1
|
Silva R, Sobral AF, Dinis-Oliveira RJ, Barbosa DJ. The Link Between Paraquat and Demyelination: A Review of Current Evidence. Antioxidants (Basel) 2024; 13:1354. [PMID: 39594496 PMCID: PMC11590890 DOI: 10.3390/antiox13111354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Paraquat (1,1'-dimethyl-4,4'-bipyridilium dichloride), a widely used bipyridinium herbicide, is known for inducing oxidative stress, leading to extensive cellular toxicity, particularly in the lungs, liver, kidneys, and central nervous system (CNS), and is implicated in fatal poisonings. Due to its biochemical similarities with the neurotoxin 1-methyl-4-phenylpyridinium (MPP+), paraquat has been used as a Parkinson's disease model, although its broader neurotoxic effects suggest the participation of multiple mechanisms. Demyelinating diseases are conditions characterized by damage to the myelin sheath of neurons. They affect the CNS and peripheral nervous system (PNS), resulting in diverse clinical manifestations. In recent years, growing concerns have emerged about the impact of chronic, low-level exposure to herbicides on human health, particularly due to agricultural runoff contaminating drinking water sources and their presence in food. Studies indicate that paraquat may significantly impact myelinating cells, myelin-related gene expression, myelin structure, and cause neuroinflammation, potentially contributing to demyelination. Therefore, demyelination may represent another mechanism of neurotoxicity associated with paraquat, which requires further investigation. This manuscript reviews the potential association between paraquat and demyelination. Understanding this link is crucial for enhancing strategies to minimize exposure and preserve public health.
Collapse
Affiliation(s)
- Renata Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal
| | - Ana Filipa Sobral
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (A.F.S.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (A.F.S.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- FOREN—Forensic Science Experts, Dr. Mário Moutinho Avenue, No. 33-A, 1400-136 Lisbon, Portugal
| | - Daniel José Barbosa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (A.F.S.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
2
|
Gopalan AB, van Uden L, Sprenger RR, Fernandez-Novel Marx N, Bogetofte H, Neveu PA, Meyer M, Noh KM, Diz-Muñoz A, Ejsing CS. Lipotype acquisition during neural development is not recapitulated in stem cell-derived neurons. Life Sci Alliance 2024; 7:e202402622. [PMID: 38418090 PMCID: PMC10902711 DOI: 10.26508/lsa.202402622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/01/2024] Open
Abstract
During development, different tissues acquire distinct lipotypes that are coupled to tissue function and homeostasis. In the brain, where complex membrane trafficking systems are required for neural function, specific glycerophospholipids, sphingolipids, and cholesterol are highly abundant, and defective lipid metabolism is associated with abnormal neural development and neurodegenerative disease. Notably, the production of specific lipotypes requires appropriate programming of the underlying lipid metabolic machinery during development, but when and how this occurs is unclear. To address this, we used high-resolution MSALL lipidomics to generate an extensive time-resolved resource of mouse brain development covering early embryonic and postnatal stages. This revealed a distinct bifurcation in the establishment of the neural lipotype, whereby the canonical lipid biomarkers 22:6-glycerophospholipids and 18:0-sphingolipids begin to be produced in utero, whereas cholesterol attains its characteristic high levels after birth. Using the resource as a reference, we next examined to which extent this can be recapitulated by commonly used protocols for in vitro neuronal differentiation of stem cells. Here, we found that the programming of the lipid metabolic machinery is incomplete and that stem cell-derived cells can only partially acquire a neural lipotype when the cell culture media is supplemented with brain-specific lipid precursors. Altogether, our work provides an extensive lipidomic resource for early mouse brain development and highlights a potential caveat when using stem cell-derived neuronal progenitors for mechanistic studies of lipid biochemistry, membrane biology and biophysics, which nonetheless can be mitigated by further optimizing in vitro differentiation protocols.
Collapse
Affiliation(s)
- Anusha B Gopalan
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, Candidate for Joint PhD Degree Between EMBL and Heidelberg University, Heidelberg, Germany
| | - Lisa van Uden
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Richard R Sprenger
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | | | - Helle Bogetofte
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Pierre A Neveu
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Odense University Hospital, Odense, Denmark
- BRIDGE, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kyung-Min Noh
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christer S Ejsing
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
3
|
Fatty Acid 2-Hydroxylase and 2-Hydroxylated Sphingolipids: Metabolism and Function in Health and Diseases. Int J Mol Sci 2023; 24:ijms24054908. [PMID: 36902339 PMCID: PMC10002949 DOI: 10.3390/ijms24054908] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Sphingolipids containing acyl residues that are hydroxylated at C-2 are found in most, if not all, eukaryotes and certain bacteria. 2-hydroxylated sphingolipids are present in many organs and cell types, though they are especially abundant in myelin and skin. The enzyme fatty acid 2-hydroxylase (FA2H) is involved in the synthesis of many but not all 2-hydroxylated sphingolipids. Deficiency in FA2H causes a neurodegenerative disease known as hereditary spastic paraplegia 35 (HSP35/SPG35) or fatty acid hydroxylase-associated neurodegeneration (FAHN). FA2H likely also plays a role in other diseases. A low expression level of FA2H correlates with a poor prognosis in many cancers. This review presents an updated overview of the metabolism and function of 2-hydroxylated sphingolipids and the FA2H enzyme under physiological conditions and in diseases.
Collapse
|
4
|
Sicard R. High-Performance Chromatographic Separation of Cerebrosides. Methods Mol Biol 2023; 2625:107-113. [PMID: 36653637 DOI: 10.1007/978-1-0716-2966-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
High-performance thin layer chromatography (HPTLC) is a very robust, fast, and inexpensive technique that enables separation of complex mixtures. Here, we describe the analytical separation of glucosylceramide and galactosylceramide by HPTLC. This technique can be used for quantitation purposes but also with small modification for subsequent mass spectrum analysis for structural determination.
Collapse
Affiliation(s)
- Renaud Sicard
- Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA. .,VIVEX Biologics, Inc., Miami, United States.
| |
Collapse
|
5
|
Zaccariotto E, Cachón-González MB, Wang B, Lim S, Hirth B, Park H, Fezoui M, Sardi SP, Mason P, Barker RH, Cox TM. A novel brain-penetrant oral UGT8 inhibitor decreases in vivo galactosphingolipid biosynthesis in murine Krabbe disease. Biomed Pharmacother 2022; 149:112808. [PMID: 35290889 DOI: 10.1016/j.biopha.2022.112808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
Krabbe disease is a rare, inherited neurodegenerative disease due to impaired lysosomal β-galactosylceramidase (GALC) activity and formation of neurotoxic β-galactosylsphingosine ('psychosine'). We investigated substrate reduction therapy with a novel brain-penetrant inhibitor of galactosylceramide biosynthesis, RA 5557, in twitcher mice that lack GALC activity and model Krabbe disease. This thienopyridine derivative selectively inhibits uridine diphosphate-galactose glycosyltransferase 8 (UGT8), the final step in the generation of galactosylceramides which are precursors of sulphatide and, in the pathological lysosome, the immediate source of psychosine. Administration of RA 5557, reduced pathologically elevated psychosine concentrations (72-86%) in the midbrain and cerebral cortex in twitcher mice: the inhibitor decreased galactosylceramides by about 70% in midbrain and cerebral cortex in mutant and wild type animals. Exposure to the inhibitor significantly decreased several characteristic inflammatory response markers without causing apparent toxicity to myelin-producing cells in wild type and mutant mice; transcript abundance of oligodendrocyte markers MBP (myelin basic protein) and murine UGT8 was unchanged. Administration of the inhibitor before conception and during several breeding cycles to mice did not impair fertility and gave rise to healthy offspring. Nevertheless, given the unchanged lifespan, it appears that GALC has critical functions in the nervous system beyond the hydrolysis of galactosylceramide and galactosylsphingosine. Our findings support further therapeutic exploration of orally active UGT8 inhibitors in Krabbe disease and related galactosphingolipid disorders. The potent thienopyridine derivative with effective target engagement here studied appears to have an acceptable safety profile in vivo; judicious dose optimization will be needed to ensure efficacious clinical translation.
