1
|
Zhao X, Li K, Chen M, Liu L. Metabolic codependencies in the tumor microenvironment and gastric cancer: Difficulties and opportunities. Biomed Pharmacother 2023; 162:114601. [PMID: 36989719 DOI: 10.1016/j.biopha.2023.114601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Oncogenesis and the development of tumors affect metabolism throughout the body. Metabolic reprogramming (also known as metabolic remodeling) is a feature of malignant tumors that is driven by oncogenic changes in the cancer cells themselves as well as by cytokines in the tumor microenvironment. These include endothelial cells, matrix fibroblasts, immune cells, and malignant tumor cells. The heterogeneity of mutant clones is affected by the actions of other cells in the tumor and by metabolites and cytokines in the microenvironment. Metabolism can also influence immune cell phenotype and function. Metabolic reprogramming of cancer cells is the result of a convergence of both internal and external signals. The basal metabolic state is maintained by internal signaling, while external signaling fine-tunes the metabolic process based on metabolite availability and cellular needs. This paper reviews the metabolic characteristics of gastric cancer, focusing on the intrinsic and extrinsic mechanisms that drive cancer metabolism in the tumor microenvironment, and interactions between tumor cell metabolic changes and microenvironment metabolic changes. This information will be helpful for the individualized metabolic treatment of gastric cancers.
Collapse
|
2
|
Ren C, Li HH, Zhang CY, Song XC. Effects of chronic fluorosis on the brain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114021. [PMID: 36049331 DOI: 10.1016/j.ecoenv.2022.114021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
This article reviews the effects of chronic fluorosis on the brain and possible mechanisms. We used PubMed, Medline and Cochraine databases to collect data on fluorosis, brain injury, and pathogenesis. A large number of in vivo and in vitro studies and epidemiological investigations have found that chronic fluorosis can cause brain damage, resulting in abnormal brain structure and brain function.Chronic fluorosis not only causes a decline in concentration, learning, and memory, but also has mental symptoms such as anxiety, tension, and depression. Several possible mechanisms that have been proposed: the oxidative stress and inflammation theory, neural cell apoptosis theory, neurotransmitter imbalance theory, as well as the doctrine of the interaction of fluorine with other elements. However, the specific mechanism of chronic fluorosis on brain damage is still unclear. Thus, a better understanding of the mechanisms via which chronic fluorosis causes brain damage is of great significance to protect the physical and mental health of people in developing countries, especially those living in the endemic areas of fluorosis. In brief, further investigation concerning the influence of fluoride on the brain should be conducted as the neural damage induced by it may bring about a huge problem in public health, especially considering growing environmental pollution.
Collapse
Affiliation(s)
- Chao Ren
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong Province 264000, China; Shandong Provincial Innovation and Practice Base for Postdoctors, Yantai Yuhuangding Hospital, Yantai 264000, China; Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province 264000, China.
| | - Hui-Hua Li
- Zhenjiang Mental Health Center, The Fifth People's Hospital of Zhenjiang City, Zhenjiang, Jiangsu Province 212000, China
| | - Cai-Yi Zhang
- Department of Psychiatry, Xuzhou Medical University Affiliated Xuzhou Oriental Hospital, No.379 Tongshan Road, Xuzhou, Jiangsu Province 221000, China; Department of Emergency psychology, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China; Department of Emergency, Xuzhou Medical University Affiliate Hospital, No.99 Huaihai Road, Xuzhou, Jiangsu Province 221000, China
| | - Xi-Cheng Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong Province 264000, China; Shandong Provincial Innovation and Practice Base for Postdoctors, Yantai Yuhuangding Hospital, Yantai 264000, China.
| |
Collapse
|
3
|
Aleshin VA, Mkrtchyan GV, Kaehne T, Graf AV, Maslova MV, Bunik VI. Diurnal regulation of the function of the rat brain glutamate dehydrogenase by acetylation and its dependence on thiamine administration. J Neurochem 2020; 153:80-102. [PMID: 31886885 DOI: 10.1111/jnc.14951] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/20/2022]
Abstract
Glutamate dehydrogenase (GDH) is essential for the brain function and highly regulated, according to its role in metabolism of the major excitatory neurotransmitter glutamate. Here we show a diurnal pattern of the GDH acetylation in rat brain, associated with specific regulation of GDH function. Mornings the acetylation levels of K84 (near the ADP site), K187 (near the active site), and K503 (GTP-binding) are highly correlated. Evenings the acetylation levels of K187 and K503 decrease, and the correlations disappear. These daily variations in the acetylation adjust the GDH responses to the enzyme regulators. The adjustment is changed when the acetylation of K187 and K503 shows no diurnal variations, as in the rats after a high dose of thiamine. The regulation of GDH function by acetylation is confirmed in a model system, where incubation of the rat brain GDH with acetyl-CoA changes the enzyme responses to GTP and ADP, decreasing the activity at subsaturating concentrations of substrates. Thus, the GDH acetylation may support cerebral homeostasis, stabilizing the enzyme function during diurnal oscillations of the brain metabolome. Daytime and thiamine interact upon the (de)acetylation of GDH in vitro. Evenings the acetylation of GDH from control animals increases both IC50 GTP and EC50 ADP . Mornings the acetylation of GDH from thiamine-treated animals increases the enzyme IC50 GTP . Molecular mechanisms of the GDH regulation by acetylation of specific residues are proposed. For the first time, diurnal and thiamine-dependent changes in the allosteric regulation of the brain GDH due to the enzyme acetylation are shown.
Collapse
Affiliation(s)
- Vasily A Aleshin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Garik V Mkrtchyan
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Thilo Kaehne
- Institute of Experimental Internal Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Anastasia V Graf
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Nano-, Bio-, Informational, Cognitive and Socio-humanistic Sciences and Technologies at Moscow Institute of Physics and Technology, Moscow, Russia
| | - Maria V Maslova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Victoria I Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Dec K, Łukomska A, Maciejewska D, Jakubczyk K, Baranowska-Bosiacka I, Chlubek D, Wąsik A, Gutowska I. The Influence of Fluorine on the Disturbances of Homeostasis in the Central Nervous System. Biol Trace Elem Res 2017; 177:224-234. [PMID: 27787813 PMCID: PMC5418325 DOI: 10.1007/s12011-016-0871-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/11/2016] [Indexed: 01/21/2023]
Abstract
Fluorides occur naturally in the environment, the daily exposure of human organism to fluorine mainly depends on the intake of this element with drinking water and it is connected with the geographical region. In some countries, we can observe the endemic fluorosis-the damage of hard and soft tissues caused by the excessive intake of fluorine. Recent studies showed that fluorine is toxic to the central nervous system (CNS). There are several known mechanisms which lead to structural brain damage caused by the excessive intake of fluorine. This element is able to cross the blood-brain barrier, and it accumulates in neurons affecting cytological changes, cell activity and ion transport (e.g. chlorine transport). Additionally, fluorine changes the concentration of non-enzymatic advanced glycation end products (AGEs), the metabolism of neurotransmitters (influencing mainly glutamatergic neurotransmission) and the energy metabolism of neurons by the impaired glucose transporter-GLUT1. It can also change activity and lead to dysfunction of important proteins which are part of the respiratory chain. Fluorine also affects oxidative stress, glial activation and inflammation in the CNS which leads to neurodegeneration. All of those changes lead to abnormal cell differentiation and the activation of apoptosis through the changes in the expression of neural cell adhesion molecules (NCAM), glial fibrillary acidic protein (GFAP), brain-derived neurotrophic factor (BDNF) and MAP kinases. Excessive exposure to this element can cause harmful effects such as permanent damage of all brain structures, impaired learning ability, memory dysfunction and behavioural problems. This paper provides an overview of the fluoride neurotoxicity in juveniles and adults.
