1
|
Schrier MS, Smirnova MI, Nemeth DP, Deth RC, Quan N. Flavins and Flavoproteins in the Neuroimmune Landscape of Stress Sensitization and Major Depressive Disorder. J Inflamm Res 2025; 18:681-699. [PMID: 39839188 PMCID: PMC11748166 DOI: 10.2147/jir.s501652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/22/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
Major Depressive Disorder (MDD) is a common and severe neuropsychiatric condition resulting in irregular alterations in affect, mood, and cognition. Besides the well-studied neurotransmission-related etiologies of MDD, several biological systems and phenomena, such as the hypothalamic-pituitary-adrenal (HPA) axis, reactive oxygen species (ROS) production, and cytokine signaling, have been implicated as being altered and contributing to depressive symptoms. However, the manner in which these factors interact with each other to induce their effects on MDD development has been less clear, but is beginning to be understood. Flavins are potent biomolecules that regulate many redox activities, including ROS generation and energy production. Studies have found that circulating flavin levels are modulated during stress and MDD. Flavins are also known for their importance in immune responses. This review offers a unique perspective that considers the redox-active cofactors, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), as vital substrates for linking MDD-related maladaptive processes together, by permitting stress-induced enhancement of microglial interleukin-1 beta (IL-1β) signaling.
Collapse
Affiliation(s)
- Matt Scott Schrier
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Maria Igorevna Smirnova
- The International Max Planck Research School (IMPRS) for Synapses and Circuits, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
- Department of Biological Sciences, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL, USA
| | - Daniel Paul Nemeth
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Richard Carlton Deth
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| |
Collapse
|
2
|
Tryptophan Hydroxylase-2-Mediated Serotonin Biosynthesis Suppresses Cell Reprogramming into Pluripotent State. Int J Mol Sci 2023; 24:ijms24054862. [PMID: 36902295 PMCID: PMC10003565 DOI: 10.3390/ijms24054862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The monoamine neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) has important functions both in the neural system and during embryonic development in mammals. In this study, we set out to investigate whether and how endogenous serotonin affects reprogramming to pluripotency. As serotonin is synthesized from tryptophan by the rate limiting enzymes tryptophan hydroxylase-1 and -2 (TPH1 and TPH2), we have assessed the reprogramming of TPH1- and/or TPH2-deficient mouse embryonic fibroblasts (MEFs) to induced pluripotent stem cells (iPSCs). The reprogramming of the double mutant MEFs showed a dramatic increase in the efficiency of iPSC generation. In contrast, ectopic expression of TPH2 alone or in conjunction with TPH1 reverted the rate of reprogramming of the double mutant MEFs to the wild-type level and besides, TPH2 overexpression significantly suppressed reprogramming of wild-type MEFs. Our data thus suggest a negative role of serotonin biosynthesis in the reprogramming of somatic cells to a pluripotent state.
Collapse
|
3
|
Fidalgo S, Yeoman MS. Age-Related Changes in Central Nervous System 5-Hydroxytryptamine Signalling and Its Potential Effects on the Regulation of Lifespan. Subcell Biochem 2023; 102:379-413. [PMID: 36600141 DOI: 10.1007/978-3-031-21410-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023]
Abstract
Serotonin or 5-hydroxytryptamine (5-HT) is an important neurotransmitter in the central nervous system and the periphery. Most 5-HT (~99%) is found in the periphery where it regulates the function of the gastrointestinal (GI) tract and is an important regulator of platelet aggregation. However, the remaining 1% that is found in the central nervous system (CNS) can regulate a range of physiological processes such as learning and memory formation, mood, food intake, sleep, temperature and pain perception. More recent work on the CNS of invertebrate model systems has shown that 5-HT can directly regulate lifespan.This chapter will focus on detailing how CNS 5-HT signalling is altered with increasing age and the potential consequences this has on its ability to regulate lifespan.
Collapse
Affiliation(s)
| | - Mark S Yeoman
- Centre for Stress and Age-Related Disease, School of Applied Sciences, University of Brighton, Brighton, United Kingdom.
| |
Collapse
|
4
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
5
|
Park S, Kim Y, Lee J, Lee JY, Kim H, Lee S, Oh CM. A Systems Biology Approach to Investigating the Interaction between Serotonin Synthesis by Tryptophan Hydroxylase and the Metabolic Homeostasis. Int J Mol Sci 2021; 22:ijms22052452. [PMID: 33671067 PMCID: PMC7957782 DOI: 10.3390/ijms22052452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2021] [Revised: 02/11/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022] Open
Abstract
Obesity has become a global public health and economic problem. Obesity is a major risk factor for a number of complications, such as type 2 diabetes, cardiovascular disease, fatty liver disease, and cancer. Serotonin (5-hydroxytryptamine [5-HT]) is a biogenic monoamine that plays various roles in metabolic homeostasis. It is well known that central 5-HT regulates appetite and mood. Several 5-HT receptor agonists and selective serotonin receptor uptake inhibitors (SSRIs) have shown beneficial effects on appetite and mood control in clinics. Although several genetic polymorphisms related to 5-HT synthesis and its receptors are strongly associated with obesity, there is little evidence of the role of peripheral 5-HT in human metabolism. In this study, we performed a systemic analysis of transcriptome data from the Genotype-Tissue Expression (GTEX) database. We investigated the expression of 5-HT and tryptophan hydroxylase (TPH), the rate-limiting enzyme of 5-HT biosynthesis, in the human brain and peripheral tissues. We also performed differential gene expression analysis and predicted changes in metabolites by comparing gene expressions of tissues with high TPH expression to the gene expressions of tissues with low TPH expression. Our analyses provide strong evidence that serotonin plays an important role in the regulation of metabolic homeostasis in humans.
Collapse
Affiliation(s)
- Suhyeon Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (S.P.); (Y.K.); (J.L); (J.Y.L.)
| | - Yumin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (S.P.); (Y.K.); (J.L); (J.Y.L.)
| | - Jibeom Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (S.P.); (Y.K.); (J.L); (J.Y.L.)
| | - Jeong Yun Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (S.P.); (Y.K.); (J.L); (J.Y.L.)
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;
| | - Sunjae Lee
- Department of School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Correspondence: (S.L.); (C.-M.O.); Tel.: +82-10-7304-1213 (S.L.)
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (S.P.); (Y.K.); (J.L); (J.Y.L.)
- Correspondence: (S.L.); (C.-M.O.); Tel.: +82-10-7304-1213 (S.L.)
| |
Collapse
|
6
|
Babić Leko M, Hof PR, Šimić G. Alterations and interactions of subcortical modulatory systems in Alzheimer's disease. PROGRESS IN BRAIN RESEARCH 2021; 261:379-421. [PMID: 33785136 DOI: 10.1016/bs.pbr.2020.07.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
The pathogenesis of Alzheimer's disease (AD) is not fully understood. Here we summarize current knowledge on the involvement of the serotonergic, noradrenergic, dopaminergic, cholinergic, and opioid systems in AD, emphasizing the importance of interactions between the serotonergic and the other subcortical modulatory systems during the progression of AD. In physiological conditions, all neurotransmitter systems function in concert and are interdependent at both the neuroanatomical and molecular levels. Through their early involvement in AD, cognitive and behavioral abilities that rely on their interactions also become disrupted. Considering that serotonin (5HT) regulates the release of noradrenaline (NA), dopamine (DA) and acetylcholine (ACh), any alteration in 5HT levels leads to disturbance of NA, DA, and ACh homeostasis in the brain. One of the earliest pathological changes during the prodromal phase of AD is a decrease of serotonergic transmission throughout the brain, with serotonergic receptors being also affected. Additionally, serotonergic and noradrenergic as well as serotonergic and dopaminergic nuclei are reciprocally interconnected. As the serotonergic dorsal raphe nucleus (DRN) is affected by pathological changes early in AD, and the noradrenergic locus coeruleus (LC) and dopaminergic ventral tegmental area (VTA) exhibit AD-related pathological changes, their connectivity also becomes altered in AD. Such disrupted interactions among neurotransmitter systems in AD can be used in the development of multi-target drugs. Some of the potential AD therapeutics (such as ASS234, RS67333, tropisetron) target multiple neurotransmitter systems to achieve the best possible improvement of cognitive and behavioral deficits observed in AD. Here, we review how serotonergic system interacts with other subcortical modulatory systems (noradrenergic, dopaminergic, cholinergic, and opioid systems) during AD.
