1
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
2
|
Cao Y, Zhao LW, Chen ZX, Li SH. New insights in lipid metabolism: potential therapeutic targets for the treatment of Alzheimer's disease. Front Neurosci 2024; 18:1430465. [PMID: 39323915 PMCID: PMC11422391 DOI: 10.3389/fnins.2024.1430465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024] Open
Abstract
Alzheimer's disease (AD) is increasingly recognized as being intertwined with the dysregulation of lipid metabolism. Lipids are a significant class of nutrients vital to all organisms, playing crucial roles in cellular structure, energy storage, and signaling. Alterations in the levels of various lipids in AD brains and dysregulation of lipid pathways and transportation have been implicated in AD pathogenesis. Clinically, evidence for a high-fat diet firmly links disrupted lipid metabolism to the pathogenesis and progression of AD, although contradictory findings warrant further exploration. In view of the significance of various lipids in brain physiology, the discovery of complex and diverse mechanisms that connect lipid metabolism with AD-related pathophysiology will bring new hope for patients with AD, underscoring the importance of lipid metabolism in AD pathophysiology, and promising targets for therapeutic intervention. Specifically, cholesterol, sphingolipids, and fatty acids have been shown to influence amyloid-beta (Aβ) accumulation and tau hyperphosphorylation, which are hallmarks of AD pathology. Recent studies have highlighted the potential therapeutic targets within lipid metabolism, such as enhancing apolipoprotein E lipidation, activating liver X receptors and retinoid X receptors, and modulating peroxisome proliferator-activated receptors. Ongoing clinical trials are investigating the efficacy of these strategies, including the use of ketogenic diets, statin therapy, and novel compounds like NE3107. The implications of these findings suggest that targeting lipid metabolism could offer new avenues for the treatment and management of AD. By concentrating on alterations in lipid metabolism within the central nervous system and their contribution to AD development, this review aims to shed light on novel research directions and treatment approaches for combating AD, offering hope for the development of more effective management strategies.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lin-Wei Zhao
- Department of Cardiology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Zi-Xin Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shao-Hua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Hu J, Yang F, Yang G, Pan J, Tan Y, Tang Y, Liu Y, Zhang H, Wang J. Integrating transcriptomics and metabolomics to reveal the protective effect and mechanism of Bushen Kangshuai Granules on the elderly people. Front Pharmacol 2024; 15:1361284. [PMID: 39135783 PMCID: PMC11317404 DOI: 10.3389/fphar.2024.1361284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Background: Aging is characterized by a decline in the adaptability and resistance of the body. In this study, Bushen Kangshuai Granules (BKG), as a kind of Chinese herbal formula, was developed and shown to alleviate aging-related symptoms. Methods: Self-controlled study combined with RNA-seq and metabonomics were used to expound the efficacy and safety of BKG and revealed the regulation mechanism of BKG treating aging. In vitro experiments were used to confirm the analytical results. The aging cell model of AC16 cells were treated with D-galactose. The RT-qPCR was used to detect the impact of BKG on telomere length. The DCFH-DA staining was used for detecting intracellular ROS. The targeted signaling pathway was selected and verified using Western blot. Results: After 8 weeks of treatment, BKG significantly reduced SOD level (p = 0.046), TCM aging symptoms (p < 0.001) and TNF-α level (p = 0.044) in the elderly participants. High-throughput sequencing showed that BKG reversed the expression of 70 and 79 age-related genes and metabolites, respectively. Further enrichment analysis indicated that BKG downregulated the PI3K-AKT signaling pathway, extracellular matrix (ECM)-receptor interaction, and Rap1 signaling pathway, while up-regulating sphingolipid metabolism. The results of in vitro experiments show that, after D-gal treatment, the viability and telomere length of AC16 cells significantly decreased (p < 0.05), while the expression of ROS increased (p < 0.05), BKG significantly increased the telomere length of AC16 cells and reduced the level of ROS expression (p < 0.05). In addition, BKG decreased the expression of THBS1, PDGFRA, and EPS8L1(p < 0.05), consistent with the RNA-seq results. Our results also showed that BKG affects PI3K-AKT signaling pathway. Conclusion: BKG can significantly improve aging-related symptoms and increase SOD levels, which may be associated with the reversal of the expression of various aging-related genes. The PI3K-AKT signaling pathway and sphingolipid metabolism may be potential mechanisms underlying BKG anti-aging effects.
Collapse
Affiliation(s)
- Jun Hu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmin Yang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Guang Yang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juhua Pan
- Research and Development Center of Traditional Chinese Medicine, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yumeng Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yalin Tang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yongmei Liu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hong Zhang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Jie Wang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Kawade N, Yamanaka K. Novel insights into brain lipid metabolism in Alzheimer's disease: Oligodendrocytes and white matter abnormalities. FEBS Open Bio 2024; 14:194-216. [PMID: 37330425 PMCID: PMC10839347 DOI: 10.1002/2211-5463.13661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. A genome-wide association study has shown that several AD risk genes are involved in lipid metabolism. Additionally, epidemiological studies have indicated that the levels of several lipid species are altered in the AD brain. Therefore, lipid metabolism is likely changed in the AD brain, and these alterations might be associated with an exacerbation of AD pathology. Oligodendrocytes are glial cells that produce the myelin sheath, which is a lipid-rich insulator. Dysfunctions of the myelin sheath have been linked to white matter abnormalities observed in the AD brain. Here, we review the lipid composition and metabolism in the brain and myelin and the association between lipidic alterations and AD pathology. We also present the abnormalities in oligodendrocyte lineage cells and white matter observed in AD. Additionally, we discuss metabolic disorders, including obesity, as AD risk factors and the effects of obesity and dietary intake of lipids on the brain.
Collapse
Affiliation(s)
- Noe Kawade
- Department of Neuroscience and Pathobiology, Research Institute of Environmental MedicineNagoya UniversityJapan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of MedicineNagoya UniversityJapan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental MedicineNagoya UniversityJapan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of MedicineNagoya UniversityJapan
- Institute for Glyco‐core Research (iGCORE)Nagoya UniversityJapan
- Center for One Medicine Innovative Translational Research (COMIT)Nagoya UniversityJapan
| |
Collapse
|
5
|
Moreno-Rodriguez M, Perez SE, Martinez-Gardeazabal J, Manuel I, Malek-Ahmadi M, Rodriguez-Puertas R, Mufson EJ. Frontal Cortex Lipid Alterations During the Onset of Alzheimer's Disease. J Alzheimers Dis 2024; 98:1515-1532. [PMID: 38578893 DOI: 10.3233/jad-231485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Background Although sporadic Alzheimer's disease (AD) is a neurodegenerative disorder of unknown etiology, familial AD is associated with specific gene mutations. A commonality between these forms of AD is that both display multiple pathogenic events including cholinergic and lipid dysregulation. Objective We aimed to identify the relevant lipids and the activity of their related receptors in the frontal cortex and correlating them with cognition during the progression of AD. Methods MALDI-mass spectrometry imaging (MSI) and functional autoradiography was used to evaluate the distribution of phospholipids/sphingolipids and the activity of cannabinoid 1 (CB1), sphingosine 1-phosphate 1 (S1P1), and muscarinic M2/M4 receptors in the frontal cortex (FC) of people that come to autopsy with premortem clinical diagnosis of AD, mild cognitive impairment (MCI), and no cognitive impairment (NCI). Results MALDI-MSI revealed an increase in myelin-related lipids, such as diacylglycerol (DG) 36:1, DG 38:5, and phosphatidic acid (PA) 40:6 in the white matter (WM) in MCI compared to NCI, and a downregulation of WM phosphatidylinositol (PI) 38:4 and PI 38:5 levels in AD compared to NCI. Elevated levels of phosphatidylcholine (PC) 32:1, PC 34:0, and sphingomyelin 38:1 were observed in discrete lipid accumulations in the FC supragranular layers during disease progression. Muscarinic M2/M4 receptor activation in layers V-VI decreased in AD compared to MCI. CB1 receptor activity was upregulated in layers V-VI, while S1P1 was downregulated within WM in AD relative to NCI. Conclusions FC WM lipidomic alterations are associated with myelin dyshomeostasis in prodromal AD, suggesting WM lipid maintenance as a potential therapeutic target for dementia.
Collapse
Affiliation(s)
- Marta Moreno-Rodriguez
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Sylvia E Perez
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | | | - Ivan Manuel
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
- Neurodegenerative Diseases, BioBizkaia Health Research Institute, Barakaldo, Spain
| | | | - Rafael Rodriguez-Puertas
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
- Neurodegenerative Diseases, BioBizkaia Health Research Institute, Barakaldo, Spain
| | - Elliott J Mufson
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
6
|
Obis E, Sol J, Andres-Benito P, Martín-Gari M, Mota-Martorell N, Galo-Licona JD, Piñol-Ripoll G, Portero-Otin M, Ferrer I, Jové M, Pamplona R. Lipidomic Alterations in the Cerebral Cortex and White Matter in Sporadic Alzheimer's Disease. Aging Dis 2023; 14:1887-1916. [PMID: 37196109 PMCID: PMC10529741 DOI: 10.14336/ad.2023.0217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/17/2023] [Indexed: 05/19/2023] Open
Abstract
Non-targeted LC-MS/MS-based lipidomic analysis was conducted in post-mortem human grey matter frontal cortex area 8 (GM) and white matter of the frontal lobe centrum semi-ovale (WM) to identify lipidome fingerprints in middle-aged individuals with no neurofibrillary tangles and senile plaques, and cases at progressive stages of sporadic Alzheimer's disease (sAD). Complementary data were obtained using RT-qPCR and immunohistochemistry. The results showed that WM presents an adaptive lipid phenotype resistant to lipid peroxidation, characterized by a lower fatty acid unsaturation, peroxidizability index, and higher ether lipid content than the GM. Changes in the lipidomic profile are more marked in the WM than in GM in AD with disease progression. Four functional categories are associated with the different lipid classes affected in sAD: membrane structural composition, bioenergetics, antioxidant protection, and bioactive lipids, with deleterious consequences affecting both neurons and glial cells favoring disease progression.
Collapse
Affiliation(s)
- Elia Obis
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - Joaquim Sol
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
- Catalan Institute of Health (ICS), Lleida, Spain, Research Support Unit (USR), Fundació Institut Universitari per a la Recerca en Atenció Primària de Salut Jordi Gol i Gurina (IDIAP JGol), Lleida, Spain.
| | - Pol Andres-Benito
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.
- Bellvitge University Hospital-Bellvitge Biomedical Research Institute (IDIBELL), E-08907 Hospitalet de Llobregat, Barcelona, Spain.
| | - Meritxell Martín-Gari
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - Natàlia Mota-Martorell
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - José Daniel Galo-Licona
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Clinical Neuroscience Research, Santa Maria University Hospital, IRBLleida, Lleida, Spain.
| | - Manuel Portero-Otin
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - Isidro Ferrer
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.
- Bellvitge University Hospital-Bellvitge Biomedical Research Institute (IDIBELL), E-08907 Hospitalet de Llobregat, Barcelona, Spain.
- Department of Pathology and Experimental Therapeutics, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain.
| | - Mariona Jové
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| |
Collapse
|
7
|
Yin F. Lipid metabolism and Alzheimer's disease: clinical evidence, mechanistic link and therapeutic promise. FEBS J 2023; 290:1420-1453. [PMID: 34997690 PMCID: PMC9259766 DOI: 10.1111/febs.16344] [Citation(s) in RCA: 123] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disorder with multifactorial etiology, intersecting genetic and environmental risk factors, and a lack of disease-modifying therapeutics. While the abnormal accumulation of lipids was described in the very first report of AD neuropathology, it was not until recent decades that lipid dyshomeostasis became a focus of AD research. Clinically, lipidomic and metabolomic studies have consistently shown alterations in the levels of various lipid classes emerging in early stages of AD brains. Mechanistically, decades of discovery research have revealed multifaceted interactions between lipid metabolism and key AD pathogenic mechanisms including amyloidogenesis, bioenergetic deficit, oxidative stress, neuroinflammation, and myelin degeneration. In the present review, converging evidence defining lipid dyshomeostasis in AD is summarized, followed by discussions on mechanisms by which lipid metabolism contributes to pathogenesis and modifies disease risk. Furthermore, lipid-targeting therapeutic strategies, and the modification of their efficacy by disease stage, ApoE status, and metabolic and vascular profiles, are reviewed.