Collapse
Affiliation(s)
- Eva Zaccariotto
- Department of Medicine, University of Cambridge, Cambridge, UK.
| | | | - Bing Wang
- Early Development, Sanofi R&D, Waltham, MA, United States
| | - Sungtaek Lim
- Integrated Drug Discovery, Sanofi R&D, Waltham, MA, United States
| | - Bradford Hirth
- Integrated Drug Discovery, Sanofi R&D, Waltham, MA, United States
| | - Hyejung Park
- Early Development, Sanofi R&D, Waltham, MA, United States
| | - Malika Fezoui
- Rare and Neurologic Disease Research, Sanofi R&D, Framingham, MA, United States
| | - S Pablo Sardi
- Rare and Neurologic Disease Research, Sanofi R&D, Framingham, MA, United States
| | - Paul Mason
- Rare and Neurologic Disease Research, Sanofi R&D, Framingham, MA, United States
| | - Robert H Barker
- Rare and Neurologic Disease Research, Sanofi R&D, Framingham, MA, United States
| | - Timothy M Cox
- Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Wrapping axons in mammals and Drosophila: Different lipids, same principle. Biochimie 2020; 178:39-48. [PMID: 32800899 DOI: 10.1016/j.biochi.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022]
Abstract
Plasma membranes of axon-wrapping glial cells develop specific cylindrical bilayer membranes that surround thin individual axons or axon bundles. Axons are wrapped with single layered glial cells in lower organisms whereas in the mammalian nervous system, axons are surrounded with a characteristic complex multilamellar myelin structure. The high content of lipids in myelin suggests that lipids play crucial roles in the structure and function of myelin. The most striking feature of myelin lipids is the high content of galactosylceramide (GalCer). Serological and genetic studies indicate that GalCer plays a key role in the formation and function of the myelin sheath in mammals. In contrast to mammals, Drosophila lacks GalCer. Instead of GalCer, ceramide phosphoethanolamine (CPE) has an important role to ensheath axons with glial cells in Drosophila. GalCer and CPE share similar physical properties: both lipids have a high phase transition temperature and high packing, are immiscible with cholesterol and form helical liposomes. These properties are caused by both the strong headgroup interactions and the tight packing resulting from the small size of the headgroup and the hydrogen bonds between lipid molecules. These results suggest that mammals and Drosophila wrap axons using different lipids but the same conserved principle.
Collapse
|
7
|
Xia CY, Xu JK, Pan CH, Lian WW, Yan Y, Ma BZ, He J, Zhang WK. Connexins in oligodendrocytes and astrocytes: Possible factors for demyelination in multiple sclerosis. Neurochem Int 2020; 136:104731. [PMID: 32201280 DOI: 10.1016/j.neuint.2020.104731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022]
Abstract
Increasing evidences support that glial connexins are involved in the demyelination pathology of multiple sclerosis (MS), a chronic inflammatory demyelinating disorder. Here, we review the data from patients with MS and animal models of MS that implicate connexins in demyelination. Connexins expressed in oligodendrocytes and astrocytes show diverse changes at the different phases of MS. Loss of oligodendrocyte or astrocyte connexins contributes to demyelination and exaggerates the pathology of MS. Channel-dependent and -independent connexins are involved in the pathology of demyelination, which is related with myelin integrity, metabolic homeostasis, the brain-blood barrier, the immune cell infiltration, and the inflammatory response. A comprehensive understanding of connexin function in demyelination may provide new therapeutic targets for MS.
Collapse
Affiliation(s)
- Cong-Yuan Xia
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Jie-Kun Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Chen-Hao Pan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Wen-Wen Lian
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yu Yan
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Bing-Zhi Ma
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Jun He
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Wei-Ku Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| |
Collapse
|
8
|
Davis DL, Mahawar U, Pope VS, Allegood J, Sato-Bigbee C, Wattenberg BW. Dynamics of sphingolipids and the serine palmitoyltransferase complex in rat oligodendrocytes during myelination. J Lipid Res 2020; 61:505-522. [PMID: 32041816 DOI: 10.1194/jlr.ra120000627] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/05/2020] [Indexed: 12/30/2022] Open
Abstract
Myelin is a unique lipid-rich membrane structure that accelerates neurotransmission and supports neuronal function. Sphingolipids are critical myelin components. Yet sphingolipid content and synthesis have not been well characterized in oligodendrocytes, the myelin-producing cells of the CNS. Here, using quantitative real-time PCR, LC-MS/MS-based lipid analysis, and biochemical assays, we examined sphingolipid synthesis during the peak period of myelination in the postnatal rat brain. Importantly, we characterized sphingolipid production in isolated oligodendrocytes. We analyzed sphingolipid distribution and levels of critical enzymes and regulators in the sphingolipid biosynthetic pathway, with focus on the serine palmitoyltransferase (SPT) complex, the rate-limiting step in this pathway. During myelination, levels of the major SPT subunits increased and oligodendrocyte maturation was accompanied by extensive alterations in the composition of the SPT complex. These included changes in the relative levels of two alternative catalytic subunits, SPTLC2 and -3, in the relative levels of isoforms of the small subunits, ssSPTa and -b, and in the isoform distribution of the SPT regulators, the ORMDLs. Myelination progression was accompanied by distinct changes in both the nature of the sphingoid backbone and the N-acyl chains incorporated into sphingolipids. We conclude that the distribution of these changes among sphingolipid family members is indicative of a selective channeling of the ceramide backbone toward specific downstream metabolic pathways during myelination. Our findings provide insights into myelin production in oligodendrocytes and suggest how dysregulation of the biosynthesis of this highly specialized membrane could contribute to demyelinating diseases.
Collapse
Affiliation(s)
- Deanna L Davis
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Usha Mahawar
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Victoria S Pope
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Carmen Sato-Bigbee
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Binks W Wattenberg
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| |
Collapse
|
9
|
Fewou SN, Röckle I, Hildebrandt H, Eckhardt M. Transgenic overexpression of polysialyltransferase ST8SiaIV under the control of a neuron-specific promoter does not affect brain development but impairs exploratory behavior. Glycobiology 2019; 29:657-668. [PMID: 31147692 PMCID: PMC6704368 DOI: 10.1093/glycob/cwz040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 11/12/2022] Open
Abstract
A large body of the literature has demonstrated that the polysialic acid (polySia) modification of the neural cell adhesion molecule (NCAM) is a key regulator of cellular interactions during brain development, maintenance and plasticity. To properly fulfill these functions, polySia concentration has to be carefully controlled. This is done by the regulation of the expression of the two polySia-synthesizing enzymes ST8SiaII and ST8SiaIV. From this point of view we and others have demonstrated that downregulation of ST8SiaIV during oligodendrocyte differentiation is a prerequisite for efficient myelin formation and maintenance. Here, we addressed the question whether the prevention of polySia downregulation in neurons affects brain and particularly myelin development and functioning. For this purpose, we developed transgenic (tg) mouse lines overexpressing the polysialyltransferase ST8SiaIV in neurons. tg expression of ST8SiaIV prevented the postnatal downregulation of polySia, and most of the polySias in the forebrain and brain stem of adult tg mice were associated with NCAM-140 and NCAM-180 isoforms. Structural examination of the brain revealed no overt abnormalities of axons and myelin. In addition, ultrastructural and western blot analyses indicated normal myelin development. However, behavioral studies revealed reduced rearing activity, a measure for exploratory behavior, while parameters of motor activity were not affected in tg mice. Taken together, these results suggest that a persisting presence of polySia in neurons has no major effect on brain structure, myelination and myelin maintenance, but causes mild behavioral changes.
Collapse
Affiliation(s)
- Simon Ngamli Fewou
- Institut für Biochemie und Molekularbiologie, Universität Bonn, Bonn, Germany.,Institut für Klinische Biochemie, Medizinische Hochschule Hannover, Hannover, Germany.,Faculty of Health Sciences, Université des Montagnes, Bangangte, Cameroon
| | - Iris Röckle
- Institut für Klinische Biochemie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Herbert Hildebrandt
- Institut für Klinische Biochemie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Matthias Eckhardt
- Institut für Biochemie und Molekularbiologie, Universität Bonn, Bonn, Germany
| |
Collapse
|
10
|
Abstract
High-performance thin-layer chromatography (HPTLC) is a very robust, fast, and inexpensive technique that enables separation of complex mixtures. Here, we describe the analytical separation of glucosylceramide and galactosylceramide by HPTLC. This technique can be used for quantitation purposes but also with small modification for subsequent mass spectrum analyses for structural determination.