Collapse
Affiliation(s)
- K Dec
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego street 24, 70-406, Szczecin, Poland
| | - A Łukomska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego street 24, 70-406, Szczecin, Poland
| | - D Maciejewska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego street 24, 70-406, Szczecin, Poland
| | - K Jakubczyk
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego street 24, 70-406, Szczecin, Poland
| | - I Baranowska-Bosiacka
- Department of Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 av., 71-111, Szczecin, Poland
| | - D Chlubek
- Department of Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 av., 71-111, Szczecin, Poland
| | - A Wąsik
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurochemistry, Smętna street 12, 31-343, Kraków, Poland
| | - I Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego street 24, 70-406, Szczecin, Poland.
| |
Collapse
|
5
|
Multiple Forms of Glutamate Dehydrogenase in Animals: Structural Determinants and Physiological Implications. BIOLOGY 2016; 5:biology5040053. [PMID: 27983623 PMCID: PMC5192433 DOI: 10.3390/biology5040053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/26/2016] [Accepted: 12/07/2016] [Indexed: 11/17/2022]
Abstract
Glutamate dehydrogenase (GDH) of animal cells is usually considered to be a mitochondrial enzyme. However, this enzyme has recently been reported to be also present in nucleus, endoplasmic reticulum and lysosomes. These extramitochondrial localizations are associated with moonlighting functions of GDH, which include acting as a serine protease or an ATP-dependent tubulin-binding protein. Here, we review the published data on kinetics and localization of multiple forms of animal GDH taking into account the splice variants, post-translational modifications and GDH isoenzymes, found in humans and apes. The kinetic properties of human GLUD1 and GLUD2 isoenzymes are shown to be similar to those published for GDH1 and GDH2 from bovine brain. Increased functional diversity and specific regulation of GDH isoforms due to alternative splicing and post-translational modifications are also considered. In particular, these structural differences may affect the well-known regulation of GDH by nucleotides which is related to recent identification of thiamine derivatives as novel GDH modulators. The thiamine-dependent regulation of GDH is in good agreement with the fact that the non-coenzyme forms of thiamine, i.e., thiamine triphosphate and its adenylated form are generated in response to amino acid and carbon starvation.
Collapse
|
6
|
Abstract
Transient multienzyme and/or multiprotein complexes (metabolons) direct substrates toward specific pathways and can significantly influence the metabolism of glutamate and glutamine in the brain. Glutamate is the primary excitatory neurotransmitter in brain. This neurotransmitter has essential roles in normal brain function including learning and memory. Metabolism of glutamate involves the coordinated activity of astrocytes and neurons and high affinity transporter proteins that are selectively distributed on these cells. This chapter describes known and possible metabolons that affect the metabolism of glutamate and related compounds in the brain, as well as some factors that can modulate the association and dissociation of such complexes, including protein modifications by acylation reactions (e.g., acetylation, palmitoylation, succinylation, SUMOylation, etc.) of specific residues. Development of strategies to modulate transient multienzyme and/or enzyme-protein interactions may represent a novel and promising therapeutic approach for treatment of diseases involving dysregulation of glutamate metabolism.
Collapse
|
7
|
McKenna MC. Glutamate dehydrogenase in brain mitochondria: do lipid modifications and transient metabolon formation influence enzyme activity? Neurochem Int 2011; 59:525-33. [PMID: 21771624 DOI: 10.1016/j.neuint.2011.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 06/30/2011] [Accepted: 07/03/2011] [Indexed: 11/17/2022]
Abstract
Metabolism of glutamate, the primary excitatory neurotransmitter in brain, is complex and of paramount importance to overall brain function. Thus, understanding the regulation of enzymes involved in formation and disposal of glutamate and related metabolites is crucial to understanding glutamate metabolism. Glutamate dehydrogenase (GDH) is a pivotal enzyme that links amino acid metabolism and TCA cycle activity in brain and other tissues. The allosteric regulation of GDH has been extensively studied and characterized. Less is known about the influence of lipid modifications on GDH activity, and the participation of GDH in transient heteroenzyme complexes (metabolons) that can greatly influence metabolism by altering kinetic parameters and lead to channeling of metabolites. This review summarizes evidence for palmitoylation and acylation of GDH, information on protein binding, and information regarding the participation of GDH in transient heteroenzyme complexes. Recent studies suggest that a number of other proteins can bind to GDH altering activity and overall metabolism. It is likely that these modifications and interactions contribute additional levels of regulation of GDH activity and glutamate metabolism.
Collapse
Affiliation(s)
- Mary C McKenna
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
8
|
Escitalopram modulates neuron-remodelling proteins in a rat gene-environment interaction model of depression as revealed by proteomics. Part I: genetic background. Int J Neuropsychopharmacol 2011; 14:796-833. [PMID: 21054914 DOI: 10.1017/s1461145710001318] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The wide-scale analysis of protein expression provides a powerful strategy for the molecular exploration of complex pathophysiological mechanisms, such as the response to antidepressants. Using a 2D proteomic approach we investigated the Flinders Sensitive Line (FSL), a genetically selected rat model of depression, and the control Flinders Resistant Line (FRL). To evaluate gene-environment interactions, FSL and FRL pups were separated from their mothers for 3 h (maternal separation, MS), as early-life trauma is considered an important antecedent of depression. All groups were treated with either escitalopram (Esc) admixed to food (25 mg/kg.d) or vehicle for 1 month. At the week 3, forced swim tests were performed. Protein extracts from prefrontal/frontal cortex and hippocampus were separated by 2D electrophoresis. Proteins displaying statistically significant differences in expression levels were identified by mass spectrometry. Immobility time values in the forced swim test were higher in FSL rats and reduced by antidepressant treatment. Moreover, the Esc-induced reduction in immobility time was not detected in MS rats. The impact of genetic background in response to Esc was specifically investigated here. Bioinformatics analyses highlighted gene ontology terms showing tighter associations with the modulated proteins. Esc modulated protein belonging to cytoskeleton organization in FSL; carbohydrate metabolism and intracellular transport in FRL. Proteins differently modulated in the two strains after MS and Esc play a role in cytoskeleton organization, vesicle-mediated transport, apoptosis regulation and macromolecule catabolism. These findings suggest pathways involved in neuronal remodelling as molecular correlates of response to antidepressants in a model of vulnerability.
Collapse
|
9
|
Transgenic expression of Glud1 (glutamate dehydrogenase 1) in neurons: in vivo model of enhanced glutamate release, altered synaptic plasticity, and selective neuronal vulnerability. J Neurosci 2009; 29:13929-44. [PMID: 19890003 DOI: 10.1523/jneurosci.4413-09.2009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The effects of lifelong, moderate excess release of glutamate (Glu) in the CNS have not been previously characterized. We created a transgenic (Tg) mouse model of lifelong excess synaptic Glu release in the CNS by introducing the gene for glutamate dehydrogenase 1 (Glud1) under the control of the neuron-specific enolase promoter. Glud1 is, potentially, an important enzyme in the pathway of Glu synthesis in nerve terminals. Increased levels of GLUD protein and activity in CNS neurons of hemizygous Tg mice were associated with increases in the in vivo release of Glu after neuronal depolarization in striatum and in the frequency and amplitude of miniature EPSCs in the CA1 region of the hippocampus. Despite overexpression of Glud1 in all neurons of the CNS, the Tg mice suffered neuronal losses in select brain regions (e.g., the CA1 but not the CA3 region). In vulnerable regions, Tg mice had decreases in MAP2A labeling of dendrites and in synaptophysin labeling of presynaptic terminals; the decreases in neuronal numbers and dendrite and presynaptic terminal labeling increased with advancing age. In addition, the Tg mice exhibited decreases in long-term potentiation of synaptic activity and in spine density in dendrites of CA1 neurons. Behaviorally, the Tg mice were significantly more resistant than wild-type mice to induction and duration of anesthesia produced by anesthetics that suppress Glu neurotransmission. The Glud1 mouse might be a useful model for the effects of lifelong excess synaptic Glu release on CNS neurons and for age-associated neurodegenerative processes.
Collapse
|
10
|
Niu R, Sun Z, Cheng Z, Li Z, Wang J. Decreased learning ability and low hippocampus glutamate in offspring rats exposed to fluoride and lead. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2009; 28:254-258. [PMID: 21784012 DOI: 10.1016/j.etap.2009.04.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 04/19/2009] [Accepted: 04/24/2009] [Indexed: 05/31/2023]
Abstract
Fluoride (F) and lead (Pb) are two common environmental pollutants which are linked to the lowered intelligence, especially for children. Glutamate, a major excitatory neurotransmitter in the central nervous system, plays an important role in the process of learning and memory. However, the impact of F and Pb alone or in combination on glutamate metabolism in brain is little known. The present study was conducted to assess the glutamate level and the activities of glutamate metabolism related enzymes including asparate aminotransferase (AST), alanine aminotransferase (ALT) and glutamic acid decarboxylase (GAD) in the hippocampus, as well as learning abilities of offspring rat pups at postnatal week 6, 8, 10 and 12 exposed to F and/or Pb. During lactation, the pups ingested F and/or Pb via the maternal milk, whose mothers were exposed to sodium fluoride (150 mg/L in drinking water) and/or lead acetate (300 mg/L in drinking water) from the day of delivery. After weaning at postnatal day 21, the pups were exposed to the same treatments as their mother. Results showed that the learning abilities and hippocampus glutamate levels were significantly decreased by F and Pb individually and the combined interaction of F and Pb. The activities of AST and ALT in treatment groups were significantly inhibited, while the activities of GAD were increased, especially in rats exposed to both F and Pb together. These findings suggested that alteration of hippocampus glutamate by F and/or Pb may in part reduce learning ability in rats.
