1
|
Umino A, Iwama H, Umino M, Shimazu D, Kiuchi Y, Nishikawa T. Effects of Quinolinate-Induced Lesion of the Medial Prefrontal Cortex on Prefrontal and Striatal Concentrations of D-Serine in the Rat. Neurochem Res 2022; 47:2728-2740. [PMID: 35604516 DOI: 10.1007/s11064-022-03627-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/19/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022]
Abstract
D-Serine has been shown to play an important role in the expression and control of a variety of brain functions by acting as the endogenous coagonist for the N-methyl-D-aspartate type glutamate receptor (NMDAR), at least, in the forebrain. To obtain further insight into the still debatable cellular localization of the D-amino acid, we have examined the effects of the selective destruction of the neuronal cell bodies by quinolinate on the tissue or extracellular D-serine concentrations in the medial prefrontal cortex of the rat. A local quinolinate infusion into the bilateral medial prefrontal cortex produced a cortical lesion with a marked (- 65%) and non-significant alteration (- 5%) in the cortical and striatal tissue D-serine concentrations, respectively, 7 days post-infusion. In vivo microdialysis experiments in the right prefrontal lesion site 9 days after the quinolinate application revealed that the basal extracellular D-serine levels were also dramatically reduced (- 64%). A prominent reduction in the tissue levels of GABA in the interneurons of the prefrontal cortex (- 78%) without significant changes in those in the striatum (+ 12%) verified that a major lesion part was confined to the cortical portion. The lack of a significant influence of the prefrontal quinolinate lesion on its dopamine concentrations in the mesocortical dopamine projections suggests that the nerve terminals and axons in the lesion site may be spared. These findings are consistent with the perikarya-selective nature of the present quinolinate-induced lesion and further support the view that neuronal cell bodies of intrinsic neurons in the prefrontal cortical region contain substantial amounts of D-serine, which may sustain the basal extracellular concentrations of D-serine.
Collapse
Affiliation(s)
- Asami Umino
- Department of Pharmacology, School of Medicine, and Pharmacological Research Center, Showa University, Shinagawa-ku, Tokyo, 142-8555, Japan.,Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan.,Departments of Mental Disorder Research, National Institute of Neuroscience, NCNP, Kodaira-shi, Tokyo, 187-8502, Japan
| | - Hisayuki Iwama
- Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan.,Departments of Mental Disorder Research, National Institute of Neuroscience, NCNP, Kodaira-shi, Tokyo, 187-8502, Japan.,Kanagawa Psychiatric Center, Yokohama-shi, Kanagawa, 233-0006, Japan
| | - Masakazu Umino
- Department of Pharmacology, School of Medicine, and Pharmacological Research Center, Showa University, Shinagawa-ku, Tokyo, 142-8555, Japan.,Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Dai Shimazu
- Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan.,Departments of Mental Disorder Research, National Institute of Neuroscience, NCNP, Kodaira-shi, Tokyo, 187-8502, Japan.,Musashishinjo-Kokorono Clinic, Kawasaki-shi, Kanagawa, 211-0044, Japan
| | - Yuji Kiuchi
- Department of Pharmacology, School of Medicine, and Pharmacological Research Center, Showa University, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Toru Nishikawa
- Department of Pharmacology, School of Medicine, and Pharmacological Research Center, Showa University, Shinagawa-ku, Tokyo, 142-8555, Japan. .,Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan. .,Departments of Mental Disorder Research, National Institute of Neuroscience, NCNP, Kodaira-shi, Tokyo, 187-8502, Japan.
| |
Collapse
|
2
|
Antipova VA, Holzmann C, Schmitt O, Wree A, Hawlitschka A. Botulinum Neurotoxin A Injected Ipsilaterally or Contralaterally into the Striatum in the Rat 6-OHDA Model of Unilateral Parkinson's Disease Differently Affects Behavior. Front Behav Neurosci 2017; 11:119. [PMID: 28680396 PMCID: PMC5478737 DOI: 10.3389/fnbeh.2017.00119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/06/2017] [Indexed: 12/30/2022] Open
Abstract
Parkinson's disease (PD) is one of the most frequent neurodegenerative disorders. The loss of dopaminergic neurons in the substantia nigra leads to a disinhibition of cholinergic interneurons in the striatum. Pharmacotherapeutical strategies of PD-related hypercholinism have numerous adverse side effects. We previously showed that ipsilateral intrastriatal injections of 1 ng in unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats inhibit apomorphine-induced rotation behavior significantly up to 6 months. In this study, we extended the behavioral testing of ipsilateral botulinum neurotoxin A (BoNT-A)-injection and additionally investigated the impact of intrastriatal BoNT-A-injections contralateral to the 6-OHDA-lesioned hemisphere on the basal ganglia circuity and motor functions. We hypothesized that the interhemispheric differences of acetylcholine (ACh) concentration seen in unilateral hemi-PD should be differentially and temporally influenced by the ipsilateral or contralateral injection of BoNT-A. Hemi-PD rats were injected with 1 ng BoNT-A or vehicle substance into either the ipsilateral or contralateral striatum 6 weeks after 6-OHDA-lesion and various behaviors were tested. In hemi-PD rats intrastriatal ipsilateral BoNT-A-injections significantly reduced apomorphine-induced rotations and increased amphetamine-induced rotations, but showed no significant improvement of forelimb usage and akinesia, lateralized sensorimotor integration and also no effect on spontaneous locomotor activity. However, intrastriatal BoNT-A-injections contralateral to the lesion led to a significant increase of the apomorphine-induced turning rate only 2 weeks after the treatment. The apomorphine-induced rotation rate decreases thereafter to a value below the initial rotation rate. Amphetamine-induced rotations were not significantly changed after BoNT-A-application in comparison to sham-treated animals. Forelimb usage was temporally improved by contralateral BoNT-A-injection at 2 weeks after BoNT-A. Akinesia and lateralized sensorimotor integration were also improved, but contralateral BoNT-A-injection had no significant effect on spontaneous locomotor activity. These long-ranging and different effects suggest that intrastriatally applied BoNT-A acts not only as an inhibitor of ACh release but also has long-lasting impact on transmitter expression and thereby on the basal ganglia circuitry. Evaluation of changes of transmitter receptors is subject of ongoing studies of our group.
Collapse
Affiliation(s)
- Veronica A. Antipova
- Institute of Anatomy, Rostock University Medical CenterRostock, Germany
- Institute of Macroscopic and Clinical Anatomy, Medical University of GrazGraz, Austria
| | - Carsten Holzmann
- Institute of Medical Genetics, Rostock University Medical CenterRostock, Germany
| | - Oliver Schmitt
- Institute of Anatomy, Rostock University Medical CenterRostock, Germany
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical CenterRostock, Germany
| | | |
Collapse
|
3
|
Llopis-Lorente A, Díez P, de la Torre C, Sánchez A, Sancenón F, Aznar E, Marcos MD, Martínez-Ruíz P, Martínez-Máñez R, Villalonga R. Enzyme-Controlled Nanodevice for Acetylcholine-Triggered Cargo Delivery Based on Janus Au-Mesoporous Silica Nanoparticles. Chemistry 2017; 23:4276-4281. [DOI: 10.1002/chem.201700603] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Antoni Llopis-Lorente
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universidat Politécnica de Valencia; Universitat de Valencia; Spain
- Departamento de Química; Universidad Politécnica de Valencia; Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Spain
| | - Paula Díez
- Department of Analytical Chemistry; Faculty of Chemistry, Complutense University of Madrid; 28040 Madrid Spain
| | - Cristina de la Torre
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universidat Politécnica de Valencia; Universitat de Valencia; Spain
- Departamento de Química; Universidad Politécnica de Valencia; Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Spain
| | - Alfredo Sánchez
- Department of Analytical Chemistry; Faculty of Chemistry, Complutense University of Madrid; 28040 Madrid Spain
- IMDEA Nanoscience Cantoblanco University City; 28049 Madrid Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universidat Politécnica de Valencia; Universitat de Valencia; Spain
- Departamento de Química; Universidad Politécnica de Valencia; Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universidat Politécnica de Valencia; Universitat de Valencia; Spain
- Departamento de Química; Universidad Politécnica de Valencia; Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Spain
| | - María D. Marcos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universidat Politécnica de Valencia; Universitat de Valencia; Spain
- Departamento de Química; Universidad Politécnica de Valencia; Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Spain
| | - Paloma Martínez-Ruíz
- Department of Organic Chemistry I, Faculty of Chemistry; Complutense University of Madrid; 28040 Madrid Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universidat Politécnica de Valencia; Universitat de Valencia; Spain
- Departamento de Química; Universidad Politécnica de Valencia; Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Spain
| | - Reynaldo Villalonga
- Department of Analytical Chemistry; Faculty of Chemistry, Complutense University of Madrid; 28040 Madrid Spain
- IMDEA Nanoscience Cantoblanco University City; 28049 Madrid Spain
| |
Collapse
|
4
|
Almey A, Milner TA, Brake WG. Estrogen receptor α and G-protein coupled estrogen receptor 1 are localized to GABAergic neurons in the dorsal striatum. Neurosci Lett 2016; 622:118-23. [PMID: 27080432 DOI: 10.1016/j.neulet.2016.04.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/08/2016] [Accepted: 04/09/2016] [Indexed: 12/18/2022]
Abstract
Estrogens affect dopamine transmission in the striatum, increasing dopamine availability, maintaining D2 receptor density, and reducing the availability of the dopamine transporter. Some of these effects of estrogens are rapid, suggesting that they are mediated by membrane associated receptors. Recently our group demonstrated that there is extra-nuclear labeling for ERα, ERβ, and GPER1 in the striatum, but that ERα and GPER1 are not localized to dopaminergic neurons in this region. GABAergic neurons are the most common type of neuron in the striatum, and changes in GABA transmission affect dopamine transmission. Thus, to determine whether ERα or GPER1 are localized to GABAergic neurons, we double labeled the striatum with antibodies for ERα or GPER1 and GABA and examined them using electron microscopy. Ultrastructural analysis revealed that ERα and GPER1 are localized exclusively to extranuclear sites in the striatum, and ∼35% of the dendrites and axon terminals labeled for these receptors contain GABA immunoreactivity. Binding at membrane-associated ERα and GPER1 could account for rapid estrogen-induced decreases in GABA transmission in the striatum, which, in turn, could affect dopamine transmission in this region.
Collapse
Affiliation(s)
- Anne Almey
- Centre for Studies in Behavioral Neurobiology (CSBN), Department of Psychology, Concordia University, Montreal, QC, Canada.