Collapse
Affiliation(s)
| | - Ralf Landgraf
- Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, 33136, FL, USA
| |
Collapse
|
11
|
Hindle SJ, Hebbar S, Schwudke D, Elliott CJH, Sweeney ST. A saposin deficiency model in Drosophila: Lysosomal storage, progressive neurodegeneration and sensory physiological decline. Neurobiol Dis 2016; 98:77-87. [PMID: 27913291 PMCID: PMC5319729 DOI: 10.1016/j.nbd.2016.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/10/2016] [Accepted: 11/25/2016] [Indexed: 02/06/2023] Open
Abstract
Saposin deficiency is a childhood neurodegenerative lysosomal storage disorder (LSD) that can cause premature death within three months of life. Saposins are activator proteins that promote the function of lysosomal hydrolases that mediate the degradation of sphingolipids. There are four saposin proteins in humans, which are encoded by the prosaposin gene. Mutations causing an absence or impaired function of individual saposins or the whole prosaposin gene lead to distinct LSDs due to the storage of different classes of sphingolipids. The pathological events leading to neuronal dysfunction induced by lysosomal storage of sphingolipids are as yet poorly defined. We have generated and characterised a Drosophila model of saposin deficiency that shows striking similarities to the human diseases. Drosophila saposin-related (dSap-r) mutants show a reduced longevity, progressive neurodegeneration, lysosomal storage, dramatic swelling of neuronal soma, perturbations in sphingolipid catabolism, and sensory physiological deterioration. Our data suggests a genetic interaction with a calcium exchanger (Calx) pointing to a possible calcium homeostasis deficit in dSap-r mutants. Together these findings support the use of dSap-r mutants in advancing our understanding of the cellular pathology implicated in saposin deficiency and related LSDs. Drosophila model of PSD recapitulates neurodegenerative phenotype of human PSD. Preferential degeneration of sensory regions correlates with loss of sensory function. Sphingosine levels rise with age with an imbalance in sphingosine/ceramide ratios. Genetic interaction with the Na +/Ca + exchanger points to a calcium regulation deficit.
Collapse
Affiliation(s)
| | - Sarita Hebbar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
| | - Dominik Schwudke
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
| | | | - Sean T Sweeney
- Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
12
|
Sugimoto M, Shimizu Y, Yoshioka T, Wakabayashi M, Tanaka Y, Higashino K, Numata Y, Sakai S, Kihara A, Igarashi Y, Kuge Y. Histological analyses by matrix-assisted laser desorption/ionization-imaging mass spectrometry reveal differential localization of sphingomyelin molecular species regulated by particular ceramide synthase in mouse brains. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1554-65. [DOI: 10.1016/j.bbalip.2015.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/18/2015] [Accepted: 09/16/2015] [Indexed: 11/27/2022]
|
13
|
Uemura S, Shishido F, Tani M, Mochizuki T, Abe F, Inokuchi JI. Loss of hydroxyl groups from the ceramide moiety can modify the lateral diffusion of membrane proteins in S. cerevisiae. J Lipid Res 2014; 55:1343-56. [PMID: 24875539 DOI: 10.1194/jlr.m048637] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Indexed: 12/15/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, structural diversities of complex sphingolipids [inositol phosphorylceramide (IPC), mannosylinositol phosphorylceramide, and mannosyldiinositol phosphorylceramide] are often observed in the presence or absence of hydroxyl groups on the C-4 position of long-chain base (C4-OH) and the C-2 position of very long-chain fatty acids (C2-OH), but the biological significance of these groups remains unclear. Here, we evaluated cellular membrane fluidity in hydroxyl group-defective yeast mutants by fluorescence recovery after photobleaching. The lateral diffusion of enhanced green fluorescent protein-tagged hexose transporter 1 (Hxt1-EGFP) was influenced by the absence of C4-OH and/or C2-OH. Notably, the fluorescence recovery of Hxt1-EGFP was dramatically decreased in the sur2Δ mutant (absence of C4-OH) under the csg1Δcsh1Δ background, in which mannosylation of IPC is blocked leading to IPC accumulation, while the recovery in the scs7Δ mutant (absence of C2-OH) under the same background was modestly decreased. In addition, the amount of low affinity tryptophan transporter 1 (Tat1)-EGFP was markedly decreased in the sur2Δcsg1Δcsh1Δ mutant and accumulated in intracellular membranes in the scs7Δcsg1Δcsh1Δ mutant without altering its protein expression. These results suggest that C4-OH and C2-OH are most probably critical factors for maintaining membrane fluidity and proper turnover of membrane molecules in yeast containing complex sphingolipids with only one hydrophilic head group.
Collapse
Affiliation(s)
- Satoshi Uemura
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai 981-8558, Japan Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Japan
| | - Fumi Shishido
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai 981-8558, Japan
| | - Motohiro Tani
- Department of Chemistry, Kyushu University, Fukuoka 812-8581, Japan
| | - Takahiro Mochizuki
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Japan
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Japan Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Japan
| | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai 981-8558, Japan
| |
Collapse
|
14
|
Role of galactosylceramide and sulfatide in oligodendrocytes and CNS myelin: formation of a glycosynapse. ADVANCES IN NEUROBIOLOGY 2014; 9:263-91. [PMID: 25151383 DOI: 10.1007/978-1-4939-1154-7_12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The two major glycosphingolipids of myelin, galactosylceramide (GalC) and sulfatide (SGC), interact with each other by trans carbohydrate-carbohydrate interactions in vitro. They face each other in the apposed extracellular surfaces of the multilayered myelin sheath produced by oligodendrocytes and could also contact each other between apposed oligodendrocyte processes. Multivalent galactose and sulfated galactose, in the form of GalC/SGC-containing liposomes or silica nanoparticles conjugated to galactose and galactose-3-sulfate, interact with GalC and SGC in the membrane sheets of oligodendrocytes in culture. This interaction causes transmembrane signaling, loss of the cytoskeleton and clustering of membrane domains, similar to the effects of cross-linking by anti-GalC and anti-SGC antibodies. These effects suggest that GalC and SGC could participate in glycosynapses, similar to neural synapses or the immunological synapse, between GSL-enriched membrane domains in apposed oligodendrocyte membranes or extracellular surfaces of mature myelin. Formation of such glycosynapses in vivo would be important for myelination and/or oligodendrocyte/myelin function.
Collapse
|
15
|
Hayashi T, Hayashi E, Fujimoto M, Sprong H, Su TP. The lifetime of UDP-galactose:ceramide galactosyltransferase is controlled by a distinct endoplasmic reticulum-associated degradation (ERAD) regulated by sigma-1 receptor chaperones. J Biol Chem 2012; 287:43156-69. [PMID: 23105111 PMCID: PMC3522309 DOI: 10.1074/jbc.m112.380444] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 10/20/2012] [Indexed: 11/06/2022] Open
Abstract
The glycosphingolipid biosynthesis is initiated by monoglycosylation of ceramides, the action of which is catalyzed either by UDP-glucose:ceramide glucosyltransferase or by UDP-galactose:ceramide galactosyltransferase (CGalT). CGalT is expressed predominantly at the endoplasmic reticulum (ER) of oligodendrocytes and is responsible for synthesizing galactosylceramides (GalCer) that play an important role in regulation of axon conductance. However, despite the importance of ceramide monoglycosylation enzymes in a spectrum of cellular functions, the mechanism that fine tunes activities of those enzymes is largely unknown. In the present study, we demonstrated that the sigma-1 receptor (Sig-1R) chaperone, the mammalian homologue of a yeast C8-C7 sterol isomerase, controls the protein level and activity of the CGalT enzyme via a distinct ER-associated degradation system involving Insig. The Sig-1R forms a complex with Insig via its transmembrane domain partly in a sterol-dependent manner and associates with CGalT at the ER. The knockdown of Sig-1Rs dramatically prolonged the lifetime of CGalT without affecting the trimming of N-linked oligosaccharides at CGalT. The increased lifetime leads to the up-regulation of CGalT protein as well as elevated enzymatic activity in CHO cells stably expressing CGalT. Knockdown of Sig-1Rs also decreased CGalT degradation endogenously expressed in D6P2T-schwannoma cells. Our data suggest that Sig-1Rs negatively regulate the activity of GalCer synthesis under physiological conditions by enhancing the degradation of CGalT through regulation of the dynamics of Insig in the lipid-activated ER-associated degradation system. The GalCer synthesis may thus be influenced by sterols at the ER.