Collapse
Affiliation(s)
- Ruiyan Niu
- College of Animal Science and Veterinary Medicine Shanxi Agricultural University, Taigu, Shanxi 030801, People's Republic of China.
| | | | | | | | | |
Collapse
|
11
|
Ando S, Tanaka Y. Mass spectrometric studies on brain metabolism, using stable isotopes. MASS SPECTROMETRY REVIEWS 2005; 24:865-86. [PMID: 16052499 DOI: 10.1002/mas.20045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In fields related to biomedicine, mass spectrometry has been applied to metabolism research and chemical structural analysis. The introduction of stable isotopes has advanced research related to in vivo metabolism. Stable-isotope labeling combined with mass spectrometry appears to be a superior method for the metabolism studies, because it compensates for the shortcomings of conventional techniques that use radioisotopes. Biomolecules labeled with stable isotopes have provided solid evidence of their metabolic pathways. Labeled large molecules, however, cannot homogeneously mix in vivo with the corresponding endogenous pools. To overcome that problem, small tracers labeled with stable isotopes have been applied to in vivo studies because they can diffuse and attain a homogeneous distribution throughout the inter- and intracellular spaces. In particular, D(2)O-labeling methods have been used for studies of the metabolism in different organs, including the brain, which is isolated from other extraneural organs by the blood-brain barrier (BBB). Cellular components, such as lipids, carbohydrates, proteins, and DNA, can be endogenously and concurrently labeled with deuterium, and their metabolic fluxes examined by mass spectrometry. Application of the D(2)O-labeling method to the measurements of lipid metabolism and membrane turnover in the brain is described, and the potential advantages of this method are discussed in this review. This methodology also appears to have the potential to be applied to dynamic and functional metabolomics.
Collapse
Affiliation(s)
- Susumu Ando
- Tokyo Metropolitan Institute of Gerontology, Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan.
| | | |
Collapse
|
12
|
Bui BV, Vingrys AJ, Wellard JW, Kalloniatis M. Monocarboxylate transport inhibition alters retinal function and cellular amino acid levels. Eur J Neurosci 2004; 20:1525-37. [PMID: 15355319 DOI: 10.1111/j.1460-9568.2004.03601.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We assessed the effect of the in vivo application of monocarboxylate transport inhibitors on retinal function and amino acid immunocytochemistry. We wanted to determine the impact that altered aerobic metabolite availability has on retinal function and the characteristics of amino acid shunting into metabolic pools. Electroretinograms were collected from anaesthetized rats at various times after intravitreal injection of the monocarboxylate transport inhibitors alpha-cyano-4-hydroxycinnamate (4-CIN; 2 micro L, 0.1-10 mm) or p-(dipropylsulphamoyl)benzoic acid (probenecid; 1-10 mm). Changes in retinal function were compared with quantitative amino acid immunocytochemical changes in retinas harvested 20 and 40 min after either 4-CIN or vehicle treatment. The injection of 4-CIN resulted in a dose-dependent reduction of the ON-bipolar cell P2 wave amplitude (20-80%) and delay in its implicit time. The phototransduction sensitivity was mildly reduced whereas the ON-bipolar cell P2 sensitivity was unaffected. Probenecid induced functional changes similar to those observed with 4-CIN. We also mapped the amino acid alterations within specific cell classes induced by 4-CIN application. All neurones displayed a reduced glutamate content averaging 48%; reduced GABA (31%) and glycine (28%) were found within amacrine cells and glutamine was reduced in all cell classes except photoreceptor and Müller cells. All cell classes in the retina demonstrated increases in aspartate (57%), whereas leucine (24%) and ornithine (21%) were only significantly increased in photoreceptor and bipolar cells. The reduction in glutamate immunolabelling in specific retinal cell classes was mirrored by an increase in aspartate levels at these locations. In addition, attenuated glutamine immunolabelling also closely matched the spatial pattern observed for glutamate. Our immunocytochemical analysis provides evidence that monocarboxylate transport inhibition induces a shift in the equilibrium of glutamate transamination reactions involving aspartate throughout the retina whereas photoreceptor and bipolar cells also use glutamate transamination reactions involving ornithine and leucine. The distribution pattern of glutamine secondary to monocarboxylate inhibition suggests that this amino acid is a major precursor for glutamate throughout the retina.
Collapse
Affiliation(s)
- Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
13
|
Li C, Najafi H, Daikhin Y, Nissim IB, Collins HW, Yudkoff M, Matschinsky FM, Stanley CA. Regulation of leucine-stimulated insulin secretion and glutamine metabolism in isolated rat islets. J Biol Chem 2003; 278:2853-8. [PMID: 12444083 DOI: 10.1074/jbc.m210577200] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutamate dehydrogenase (GDH) is regulated by both positive (leucine and ADP) and negative (GTP and ATP) allosteric factors. We hypothesized that the phosphate potential of beta-cells regulates the sensitivity of leucine stimulation. These predictions were tested by measuring leucine-stimulated insulin secretion in perifused rat islets following glucose depletion and by tracing the nitrogen flux of [2-(15)N]glutamine using stable isotope techniques. The sensitivity of leucine stimulation was enhanced by long time (120-min) energy depletion and inhibited by glucose pretreatment. After limited 50-min glucose depletion, leucine, not alpha-ketoisocaproate, failed to stimulate insulin release. beta-Cells sensitivity to leucine is therefore proposed to be a function of GDH activation. Leucine increased the flux through GDH 3-fold compared with controls while causing insulin release. High glucose inhibited flux through both glutaminase and GDH, and leucine was unable to override this inhibition. These results clearly show that leucine induced the secretion of insulin by augmenting glutaminolysis through activating glutaminase and GDH. Glucose regulates beta-cell sensitivity to leucine by elevating the ratio of ATP and GTP to ADP and P(i) and thereby decreasing the flux through GDH and glutaminase. These mechanisms provide an explanation for hypoglycemia caused by mutations of GDH in children.
Collapse
Affiliation(s)
- Changhong Li
- Division of Endocrinology, Children's Hospital of Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Miller KE, Richards BA, Kriebel RM. Glutamine-, glutamine synthetase-, glutamate dehydrogenase- and pyruvate carboxylase-immunoreactivities in the rat dorsal root ganglion and peripheral nerve. Brain Res 2002; 945:202-11. [PMID: 12126882 DOI: 10.1016/s0006-8993(02)02802-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supporting glial cells of the peripheral nervous system include satellite cells of dorsal root ganglia and Schwann cells of peripheral nerves. In the central nervous system, glial cells contain enzymes related to the tricarboxylic acid and glutamine cycles: pyruvate carboxylase, glutamate dehydrogenase, and glutamine synthetase. The present study used immunohistochemistry in the rat peripheral nervous system to determine the cellular distribution of these enzymes along with glutamine. In dorsal root ganglia and peripheral nerves, glutamine and glutamine related enzymes were enriched in satellite and Schwann cells. In the dorsal root ganglia, immunoreactive satellite cells surrounded neurons of all sizes. In peripheral nerve, immunoreactive Schwann cells were most easily observed surrounding large diameter, myelinated axons. These Schwann cells contained immunoreactivity in their cell bodies, nodes of Ranvier, and the rim of cytoplasm outside the myelin sheath. Myelin sheaths were non-immunoreactive. The peripheral glial tricarboxylic and glutamine cycles may be used to produce glutamine for neuronal cell uptake and conversion to glutamate for synaptic transmission. Alternatively, these cycles may function in peripheral glia similar to central nervous system astrocytes for supporting the energy demands of neurons.
