be demonstrated after adaptation for N20 latency. Short-interval intracortical inhibition of patients with HFA/AS was normal compared with the comparison group and did not correlate with PAS effect. INTERPRETATION Our results show a significant impairment of LTP-like plasticity induced by PAS in individuals with HFA/AS compared with typically developing participants. This finding is in accordance with results from animal studies as well as human studies. Impaired LTP-like plasticity in patients with HFA/AS points towards reduced excitatory synaptic connectivity and deficits in sensory-motor integration in these patients.
Collapse
Affiliation(s)
- Nikolai H Jung
- Department of Paediatrics, Technical University Munich, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Enticott PG, Oberman LM. Synaptic plasticity and non-invasive brain stimulation in autism spectrum disorders. Dev Med Child Neurol 2013; 55:13-4. [PMID: 23157461 DOI: 10.1111/dmcn.12042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Peter G Enticott
- Monash Alfred Psychiatry Research Center, The Alfred and Central Clinical School, Monash University, Melbourne, Vic., Australia
| | | |
Collapse
|
48
|
Coghlan S, Horder J, Inkster B, Mendez MA, Murphy DG, Nutt DJ. GABA system dysfunction in autism and related disorders: from synapse to symptoms. Neurosci Biobehav Rev 2012; 36:2044-55. [PMID: 22841562 DOI: 10.1016/j.neubiorev.2012.07.005] [Citation(s) in RCA: 313] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/10/2012] [Accepted: 07/16/2012] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental syndromes characterised by repetitive behaviours and restricted interests, impairments in social behaviour and relations, and in language and communication. These symptoms are also observed in a number of developmental disorders of known origin, including Fragile X Syndrome, Rett Syndrome, and Foetal Anticonvulsant Syndrome. While these conditions have diverse etiologies, and poorly understood pathologies, emerging evidence suggests that they may all be linked to dysfunction in particular aspects of GABAergic inhibitory signalling in the brain. We review evidence from genetics, molecular neurobiology and systems neuroscience relating to the role of GABA in these conditions. We conclude by discussing how these deficits may relate to the specific symptoms observed.
Collapse
Affiliation(s)
- Suzanne Coghlan
- King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, De Crespigny Park, London, SE5 8AF, United Kingdom
| | | | | | | | | | | |
Collapse
|
49
|
Demirtas-Tatlidede A, Vahabzadeh-Hagh AM, Pascual-Leone A. Can noninvasive brain stimulation enhance cognition in neuropsychiatric disorders? Neuropharmacology 2012; 64:566-78. [PMID: 22749945 DOI: 10.1016/j.neuropharm.2012.06.020] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 02/07/2023]
Abstract
Cognitive impairment is a core symptom of many neuropsychiatric diseases and a key contributor to the patient's quality of life. However, an effective therapeutic strategy has yet to be developed. Noninvasive brain stimulation techniques, namely transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), are promising techniques that are under investigation for a variety of otherwise treatment-resistant neuropsychiatric diseases. Notably, these tools can induce alterations in neural networks subserving cognitive operations and thus may provide a means for cognitive restoration. The purpose of this article is to review the available evidence concerning cognitive enhancing properties of noninvasive brain stimulation in neuropsychiatry. We specifically focus on major depression, Alzheimer's disease, schizophrenia, autism and attention deficit hyperactivity disorder (ADHD), where cognitive dysfunction is a major symptom and some studies have been completed with promising results. We provide a critical assessment of the available research and suggestions to guide future efforts. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Asli Demirtas-Tatlidede
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul University, Istanbul Medical Faculty, Istanbul, Turkey.
| | | | | |
Collapse
|
50
|
Enticott PG, Kennedy HA, Rinehart NJ, Tonge BJ, Bradshaw JL, Fitzgerald PB. GABAergic activity in autism spectrum disorders: an investigation of cortical inhibition via transcranial magnetic stimulation. Neuropharmacology 2012; 68:202-9. [PMID: 22727823 DOI: 10.1016/j.neuropharm.2012.06.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 05/11/2012] [Accepted: 06/11/2012] [Indexed: 10/28/2022]
Abstract
Mounting evidence suggests a possible role for γ-aminobutyric acid (GABA) in the neuropathophysiology of autism spectrum disorders (ASD), but the extent of this impairment is unclear. A non-invasive, in vivo measure of GABA involves transcranial magnetic stimulation (TMS) of the primary motor cortex to probe cortical inhibition. Individuals diagnosed with ASD (high-functioning autism or Asperger's disorder) (n = 36 [28 male]; mean age: 26.00 years) and a group of healthy individuals (n = 34 [23 male]; mean age: 26.21 years) (matched for age, gender, and cognitive function) were administered motor cortical TMS paradigms putatively measuring activity at GABAA and GABAB receptors (i.e., short and long interval paired pulse TMS, cortical silent period). All cortical inhibition paradigms yielded no difference between ASD and control groups. There was, however, evidence for short interval cortical inhibition (SICI) deficits among those ASD participants who had experienced early language delay, suggesting that GABA may be implicated in an ASD subtype. The current findings do not support a broad role for GABA in the neuropathophysiology of ASD, but provide further indication that GABAA could be involved in ASD where there is a delay in language acquisition. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Peter G Enticott
- Monash Alfred Psychiatry Research Centre, The Alfred and Central Clinical School, Monash University, St. Kilda Road, Melbourne, Victoria 3004, Australia.
| | | | | | | | | | | |
Collapse
|