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA.
| | - Wayne G Brake
- Centre for Studies in Behavioral Neurobiology (CSBN), Department of Psychology, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Ketamine increases striatal dopamine release and hyperlocomotion in adult rats after postnatal functional blockade of the prefrontal cortex. Behav Brain Res 2013; 256:229-37. [PMID: 23958806 DOI: 10.1016/j.bbr.2013.08.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/09/2013] [Accepted: 08/11/2013] [Indexed: 02/04/2023]
Abstract
Schizophrenia is a complex psychiatric disorder that may result from defective connectivity, of neurodevelopmental origin, between several integrative brain regions. Different anomalies consistent with brain development failures have been observed in patients' left prefrontal cortex (PFC). A striatal dopaminergic functional disturbance is also commonly acknowledged in schizophrenia and could be related to a dysfunctioning of dopamine-glutamate interactions. Non-competitive NMDA antagonists, such as ketamine, can induce psychotic symptoms in healthy individuals and worsen these symptoms in patients with schizophrenia. Our study set out to investigate the consequences of neonatal functional blockade of the PFC for dopaminergic and behavioral reactivity to ketamine in adult rats. Following tetrodotoxin (TTX) inactivation of the left PFC at postnatal day 8, dopaminergic responses induced by ketamine (5 mg/kg, 10 mg/kg, 20 mg/kg sc) were monitored using in vivo voltammetry in the left part of the dorsal striatum in freely moving adult rats. Dopaminergic responses and locomotor activity were followed in parallel. Compared to PBS animals, in rats microinjected with TTX, ketamine challenge induced a greater release of dopamine in the dorsal striatum for the highest dose (20 mg/kg sc) and the intermediate dose (10mg/kg sc). A higher increase in locomotor activity in TTX animals was observed only for the highest dose of ketamine (20 mg/kg sc). These data suggest transient inactivation of the PFC during early development results in greater behavioral and striatal dopaminergic reactivity to ketamine in adulthood. Our study provides an anatomo-functional framework that may contribute toward a better understanding of the involvement of NMDA glutamatergic receptors in schizophrenia.
Collapse
|
6
|
Bogen IL, Risa Ø, Haug KH, Sonnewald U, Fonnum F, Walaas SI. Distinct changes in neuronal and astrocytic amino acid neurotransmitter metabolism in mice with reduced numbers of synaptic vesicles. J Neurochem 2010; 105:2524-34. [PMID: 18346203 DOI: 10.1111/j.1471-4159.2008.05344.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The relations between glutamate and GABA concentrations and synaptic vesicle density in nerve terminals were examined in an animal model with 40-50% reduction in synaptic vesicle numbers caused by inactivation of the genes encoding synapsin I and II. Concentrations and synthesis of amino acids were measured in extracts from cerebrum and a crude synaptosomal fraction by HPLC and (13)C nuclear magnetic resonance spectroscopy (NMRS), respectively. Analysis of cerebrum extracts, comprising both neurotransmitter and metabolic pools, showed decreased concentration of GABA, increased concentration of glutamine and unchanged concentration of glutamate in synapsin I and II double knockout (DKO) mice. In contrast, both glutamate and GABA concentrations were decreased in crude synaptosomes isolated from synapsin DKO mice, suggesting that the large metabolic pool of glutamate in the cerebral extracts may overshadow minor changes in the transmitter pool. (13)C NMRS studies showed that the changes in amino acid concentrations in the synapsin DKO mice were caused by decreased synthesis of GABA (20-24%) in cerebral neurons and increased synthesis of glutamine (36%) in astrocytes. In a crude synaptosomal fraction, the glutamate synthesis was reduced (24%), but this reduction could not be detected in cerebrum extracts. We suggest that lack of synaptic vesicles causes down-regulation of neuronal GABA and glutamate synthesis, with a concomitant increase in astrocytic synthesis of glutamine, in order to maintain normal neurotransmitter concentrations in the nerve terminal cytosol.
Collapse
Affiliation(s)
- Inger Lise Bogen
- Department of Biochemistry, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
7
|
Lesions of the premotor and supplementary motor areas fail to prevent implicit learning in the operant serial implicit learning task. Brain Res 2009; 1284:116-24. [PMID: 19501057 DOI: 10.1016/j.brainres.2009.05.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 04/14/2009] [Accepted: 05/20/2009] [Indexed: 11/21/2022]
Abstract
An implicit learning deficit in people with Huntington's or Parkinson's diseases has implicated the striatum as being of importance for non-declarative learning. We have sought to identify the neurological substrate of this function using a Serial Implicit Learning Task (SILT), an operant task that requires the animal to produce 2-phase (S1 and S2) sequential nose pokes to receive a reward in the nine-hole box apparatus. Differences in performance on the speed and accuracy of responding to stimuli occurring in predictable locations over those to unpredictable locations provide an index of implicit learning, within the context of generalised performance of a skilled motor habit. Previous studies with striatal lesions demonstrated clear functional deficits on the SILT that implicated a generalised impairment in the speed and accuracy of skilled motor performance, whereas the specific implicit learning component of the task remained intact. Since imaging studies in man have identified the premotor and supplementary motor area (SMA) of the cortex as being of importance in implicit learning, we here explore the effects of similar lesions in animals on performance of the SILT. Premotor and SMA lesions produced a generalised impairment in both the accuracy and reaction time measures of SILT performance, whereas - like striatal lesions - they remained able to utilise the benefit of predictable information. A similar profile of impairments was apparent both in animals pretrained on the task prior to lesion, and in animals trained under acquisition post-lesion. The presented results suggest that the premotor and SMA are not essential for implicit learning, but are important in the performance of sequenced motor tasks.
Collapse
|
8
|
Increased striatal serotonin synthesis following cortical resection in children with intractable epilepsy. Epilepsy Res 2007; 78:124-30. [PMID: 18083006 DOI: 10.1016/j.eplepsyres.2007.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 09/28/2007] [Accepted: 10/28/2007] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND PURPOSE Serotonin is a major regulator of structural brain plasticity, which may occur following cortical resection in humans. In this study we used positron emission tomography (PET) with alpha[11C]methyl-l-tryptophan (AMT) to evaluate serotonergic alterations in subcortical structures following cortical resection in children with intractable epilepsy. METHODS AMT uptake in the thalamus and lentiform nucleus was evaluated postoperatively (1-89 months following resection) in 19 children (mean age: 8.7 years) with a previous cortical resection due to intractable epilepsy. Ten children with partial epilepsy but without resection and seven normal children served as controls. RESULTS There was an increased AMT uptake in the lentiform nucleus ipsilateral to the resection as compared to the contralateral side (mean asymmetry: 4.2+/-3.0%), and the asymmetries were significantly higher than those measured in the control groups (p<or=0.001). Post-resection asymmetry indices in the lentiform nucleus correlated inversely with postoperative time (r=-0.67; p=0.002), but not with age (p=0.29) or the extent of resection (p=0.77). In contrast, thalamic AMT uptake asymmetries were not different among the three groups (p=0.63). CONCLUSIONS Cortical resection results in a sustained increase of AMT uptake in the lentiform nucleus, suggesting increased serotonin synthesis. Serotonergic activation in the deafferented striatum may play a role in the functional reorganization of cortico-striatal projections in humans.
Collapse
|
9
|
Lin AMY. NMDA modulation of dopamine dynamics is diminished in the aged striatum: an in vivo voltametric study. Neurochem Int 2005; 48:151-6. [PMID: 16271801 DOI: 10.1016/j.neuint.2005.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 08/23/2005] [Indexed: 11/22/2022]
Abstract
The technique of in vivo voltametry and a paired recording paradigm were employed to study the age-related changes in N-methyl-d-aspartate (NMDA) function in regulating the striatal dopaminergic transmission in male Sprague-Dawley rats. Microinjection of NMDA (100pmol) consistently elicited larger striatal dopamine (DA) overflows from young rats (3-4 months old) than from aged rats (27-28 months old). Furthermore, the rate of clearance (T(c)) of the NMDA-evoked dopamine release was lower in the aged rats. Local application of dopamine evoked reversible electrochemical signals with similar amplitudes in both young and aged rats. However, T(c) was reduced and time course parameters were prolonged in the aged rats. While microejection of NMDA (1pmol) did not induce any dopamine overflow, simultaneous administration of NMDA and K(+) evoked larger dopamine releases than K(+) alone in the young striatum. Concomitant application of NMDA did not potentiate the K(+)-evoked dopamine release in the aged striatum. Taken together, with the reduced dopamine release in response to depolarizing stimuli, our in vivo electrochemical data suggest that age-related changes in NMDA function contribute to the impaired dopaminergic dynamics, including an attenuation of NMDA-evoked dopamine release and a diminished augmentation by K(+) of NMDA-induced dopamine release during the normal aging process.
Collapse
Affiliation(s)
- Anya M Y Lin
- Department of Physiology, National Yang-Ming University, Taiwan, ROC.
| |
Collapse
|
10
|
Billet F, Dourmap N, Costentin J. Involvement of corticostriatal glutamatergic terminals in striatal dopamine release elicited by stimulation of delta-opioid receptors. Eur J Neurosci 2004; 20:2629-38. [PMID: 15548206 DOI: 10.1111/j.1460-9568.2004.03723.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously shown that striatal dopamine release induced locally by a delta-opioid receptor agonist was totally inhibited by a glutamate N-methyl-D-aspartate receptor antagonist, indicating the involvement of glutamatergic receptors in this effect. The aim of the present study was to specify this mechanism. Firstly, we investigated the effect of [D-Pen2,D-Pen5]-enkephalin (DPDPE) on glutamate release in rats by intrastriatal microdialysis. The infusion of DPDPE (10 microm) enhanced the glutamate content in dialysate by approximately 34%, an effect which did not appear to result from inhibition of glutamate uptake. We then considered the consequences of a unilateral thermocoagulation of the frontal cortex on either glutamate or dopamine release induced by stimulation of delta-opioid receptors 2 days later. This lesion, which decreased the glutamate content in ipsilateral striatum by approximately 30%, totally prevented the increase in dialysate levels of glutamate induced by DPDPE. Moreover, whereas DPDPE (10 microm) was found to increase the striatal dopamine release in intact animals by approximately 59%, this effect was also completely suppressed by the cortical lesion. Finally, we studied the effect of the lesion on the [3H]-DPDPE binding to striatal membranes prepared from the whole striatum. In the ipsilateral striatum a significant decrease in this [3H]-DPDPE binding (by approximately 18%) was found 2 days after the lesion. Our results indicate that the increase in striatal dopamine release induced by DPDPE probably depends on glutamate release from corticostriatal glutamatergic afferents in response to the stimulation of delta-opioid receptors located on terminals of these neurons.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Cerebral Cortex/drug effects
- Cerebral Cortex/injuries
- Cerebral Cortex/physiology
- Chromatography, High Pressure Liquid/methods
- Dicarboxylic Acids/pharmacology
- Dopamine/metabolism
- Dose-Response Relationship, Drug
- Drug Interactions
- Electrocoagulation/methods
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Glutamates/metabolism
- Male
- Microdialysis/methods
- Neostriatum/drug effects
- Neostriatum/metabolism
- Neurotransmitter Uptake Inhibitors/pharmacology
- Pyrrolidines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/metabolism
- Staining and Labeling/methods
- Synaptosomes/metabolism
Collapse
Affiliation(s)
- Fabrice Billet
- Unité de Neuropsychopharmacologie Expérimentale, UMR 6036 CNRS, IFRMP no. 23, Faculté de Médecine et de Pharmacie de Rouen, 22 Boulevard Gambetta, 76183 Rouen Cédex 01, France
| | | | | |
Collapse
|
11
|
Hoover JE, Hoffer ZS, Alloway KD. Projections from primary somatosensory cortex to the neostriatum: the role of somatotopic continuity in corticostriatal convergence. J Neurophysiol 2003; 89:1576-87. [PMID: 12611938 DOI: 10.1152/jn.01009.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We characterized the organization of corticostriatal projections from rodent primary somatosensory cortex (SI), testing the hypothesis that projections from SI areas representing subcomponents of the forelimb exhibit greater neostriatal overlap than projections from areas representing separate body parts. The anterograde tracers Fluoro-Ruby (FR), Alexa Fluor (AF), and biotinylated dextran amine (BDA) were injected into physiologically identified regions of rat SI. Injection locations were confirmed by examining the SI barrel fields and limb representations in tangential sections processed for cytochrome oxidase (CO). Experimental animals were divided into two groups: one group received multiple tracer injections in neighboring SI regions that represent separate body parts (whiskers, forepaw, and hindpaw); the other group received injections in SI areas that represent different components of the forelimb (forepaw, antebrachium, and brachium). The distribution of labeled terminals and their varicosities in the neostriatum and in the thalamus were plotted and quantitatively analyzed. For most animals, tracer overlap in the thalamus was either minimal or completely absent. In the neostriatum, projections from the whisker, forelimb, and hindlimb representations terminated in regions that rarely overlap with each other, while those originating from different parts of the forelimb representation were more likely to terminate in overlapping parts of the neostriatum. To the extent that neostriatal activation depends on corticostriatal convergence, the corticostriatal projections in the sensorimotor channel appeared to be organized so that neostriatal neurons may signal when multiple components of the same body part are activated simultaneously.