Collapse
Affiliation(s)
- Kenneth E Miller
- Department of Cell Biology, BMSB 562, University of Oklahoma Health Sciences Center, 940 S.L. Young Blvd., Oklahoma City, OK 73190, USA.
| | | | | |
Collapse
|
15
|
Burbaeva GS, Turishcheva MS, Vorobyeva EA, Savushkina OK, Tereshkina EB, Boksha IS. Diversity of glutamate dehydrogenase in human brain. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26:427-35. [PMID: 11999891 DOI: 10.1016/s0278-5846(01)00273-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Three forms of glutamate dehydrogenase (GDH, EC 1.4.1.3) are purified from human brain tissue. Two of them, named GDH I (consisting of 58+/-1-kDa subunit) and GDH II (consisting of 56+/-1 -kDa subunit), are readily solubilized and the third one, GDH III (consisting of 56+/-1-kDa subunit), is a membrane-associated (particulate bound) isoform. Kinetic constants were determined for GDH III. These GDH forms were found to differ in hydrophobicity as indicated by different affinity to Phenyl-Sepharose. All three GDH forms showed microheterogeneity on two-dimensional (2-D) gel electrophoresis. Specific polyclonal antibodies, which enable to determine the levels of immunoreactivities of all the GDH forms in human brain extracts by enzyme-chemiluminescent amplified (ECL)-Western immunoblotting, were obtained.
Collapse
Affiliation(s)
- Gulnur Sh Burbaeva
- Laboratory of Neurochemistry, Mental Health Research Center RAMS, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
16
|
Cooper AJ. Role of glutamine in cerebral nitrogen metabolism and ammonia neurotoxicity. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2002; 7:280-6. [PMID: 11754523 DOI: 10.1002/mrdd.1039] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ammonia enters the brain by diffusion from the blood or cerebrospinal fluid, or is formed in situ from the metabolism of endogenous nitrogen-containing substances. Despite its central importance in nitrogen homeostasis, excess ammonia is toxic to the central nervous system and its concentration in the brain must be kept low. This is accomplished by the high activity of glutamine synthetase, which is localized in astrocytes and which permits efficient detoxification of incoming or endogenously generated ammonia. The location also permits the operation of an intercellular glutamine cycle. In this cycle, glutamate released from nerve terminals is taken up by astrocytes where it is converted to glutamine. Glutamine is released to the extracellular fluid to be taken up into the nerve cells, where it is converted back to glutamate by the action of glutaminase. Most extrahepatic organs lack a complete urea cycle, and for many organs, including the brain, glutamine represents a temporary storage form of waste nitrogen. As such, glutamine was long thought to be harmless to the brain. However, recent evidence suggests that excess glutamine is neurotoxic. Hyperammonemic syndromes (e.g., liver disease, inborn errors of the urea cycle, Reye's disease) consistently cause astrocyte pathology. Evidence has been presented that hyperammonemia results in increased formation of glutamine directly in astrocytes, thereby generating an osmotic stress to these cells. This osmotic stress results in impaired astrocyte function, which in turn leads to neuronal dysfunction. In this review a brief overview is presented of the role of glutamine in normal brain metabolism and in the pathogenesis of hyperammonemic syndromes.
Collapse
Affiliation(s)
- A J Cooper
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York, USA.
| |
Collapse
|
17
|
Qu H, Konradsen JR, van Hengel M, Wolt S, Sonnewald U. Effect of glutamine and GABA on [U-(13)C]glutamate metabolism in cerebellar astrocytes and granule neurons. J Neurosci Res 2001; 66:885-90. [PMID: 11746415 DOI: 10.1002/jnr.10055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To probe the effect of glutamine and GABA on metabolism of [U-(13)C]glutamate, cerebellar astrocytes were incubated with [U-(13)C]glutamate (0.5 mM) in the presence and absence of glutamine (2.5 mM) or GABA (0.2 mM). It could be shown that consumption of [U-(13)C]glutamate was decreased in the presence of glutamine and release of labeled aspartate and [1,2,3-(13)C]glutamate decreased as well, whereas the concentrations of these metabolites increased inside the cells. Glutamine decreased energy production from [U-(13)C]glutamate presumably by substituting for glutamate as an energy substrate. No additional effect was seen in the presence of both glutamine and GABA. When cerebellar granule neurons were incubated with [U-(13)C]glutamate (0.25 mM) and GABA (0.05 mM), less [U-(13)C]glutamate was used for energy production than in controls. Because the barbiturate thiopental did not elicit such response (Qu et al., 2000, Neurochem Int 37:207-215) it appears that GABA also has a metabolic function in the glutamatergic cerebellar granule neurons in contrast to the astrocytes.
Collapse
Affiliation(s)
- H Qu
- Department of Clinical Neuroscience, Norwegian University of Science and Technology, Olav Kyrresgt. 3, N-7489 Trondheim, Norway
| | | | | | | | | |
Collapse
|
18
|
Plaitakis A, Zaganas I. Regulation of human glutamate dehydrogenases: implications for glutamate, ammonia and energy metabolism in brain. J Neurosci Res 2001; 66:899-908. [PMID: 11746417 DOI: 10.1002/jnr.10054] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Glutamate dehydrogenase (GDH) catalyzes the oxidative deamination of glutamate to alpha-ketoglutarate using NAD or NADP as cofactors. In mammalian brain, GDH is located predominantly in astrocytes, where it is probably involved in the metabolism of transmitter glutamate. The exact mechanisms that regulate glutamate fluxes through this pathway, however, have not been fully understood. In the human, GDH exists in heat-resistant and heat-labile isoforms, encoded by the GLUD1 (housekeeping) and GLUD2 (nerve tissue-specific) genes, respectively. These forms differ in their catalytic and allosteric properties. Kinetic studies showed that the K(m) value for glutamate for the nerve tissue GDH is within the range of glutamate levels in astrocytes (2.43 mM), whereas for the housekeeping enzyme, this value is significantly higher (7.64 mM; P < 0.01). The allosteric activators ADP (0.1-1.0 mM) and L-leucine (1.0-10.0 mM) induce a concentration-dependent enzyme stimulation that is proportionally greater for the nerve tissue-specific GDH (up to 1,600%) than for the housekeeping enzyme (up to 150%). When used together at lower concentrations, ADP (10-50 mM) and L-leucine (75-200 microM) act synergistically in stimulating GDH activity. GTP exerts a powerful inhibitory effect (IC(50) = 0.20 mM) on the housekeeping GDH; in contrast, the nerve tissue isoenzyme is resistant to GTP inhibition. Thus, although the housekeeping GDH is regulated primarily by GTP, the nerve tissue GDH activity depends largely on available ADP or L-leucine levels. Conditions associated with enhanced hydrolysis of ATP to ADP (e.g., intense glutamatergic transmission) are likely to activate nerve tissue-specific GDH leading to an increased glutamate flux through this pathway.
Collapse
Affiliation(s)
- A Plaitakis
- Department of Neurology, School of Health Sciences, Section of Medicine, University of Crete, Heraklion, Crete, Greece.
| | | |
Collapse
|
19
|
Plaitakis A, Metaxari M, Shashidharan P. Nerve tissue-specific (GLUD2) and housekeeping (GLUD1) human glutamate dehydrogenases are regulated by distinct allosteric mechanisms: implications for biologic function. J Neurochem 2000; 75:1862-9. [PMID: 11032875 DOI: 10.1046/j.1471-4159.2000.0751862.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human glutamate dehydrogenase (GDH), an enzyme central to the metabolism of glutamate, is known to exist in housekeeping and nerve tissue-specific isoforms encoded by the GLUD1 and GLUD2 genes, respectively. As there is evidence that GDH function in vivo is regulated, and that regulatory mutations of human GDH are associated with metabolic abnormalities, we sought here to characterize further the functional properties of the two human isoenzymes. Each was obtained in recombinant form by expressing the corresponding cDNAs in Sf9 cells and studied with respect to its regulation by endogenous allosteric effectors, such as purine nucleotides and branched chain amino acids. Results showed that L-leucine, at 1.0 mM:, enhanced the activity of the nerve tissue-specific (GLUD2-derived) enzyme by approximately 1,600% and that of the GLUD1-derived GDH by approximately 75%. Concentrations of L-leucine similar to those present in human tissues ( approximately 0.1 mM:) had little effect on either isoenzyme. However, the presence of ADP (10-50 microM:) sensitized the two isoenzymes to L-leucine, permitting substantial enzyme activation at physiologically relevant concentrations of this amino acid. Nonactivated GLUD1 GDH was markedly inhibited by GTP (IC(50) = 0.20 microM:), whereas nonactivated GLUD2 GDH was totally insensitive to this compound (IC(50) > 5,000 microM:). In contrast, GLUD2 GDH activated by ADP and/or L-leucine was amenable to this inhibition, although at substantially higher GTP concentrations than the GLUD1 enzyme. ADP and L-leucine, acting synergistically, modified the cooperativity curves of the two isoenzymes. Kinetic studies revealed significant differences in the K:(m) values obtained for alpha-ketoglutarate and glutamate for the GLUD1- and the GLUD2-derived GDH, with the allosteric activators differentially altering these values. Hence, the activity of the two human GDH is regulated by distinct allosteric mechanisms, and these findings may have implications for the biologic functions of these isoenzymes.