Collapse
Affiliation(s)
- Fei Yin
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine Tucson, University of Arizona, Tucson, AZ, USA.,Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
8
|
Tiwari V, Shukla S. Lipidomics and proteomics: An integrative approach for early diagnosis of dementia and Alzheimer's disease. Front Genet 2023; 14:1057068. [PMID: 36845373 PMCID: PMC9946989 DOI: 10.3389/fgene.2023.1057068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and considered to be responsible for majority of worldwide prevalent dementia cases. The number of patients suffering from dementia are estimated to increase up to 115.4 million cases worldwide in 2050. Hence, AD is contemplated to be one of the major healthcare challenge in current era. This disorder is characterized by impairment in various signaling molecules at cellular and nuclear level including aggregation of Aβ protein, tau hyper phosphorylation altered lipid metabolism, metabolites dysregulation, protein intensity alteration etc. Being heterogeneous and multifactorial in nature, the disease do not has any cure or any confirmed diagnosis before the onset of clinical manifestations. Hence, there is a requisite for early diagnosis of AD in order to downturn the progression/risk of the disorder and utilization of newer technologies developed in this field are aimed to provide an extraordinary assistance towards the same. The lipidomics and proteomics constitute large scale study of cellular lipids and proteomes in biological matrices at normal stage or any stage of a disease. The study involves high throughput quantification and detection techniques such as mass spectrometry, liquid chromatography, nuclear mass resonance spectroscopy, fluorescence spectroscopy etc. The early detection of altered levels of lipids and proteins in blood or any other biological matrices could aid in preventing the progression of AD and dementia. Therefore, the present review is designed to focus on the recent techniques and early diagnostic criteria for AD, revealing the role of lipids and proteins in this disease and their assessment through different techniques.
Collapse
Affiliation(s)
- Virendra Tiwari
- Division of Neuroscience and Ageing Biology, CSIR- Central Drug Research Institute, Lucknow, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shubha Shukla
- Division of Neuroscience and Ageing Biology, CSIR- Central Drug Research Institute, Lucknow, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,*Correspondence: Shubha Shukla,
| |
Collapse
|
9
|
The alteration of the expression level of neuropathy target esterase in human neuroblastoma SK-N-SH cells disrupts cellular phospholipids homeostasis. Toxicol In Vitro 2023; 86:105509. [PMID: 36336212 DOI: 10.1016/j.tiv.2022.105509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/23/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Neuropathy target esterase (NTE) has been proven to act as a lysophospholipase (LysoPLA) and phospholipase B (PLB) in mammalian cells. In this study, we took human neuroblastoma SK-N-SH cells as the research object and explored the effect of NTE on phospholipid homeostasis. The results showed that phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) levels significantly increased (> 40%), while glycerophosphocholine (GPC) decreased (below 60%) after NTE gene was knockdown in the cells (NTE < 30% of control), which were prepared by gene silencing with dsRNA-NTE. However, in the NTE-overexpressed cells (NTE > 50% of control), which were prepared by expressing recombinant catalytic domain of NTE, LPC remarkably decreased (below 80%) and GPC enhanced (> 40%). Mipafox, a neuropathic organophosphorus compound (OP), significantly inhibited NTE-LysoPLA and NTE-PLB activities (> 95-99% inhibition at 50 μM), which was accompanied with a decreased GPC level (below 40%) although no change of the PC and LPC levels was observed; while paraoxon, a non-neuropathic OP, suppresses neither the activities of NTE-phospholipases nor the levels of PC, LPC, and GPC. Thus, we concluded that both the stable up- or down-regulated expression of NTE gene and the loss of NTE-LysoPLA/PLB activities disrupts phospholipid homeostasis in the cells although the inhibition of NTE activity only decreased GPC content without altering PC and LPC levels.
Collapse
|
10
|
Kale D, Kikul F, Phapale P, Beedgen L, Thiel C, Brügger B. Quantification of Dolichyl Phosphates Using Phosphate Methylation and Reverse-Phase Liquid Chromatography-High Resolution Mass Spectrometry. Anal Chem 2023; 95:3210-3217. [PMID: 36716239 PMCID: PMC9933046 DOI: 10.1021/acs.analchem.2c03623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dolichyl monophosphates (DolPs) are essential lipids in glycosylation pathways that are highly conserved across almost all domains of life. The availability of DolP is critical for all glycosylation processes, as these lipids serve as membrane-anchored building blocks used by various types of glycosyltransferases to generate complex post-translational modifications of proteins and lipids. The analysis of DolP species by reverse-phase liquid chromatography-mass spectrometry (RPLC-MS) remains a challenge due to their very low abundance and wide range of lipophilicities. Until now, a method for the simultaneous qualitative and quantitative assessment of DolP species from biological membranes has been lacking. Here, we describe a novel approach based on simple sample preparation, rapid and efficient trimethylsilyl diazomethane-dependent phosphate methylation, and RPLC-MS analysis for quantification of DolP species with different isoprene chain lengths. We used this workflow to selectively quantify DolP species from lipid extracts derived of Saccharomyces cerevisiae, HeLa, and human skin fibroblasts from steroid 5-α-reductase 3- congenital disorders of glycosylation (SRD5A3-CDG) patients and healthy controls. Integration of this workflow with global lipidomics analyses will be a powerful tool to expand our understanding of the role of DolPs in pathophysiological alterations of metabolic pathways downstream of HMG-CoA reductase, associated with CDGs, hypercholesterolemia, neurodegeneration, and cancer.
Collapse
Affiliation(s)
- Dipali Kale
- Heidelberg
University Biochemistry Center (BZH), 69120Heidelberg, Germany,Leibniz-Institut
für Analytische Wissenschaften-ISAS-e.V., 44139Dortmund, Germany,
| | - Frauke Kikul
- Heidelberg
University Biochemistry Center (BZH), 69120Heidelberg, Germany
| | - Prasad Phapale
- Leibniz-Institut
für Analytische Wissenschaften-ISAS-e.V., 44139Dortmund, Germany
| | - Lars Beedgen
- Centre
for Child and Adolescent Medicine, University
Hospital Heidelberg, 69120Heidelberg, Germany
| | - Christian Thiel
- Centre
for Child and Adolescent Medicine, University
Hospital Heidelberg, 69120Heidelberg, Germany
| | - Britta Brügger
- Heidelberg
University Biochemistry Center (BZH), 69120Heidelberg, Germany,
| |
Collapse
|
11
|
Blusztajn JK, Aytan N, Rajendiran T, Mellott TJ, Soni T, Burant CF, Serrano GE, Beach TG, Lin H, Stein TD. Cerebral Gray and White Matter Monogalactosyl Diglyceride Levels Rise with the Progression of Alzheimer's Disease. J Alzheimers Dis 2023; 95:1623-1634. [PMID: 37718815 PMCID: PMC10911245 DOI: 10.3233/jad-230543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Multiple studies have reported brain lipidomic abnormalities in Alzheimer's disease (AD) that affect glycerophospholipids, sphingolipids, and fatty acids. However, there is no consensus regarding the nature of these abnormalities, and it is unclear if they relate to disease progression. OBJECTIVE Monogalactosyl diglycerides (MGDGs) are a class of lipids which have been recently detected in the human brain. We sought to measure their levels in postmortem human brain and determine if these levels correlate with the progression of the AD-related traits. METHODS We measured MGDGs by ultrahigh performance liquid chromatography tandem mass spectrometry in postmortem dorsolateral prefrontal cortex gray matter and subcortical corona radiata white matter samples derived from three cohorts of participants: the Framingham Heart Study, the Boston University Alzheimer's Disease Research Center, and the Arizona Study of Aging and Neurodegenerative Disorders/Brain and Body Donation Program (total n = 288). RESULTS We detected 40 molecular species of MGDGs (including diacyl and alkyl/acyl compounds) and found that the levels of 29 of them, as well as total MGDG levels, are positively associated with AD-related traits including pathologically confirmed AD diagnosis, clinical dementia rating, Braak and Braak stage, neuritic plaque score, phospho-Tau AT8 immunostaining density, levels of phospho-Tau396 and levels of Aβ40. Increased MGDG levels were present in both gray and white matter, indicating that they are widespread and likely associated with myelin-producing oligodendrocytes-the principal cell type of white matter. CONCLUSIONS Our data implicate the MGDG metabolic defect as a central correlate of clinical and pathological progression in AD.
Collapse
Affiliation(s)
- Jan Krzysztof Blusztajn
- Boston University Chobanian & Avedisian School of Medicine
- Boston University Alzheimer’s Disease Research Center
| | - Nurgul Aytan
- Boston University Chobanian & Avedisian School of Medicine
- Boston University Alzheimer’s Disease Research Center
| | | | | | | | | | | | | | | | - Thor D. Stein
- Boston University Chobanian & Avedisian School of Medicine
- Boston University Alzheimer’s Disease Research Center
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, U.S. Department of Veteran Affairs, Bedford, MA
| |
Collapse
|
12
|
Zambrano P. On the interaction of a donepezil-huprine hybrid with synthetic membrane models. Neural Regen Res 2023; 18:333-334. [PMID: 35900422 PMCID: PMC9396516 DOI: 10.4103/1673-5374.343903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Krasnobaev VD, Batishchev OV. The Role of Lipid Domains and Physical Properties of Membranes in the Development of Age-Related Neurodegenerative Diseases. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2022. [DOI: 10.1134/s199074782209001x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Krasnobaev VD, Galimzyanov TR, Akimov SA, Batishchev OV. Lysolipids regulate raft size distribution. Front Mol Biosci 2022; 9:1021321. [PMID: 36275621 PMCID: PMC9581197 DOI: 10.3389/fmolb.2022.1021321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The lipid matrix of cellular membranes, directly and indirectly, regulates many vital functions of the cell. The diversity of lipids in membranes leads to the formation of ordered domains called rafts, which play a crucial role in signal transduction, protein sorting and other cellular processes. Rafts are believed to impact the development of different neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, Huntington’s ones, amyotrophic lateral sclerosis, some types of cancer, etc. These diseases correlate with the change in the membrane lipid composition resulting from an oxidative stress, age-related processes, dysfunction of proteins, and many others. In particular, a lot of studies report a significant rise in the level of lysolipids. Physicochemical properties of rafts are determined by membrane composition, in particular, by the content of lysolipids. Lysolipids may thus regulate raft-involving processes. However, the exact mechanism of such regulation is unknown. Although studying rafts in vivo still seems to be rather complicated, liquid-ordered domains are well observed in model systems. In the present study, we used atomic force microscopy (AFM) to examine how lysophospholipids influence the liquid-ordered domains in model ternary membranes. We demonstrated that even a small amount of lysolipids in a membrane significantly impacts domain size depending on the saturation of the lysolipid hydrocarbon tails and the amount of cholesterol. The mixture with the bigger relative fraction of cholesterol was more susceptible to the action of lysolipids. This data helped us to generalize our previous theoretical model of the domain size regulation by lipids with particular molecular shape expanding it to the case of lysolipids and dioleoylglycerol.
Collapse
Affiliation(s)
- Vladimir D. Krasnobaev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Timur R. Galimzyanov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey A. Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Oleg V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Oleg V. Batishchev,
| |
Collapse
|
15
|
Hancock SE, Friedrich MG, Mitchell TW, Truscott RJW, Else PL. Changes in Phospholipid Composition of the Human Cerebellum and Motor Cortex during Normal Ageing. Nutrients 2022; 14:nu14122495. [PMID: 35745225 PMCID: PMC9230801 DOI: 10.3390/nu14122495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Changes in phospholipid (phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine, i.e., PC, PE and PS) composition with age in the mitochondrial and microsomal membranes of the human cerebellum and motor cortex were examined and compared to previous analyses of the prefrontal cortex, hippocampus and entorhinal cortex. (2) Methods: Nano-electrospray ionization on a hybrid triple quadrupole−linear ion trap mass spectrometer was used to analyse the brain regions of subjects aged 18−104 years. (3) Results: With age, the cerebellum showed many changes in the major phospholipids (>10% of the phospholipid class). In both membrane types, these included increases in PE 18:0_22:6 and PS 18:0_22:6, decreases in PE 18:0_20:4 and PS 18:0_18:1 and an increase in PC 16:0_16:0 (microsomal membrane only). In addition, twenty-one minor phospholipids also changed. In the motor cortex, only ten minor phospholipids changed with age. With age, the acyl composition of the membranes in the cerebellum increased in docosahexaenoic acid (22:6) and decreased in the arachidonic (20:4) and adrenic (22:4) acids. A comparison of phospholipid changes in the cerebellum, motor cortex and other brain areas is provided. (4) Conclusions: The cerebellum is exceptional in the large number of major phospholipids that undergo changes (with consequential changes in acyl composition) with age, whereas the motor cortex is highly resistant to change.