Collapse
Affiliation(s)
- John E Hoover
- Department of Biology, Millersville University, Millersville 17551-0302, USA
| | | | | |
Collapse
|
12
|
Jang CG, Lee SY. NMDA-type glutamatergic modulation in dopaminergic activation measured by apomorphine-induced cage climbing behaviors. Arch Pharm Res 2001; 24:613-7. [PMID: 11794545 DOI: 10.1007/bf02975175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The present study examined the hypothesis that NMDA, AMPA/Kainate, and metabotropic (mGlu) glutamate receptors contribute to a behavioral stimulation induced by activation of dopamine receptors by comparing responses in apomorphine-induced cage climbing behaviors in mice. MK-801, CNQX, and MCPG were served as the NMDA receptor, AMPA/Kainate receptor, and mGlu receptor antagonist, respectively, to elucidate the glutamatergic modulation in apomorphine-induced dopaminergic activation in mice. Drugs were administered intracerebroventricularly (i.c.v.) into the mouse brain 15 min before the apomorphine treatment (2 mg/kg, s.c.). I.c.v. injection of MK-801 inhibited the apomorphine-induced cage climbing behavior dose-dependently. However, treatments with CNQX and MCPG did not any significant change in apomorphine-induced cage climbing behavior in mice. These results suggest that stimulation of NMDA type of glutamate receptors could contribute to the dopaminergic stimulation, but not AMPA/Kainate and mGlu type glutamate receptors.
Collapse
Affiliation(s)
- C G Jang
- Department of Pharmacology, College of Pharmacy, Sungkyunkwan University, Suwon, Korea.
| | | |
Collapse
|
13
|
Abstract
The prefrontal cortex (PFC) has long been known to be involved in the mediation of complex behavioral responses. Considerable research efforts are directed towards refining the knowledge about the function of this brain area and the role it plays in cognitive performance and behavioral output. In the first part, this review provides, from a pharmacological perspective, an overview of anatomical, electrophysiological and neurochemical aspects of the function of the PFC, with an emphasis on the mesocortical dopamine system. Anatomy of the mesocortical system, basic physiological and pharmacological properties of neurotransmission within the PFC, and interactions between dopamine and glutamate as well as other transmitters within the mesocorticolimbic circuit are included. The coverage of these data is largely restricted to what is relevant for the second part of the review which focuses on behavioral studies that have examined the role of the PFC in a variety of phenomena, behaviors and paradigms. These include reward and addiction, locomotor activity and sensitization, learning, cognition, and schizophrenia. Although the focus of this review is on the mesocortical dopamine system, given the intricate interactions of dopamine with other transmitter systems within the PFC and the importance of the PFC as a source of glutamate in subcortical areas, these aspects are also covered in some detail where appropriate. Naturally, a topic as complex as this cannot be covered comprehensively in its entirety. Therefore this review is largely limited to data derived from studies using rats, and it is also specifically restricted to data concerning the medial PFC (mPFC). Since in several fields of research the findings concerning the function or role of the mPFC are relatively inconsistent, the question is addressed whether these inconsistencies might, at least in part, be related to the anatomical and functional heterogeneity of this brain area.
Collapse
Affiliation(s)
- T M Tzschentke
- Grünenthal GmbH, Research and Development, Department of Pharmacology, Postfach 500444, 52088, Aachen, Germany.
| |
Collapse
|
14
|
Abstract
The basal ganglia consist of several interconnected nuclei located in the telecephalon, diencephalon and mesencephalon that are involved in a variety of motor and non-motor behavioural functions. Glutamate receptors play a major role in neurotransmission within the basal ganglia and are present in all nuclei of the basal ganglia. This review focuses on the contribution of the NMDA class of glutamatergic receptors to various movement disorders whose primary pathology lies within the basal ganglia and discusses how pharmacological manipulation of such receptors may be therapeutically useful.
Collapse
Affiliation(s)
- P Ravenscroft
- Manchester Movement Disorders Laboratory, University of Manchester, UK
| | | |
Collapse
|
15
|
Alloway KD, Mutic JJ, Hoffer ZS, Hoover JE. Overlapping corticostriatal projections from the rodent vibrissal representations in primary and secondary somatosensory cortex. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20001009)426:1<51::aid-cne4>3.0.co;2-n] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Kachidian P, Vuillet J, Salin P, Kerkerian-Le Goff L. Ultrastructural and metabolic changes in the neuropeptide Y-containing striatal neuronal network after thermocoagulatory cortical lesion in adult rat. Synapse 1999; 34:208-21. [PMID: 10523758 DOI: 10.1002/(sici)1098-2396(19991201)34:3<208::aid-syn5>3.0.co;2-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This study examined the effects of unilateral thermocoagulatory cortical lesion on the pattern of neuropeptide Y immunostaining in the rat ipsilateral striatum at 4 and 21 days post-lesion. Light microscopic analysis showed a significant increase in the number of neuropeptide Y-positive neurons vs. control at both time points; paradoxically, the intraneuronal level of labelling significantly decreased at 4 days post-lesion but increased at 21 days post-lesion. Ultrastructural analysis in control condition showed a higher proportion of dendritic versus axonal labelled processes (3.5 ratio); all the neuropeptide Y synaptic terminals formed symmetrical contacts, mostly onto unlabelled dendrites. At 4 days post-lesion, the neuropeptide Y-positive axon density dramatically increased (+576%) without significant change in the labelled dendrite density, vs. control values; the density of neuropeptide Y synaptic terminals increased in parallel by 233%. In addition, a significant proportion of large neuropeptide Y boutons forming asymmetrical synapses onto unlabelled spines were observed. At 21 days post-lesion, densities of neuropeptide Y dendrites, axons, and synaptic terminals increased by 68, 246 and 125%, respectively, vs. control. But, the morphological features of the neuropeptide Y axonal processes and synaptic specializations of the boutons were similar to those observed in control condition. These data (1) raise an important issue regarding the origin of the terminals forming asymmetrical synapses in the striatum, (2) suggest that adaptative changes in the neuropeptide Y neuronal network may be a main component of striatal remodelling resulting from the progressive loss of cortical inputs, and (3) reinforce the view that neuropeptide Y and excitatory amino acid functions may be tightly linked in the striatum.
Collapse
Affiliation(s)
- P Kachidian
- Laboratoire de Neurobiologie Cellulaire et Fonctionnelle, UPR 9013, CNRS, 13402 Marseille CEDEX 20, France
| | | | | | | |
Collapse
|
17
|
LIU JING, WU CHUNFU, LIU WEN, ZHANG HONGLING, LI CHUNLI. Involvement of the corticostriatal glutamatergic pathway in ethanol-induced ascorbic acid release in rat striatum. Addict Biol 1999; 4:273-81. [PMID: 20575794 DOI: 10.1080/13556219971489] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The mechanism of ethanol-induced ascorbic acid (AA) release in striatum is not well understood. In the present work, the possible involvement of NMDA receptors in the corticostriatal pathway was studied by microdialysis coupled to high performance liquid chromatography with electrochemical detection. Ethanol (3.0 g/kg i.p.) stimulated significant striatal AA release to more than 200% above the baseline. This effect of ethanol could be partially antagonized by amantadine, a non-selective NMDA receptor antagonist and dopamine releaser, at a dose of 200 mg/kg i.p. and significantly antagonized by MK-801, a non-competitive NMDA receptor antagonist, at the doses of 0.5 and 1.0 mg/kg i.p. Furthermore, deafferentation of the glutamatergic projection from cortex to striatum by undercutting the prefrontal cortex completely eliminated ethanol-induced AA release in rat striatum. The basal level of AA in striatum could only be reduced by high doses of MK-801, but not by low doses of MK-801, amantadine or decortication. The results further confirm that NMDA receptors are involved in ethanol-induced AA release and provide the first evidence for the necessity of the activation of corticostriatal glutamatergic pathway in ethanol-induced AA release in rat striatum.
Collapse
|
18
|
Rudkin TM, Sadikot AF. Thalamic input to parvalbumin-immunoreactive GABAergic interneurons: organization in normal striatum and effect of neonatal decortication. Neuroscience 1999; 88:1165-75. [PMID: 10336127 DOI: 10.1016/s0306-4522(98)00265-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The neocortex and thalamus send dense glutaminergic projections to the neostriatum. The neocortex makes synaptic contact with spines of striatal projection neurons, and also targets a distinct class of GABAergic interneurons immunoreactive for the calcium-binding protein parvalbumin. We determined whether the parafascicular thalamic nucleus also targets striatal parvalbumin-immunoreactive interneurons. The anterograde tracer biotinylated dextranamine was injected into the parafascicular nucleus of adult rats. Double-labeled histochemistry/immunohistochemistry revealed overlapping thalamic fibers and parvalbumin-immunoreactive neurons in the neostriatum. Areas of overlap within the sensorimotor striatum were analysed by electron microscopy. Of 311 synaptic boutons originating from the parafascicular nucleus, 75.9% synapsed with unlabeled dendrites, 22.5% with unlabeled spines, and 1.3% had parvalbumin-immunoreactive dendrites as a postsynaptic target. Only 4% of all asymmetric synapses on parvalbumin-immunoreactive dendrites were derived from the parafascicular nucleus. A separate group of animals underwent bilateral neocortical deafferentation on the third postnatal day, prior to injection of anterograde tracer into the parafascicular nucleus of adult animals. These experiments were performed with the dual purpose of (i) reducing the possibility that thalamic inputs to parvalbumin-immunoreactive neurons are the result of transsynaptic uptake of tracer by a thalamo-cortico-striatal route, and (ii) determining whether competitive interactions between developing corticostriatal and thalamostriatal fibers may account for the relatively sparse thalamic input onto parvalbumin-immunoreactive interneurons. In decorticates, 219 striatal synaptic contacts derived from the parafascicular nucleus, out of which 77.2% were on unlabeled dendrites, 20.9% were upon unlabeled spines, and 0.9% targeted parvalbumin-immunoreactive dendrites. We conclude that the thalamic parafascicular nucleus indeed sends synaptic input to parvalbumin-immunoreactive striatal neurons. Parafascicular nucleus inputs to striatal parvalbumin-immunoreactive interneurons are sparse in comparison to other asymmetric inputs, most of which are likely to be of cortical origin. The synaptic profile of thalamostriatal inputs to parvalbumin-immunoreactive neurons and unlabeled elements is unchanged following neonatal decortication. This suggests that competitive interaction between developing thalamostriatal and corticostriatal projections is not a major mechanism determining synaptic input to striatal subpopulations.