Collapse
Affiliation(s)
- A Plaitakis
- Department of Neurology, University of Crete, School of Health Sciences, Section of Medicine, Heraklion, Crete, Greece.
| | | | | |
Collapse
|
20
|
Waagepetersen HS, Sonnewald U, Larsson OM, Schousboe A. A possible role of alanine for ammonia transfer between astrocytes and glutamatergic neurons. J Neurochem 2000; 75:471-9. [PMID: 10899921 DOI: 10.1046/j.1471-4159.2000.0750471.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The metabolism of [U-(13)C]lactate (1 mM) in the presence of unlabeled glucose (2.5 mM) was investigated in glutamatergic cerebellar granule cells, cerebellar astrocytes, and corresponding co-cultures. It was evident that lactate is primarily a neuronal substrate and that lactate produced glycolytically from glucose in astrocytes serves as a substrate in neurons. Alanine was highly enriched with (13)C in the neurons, whereas this was not the case in the astrocytes. Moreover, the cellular content and the amount of alanine released into the medium were higher in neurons than astrocytes. On incubation of the different cell types in medium containing alanine (1 mM), the astrocytes exhibited the highest level of accumulation. Altogether, these results indicate a preferential synthesis and release of alanine in glutamatergic neurons and uptake in cerebellar astrocytes. A new functional role of alanine may be suggested as a carrier of nitrogen from glutamatergic neurons to astrocytes, a transport that may operate to provide ammonia for glutamine synthesis in astrocytes and dispose of ammonia generated by the glutaminase reaction in glutamatergic neurons. Hence, a model of a glutamate-glutamine/lactate-alanine shuttle is presented. To elucidate if this hypothesis is compatible with the pattern of alanine metabolism observed in the astrocytes and neurons from cerebellum, the cells were incubated in a medium containing [(15)N]alanine (1 mM) and [5-(15)N]glutamine (0.5 mM), respectively. Additionally, neurons were incubated with [U-(13)C]glutamine to estimate the magnitude of glutamine conversion to glutamate. Alanine was labeled from [5-(15)N]glutamine to 3.3% and [U-(13)C]glutamate generated from [U-(13)C]glutamine was labeled to 16%. In spite of the modest labeling in alanine, it is clear that nitrogen from ammonia is transferred to alanine via transamination with glutamate formed by reductive amination of alpha-ketoglutarate. With regard to the astrocytic part of the shuttle, glutamine was labeled to 22% in one nitrogen atom whereas 3.2% was labeled in two when astrocytes were incubated in [(15)N]alanine. Moreover, in co-cultures, [U-(13)C]alanine labeled glutamate and glutamine equally, whereas [U-(13)C]lactate preferentially labeled glutamate. Altogether, these results support the role proposed above of alanine as a possible ammonia nitrogen carrier between glutamatergic neurons and surrounding astrocytes and they show that lactate is preferentially metabolized in neurons and alanine in astrocytes.
Collapse
Affiliation(s)
- H S Waagepetersen
- Department of Pharmacology, Neuroscience PharmaBiotec Research Center, Royal Danish School of Pharmacy, Copenhagen, Denmark
| | | | | | | |
Collapse
|
21
|
McKenna MC, Stevenson JH, Huang X, Hopkins IB. Differential distribution of the enzymes glutamate dehydrogenase and aspartate aminotransferase in cortical synaptic mitochondria contributes to metabolic compartmentation in cortical synaptic terminals. Neurochem Int 2000; 37:229-41. [PMID: 10812208 DOI: 10.1016/s0197-0186(00)00042-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There have been numerous studies on the activity and localization of aspartate aminotransferase (AAT) and glutamate dehydrogenase (GDH) in brain tissue. However, there is still a controversy as to the specific roles and relative importance of these enzymes in glutamate and glutamine metabolism in astrocytes and neurons or synaptic terminals. There are many reports documenting GDH activity in synaptic terminals, yet the misconception that it is a glial enzyme persists. Furthermore, there is evidence that this tightly regulated enzyme may have an increased role in synaptic metabolism in adverse conditions such as low glucose and hyperammonemia that could compromise synaptic function. In the present study, we report high activity of both AAT and GDH in mitochondrial subfractions from cortical synaptic terminals. The relative amount of GDH/AAT activity was higher in SM2 mitochondria, compared to SM1 mitochondria. Such a differential distribution of enzymes can contribute significantly to the compartmentation of metabolism. There is evidence that the metabolic capabilities of the SM1 and SM2 subfractions of synaptic mitochondria are compatible with the compartments A and B of neuronal metabolism proposed by Waagepetersen et al. (1998b. Dev. Neurosci. 20, 310-320).
Collapse
Affiliation(s)
- M C McKenna
- Department of Pediatrics, School of Medicine, University of Maryland, Baltimore 21201, USA.
| | | | | | | |
Collapse
|
22
|
Zheng L, Godfrey DA, Waller HJ, Godfrey TG, Chen K, Sun Y. Effects of high-potassium-induced depolarization on amino acid chemistry of the dorsal cochlear nucleus in rat brain slices. Neurochem Res 2000; 25:823-35. [PMID: 10944001 DOI: 10.1023/a:1007569508249] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
High K+ was used to depolarize glia and neurons in order to study the effects on amino acid release from and concentrations within the dorsal cochlear nucleus (DCN) of brain slices. The release of glutamate, gamma-aminobutyrate (GABA) and glycine increased significantly during exposure to 50 mM K+, while glutamine and serine release decreased significantly during and/or after exposure, respectively. After 10 min of exposure to 50 mM K+, glutamine concentrations increased in all three layers of DCN slices, to more than 5 times the values in unexposed slices. In the presence of a glutamate uptake blocker, L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC), glutamine concentrations in all layers did not increase as much during 50 mM K+. Similar but smaller changes occurred for serine. Mean ATP concentrations were lower in 50 mM K(+)-exposed slices compared to control. The results suggest that depolarization, such as during increased neural activity, can greatly affect amino acid metabolism in the cochlear nucleus.
Collapse
Affiliation(s)
- L Zheng
- Department of Otolaryngology, Head and Neck Surgery, Medical College of Ohio, Toledo 43614, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
The relationship between acidosis and the metabolism of glutamine and glutamate was studied in cultured astrocytes. Acidification of the incubation medium was associated with an increased formation of aspartate from glutamate and glutamine. The rise of the intracellular content of aspartate was accompanied by a significant decline in the extracellular concentration of both lactate and citrate. Studies with either [2-(15)N]glutamine or [15N]glutamate indicated that there occurred in acidosis an increased transamination of glutamate to aspartate. Studies with L-[2,3,3,4,4-(2)H5]glutamine indicated that in acidosis glutamate carbon was more rapidly converted to aspartate via the tricarboxylic acid cycle. Acidosis appears to result in increased availability of oxaloacetate to the aspartate aminotransferase reaction and, consequently, increased transamination of glutamate. The expansion of the available pool of oxaloacetate probably reflects a combination of: (a) Restricted flux through glycolysis and less production from pyruvate of acetyl-CoA, which condenses with oxaloacetate in the citrate synthetase reaction; and (b) Increased oxidation of glutamate and glutamine through a portion of the tricarboxylic acid cycle and enhanced production of oxaloacetate from glutamate and glutamine carbon. The data point to the interplay of the metabolism of glucose and that of glutamate in these cells.