Collapse
Affiliation(s)
| | | | | | - Hein Sprong
- the National Institute of Public Health and Environment, Laboratory for Zoonoses and Environmental Microbiology, Bilthoven, Netherlands
| | - Tsung-Ping Su
- the Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, NIDA, National Institutes of Health, Baltimore, Maryland 21224 and
| |
Collapse
|
16
|
Lee H, Lerno LA, Choe Y, Chu CS, Gillies LA, Grimm R, Lebrilla CB, German JB. Multiple precursor ion scanning of gangliosides and sulfatides with a reversed-phase microfluidic chip and quadrupole time-of-flight mass spectrometry. Anal Chem 2012; 84:5905-12. [PMID: 22697387 PMCID: PMC3402638 DOI: 10.1021/ac300254d] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Precise profiling of polar lipids including gangliosides and sulfatides is a necessary step in understanding the diverse physiological role of these lipids. We have established an efficient method for the profiling of polar lipids using reversed-phase nano high-performance liquid chromatography microfluidic chip quadrupole time-of-flight mass spectrometry (nano-HPLC-chip Q-TOF/MS). A microfluidic chip design provides improved chromatographic performance, efficient separation, and stable nanospray while the advanced high-resolution mass spectrometer allowed for the identification of complex isobaric polar lipids such as NeuAc- and NeuGc-containing gangliosides. Lipid classes were identified based on the characteristic fragmentation product ions generated during data-dependent tandem mass spectrometry (MS/MS) experiments. Each class was monitored by a postprocessing precursor ion scan. Relatively simple quantitation and identification of intact ions was possible due to the reproducible retention times provided by the nano-HPLC chip. The method described in this paper was used to profile polar lipids from mouse brain, which was found to contain 17 gangliosides and 13 sulfatides. Types and linkages of the monosaccharides and their acetyl modifications were identified by low-energy collision-induced dissociation (CID) (40 V), and the type of sphingosine base was identified by higher energy CID (80 V). Accurate mass measurements and chromatography unveiled the degree of unsaturation and hydroxylation in the ceramide lipid tails.
Collapse
Affiliation(s)
- Hyeyoung Lee
- Department of Food Science and Technology, University of California, Davis, CA 95616, United States
| | - Larry A. Lerno
- Department of Chemistry, University of California, Davis, CA 95616, United States
| | - Youngshik Choe
- Department of Neurology, University of California, San Francisco, CA 94158, United States
| | - Caroline S. Chu
- Department of Chemistry, University of California, Davis, CA 95616, United States
| | - Laura A. Gillies
- Department of Food Science and Technology, University of California, Davis, CA 95616, United States
| | - Rudolf Grimm
- Robert Mondavi Institute for Wine and Food Science, University of California, Davis, CA 95616, United States
- Agilent Technologies, Life Science Group, Santa Clara, CA 95051, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, CA 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, United States
| | - J. Bruce German
- Department of Food Science and Technology, University of California, Davis, CA 95616, United States
- Foods for Health Institute, University of California, Davis, CA 95616, United States
| |
Collapse
|
17
|
Sedlmaier A, Wernert N, Gallitzendörfer R, Abouzied MM, Gieselmann V, Franken S. Overexpression of hepatoma-derived growth factor in melanocytes does not lead to oncogenic transformation. BMC Cancer 2011; 11:457. [PMID: 22014102 PMCID: PMC3213223 DOI: 10.1186/1471-2407-11-457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 10/20/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND HDGF is a growth factor which is overexpressed in a wide range of tumors. Importantly, expression levels were identified as a prognostic marker in some types of cancer such as melanoma. METHODS To investigate the presumed oncogenic/transforming capacity of HDGF, we generated transgenic mice overexpressing HDGF in melanocytes. These mice were bred with mice heterozygous for a defective copy of the Ink4a tumor suppressor gene and were exposed to UV light to increase the risk for tumor development both genetically and physiochemically. Mice were analyzed by immunohistochemistry and Western blotting. Furthermore, primary melanocytes were isolated from different strains created. RESULTS Transgenic animals overexpressed HDGF in hair follicle melanocytes. Interestingly, primary melanocytes isolated from transgenic animals were not able to differentiate in vitro whereas cells isolated from wild type and HDGF-deficient animals were. Although, HDGF-/-/Ink4a+/- mice displayed an increased number of epidermoid cysts after exposure to UV light, no melanomas or premelanocytic alterations could be detected in this mouse model. CONCLUSIONS The results therefore provide no evidence that HDGF has a transforming capacity in tumor development. Our results in combination with previous findings point to a possible role in cell differentiation and suggest that HDGF promotes tumor progression after secondary upregulation and may represent another protein fitting into the concept of non-oncogene addiction of tumor tissue.
Collapse
Affiliation(s)
- Angela Sedlmaier
- Institute of Biochemistry and Molecular Biology, University of Bonn, Nussallee 11, 53115 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Merrill AH. Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 2011; 111:6387-422. [PMID: 21942574 PMCID: PMC3191729 DOI: 10.1021/cr2002917] [Citation(s) in RCA: 572] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Indexed: 12/15/2022]
Affiliation(s)
- Alfred H Merrill
- School of Biology, and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA.
| |
Collapse
|
19
|
Ben-David O, Pewzner-Jung Y, Brenner O, Laviad EL, Kogot-Levin A, Weissberg I, Biton IE, Pienik R, Wang E, Kelly S, Alroy J, Raas-Rothschild A, Friedman A, Brügger B, Merrill AH, Futerman AH. Encephalopathy caused by ablation of very long acyl chain ceramide synthesis may be largely due to reduced galactosylceramide levels. J Biol Chem 2011; 286:30022-33. [PMID: 21705317 PMCID: PMC3191043 DOI: 10.1074/jbc.m111.261206] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/22/2011] [Indexed: 01/08/2023] Open
Abstract
Sphingolipids (SLs) act as signaling molecules and as structural components in both neuronal cells and myelin. We now characterize the biochemical, histological, and behavioral abnormalities in the brain of a mouse lacking very long acyl (C22-C24) chain SLs. This mouse, which is defective in the ability to synthesize C22-C24-SLs due to ablation of ceramide synthase 2, has reduced levels of galactosylceramide (GalCer), a major component of myelin, and in particular reduced levels of non-hydroxy-C22-C24-GalCer and 2-hydroxy-C22-C24- GalCer. Noteworthy brain lesions develop with a time course consistent with a vital role for C22-C24-GalCer in myelin stability. Myelin degeneration and detachment was observed as was abnormal motor behavior originating from a subcortical region. Additional abnormalities included bilateral and symmetrical vacuolization and gliosis in specific brain areas, which corresponded to some extent to the pattern of ceramide synthase 2 expression, with astrogliosis considerably more pronounced than microglial activation. Unexpectedly, unidentified storage materials were detected in lysosomes of astrocytes, reminiscent of the accumulation that occurs in lysosomal storage disorders. Together, our data demonstrate a key role in the brain for SLs containing very long acyl chains and in particular GalCer with a reduction in their levels leading to distinctive morphological abnormalities in defined brain regions.
Collapse
Affiliation(s)
| | | | - Ori Brenner
- Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Aviram Kogot-Levin
- Department of Human Genetics and Metabolic Diseases, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Itai Weissberg
- Department of Physiology and Neurobiology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Inbal E. Biton
- Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Reut Pienik
- From the Departments of Biological Chemistry and
| | - Elaine Wang
- School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0230
| | - Samuel Kelly
- School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0230
| | - Joseph Alroy
- Department of Pathology, Tufts University Schools of Medicine and Veterinary Medicine and Tufts Medical Center, Boston, Massachusetts 01536, and
| | - Annick Raas-Rothschild
- Department of Human Genetics and Metabolic Diseases, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Alon Friedman
- Department of Physiology and Neurobiology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Britta Brügger
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Alfred H. Merrill
- School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0230
| | | |
Collapse
|
20
|
Yuki D, Sugiura Y, Zaima N, Akatsu H, Hashizume Y, Yamamoto T, Fujiwara M, Sugiyama K, Setou M. Hydroxylated and non-hydroxylated sulfatide are distinctly distributed in the human cerebral cortex. Neuroscience 2011; 193:44-53. [PMID: 21802498 DOI: 10.1016/j.neuroscience.2011.07.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/18/2011] [Accepted: 07/19/2011] [Indexed: 10/17/2022]
Abstract
Sulfatide (ST) is a sphingolipid with an important role in the central nervous system as a major component of the myelin sheath. ST contains a structurally variable ceramide moiety, with a fatty acid substituent of varying carbon-chain length and double-bond number. Hydroxylation at the α-2 carbon position of the fatty acid is found in half the population of ST molecules. Recent genetic studies of fatty acid 2-hydroxylase (FA2H) indicate that these hydroxylated sphingolipids influence myelin sheath stability. However, their distribution is unknown. Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) enables the analysis of distinct distributions of individual ST molecular species in tissue section. We examined human cerebral cortex tissue sections with MALDI-IMS, identifying and characterizing the distributions of 14 ST species. The distribution analysis reveals that the composition ratios of non-hydroxylated/hydroxylated STs are clearly reversed at the border between white and gray matter; the hydroxylated group is the dominant ST species in the gray matter. These results suggest that hydroxylated STs are highly expressed in oligodendrocytes in gray matter and might form stable myelin sheaths. As a clinical application, we analyzed a brain with Alzheimer's disease (AD) as a representative neurodegenerative disease. Although previous studies of AD pathology have reported that the amount of total ST is decreased in the cerebral cortex, as far as the compositional distributions of STs are concerned, AD brains were similar to those in control brains. In conclusion, we suggest that MALDI-IMS is a useful tool for analysis of the distributions of various STs and this application might provide novel insight in the clinical study of demyelinating diseases.