Collapse
Affiliation(s)
- T M Rudkin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Canada
| | | |
Collapse
|
19
|
Baca SM, Lipska BK, Egan MF, Bachus SE, Ferguson JN, Hyde TM. Effects of prefrontal cortical lesions on neuropeptide and dopamine receptor gene expression in the striatum-accumbens complex. Brain Res 1998; 797:55-64. [PMID: 9630515 DOI: 10.1016/s0006-8993(98)00343-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the rat, neurochemical, behavioral, and anatomical investigations suggest that medial prefrontal cortical input modulates the activity of the basal ganglia. To understand how prefrontal dysfunction might alter striatal-accumbens function, in situ hybridization histochemistry with S35-labeled oligonucleotide probes was used to assess changes in striatal-accumbens gene expression following bilateral excitotoxic ibotenic acid (IA) lesions of the rat medial prefrontal cortex. Quantitative densitometry was used to measure changes in mRNA levels for preproenkephalin A (ENK), D1 dopamine receptor, protachykinin (SubP), glutamic acid decarboxylase (GAD65), and D2 dopamine receptor. No differences were found between sham and lesion groups for ENK, D1, SubP, or GAD65 mRNA levels in the striatum or nucleus accumbens (NAC). D2 receptor mRNA levels were, however, significantly higher in the dorsomedial striatum and in the core area of the NAC of the lesioned rats. Although the functional significance of increased D2 mRNA is unclear, these findings demonstrate that glutamate mPFC projections modulate gene expression in relatively regionally-localized subcortical neuronal populations.
Collapse
Affiliation(s)
- S M Baca
- Clinical Brain Disorders Branch, Intramural Research Program, National Institute of Mental Health, Neuroscience Center, St. Elizabeths Hospital, Washington, DC 20032, USA
| | | | | | | | | | | |
Collapse
|
20
|
Jolkkonen J, Jenner P, Marsden CD. Glutamatergic regulation of striatal peptide gene expression in rats. JOURNAL OF NEURAL TRANSMISSION. PARKINSON'S DISEASE AND DEMENTIA SECTION 1998; 10:187-98. [PMID: 9620062 DOI: 10.1007/bf02251230] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mRNA levels encoding enkephalin and substance P were measured in the rat striatum following cortical ablation, blockade of N-methyl-D-aspartate (NMDA) receptors or inhibition of glutamate release by lamotrigine. Unilateral ablation of the cerebral cortex resulted in a decrease of substance P mRNA levels particularly in the rostral dorsolateral and dorsomedial striatum ipsilateral to the lesion. There was a similar trend for a reduction in levels of enkephalin mRNA. Continuous, intrastriatal infusion of the competitive NMDA receptor antagonist, 3-((+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid, (CPP, 0.12 and 1.2microg/day) decreased both enkephalin mRNA and substance P mRNA in dose-dependent manner evenly throughout the striatum adjacent to the infusion site. Following subchronic administration of the presumed glutamate release inhibitor, lamotrigine (5 and 20mg/kg IP) there was no significant alterations in either enkephalin mRNA or substance P mRNA levels in the striatum. Both enkephalin mRNA and substance P mRNA expression in the rat striatum appear tonically stimulated through postsynaptic NMDA receptor mediated mechanisms. This contrasts with differential dopaminergic modulation of peptides in striatal output neurons.
Collapse
Affiliation(s)
- J Jolkkonen
- Neurodegenerative Diseases Research Centre, Biomedical Sciences Division, King's College, London
| | | | | |
Collapse
|
21
|
Barwick VS, Dar MS. Adenosinergic modulation of ethanol-induced motor incoordination in the rat motor cortex. Prog Neuropsychopharmacol Biol Psychiatry 1998; 22:587-607. [PMID: 9682275 DOI: 10.1016/s0278-5846(98)00025-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
1. On going work in our laboratory has shown that adenosine modulates ethanol-induced motor incoordination (EIMI) when given systemically as well as directly into the cerebral ventricles, cerebellum and corpus striatum of the rat and/or mouse. 2. The objective of this study was to determine what effect adenosine agonists and antagonists would have within the rat motor cortex on EIMI. 3. The participation of the motor cortex in EIMI was suggested when microinfusion of the anti-ethanol compound, Ro15-4513, an inverse agonist of the benzodiazepine binding site, directly into the motor cortex significantly attenuated EIMI. Further, the adenosine agonists N6-cyclohexyladenosine (CHA) and 2-p-(2-carboxyethyl)-phenethylamino-5'-N-carboxaminoadenosine++ + hydrochloride (CGS-21680) significantly accentuated EIMI in a dose-related manner. The adenosine A1 receptor-selective agonist, CHA, appeared most potent in this modulatory effect when compared to the A2-selective agonist, CGS-21680. 4. The extent of diffusion of the adenosine drugs within the cortical tissue after their microinfusion was also checked by measuring the dispersion of microinfused [3H]CHA. The [3H]CHA dispersion study indirectly confirmed that the results of the present investigation were based on the effect of adenosine drugs within the motor cortex only. 5. Accentuation by the A1- and A2-selective adenosine agonists was significantly attenuated by the A1-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) but not by the A2 receptor-selective antagonist 8-(3-chlorostyryl)caffeine (CSC) further suggesting modulation mainly by the A1-subtype. 6. Pretreatment of the motor cortex with pertussis toxin (PT) significantly reduced the capacity of both A1- and A2-selective adenosine agonists to accentuate EIMI suggesting the involvement of a PT-sensitive Gi/Go protein. 7. These data support earlier work which showed that adenosine modulates EIMI within the central nervous system (CNS), most likely via the A1 receptor, and moreover, extend that work by including the motor cortex as a brain area participating in the adenosinergic modulation of ethanol-induced motor impairment.
Collapse
Affiliation(s)
- V S Barwick
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville, NC, USA
| | | |
Collapse
|
22
|
Kuo MF, Song D, Murphy S, Papadopoulos MD, Wilson DF, Pastuszko A. Excitatory amino acid receptor antagonists decrease hypoxia induced increase in extracellular dopamine in striatum of newborn piglets. Neurochem Int 1998; 32:281-9. [PMID: 9587922 DOI: 10.1016/s0197-0186(97)00091-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study tested the hypothesis that the increase in extracellular striatal dopamine during hypoxia is least partly associated with activation of N-methyl-D-aspartate (NMDA) and/or non-NMDA excitatory amino acid receptors. Studies were performed in anesthetized and mechanically ventilated 2-3 days old piglets. Hypoxic insult was induced by decreasing the oxygen fraction in inspired gas (FiO2) from 22 to 7% for 1 h, followed by 1 h reoxygenation at 22%. Cortical oxygen pressure was measured optically by oxygen dependent quenching of phosphorescence, and extracellular striatal dopamine was measured using in vivo microdialysis. The microdialysis probes were perfused with Ringer solution +/- 50 microM (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) or 50 microM 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX). One hour of hypoxia decreased the cortical oxygen pressure from 46 +/- 3 Torr to 10 +/- 1.8 Torr. In striatum perfused with Ringer, statistically significant increase in extracellular dopamine, to 1050 +/- 310% of control, was observed after 20 min of hypoxia. By 40 min of hypoxia the extracellular level of dopamine increased to 4730 +/- 900% of control; by the end of the hypoxic period the values increased to 18,451 +/- 1670% of control. The presence of MK-801 in the perfusate significantly decreased the levels of extracellular dopamine during hypoxia. At 20, 40 and 60 min of hypoxia extracellular level of dopamine increased to 278 +/- 94% of control, 1530 +/- 339% of control and 14,709 +/- 1095 of control, respectively. The presence of NBQX caused a statistically significant decrease, by about 30%, in the extracellular dopamine compared to control, only at the end of the hypoxic period. It can be concluded that in striatum of newborn piglets, the excitatory NMDA receptors but not the non-NMDA receptors may be modulating the changes in extracellular levels of dopamine. The NMDA receptor antagonist, MK-801, may exert part of its reported neuroprotective effect to hypoxic stress in striatum by decreasing the levels of extracellular dopamine.
Collapse
Affiliation(s)
- M F Kuo
- Department of Biochemistry & Biophysics, Medical School, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | |
Collapse
|
23
|
Tallaksen-Greene SJ, Kaatz KW, Romano C, Albin RL. Localization of mGluR1a-like immunoreactivity and mGluR5-like immunoreactivity in identified populations of striatal neurons. Brain Res 1998; 780:210-7. [PMID: 9507137 DOI: 10.1016/s0006-8993(97)01141-4] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metabotropic glutamate receptors are important mediators of excitatory amino acid neurotransmission in the striatum. Two-color immunofluorescence histochemistry and immunohistochemistry in combination with retrograde tract-tracing techniques were used to examine the distribution of metabotropic glutamate receptor subtypes 1a and 5 (mGluR1a and mGluR5) among identified subpopulations of striatal projection neurons and interneurons. The majority of striatopallidal and striatonigral neurons were double-labeled for both mGluR1a or mGluR5. Approximately 60% to 70% of either striatonigral or striatopallidal neurons expressed mGluR1a- or mGluR5-like immunoreactivity. The percentage of double-labeled striatopallidal or striatonigral projection neurons did not differ among striatal quadrants. Striatal interneurons expressing parvalbumin or somatostatin or choline acetyltransferase exhibited varying degrees of expression of mGluR1a or mGluR5. Virtually all (94%) parvalbumin-immunoreactive striatal neurons expressed mGluR1a-like immunoreactivity with a majority (79%) of these neurons expressing mGluR5-like immunoreactivity. A high percentage (89%) of striatal choline acetyltransferase-immunoreactive neurons were double-labeled for mGluR1a-like immunoreactivity. Approximately 65% of striatal choline acetyltransferase-immunoreactive neurons expressed mGluR5-like immunoreactivity. A majority (65%) of somatostatin-immunoreactive striatal interneurons expressed mGluR1a-like immunoreactivity with a slightly lower percentage (55%) expressing mGluR5-like immunoreactivity. These findings indicate considerable heterogeneity among striatal projection and interneurons with respect to mGluR1a and mGluR5 expression. There may be subpopulations of striatonigral and striatopallidal projection neurons. These results are consistent as well with prior data indicating subpopulations of the different classes of striatal interneurons.
Collapse
|
24
|
|
25
|
Kelley AE, Swanson CJ. Feeding induced by blockade of AMPA and kainate receptors within the ventral striatum: a microinfusion mapping study. Behav Brain Res 1997; 89:107-13. [PMID: 9475619 DOI: 10.1016/s0166-4328(97)00054-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The corticostriatal pathway is believed to utilize the excitatory amino acid glutamate as its transmitter, and the striatum contains high levels of all glutamate receptor subtypes. It has recently been demonstrated that blockade of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and kainate glutamate receptors in the medial part of the accumbens, corresponding to the medial shell subregion, results in a pronounced feeding response. In order to more precisely localize this response, a microinfusion mapping study was conducted. Bilateral microinfusions of 6,7-dinitroquinoxaline-2,3-dione (DNQX, 0, 50, 250, 750 ng/0.5 microl), an antagonist that blocks AMPA and kainate receptors, were carried out in eight striatal subregions in different groups of animals. In non-deprived rats, food intake (normal chow), feeding duration, and several other behavioral measures were assessed during a 30 min test session. DNQX significantly and potently enhanced food intake when injected into the accumbens shell, but not into any other region examined, including accumbens core, anterior dorsal, posterior dorsal, ventromedial, dorsomedial, and ventrolateral striatum. The most sensitive site within the accumbens was found to be the posterior aspects of the shell, in which the lowest dose (50 ng DNQX) augmented feeding. These results suggest that a circumscribed region within the nucleus accumbens has a unique role in the control of feeding. It is postulated that removal of tonic excitatory inputs to this region with DNQX results in disinhibition of brain circuits critical for ingestive behavior.