Collapse
Affiliation(s)
- Mirjana Babić Leko
- Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Goran Šimić
- Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia.
| |
Collapse
|
7
|
Sherwood AM, Halberstadt AL, Klein AK, McCorvy JD, Kaylo KW, Kargbo RB, Meisenheimer P. Synthesis and Biological Evaluation of Tryptamines Found in Hallucinogenic Mushrooms: Norbaeocystin, Baeocystin, Norpsilocin, and Aeruginascin. JOURNAL OF NATURAL PRODUCTS 2020; 83:461-467. [PMID: 32077284 DOI: 10.1021/acs.jnatprod.9b01061] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/20/2023]
Abstract
A general synthetic method was developed to access known tryptamine natural products present in psilocybin-producing mushrooms. In vitro and in vivo experiments were then conducted to inform speculations on the psychoactive properties, or lack thereof, of the natural products. In animal models, psychedelic activity by baeocystin alone was not evident using the mouse head twitch response assay, despite its putative dephosphorylated metabolite, norpsilocin, possessing potent agonist activity at the 5-HT2A receptor.
Collapse
Affiliation(s)
- Alexander M Sherwood
- Usona Institute , 2780 Woods Hollow Road , Madison , Wisconsin 53711 , United States
| | - Adam L Halberstadt
- Department of Psychiatry , University of California San Diego , La Jolla , California 92093 , United States
- Research Service , VA San Diego Healthcare System , San Diego , California 92161 , United States
| | - Adam K Klein
- Department of Psychiatry , University of California San Diego , La Jolla , California 92093 , United States
| | - John D McCorvy
- Department of Cell Biology, Neurobiology, and Anatomy , Medical College of Wisconsin , Milwaukee , Wisconsin 53226 , United States
| | - Kristi W Kaylo
- Usona Institute , 2780 Woods Hollow Road , Madison , Wisconsin 53711 , United States
| | - Robert B Kargbo
- Usona Institute , 2780 Woods Hollow Road , Madison , Wisconsin 53711 , United States
| | - Poncho Meisenheimer
- Usona Institute , 2780 Woods Hollow Road , Madison , Wisconsin 53711 , United States
| |
Collapse
|
8
|
Abstract
Introduction: Astroglia represent the main cellular homeostatic system of the central nervous system (CNS). Astrocytes are intimately involved in regulation and maintenance of neurotransmission by regulating neurotransmitters removal and turnover and by supplying neurons with neurotransmitters precursors. Astroglial cells are fundamental elements of monoaminergic transmission in the brain and in the spinal cord. Astrocytes receive monoaminergic inputs and control catabolism of monoamines through dedicated transporters and intracellular enzymatic pathways.Areas covered: Astroglial cells express serotonergic receptors; in this review, we provide an in-depth characterization of 5-HT2B receptors. Activation of these receptors triggers numerous intracellular signaling cascades that regulate expression of multiple genes. Astroglial 5-HT2B receptors are activated by serotonin-specific reuptake inhibitors, such as major anti-depressant fluoxetine. Expression of astroglial serotonin receptors undergoes remarkable changes in depression disorders, and these changes can be corrected by chronic treatment with anti-depressant drugs.Expert commentary: Depressive behaviors, which occur in rodents following chronic stress or in neurotoxic models of Parkinson disease, are associated with significant changes in the expression of astroglial, but not neuronal 5-HT2B receptors; while therapy with anti-depressants normalizes both receptors expression and depressive behavioral phenotype. In summary, astroglial serotonin receptors are linked to mood disorders and may represent a novel target for cell- and molecule-specific therapies of depression and mood disorders.
Collapse
Affiliation(s)
- Liang Peng
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, PR China
| | - Dan Song
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, PR China
| | - Baoman Li
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, PR China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Achucarro Center for Neuroscience, Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
9
|
Noda M, Ifuku M, Hossain MS, Katafuchi T. Glial Activation and Expression of the Serotonin Transporter in Chronic Fatigue Syndrome. Front Psychiatry 2018; 9:589. [PMID: 30505285 PMCID: PMC6250825 DOI: 10.3389/fpsyt.2018.00589] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/19/2018] [Accepted: 10/25/2018] [Indexed: 12/19/2022] Open
Abstract
Fatigue is commonly reported in a variety of illnesses and has major impact on quality of life. Chronic fatigue syndrome (CFS) is a debilitating syndrome of unknown etiology. The clinical symptoms include problems in neuroendocrine, autonomic, and immune systems. It is becoming clear that the brain is the central regulator of CFS. For example, neuroinflammation, especially induced by activation of microglia and astrocytes, may play a prominent role in the development of CFS, though little is known about molecular mechanisms. Many possible causes of CFS have been proposed. However, in this mini-review, we summarize evidence for a role for microglia and astrocytes in the onset and the maintenance of immunologically induced CFS. In a model using virus mimicking synthetic double-stranded RNA, infection causes sequential signaling such as increased blood brain barrier (BBB) permeability, microglia/macrophage activation through Toll-like receptor 3 (TLR3) signaling, secretion of IL-1β, upregulation of the serotonin transporter (5-HTT) in astrocytes, reducing extracellular serotonin (5-HT) levels and hence reduced activation of 5-HT1A receptor subtype. Hopefully, drug discovery targeting these pathways may be effective for CFS therapy.
Collapse
Affiliation(s)
- Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ifuku
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Md Shamim Hossain
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshihiko Katafuchi
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
Higuchi Y, Soga T, Parhar IS. Regulatory Pathways of Monoamine Oxidase A during Social Stress. Front Neurosci 2017; 11:604. [PMID: 29163009 PMCID: PMC5671571 DOI: 10.3389/fnins.2017.00604] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2017] [Accepted: 10/16/2017] [Indexed: 12/18/2022] Open
Abstract
Social stress has a high impact on many biological systems in the brain, including serotonergic (5-HT) system-a major drug target in the current treatment for depression. Hyperactivity of hypothalamic-pituitary-adrenal (HPA) axis and monoamine oxidase A (MAO-A) are well-known stress responses, which are involved in the central 5-HT system. Although, many MAO-A inhibitors have been developed and used in the therapeutics of depression, effective management of depression by modulating the activity of MAO-A has not been achieved. Identifying the molecular pathways that regulate the activity of MAO-A in the brain is crucial for developing new drug targets for precise control of MAO-A activity. Over the last few decades, several regulatory pathways of MAO-A consisting of Kruppel like factor 11 (KLF11), Sirtuin1, Ring finger protein in neural stem cells (RINES), and Cell division cycle associated 7-like protein (R1) have been identified, and the influence of social stress on these regulatory factors evaluated. This review explores various aspects of these pathways to expand our understanding of the roles of the HPA axis and MAO-A regulatory pathways during social stress. The first part of this review introduces some components of the HPA axis, explains how stress affects them and how they interact with the 5-HT system in the brain. The second part summarizes the novel regulatory pathways of MAO-A, which have high potential as novel therapeutic targets for depression.