Collapse
Affiliation(s)
- Sarah E. Hancock
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia;
| | - Michael G. Friedrich
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia; (M.G.F.); (T.W.M.); (R.J.W.T.)
| | - Todd W. Mitchell
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia; (M.G.F.); (T.W.M.); (R.J.W.T.)
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Roger J. W. Truscott
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia; (M.G.F.); (T.W.M.); (R.J.W.T.)
| | - Paul L. Else
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia; (M.G.F.); (T.W.M.); (R.J.W.T.)
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
- Correspondence: ; Tel.: +61-242682615
| |
Collapse
|
16
|
Saleh MAA, Bloemberg JS, Elassaiss-Schaap J, de Lange ECM. Drug Distribution in Brain and Cerebrospinal Fluids in Relation to IC 50 Values in Aging and Alzheimer's Disease, Using the Physiologically Based LeiCNS-PK3.0 Model. Pharm Res 2022; 39:1303-1319. [PMID: 35606598 PMCID: PMC9246802 DOI: 10.1007/s11095-022-03281-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/27/2022] [Indexed: 12/02/2022]
Abstract
Background Very little knowledge exists on the impact of Alzheimer’s disease on the CNS target site pharmacokinetics (PK). Aim To predict the CNS PK of cognitively healthy young and elderly and of Alzheimer’s patients using the physiologically based LeiCNS-PK3.0 model. Methods LeiCNS-PK3.0 was used to predict the PK profiles in brain extracellular (brainECF) and intracellular (brainICF) fluids and cerebrospinal fluid of the subarachnoid space (CSFSAS) of donepezil, galantamine, memantine, rivastigmine, and semagacestat in young, elderly, and Alzheimer’s patients. The physiological parameters of LeiCNS-PK3.0 were adapted for aging and Alzheimer’s based on an extensive literature search. The CNS PK profiles at plateau for clinical dose regimens were related to in vitro IC50 values of acetylcholinesterase, butyrylcholinesterase, N-methyl-D-aspartate, or gamma-secretase. Results The PK profiles of all drugs differed between the CNS compartments regarding plateau levels and fluctuation. BrainECF, brainICF and CSFSAS PK profile relationships were different between the drugs. Aging and Alzheimer’s had little to no impact on CNS PK. Rivastigmine acetylcholinesterase IC50 values were not reached. Semagacestat brain PK plateau levels were below the IC50 of gamma-secretase for half of the interdose interval, unlike CSFSAS PK profiles that were consistently above IC50. Conclusion This study provides insights into the relations between CNS compartments PK profiles, including target sites. CSFSAS PK appears to be an unreliable predictor of brain PK. Also, despite extensive changes in blood-brain barrier and brain properties in Alzheimer’s, this study shows that the impact of aging and Alzheimer’s pathology on CNS distribution of the five drugs is insignificant. Supplementary Information The online version contains supplementary material available at 10.1007/s11095-022-03281-3.
Collapse
Affiliation(s)
- Mohammed A A Saleh
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Julia S Bloemberg
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Jeroen Elassaiss-Schaap
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
- PD-value B.V., Houten, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
17
|
Galosi S, Edani BH, Martinelli S, Hansikova H, Eklund EA, Caputi C, Masuelli L, Corsten-Janssen N, Srour M, Oegema R, Bosch DGM, Ellis CA, Amlie-Wolf L, Accogli A, Atallah I, Averdunk L, Barañano KW, Bei R, Bagnasco I, Brusco A, Demarest S, Alaix AS, Di Bonaventura C, Distelmaier F, Elmslie F, Gan-Or Z, Good JM, Gripp K, Kamsteeg EJ, Macnamara E, Marcelis C, Mercier N, Peeden J, Pizzi S, Pannone L, Shinawi M, Toro C, Verbeek NE, Venkateswaran S, Wheeler PG, Zdrazilova L, Zhang R, Zorzi G, Guerrini R, Sessa WC, Lefeber DJ, Tartaglia M, Hamdan FF, Grabińska KA, Leuzzi V. De novo DHDDS variants cause a neurodevelopmental and neurodegenerative disorder with myoclonus. Brain 2022; 145:208-223. [PMID: 34382076 PMCID: PMC8967098 DOI: 10.1093/brain/awab299] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/03/2021] [Accepted: 07/16/2021] [Indexed: 11/12/2022] Open
Abstract
Subcellular membrane systems are highly enriched in dolichol, whose role in organelle homeostasis and endosomal-lysosomal pathway remains largely unclear besides being involved in protein glycosylation. DHDDS encodes for the catalytic subunit (DHDDS) of the enzyme cis-prenyltransferase (cis-PTase), involved in dolichol biosynthesis and dolichol-dependent protein glycosylation in the endoplasmic reticulum. An autosomal recessive form of retinitis pigmentosa (retinitis pigmentosa 59) has been associated with a recurrent DHDDS variant. Moreover, two recurring de novo substitutions were detected in a few cases presenting with neurodevelopmental disorder, epilepsy and movement disorder. We evaluated a large cohort of patients (n = 25) with de novo pathogenic variants in DHDDS and provided the first systematic description of the clinical features and long-term outcome of this new neurodevelopmental and neurodegenerative disorder. The functional impact of the identified variants was explored by yeast complementation system and enzymatic assay. Patients presented during infancy or childhood with a variable association of neurodevelopmental disorder, generalized epilepsy, action myoclonus/cortical tremor and ataxia. Later in the disease course, they experienced a slow neurological decline with the emergence of hyperkinetic and/or hypokinetic movement disorder, cognitive deterioration and psychiatric disturbances. Storage of lipidic material and altered lysosomes were detected in myelinated fibres and fibroblasts, suggesting a dysfunction of the lysosomal enzymatic scavenger machinery. Serum glycoprotein hypoglycosylation was not detected and, in contrast to retinitis pigmentosa and other congenital disorders of glycosylation involving dolichol metabolism, the urinary dolichol D18/D19 ratio was normal. Mapping the disease-causing variants into the protein structure revealed that most of them clustered around the active site of the DHDDS subunit. Functional studies using yeast complementation assay and in vitro activity measurements confirmed that these changes affected the catalytic activity of the cis-PTase and showed growth defect in yeast complementation system as compared with the wild-type enzyme and retinitis pigmentosa-associated protein. In conclusion, we characterized a distinctive neurodegenerative disorder due to de novo DHDDS variants, which clinically belongs to the spectrum of genetic progressive encephalopathies with myoclonus. Clinical and biochemical data from this cohort depicted a condition at the intersection of congenital disorders of glycosylation and inherited storage diseases with several features akin to of progressive myoclonus epilepsy such as neuronal ceroid lipofuscinosis and other lysosomal disorders.
Collapse
Affiliation(s)
- Serena Galosi
- Department of Human Neuroscience, Sapienza University, Rome 00185, Italy
| | - Ban H Edani
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Hana Hansikova
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague 12808, Czech Republic
| | - Erik A Eklund
- Section for Pediatrics, Department of Clinical Sciences, Lund University, Lund 22184, Sweden
| | - Caterina Caputi
- Department of Human Neuroscience, Sapienza University, Rome 00185, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, Sapienza University, Rome 00161, Italy
| | - Nicole Corsten-Janssen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9700, The Netherlands
| | - Myriam Srour
- Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC H4A 3J1, Canada
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Daniëlle G M Bosch
- Department of Genetics, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Colin A Ellis
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Louise Amlie-Wolf
- Division of Medical Genetics, Nemours/A I duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Andrea Accogli
- Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC H4A 3J1, Canada
| | - Isis Atallah
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Luisa Averdunk
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf 40225, Germany
| | - Kristin W Barañano
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Irene Bagnasco
- Division of Neuropsychiatry, Epilepsy Center for Children, Martini Hospital, Turin 10128, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino & Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin 10126, Italy
| | - Scott Demarest
- Children's Hospital Colorado, Aurora, CO 80045, USA.,Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Anne-Sophie Alaix
- Hopital Universitaire Necker Enfants Malades APHP, Paris 75015, France
| | | | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf 40225, Germany
| | - Frances Elmslie
- South West Thames Regional Genetics Service, St. George's Healthcare NHS Trust, London SW17 0QT, UK
| | - Ziv Gan-Or
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H4A 3J1, Canada.,Montréal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada.,Department of Human Genetics, McGill University, Montréal, QC H3A 0C7, Canada
| | - Jean-Marc Good
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Karen Gripp
- Division of Medical Genetics, Nemours/A I duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen 6525, The Netherlands
| | - Ellen Macnamara
- Undiagnosed Diseases Program, National Institutes of Health, Bethesda, MD 20892-2152, USA
| | - Carlo Marcelis
- Department of Clinical Genetics, Radboud University Medical Centre, Nijmegen 6525, The Netherlands
| | - Noëlle Mercier
- Service d'Epileptologie et Médecine du handicap, Hôpital Neurologique, Institution de Lavigny, Lavigny 1175, Switzerland
| | - Joseph Peeden
- East Tennessee Children's Hospital, University of Tennessee Department of Medicine, Knoxville, TN 37916, USA
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Luca Pannone
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Marwan Shinawi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Camilo Toro
- Undiagnosed Diseases Program, National Institutes of Health, Bethesda, MD 20892-2152, USA
| | - Nienke E Verbeek
- Department of Genetics, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Sunita Venkateswaran
- Division of Neurology, Children's Hospital of Eastern Ontario, Ottawa ON K1H 8L1, Canada
| | | | - Lucie Zdrazilova
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague 12808, Czech Republic
| | - Rong Zhang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Giovanna Zorzi
- Department of Pediatric Neurology, IRCCS Foundation Carlo Besta Neurological Institute, Milan 20133, Italy
| | - Renzo Guerrini
- AOU Meyer, Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence 50139, Italy
| | - William C Sessa
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Dirk J Lefeber
- Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen 6525 AJ, The Netherlands
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Fadi F Hamdan
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC H3T1C5, Canada
| | - Kariona A Grabińska
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University, Rome 00185, Italy
| |
Collapse
|
18
|
Rauchová H. Coenzyme Q10 effects in neurological diseases. Physiol Res 2021. [DOI: 10.33549//physiolres.934712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Coenzyme Q10 (CoQ10), a lipophilic substituted benzoquinone, is present in animal and plant cells. It is endogenously synthetized in every cell and involved in a variety of cellular processes. CoQ10 is an obligatory component of the respiratory chain in inner mitochondrial membrane. In addition, the presence of CoQ10 in all cellular membranes and in blood. It is the only endogenous lipid antioxidant. Moreover, it is an essential factor for uncoupling protein and controls the permeability transition pore in mitochondria. It also participates in extramitochondrial electron transport and controls membrane physicochemical properties. CoQ10 effects on gene expression might affect the overall metabolism. Primary changes in the energetic and antioxidant functions can explain its remedial effects. CoQ10 supplementation is safe and well-tolerated, even at high doses. CoQ10 does not cause any serious adverse effects in humans or experimental animals. New preparations of CoQ10 that are less hydrophobic and structural derivatives, like idebenone and MitoQ, are being developed to increase absorption and tissue distribution. The review aims to summarize clinical and experimental effects of CoQ10 supplementations in some neurological diseases such as migraine, Parkinson´s disease, Huntington´s disease, Alzheimer´s disease, amyotrophic lateral sclerosis, Friedreich´s ataxia or multiple sclerosis. Cardiovascular hypertension was included because of its central mechanisms controlling blood pressure in the brainstem rostral ventrolateral medulla and hypothalamic paraventricular nucleus. In conclusion, it seems reasonable to recommend CoQ10 as adjunct to conventional therapy in some cases. However, sometimes CoQ10 supplementations are more efficient in animal models of diseases than in human patients (e.g. Parkinson´s disease) or rather vague (e.g. Friedreich´s ataxia or amyotrophic lateral sclerosis).