Collapse
Affiliation(s)
- A E Kelley
- Dept. of Psychiatry, University of Wisconsin-Madison Medical School, 53719, USA.
| | | |
Collapse
|
26
|
Herz RC, Gaillard PJ, de Wildt DJ, Versteeg DH. Differences in striatal extracellular amino acid concentrations between Wistar and Fischer 344 rats after middle cerebral artery occlusion. Brain Res 1996; 715:163-71. [PMID: 8739635 DOI: 10.1016/0006-8993(95)01572-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We hypothesized that the interstrain difference between Wistar and Fischer-344 (F344) rats in cerebral infarction volume after proximal middle cerebral artery (MCA) occlusion might be explained by differences in excitotoxicity between both rat strains. Using microdialysis we measured during a 5 h period after MCA occlusion the release of aspartate, glutamate and taurine in the cerebral cortex and the striatum. The volume of striatal infarction was comparable in Wistar and F344 rats. We found, however, in Wistar rats a significantly higher striatal efflux of aspartate and glutamate than in F344 rats, whereas the striatal taurine efflux was of a similar magnitude in the two strains. Because of the (variably) smaller volume of cortical infarction in Wistar rats (than that in F344), the location of the microdialysis probe-membrane with respect to the area of cortical infarction differed between Wistar rats. Hence, a reliable comparison between the quantitative amount of amino acids in the dialysate from the cortical probes of both rat strains could not be made. These results, demonstrating differences in striatal excitotoxicity between Wistar and F344 rats after MCA occlusion, are the first to show interstrain differences in striatal pathophysiology of focal ischemia between these normotensive rat strains. They do however not explain why MCA occlusion results in a significantly different volume of cortical infarction between Wistar and F344 rats. The F344 strain will probably show in a more sensitive way, as compared to Wistar rats, neuroprotective effects of agents that diminish excitotoxic damage during focal cerebral ischemia.
Collapse
Affiliation(s)
- R C Herz
- Department of Medical Pharmacology, Rudolf Magnus Institute for Neurosciences, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
27
|
Veenman CL, Reiner A. Ultrastructural morphology of synapses formed by corticostriatal terminals in the avian striatum. Brain Res 1996; 707:1-12. [PMID: 8866708 DOI: 10.1016/0006-8993(95)00831-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We studied the ultrastructural morphology of corticostriatal projections from two different avian 'neocortical' regions, namely, the hyperstriatum accessorium (HA) and the pallium externum (PE). Biotinylated dextran amine (BDA) was used to label the corticostriatal projection from either HA or PE to the striatum. The corticostriatal axons from both the PE and HA possessed numerous beaded varicosities with the striatum. These varicosities were filled with numerous round vesicles characterizing them as terminals. These terminals formed asymmetric synapses with spine heads and with dendrites of striatal neurons. The axospinous synapses outnumbered the axodendritic synapses by more than two to one. The diameters of labeled axons were typically 250-500 nm. The labeled terminals were typically 400-750 nm in diameter. No obvious differences between the ultrastructural morphology of the HA and the PE corticostriatal projections were observed. These data show that corticostriatal terminals and their synaptic contacts in birds are similar to those described in mammals.
Collapse
Affiliation(s)
- C L Veenman
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis 38163, USA
| | | |
Collapse
|
28
|
Lawler CP, Gilmore JH, Watts VJ, Walker QD, Southerland SB, Cook LL, Mathis CA, Mailman RB. Interhemispheric modulation of dopamine receptor interactions in unilateral 6-OHDA rodent model. Synapse 1995; 21:299-311. [PMID: 8869160 DOI: 10.1002/syn.890210404] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A critical assumption in the unilateral 6-hydroxydopamine (6-OHDA) model is that interactions between the intact and denervated hemispheres do not influence the response to insult. The present study examined this issue by assessing the effects of unilateral substantia nigra 6-OHDA lesions in rats that previously had received corpus callosum transections, a treatment designed to minimize interhemispheric influences. Quantitative autoradiography in the caudate-putamen ipsilateral to the lesion revealed that corpus callosum transection did not alter the increase in D2-like receptors ([125I]-epidepride-labeled sites) that is induced by unilateral 6-OHDA lesion. There were no effects of either 6-OHDA lesion or transection on D1 receptor density ([125I]-SCH23982 autoradiography). As a functional endpoint, dopamine-stimulated cAMP efflux was measured in superfused striatal slices. In this paradigm, the net effect of dopamine (DA) represents a combination of D1 receptor-mediated stimulation and D2 receptor-mediated inhibition. 6-OHDA lesion increased cAMP efflux induced by exposure to 100 microM DA alone; corpus callosum transection did not alter this effect. An interaction between 6-OHDA lesion and transection status was revealed, however, by comparison of results obtained with DA alone vs. DA plus the D2 antagonist sulpiride (to block the D2 inhibitory effects of 100 microM DA). This comparison revealed two important effects of 6-OHDA lesion in rats with an intact corpus callosum: 1) a moderate decrease in dopamine D1 receptor-mediated stimulation; and 2) a dramatic decrease in the ability of D2 receptors to inhibit this stimulation. Corpus callosum transection prevented these effects of 6-OHDA. These results provide a biochemical demonstration of D1:D2 receptor uncoupling in unilateral 6-OHDA lesioned rats, and suggest that interhemispheric influences (e.g., contralateral cortico-striatal glutamatergic projections) may contribute to lesion-induced alterations in D1:D2 receptor interactions.
Collapse
Affiliation(s)
- C P Lawler
- Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill 27599-7250, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Veenman CL, Karle EJ, Anderson KD, Reiner A. Thalamostriatal projection neurons in birds utilize LANT6 and neurotensin: a light and electron microscopic double-labeling study. J Chem Neuroanat 1995; 9:1-16. [PMID: 8527034 DOI: 10.1016/0891-0618(95)00057-e] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Based on its location, connectivity and neurotransmitter content, the dorsal thalamic zone in birds appears to be homologous to the intralaminar, midline, and mediodorsal nuclear complex in the thalamus of mammals. We investigated the neuroactive substances used by thalamostriatal projection neurons of the dorsal thalamic zone in the pigeon. Single-labeling experiments showed that many neurons in the dorsal thalamic zone are immunoreactive for neurotensin and the neurotensin-related hexapeptide, (Lys8,Asn9)NT(8-13) (LANT6). Double-labeling experiments, using the retrograde fluorescent tracer, FluoroGold, combined with fluorescence immunocytochemistry for either LANT6 or neurotensin, showed that neurotensin- and LANT6-containing neurons in the dorsal thalamic zone project to the striatum of the basal ganglia. Immunofluorescence double-labeling experiments showed that neurotensin and LANT6 are often (possibly always) co-expressed in neurons in the dorsal thalamic zone. Electron microscopic immunohistochemical double-labeling showed that LANT6 terminals in the striatum make asymmetric contacts with heads of spines labeled for substance P and heads of spines not labeled for substance P, suggesting that these terminals synapse with both substance P-containing and non-substance P-containing medium spiny striatal projection neurons. These findings indicate that LANT6 and neurotensin may be utilized as neurotransmitters in thalamostriatal projections in birds and raise the possibility that this may also be the case in other amniotes.
Collapse
Affiliation(s)
- C L Veenman
- Department of Anatomy and Neurobiology, University of Tennessee-Memphis 38163, USA
| | | | | | | |
Collapse
|
30
|
Kaatz KW, Albin RL. Intrastriatal and intrasubthalamic stimulation of metabotropic glutamate receptors: a behavioral and Fos immunohistochemical study. Neuroscience 1995; 66:55-65. [PMID: 7637875 DOI: 10.1016/0306-4522(94)00568-p] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Prior work has shown that intrastriatal injection of the metabotropic glutamate receptor agonist 1S,3R-ACPD results in pronounced contralateral rotation, and the basis for this effect is thought to be increased activity of dopaminergic nigrostriatal neurons. We tested this hypothesis by determining the expression of Fos-like immunoreactivity after intrastriatal injection of 1S,3R-ACPD. Intense Fos-like immunoreactivity was noted in the globus pallidus, entopeduncular nucleus, subthalamic nucleus and substantia nigra pars reticulata. Ablation of the subthalamic nucleus 10 days prior to intrastriatal injection of 1S,3R-ACPD abolished rotational behaviour but not Fos-like immunoreactivity in the globus pallidus, entopeduncular nucleus and substantia nigra. Intrasubthalamic injection of 1S,3R-ACPD produced marked contralateral rotation and a pattern of Fos-like immunoreactivity similar to that seen after intrastriatal 1S,3R-ACPD injection. These results suggest that stimulation of striatal metabotropic glutamate receptors inhibits striatal projection neuron activity, while stimulation of subthalamic metabotropic glutamate receptors increases subthalamic nucleus activity. Increased subthalamic nucleus activity is necessary and sufficient for the expression of rotational behavior. These results also suggest that metabotropic glutamate receptor antagonists may be useful in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- K W Kaatz
- Department of Neurology, University of Michigan, Ann Arbor 48109, USA
| | | |
Collapse
|
31
|
Shirotani T, Shima K, Chigasaki H. In vivo studies of extracellular metabolites in the striatum after distal middle cerebral artery occlusion in stroke-prone spontaneously hypertensive rats. Stroke 1995; 26:878-84. [PMID: 7740583 DOI: 10.1161/01.str.26.5.878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND PURPOSE We demonstrated in a previous study that 45Ca accumulation in the lateral part of the striatum was detected 3 days after distal middle cerebral artery (MCA) occlusion using a 45Ca autoradiographic technique in stroke-prone spontaneously hypertensive rats. However, the mechanism of delayed neuronal damage that occurred in the lateral part of the striatum is unknown. We examined changes in amino acids and monoamines in the striatums of rat brains after MCA occlusion in stroke-prone spontaneously hypertensive rats using an in vivo brain microdialysis technique. METHODS Microdialysis probes were inserted into the lateral or medial part of the striatum 24 hours before the experiment. The dialysis probe was perfused continuously at 2 microL/min with Ringer's solution, and the dialysate samples were collected every 20 minutes. After a 3-hour period for baseline stabilization, the right MCA was occluded. The dialysate count of monoamines and amino acids was determined by high-performance liquid chromatography. RESULTS After MCA occlusion, a threefold transient increase in glutamate was observed in the lateral part of the striatum. The level returned to its baseline value 60 minutes after MCA occlusion. Dopamine in the lateral part increased twofold to its peak value. This release persisted for 2 hours after MCA occlusion. There were no significant changes in these components in the extracellular fluid of the medial part of the striatum. CONCLUSIONS Our study demonstrated that changes of neurotransmitters in the lateral part of the striatum after MCA occlusion differed from those in the medial part. These results suggest that excessive release of glutamate and dopamine is related to delayed neuronal damage that occurs in the lateral part of the striatum in this model.