Collapse
Affiliation(s)
- Yuki Higuchi
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Tomoko Soga
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
11
|
Šimić G, Babić Leko M, Wray S, Harrington CR, Delalle I, Jovanov-Milošević N, Bažadona D, Buée L, de Silva R, Di Giovanni G, Wischik CM, Hof PR. Monoaminergic neuropathology in Alzheimer's disease. Prog Neurobiol 2017; 151:101-138. [PMID: 27084356 PMCID: PMC5061605 DOI: 10.1016/j.pneurobio.2016.04.001] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/20/2015] [Revised: 03/09/2016] [Accepted: 04/05/2016] [Indexed: 01/02/2023]
Abstract
None of the proposed mechanisms of Alzheimer's disease (AD) fully explains the distribution patterns of the neuropathological changes at the cellular and regional levels, and their clinical correlates. One aspect of this problem lies in the complex genetic, epigenetic, and environmental landscape of AD: early-onset AD is often familial with autosomal dominant inheritance, while the vast majority of AD cases are late-onset, with the ε4 variant of the gene encoding apolipoprotein E (APOE) known to confer a 5-20 fold increased risk with partial penetrance. Mechanisms by which genetic variants and environmental factors influence the development of AD pathological changes, especially neurofibrillary degeneration, are not yet known. Here we review current knowledge of the involvement of the monoaminergic systems in AD. The changes in the serotonergic, noradrenergic, dopaminergic, histaminergic, and melatonergic systems in AD are briefly described. We also summarize the possibilities for monoamine-based treatment in AD. Besides neuropathologic AD criteria that include the noradrenergic locus coeruleus (LC), special emphasis is given to the serotonergic dorsal raphe nucleus (DRN). Both of these brainstem nuclei are among the first to be affected by tau protein abnormalities in the course of sporadic AD, causing behavioral and cognitive symptoms of variable severity. The possibility that most of the tangle-bearing neurons of the LC and DRN may release amyloid β as well as soluble monomeric or oligomeric tau protein trans-synaptically by their diffuse projections to the cerebral cortex emphasizes their selective vulnerability and warrants further investigations of the monoaminergic systems in AD.
Collapse
Affiliation(s)
- Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.
| | - Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Selina Wray
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | | | - Ivana Delalle
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Nataša Jovanov-Milošević
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Danira Bažadona
- Department of Neurology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Luc Buée
- University of Lille, Inserm, CHU-Lille, UMR-S 1172, Alzheimer & Tauopathies, Lille, France
| | - Rohan de Silva
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Claude M Wischik
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Patrick R Hof
- Fishberg Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
12
|
Naganuma F, Yoshikawa T, Nakamura T, Iida T, Harada R, Mohsen AS, Miura Y, Yanai K. Predominant role of plasma membrane monoamine transporters in monoamine transport in 1321N1, a human astrocytoma-derived cell line. J Neurochem 2014; 129:591-601. [PMID: 24471494 DOI: 10.1111/jnc.12665] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/21/2013] [Revised: 12/24/2013] [Accepted: 01/20/2014] [Indexed: 01/11/2023]
Abstract
Monoamine neurotransmitters should be immediately removed from the synaptic cleft to avoid excessive neuronal activity. Recent studies have shown that astrocytes and neurons are involved in monoamine removal. However, the mechanism of monoamine transport by astrocytes is not entirely clear. We aimed to elucidate the transporters responsible for monoamine transport in 1321N1, a human astrocytoma-derived cell line. First, we confirmed that 1321N1 cells transported dopamine, serotonin, norepinephrine, and histamine in a time- and dose-dependent manner. Kinetics analysis suggested the involvement of low-affinity monoamine transporters, such as organic cation transporter (OCT) 2 and 3 and plasma membrane monoamine transporter (PMAT). Monoamine transport in 1321N1 cells was not Na(+) /Cl(-) dependent but was inhibited by decynium-22, an inhibitor of low-affinity monoamine transporters, which supported the importance of low-affinity transporters. RT-PCR assays revealed that 1321N1 cells expressed OCT3 and PMAT but no other neurotransmitter transporters. Another human astrocytoma-derived cell line, U251MG, and primary human astrocytes also exhibited the same gene expression pattern. Gene-knockdown assays revealed that 1321N1 and primary human astrocytes could transport monoamines predominantly through PMAT and partly through OCT3. These results might indicate that PMAT and OCT3 in human astrocytes are involved in monoamine clearance.
Collapse
Affiliation(s)
- Fumito Naganuma
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Guanosine Protects Glial Cells Against 6-Hydroxydopamine Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 837:23-33. [DOI: 10.1007/5584_2014_73] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
|
14
|
Rajkowska G, Stockmeier CA. Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets 2013; 14:1225-36. [PMID: 23469922 PMCID: PMC3799810 DOI: 10.2174/13894501113149990156] [Citation(s) in RCA: 418] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/15/2013] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 02/07/2023]
Abstract
The present paper reviews astrocyte pathology in major depressive disorder (MDD) and proposes that reductions in astrocytes and related markers are key features in the pathology of MDD. Astrocytes are the most numerous and versatile of all types of glial cells. They are crucial to the neuronal microenvironment by regulating glucose metabolism, neurotransmitter uptake (particularly for glutamate), synaptic development and maturation and the blood brain barrier. Pathology of astrocytes has been consistently noted in MDD as well as in rodent models of depressive-like behavior. This review summarizes evidence from human postmortem tissue showing alterations in the expression of protein and mRNA for astrocyte markers such as glial fibrillary acidic protein (GFAP), gap junction proteins (connexin 40 and 43), the water channel aquaporin-4 (AQP4), a calcium-binding protein S100B and glutamatergic markers including the excitatory amino acid transporters 1 and 2 (EAAT1, EAAT2) and glutamine synthetase. Moreover, preclinical studies are presented that demonstrate the involvement of GFAP and astrocytes in animal models of stress and depressive-like behavior and the influence of different classes of antidepressant medications on astrocytes. In light of the various astrocyte deficits noted in MDD, astrocytes may be novel targets for the action of antidepressant medications. Possible functional consequences of altered expression of astrocytic markers in MDD are also discussed. Finally, the unique pattern of cell pathology in MDD, characterized by prominent reductions in the density of astrocytes and in the expression of their markers without obvious neuronal loss, is contrasted with that found in other neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State St., Box 127, Jackson, MS 39216-4505, USA.
| | | |
Collapse
|
15
|
Malynn S, Campos-Torres A, Moynagh P, Haase J. The pro-inflammatory cytokine TNF-α regulates the activity and expression of the serotonin transporter (SERT) in astrocytes. Neurochem Res 2013; 38:694-704. [PMID: 23338678 DOI: 10.1007/s11064-012-0967-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2012] [Revised: 12/20/2012] [Accepted: 12/26/2012] [Indexed: 01/28/2023]
Abstract
Pro-inflammatory cytokines have been implicated in the precipitation of depression and related disorders, and the antidepressant sensitive serotonin transporter (SERT) may be a major target for immune regulation in these disorders. Here, we focus on astrocytes, a major class of immune competent cells in the brain, to examine the effects of pro-longed treatment with tumor necrosis factor-alpha (TNF-α) on SERT activity. We first established that high-affinity serotonin uptake into C6 glioma cells occurs through a SERT-dependent mechanism. Functional SERT expression is also confirmed for primary astrocytes. In both cell types, exposure to TNF-α resulted in a dose- and time-dependent increase in SERT-mediated 5-HT uptake, which was sustained for at least 48 h post-stimulation. Further analysis in primary astrocytes revealed that TNF-α enhanced the transport capacity (Vmax) of SERT-specific 5-HT uptake, suggesting enhanced transporter expression, consistent with our observation of an increase in SERT mRNA levels. We confirmed that in both, primary astrocytes and C6 glioma cells, treatment with TNF-α activates the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Pre-treatment with the p38 MAPK inhibitor SB203580 attenuated the TNF-α mediated stimulation of 5-HT transport in both, C6 glioma and primary astrocytes. In summary, we show that SERT gene expression and activity in astrocytes is subject to regulation by TNF-α, an effect that is at least in part dependent on p38 MAPK activation.