Collapse
Affiliation(s)
- M Yudkoff
- Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania School of Medicine, 19104-4318, USA.
| | | | | | | |
Collapse
|
24
|
Abstract
Intrasynaptic [glutamate] must be kept low in order to maximize the signal-to-noise ratio after the release of transmitter glutamate. This is accomplished by rapid uptake of glutamate into astrocytes, which convert glutamate into glutamine. The latter then is released to neurons, which, via mitochondrial glutaminase, form the glutamate that is used for neurotransmission. This pattern of metabolic compartmentation is the "glutamate-glutamine cycle." This model is subject to the following two important qualifications: 1) brain avidly oxidizes glutamate via aspartate aminotransferase; and 2) because almost no glutamate crosses from blood to brain, it must be synthesized in the central nervous system (CNS). The primary source of glutamate carbon is glucose, and a major source of glutamate nitrogen is the branched-chain amino acids, which are transported rapidly into the CNS. This arrangement accomplishes the following: 1) maintenance of low external [glutamate], thereby maximizing signal-to-noise ratio upon depolarization; 2) the replenishing of the neuronal glutamate pool; 3) the "trafficking" of glutamate through the extracellular fluid in a nonneuroactive form (glutamine); 4) the importation of amino groups from blood, thus maintaining brain nitrogen homeostasis; and 5) the oxidation of glutamate/glutamine, a process that confers an additional level of control in terms of the regulation of brain glutamate, aspartate and gamma-aminobutyric acid.
Collapse
Affiliation(s)
- Y Daikhin
- Department of Pediatrics, University of Pennsylvania School of Medicine, Children's Hospital of Philadelphia, PA 19104-4318, USA
| | | |
Collapse
|
25
|
Schmitt A, Kugler P. Cellular and regional expression of glutamate dehydrogenase in the rat nervous system: non-radioactive in situ hybridization and comparative immunocytochemistry. Neuroscience 1999; 92:293-308. [PMID: 10392851 DOI: 10.1016/s0306-4522(98)00740-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the central nervous system glutamate dehydrogenase appears to be strongly involved in the metabolism of transmitter glutamate and plays a role in the pathogenesis of neurodegenerative disorders. In order to identify unequivocally the neural cell types expressing this enzyme, non-radioactive in situ hybridization, using a complementary RNA probe and oligonucleotide probes, was applied to sections of the rat central nervous system and, for comparison with peripheral neural cells, to cervical spinal ganglia. The results were complemented by immunocytochemical studies using a polyclonal antibody against purified glutamate dehydrodenase. Glutamate dehydrogenase messenger RNA was detectable at varying amounts in neurons and glial cells (i.e. astrocytes, oligodendrocytes, Bergmann glia, ependymal cells, epithelial cells of the plexus choroideus) throughout the central nervous system and in neurons and satellite cells of spinal ganglia. In some neuronal populations (e.g., pyramidal cells of the hippocampus, motoneurons of the spinal cord and spinal ganglia neurons) messenger RNA-labelling was higher than in other central nervous system neurons. This is remarkable because the immunostaining of neurons in the central nervous system regions studied was at best weak, whereas a predominantly high level of immunoreactivity was detected in astrocytes (and Bergmann glia). Thus, in neurons of the central nervous system, the detected levels of glutamate dehydrogenase messenger RNA and protein seem to be at variance whereas in peripheral neurons of spinal ganglia both in situ hybridization labelling and immunostaining are intense.
Collapse
Affiliation(s)
- A Schmitt
- Institute of Anatomy, University of Würzburg, Germany
| | | |
Collapse
|
26
|
Erecińska M, Nelson D, Silver IA. Metabolic and energetic properties of isolated nerve ending particles (synaptosomes). BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1277:13-34. [PMID: 8950370 DOI: 10.1016/s0005-2728(96)00103-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- M Erecińska
- Department of Pharmacology, University of Pennsylvania, School of Medicine, Philadelphia 19104, USA
| | | | | |
Collapse
|
27
|
Battaglioli G, Martin DL. Glutamine stimulates gamma-aminobutyric acid synthesis in synaptosomes but other putative astrocyte-to-neuron shuttle substrates do not. Neurosci Lett 1996; 209:129-33. [PMID: 8761999 DOI: 10.1016/0304-3940(96)12606-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
GABAergic neurons require a supply of precursor glutamate for gamma-aminobutyric acid (GABA) synthesis to maintain their GABA levels. Because neurons lack the anaplerotic enzymes necessary for net synthesis of glutamate from glucose, they depend on astrocytes to supply compounds that can be metabolized to glutamate and ultimately used for GABA production. To test the effect of putative astrocytic shuttle metabolites on GABA synthesis, we used synaptosomes prepared from substantia nigra, an area rich in GABAergic terminals. The low number of glutamatergic endings in the nigral preparation allows a more accurate measurement of glutamate present in GABAergic endings. GABA synthesis by nigral synaptosomes was stimulated 3.1-fold when 500 microM glutamine was added to the incubation medium. Glutamate amounts also increased. In contrast, the possible precursor metabolites. 2-oxoglutarate (2-OG), malate and citrate, failed to stimulate GABA synthesis over the rate observed with control medium. Unlike malate and citrate. 2-OG reduced the decline in total glutamate observed when synaptosomes were incubated in control. In contrast to glutamine the production of synaptosomal glutamate from 2-OG, malate, and citrate is not great enough to stimulate GABA synthesis.
Collapse
Affiliation(s)
- G Battaglioli
- Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201-0509, USA
| | | |
Collapse
|
28
|
Kanamori K, Ross BD. Steady-state in vivo glutamate dehydrogenase activity in rat brain measured by 15N NMR. J Biol Chem 1995; 270:24805-9. [PMID: 7559600 DOI: 10.1074/jbc.270.42.24805] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The in vivo activity of glutamate dehydrogenase (GDH) in the direction of reductive amination was measured in rat brain at steady-state concentrations of brain ammonia and glutamate after intravenous infusion of the substrate 15NH4+. The in vivo rate was determined from the steady-state fractional 15N enrichment of brain ammonia, measured by selective observation of 15NH4+ protons in brain extract by 1H-15N heteronuclear multiple-quantum coherence transfer NMR, and the rate of increase of brain [15N]glutamate and [2-15N]glutamine measured by 15N NMR. The in vivo GDH activity was 0.76-1.17 mumol/h/g, and 1.1-1.2 mumol/h/g at 1.0 +/- 0.17 mumol/g. Comparison of the observed in vivo GDH activity with the in vivo rates of glutamine synthesis and of phosphate-activated glutaminase suggests that, under mild hyperammonemia, GDH-catalyzed de novo synthesis can provide a minimum of 19% of the glutamate pool that is recycled from neurons to astrocytes through the glutamate-glutamine cycle.
Collapse
Affiliation(s)
- K Kanamori
- Magnetic Resonance Spectroscopy Laboratory, Huntington Medical Research Institutes, Pasadena, California 91105, USA
| | | |
Collapse
|
29
|
Rothe F, Brosz M, Storm-Mathisen J. Quantitative ultrastructural localization of glutamate dehydrogenase in the rat cerebellar cortex. Neuroscience 1995; 64:iii-xvi. [PMID: 7753371 DOI: 10.1016/0306-4522(94)e0200-n] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glutamate dehydrogenase is one of the main enzymes involved in the formation and metabolism of the neurotransmitter glutamate. In the present study we investigated the enzyme ultrastructurally in the cerebellar cortex, a region rich in well defined glutamatergic neurons, by pre-embedding immunocytochemical staining (peroxidase-antiperoxidase), as well as by post-embedding immunogold labelling employing a new system for quantitation and for specificity testing under the conditions of the immunocytochemical procedure. A new antiserum against immunologically purified bovine liver glutamate dehydrogenase or antibodies isolated from this by affinity chromatography were used in rats fixed by perfusion with aldehydes. The pre-embedding method displayed peroxidase reaction preferentially in mitochondria of astroglial cells (including the Bergmann glia). Mitochondria of neuronal tissue elements were usually free of peroxidase-reaction product. Extra-mitochondrial staining was not observed. The post-embedding immunogold method was employed to overcome penetration problems and allow semiquantitative analysis of localization and specificity. The highest densities of gold particles were found over the mitochondria in astroglial cell elements (including the Bergmann glia). Mitochondria in cell bodies of Bergmann glia had a lower particle density than those in astrocytic processes. In the latter, analysis of frequency distribution revealed no evidence of a population of mitochondria lacking glutamate dehydrogenase, but suggested the presence of populations with different levels of immunoreactivity. Comparison with the labelling of embedded bovine liver glutamate dehydrogenase indicated that the enzyme constitutes a high proportion (10%) of the total matrix protein of these mitochondria. A weaker but significant labelling was found in oligodendrocytes of the white matter. The labelling of mitochondria in neuronal elements including glutamatergic mossy fibre terminals was of the order of 15% of that in astroglial mitochondria. No difference was detected between glutamatergic neurons (mossy and parallel fibres, granular cells) and non-glutamatergic neurons (Purkinje cells). The particle density over non-mitochondrial areas was very close to background over empty resin. The results, obtained with different methods of tissue and antibody preparation, agree to show that the present form of glutamate dehydrogenase is restricted to mitochondria and preferentially localized in astrocytes.