Collapse
Affiliation(s)
- T Shirotani
- Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan
| | | | | |
Collapse
|
32
|
Giovannini MG, Camilli F, Mundula A, Bianchi L, Colivicchi MA, Pepeu G. Differential regulation by N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors of acetylcholine release from the rat striatum in vivo. Neuroscience 1995; 65:409-15. [PMID: 7539896 DOI: 10.1016/0306-4522(94)00503-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The modulation of striatal cholinergic neurons by glutamatergic inputs was studied by monitoring the output of acetylcholine collected via a transversal microdialysis probe implanted into the striatum of freely moving rats. A transversal microdialysis membrane was inserted in the striatum and acetylcholine or GABA levels in the dialysate were measured. Acetylcholine levels in the dialysate were quantified by a high-performance liquid chromatography method with an electrochemical detector, while GABA levels were measured by a high-performance liquid chromatography method with a fluorescence detector. The dialysis membrane was perfused with Ringer solution containing 7 microM physostigmine sulphate and drugs, dissolved in the perfusion solution, were administered locally via the dialysis membrane. Local administration of the N-methyl-D-aspartate antagonist 3-[(RS)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (25-100 microM) brought about a decrease in striatal acetylcholine output which was dose-dependent, reversible and partially antagonized by 100 microM N-methyl-D-aspartate. On the other hand, local administration of the non-N-methyl-D-aspartate antagonist 2,3-dihydroxy-6-nitro-7-sulfamoil-benzo(F)quinoxaline was followed by an increase in acetylcholine output which reached a maximum of about +55% at 12.8 microM 2,3-dihydroxy-6-nitro-7-sulfamoil-benzo(F)quinoxaline and was readily reversed when the drug was withdrawn from the perfusion solution. Local administration of the non-N-methyl-D-aspartate receptor agonist (S)-alfa-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (50 and 200 microM) decreased acetylcholine output and this effect was reversed by simultaneous perfusion with the GABA antagonist bicuculline (50 microM).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M G Giovannini
- Department of Preclinical and Clinical Pharmacology, University of Florence, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Miele M, Enrico P, Esposito G, Fresu L, Migheli R, De Natale G, Desole MS. Cortical ablation and drug-induced changes in striatal ascorbic acid oxidation and behavior in the rat. Pharmacol Biochem Behav 1995; 50:1-7. [PMID: 7700944 DOI: 10.1016/0091-3057(94)00209-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Rats whose frontoparietal cortex had been bilaterally ablated were allowed 21 days for recovery and then treated with apomorphine (APO), 1 mg/kg SC or scopolamine (SCOP), 0.6 mg/kg SC. Soon after a behavioral test, dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), ascorbic acid (AA), and dehydroascorbic acid (DHAA) levels were determined by HPLC/EC in striatal synaptosomes (left side) and whole striatum (right side). SCOP behavioural effects were attenuated by cortical ablation, while those of APO were affected to a lesser extent. In the striatum of unoperated and sham-operated rats DHAA contents and DHAA/AA ratio resulted increased after drugs administration. No change in AA oxidation was observed in the striatum of ablated rats. In the synaptosomes of unoperated and sham-operated rats both drugs led to a decrease in DHAA contents and DHAA/AA ratio. In unoperated and sham-operated rats APO and SCOP caused a decrease of the DOPAC/DA ratio in the whole striatum and striatal synaptosomes. In ablated rats APO caused a decrease of DOPAC/DA ratio in the whole striatum and synaptosomes, while SCOP effects on DA turnover resulted attenuated in the whole striatum and abolished in synaptosomes. We conclude that drug-induced AA oxidation is likely to occur in the extracellular space and requires intact corticostriatal glutamatergic pathways. The latter may play an enabling role in SCOP behavioral effects.
Collapse
Affiliation(s)
- M Miele
- Institute of Pharmacology, University of Sassari, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Maldonado-Irizarry CS, Kelley AE. Differential behavioral effects following microinjection of an NMDA antagonist into nucleus accumbens subregions. Psychopharmacology (Berl) 1994; 116:65-72. [PMID: 7862932 DOI: 10.1007/bf02244872] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent studies have demonstrated the existence of two distinct regions within the nucleus accumbens (N.Acc) known as "core" and "shell". In order to investigate whether the behavioral functions of excitatory amino acid receptors differed between these two subregions, rats were administered microinjections of 2-amino-5-phosphonovaleric acid (AP-5), a competitive NMDA antagonist (0, 0.05, 0.2, 0.5, 1.0 microgram/0.5 microliter) into selected central and medial regions of the accumbens. The central and medial sites were assumed to correspond approximately to core and shell subregions, respectively. The animals were tested in two exploratory tasks: the open field and a novel object test. In the open field test, AP-5 significantly decreased peripheral locomotion and center rearing frequency in the central but not the medial group. Locomotion and rearing were not affected by AP5 infusion into a control site, the anterior dorsal striatum (ADS). In the novel object test, animals were tested in the same open field, with prior habituation, and with several novel objects placed within it. In this test, infusions of AP-5 (0, 1.0 microgram/0.5 microliter) decreased the number and duration of contacts with the novel objects in the central but not the medial group. In addition, peripheral and center locomotion were decreased by AP-5 infusions into the central site, whether objects were present or not. In contrast, AP-5 infusions into the medial site elicited an increase in peripheral locomotion in both stimulus conditions. These findings provide behavioral-pharmacological evidence that the central and medial subregions of the nucleus accumbens can be differentiated.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
35
|
Shirotani T, Shima K, Iwata M, Kita H, Chigasaki H. Calcium accumulation following middle cerebral artery occlusion in stroke-prone spontaneously hypertensive rats. J Cereb Blood Flow Metab 1994; 14:831-6. [PMID: 8063878 DOI: 10.1038/jcbfm.1994.104] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Delayed neuronal damage in the ischemic region of the rat brain following middle cerebral artery (MCA) occlusion in stroke-prone spontaneously hypertensive rats was studied. The distribution of neuronal damage was determined by 45Ca autoradiography. Accumulation of 45Ca was observed in the corpus callosum and ipsilateral cerebral cortex immediately following MCA occlusion. After 3 days of occlusion, 45Ca had accumulated in the ipsilateral pyramidal tract, the ventral posterior nucleus of the thalamus, and the lateral portion of the striatum. Significant accumulation of 45Ca was observed in the same areas after 7 and 14 days of occlusion. Next the effect of MK-801 on accumulation of 45Ca after MCA occlusion was examined using the same technique. MK-801 (0.5-10 mg/kg i.v.) or saline was administered 15 min before MCA occlusion, and volumes of accumulation of 45Ca were calculated 1 week after ischemic insults. MK-801 significantly reduced 45Ca uptake in the cortex, striatum, and thalamus. Furthermore, there was a strong statistical correlation between the volume of accumulation of 45Ca in the cortex and that in the thalamus (r = 0.8974; p < 0.001; n = 25). We speculate that delayed neuronal damage in the corpus callosum, ipsilateral pyramidal tract, and thalamus may be caused by secondary neuronal degeneration. However, neuronal damage in the striatum, a segment not supplied by the MCA, may be related to excessive release of glutamate.
Collapse
Affiliation(s)
- T Shirotani
- Department of Neurosurgery, National Defense Medical College, Saitama, Japan
| | | | | | | | | |
Collapse
|
36
|
Anderson JJ, Kuo S, Chase TN. Endogenous excitatory amino acids tonically stimulate striatal acetylcholine release through NMDA but not AMPA receptors. Neurosci Lett 1994; 176:264-8. [PMID: 7830961 DOI: 10.1016/0304-3940(94)90097-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effect of stimulation and blockade of excitatory amino acid receptors on striatal acetylcholine release was examined using in vivo microdialysis in awake, freely moving rats. Local perfusion with the NMDA receptor antagonists CPP and MK-801 reduced striatal acetylcholine release, while NMDA itself enhanced striatal acetylcholine release. Co-perfusion with MK-801 blocked the NMDA-induced increase in acetylcholine release. The AMPA/kainate antagonists NBQX and GYKI 52466 alone did not decrease striatal acetylcholine release, although AMPA increased acetylcholine release. Co-perfusion with NBQX reduced the AMPA-induced elevation in acetylcholine release. These findings suggest that endogenous excitatory amino acids tonically stimulate striatal acetylcholine release through NMDA but not AMPA receptors.
Collapse
Affiliation(s)
- J J Anderson
- Experimental Therapeutics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|
37
|
Smith Y, Bennett BD, Bolam JP, Parent A, Sadikot AF. Synaptic relationships between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey. J Comp Neurol 1994; 344:1-19. [PMID: 7914894 DOI: 10.1002/cne.903440102] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The cerebral cortex and the intralaminar thalamic nuclei are the major sources of excitatory glutamatergic afferents to the striatum, whereas the midbrain catecholaminergic neurones provide a dense intrastriatal plexus of dopamine-containing terminals. Evidence from various sources suggests that there is a functional interaction between the glutamate- and dopamine-containing terminals in the striatum. The aim of the present study was to determine the synaptic relationships between cortical or thalamic inputs and the dopaminergic afferents in the sensorimotor territory of the monkey striatum. To address this issue, anterograde tracing in combination with immunocytochemistry for tyrosine hydroxylase (TH) was carried out by light and electron microscopy. Squirrel monkeys received injections of biocytin in the primary motor and somatosensory cortical areas or injections of either Phaseolus vulgaris-leucoagglutinin (PHA-L) or biocytin in the centromedian nucleus (CM) of the thalamus. Sections that included the striatum were processed to visualize the anterograde tracers alone or in combination with TH immunoreactivity. The anterogradely labelled fibres from the cerebral cortex and CM display a band-like pattern and are exclusively confined to the postcommissural region of the putamen, whereas TH-immunoreactive axon terminals are homogeneously distributed throughout the entire extent of the striatum. Electron microscopic analysis revealed that the anterogradely labelled terminals from the cerebral cortex form asymmetric synapses almost exclusively with the heads of dendritic spines. The thalamic terminals also form asymmetric synapses, but in contrast to cortical fibres, predominantly with dendrites (67.4%) and less frequently with spines (32.6%). The TH-immunoreactive boutons are heterogeneous in morphology. The most common type (84% of the total population) forms symmetric synapses; of these the majority is in contact with dendritic shafts (72.1%), less with spines (22.5%) and few with perikarya (5.4%). In sections processed to reveal anterogradely labelled cortical fibres and TH-immunoreactive structures, individual spines of striatal neurones were found to receive convergent synaptic inputs from both cortical and TH-immunoreactive boutons. In contrast, anterogradely labelled thalamic terminals and TH-immunoreactive boutons were never seen to form convergent synaptic contacts on the same postsynaptic structure. These findings suggest that the dopaminergic afferents are located to subserve a more specific modulation of afferent cortical input than afferent thalamic input in the sensorimotor territory of the striatum in primates.