Collapse
Affiliation(s)
- D Yuki
- Research and Development Headquarters, Lion Corporation, 7-2-1 Hirai, Edogawa-ku, Tokyo 132-0035, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Maier H, Meixner M, Hartmann D, Sandhoff R, Wang-Eckhardt L, Zöller I, Gieselmann V, Eckhardt M. Normal fur development and sebum production depends on fatty acid 2-hydroxylase expression in sebaceous glands. J Biol Chem 2011; 286:25922-34. [PMID: 21628453 DOI: 10.1074/jbc.m111.231977] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
2-Hydroxylated fatty acid (HFA)-containing sphingolipids are abundant in mammalian skin and are believed to play a role in the formation of the epidermal barrier. Fatty acid 2-hydroxylase (FA2H), required for the synthesis of 2-hydroxylated sphingolipids in various organs, is highly expressed in skin, and previous in vitro studies demonstrated its role in the synthesis of HFA sphingolipids in human keratinocytes. Unexpectedly, however, mice deficient in FA2H did not show significant changes in their epidermal HFA sphingolipids. Expression of FA2H in murine skin was restricted to the sebaceous glands, where it was required for synthesis of 2-hydroxylated glucosylceramide and a fraction of type II wax diesters. Absence of FA2H resulted in hyperproliferation of sebocytes and enlarged sebaceous glands during hair follicle morphogenesis and anagen (active growth phase) in adult mice. This was accompanied by a significant up-regulation of the epidermal growth factor receptor ligand epigen in sebocytes. Loss of FA2H significantly altered the composition and physicochemical properties of sebum, which often blocked the hair canal, apparently causing a delay in the hair fiber exit. Furthermore, mice lacking FA2H displayed a cycling alopecia with hair loss in telogen. These results underline the importance of the sebaceous glands and suggest a role of specific sebaceous gland or sebum lipids, synthesized by FA2H, in the hair follicle homeostasis.
Collapse
Affiliation(s)
- Helena Maier
- Institute of Biochemistry and Molecular Biology, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Barrier L, Fauconneau B, Noël A, Ingrand S. Ceramide and Related-Sphingolipid Levels Are Not Altered in Disease-Associated Brain Regions of APP and APP/PS1 Mouse Models of Alzheimer's Disease: Relationship with the Lack of Neurodegeneration? Int J Alzheimers Dis 2010; 2011:920958. [PMID: 21234372 PMCID: PMC3014734 DOI: 10.4061/2011/920958] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 11/16/2010] [Indexed: 02/06/2023] Open
Abstract
There is evidence linking sphingolipid abnormalities, APP processing, and neuronal death in Alzheimer's disease (AD). We previously reported a strong elevation of ceramide levels in the brain of the APP(SL)/PS1Ki mouse model of AD, preceding the neuronal death. To extend these findings, we analyzed ceramide and related-sphingolipid contents in brain from two other mouse models (i.e., APP(SL) and APP(SL)/PS1(M146L)) in which the time-course of pathology is closer to that seen in most currently available models. Conversely to our previous work, ceramides did not accumulate in disease-associated brain regions (cortex and hippocampus) from both models. However, the APP(SL)/PS1Ki model is unique for its drastic neuronal loss coinciding with strong accumulation of neurotoxic Aβ isoforms, not observed in other animal models of AD. Since there are neither neuronal loss nor toxic Aβ species accumulation in APP(SL) mice, we hypothesized that it might explain the lack of ceramide accumulation, at least in this model.
Collapse
Affiliation(s)
- Laurence Barrier
- Groupe de Recherche sur le Vieillissement Cérébral, GreViC EA 3808, Faculté de Médecine et de Pharmacie, 6 rue de la Milétrie, BP 199, 86034 Poitiers Cedex, France
| | | | | | | |
Collapse
|
23
|
Gender-dependent accumulation of ceramides in the cerebral cortex of the APPSL/PS1Ki mouse model of Alzheimer’s disease. Neurobiol Aging 2010; 31:1843-53. [DOI: 10.1016/j.neurobiolaging.2008.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 09/09/2008] [Accepted: 10/15/2008] [Indexed: 12/14/2022]
|
24
|
Chen Y, Liu Y, Sullards MC, Merrill AH. An introduction to sphingolipid metabolism and analysis by new technologies. Neuromolecular Med 2010; 12:306-19. [PMID: 20680704 PMCID: PMC2982954 DOI: 10.1007/s12017-010-8132-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 07/20/2010] [Indexed: 01/20/2023]
Abstract
Sphingolipids (SP) are a complex class of molecules found in essentially all eukaryotes and some prokaryotes and viruses where they influence membrane structure, intracellular signaling, and interactions with the extracellular environment. Because of the combinatorial nature of their biosynthesis, there are thousands of SP subspecies varying in the lipid backbones and complex phospho- and glycoheadgroups. Therefore, comprehensive or “sphingolipidomic” analyses (structure-specific, quantitative analyses of all SP, or at least all members of a critical subset) are needed to know which and how much of these subspecies are present in a system as a step toward understanding their functions. Mass spectrometry and related novel techniques are able to quantify a small fraction, but nonetheless a substantial number, of SP and are beginning to provide information about their localization. This review summarizes the basic metabolism of SP and state-of-art mass spectrometric techniques that are producing insights into SP structure, metabolism, functions, and some of the dysfunctions of relevance to neuromedicine.
Collapse
Affiliation(s)
- Yanfeng Chen
- School of Chemistry and Biochemistry, The Wallace H. Coulter Department of Biomedical Engineering and the Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | |
Collapse
|
25
|
Becker I, Lodder J, Gieselmann V, Eckhardt M. Molecular characterization of N-acetylaspartylglutamate synthetase. J Biol Chem 2010; 285:29156-64. [PMID: 20643647 DOI: 10.1074/jbc.m110.111765] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The dipeptide N-acetylaspartyl-glutamate (NAAG) is an abundant neuropeptide in the mammalian brain. Despite this fact, its physiological role is poorly understood. NAAG is synthesized by a NAAG synthetase catalyzing the ATP-dependent condensation of N-acetylaspartate and glutamate. In vitro NAAG synthetase activity has not been described, and the enzyme has not been purified. Using a bioinformatics approach we identified a putative dipeptide synthetase specifically expressed in the nervous system. Expression of the gene, which we named NAAGS (for NAAG synthetase) was sufficient to induce NAAG synthesis in primary astrocytes or CHO-K1 and HEK-293T cells when they coexpressed the NAA transporter NaDC3. Furthermore, coexpression of NAAGS and the recently identified N-acetylaspartate (NAA) synthase, Nat8l, in CHO-K1 or HEK-293T cells was sufficient to enable these cells to synthesize NAAG. Identity of the reaction product of NAAGS was confirmed by HPLC and electrospray ionization tandem mass spectrometry (ESI-MS). High expression levels of NAAGS were restricted to the brain, spinal cord, and testis. Taken together our results strongly suggest that the identified gene encodes a NAAG synthetase. Its identification will enable further studies to examine the role of this abundant neuropeptide in the vertebrate nervous system.
Collapse
Affiliation(s)
- Ivonne Becker
- Institute of Biochemistry and Molecular Biology, University of Bonn, D-53115 Bonn, Germany
| | | | | | | |
Collapse
|
26
|
van Zyl R, Gieselmann V, Eckhardt M. Elevated sulfatide levels in neurons cause lethal audiogenic seizures in mice. J Neurochem 2010; 112:282-95. [DOI: 10.1111/j.1471-4159.2009.06458.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Abstract
To analyze myelin structure and the composition of myelinated tissue in the African lungfish(Protopterus dolloi), we used a combination of ultrastructural and biochemical techniques. Electron microscopy showed typical multilamellar myelin: CNS sheaths abutted one another, and PNS sheaths were separated by endoneurial collagen. The radial component, prominent in CNS myelin of higher vertebrates, was suggested by the pattern of staining but was poorly organized. The lipid and myelin protein compositions of lungfish tissues more closely resembled those of teleost than those of higher vertebrates (frog, mouse). Of particular note, for example, lungfish glycolipids lacked hydroxy fatty acids. Native myelin periodicities from unfixed nerves were in the range of those for higher vertebrates rather than for teleost fish. Lungfish PNS myelin had wider inter-membrane spaces compared with other vertebrates, and lungfish CNS myelin had spaces that were closer in value to those in mammalian than to amphibian or teleost myelins. The membrane lipid bilayer was narrower in lungfish PNS myelin compared to other vertebrates, whereas in the CNS myelin the bilayer was in the typical range. Lungfish PNS myelin showed typical compaction and swelling responses to incubation in acidic or alkaline hypotonic saline. The CNS myelin, by contrast, did not compact in acidic saline but did swell in the alkaline solution. This lability was more similar to that for the higher vertebrates than for teleost.