Collapse
Affiliation(s)
- H Rauchová
- Institute of Physiology Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
19
|
Paulazo MA, Sodero AO. SIRT-1 Activity Sustains Cholesterol Synthesis in the Brain. Neuroscience 2021; 476:116-124. [PMID: 34600072 DOI: 10.1016/j.neuroscience.2021.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/18/2022]
Abstract
SIRT-1 is a potent energy regulator that has been implicated in the aging of different tissues, and cholesterol synthesis demands high amounts of cellular adenosine triphosphate. An efficient synaptic transmission depends on processes that are highly influenced by cholesterol levels, like endocytosis, exocytosis and membrane lateral diffusion of neurotransmitter receptors. We set out to investigate whether SIRT-1 activity affects brain cholesterol metabolism. We found that pharmacological inhibition of SIRT-1 with EX-527 reduces the mRNA amounts of 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGCR), Cytochrome P450 46A1 (CYP46A1) and Apolipoprotein E (APO-E) in rat primary cortical cultures. The decreased expression of these genes was paralleled by a significant reduction of the cholesterol levels in this type of neuronal culture. Interestingly, a cholesterol decrease of similar extent was observed in mouse astroglial cultures after EX-527 treatment. In agreement, mice administered with EX-527 for 5 days showed a down-regulation of cholesterol synthesis in the cortex, with significant reductions in the mRNA amounts of the transcription factor Sterol Regulatory Element Binding Protein 2 (SREBP-2) and the enzyme HMGCR, two key regulators of the cholesterol synthesis. These transcriptional changes were paralleled by reduced cholesterol levels at cortical synapses. SIRT-1 inhibition also reduced the amount of cholesterol in the hippocampus but without affecting the HMGCR expression levels. Altogether, these results uncover a role for SIRT-1 in the regulation of cholesterol metabolism, and demonstrate that SIRT-1 is required to sustain adequate levels of cholesterol synthesis in the adult brain.
Collapse
Affiliation(s)
- María A Paulazo
- Institute of Biomedical Research (BIOMED), Pontifical Catholic University of Argentina (UCA) and National Scientific and Technical Research Council (CONICET), C1107AFF Buenos Aires, Argentina
| | - Alejandro O Sodero
- Institute of Biomedical Research (BIOMED), Pontifical Catholic University of Argentina (UCA) and National Scientific and Technical Research Council (CONICET), C1107AFF Buenos Aires, Argentina.
| |
Collapse
|
20
|
Heath RJ, Wood TR. Why Have the Benefits of DHA Not Been Borne Out in the Treatment and Prevention of Alzheimer's Disease? A Narrative Review Focused on DHA Metabolism and Adipose Tissue. Int J Mol Sci 2021; 22:11826. [PMID: 34769257 PMCID: PMC8584218 DOI: 10.3390/ijms222111826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 02/04/2023] Open
Abstract
Docosahexaenoic acid (DHA), an omega-3 fatty acid rich in seafood, is linked to Alzheimer's Disease via strong epidemiological and pre-clinical evidence, yet fish oil or other DHA supplementation has not consistently shown benefit to the prevention or treatment of Alzheimer's Disease. Furthermore, autopsy studies of Alzheimer's Disease brain show variable DHA status, demonstrating that the relationship between DHA and neurodegeneration is complex and not fully understood. Recently, it has been suggested that the forms of DHA in the diet and plasma have specific metabolic fates that may affect brain uptake; however, the effect of DHA form on brain uptake is less pronounced in studies of longer duration. One major confounder of studies relating dietary DHA and Alzheimer's Disease may be that adipose tissue acts as a long-term depot of DHA for the brain, but this is poorly understood in the context of neurodegeneration. Future work is required to develop biomarkers of brain DHA and better understand DHA-based therapies in the setting of altered brain DHA uptake to help determine whether brain DHA should remain an important target in the prevention of Alzheimer's Disease.
Collapse
Affiliation(s)
- Rory J. Heath
- Emergency Medicine Department, Derriford Hospital, University Hospitals Plymouth, Plymouth PL6 8DH, UK;
| | - Thomas R. Wood
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center on Human Development and Disability, University of Washington, Seattle, WA 98195, USA
- Institute for Human and Machine Cognition, Pensacola, FL 32502, USA
| |
Collapse
|
21
|
Emre C, Do KV, Jun B, Hjorth E, Alcalde SG, Kautzmann MAI, Gordon WC, Nilsson P, Bazan NG, Schultzberg M. Age-related changes in brain phospholipids and bioactive lipids in the APP knock-in mouse model of Alzheimer's disease. Acta Neuropathol Commun 2021; 9:116. [PMID: 34187579 PMCID: PMC8244172 DOI: 10.1186/s40478-021-01216-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Sustained brain chronic inflammation in Alzheimer’s disease (AD) includes glial cell activation, an increase in cytokines and chemokines, and lipid mediators (LMs), concomitant with decreased pro-homeostatic mediators. The inflammatory response at the onset of pathology engages activation of pro-resolving, pro-homeostatic LMs followed by a gradual decrease. We used an APP knock-in (App KI) AD mouse that accumulates β-amyloid (Aβ) and presents cognitive deficits (at 2 and 6 months of age, respectively) to investigate LMs, their precursors, biosynthetic enzymes and receptors, glial activation, and inflammatory proteins in the cerebral cortex and hippocampus at 2-, 4-, 8- and 18-month-old in comparison with wild-type (WT) mice. We used LC-mass-spectrometry and MALDI molecular imaging to analyze LMs and phospholipids, and immunochemistry for proteins. Our results revealed an age-specific lipid and cytokine profile, and glial activation in the App KI mice. Despite an early onset of Aβ pathology, pro-inflammatory and pro-resolving LMs were prominently increased only in the oldest age group. Furthermore, the LM biosynthetic enzymes increased, and their receptor expression decreased in the aged App KI mice. Arachidonic acid (AA)-containing phospholipid molecular species were elevated, correlating with decreased cPLA2 activity. MALDI molecular imaging depicted differential distribution of phospholipids according to genotype in hippocampal layers. Brain histology disclosed increased microglia proliferation starting from young age in the App KI mice, while astrocyte numbers were enhanced in older ages. Our results demonstrate that the brain lipidome is modified preferentially during aging as compared to amyloid pathology in the model studied here. However, alterations in phospholipids signal early pathological changes in membrane composition.
Collapse
|
22
|
Byeon SK, Madugundu AK, Jain AP, Bhat FA, Jung JH, Renuse S, Darrow J, Bakker A, Albert M, Moghekar A, Pandey A. Cerebrospinal fluid lipidomics for biomarkers of Alzheimer's disease. Mol Omics 2021; 17:454-463. [PMID: 34125126 PMCID: PMC8210464 DOI: 10.1039/d0mo00186d] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is associated with serious neurologic sequelae resulting from neurodegenerative changes. Identification of markers of early-stage AD could be important for designing strategies to arrest the progression of the disease. The brain is rich in lipids because they are crucial for signal transduction and anchoring of membrane proteins. Cerebrospinal fluid (CSF) is an excellent specimen for studying the metabolism of lipids in AD because it can reflect changes occurring in the brain. We aimed to identify CSF lipidomic alterations associated with AD, using untargeted lipidomics, carried out in positive and negative ion modes. We found CSF lipids that were significantly altered in AD cases. In addition, comparison of CSF lipid profiles between persons with mild cognitive impairment (MCI) and AD showed a strong positive correlation between the lipidomes of the MCI and AD groups. The novel lipid biomarkers identified in this study are excellent candidates for validation in a larger set of patient samples and as predictive biomarkers of AD through future longitudinal studies. Once validated, the lipid biomarkers could lead to early detection, disease monitoring and the ability to measure the efficacy of potential therapeutic interventions in AD.
Collapse
Affiliation(s)
- Seul Kee Byeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55902, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Díaz M, Mesa-Herrera F, Marín R. DHA and Its Elaborated Modulation of Antioxidant Defenses of the Brain: Implications in Aging and AD Neurodegeneration. Antioxidants (Basel) 2021; 10:antiox10060907. [PMID: 34205196 PMCID: PMC8228037 DOI: 10.3390/antiox10060907] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
DHA (docosahexaenoic acid) is perhaps the most pleiotropic molecule in nerve cell biology. This long-chain highly unsaturated fatty acid has evolved to accomplish essential functions ranging from structural components allowing fast events in nerve cell membrane physiology to regulation of neurogenesis and synaptic function. Strikingly, the plethora of DHA effects has to take place within the hostile pro-oxidant environment of the brain parenchyma, which might suggest a molecular suicide. In order to circumvent this paradox, different molecular strategies have evolved during the evolution of brain cells to preserve DHA and to minimize the deleterious effects of its oxidation. In this context, DHA has emerged as a member of the “indirect antioxidants” family, the redox effects of which are not due to direct redox interactions with reactive species, but to modulation of gene expression within thioredoxin and glutathione antioxidant systems and related pathways. Weakening or deregulation of these self-protecting defenses orchestrated by DHA is associated with normal aging but also, more worryingly, with the development of neurodegenerative diseases. In the present review, we elaborate on the essential functions of DHA in the brain, including its role as indirect antioxidant, the selenium connection for proper antioxidant function and their changes during normal aging and in Alzheimer’s disease.
Collapse
Affiliation(s)
- Mario Díaz
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, School of Biology, Universidad de La Laguna, 38206 Tenerife, Spain;
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSP), Universidad de La Laguna, 38206 Tenerife, Spain
- Unidad Asociada ULL-CSIC “Fisiología y Biofísica de la Membrana Celular en Enfermedades Neurodegenerativas y Tumorales”, 38206 Tenerife, Spain;
- Correspondence:
| | - Fátima Mesa-Herrera
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, School of Biology, Universidad de La Laguna, 38206 Tenerife, Spain;
| | - Raquel Marín
- Unidad Asociada ULL-CSIC “Fisiología y Biofísica de la Membrana Celular en Enfermedades Neurodegenerativas y Tumorales”, 38206 Tenerife, Spain;
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, School of Medicine, Universidad de La Laguna, 38206 Tenerife, Spain
| |
Collapse
|
24
|
The Role of White Matter Dysfunction and Leukoencephalopathy/Leukodystrophy Genes in the Aetiology of Frontotemporal Dementias: Implications for Novel Approaches to Therapeutics. Int J Mol Sci 2021; 22:ijms22052541. [PMID: 33802612 PMCID: PMC7961524 DOI: 10.3390/ijms22052541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 01/01/2023] Open
Abstract
Frontotemporal dementia (FTD) is a common cause of presenile dementia and is characterized by behavioural and/or language changes and progressive cognitive deficits. Genetics is an important component in the aetiology of FTD, with positive family history of dementia reported for 40% of cases. This review synthesizes current knowledge of the known major FTD genes, including C9orf72 (chromosome 9 open reading frame 72), MAPT (microtubule-associated protein tau) and GRN (granulin), and their impact on neuronal and glial pathology. Further, evidence for white matter dysfunction in the aetiology of FTD and the clinical, neuroimaging and genetic overlap between FTD and leukodystrophy/leukoencephalopathy are discussed. The review highlights the role of common variants and mutations in genes such as CSF1R (colony-stimulating factor 1 receptor), CYP27A1 (cytochrome P450 family 27 subfamily A member 1), TREM2 (triggering receptor expressed on myeloid cells 2) and TMEM106B (transmembrane protein 106B) that play an integral role in microglia and oligodendrocyte function. Finally, pharmacological and non-pharmacological approaches for enhancing remyelination are discussed in terms of future treatments of FTD.