Collapse
Affiliation(s)
- F Rothe
- Institute of Medical Neurobiology, Medical Faculty, University of Magdeburg, Germany
| | | | | |
Collapse
|
30
|
Georgopoulos A, Svarna R, Palaiologos G. Regulatory sites and effectors of D-[3H]aspartate release from rat cerebral cortex. Neurochem Res 1995; 20:45-9. [PMID: 7739758 DOI: 10.1007/bf00995151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To study the effect of agents interfering with the biosynthesis and/or the K(+)-evoked Ca(2+)-dependent release of neurotransmitter glutamate, rat cerebral slices were preincubated with Krebs-Ringer-HEPES-glucose-glutamine buffer (KRH buffer), loaded with D-[3H]aspartate and superfused with the preincubation medium in the presence or in the absence of Ca2+. The difference in radioactivity release divided by the basal release per min under the two conditions represented the K(+)-evoked Ca(2+)-dependent release. The agents used were: 1) Aminooxyacetic acid (AOAA), the inhibitor of transaminases, 2) Leucine (Leu), the inhibitor of phosphate activated glutaminase (PAG), 3) NH4+, the inhibitor of PAG, 4) Phenylsuccinic acid (Phs), the inhibitor of the mitochondrial ketodicarboxylate carrier, 5) ketone bodies, the inhibitors of glycolysis, 6) the absence of glutamine, the substrate of PAG. The results show that Leu, NH4+, Phs and the absence of Gln significantly increase the K(+)-evoked Ca(2+)-dependent release of radioactivity by 64%, 200%, 95% and 147% respectively, indicating that these agents are inhibitors of the K(+)-evoked Ca(2+)-dependent release of glutamate. Ketone bodies and AOAA had no effect. These results indicate that the major if not the exclusive biosynthetic pathway of neurotransmitter glutamate in rat cerebral cortex is through the PAG reaction and support a model for the pathway followed by neurotransmitter glutamate i.e. glutamate formed outside the inner mitochondrial membrane has to enter the mitochondrial matrix or is formed within it from where it can be extruded to supply the transmitter pool in exchange of GABA.
Collapse
Affiliation(s)
- A Georgopoulos
- Laboratory of Biological Chemistry, Medical School, University of Athens, Greece
| | | | | |
Collapse
|
31
|
Rothe F, Brosz M, Storm-Mathisen J. Quantitative ultrastructural localization of glutamate dehydrogenase in the rat cerebellar cortex. Neuroscience 1994; 62:1133-46. [PMID: 7531302 DOI: 10.1016/0306-4522(94)90349-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glutamate dehydrogenase is one of the main enzymes involved in the formation and metabolism of the neurotransmitter glutamate. In the present study we investigated the enzyme ultrastructurally in the cerebellar cortex, a region rich in well defined glutamatergic neurons, by pre-embedding immunocytochemical staining (peroxidase-antiperoxidase), as well as by post-embedding immunogold labelling employing a new system for quantitation and for specificity testing under the conditions of the immunocytochemical procedure. A new antiserum against immunologically purified bovine liver glutamate dehydrogenase or antibodies isolated from this by affinity chromatography were used in rats fixed by perfusion with aldehydes. The pre-embedding method displayed peroxidase reaction preferentially in mitochondria of astroglial cells (including the Bergmann glia). Mitochondria of neuronal tissue elements were usually free of peroxidase-reaction product. Extra-mitochondrial staining was not observed. The post-embedding immunogold method was employed to overcome penetration problems and allow semiquantitative analysis of localization and specificity. The highest densities of gold particles were found over the mitochondria in astroglial cell elements (including the Bergmann glia). Mitochondria in cell bodies of Bergmann glia had a lower particle density than those in astrocytic processes. In the latter, analysis of frequency distribution revealed no evidence of a population of mitochondria lacking glutamate dehydrogenase, but suggested the presence of populations with different levels of immunoreactivity. Comparison with the labelling of embedded bovine liver glutamate dehydrogenase indicated that the enzyme constitutes a high proportion (10%) of the total matrix protein of these mitochondria. A weaker but significant labelling was found in oligodendrocytes of the white matter. The labelling of mitochondria in neuronal elements including glutamatergic mossy fibre terminals was of the order of 15% of that in astroglial mitochondria. No difference was detected between glutamatergic neurons (mossy and parallel fibres, granular cells) and non-glutamatergic neurons (Purkinje cells). The particle density over non-mitochondrial areas was very close to background over empty resin. The results, obtained with different methods of tissue and antibody preparation, agree to show that the present form of glutamate dehydrogenase is restricted to mitochondria and preferentially localized in astrocytes.
Collapse
Affiliation(s)
- F Rothe
- Institute of Medical Neurobiology, Medical Faculty, University of Magdeburg, Germany
| | | | | |
Collapse
|
32
|
Kanamatsu T, Tsukada Y. Measurement of amino acid metabolism derived from [1-13C]glucose in the rat brain using 13C magnetic resonance spectroscopy. Neurochem Res 1994; 19:603-12. [PMID: 8065517 DOI: 10.1007/bf00971337] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To clarify the unique characteristics of amino acid metabolism derived from glucose in the central nervous system (CNS), we injected [1-13C]glucose intraperitoneally to the rat, and extracted the free amino acids from several kinds of tissues and measured the amount of incorporation of 13C derived from [1-13C]glucose into each amino acid using 13C-magnetic resonance spectroscopy (NMR). In the adult rat brain, the intensities of resonances from 13C-amino acids were observed in the following order: glutamate, glutamine, aspartate, gamma-aminobutyrate (GABA) and alanine. There seemed no regional difference on this labeling pattern in the brain. However, only in the striatum and thalamus, the intensities of resonances from [2-13C]GABA were larger than that from [2,3-13C]aspartate. In the other tissues, such as heart, kidney, liver, spleen, muscle, lung and small intestine, the resonances from GABA were not detected and every intensity of resonances from 13C-amino acids, except 13C-alanine, was much smaller than those in the brain and spinal cord. In the serum, 13C-amino acid was not detected at all. When the rats were decapitated, in the brain, the resonances from [1-13C]glucose greatly reduced and the intensities of resonances from [3-13C]lactate, [3-13C]alanine, [2, 3, 4-13C]GABA and [2-13C]glutamine became larger as compared with those in the case that the rats were sacrificed with microwave. In other tissues, the resonances from [1-13C]glucose were clearly detected even after the decapitation. In the glioma induced by nitrosoethylurea in the spinal cord, the large resonances from glutamine and alanine were observed; however, the intensities of resonances from glutamate were considerably reduced and the resonances from GABA and aspartate were not detected. These results show that the pattern of 13C label incorporation into amino acids is unique in the central nervous tissues and also suggest that the metabolic compartmentalization could exist in the CNS through the metabolic trafficking between neurons and astroglia.
Collapse
Affiliation(s)
- T Kanamatsu
- Institute of Life Science, Soka University, Hachioji, Japan
| | | |
Collapse
|
33
|
Erecińska M, Nelson D, Nissim I, Daikhin Y, Yudkoff M. Cerebral alanine transport and alanine aminotransferase reaction: alanine as a source of neuronal glutamate. J Neurochem 1994; 62:1953-64. [PMID: 7908947 DOI: 10.1046/j.1471-4159.1994.62051953.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alanine transport and the role of alanine amino-transferase in the synthesis and consumption of glutamate were investigated in the preparation of rat brain synaptosomes. Alanine was accumulated rapidly via both the high- and low-affinity uptake systems. The high-affinity transport was dependent on the sodium concentration gradient and membrane electrical potential, which suggests a cotransport with Na+. Rapid accumulation of the Na(+)-alanine complex by synaptosomes stimulated activity of the Na+/K+ pump and increased energy utilization; this, in turn, activated the ATP-producing pathways, glycolysis and oxidative phosphorylation. Accumulation of Na+ also caused a small depolarization of the plasma membrane, a rise in [Ca2+]i, and a release of glutamate. Intra-synaptosomal metabolism of alanine via alanine amino-transferase, as estimated from measurements of N fluxes from labeled precursors, was much slower than the rate of alanine uptake, even in the presence of added oxoacids. The velocity of [15N]alanine formation from [15N]glutamine was seven to eight times higher than the rate of [15N]-glutamate generation from [15N]alanine. It is concluded that (a) overloading of nerve endings with alanine could be deleterious to neuronal function because it increases release of glutamate; (b) the activity of synaptosomal alanine aminotransferase is much slower than that of glutaminase and hence unlikely to play a major role in maintaining [glutamate] during neuronal activity; and (c) alanine amino-transferase might serve as a source of glutamate during recovery from ischemia/hypoxia when the alanine concentration rises and that of glutamate falls.