Collapse
|
28
|
Absence of 2-hydroxylated sphingolipids is compatible with normal neural development but causes late-onset axon and myelin sheath degeneration. J Neurosci 2008; 28:9741-54. [PMID: 18815260 DOI: 10.1523/jneurosci.0458-08.2008] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sphingolipids containing 2-hydroxylated fatty acids are among the most abundant lipid components of the myelin sheath and therefore are thought to play an important role in formation and function of myelin. To prove this hypothesis, we generated mice lacking a functional fatty acid 2-hydroxylase (FA2H) gene. FA2H-deficient (FA2H(-/-)) mice lacked 2-hydroxylated sphingolipids in the brain and in peripheral nerves. In contrast, nonhydroxylated galactosylceramide was increased in FA2H(-/-) mice. However, oligodendrocyte differentiation examined by in situ hybridization with cRNA probes for proteolipid protein and PDGFalpha receptor and the time course of myelin formation were not altered in FA2H(-/-) mice compared with wild-type littermates. Nerve conduction velocity measurements of sciatic nerves revealed no significant differences between FA2H(-/-) and wild-type mice. Moreover, myelin of FA2H(-/-) mice up to 5 months of age appeared normal at the ultrastructural level, in the CNS and peripheral nervous system. Myelin thickness and g-ratios were normal in FA2H(-/-) mice. Aged (18-month-old) FA2H(-/-) mice, however, exhibited scattered axonal and myelin sheath degeneration in the spinal cord and an even more pronounced loss of stainability of myelin sheaths in sciatic nerves. These results show that structurally and functionally normal myelin can be formed in the absence of 2-hydroxylated sphingolipids but that its long-term maintenance is strikingly impaired. Because axon degeneration appear to start rather early with respect to myelin degenerations, these lipids might be required for glial support of axon function.
Collapse
|
29
|
Sun Y, Witte DP, Ran H, Zamzow M, Barnes S, Cheng H, Han X, Williams MT, Skelton MR, Vorhees CV, Grabowski GA. Neurological deficits and glycosphingolipid accumulation in saposin B deficient mice. Hum Mol Genet 2008; 17:2345-56. [PMID: 18480170 PMCID: PMC2465797 DOI: 10.1093/hmg/ddn135] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Saposin B derives from the multi-functional precursor, prosaposin, and functions as an activity enhancer for several glycosphingolipid (GSL) hydrolases. Mutations in saposin B present in humans with phenotypes resembling metachromatic leukodystrophy. To gain insight into saposin B's physiological functions, a specific deficiency was created in mice by a knock-in mutation of an essential cysteine in exon 7 of the prosaposin locus. No saposin B protein was detected in the homozygotes (B−/−) mice, whereas prosaposin, and saposins A, C and D were at normal levels. B−/− mice exhibited slowly progressive neuromotor deterioration and minor head tremor by 15 months. Excess hydroxy and non-hydroxy fatty acid sulfatide levels were present in brain and kidney. Alcian blue positive (sulfatide) storage cells were found in the brain, spinal cord and kidney. Ultrastructural analyses showed lamellar inclusion material in the kidney, sciatic nerve, brain and spinal cord tissues. Lactosylceramide (LacCer) and globotriaosylceramide (TriCer) were increased in various tissues of B−/− mice supporting the in vivo role of saposin B in the degradation of these lipids. CD68 positive microglial cells and activated GFAP positive astrocytes showed a proinflammatory response in the brains of B−/− mice. These findings delineate the roles of saposin B for the in vivo degradation of several GSLs and its primary function in maintenance of CNS function. B−/− provide a useful model for understanding the contributions of this saposin to GSL metabolism and homeostasis.
Collapse
Affiliation(s)
- Ying Sun
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
The Role and Metabolism of Sulfatide in the Nervous System. Mol Neurobiol 2008; 37:93-103. [DOI: 10.1007/s12035-008-8022-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 04/09/2008] [Indexed: 12/16/2022]
|
31
|
Becker I, Wang-Eckhardt L, Yaghootfam A, Gieselmann V, Eckhardt M. Differential expression of (dihydro)ceramide synthases in mouse brain: oligodendrocyte-specific expression of CerS2/Lass2. Histochem Cell Biol 2007; 129:233-41. [PMID: 17901973 DOI: 10.1007/s00418-007-0344-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2007] [Indexed: 12/16/2022]
Abstract
Synthesis of dihydroceramide is catalyzed by a family of (dihydro)ceramide synthases (CerS), first identified in yeast as longevity-assurance genes. Six members (CerS1-6; Lass1-6) of this gene family have been identified in mammals. We examined expression of CerS genes during postnatal development in mouse brain by means of Northern blot analysis, real-time RT-PCR, and in situ-hybridization. In situ-hybridization experiments showed that CerS1 was the predominant CerS in neurons throughout the brain. This observation is in line with the high levels of C18:0-ceramide in neurons and the substrate specificity of CerS1. A similar distribution, but lower expression levels, were found for CerS4 and CerS6. Only low or undetectable amounts of CerS1, CerS4 and CerS6 were, however, present in white matter. In contrast, CerS5 mRNA was detected in most cells within gray and white matter of all brain regions, suggesting ubiquitous expression of this palmitoyl-CoA specific CerS. Expression of CerS2 was transiently increased during the period of active myelination. Furthermore, expression of CerS2 was specifically localized to white matter tracts of the brain. Furthermore, CerS2 was the predominant CerS in Schwann cells of sciatic nerves. These data suggest that CerS2 is important for the synthesis of dihydroceramide used for synthesis of myelin sphingolipids.
Collapse
Affiliation(s)
- Ivonne Becker
- Institute of Physiological Chemistry, University of Bonn, 53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
32
|
Maldonado EN, Alderson NL, Monje PV, Wood PM, Hama H. FA2H is responsible for the formation of 2-hydroxy galactolipids in peripheral nervous system myelin. J Lipid Res 2007; 49:153-61. [PMID: 17901466 PMCID: PMC2662131 DOI: 10.1194/jlr.m700400-jlr200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Myelin in the mammalian nervous system has a high concentration of galactolipids [galactosylceramide (GalCer) and sulfatide] with 2-hydroxy fatty acids. We recently reported that fatty acid 2-hydroxylase (FA2H), encoded by the FA2H gene, is the major fatty acid 2-hydroxylase in the mouse brain. In this report, we show that FA2H also plays a major role in the formation of 2-hydroxy galactolipids in the peripheral nervous system. FA2H mRNA and FA2H activity in the neonatal rat sciatic nerve increased rapidly during developmental myelination. The contents of 2-hydroxy fatty acids were approximately 5% of total galactolipid fatty acids at 4 days of age and increased to 60% in GalCer and to 35% in sulfatides at 60 days of age. The chain length of galactolipid fatty acids also increased significantly during myelination. FA2H expression in cultured rat Schwann cells was highly increased in response to dibutyryl cyclic AMP, which stimulates Schwann cell differentiation and upregulates myelin genes, such as UDP-galactose:ceramide galactosyltransferase and protein zero. These observations indicate that FA2H is a myelination-associated gene. FA2H-directed RNA interference (RNAi) by short-hairpin RNA expression resulted in a reduction of cellular 2-hydroxy fatty acids and 2-hydroxy GalCer in D6P2T Schwannoma cells, providing direct evidence that FA2H-dependent fatty acid 2-hydroxylation is required for the formation of 2-hydroxy galactolipids in peripheral nerve myelin. Interestingly, FA2H-directed RNAi enhanced the migration of D6P2T cells, suggesting that, in addition to their structural role in myelin, 2-hydroxy lipids may greatly influence the migratory properties of Schwann cells.