Collapse
Affiliation(s)
- Y Smith
- Centre de Recherche en Neurobiologie, Hôpital de l'Enfant-Jésus, Université Laval, Québec, Canada
| | | | | | | | | |
Collapse
|
38
|
Kelley AE, Delfs JM. Excitatory amino acid receptors mediate the orofacial stereotypy elicited by dopaminergic stimulation of the ventrolateral striatum. Neuroscience 1994; 60:85-95. [PMID: 7914360 DOI: 10.1016/0306-4522(94)90205-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The present experiments examined the role of excitatory amino acid receptors in the orofacial stereotypy induced by direct amphetamine microinjection into the ventrolateral striatum. In these experiments, the influence of prior intra-ventrolateral striatum treatment with various excitatory amino acid antagonists on the expression of amphetamine-stimulated oral stereotypy was observed. In all experiments, behavioral observations were conducted in the home cage using a time-sampling procedure. In the first experiment, different groups of rats received bilateral microinfusions of either kynurenic acid, 2-amino-5-phosphonopentanoic acid, 6,7-dinitroquinoxaline or dizocilpine maleate. The excitatory amino acid antagonists were administered immediately prior to bilateral microinfusions of d-amphetamine. Both N-methyl-D-aspartate and non-N-methyl-D-aspartate antagonists dose-dependently attenuated or blocked the expression of dopamine-mediated stereotypy. 2-Amino-5-phosphonopentanoic acid was the most potent of these compounds, totally suppressing stereotypy at a dose of 0.3 micrograms (equivalent to 1.5 nmol). In the second experiment, the same compounds were tested for their ability to suppress physostigmine-induced mouth movements. Cholinergic stimulation of the ventrolateral striatum has previously been shown to elicit non-directed mouth movements, quite distinguishable from stimulus-directed, amphetamine-induced biting. Excitatory amino acid antagonists were administered in the same doses prior to bilateral infusion of physostigmine (2.5 micrograms/0.5 microliters). The expression of physostigmine-induced mouth movements was for the most part not affected by excitatory amino acid antagonists, although dizocilpine maleate slightly reduced this oral behavior. In a third experiment, behavior was observed following infusion of the antagonists alone, using the same doses as in the previous experiments. No behavioral alterations were observed with the exception of a small increase in nonspecific mouth movements induced by kynurenic acid and 2-amino-5-phosphonopentanoic acid. These findings indicate that the expression of dopamine-mediated oral stereotypy, induced by amphetamine stimulation of the ventrolateral striatal region, is highly dependent on activation of striatal excitatory amino acid receptors. In contrast, oral behavior induced by cholinergic stimulation of the ventrolateral region is not mediated by glutamate input. These results are discussed in relation to the synaptic organization of neuronal elements within the striatum. Moreover, the relevance to further understanding of orofacial dyskinesias is noted.
Collapse
Affiliation(s)
- A E Kelley
- University of Wisconsin Medical School, Department of Psychiatry, Madison 53705
| | | |
Collapse
|
39
|
Nitsch C, Maly IP, Möri D, Scotti AL. Evidence for the colocalization of parvalbumin and glutamate, but not GABA, in the perforant path of the gerbil hippocampal formation: a combined immunocytochemical and microquantitative analysis. J Neurochem 1994; 62:1276-84. [PMID: 7907649 DOI: 10.1046/j.1471-4159.1994.62041276.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Gerbils (Meriones unguiculatus) are known for their seizure sensitivity, which is dependent on an intact perforant path from the entorhinal cortex to the hippocampus. In contrast with other species, the perforant path in gerbils contains parvalbumin, a cytosolic high-affinity calcium-binding protein. Parvalbumin is known to be present in a subpopulation of GABA-containing neurons and is thought to be responsible for their physiological characteristics of fast spiking activity and lack of spike adaptation. Therefore, the question arose of whether this projection in gerbils is GABAergic or glutamatergic as in other species. In a first approach to this question, the effect of lesioning the origin of the perforant path, the entorhinal cortex, on levels of GABA and glutamate was determined by enzymatic-luminometric assay in single layers of the dentate gyrus of lyophilized brain sections. Parallel sections were cryofixed using an acidified acetone-formaldehyde mixture at -20 degrees C for 48 h, and subsequently stained for parvalbumin immunocytochemistry. Seven days after ablation of the entorhinal cortex, parvalbumin staining was undetectable in the termination zone of the perforant path, the outer two-thirds of the stratum moleculare. In parallel, glutamate content was reduced to 80% of controls (and of the unoperated contralateral side) but unchanged in the inner third of the stratum moleculare and in stratum granulare. GABA content was not significantly altered by the lesion. From these results, we conclude that in the gerbil as in other species, the perforant path contains glutamate.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Nitsch
- Institute of Anatomy, University of Basel, Switzerland
| | | | | | | |
Collapse
|
40
|
Scotti AL, Monard D, Nitsch C. Re-expression of glia-derived nexin/protease nexin 1 depends on mode of lesion-induction or terminal degeneration: observations after excitotoxin or 6-hydroxydopamine lesions of rat substantia nigra. J Neurosci Res 1994; 37:155-68. [PMID: 7908698 DOI: 10.1002/jnr.490370202] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The serine protease inhibitor and neurite outgrowth promoter glia derived nexin (GDN) is expressed in the rat CNS during embryogenesis and persists in the olfactory system of the adult where receptor neurons are replaced throughout life. We investigated whether GDN-immunoreactivity also appears in the adult at sites of synaptic rearrangement following nerve cell death and anterograde terminal degeneration in experimental models for Parkinson's disease. Rat substantia nigra was unilaterally lesioned by stereotaxic application of different toxins: 6-hydroxydopamine, which selectively destroys dopaminergic neurons, the excitotoxic glutamate analog ibotenic acid, or the glutamate receptor agonists N-methyl-D-aspartate and quisqualate, which cause circumscript lesions of the whole substantia nigra. Nerve cell death and astroglial reactivity were monitored by parallel cresyl staining and immunocytochemistry for glial fibrillary acidic protein, at survival times ranging from 2 to 100 days. Sustained de novo synthesis of GDN occurred in the dopamine depleted caudate putamen following excitotoxin or 6-hydroxydopamine induced degeneration of the substantia nigra and of the nigrostriatal pathway provided that the lesions were nearly complete. This is consistent with compensatory changes occurring in deafferented caudate putamen and suggests a permissive role of GDN in neuronal plasticity. In the substantia nigra astroglia exhibited GDN-immunoreactivity following excitotoxin injection but not after application of 6-hydroxydopamine. Thus differences in action mechanisms of neurotoxins may have distinct consequences on the astrocyte mediated response of the same affected brain region.
Collapse
Affiliation(s)
- A L Scotti
- Section of Neuroanatomy, Basel University, Switzerland
| | | | | |
Collapse
|
41
|
Ochi M, Koizumi S, Shibata S, Watanabe S. A facilitatory role of vasopressin in hypoxia/hypoglycemia-induced impairment of dopamine release from rat striatal slices. Brain Res 1994; 633:91-6. [PMID: 8137176 DOI: 10.1016/0006-8993(94)91526-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The excitatory amino acid, glutamate plays a crucial role in the pathogenesis of brain damage caused by anoxia and/or hypoglycemia. Although vasopressin (VP) also acts as an excitatory transmitter in the CNS, little is known about its effect on hypoxic and/or ischemic brain damage. In this study, we investigated the effect of arginine vasopressin (AVP) on hypoxia/hypoglycemia-induced impairment of dopamine release from striatal slices. Striatal slices were incubated in hypoxia-/hypoglycemia-inducing medium with or without AVP (0.01-1.0 microM) for 20 min. After 1-3 h of washout in normal medium, high K(+)-evoked dopamine release from the slices were examined. Hypoxia/hypoglycemia-induced decrease of striatal dopamine release was reversed by the removal of Ca2+ in the medium, but not by VP1- or VP2-receptor antagonist. In contrast, AVP potentiated the hypoxia/hypoglycemia-induced decrease of dopamine release in the striatum. This AVP-induced deterioration of the striatal response was antagonized by VP2 receptor antagonist, but not by VP1 receptor antagonist. The present results suggest that AVP may play a facilitatory role in hypoxia/hypoglycemia-induced dopamine release deficit mediated through the activation of VP2 receptor.
Collapse
Affiliation(s)
- M Ochi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
42
|
Ikeda M, Mackay KB, Dewar D, McCulloch J. Differential alterations in adenosine A1 and kappa 1 opioid receptors in the striatum in Alzheimer's disease. Brain Res 1993; 616:211-7. [PMID: 8395303 DOI: 10.1016/0006-8993(93)90211-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The alterations in Alzheimer's disease (AD) of two binding sites in the striatum suggested to have a presynaptic localisation have been investigated by quantitative ligand binding autoradiography. Adenosine A1 binding sites labelled with [3H]cyclohexyladenosine (CHA) and kappa 1 opioid binding sites labelled with [3H]U-69593 were studied in adjacent sections of the striatum obtained postmortem from 10 patients with AD and 9 matched controls. In AD, there was a significant reduction of [3H]CHA binding sites in the caudate nucleus (control = 88 +/- 4; AD = 56 +/- 6 pmol/g tissue; mean +/- S.E.M.) and putamen (control = 83 +/- 4; AD = 58 +/- 7 pmol/g). In control subjects, highest levels of [3H]U-69593 binding were localised to patches within the caudate nucleus (9.66 +/- 0.58 pmol/g) with lower levels in the matrix (5.54 +/- 0.48 pmol/g). There was no alteration in [3H]U-69593 binding sites in either the caudate nucleus (patches and matrix) or putamen of AD patients. The activity of choline acetyltransferase (ChAT), determined in the same tissue samples used for autoradiographic analysis, was significantly reduced in AD (control = 124 +/- 11; AD = 64 +/- 14 nmol/h/mg protein). There was a positive correlation between ChAT activity and [3H]CHA binding (r = 0.769), but not [3H]U-69593 binding (r = 0.197). The results indicate that a marked loss of adenosine A1 receptors occurs in the striatum of AD with no loss of kappa 1 opioid receptors, and that the loss of A1 receptors parallels the loss of choline acetyltransferase activity.
Collapse
Affiliation(s)
- M Ikeda
- Wellcome Surgical Institute & Hugh Fraser Neuroscience Labs, University of Glasgow, UK
| | | | | | | |
Collapse
|
43
|
Francis PT, Sims NR, Procter AW, Bowen DM. Cortical pyramidal neurone loss may cause glutamatergic hypoactivity and cognitive impairment in Alzheimer's disease: investigative and therapeutic perspectives. J Neurochem 1993; 60:1589-604. [PMID: 8473885 DOI: 10.1111/j.1471-4159.1993.tb13381.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- P T Francis
- Miriam Marks Department of Neurochemistry, Institute of Neurology, London, England
| | | | | | | |
Collapse
|
44
|
Werling LL, Jacocks HM, Rosenthal RE, Fiskum G. Dopamine release from canine striatum following global cerebral ischemia/reperfusion. Brain Res 1993; 606:99-105. [PMID: 8462009 DOI: 10.1016/0006-8993(93)91575-d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The elevation of extracellular dopamine (DA) levels in the striatum of experimental animals subjected to ischemic insult has been well documented. The contribution of excessive DA to neuronal damage can be inferred from the ability of DA antagonists, as well as selective destruction of dopaminergic tracts, to confer neuroprotection in models of ischemia. In the current study, we report an enhanced releasability of preloaded [3H]DA in response to either elevated potassium or N-methyl-D-aspartate (NMDA) from striatal slices of beagles that had experienced 10 min of ischemia induced by cardiac arrest. The elevation in sensitivity to potassium stimulation was transient, approaching control levels after 30 min of reperfusion. In contrast, release stimulated by NMDA was elevated immediately after cardiac arrest and remained elevated for as long as 24 h of reperfusion. Release stimulated by NMDA was enhanced by glycine (Gly) and inhibited by MK801, consistent with mediation through the NMDA receptor/channel complex. The increased sensitivity of DA release, coupled with the high levels of excitatory amino acids (EAAs), including glutamate (Glu), aspartate (Asp) and Gly in ischemic brain, probably contribute to the extensive neuronal cell damage.