Collapse
Affiliation(s)
- M Erecińska
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia 19104-6084
| | | | | | | | | |
Collapse
|
34
|
Rao VL, Murthy CR. Uptake and metabolism of glutamate and aspartate by astroglial and neuronal preparations of rat cerebellum. Neurochem Res 1993; 18:647-54. [PMID: 8099717 DOI: 10.1007/bf00966777] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Astrocytes, neuronal perikarya and synaptosomes were prepared from rat cerebellum. Kinetics of high and low affinity uptake systems of glutamate and aspartate, nominal rates of 14CO2 production from [U-14C]glutamate, [U-14C]aspartate and [1-14C]glutamate and activities of enzymes of glutamate metabolism were studied in these preparations. The rate of uptake and the nomial rate of production of 14CO2 from these amino acids was higher in the astroglia than neuronal perikarya and synaptosomes. Activities of glutamine synthetase and glutamate dehydrogenase were higher in astrocytes than in neuronal perikarya and synaptosomes. Activities of glutaminase and glutamic acid decarboxylase were observed to be highest in neuronal perikarya and synaptosomes respectively. These results are in agreement with the postulates of theory of metabolic compartmentation of glutamate while others (presence of glutaminase in astrocytes and glutamine synthetase in synaptosomes) are not. Results of this study also indicated that (i) at high extracellular concentrations, glutamate/aspartate uptake may be predominantly into astrocytes while at low extracellular concentrations, it would be into neurons (ii) production of alpha-ketoglutarate from glutamate is chiefly by way of transamination but not by oxidative deamination in these three preparations and (iii) there are topographical differences glutamate metabolism within the neurons.
Collapse
Affiliation(s)
- V L Rao
- School of Life Sciences, University of Hyderabad, India
| | | |
Collapse
|
35
|
Erecińska M, Pleasure D, Nelson D, Nissim I, Yudkoff M. Cerebral aspartate utilization: near-equilibrium relationships in aspartate aminotransferase reaction. J Neurochem 1993; 60:1696-706. [PMID: 8097234 DOI: 10.1111/j.1471-4159.1993.tb13393.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The pathways of nitrogen transfer from 50 microM [15N]aspartate were studied in rat brain synaptosomes and cultured primary rat astrocytes by using gas chromatography-mass spectrometry technique. Aspartate was taken up rapidly by both preparations, but the rates of transport were faster in astrocytes than in synaptosomes. In synaptosomes, 15N was incorporated predominantly into glutamate, whereas in glial cells, glutamine and other 15N-amino acids were also produced. In both preparations, the initial rate of N transfer from aspartate to glutamate was within a factor of 2-3 of that in the opposite direction. The rates of transamination were greater in synaptosomes than in astrocytes. Omission of glucose increased the formation of [15N]-glutamate in synaptosomes, but not in astrocytes. Rotenone substantially decreased the rate of transamination. There was no detectable incorporation of 15N from labeled aspartate to 6-amino-15N-labeled adenine nucleotides during 60-min incubation of synaptosomes under a variety of conditions; however, such activity could be demonstrated in glial cells. The formation of 15N-labeled adenine nucleotides was marginally increased by the presence of 1 mM aminooxyacetate, but was unaffected by pretreatment with 1 mM 5-amino-4-imidazolecarboxamide ribose. It is concluded that (1) aspartate aminotransferase is near equilibrium in both synaptosomes and astrocytes under cellular conditions, but the rates of transamination are faster in the nerve endings; (2) in the absence of glucose, use of amino acids for the purpose of energy production increases in synaptosomes, but may not do so in glial cells because the latter possess larger glycogen stores; and (3) nerve endings have a very limited capacity for salvage of the adenine nucleotides via the purine nucleotide cycle.
Collapse
Affiliation(s)
- M Erecińska
- Department of Pharmacology, Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia 19104-6084
| | | | | | | | | |
Collapse
|
36
|
Street JC, Delort AM, Braddock PS, Brindle KM. A 1H/15N n.m.r. study of nitrogen metabolism in cultured mammalian cells. Biochem J 1993; 291 ( Pt 2):485-92. [PMID: 8097909 PMCID: PMC1132551 DOI: 10.1042/bj2910485] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1. Heteronuclear 1H/15N n.m.r. experiments are described in which 15N labelling of cellular metabolites is detected via their proton resonances. 2. These n.m.r. experiments have been used to monitor label redistribution amongst extracellular metabolites in cultures of mammalian cells incubated with L-[2-15N]glutamine, L-[5-15N]glutamine and 15NH4Cl. Label redistribution was monitored in two HeLa cell lines and in two CHO cell lines which showed a range of extractable activities of glutamate dehydrogenase, glutaminase and glutamine synthetase. 3. In cells incubated with L-[2-15N]glutamine the 15N label was subsequently found in a number of metabolites including alanine, aspartate, glycine and pyrrolidone-5-carboxylic acid. There was no detectable production of 15NH4+, showing that most of the glutamate formed in the reaction catalysed by glutaminase was subsequently transaminated rather than oxidatively deaminated by glutamate dehydrogenase. 4. Incubation of cells with L-[5-15N]glutamine showed that the ammonia in the cultures was derived predominantly from the amide group of glutamine. 5. The rate of formation of L-[5-15N]glutamine in cells incubated with 15NH4Cl was used to estimate glutamine synthetase flux in vivo. Flux in this reaction was only observable in the two CHO cell lines which express relatively high levels of the enzyme.
Collapse
Affiliation(s)
- J C Street
- Department of Biochemistry and Molecular Biology, University of Manchester, U.K
| | | | | | | |
Collapse
|
37
|
Alexander J, Murthy CR. Alterations in mitochondrial branched-chain amino acid metabolism in brain in acute hyperammonemic states. Neurosci Lett 1993; 149:221-4. [PMID: 8474697 DOI: 10.1016/0304-3940(93)90776-h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Production of 14CO2 and [14C]branched-chain keto acids (BCKA) was determined from [U-14C]branched-chain amino acids along with the activities of branched-chain amino acid transaminase (BCAA-T) and branched-chain keto acid dehydrogenase (BCKA-DH) in mitochondria isolated from the cerebral cortex of normal and hyperammonemic rats. Results indicated that the production of CO2, but not of keto acids, was suppressed while the activities of BCAA-T and BCKA-DH were not adversely affected in the mitochondria of hyperammonemic rats. Suppression in the oxidation of BCAA in hyperammonemic states was found to be due to increased efflux of BCKA from mitochondria.
Collapse
Affiliation(s)
- J Alexander
- Department of Physiology and Biophysics, University of Health Sciences, Chicago Medical School, IL 60064
| | | |
Collapse
|
38
|
Kugler P. Enzymes involved in glutamatergic and GABAergic neurotransmission. INTERNATIONAL REVIEW OF CYTOLOGY 1993; 147:285-336. [PMID: 7901176 DOI: 10.1016/s0074-7696(08)60771-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- P Kugler
- Department of Anatomy, University of Würzburg, Germany
| |
Collapse
|
39
|
Affiliation(s)
- V L Rao
- School of Life Sciences, University of Hyderabad, India
| | | | | |
Collapse
|
40
|
Yudkoff M, Nissim I, Hertz L, Pleasure D, Erecinska M. Chapter 18: Nitrogen metabolism: neuronal-astroglial relationships. PROGRESS IN BRAIN RESEARCH 1992; 94:213-24. [PMID: 1363141 DOI: 10.1016/s0079-6123(08)61752-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Affiliation(s)
- M Yudkoff
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia
| | | | | | | | | |
Collapse
|