Collapse
Affiliation(s)
- Eduardo N. Maldonado
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, 29425
| | - Nathan L. Alderson
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, 29425
| | - Paula V. Monje
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, FL
| | - Patrick M. Wood
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, FL
| | - Hiroko Hama
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, 29425
| |
Collapse
|
33
|
Ramakrishnan H, Hedayati KK, Lüllmann-Rauch R, Wessig C, Fewou SN, Maier H, Goebel HH, Gieselmann V, Eckhardt M. Increasing sulfatide synthesis in myelin-forming cells of arylsulfatase A-deficient mice causes demyelination and neurological symptoms reminiscent of human metachromatic leukodystrophy. J Neurosci 2007; 27:9482-90. [PMID: 17728461 PMCID: PMC6673125 DOI: 10.1523/jneurosci.2287-07.2007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metachromatic leukodystrophy (MLD) is a lysosomal storage disorder caused by the deficiency of arylsulfatase A (ASA). This results in accumulation of sulfated glycosphingolipids, mainly 3-O-sulfogalactosylceramide (sulfatide), in the nervous system and various other organs. In patients, lipid storage causes a progressive loss of myelin leading to various neurological symptoms. The sulfatide storage pattern in ASA-deficient [ASA(-/-)] mice is comparable to humans, but regrettably, the mice do not mimic the myelin pathology. We reasoned that increasing sulfatide storage in this animal model might provoke demyelination. Therefore, we generated transgenic ASA(-/-) [tg/ASA(-/-)] mice overexpressing the sulfatide-synthesizing enzyme galactose-3-O-sulfotransferase-1 in myelinating cells. Indeed, these tg/ASA(-/-) mice displayed a significant increase in sulfatide storage in brain and peripheral nerves. Mice older than 1 year developed severe neurological symptoms. Nerve conduction velocity was significantly reduced in tg/ASA(-/-) mice because of a peripheral neuropathy characterized by hypomyelinated and demyelinated axons. Inhomogeneous myelin thickness in the corpus callosum, increased frequency of hypomyelinated and demyelinated axons in corpus callosum and optic nerve, and substantially reduced myelin basic protein levels are in accordance with loss of myelin in the CNS. Thus, increasing sulfatide storage in ASA(-/-) mice leads to neurological symptoms and morphological alterations that are reminiscent of human MLD. The approach described here may also be applicable to improve other mouse models of lysosomal as well as nonlysosomal disorders.
Collapse
Affiliation(s)
| | | | | | - Carsten Wessig
- Department of Neurology, Julius-Maximilians University of Würzburg, 97080 Würzburg, Germany, and
| | - Simon Ngamli Fewou
- Institute of Physiological Chemistry, Rheinische Friedrich-Wilhelms University of Bonn, 53115 Bonn, Germany
| | - Helena Maier
- Institute of Physiological Chemistry, Rheinische Friedrich-Wilhelms University of Bonn, 53115 Bonn, Germany
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Volkmar Gieselmann
- Institute of Physiological Chemistry, Rheinische Friedrich-Wilhelms University of Bonn, 53115 Bonn, Germany
| | - Matthias Eckhardt
- Institute of Physiological Chemistry, Rheinische Friedrich-Wilhelms University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
34
|
Eckhardt M, Hedayati KK, Pitsch J, Lüllmann-Rauch R, Beck H, Fewou SN, Gieselmann V. Sulfatide storage in neurons causes hyperexcitability and axonal degeneration in a mouse model of metachromatic leukodystrophy. J Neurosci 2007; 27:9009-21. [PMID: 17715338 PMCID: PMC6672212 DOI: 10.1523/jneurosci.2329-07.2007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Metachromatic leukodystrophy is a lysosomal storage disorder caused by deficiency in the sulfolipid degrading enzyme arylsulfatase A (ASA). In the absence of a functional ASA gene, 3-O-sulfogalactosylceramide (sulfatide; SGalCer) and other sulfolipids accumulate. The storage is associated with progressive demyelination and various finally lethal neurological symptoms. Lipid storage, however, is not restricted to myelin-producing cells but also occurs in neurons. It is unclear whether neuronal storage contributes to symptoms of the patients. Therefore, we have generated transgenic ASA-deficient [ASA(-/-)] mice overexpressing the sulfatide synthesizing enzymes UDP-galactose:ceramide galactosyltransferase (CGT) and cerebroside sulfotransferase (CST) in neurons to provoke neuronal lipid storage. CGT-transgenic ASA(-/-) [CGT/ASA(-/-)] mice showed an accumulation of C18:0 fatty acid-containing SGalCer in the brain. Histochemically, an increase in sulfolipid storage could be detected in central and peripheral neurons of both CGT/ASA(-/-) and CST/ASA(-/-) mice compared with ASA(-/-) mice. CGT/ASA(-/-) mice developed severe neuromotor coordination deficits and weakness of hindlimbs and forelimbs. Light and electron microscopic analyses demonstrated nerve fiber degeneration in the spinal cord of CGT/ASA(-/-) mice. CGT/ASA(-/-) and, to a lesser extent, young ASA(-/-) mice exhibited cortical hyperexcitability, with recurrent spontaneous cortical EEG discharges lasting 5-15 s. These observations suggest that SGalCer accumulation in neurons contributes to disease phenotype.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Behavior, Animal
- Cerebral Cortex/pathology
- Cerebral Cortex/physiopathology
- Cerebroside-Sulfatase/deficiency
- Cerebroside-Sulfatase/metabolism
- Disease Models, Animal
- Electroencephalography/methods
- In Situ Hybridization/methods
- Leukodystrophy, Metachromatic/complications
- Leukodystrophy, Metachromatic/metabolism
- Leukodystrophy, Metachromatic/pathology
- Lipids/analysis
- Mice
- Mice, Transgenic
- Microscopy, Electron, Transmission
- Motor Skills/physiology
- N-Acylsphingosine Galactosyltransferase/deficiency
- Nerve Degeneration/etiology
- Nerve Degeneration/genetics
- Neurons/enzymology
- Neurons/ultrastructure
- Rats
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Spinal Cord/pathology
- Sulfoglycosphingolipids/metabolism
- Sulfotransferases/genetics
Collapse
Affiliation(s)
- Matthias Eckhardt
- Institute of Physiological Chemistry, University of Bonn, 53115 Bonn, Germany.
| | | | | | | | | | | | | |
Collapse
|
35
|
Fewou SN, Ramakrishnan H, Büssow H, Gieselmann V, Eckhardt M. Down-regulation of polysialic acid is required for efficient myelin formation. J Biol Chem 2007; 282:16700-11. [PMID: 17420257 DOI: 10.1074/jbc.m610797200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oligodendrocyte precursor cells modify the neural cell adhesion molecule (NCAM) by the attachment of polysialic acid (PSA). Upon further differentiation into mature myelinating oligodendrocytes, however, oligodendrocyte precursor cells down-regulate PSA synthesis. In order to address the question of whether this down-regulation is a necessary prerequisite for the myelination process, transgenic mice expressing the polysialyltransferase ST8SiaIV under the control of the proteolipid protein promoter were generated. In these mice, postnatal down-regulation of PSA in oligodendrocytes was abolished. Most NCAM-120, the characteristic NCAM isoform in oligodendrocytes, carried PSA in the transgenic mice at all stages of postnatal development. Polysialylated NCAM-120 partially co-localized with myelin basic protein and was present in purified myelin. The permanent expression of PSA-NCAM in oligodendrocytes led to a reduced myelin content in the forebrains of transgenic mice during the period of active myelination and in the adult animal. In situ hybridizations indicated a significant decrease in the number of mature oligodendrocytes in the forebrain. Thus, down-regulation of PSA during oligodendrocyte differentiation is a prerequisite for efficient myelination by mature oligodendrocytes. Furthermore, myelin of transgenic mice exhibited structural abnormalities like redundant myelin and axonal degeneration, indicating that the down-regulation of PSA is also necessary for myelin maintenance.
Collapse
Affiliation(s)
- Simon Ngamli Fewou
- Institute of Physiological Chemistry and Institute of Anatomy, University of Bonn, D-53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
36
|
Sun Y, Witte DP, Zamzow M, Ran H, Quinn B, Matsuda J, Grabowski GA. Combined saposin C and D deficiencies in mice lead to a neuronopathic phenotype, glucosylceramide and α-hydroxy ceramide accumulation, and altered prosaposin trafficking. Hum Mol Genet 2007; 16:957-71. [PMID: 17353235 DOI: 10.1093/hmg/ddm040] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Saposins (A, B, C and D) are approximately 80 amino acid stimulators of glycosphingolipid (GSL) hydrolases that derive from a single precursor, prosaposin. In both humans and mice, prosaposin/saposin deficiencies lead to severe neurological deficits. The CD-/- mice with saposin C and D combined deficiencies were produced by introducing genomic point mutations into a critical cysteine in each of these saposins. These mice develop a severe neurological phenotype with ataxia, kyphotic posturing and hind limb paralysis. Relative to prosaposin null mice ( approximately 30 days), CD-/- mice had an extended life span ( approximately 56 days). Loss of Purkinje cells was evident after 6 weeks, and storage bodies were present in neurons of the spinal cord, brain and dorsal root ganglion. Electron microscopy showed well-myelinated fibers and axonal inclusions in the brain and sciatic nerve. Marked accumulations of glucosylceramides and alpha-hydroxy ceramides were present in brain and kidney. Minor storage of lactosylceramide (LacCer) was observed when compared with tissues from the prosaposin null mice, suggesting a compensation in LacCer degradation by saposin B for the saposin C deficiency. Skin fibroblasts and tissues from CD-/- mice showed an increase of intracellular prosaposin, impaired prosaposin secretion, deficiencies of saposins C and D and decreases in saposins A and B. In addition, the deficiency of saposin C in CD-/- mice resulted in cellular decreases of acid beta-glucosidase activity and protein. This CD null mouse model provides a tool to explore the in vivo functional interactions of saposins in GSL metabolism and lysosomal storage diseases, and prosaposin's physiological effects.