Collapse
|
25
|
Villalba JM, Navas P. Regulation of coenzyme Q biosynthesis pathway in eukaryotes. Free Radic Biol Med 2021; 165:312-323. [PMID: 33549646 DOI: 10.1016/j.freeradbiomed.2021.01.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/22/2021] [Accepted: 01/30/2021] [Indexed: 12/21/2022]
Abstract
Coenzyme Q (CoQ, ubiquinone/ubiquinol) is a ubiquitous and unique molecule that drives electrons in mitochondrial respiratory chain and an obligatory step for multiple metabolic pathways in aerobic metabolism. Alteration of CoQ biosynthesis or its redox stage are causing mitochondrial dysfunctions as hallmark of heterogeneous disorders as mitochondrial/metabolic, cardiovascular, and age-associated diseases. Regulation of CoQ biosynthesis pathway is demonstrated to affect all steps of proteins production of this pathway, posttranslational modifications and protein-protein-lipid interactions inside mitochondria. There is a bi-directional relationship between CoQ and the epigenome in which not only the CoQ status determines the epigenetic regulation of many genes, but CoQ biosynthesis is also a target for epigenetic regulation, which adds another layer of complexity to the many pathways by which CoQ levels are regulated by environmental and developmental signals to fulfill its functions in eukaryotic aerobic metabolism.
Collapse
Affiliation(s)
- José Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, Sevilla, 41013, Spain.
| |
Collapse
|
26
|
Shi M, Deng S, Cui Y, Chen X, Shi T, Song L, Zhang R, Zhang Y, Xu J, Shi J, Wang C, Li L. Repeated low-dose exposures to sarin disrupted the homeostasis of phospholipid and sphingolipid metabolism in guinea pig hippocampus. Toxicol Lett 2020; 338:32-39. [PMID: 33253782 DOI: 10.1016/j.toxlet.2020.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 01/22/2023]
Abstract
Repeated low-level exposure to sarin results to hippocampus dysfunction. Metabonomics involves a holistic analysis of a set of metabolites in an organism in the search for a relationship between these metabolites and physiological or pathological changes. The objective of the present study was to evaluate the effects of repeated exposure to low-level sarin on the metabonomics in hippocampus of a guinea pig model. Guinea pigs were divided randomly into control and sarin treated groups (n = 14). Guinea pigs in the control group received saline; while the sarin-treated group received 0.4×LD50 (16.8 μg/kg) sarin. Daily injections (a total of 14 days) were administered sc between the shoulder blades in a volume of 1.0 ml/kg body weight. At the end of the final injection, 6 animals in each group were chosen for Morris water maze test. The rest guinea pigs (n = 8 for each group) were sacrificed by decapitation, and hippocampus were dissected for analysis. Compared with the control-group, the escape latency in sarin-group was significantly (p < 0.05) longer while the crossing times were significantly decreased in the Morris water task (p < 0.05). Sarin inhibited activities of acetylcholinesterase (AChE) and neuropathy target esterase (NTE) in hippocampus. The AChE activity of hippocampus from sarin-treated groups is equivalent to 59.9 ± 6.4 %, and the NTE activity of hippocampus from sarin-groups is equivalent to 78.1 ± 8.3 % of that from control-group. Metabolites were identified and validated. A total of 14 variables were selected as potential biomarkers. Phospholipids [phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidic acid (PA), phosphatidylglycerol (PG), phosphatidylinositol (PI), Lysophosphatidylethanolamine (LysoPE or LPE)] and sphingolipids (SPs) [sphinganine (SA), phytosphingosine (PSO) and sphinganine-1-phosphate (SA1P)] were clearly modified. In conclusion, repeated low-dose exposures to sarin disrupted the homeostasis of phospholipid and sphingolipid metabolism in guinea pig hippocampus and may lead to a neuronal-specific function disorders. Identified metabolites such as SA1P need to be studied more deeply on their biological function that against sarin lesions. In future research, we should pay more attention to characterize the physiological roles of lipid metabolism enzymes as well as their involvement in pathologies induced by repeated low-level sarin exposure.
Collapse
Affiliation(s)
- Meng Shi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Shikun Deng
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Yalan Cui
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Tong Shi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Liangcai Song
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Ruihua Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Yi Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Jianfu Xu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Jingjing Shi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Chen Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China.
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China.
| |
Collapse
|
27
|
Johnson A, Grove RA, Madhavan D, Boone CHT, Braga C, Kyllo H, Samson K, Simeone K, Simeone T, Helikar T, Hanson CK, Adamec J. Changes in lipid profiles of epileptic mouse model. Metabolomics 2020; 16:106. [PMID: 33021695 PMCID: PMC10614666 DOI: 10.1007/s11306-020-01729-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Approximately 1% of the world's population is impacted by epilepsy, a chronic neurological disorder characterized by seizures. One-third of epileptic patients are resistant to AEDs, or have medically refractory epilepsy (MRE). One non-invasive treatment that exists for MRE includes the ketogenic diet, a high-fat, low-carbohydrate diet. Despite the KD's success in seizure attenuation, it has a few risks and its mechanisms remain poorly understood. The KD has been shown to improve metabolism and mitochondrial function in epileptic phenotypes. Potassium channels have implications in epileptic conditions as they have dual roles as metabolic sensors and control neuronal excitation. OBJECTIVES The goal of this study was to explore changes in the lipidome in hippocampal and cortical tissue from Kv1.1-KO model of epilepsy. METHODS FT-ICR/MS analysis was utilized to examine nonpolar metabolome of cortical and hippocampal tissue isolated from a Kv1.1 channel knockout mouse model of epilepsy (n = 5) and wild-type mice (n = 5). RESULTS Distinct metabolic profiles were observed, significant (p < 0.05) features in hippocampus often being upregulated (FC ≥ 2) and the cortex being downregulated (FC ≤ 0.5). Pathway enrichment analysis shows lipid biosynthesis was affected. Partition ratio analysis revealed that the ratio of most metabolites tended to be increased in Kv1.1-/-. Metabolites in hippocampal tissue were commonly upregulated, suggesting seizure initiation in the hippocampus. Aberrant mitochondrial function is implicated by the upregulation of cardiolipin, a common component in the mitochondrial membrane. CONCLUSION Generally, our study finds that the lipidome is changed in the hippocampus and cortex in response to Kv1.1-KO indicating changes in membrane structural integrity and synaptic transmission.
Collapse
Affiliation(s)
- Alicia Johnson
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Ryan A Grove
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Deepak Madhavan
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Cory H T Boone
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Camila Braga
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Hannah Kyllo
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kaeli Samson
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Kristina Simeone
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Timothy Simeone
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Tomas Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Corrine K Hanson
- College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jiri Adamec
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
28
|
Highlighting the effect of amyloid beta assemblies on the mechanical properties and conformational stability of cell membrane. J Mol Graph Model 2020; 100:107670. [PMID: 32711259 DOI: 10.1016/j.jmgm.2020.107670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/05/2023]
Abstract
Alzheimer disease (AD) is the most common cause of dementia, characterized by a progressive decline in cognitive function due to the abnormal aggregation and deposition of Amyloid beta (Aβ) fibrils in the brain of patients. In this context, the molecular mechanisms of protein misfolding and aggregation that are known to induce significant biophysical alterations in cells, including destabilization of plasma membranes, remain partially unclear. Physical interaction between the Aβ assemblies and the membrane leads to the disruption of the cell membrane in multiple ways including, surface carpeting, generation of transmembrane channels and detergent-like membrane dissolution. Understanding the impact of amyloidogenic protein in different stages of aggregation with the plasma membrane, plays a crucial role to fully elucidate the pathological mechanisms of AD. Within this framework, computer simulations represent a powerful tool able to shed lights on the interactions governing the structural influence of Aβ proteins on biological membrane. In this study, molecular dynamics (MD) simulations have been performed in order to characterize how POPC bilayer conformational and mechanical properties are affected by the interaction with Aβ11-42 peptide, oligomer and fibril.
Collapse
|
29
|
Ferrer I, Andrés-Benito P. White matter alterations in Alzheimer's disease without concomitant pathologies. Neuropathol Appl Neurobiol 2020; 46:654-672. [PMID: 32255227 PMCID: PMC7754505 DOI: 10.1111/nan.12618] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/23/2020] [Indexed: 12/14/2022]
Abstract
Aims Most individuals with AD neuropathological changes have co‐morbidities which have an impact on the integrity of the WM. This study analyses oligodendrocyte and myelin markers in the frontal WM in a series of AD cases without clinical or pathological co‐morbidities. Methods From a consecutive autopsy series, 206 cases had neuropathological changes of AD; among them, only 33 were AD without co‐morbidities. WM alterations were first evaluated in coronal sections of the frontal lobe in every case. Then, RT‐qPCR and immunohistochemistry were carried out in the frontal WM of AD cases without co‐morbidities to analyse the expression of selected oligodendrocyte and myelin markers. Results WM demyelination was more marked in AD with co‐morbidities when compared with AD cases without co‐morbidities. Regarding the later, mRNA expression levels of MBP, PLP1, CNP, MAG, MAL, MOG and MOBP were preserved at stages I–II/0–A when compared with middle‐aged (MA) individuals, but significantly decreased at stages III–IV/0–C. This was accompanied by reduced expression of NG2 and PDGFRA mRNA, reduced numbers of NG2‐, Olig2‐ and HDAC2‐immunoreactive cells and reduced glucose transporter immunoreactivity. Partial recovery of some of these markers occurred at stages V–VI/B–C. Conclusions The present observations demonstrate that co‐morbidities have an impact on WM integrity in the elderly and in AD, and that early alterations in oligodendrocytes and transcription of genes linked to myelin proteins in WM occur in AD cases without co‐morbidities. These are followed by partial recovery attempts at advanced stages. These observations suggest that oligodendrocytopathy is part of AD.
Collapse
Affiliation(s)
- I Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Bellvitge University Hospital, Barcelona, Spain.,Ministry of Economy and Competitiveness, CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - P Andrés-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Ministry of Economy and Competitiveness, CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
30
|
Loschwitz J, Olubiyi OO, Hub JS, Strodel B, Poojari CS. Computer simulations of protein-membrane systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:273-403. [PMID: 32145948 PMCID: PMC7109768 DOI: 10.1016/bs.pmbts.2020.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interactions between proteins and membranes play critical roles in signal transduction, cell motility, and transport, and they are involved in many types of diseases. Molecular dynamics (MD) simulations have greatly contributed to our understanding of protein-membrane interactions, promoted by a dramatic development of MD-related software, increasingly accurate force fields, and available computer power. In this chapter, we present available methods for studying protein-membrane systems with MD simulations, including an overview about the various all-atom and coarse-grained force fields for lipids, and useful software for membrane simulation setup and analysis. A large set of case studies is discussed.
Collapse
Affiliation(s)
- Jennifer Loschwitz
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Olujide O Olubiyi
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Birgit Strodel
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Chetan S Poojari
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
31
|
Kim H, Kim B, Kim HS, Cho JY. Nicotinamide attenuates the decrease in dendritic spine density in hippocampal primary neurons from 5xFAD mice, an Alzheimer's disease animal model. Mol Brain 2020; 13:17. [PMID: 32033569 PMCID: PMC7006216 DOI: 10.1186/s13041-020-0565-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/04/2020] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease characterized by memory loss and the presence of amyloid plaques and neurofibrillary tangles in the patients’ brains. In this study, we investigated the alterations in metabolite profiles of the hippocampal tissues from 6, 8, and 12 month-old wild-type (WT) and 5xfamiliar AD (5xFAD) mice, an AD mouse model harboring 5 early-onset familiar AD mutations, which shows memory loss from approximately 5 months of age, by exploiting the untargeted metabolomics profiling. We found that nicotinamide and adenosine monophosphate levels have been significantly decreased while lysophosphatidylcholine (LysoPC) (16:0), LysoPC (18:0), and lysophosphatidylethanolamine (LysoPE) (16:0) levels have been significantly increased in the hippocampi from 5xFAD mice at 8 months or 12 months of age, compared to those from age-matched wild-type mice. In the present study, we focused on the role of nicotinamide and examined if replenishment of nicotinamide exerts attenuating effects on the reduction in dendritic spine density in hippocampal primary neurons from 5xFAD mice. Treatment with nicotinamide attenuated the deficits in spine density in the hippocampal primary neurons derived from 5xFAD mice, indicating a potential role of nicotinamide in the pathogenesis of AD. Taken together, these findings suggest that the decreased hippocampal nicotinamide level could be linked with AD pathogenesis and be a useful therapeutic target for AD.