Collapse
Affiliation(s)
- Sandra Malynn
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | | | | | | |
Collapse
|
16
|
Moclobemide exerts anti-inflammatory effect in lipopolysaccharide-activated primary mixed glial cell culture. Naunyn Schmiedebergs Arch Pharmacol 2010; 382:409-17. [DOI: 10.1007/s00210-010-0535-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/19/2010] [Accepted: 06/26/2010] [Indexed: 12/30/2022]
|
17
|
Dalal A, Poddar MK. Short-term erythrosine B-induced inhibition of the brain regional serotonergic activity suppresses motor activity (exploratory behavior) of young adult mammals. Pharmacol Biochem Behav 2009; 92:574-82. [PMID: 19264092 DOI: 10.1016/j.pbb.2009.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/08/2008] [Revised: 02/11/2009] [Accepted: 02/13/2009] [Indexed: 11/27/2022]
Abstract
Previous studies showed that repeated ingestion of erythrosine B (artificial food color) developed behavioral hyperactivity, but nothing is known about its single administration effect as well as the neurochemical (s) involvement. The present study provides evidence that a single higher dosage (10, 100 or 200 mg/kg, p.o.) of erythrosine administration to young adult male rats reduced motor activity (MA) maximally at 2 h and brain regional (medulla-pons, hippocampus and hypothalamus) serotonergic activity (measuring steady-state levels of 5-HT and 5-HIAA, pargyline-induced 5-HT accumulation and 5-HIAA declination rate and 5-HT receptor binding) under similar experimental condition. The degree of erythrosine-induced inhibition of both MA and brain regional serotonergic activity was dosage dependent. Lower dosage (1 mg/kg, p.o.) did not affect either of the above. Erythrosine (100 or 200 mg/kg, p.o.)-induced MA suppression was also observed in the presence of specific MAO-A inhibitor, clorgyline (5 mg/kg, i.p.) or MAO-B inhibitor, deprenyl (5 mg/kg, i.p.); but their co-application (5 mg/kg, i.p., each) effectively prevented the erythrosine-induced motor suppression. Altogether these results suggest that a single higher dosage of erythrosine (10-200 mg/kg, p.o.) may reduce MA by reducing serotonergic activity with modulation of central dopaminergic activity depending on the brain regions.
Collapse
Affiliation(s)
- Arindam Dalal
- Department of Biochemistry, University of Calcutta, 35 B.C., Road, Kolkata-700019, India
| | | |
Collapse
|
18
|
Perdan K, Lipnik‐Štangelj M, Kržan M. Chapter 8 The Impact of Astrocytes in the Clearance of Neurotransmitters by Uptake and Inactivation. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2009. [DOI: 10.1016/s1554-4516(09)09008-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/28/2023]
|
19
|
Gouveia A, de Oliveira CM, Romão CF, de Brito TM, Ventura DF. Effects of trophic poisoning with methylmercury on the appetitive elements of the agonistic sequence in fighting-fish (Betta splendens). THE SPANISH JOURNAL OF PSYCHOLOGY 2007; 10:436-448. [PMID: 17992970 DOI: 10.1017/s1138741600006703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/25/2023]
Abstract
The aggressive display in Betta splendens is particularly prominent, and vital to its adaptation to the environment. Methylmercury is an organic variation of Hg that presents particularly pronounced neuro-behavioral effects. The present experiments aim to test the effect of acute and chronic poisoning with methylmercury on the display in Bettas. The animals were poisoned by trophic means in both experiments (16 ug/kg in acute poisoning; 16 ug/kg/day for chronic poisoning), and tested in agonistic pairs. The total frequency of the display was recorded, analyzing the topography of the agonistic response. The methylmercury seems to present a dose- and detoxification-dependent effect on these responses, with a more pronounced effect on motivity in acute poisoning and on emotionality in the chronic poisoning. It is possible that this effect could be mediated by alteration in the mono-amino-oxidase systems.
Collapse
|
20
|
Rajkowska G, Miguel-Hidalgo JJ. Gliogenesis and glial pathology in depression. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2007; 6:219-33. [PMID: 17511618 PMCID: PMC2918806 DOI: 10.2174/187152707780619326] [Citation(s) in RCA: 440] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Recent research has changed the perception of glia from being no more than silent supportive cells of neurons to being dynamic partners participating in brain metabolism and communication between neurons. This discovery of new glial functions coincides with growing evidence of the involvement of glia in the neuropathology of mood disorders. Unanticipated reductions in the density and number of glial cells are reported in fronto-limbic brain regions in major depression and bipolar illness. Moreover, age-dependent decreases in the density of glial fibrillary acidic protein (GFAP) - immunoreactive astrocytes and levels of GFAP protein are observed in the prefrontal cortex of younger depressed subjects. Since astrocytes participate in the uptake, metabolism and recycling of glutamate, we hypothesize that an astrocytic deficit may account for the alterations in glutamate/GABA neurotransmission in depression. Reductions in the density and ultrastructure of oligodendrocytes are also detected in the prefrontal cortex and amygdala in depression. Pathological changes in oligodendrocytes may be relevant to the disruption of white matter tracts in mood disorders reported by diffusion tensor imaging. Factors such as stress, excess of glucocorticoids, altered gene expression of neurotrophic factors and glial transporters, and changes in extracellular levels of neurotransmitters released by neurons may modify glial cell number and affect the neurophysiology of depression. Therefore, we will explore the role of these events in the possible alteration of glial number and activity, and the capacity of glia as a promising new target for therapeutic medications. Finally, we will consider the temporal relationship between glial and neuronal cell pathology in depression.
Collapse
Affiliation(s)
- G Rajkowska
- Department of Psychiatry, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.
| | | |
Collapse
|
21
|
Nishi K, Mück-Seler D, Hasegawa S, Watanabe A, Diksic M. Acute effects of moclobemide and deprenyl on 5-HT synthesis rates in the rat brain: An autoradiographic study. Brain Res Bull 2006; 70:368-77. [PMID: 17027772 DOI: 10.1016/j.brainresbull.2006.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/09/2006] [Revised: 05/31/2006] [Accepted: 06/23/2006] [Indexed: 11/25/2022]
Abstract
Serotonin (5-HT), norepinephrine (NE) and dopamine (DA) released from nerve terminals in the brain are primarily removed from the synaptic cleft by a reuptake mechanism. In part, the homeostasis is maintained by monoamine oxidase (MAO) deamination achieved primarily intracellularly. The present study's aim was to examine the effect of the acute administration of the MAO inhibitors, moclobemide (a MAO-A inhibitor) and deprenyl (a MAO-B inhibitor), on 5-HT synthesis rates, measured in discrete regions of the rat brain by an autoradiographic method, using alpha-[14C]methyl-l-tryptophan as a tracer. MAO inhibitors have different effects on 5-HT synthesis rates in the cell bodies and areas of the nerve terminals. Moclobemide (10 mg/kg, i.p. 30 min before the tracer injection) and deprenyl (3 mg/kg, i.p. 2 h before the tracer injection) decreased the 5-HT synthesis rates in the dorsal (-18% and -22%) and median (-22% and -33%) raphe, respectively. Moclobemide also significantly decreased 5-HT synthesis in the entire nerve terminal areas investigated. The reductions were between 23% (cingulate cortex) and 50% (locus coeruleus). Deprenyl did not significantly affect 5-HT synthesis in the nerve terminals. The present results suggest that MAO-A, and to a lesser extent, MAO-B, are involved in the regulation of 5-HT synthesis in the rat brain. The mechanism(s) of MAO inhibitors' action on 5-HT synthesis in the raphe nuclei are probably related to an increase in the extraneuronal 5-HT concentration and also to the interaction between the serotonergic and catecholaminergic neurons. The reduction of 5-HT synthesis in the raphe nuclei likely occurs by an action of extracellular 5-HT via the dendritic autoreceptors with a possible contribution from the action of extracellular DA and NE. In the terminal regions, the most likely mechanism is via the presynaptic autoreceptors through which elevated extraneuronal 5-HT acts on synthesis control. However, there is also a possibility that the elevation in intraneuronal 5-HT directly inhibits its synthesis, especially following deprenyl treatment. A great influence of moclobemide on 5-HT synthesis could be related to its antidepressant action.