Collapse
Affiliation(s)
- L L Werling
- Department of Pharmacology, George Washington University Medical Center, Washington, DC 20037
| | | | | | | |
Collapse
|
45
|
Chesselet MF, Mercugliano M, Soghomonian JJ, Salin P, Qin Y, Gonzales C. Regulation of glutamic acid decarboxylase gene expression in efferent neurons of the basal ganglia. PROGRESS IN BRAIN RESEARCH 1993; 99:143-54. [PMID: 8108545 DOI: 10.1016/s0079-6123(08)61343-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- M F Chesselet
- Department of Pharmacology, University of Pennsylvania, Philadelphia 19104
| | | | | | | | | | | |
Collapse
|
46
|
Lundgren J, Smith ML, Siesjö BK. Effects of dimethylthiourea on ischemic brain damage in hyperglycemic rats. J Neurol Sci 1992; 113:187-97. [PMID: 1487754 DOI: 10.1016/0022-510x(92)90246-h] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hyperglycemia is known to worsen the outcome of transient global or forebrain ischemia. The aggravating effect is believed to be mediated by the additional formation of lactate- and of H+. Recent evidence suggests that reactive oxygen species contribute to the damage after brain ischemia. Since acidosis accelerates free radical damage in vitro, we decided to explore if ischemic damage in hyperglycemic subjects is ameliorated by dimethylthiourea (DMTU), an established free radical scavenger. In one series of hyperglycemic rats, we studied whether preischemic administration of DMTU alters the clinical outcome, notably the incidence and frequency of seizures. In two different series, the effect of DMTU on tissue damage was assessed by light microscopy after 15 h of recovery. Longer periods could not be studied since seizures developed. In the first of these series the animals were anesthetized with isoflurane, and in the second with halothane. The latter anesthesia largely suppressed the "early" postischemic seizures, i.e. those occurring after 1-4 h. Dimethylthiourea treatment altered the clinical outcome after ischemia. Thus, the "late" postischemic seizures appeared milder and occurred significantly later than in untreated animals. The fatal outcome was also delayed since treated animals died after 35.5 +/- 8.2 h (mean +/- SD) of recirculation, as compared to 19.8 +/- 3.6 h of recirculation in control animals. However, all DMTU-treated (and control) animals died. In the first morphological series (isoflurane anesthesia) the histopathological analysis was complicated by the occurrence of prefixation seizures; such seizures were recognized in 4/16 animals. When these 4 animals were excluded from the analysis (2 treated and 2 control animals), DMTU pretreatment did not ameliorate the damage, except in the substantia nigra pars reticulata (P < 0.05). In the second series, comprising animals anesthetized with halothane, only one animal out of 16 had "early" seizures, and none showed "late" seizures before death. Among these animals DMTU treatment significantly ameliorated damage to caudoputamen and cingulate cortex (P < 0.01). We conclude that treatment with the free radical scavenger DMTU partly ameliorates ischemic brain damage associated with excessive acidosis, and marginally delays the development of post-ischemic seizures. However, the effects were moderate and could, at least in part, have been caused by nonspecific effects of DMTU. Furthermore, all DMTU-treated animals died. The results thus give little support to the notion that the aggravating effects of acidosis is due to enhancement of free radical production.
Collapse
Affiliation(s)
- J Lundgren
- Department of Neurobiology, University of Lund, Sweden
| | | | | |
Collapse
|
47
|
Lapper SR, Bolam JP. Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat. Neuroscience 1992; 51:533-45. [PMID: 1488113 DOI: 10.1016/0306-4522(92)90293-b] [Citation(s) in RCA: 368] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Evidence derived from many experimental approaches indicates that cholinergic neurons in the dorsal striatum (caudate-putamen) are responsive to excitatory amino acids. Furthermore, evidence from physiological experiments indicate that the excitatory input is derived from the cortex and/or the thalamus. The object of the present experiment was to anatomically test whether cholinergic neurons receive cortical and/or thalamic input in the dorsal striatum using a combined anteograde tracing and immunocytochemical approach at both the light- and electron-microscopic levels. Rats received injections of the anterograde tracers Phaseolus vulgaris-leucoagglutinin or biocytin at multiple sites in the frontal cortex or parafascicular nucleus of the thalamus. Sections of the striatum were stained to reveal the anterogradely transported markers and then immunostained to reveal choline acetyltransferase immunoreactivity. The striata of these animals contained dense networks of anterogradely labelled fibres that were dispersed throughout the neuropil and interspersed with the choline acetyltransferase-immunoreactive (i.e. cholinergic) perikarya and dendrites. The anterogradely labelled fibres were often closely apposed to the choline acetyltransferase-immunoreactive neurons. Examination of electron-microscopic sections failed to demonstrate cortical terminals in synaptic contact with the cholinergic neurons even when choline acetyltransferase-immunoreactive structures were examined that had first been identified in the light microscope as having cortical terminals closely apposed to them. In these cases it was often observed that the cortical terminal, although apposed to the membrane of the labelled neurone, made synaptic contact with an unlabelled spine that was in the vicinity. In contrast to the cortical input, analysis of material that was double-stained to reveal thalamostriatal terminals and choline acetyltransferase-immunoreactive structures, revealed that the thalamostriatal terminals were often in asymmetrical synaptic contact with the perikarya and dendrites of cholinergic neurons. It is concluded that the cholinergic neurons of the dorsal striatum, like those of the ventral striatum or nucleus accumbens [Meredith and Wouterlood (1990) J. comp. Neurol. 296, 204-221] receive very little or no input from the cortex but are under a prominent synaptic control by the thalamostriatal system. Those pharmacological effects of excitatory amino acids on the cholinergic systems of the striatum are therefore presumably related to the thalamostriatal and not the corticostriatal system.
Collapse
Affiliation(s)
- S R Lapper
- MRC Anatomical Neuropharmacology Unit, Oxford, U.K
| | | |
Collapse
|
48
|
Adams FS, Schön H, Schwarting RK, Huston JP. Behavioral and neurochemical indices of barrel cortex-basal ganglia interaction. Brain Res 1992; 597:114-23. [PMID: 1477725 DOI: 10.1016/0006-8993(92)91512-d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previous experiments from our laboratory have shown a wide variety of time-dependent lateralized changes in behavior and nigrostriatal function following unilateral manipulation of the mystacial vibrissae of rats. The present experiment investigated the effects of unilateral radiofrequency lesion of the cortical vibrissae representation (the barrel fields) in light of these results. We measured lateralized changes in behavior as well as tissue monoamines in neostriatum and substantia nigra, between 1 and 16 days post-lesion. Short-term asymmetries in exploratory behavior (thigmotactic scanning) and neostriatal serotonin metabolism that lasted up to day 6 were seen. In substantia nigra, time-related asymmetries in dopamine concentrations were found with higher ipsilateral values on day 3 and higher contralateral values on day 6. After day 6, the animals had recovered from these acute effects and thereafter, neostriatal dopamine metabolism became asymmetrical. Also during this time, they showed a directional bias in spontaneous and apomorphine-induced turning. Finally, neostriatal serotonin was bilaterally elevated on day 16. These results parallel some of the effects previously seen following unilateral removal of the vibrissae, indicating that the barrel cortex is a critical link in the functional interaction between the vibrissae and basal ganglia.
Collapse
Affiliation(s)
- F S Adams
- Institute of Physiological Psychology I, University of Düsseldorf, FRG
| | | | | | | |
Collapse
|
49
|
Salin P, Chesselet MF. Paradoxical increase in striatal neuropeptide gene expression following ischemic lesions of the cerebral cortex. Proc Natl Acad Sci U S A 1992; 89:9954-8. [PMID: 1409726 PMCID: PMC50252 DOI: 10.1073/pnas.89.20.9954] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ischemic lesions of the cerebral cortex occur frequently in humans as a result of stroke. One major consequence of the death of cortical neurons is the loss of excitatory cortical projections to subcortical regions. Little is known, however, about the transsynaptic effect of such lesions on neurotransmitter expression in subcortical structures. We have examined the effects of ischemic cortical lesions on the peptidergic neurotransmitters enkephalin and tachykinins in the striatum, a brain region massively innervated by glutamatergic cortical inputs. The levels of enkephalin and tachykinin mRNAs increased in the striatum of adult rats after thermocoagulation of pial vessels. The effects were more pronounced in the striatal region most heavily innervated by the lesioned cortex but were also observed in other striatal regions and on the contralateral side. Increased gene expression was accompanied by increased immunoreactivity for the two peptides. Elevated levels of enkephalin mRNA were observed up to 3 months after surgery in the ipsilateral striatum. Whereas results of previous studies of acute cortical ablations suggested that excitatory corticostriatal neurons were necessary to maintain normal peptide levels in striatal efferent neurons, the present data indicate that lesions of the same corticostriatal neurons secondary to local ischemia result in a paradoxical transsynaptic activation of neuropeptide synthesis in subcortical structures. This effect may play a role in the functional consequences of cortical strokes and progressive cortical atrophy in humans and may have critical bearing for their treatment and prognosis.
Collapse
Affiliation(s)
- P Salin
- Department of Pharmacology, University of Pennsylvania, Philadelphia 19104
| | | |
Collapse
|
50
|
Kelley AE, Throne LC. NMDA receptors mediate the behavioral effects of amphetamine infused into the nucleus accumbens. Brain Res Bull 1992; 29:247-54. [PMID: 1356069 DOI: 10.1016/0361-9230(92)90034-u] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present experiments examined glutamate-dopamine interactions within the nucleus accumbens in rats. It has been hypothesized that dopaminergic nerve terminals exert a modulatory influence on glutamate-mediated signals from corticolimbic areas. In the present studies, the effect of the selective NMDA (n-methyl-d-aspartate) antagonist AP5 (2-amino-5-phosphonopentanoic acid) on amphetamine-mediated behaviors was observed. In two behavioral paradigms, AP5 (0, 0.05, 0.5, 1.0 micrograms bilaterally) was microinjected immediately prior to amphetamine (5 micrograms bilaterally) in the nucleus accumbens. In the first experiment, the influence of AP5 on amphetamine-induced motor activity was examined. AP5 dose-dependently reduced the effectiveness of amphetamine in stimulating motor behavior. AP5 alone, paradoxically, tended to increase motor activity. In the second experiment, the effects of AP5 on amphetamine-potentiated responding (lever pressing) for conditioned reward (CR) were investigated. Normally, when amphetamine is infused into the nucleus accumbens, a marked potentiation of CR responding occurs. Prior infusion of AP5 also attenuated this behavioral effect of amphetamine. The results demonstrate that NMDA receptors within the nucleus accumbens mediate the behavioral consequences of increased dopamine release. They provide additional evidence for the involvement of limbic-striatal connections in the activating and reinforcing effects of psychostimulant drugs.
Collapse
Affiliation(s)
- A E Kelley
- Department of Psychology, Northeastern University, Boston, MA 02115
| | | |
Collapse
|