Collapse
Affiliation(s)
- Hyunju Kim
- Department of Pharmacology, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea
| | - Bora Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea.,Kidney Research Institute, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea
| | - Hye-Sun Kim
- Department of Pharmacology, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea. .,Department of Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea. .,Seoul National University College of Medicine, Bundang Hospital, Bundang-Gu, Sungnam, Republic of Korea. .,Department of Pharmacology and Biomedical Sciences, Neuroscience Research Institute, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea.
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea. .,Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
32
|
Skowronska-Krawczyk D, Budin I. Aging membranes: Unexplored functions for lipids in the lifespan of the central nervous system. Exp Gerontol 2019; 131:110817. [PMID: 31862420 DOI: 10.1016/j.exger.2019.110817] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
Abstract
Lipids constitute a significant group of biological metabolites and the building blocks of all cell membranes. The abundance and stoichiometries of different lipid species are known to vary across the lifespan and metabolic state, yet the functional effects of these changes have been challenging to understand. Here we review the potentially powerful intersection of lipid metabolism, which determines membrane composition, and aging. We first introduce several key lipid classes that are associated with aging and aging-related disease, where they are found in organisms, and how they act on membrane structure and function. Instead of neutral lipids, which have primary roles in energy storage and homeostasis, we review known functions for polar lipids that control the physicochemical properties of cell membranes. We then focus on aging processes in the central nervous system (CNS), which is enriched in lipids and is highly dependent on membrane structure for function. Recent studies show how lipids act not just as biomarkers of aging and associated changes in the CNS, but as direct mediators of these processes. As a model system, we explore how fatty acid composition in the retina impact aging and aging-related disease. We propose that the biophysical effects of membrane structure on fundamental eukaryotic processes - mitochondrial respiration and autophagy - provide avenues by which lipid dysregulation can accelerate aging processes. Finally, we lay out ways in which an increased understanding of lipid membrane biology can be applied to studies of aging and lifespan.
Collapse
Affiliation(s)
- Dorota Skowronska-Krawczyk
- Viterbi Family Department of Ophthalmology, School do Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | - Itay Budin
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
33
|
Bekdash RA. Neuroprotective Effects of Choline and Other Methyl Donors. Nutrients 2019; 11:nu11122995. [PMID: 31817768 PMCID: PMC6950346 DOI: 10.3390/nu11122995] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022] Open
Abstract
Recent evidence suggests that physical and mental health are influenced by an intricate interaction between genes and environment. Environmental factors have been shown to modulate neuronal gene expression and function by epigenetic mechanisms. Exposure to these factors including nutrients during sensitive periods of life could program brain development and have long-lasting effects on mental health. Studies have shown that early nutritional intervention that includes methyl-donors improves cognitive functions throughout life. Choline is a micronutrient and a methyl donor that is required for normal brain growth and development. It plays a pivotal role in maintaining structural and functional integrity of cellular membranes. It also regulates cholinergic signaling in the brain via the synthesis of acetylcholine. Via its metabolites, it participates in pathways that regulate methylation of genes related to memory and cognitive functions at different stages of development. Choline-related functions have been dysregulated in some neurodegenerative diseases suggesting choline role in influencing mental health across the lifespan.
Collapse
Affiliation(s)
- Rola A Bekdash
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
34
|
Ntarakas N, Ermilova I, Lyubartsev AP. Effect of lipid saturation on amyloid-beta peptide partitioning and aggregation in neuronal membranes: molecular dynamics simulations. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:813-824. [PMID: 31655893 PMCID: PMC6853862 DOI: 10.1007/s00249-019-01407-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/02/2019] [Accepted: 10/13/2019] [Indexed: 12/05/2022]
Abstract
Aggregation of amyloid-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document}β (Aβ) peptides, cleaved from the amyloid precursor protein, is known as a precursor of the Alzheimer’s disease (AD). It is also known that Alzheimer’s disease is characterized by a substantial decrease of the amount of polyunsaturated lipids in the neuronal membranes of the frontal gray matter. To get insight into possible interconnection of these phenomena, we have carried out molecular dynamics simulations of two fragments of A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document}β peptide, A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document}β\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{1-28}$$\end{document}1-28 and A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document}β\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{26-40}$$\end{document}26-40, in four different lipid bilayers: two monocomponent ones (14:0-14:0 PC, 18:0-22:6 PC), and two bilayers containing mixtures of 18:0-18:0 PE, 22:6-22:6 PE, 16:0-16:0 PC and 18:1-18:1 PC lipids of composition mimicking neuronal membranes in a “healthy” and “AD” brain. The simulations showed that the presence of lipids with highly unsaturated 22:6cis fatty acids chains strongly affects the interaction of amyloid-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document}β peptides with lipid membranes. The polyunsaturated lipids cause stronger adsorption of A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document}β-peptides by the membrane and lead to weaker binding between peptides when the latter form aggregates. This difference in the behaviour observed in monocomponent bilayers is propagated in a similar fashion to the mixed membranes mimicking composition of neuronal membranes in “healthy” and “AD” brains, with “healthy” membrane having higher fraction of polyunsaturated lipids. Our simulations give strong indication that it can be physical–chemical background of the interconnection between amyloid fibrillization causing Alzheimer’s disease, and content of polyunsaturated lipids in the neuronal membranes.
Collapse
Affiliation(s)
- Nikolaos Ntarakas
- Department of Materials and Environmental Chemistry, Stockholm's University, 10691, Stockholm, Sweden
| | - Inna Ermilova
- Department of Materials and Environmental Chemistry, Stockholm's University, 10691, Stockholm, Sweden
| | - Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm's University, 10691, Stockholm, Sweden.
| |
Collapse
|
35
|
Profiling of Alzheimer’s disease related genes in mild to moderate vitamin D hypovitaminosis. J Nutr Biochem 2019; 67:123-137. [DOI: 10.1016/j.jnutbio.2019.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/13/2018] [Accepted: 01/29/2019] [Indexed: 02/01/2023]
|
36
|
Pająk B, Kania E, Gołaszewska A, Orzechowski A. Preliminary Study on Clusterin Protein (sCLU) Expression in PC-12 Cells Overexpressing Wild-Type and Mutated (Swedish) AβPP genes Affected by Non-Steroid Isoprenoids and Water-Soluble Cholesterol. Int J Mol Sci 2019; 20:E1481. [PMID: 30909654 PMCID: PMC6470582 DOI: 10.3390/ijms20061481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
In this study we attempted to verify the hypothesis that the mevalonate pathway affects amyloid beta precursor protein (AβPP) processing and regulates clusterin protein levels. AβPP expression was monitored by green fluorescence (FL) and Western blot (WB). WB showed soluble amyloid protein precursor alpha (sAβPPα) presence in AβPP-wt cells and Aβ expression in AβPP-sw cells. Nerve growth factor (NGF)-differentiated rat neuronal pheochromocytoma PC-12 cells were untreated/treated with statins alone or together with non-sterol isoprenoids. Co-treatment with mevalonate, dolichol, ubiquinol, farnesol, geranylgeraniol, or water-soluble cholesterol demonstrated statin-dependent neurotoxicity resulted from the attenuated activity of mevalonate pathway rather than lower cholesterol level. Atorvastatin (50 μM) or simvastatin (50 μM) as well as cholesterol chelator methyl-β-cyclodextrin (0.2 mM) diminished cell viability (p < 0.05) and clusterin levels. Interestingly, co-treatment with mevalonate, dolichol, ubiquinol, farnesol, geranylgeraniol, or water-soluble cholesterol stimulated (p < 0.05) clusterin expression. Effects of non-sterol isoprenoids, but not water soluble cholesterol (Chol-PEG), were the most significant in mock-transfected cells. Geranylgeraniol (GGOH) overcame atorvastatin (ATR)-dependent cytotoxicity. This effect does not seem to be dependent on clusterin, as its level became lower after GGOH. The novelty of these findings is that they show that the mevalonate (MEV) pathway rather than cholesterol itself plays an important role in clusterin expression levels. In mock-transfected, rather than in AβPP-overexpressing cells, GGOH/farnesol (FOH) exerted a protective effect. Thus, protein prenylation with GGOH/FOH might play substantial role in neuronal cell survival.
Collapse
Affiliation(s)
- Beata Pająk
- Independent Laboratory of Genetics and Molecular Biology, Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland.
| | - Elżbieta Kania
- Tumor Cell Death Laboratory, Cancer Research UK, Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.
| | - Anita Gołaszewska
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences ⁻ SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Arkadiusz Orzechowski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences ⁻ SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
37
|
Torretta E, Arosio B, Barbacini P, Casati M, Capitanio D, Mancuso R, Mari D, Cesari M, Clerici M, Gelfi C. Particular CSF sphingolipid patterns identify iNPH and AD patients. Sci Rep 2018; 8:13639. [PMID: 30206302 PMCID: PMC6133966 DOI: 10.1038/s41598-018-31756-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is characterized by reversible neurological symptoms due to an impairment in cerebrospinal fluid (CSF) clearance. In these patients, cognitive functions are severely impaired, with a scenario similar to Alzheimer’s disease (AD), making the differential diagnosis difficult and highlighting the need of new markers. We analyzed the composition of sphingolipids (SLs) in serum, by combining a single phase extraction with a high-performance thin-layer chromatography (HPTLC) primuline-profiling, and, in CSF, by MALDI profiling and LC-MS. Ceramides and sphingomyelins (SMs) were similar in serum of iNPH and AD patients compared to healthy controls, whereas, in CSF, MALDI profiling indicated that: 1) SM C24:1 is significantly decreased in AD compared to iNPH patients and controls (Kruskal-Wallis p-value < 0.00001); 2) phosphatidylcholine (PC) 36:2 is increased in iNPH patients (p-value < 0.001). LC-MS identified an increasing trend of Cer C24:0 and of a set of SMs in patients with AD, a significant decrease of sphingosine-1-phosphate (S1P) (t-test p-value 0.0325) and an increase of glucosylceramide (GlcCer) C24:0 (p-value 0.0037) in AD compared to iNPH patients. In conclusion CSF PC 36:2, SM C24:1, S1P, and GlcCer can contribute to improve the differential diagnosis of patients with iNPH or AD and foster preventive therapeutic strategies in the early phase of the disease.
Collapse
Affiliation(s)
- Enrica Torretta
- Department of Biomedical Sciences for Health, University of Milan, Segrate (Milan), Italy
| | - Beatrice Arosio
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, Segrate (Milan), Italy
| | - Martina Casati
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, Milan, Italy
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Segrate (Milan), Italy
| | - Roberta Mancuso
- Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Mari
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, Milan, Italy
| | - Matteo Cesari
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Mario Clerici
- Don C Gnocchi Foundation IRCCS, Milan, Italy.,Department of Physiopathology and Transplants, University of Milan, Milan, Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Segrate (Milan), Italy. .,Clinical Proteomics Unit, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Policlinico San Donato, San Donato Milanese (Milan), Italy.
| |
Collapse
|
38
|
Jeon S, Neuringer M, Kuchan MJ, Erdman JW. Relationships of carotenoid-related gene expression and serum cholesterol and lipoprotein levels to retina and brain lutein deposition in infant rhesus macaques following 6 months of breastfeeding or formula feeding. Arch Biochem Biophys 2018; 654:97-104. [PMID: 30003875 DOI: 10.1016/j.abb.2018.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/09/2018] [Accepted: 07/06/2018] [Indexed: 01/12/2023]
Abstract
The purpose of this study was to investigate if the enhanced bioaccumulation of lutein in retina and brain of breastfed, compared to formula-fed, infant monkeys was associated with higher levels of serum total and HDL cholesterol, apolipoproteins, or mRNA/protein expression of carotenoid-related genes. Newborn rhesus macaques were either breastfed, fed a carotenoid-supplemented formula, or fed an unsupplemented formula for 6 months (n = 8, 8, 7). Real-time qPCR and western blotting were performed in two brain regions (occipital cortex and cerebellum) and two retina regions (macular and peripheral retina). Breastfed infants had higher serum total cholesterol, HDL cholesterol, apoA-I, and apoB-100 levels than the combined formula-fed groups (P < 0.05). Breast milk or infant formulas did not alter expression of the nine genes (CD36, SCARB1, SCARB2, LDLR, STARD3, GSTP1, BCO1, BCO2, RPE65) examined except for SCARB2 in the retina and brain regions. In conclusion, dietary regimen did not impact the expression of carotenoid-related genes except for SCARB2. However, carotenoid-related genes were differentially expressed across brain and retina regions. Breastfed infants had higher serum total and HDL cholesterol, and apolipoproteins, suggesting that lipoprotein levels might be important for delivering lutein to tissues, especially the macular retina, during infancy.