Collapse
Affiliation(s)
- Kyoko Nishi
- Cone Neurosurgical Research Laboratory, Department of Neurology and Neurosurgery, and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec, Canada H3A2B4
| | | | | | | | | |
Collapse
|
22
|
Inazu M, Takeda H, Matsumiya T. Expression and functional characterization of the extraneuronal monoamine transporter in normal human astrocytes. J Neurochem 2003; 84:43-52. [PMID: 12485400 DOI: 10.1046/j.1471-4159.2003.01566.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
Abstract
In this study we examined the functional expression of the extraneuronal monoamine transporter (EMT) in normal human astrocytes (NHA). RT-PCR with EMT-specific primers demonstrated the presence of EMT mRNA in NHA. The RT-PCR products were subjected to restriction-site analysis using three different enzymes (HinfI, SacI and BclI). The restriction patterns with the three enzymes were identical and were exactly as expected from the known restriction map of human EMT cDNA. DNA sequencing was performed for the RT-PCR products from NHA. Sequence analysis demonstrated that the sequences of RT-PCR products were identical to that of EMT. The extract of NHA was immunoblotted with anti-EMT polyclonal antibody raised against EMT polypeptides. Western blotting indicated that anti-EMT polyclonal antibody recognized a band of 63 kDa. Immunocytochemical staining using anti-EMT polyclonal antibody in NHA revealed that the plasma membrane, as well as intracellular, perinuclear compartments, presumably endoplasmic reticulum or Golgi membranes, showed a considerable level of immunoreactivity. We examined the time course of temperature-dependent [3H]MPP+ uptake in NHA for 60 min. Temperature-dependent [3H]MPP+ uptake increased in a time-dependent manner for the initial 45 min and almost reached a plateau level (8.70 +/- 0.59 pmol/mg protein) at 60 min. In the presence of 3 micro m decynium22 (D22) (the most potent EMT inhibitor), temperature-dependent [3H]MPP+ uptake was strongly reduced by 61% (3.39 +/- 0.76 pmol/mg protein at 60 min). D22-sensitive [3H]MPP+ uptake was saturable over a MPP+ concentration of 6.25-200 micro m. Km for this process was 78.01 +/- 7.64 micro m and Vmax was 295.4 +/- 12.8 pmol/mg protein/min. D22-sensitive [3H]MPP+ uptake was reduced when the astrocyte membrane potential was depolarized by increasing the concentration of K+ in the uptake buffer or by adding Ba2+ to the uptake buffer. These results provide evidence that the MPP+ transport activity in NHA is potential-sensitive. Moreover, D22-sensitive [3H]MPP+ uptake was independent of extracellular Na+. D22-sensitive [3H]MPP+ uptake was inhibited by D22, various organic cations, steroids and monoamine neurotransmitters. Our results showed that the EMT is functionally expressed in NHA and may also play a key role in the disposition of cationic drugs, neurosteroids, the neurotoxin MPP+ and monoamine neurotransmitters in the brain.
Collapse
Affiliation(s)
- Masato Inazu
- Department of Pharmacology, and Intractable Diseases Research Center, Tokyo Medical University, Tokyo, Japan
| | | | | |
Collapse
|
23
|
Abstract
We assessed the functional expression of the norepinephrine (NE) transporter (NET) in cultured rat cortical astrocytes. Specific [3H]NE uptake increased in a time-dependent manner, and this uptake involves temperature- and Na+-sensitive mechanisms. The Na+-dependent [3H]NE uptake was saturable, and the Km for the process was 539.3 +/- 55.4 nm and the Vmax was 1.41 +/- 0.03 pmol/mg protein/min. Ouabain, a Na+-K+ ATPase inhibitor, significantly inhibited Na+-dependent [3H]NE uptake. The selective NE uptake inhibitor nisoxetine, the tricyclic antidepressants desipramine and imipramine, and the serotonin and NE reuptake inhibitor (SNRI) milnacipran very potently inhibited Na+-dependent [3H]NE uptake. On the other hand, GBR-12935 (a selective dopamine uptake inhibitor), fluvoxamine (a selective serotonin reuptake inhibitor), venlafaxine (a SNRI) and cocaine had weaker inhibitory activities. RT-PCR demonstrated that astrocytes expressed mRNA for the cloned NET protein, which was characterized as neuronal NET. Western blots indicated that anti-NET polyclonal antibody recognized a major band of 80 kDa in astrocytes. These data indicate that the neuronal NET is functionally expressed in cultured rat astrocytes. Glial cells may exert significant control of noradrenergic activity by inactivating NE that escapes neuronal re-uptake in sites distant from terminals, and are thus cellular targets for antidepressant drugs that inhibit NE uptake.
Collapse
Affiliation(s)
- Masato Inazu
- Department of Pharmacology, and Intractable Diseases Research Center, Tokyo Medical University, Shinjuku, Shinjuku-ku, Tokyo, Japan
| | | | | |
Collapse
|
24
|
Abstract
The benzamide moclobemide is a reversible inhibitor of monoamine-oxidase-A (RIMA). It has been extensively evaluated in the treatment of a wide spectrum of depressive disorders and less extensively in anxiety disorders. While clinical aspects will be presented in a subsequent review, this article focuses primarily on moclobemide's evolution, pharmacodynamic and pharmacokinetic properties. In particular, the effects on neurotransmission and intracellular signal transduction, the neuroendocrine system, the tyramine pressure response and animal models of depression are surveyed. In addition, other CNS effects are reviewed with special respect to experimental serotonergic syndrome, anxiolytic and antinociceptive activity, sleep, cognition and driving performance, neuroprotection and seizures.
Collapse
Affiliation(s)
- Udo Bonnet
- Rheinische Kliniken Essen, Department of Psychiatry and Psycotherapy, University of Essen, Essen, Germany.