Collapse
Affiliation(s)
- Sookyoung Jeon
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, IL, United States
| | - Martha Neuringer
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | | | - John W Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, IL, United States; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL, United States.
| |
Collapse
|
39
|
Varma VR, Oommen AM, Varma S, Casanova R, An Y, Andrews RM, O’Brien R, Pletnikova O, Troncoso JC, Toledo J, Baillie R, Arnold M, Kastenmueller G, Nho K, Doraiswamy PM, Saykin AJ, Kaddurah-Daouk R, Legido-Quigley C, Thambisetty M. Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metabolomics study. PLoS Med 2018; 15:e1002482. [PMID: 29370177 PMCID: PMC5784884 DOI: 10.1371/journal.pmed.1002482] [Citation(s) in RCA: 332] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The metabolic basis of Alzheimer disease (AD) is poorly understood, and the relationships between systemic abnormalities in metabolism and AD pathogenesis are unclear. Understanding how global perturbations in metabolism are related to severity of AD neuropathology and the eventual expression of AD symptoms in at-risk individuals is critical to developing effective disease-modifying treatments. In this study, we undertook parallel metabolomics analyses in both the brain and blood to identify systemic correlates of neuropathology and their associations with prodromal and preclinical measures of AD progression. METHODS AND FINDINGS Quantitative and targeted metabolomics (Biocrates AbsoluteIDQ [identification and quantification] p180) assays were performed on brain tissue samples from the autopsy cohort of the Baltimore Longitudinal Study of Aging (BLSA) (N = 44, mean age = 81.33, % female = 36.36) from AD (N = 15), control (CN; N = 14), and "asymptomatic Alzheimer's disease" (ASYMAD, i.e., individuals with significant AD pathology but no cognitive impairment during life; N = 15) participants. Using machine-learning methods, we identified a panel of 26 metabolites from two main classes-sphingolipids and glycerophospholipids-that discriminated AD and CN samples with accuracy, sensitivity, and specificity of 83.33%, 86.67%, and 80%, respectively. We then assayed these 26 metabolites in serum samples from two well-characterized longitudinal cohorts representing prodromal (Alzheimer's Disease Neuroimaging Initiative [ADNI], N = 767, mean age = 75.19, % female = 42.63) and preclinical (BLSA) (N = 207, mean age = 78.68, % female = 42.63) AD, in which we tested their associations with magnetic resonance imaging (MRI) measures of AD-related brain atrophy, cerebrospinal fluid (CSF) biomarkers of AD pathology, risk of conversion to incident AD, and trajectories of cognitive performance. We developed an integrated blood and brain endophenotype score that summarized the relative importance of each metabolite to severity of AD pathology and disease progression (Endophenotype Association Score in Early Alzheimer's Disease [EASE-AD]). Finally, we mapped the main metabolite classes emerging from our analyses to key biological pathways implicated in AD pathogenesis. We found that distinct sphingolipid species including sphingomyelin (SM) with acyl residue sums C16:0, C18:1, and C16:1 (SM C16:0, SM C18:1, SM C16:1) and hydroxysphingomyelin with acyl residue sum C14:1 (SM (OH) C14:1) were consistently associated with severity of AD pathology at autopsy and AD progression across prodromal and preclinical stages. Higher log-transformed blood concentrations of all four sphingolipids in cognitively normal individuals were significantly associated with increased risk of future conversion to incident AD: SM C16:0 (hazard ratio [HR] = 4.430, 95% confidence interval [CI] = 1.703-11.520, p = 0.002), SM C16:1 (HR = 3.455, 95% CI = 1.516-7.873, p = 0.003), SM (OH) C14:1 (HR = 3.539, 95% CI = 1.373-9.122, p = 0.009), and SM C18:1 (HR = 2.255, 95% CI = 1.047-4.855, p = 0.038). The sphingolipid species identified map to several biologically relevant pathways implicated in AD, including tau phosphorylation, amyloid-β (Aβ) metabolism, calcium homeostasis, acetylcholine biosynthesis, and apoptosis. Our study has limitations: the relatively small number of brain tissue samples may have limited our power to detect significant associations, control for heterogeneity between groups, and replicate our findings in independent, autopsy-derived brain samples. CONCLUSIONS We present a novel framework to identify biologically relevant brain and blood metabolites associated with disease pathology and progression during the prodromal and preclinical stages of AD. Our results show that perturbations in sphingolipid metabolism are consistently associated with endophenotypes across preclinical and prodromal AD, as well as with AD pathology at autopsy. Sphingolipids may be biologically relevant biomarkers for the early detection of AD, and correcting perturbations in sphingolipid metabolism may be a plausible and novel therapeutic strategy in AD.
Collapse
Affiliation(s)
- Vijay R. Varma
- Clinical and Translational Neuroscience Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, United States of America
| | - Anup M. Oommen
- Consilience Research Advisors LLP, Bengaluru, Karnataka, India
| | - Sudhir Varma
- HiThru Analytics, Laurel, Maryland, United States of America
| | - Ramon Casanova
- Department of Biostatistical Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Yang An
- Clinical and Translational Neuroscience Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, United States of America
| | - Ryan M. Andrews
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Richard O’Brien
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Juan C. Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jon Toledo
- Department of Neurology, Houston Methodist Hospital, Houston, Texas, United States of America
| | - Rebecca Baillie
- Rosa & Co LLC, San Carlos, California, United States of America
| | - Matthias Arnold
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Gabi Kastenmueller
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - P. Murali Doraiswamy
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, United States of America
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, United States of America
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | | | - Madhav Thambisetty
- Clinical and Translational Neuroscience Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
40
|
Grimm MOW, Michaelson DM, Hartmann T. Omega-3 fatty acids, lipids, and apoE lipidation in Alzheimer's disease: a rationale for multi-nutrient dementia prevention. J Lipid Res 2017; 58:2083-2101. [PMID: 28528321 PMCID: PMC5665674 DOI: 10.1194/jlr.r076331] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/09/2017] [Indexed: 12/14/2022] Open
Abstract
In the last decade, it has become obvious that Alzheimer's disease (AD) is closely linked to changes in lipids or lipid metabolism. One of the main pathological hallmarks of AD is amyloid-β (Aβ) deposition. Aβ is derived from sequential proteolytic processing of the amyloid precursor protein (APP). Interestingly, both, the APP and all APP secretases are transmembrane proteins that cleave APP close to and in the lipid bilayer. Moreover, apoE4 has been identified as the most prevalent genetic risk factor for AD. ApoE is the main lipoprotein in the brain, which has an abundant role in the transport of lipids and brain lipid metabolism. Several lipidomic approaches revealed changes in the lipid levels of cerebrospinal fluid or in post mortem AD brains. Here, we review the impact of apoE and lipids in AD, focusing on the major brain lipid classes, sphingomyelin, plasmalogens, gangliosides, sulfatides, DHA, and EPA, as well as on lipid signaling molecules, like ceramide and sphingosine-1-phosphate. As nutritional approaches showed limited beneficial effects in clinical studies, the opportunities of combining different supplements in multi-nutritional approaches are discussed and summarized.
Collapse
Affiliation(s)
- Marcus O W Grimm
- Department of Experimental Neurology and Department of Neurodegeneration and Neurobiology, and Deutsches Institut für DemenzPrävention (DIDP), Saarland University, Homburg/Saar, Germany
| | - Daniel M Michaelson
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tobias Hartmann
- Department of Experimental Neurology and Department of Neurodegeneration and Neurobiology, and Deutsches Institut für DemenzPrävention (DIDP), Saarland University, Homburg/Saar, Germany
| |
Collapse
|
41
|
Gillman AL, Lee J, Ramachandran S, Capone R, Gonzalez T, Wrasidlo W, Masliah E, Lal R. Small molecule NPT-440-1 inhibits ionic flux through Aβ 1-42 pores: Implications for Alzheimer's disease therapeutics. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2016; 12:2331-2340. [PMID: 27335341 PMCID: PMC5116404 DOI: 10.1016/j.nano.2016.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/31/2016] [Accepted: 06/04/2016] [Indexed: 12/11/2022]
Abstract
Increased levels of soluble amyloid-beta (Aβ) oligomers are suspected to underlie Alzheimer's disease (AD) pathophysiology. These oligomers have been shown to form multi-subunit Aβ pores in bilayers and induce uncontrolled, neurotoxic, ion flux, particularly calcium ions, across cellular membranes that might underlie cognitive impairment in AD. Small molecule interventions that modulate pore activity could effectively prevent or ameliorate their toxic activity. Here we examined the efficacy of a small molecule, NPT-440-1, on modulating amyloid pore permeability. Co-incubation of B103 rat neuronal cells with NPT-440-1 and Aβ1-42 prevented calcium influx. In purified lipid bilayers, we show that a 10-15min preincubation, prior to membrane introduction, was required to prevent conductance. Thioflavin-T and circular dichroism both suggested a reduction in Aβ1-42 β-sheet content during this incubation period. Combined with previous studies on site-specific amino acid substitutions, these results suggest that pharmacological modulation of Aβ1-42 could prevent amyloid pore-mediated AD pathogenesis.
Collapse
Affiliation(s)
- Alan L Gillman
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Joon Lee
- Department of Mechanical and Aerospace Engineering University of California, San Diego, La Jolla, CA, United States
| | - Srinivasan Ramachandran
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States; Department of Mechanical and Aerospace Engineering University of California, San Diego, La Jolla, CA, United States
| | - Ricardo Capone
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Tania Gonzalez
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Wolf Wrasidlo
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States; Neuropore Therapies, Inc., San Diego, CA, United States
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States.
| | - Ratnesh Lal
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States; Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, United States; Department of Mechanical and Aerospace Engineering University of California, San Diego, La Jolla, CA, United States.
| |
Collapse
|
42
|
Chatterjee P, Lim WLF, Shui G, Gupta VB, James I, Fagan AM, Xiong C, Sohrabi HR, Taddei K, Brown BM, Benzinger T, Masters C, Snowden SG, Wenk MR, Bateman RJ, Morris JC, Martins RN. Plasma Phospholipid and Sphingolipid Alterations in Presenilin1 Mutation Carriers: A Pilot Study. J Alzheimers Dis 2016; 50:887-94. [PMID: 26836186 DOI: 10.3233/jad-150948] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Aberrant lipid metabolism has been implicated in sporadic Alzheimer's disease (AD). The current study investigated plasma phospholipid and sphingolipid profiles in individuals carrying PSEN1 mutations responsible for autosomal dominant AD (ADAD). METHODS Study participants evaluated were from the Perth and Melbourne sites of the Dominantly Inherited Alzheimer Network (DIAN) study. Plasma phospholipid and sphingolipid profiles were measured using liquid chromatography coupled with mass spectrometry in 20 PSEN1 mutation carriers (MC; eight of whom were symptomatic and twelve asymptomatic, based on Clinical Dementia Rating scores) and compared with six non carriers (NC) using linear mixed models. Further, AD gold standard biomarker data obtained from the DIAN database were correlated with lipid species significantly altered between MC and NC, using Spearman's correlation coefficient. RESULTS One-hundred and thirty-nine plasma phospholipid and sphingolipid species were measured. Significantly altered species in MC compared to NC primarily belonged to choline and ethanolamine containing phospholipid classes and ceramides. Further phosphatidylcholine species (34:6, 36:5, 40:6) correlated with cerebrospinal fluid tau (p < 0.05), and plasmalogen ethanolamine species (34:2, 36:,4) correlated with both cerebrospinal fluid tau and brain amyloid load within the MC group (p < 0.05). CONCLUSION These findings indicate altered phospholipid and sphingolipid metabolism in ADAD and provide insight into the pathomolecular changes occurring with ADAD pathogenesis. Further, findings reported in this study allow comparison of lipid alterations in ADAD with those reported previously in sporadic AD. The findings observed in the current pilot study warrant validation in the larger DIAN cohort.