| |
Collapse
|
25
|
Inazu M, Takeda H, Ikoshi H, Sugisawa M, Uchida Y, Matsumiya T. Pharmacological characterization and visualization of the glial serotonin transporter. Neurochem Int 2001; 39:39-49. [PMID: 11311448 DOI: 10.1016/s0197-0186(01)00010-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/27/2022]
Abstract
Astrocytes contain transport systems that are capable of removing various neurotransmitters from the synaptic cleft by transporters present in the plasma membrane. Glial serotonin transporter (SERT) plays an important role in the re-uptake of 5-hydroxytryptamine (5-HT). We examined the pharmacological characterization of 5-HT uptake into rat cortical synaptosomes and cultured rat astrocytes, and the immunodetection of glial SERT proteins using specific site-directed monoclonal antibodies (MoAb). Furthermore, using a reverse transcriptase-polymerase chain reaction (RT-PCR) method, we addressed the expression of SERT mRNA in cultured rat astrocytes. We investigated the inhibitory effects of various monoamine uptake inhibitors on the uptake of [3H]5-HT into cultured astrocytes and cortical synaptosomes. Tricyclic antidepressants (clomipramine and imipramine) as well as selective serotonin re-uptake inhibitors (fluvoxamine, fluoxetine and zimelidine) were very potent inhibitors of [3H]5-HT uptake in both preparations. In contrast, the inhibitory effects of NE uptake inhibitors (nisoxetine and desipramine) and cocaine were weaker than those of 5-HT uptake inhibitors. In addition, dopamine (DA) uptake inhibitors (nomifensine and GBR-12935) exhibited a Ki value in the low micromolar range. The inhibitory potencies were in the order 5-HT uptake inhibitors (clomipramine, fluvoxamine, fluoxetine, imipramine and zimelidine) > NE uptake inhibitors (nisoxetine and desipramine) = cocaine > DA uptake inhibitors (nomifensine and GBR-12935). There was no difference in the order of the inhibitory effects of various monoamine uptake inhibitors between the two preparations. A correlation analysis of the potencies of various monoamine uptake inhibitors in the inhibition of [3H]5-HT into cultured astrocytes and cortical synaptosomes produced a highly significant correlation coefficient of 0.9893 (P < 0.0001). Immunocytochemical staining using anti-SERT MoAb in cultured astrocytes revealed that the plasma membrane, as well as intracellular, perinuclear compartments, presumably endoplasmic reticulum or golgi membranes, showed a considerable level of immunoreactivity. Extracts of astrocytes and synaptosomes from the cortex were immunoblotted with anti-SERT MoAb. SDS-PAGE/Western blots indicate that anti-SERT MoAb recognized two bands of 120 and 73 kDa in both preparations. RT-PCR demonstrated that astrocytes in cultured expressed mRNA for the cloned SERT protein, which has been characterized as the neuronal SERT. These pharmacological experiments indicate that this uptake process takes place through glial SERT that is very similar to neuronal SERT. Furthermore, the present data also indicate that the presence of the mRNA and protein for the neuronal SERT were established in cultured rat astrocytes, and the polypeptide portion of SERT in astrocytes and frontal cortex could be the same gene product.
Collapse
Affiliation(s)
- M Inazu
- Department of Pharmacology and Intractable Diseases Research Center, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, 160-8402, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- V M Pickel
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
27
|
Abstract
Extracellular levels of serotonin [5-hydroxytryptamine (5-HT)] in the nucleus accumbens (NAc) can influence both cognitive and motor functions involving extensive connections with the frontal cortex. The 5-HT levels reflect vesicular release and plasmalemmal reuptake through the serotonin transporter (SERT). We used electron microscopic immunocytochemistry to determine the sites for SERT activation in the limbic shell and motor-associated core of the rat NAc. Of the SERT-immunoreactive profiles in each region, >90% were serotonergic axons and axon terminals; the remainder were nonserotonergic dendrites and glia. Axonal SERT immunogold labeling was seen mainly at nonsynaptic sites on plasma membranes and often near 5-HT-containing large dense core vesicles (DCVs). SERT-labeled axonal profiles were larger and had a higher numerical density in the shell versus the core but showed no regional differences in their content of SERT immunogold particles. In contrast, immunoreactive dendrites had a lower numerical density in the shell than in the core. SERT labeling in dendrites was localized to segments of plasma membrane near synaptic contacts from unlabeled terminals and/or dendritic appositions. Our results suggest that in the NAc (1) reuptake into serotonergic axons is most efficient after exocytotic release from DCVs, and (2) increased 5-HT release without concomitant increase in SERT expression in individual axons may contribute to higher extracellular levels of serotonin in the shell versus the core. These findings also indicate that SERT may play a minor substrate-dependent role in serotonin uptake or channel activity in selective nonserotonergic neurons and glia in the NAc.
Collapse
|
28
|
Hirst WD, Price GW, Rattray M, Wilkin GP. Serotonin transporters in adult rat brain astrocytes revealed by [3H]5-HT uptake into glial plasmalemmal vesicles. Neurochem Int 1998; 33:11-22. [PMID: 9694037 DOI: 10.1016/s0197-0186(05)80003-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
Cultured astrocytes derived from neonatal rat brain exhibited high affinity, Na+-dependent, paroxetine and fluoxetine sensitive [3H]5-HT uptake. Reverse transcriptase-PCR demonstrated that astrocytes in culture expressed messenger RNA for the cloned serotonin transporter protein which has been characterised as the neuronal serotonin transporter. Although the serotonin transporter in cultured astrocytes displayed a Km value approximately 10 times greater than found in adult brain synaptosomes, these observations indicated that astrocytes in vitro may express the same serotonin transporter as neurons. Reverse transcriptase-PCR demonstrated the presence of serotonin transporter mRNA in the adult rat cerebral cortex, suggesting that astrocytes in vivo may express low levels of this mRNA. To investigate whether astrocytes in the adult CNS express functional serotonin transporters, glial plasmalemmal vesicles were prepared from cerebral cortex, representing a subcellular fraction composed primarily of vesicles derived from astrocytes. These vesicles were characterised by [3H]-glutamate and [3H]-dopamine uptake and by immunoblot analysis, using glial and synaptic markers: glutamate synthase, SNAP-25 and synaptobrevin. [3H]5-HT was taken up into glial plasmalemmal vesicles in a high affinity (Km approximately 40 nM), Na+ dependent, paroxetine-sensitive manner. The [3H]5-HT uptake capacity (Vmax) in these vesicles was approximately one quarter of that observed in synaptosomes. These data indicate that astrocytes in culture and in vivo are capable of 5-HT uptake via the previously characterised 'neuronal' serotonin transporter.
Collapse
Affiliation(s)
- W D Hirst
- Biochemistry Department, Imperial College, London, UK.
| | | | | | | |
Collapse
|
29
|
Bal N, Figueras G, Vilaró MT, Suñol C, Artigas F. Antidepressant drugs inhibit a glial 5-hydroxytryptamine transporter in rat brain. Eur J Neurosci 1997; 9:1728-38. [PMID: 9283827 DOI: 10.1111/j.1460-9568.1997.tb01530.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023]
Abstract
We assessed the role of glial cells in the uptake of serotonin (5-hydroxytryptamine, 5-HT). Primary cultures of rat and mouse cortical astrocytes took up and deaminated 5-HT. The antidepressants citalopram, clomipramine, fluoxetine, fluvoxamine, paroxetine and sertraline inhibited this process. The presence of the mRNAs for the 5-HT transporter and monoamine oxidase-A (MOA-A) was established in cultured astrocytes and in adult rat brain areas with (midbrain and brainstem) and without (frontal cortex) serotonergic cell bodies after reverse transcription-polymerase chain reaction and hybridization with probes complementary to the cloned neuronal 5-HT transporter and MAO-A. To examine in vivo the role of astrocytes in the elimination of 5-HT from the extracellular brain space, 5-HT was perfused through dialysis probes implanted in the frontal cortex of conscious rats and its concentration was measured at the probe outlet. Tissue 5-HT recovery was dose-dependently inhibited by the concurrent perfusion of citalopram, fluoxetine and paroxetine, showing that it essentially measured uptake through the high-affinity 5-HT transporter. Rats lesioned with 5,7-dihydroxytryptamine (5,7-DHT; 88% reduction of tissue 5-HT) displayed tissue 5-HT recovery slightly higher than sham-operated rats (55 +/- 2 vs. 46 +/- 3%, P < 0.001), a finding perhaps attributable to the astrogliosis induced by 5,7-DHT denervation. Rats lesioned with 6-hydroxydopamine showed tissue 5-HT uptake similar to controls, suggesting negligible reuptake of 5-HT by catecholaminergic terminals. These results are consistent with the presence of a glial component of 5-HT uptake in the rodent brain, sensitive to antidepressants, which takes place through a 5-HT transporter very similar or identical to that present in neurons.
Collapse
Affiliation(s)
- N Bal
- Department of Neurochemistry, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Cientificas, Spain
| | | | | | | | | |
Collapse
|
30
|
Marinesco S, Poncet L, Debilly G, Jouvet M, Cespuglio R. Effects of tianeptine, sertraline and clomipramine on brain serotonin metabolism: a voltammetric approach in the rat. Brain Res 1996; 736:82-90. [PMID: 8930312 DOI: 10.1016/0006-8993(96)00681-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/03/2023]
Abstract
Tianeptine is a substance enhancing the serotonir uptake while sertraline and clomipramine inhibit it. By means of 5-hydroxyin-doleacetic acid (5-HIAA) voltammetric measurements, this study investigated their influence on serotonin metabolism which depends mainly upon the activity of monoamine oxidase type A. After tianeptine injection the 5-HIAA signal increased by about 60%. This effect was maintained when the animals were pre-treated with MDL 72145 (an inhibitor of monoamine oxidase type B) but reduced when clorgyline (an inhibitor of monoamine oxidase type A) was administered after tianeptine. Administration of sertraline or clomipramine reduced the 5-HIAA signal by about 30-50%, whether the animals were pre-treated with MDL 72145 or not. It is to be concluded that tianeptine, sertraline and clomipramine can regulate the 5-HT fraction present in the synaptic cleft, not only by acting at the level of the serotoninergic neurons, but also by favoring or reducing the access of the amine to monoamine oxidase type A which is synthesized within non-serotoninergic neurons and glial cells.
Collapse
Affiliation(s)
- S Marinesco
- Département de Médecine Expérimentale, Université Claude Bernard, Lyon, France
| | | | | | | | | |
Collapse
|
31
|
Lillrank SM, O'Connor WT, Oja SS, Ungerstedt U. Systemic phencyclidine administration is associated with increased dopamine, GABA, and 5-HIAA levels in the dorsolateral striatum of conscious rats: an in vivo microdialysis study. J Neural Transm (Vienna) 1994; 95:145-55. [PMID: 7532416 DOI: 10.1007/bf01276433] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/25/2023]
Abstract
In vivo microdialysis was used to study the effects of systemically administered phencyclidine (PCP, 10 mg/kg) on the extracellular levels of dopamine, dihydroxyphenylacetate (DOPAC), homovanillate (HVA), 5-hydroxy-indolacetate (5-HIAA), gamma-aminobutyrate (GABA), glutamate, and aspartate in the rat dorsolateral striatum. In order to demarcate the effects of anesthesia, tissue trauma and gliosis, the effect of PCP was studied in both anesthetized rats with long and short probe implantation periods and in conscious rats with a long probe implantation period. PCP significantly increased the extracellular levels of dopamine in all experimental groups, though the post-implantation interval and anesthesia modulated the degree of increase. PCP increased 5-HIAA levels in both conscious and anesthetized rats after a long post-implantation period and HVA only in anesthetized rats after a long post-implantation period. Glutamate, aspartate, and DOPAC were not affected by PCP challenge but our study indicated for the first time that systemic PCP elevates extracellular GABA in conscious rats.
Collapse
Affiliation(s)
- S M Lillrank
- Department of Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
32
|
Rao VL, Qureshi IA, Butterworth RF. Activities of monoamine oxidase-A and -B are altered in the brains of congenitally hyperammonemic sparse-fur (spf) mice. Neurosci Lett 1994; 170:27-30. [PMID: 8041507 DOI: 10.1016/0304-3940(94)90230-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/28/2023]
Abstract
Activities of monoamine oxidases, MAOA and MAOB, were measured using radiometric assays in different brain regions of the sparse-fur (spf/Y) mouse, a model of congenital hyperammonemia resulting from an X-chromosomal defect of ornithine transcarbamylase. MAOA activities were decreased in cerebellum (by 23%, P < 0.05) and brainstem (by 16%, P < 0.05) of spf mice; activities of MAOB were concomitantly increased in cerebellum (by 22%, P < 0.05), brainstem (by 20%, P < 0.05) and cerebral cortex (by 22%, P < 0.05). These findings offer a rational explanation for previous findings of increased acidic metabolites of monoamines in the brain of spf mice. Altered monoaminergic function could be a key factor in the pathogenesis of neurological dysfunction in congenital hyperammonemias.
Collapse
Affiliation(s)
- V L Rao
- Neuroscience Research Unit, André-Viallet Clinical Research Center (University of Montreal), Hopital Saint-Luc, Que., Canada
| | | | | |
Collapse
|
33
|
Kitahama K, Maeda T, Denney RM, Jouvet M. Monoamine oxidase: distribution in the cat brain studied by enzyme- and immunohistochemistry: recent progress. Prog Neurobiol 1994; 42:53-78. [PMID: 7480787 DOI: 10.1016/0301-0082(94)90021-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/25/2023]
Abstract
Localization of MAO-containing neurons, fibers and glial cells has been described by recent progress in MAO histochemistry and immunohistochemistry. It does not necessarily correspond to those containing monoamines. MAO-A is demonstrated in many noradrenergic cells, but it is hardly detectable in DA cells. Increase of 5-HT and DA concentration after inhibition of MAO-A indicates the possible existence of MAO-A in such neuronal structures. MAO-A is also undetectable in neurons containing 5-HT, a good substrate for MAO-A. These neurons contain MAO-B. There still remain contradictions to be solved in future. MAO is present in astroglial cells, in which monoamines released in extracellular space may be degraded. In glial cells, MAO may also play a role to regulate concentration of telemethylhistamine and trace amines. Such cells appear to transform MPTP to MPP+, a neurotoxin for nigral DA neurons.
Collapse
Affiliation(s)
- K Kitahama
- Département de Médecine Expérimentale, CNRS URA1195, INSERM U52, Faculté de Médecine, Université Claude Bernard, Lyon, France
| | | | | | | |
Collapse
|
34
|
Affiliation(s)
- B Krisch
- Department of Anatomy, University of Kiel, Germany
| | | |
Collapse
|
35
|
Abstract
This study investigated the effects of a 4-day ethanol exposure on cultured rhombencephalic astroglia. The contents of astroglial protein and DNA, and astroglial uptake of serotonin (5-HT) were determined. Fetal rhombencephalic astroglia were examined because of this laboratory's evidence that in utero ethanol exposure markedly impairs the development of serotonergic neurons, which are located in this fetal brain area, and because of the recently demonstrated importance of local support glia in neuronal development. The results of these experiments demonstrated that protein was significantly reduced in astroglia cultured in ethanol at either 150 or 300 mg/dl. In addition, these astroglia exhibited decreased [3H]5-HT uptake per well. However, no significant ethanol-associated differences were detected when [3H]5-HT uptake was expressed per mg protein rather than per well. In contrast to the effects of a 4-day ethanol exposure, the acute ethanol exposure did not significantly alter astroglial uptake of [3H]5-HT/well. In addition, the 4-day exposure to 50 to 300 mg/dl of ethanol did not significantly alter astroglial DNA content. In summary, it appears that a 4-day exposure of cultured fetal rhombencephalic astroglia to 150 to 300 mg/dl of ethanol reduces astroglial protein content and astroglial 5-HT uptake. A reduction in total astroglial proteins, potentially including those that act as essential growth factors, could contribute to some of the ethanol-associated alterations in central nervous system development.