Collapse
Affiliation(s)
- Pratishtha Chatterjee
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, WA, Australia.,The McCusker Alzheimer's Research Foundation, Perth, WA, Australia.,The CRC for Mental Health, Australia.,School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | - Wei L F Lim
- The McCusker Alzheimer's Research Foundation, Perth, WA, Australia.,The CRC for Mental Health, Australia.,School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Veer B Gupta
- The McCusker Alzheimer's Research Foundation, Perth, WA, Australia.,The CRC for Mental Health, Australia.,School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | - Ian James
- Institute for Immunology and Infectious diseases, Murdoch University, Perth, WA, Australia
| | - Anne M Fagan
- Department of Neurology, Washington University, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA
| | - Chengjie Xiong
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA.,Division of Biostatistics, Washington University, St. Louis, MO, USA
| | - Hamid R Sohrabi
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, WA, Australia.,The McCusker Alzheimer's Research Foundation, Perth, WA, Australia.,The CRC for Mental Health, Australia.,School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | - Kevin Taddei
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, WA, Australia.,The McCusker Alzheimer's Research Foundation, Perth, WA, Australia.,School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | - Belinda M Brown
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, WA, Australia.,The McCusker Alzheimer's Research Foundation, Perth, WA, Australia.,School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | - Tammie Benzinger
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA.,Department of Radiology, Washington University, St. Louis, MO, USA
| | - Colin Masters
- The Mental Health Research Institute, University of Melbourne, Melbourne, VA, Australia
| | - Stuart G Snowden
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Marcus R Wenk
- Department of Biochemistry and Department of Biological Sciences, National University of Singapore, Singapore
| | - Randall J Bateman
- Department of Neurology, Washington University, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA
| | - John C Morris
- Department of Neurology, Washington University, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA
| | - Ralph N Martins
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, WA, Australia.,The McCusker Alzheimer's Research Foundation, Perth, WA, Australia.,The CRC for Mental Health, Australia.,School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
| |
Collapse
|
43
|
Bienias K, Fiedorowicz A, Sadowska A, Prokopiuk S, Car H. Regulation of sphingomyelin metabolism. Pharmacol Rep 2016; 68:570-81. [PMID: 26940196 DOI: 10.1016/j.pharep.2015.12.008] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 11/24/2015] [Accepted: 12/28/2015] [Indexed: 12/17/2022]
Abstract
Sphingolipids (SFs) represent a large class of lipids playing diverse functions in a vast number of physiological and pathological processes. Sphingomyelin (SM) is the most abundant SF in the cell, with ubiquitous distribution within mammalian tissues, and particularly high levels in the Central Nervous System (CNS). SM is an essential element of plasma membrane (PM) and its levels are crucial for the cell function. SM content in a cell is strictly regulated by the enzymes of SM metabolic pathways, which activities create a balance between SM synthesis and degradation. The de novo synthesis via SM synthases (SMSs) in the last step of the multi-stage process is the most important pathway of SM formation in a cell. The SM hydrolysis by sphingomyelinases (SMases) increases the concentration of ceramide (Cer), a bioactive molecule, which is involved in cellular proliferation, growth and apoptosis. By controlling the levels of SM and Cer, SMSs and SMases maintain cellular homeostasis. Enzymes of SM cycle exhibit unique properties and diverse tissue distribution. Disturbances in their activities were observed in many CNS pathologies. This review characterizes the physiological roles of SM and enzymes controlling SM levels as well as their involvement in selected pathologies of the Central Nervous System, such as ischemia/hypoxia, Alzheimer disease (AD), Parkinson disease (PD), depression, schizophrenia and Niemann Pick disease (NPD).
Collapse
Affiliation(s)
- Kamil Bienias
- Department of Experimental Pharmacology, Medical University of Białystok, Białystok, Poland
| | - Anna Fiedorowicz
- Department of Experimental Pharmacology, Medical University of Białystok, Białystok, Poland; Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Anna Sadowska
- Department of Experimental Pharmacology, Medical University of Białystok, Białystok, Poland
| | - Sławomir Prokopiuk
- Department of Experimental Pharmacology, Medical University of Białystok, Białystok, Poland
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Białystok, Białystok, Poland.
| |
Collapse
|
44
|
|
45
|
Abstract
Extensive evidence has indicated that the breakdown of myelin is associated with Alzheimer's disease (AD) since the vulnerability of oligodendrocytes under Alzheimer's pathology easily induces the myelin breakdown and the loss of the myelin sheath which might be the initiating step in the changes of the earliest stage of AD prior to appearance of amyloid and tau pathology. Considerable research implicated that beta-amyloid (Aβ)-mediated oligodendrocyte dysfunction and myelin breakdown may be via neuroinflammation, oxidative stress and/or apoptosis. It also seems that the oligodendrocyte dysfunction is triggered by the formation of neurofibrillary tangles (NFTs) through inflammation and oxidative stress as the common pathophysiological base. Impaired repair of oligodendrocyte precursor cells (OPCs) might possibly enhance the disease progress under decreased self-healing ability from aging process and pathological factors including Aβ pathology and/or NFTs. Thus, these results have suggested that targeting oligodendrocytes may be a novel therapeutic intervention for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Zhiyou Cai
- a Department of Neurology, Renmin Hospital , Hubei University of Medicine, Shiyan Renmin Hospital , Shiyan , Hubei Province , China
| | - Ming Xiao
- b Department of Anatomy , Nanjing Medical University , Nanjing , Jiangsu , China
| |
Collapse
|
46
|
Arranz-Gibert P, Guixer B, Malakoutikhah M, Muttenthaler M, Guzmán F, Teixidó M, Giralt E. Lipid bilayer crossing--the gate of symmetry. Water-soluble phenylproline-based blood-brain barrier shuttles. J Am Chem Soc 2015; 137:7357-64. [PMID: 25992679 DOI: 10.1021/jacs.5b02050] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Drug delivery to the brain can be achieved by various means, including blood-brain barrier (BBB) disruption, neurosurgical-based approaches, and molecular design. Recently, passive diffusion BBB shuttles have been developed to transport low-molecular-weight drug candidates to the brain which would not be able to cross unaided. The low water solubility of these BBB shuttles has, however, prevented them from becoming a mainstream tool to deliver cargos across membranes. Here, we describe the design, synthesis, physicochemical characterization, and BBB-transport properties of phenylproline tetrapeptides, (PhPro)4, an improved class of BBB shuttles that operates via passive diffusion. These PhPro-based BBB shuttles showed 3 orders of magnitude improvement in water solubility compared to the gold-standard (N-MePhe)4, while retaining very high transport values. Transport capacity was confirmed when two therapeutically relevant cargos, nipecotic acid and l-3,4-dihydroxyphenylalanine (i.e., l-DOPA), were attached to the shuttle. Additionally, we used the unique chiral and conformationally restricted character of the (PhPro)4 shuttle to probe its chiral interactions with the lipid bilayer of the BBB. We studied the transport properties of 16 (PhPro)4 stereoisomers using the parallel artificial membrane permeability assay and looked at differences in secondary structure. Most stereoisomers displayed excellent transport values, yet this study also revealed pairs of enantiomers with high enantiomeric discrimination and different secondary structure, where one enantiomer maintained its high transport values while the other had significantly lower values, thereby confirming that stereochemistry plays a significant role in passive diffusion. This could open the door to the design of chiral and membrane-specific shuttles with potential applications in cell labeling and oncology.
Collapse
Affiliation(s)
- Pol Arranz-Gibert
- †Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona E-08028, Spain
| | - Bernat Guixer
- †Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona E-08028, Spain
| | - Morteza Malakoutikhah
- †Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona E-08028, Spain.,‡Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Markus Muttenthaler
- †Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona E-08028, Spain
| | - Fanny Guzmán
- §Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Meritxell Teixidó
- †Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona E-08028, Spain
| | - Ernest Giralt
- †Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona E-08028, Spain.,∥Department of Organic Chemistry, University of Barcelona, Martí i Franquès 1-11, Barcelona E-08028, Spain
| |
Collapse
|
47
|
Hancock SE, Friedrich MG, Mitchell TW, Truscott RJW, Else PL. Decreases in Phospholipids Containing Adrenic and Arachidonic Acids Occur in the Human Hippocampus over the Adult Lifespan. Lipids 2015; 50:861-72. [PMID: 26001986 DOI: 10.1007/s11745-015-4030-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022]
Abstract
One of the biggest risk factors for developing Alzheimer's disease is advanced age. Despite several studies examining changes to phospholipids in the hippocampus during the pathogenesis of Alzheimer's disease, little is known regarding changes to phospholipids in this region during normal adult aging. This study examined the phospholipid composition of the mitochondrial and microsomal membranes of the human hippocampus from post-mortem tissue of neurologically normal subjects aged between 18 and 104 years. Many of the age-related changes found were in low-to-moderately abundant phospholipids in both membrane fractions, with decreases with age being seen in many phospholipids containing either adrenic or arachidonic acid. The most abundant phospholipid of this type was phosphatidylethanolamine 18:0_22:4, which decreased in both the mitochondrial and microsomal membranes by approximately 20% from ages 20 to 100. Subsequent decreases with age were seen in total adrenic and arachidonic acid in the phospholipids of both membrane fractions, but not in either fatty acid specifically within the phosphatidylethanolamine class. Increases with age were seen in the hippocampus for mitochondrial phosphatidylserine 18:0_22:6. This is the first report of changes to molecular phospholipids of the human hippocampus over the adult lifespan, with this study also providing a comprehensive profile of the phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine phospholipids of the human hippocampus.
Collapse
Affiliation(s)
- Sarah E Hancock
- Illawarra Health and Medical Research Institute, Wollongong, Australia,
| | | | | | | | | |
Collapse
|
48
|
Norris SE, Friedrich MG, Mitchell TW, Truscott RJW, Else PL. Human prefrontal cortex phospholipids containing docosahexaenoic acid increase during normal adult aging, whereas those containing arachidonic acid decrease. Neurobiol Aging 2015; 36:1659-1669. [PMID: 25676385 DOI: 10.1016/j.neurobiolaging.2015.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 12/16/2014] [Accepted: 01/03/2015] [Indexed: 11/19/2022]
Abstract
Membrane phospholipids make up a substantial portion of the human brain, and changes in their amount and composition are thought to play a role in the pathogenesis of age-related neurodegenerative disease. Nevertheless, little is known about the changes that phospholipids undergo during normal adult aging. This study examined changes in phospholipid composition in the mitochondrial and microsomal membranes of human dorsolateral prefrontal cortex over the adult life span. The largest age-related changes were an increase in the abundance of both mitochondrial and microsomal phosphatidylserine 18:0_22:6 by approximately one-third from age 20 to 100 years and a 25% decrease in mitochondrial phosphatidylethanolamine 18:0_20:4. Generally, increases were seen with age in phospholipids containing docosahexaenoic acid across both membrane fractions, whereas phospholipids containing either arachidonic or adrenic acid decreased with age. These findings suggest a gradual change in membrane lipid composition over the adult life span.
Collapse
Affiliation(s)
- Sarah E Norris
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia; School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia.
| | - Michael G Friedrich
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Todd W Mitchell
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia; School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Roger J W Truscott
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Paul L Else
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia; School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
49
|
|
50
|
Momiyama Y. Serum coenzyme Q10 levels as a predictor of dementia in a Japanese general population. Atherosclerosis 2014; 237:433-4. [PMID: 25463069 DOI: 10.1016/j.atherosclerosis.2014.08.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 08/11/2014] [Indexed: 11/16/2022]
Abstract
Mitochondrial impairment and increased oxidative stress are considered to be involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease. Coenzyme Q10 (CoQ10) is a component of the electron transport chain localized on the inner membrane of the mitochondria. In addition to its bioenergetic activity required for ATP synthesis, CoQ10 also has antioxidant activity in mitochondrial and lipid membranes, which protects against the reactive oxidative species generated during oxidative phosphorylation. Several previous studies had reported no significant differences in serum CoQ10 levels between patients with and without dementia, such as Alzheimer's disease. However, in this issue of Atherosclerosis, Yamagishi et al. demonstrate for the first time that a lower serum CoQ10 level is associated with a greater risk of dementia in a Japanese general population. These findings suggest that assessing serum CoQ10 levels could be useful for predicting the development of dementia, rather than as a biomarker for the presence of dementia.
Collapse
Affiliation(s)
- Yukihiko Momiyama
- Department of Cardiology, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo 152-8902, Japan.
| |
Collapse
|