Collapse
Affiliation(s)
- D K Lokhorst
- Neuroscience Program, Loyola University of Chicago, Stritch School of Medicine, Maywood, Illinois
| | | |
Collapse
|
36
|
Celada P, Artigas F. Monoamine oxidase inhibitors increase preferentially extracellular 5-hydroxytryptamine in the midbrain raphe nuclei. A brain microdialysis study in the awake rat. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1993; 347:583-90. [PMID: 7689703 DOI: 10.1007/bf00166940] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/26/2023]
Abstract
We have examined the local and systemic effects of clorgyline, tranylcypromine and deprenyl on extracellular serotonin (5-HT) and 5-hydroxyindoleacetic acid in the raphe nuclei and in frontal cortex of awake, freely-moving rats using microdialysis. When administered through the dialysis probe, monoamine oxidase (monoamine: oxygen oxidoreductase (deaminating), E.C. 1.4.3.4., MAO) inhibitors increased 5-HT output in a dose-dependent manner in both brain areas. The effects were more pronounced in the raphe nuclei for the three MAO inhibitors at all doses assayed. When the monoamine oxidase inhibitors were given i.p., dialysate 5-HT increased dramatically, after tranylcypromine (15 mg/kg), in raphe nuclei and frontal cortex (area under the curve (AUC) to 4 h post-treatment: 63-fold and 11-fold, respectively) whereas the effects of clorgyline (10 mg/kg) were much less pronounced (+47% increase in the AUC for raphe nuclei, P < 0.09; +18% increase in the AUC for frontal cortex, n.s.). Deprenyl (2.5 mg/kg, i.p.) induced a moderate (+22%) increase of dialysate 5-HT from the raphe nuclei but did not cause a change in dialysate 5-HT from the frontal cortex (+4%). However, clorgyline, or deprenyl, dramatically increased dialysate 5-HT in animals which had been pre-treated with the above dose of deprenyl, or clorgyline, respectively, showing that the blockade of both forms of MAO results in much larger increases of extracellular 5-HT than does the blockade of either form alone.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P Celada
- Department of Neurochemistry, C.S.I.C., Barcelona, Spain
| | | |
Collapse
|
37
|
Simonson SG, Zhang J, Canada AT, Su YF, Benveniste H, Piantadosi CA. Hydrogen peroxide production by monoamine oxidase during ischemia-reperfusion in the rat brain. J Cereb Blood Flow Metab 1993; 13:125-34. [PMID: 8417001 DOI: 10.1038/jcbfm.1993.15] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/30/2023]
Abstract
Monoamine oxidase (MAO) as a source of hydrogen peroxide (H2O2) was evaluated during ischemia-reperfusion in vivo in the rat brain. H2O2 production was assessed with and without inhibition of MAO during and after 15 min of ischemia. Metabolism of H2O2 by catalase during ischemia and reperfusion was measured in forebrain homogenates using aminotriazole (ATZ), an irreversible H2O2-dependent inhibitor of catalase. Catecholamine and glutathione concentrations in forebrain were measured with and without MAO inhibitors. During ischemia, forebrain blood flow was reduced to 8% of baseline and H2O2 production decreased as measured at the microperoxisome. During reperfusion, a rapid increase in H2O2 generation occurred within 5 min as measured by a threefold increase in oxidized glutathione (GSSG). The H2O2-dependent rates of ATZ inactivation of catalase between control and ischemia-reperfusion were similar, indicating that H2O2 was more available to glutathione peroxidase than to catalase in this model. MAO inhibitors eliminated the biochemical indications of increased H2O2 production and increased the catecholamine concentrations. Mortality was 67% at 48 h after ischemia-reperfusion, and there was no improvement in survival after inhibition of MAO. We conclude that MAO is an important source of H2O2 generation early in brain reperfusion, but inhibition of the enzyme does not improve survival in this model despite ablating H2O2 production.
Collapse
Affiliation(s)
- S G Simonson
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | | | | | |
Collapse
|
38
|
Kimelberg HK, Goderie SK, Conley PA, Higman S, Goldschmidt R, Amundson RH. Uptake of [3H]serotonin and [3H]glutamate by primary astrocyte cultures. I. Effects of different sera and time in culture. Glia 1992; 6:1-8. [PMID: 1355074 DOI: 10.1002/glia.440060102] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Abstract
Na(+)-dependent, fluoxetine-sensitive high-affinity uptake of serotonin and Na(+)-dependent uptake of glutamate were studied in primary astrocyte cultures from 1-day-old rat neocortex. This uptake was independent of time in culture from 1 to 6 weeks. High-affinity serotonin uptake was decreased when cells were grown in horse serum as compared to fetal bovine serum and was almost absent when cells were grown in chemically defined medium. In contrast, glutamate uptake was unaffected by the composition of the medium in which the cultures were grown. The serum effect on serotonin uptake was not due to the greater level of serotonin in the fetal bovine serum and was only reversed by a change of serum over a time period of days.
Collapse
Affiliation(s)
- H K Kimelberg
- Division of Neurosurgery, Albany Medical College, New York 12208
| | | | | | | | | | | |
Collapse
|
39
|
Colzi A, d'Agostini F, Cesura AM, Da Prada M. Brain microdialysis in rats: a technique to reveal competition in vivo between endogenous dopamine and moclobemide, a RIMA antidepressant. Psychopharmacology (Berl) 1992; 106 Suppl:S17-20. [PMID: 1546133 DOI: 10.1007/bf02246227] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022]
Abstract
In this study, the effect of the interaction between the short-acting reserpine-like dopamine (DA) releaser Ro 4-1284 (1 mg/kg IP) and the reversible inhibitors of monoamine oxidase type A (MAO-A), moclobemide (Aurorix) and Ro 41-1049 (20 mg/kg IP, each), on the outflow of DA and 3,4-dihydroxyphenylacetic acid (DOPAC) was investigated by rat transstriatal microdialysis. The injection of Ro 4-1284 after MAO-A inhibitors produced a marked increase of DA concentrations corresponding to a bell-shaped change in DOPAC outflow. This effect was more pronounced in rats treated with moclobemide than with Ro 41-1049. These data support the view that the increment of the endogenous substrate DA might displace moclobemide more rapidly than Ro 41-1049 from MAO-A active sites. The microdialysis method is proposed as a more reliable in vivo technique to investigate the degree of reversibility of the reversible MAO-A inhibitors.
Collapse
MESH Headings
- 2H-Benzo(a)quinolizin-2-ol, 2-Ethyl-1,3,4,6,7,11b-hexahydro-3-isobutyl-9,10-dimethoxy-/pharmacology
- 3,4-Dihydroxyphenylacetic Acid/metabolism
- Animals
- Benzamides/pharmacology
- Binding, Competitive/drug effects
- Brain Chemistry/drug effects
- Dialysis
- Dopamine/metabolism
- Male
- Moclobemide
- Monoamine Oxidase/metabolism
- Monoamine Oxidase Inhibitors/pharmacology
- Neurons/drug effects
- Neurons/metabolism
- Rats
- Rats, Inbred Strains
- Thiazoles/pharmacology
Collapse
Affiliation(s)
- A Colzi
- Pharmaceutical Research Department (PRPN), F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | | | | |
Collapse
|
40
|
Abstract
Co-localization of glial fibrillary acidic protein (GFAP) and radioactivity was examined after intraventricular injection of [3H]5-HT in adult rat brains. Radioactivity localized over GFAP-positive astrocytes was seen, especially when image-enhancing techniques were applied to the data. Also slices prepared from astrogliotic hippocampi of rats pretreated with kainic acid showed a twofold increased uptake of [3H]5-HT compared to control slices. This indicates that the uptake of [3H]5-HT seen in primary astrocyte cultures also occurs for astrocytes in situ. Also, as with astrocyte cultures, only some of the GFAP(+) astrocytes in situ showed localization of radioactivity, supporting the concept of intraregional heterogeneity of astrocyte functions.
Collapse
Affiliation(s)
- E J Anderson
- Division of Neurosurgery, Albany Medical College, New York 12204
| | | | | |
Collapse
|