Collapse
Affiliation(s)
- Ying Sun
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Yamane M, Yamane S. The induction of colonocyte differentiation in CaCo-2 cells by sodium butyrate causes an increase in glucosylceramide synthesis in order to avoid apoptosis based on ceramide. Arch Biochem Biophys 2007; 459:159-68. [PMID: 17303065 DOI: 10.1016/j.abb.2007.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 01/05/2007] [Accepted: 01/06/2007] [Indexed: 10/23/2022]
Abstract
To examine the relationship between apoptosis accompanying differentiation and sphingolipid-metabolism, CaCo-2 cells were used as a model of human intestinal epithelial cells and the variation in cellular Cer/GlcCer-content and related enzyme activities during butyrate-induced differentiation were investigated. The simultaneous administration of PDMP as a GlcCer synthase inhibitor caused a significant increase in the amount of Cers, especially palmitoyl-Cer. Butyrate caused an increase in the amount of GlcCers, especially alpha-hydroxy fatty acid-GlcCers, and in cellular GlcCer synthase activity. Cellular Cer content related to apoptosis was mainly regulated by the GlcCer synthase-based metabolism of Cers.
Collapse
Affiliation(s)
- Mototeru Yamane
- Department of Biochemistry, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160, Japan.
| | | |
Collapse
|
38
|
Wight PA, Duchala CS, Shick HE, Gudz TI, Macklin WB. Expression of a myelin proteolipid protein (Plp)-lacZ transgene is reduced in both the CNS and PNS of Plp(jp) mice. Neurochem Res 2006; 32:343-51. [PMID: 17191136 PMCID: PMC1976413 DOI: 10.1007/s11064-006-9202-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 10/11/2006] [Indexed: 12/19/2022]
Abstract
Jimpy (Plp(jp)) is an X-linked recessive mutation in mice that causes CNS dysmyelination and early death in affected males. It results from a point mutation in the acceptor splice site of myelin proteolipid protein (Plp) exon 5, producing transcripts that are missing exon 5, with a concomitant shift in the downstream reading frame. Expression of the mutant PLP product in Plp(jp) males leads to hypomyelination and oligodendrocyte death. Expression of our Plp-lacZ fusion gene, PLP(+)Z, in transgenic mice is an excellent readout for endogenous Plp transcriptional activity. The current studies assess expression of the PLP(+)Z transgene in the Plp(jp) background. These studies demonstrate that expression of the transgene is decreased in both the central and peripheral nervous systems of affected Plp(jp) males. Thus, expression of mutated PLP protein downregulates Plp gene activity both in oligodendrocytes, which eventually die, and in Schwann cells, which are apparently unaffected in Plp(jp) mice.
Collapse
Affiliation(s)
- Patricia A Wight
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | | | | | | | | |
Collapse
|
39
|
Mack JT, Beljanski V, Soulika AM, Townsend DM, Brown CB, Davis W, Tew KD. "Skittish" Abca2 knockout mice display tremor, hyperactivity, and abnormal myelin ultrastructure in the central nervous system. Mol Cell Biol 2006; 27:44-53. [PMID: 17060448 PMCID: PMC1800669 DOI: 10.1128/mcb.01824-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ATP-binding cassette transporter 2 (ABCA2) is an endolysosomal protein most highly expressed in the central and peripheral nervous system tissues and macrophages. Previous studies indicated its role in cholesterol/steroid (estramustine, estradiol, and progesterone) trafficking/sequestration, oxidative stress response, and Alzheimer's disease. Developmental studies have shown its expression during macrophage and oligodendrocyte differentiation, processes requiring membrane growth. To determine the in vivo function(s) of this transporter, we generated a knockout mouse from a gene-targeted disruption of the murine ABCA2 gene. Knockout males and females are viable and fertile. However, a non-Mendelian inheritance pattern was shown among male progeny of heterozygous crosses. Compared to wild-type and heterozygous littermates, knockout mice displayed a tremor without ataxia, hyperactivity, and reduced body weight; the latter two phenotypes were more marked in females than in males. This sexual disparity suggests a role for ABCA2 in hormone-dependent neurological and/or developmental pathways. Myelin sheath thickness in the spinal cords of knockout mice was greatly increased compared to that in wild-type mice, while a significant reduction in myelin membrane periodicity (compaction) was observed in both spinal cords and cerebra of knockout mice. Loss of ABCA2 function in vivo resulted in abnormal myelin compaction in spinal cord and cerebrum, an ultrastructural defect that we propose to be the cause of the phenotypic tremor.
Collapse
Affiliation(s)
- Jody T Mack
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, P.O. Box 250505, Charleston, SC 29425, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Alderson NL, Maldonado EN, Kern MJ, Bhat NR, Hama H. FA2H-dependent fatty acid 2-hydroxylation in postnatal mouse brain. J Lipid Res 2006; 47:2772-80. [PMID: 16998236 DOI: 10.1194/jlr.m600362-jlr200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
2-Hydroxy fatty acids are relatively minor species of membrane lipids found almost exclusively as N-acyl chains of sphingolipids. In mammals, 2-hydroxy sphingolipids are uniquely abundant in myelin galactosylceramide and sulfatide. Despite the well-documented abundance of 2-hydroxy galactolipids in the nervous system, the enzymatic process of the 2-hydroxylation is not fully understood. To fill this gap, we have identified a human fatty acid 2-hydroxylase gene (FA2H) that is highly expressed in brain. In this report, we test the hypothesis that FA2H is the major fatty acid 2-hydroxylase in mouse brain and that free 2-hydroxy fatty acids are formed as precursors of myelin 2-hydroxy galactolipids. The fatty acid compositions of galactolipids in neonatal mouse brain gradually changed during the course of myelination. The relative ratio of 2-hydroxy versus nonhydroxy galactolipids was very low at 2 days of age ( approximately 8% of total galactolipids) and increased 6- to 8-fold by 30 days of age. During this period, free 2-hydroxy fatty acid levels in mouse brain increased 5- to 9-fold, and their composition was reflected in the fatty acids in galactolipids, consistent with a precursor-product relationship. The changes in free 2-hydroxy fatty acid levels coincided with fatty acid 2-hydroxylase activity and with the upregulation of FA2H expression. Furthermore, mouse brain fatty acid 2-hydroxylase activity was inhibited by anti-FA2H antibodies. Together, these data provide evidence that FA2H is the major fatty acid 2-hydroxylase in brain and that 2-hydroxylation of free fatty acids is the first step in the synthesis of 2-hydroxy galactolipids.
Collapse
Affiliation(s)
- Nathan L Alderson
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
41
|
Kyogashima M, Tamiya-Koizumi K, Ehara T, Li G, Hu R, Hara A, Aoyama T, Kannagi R. Rapid demonstration of diversity of sulfatide molecular species from biological materials by MALDI-TOF MS. Glycobiology 2006; 16:719-28. [PMID: 16670104 DOI: 10.1093/glycob/cwj122] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
By combining the partition method for enrichment of sulfatides without any chromatographic procedures and the preparation method of lysosulfatides, we succeeded in analyzing these sulfated glycosphingolipids from biological materials by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) to reduce the complexity of mass fragmentation patterns within a day. We found that sulfated GalCer (HSO3-3Gal beta 1Cer) (SM4s [galactosylsulfatide]) was composed of different species. While composition of SM4s specifically depended on source materials, it always contained hydroxy fatty acids of various degrees. In addition to the common sphingoid 4-sphingenine (d18:1), uncommon/unusual sphingoids phytosphingosine (4-hydroxysphinganine) (t18:0), eicosasphinganine (d20:0), 4-eicosasphingenine (d20:1), and sphingadienine (d18:2) were easily detected. Finally, in addition to SM4s, sulfatide sulfated LacCer (HSO3-3Gal beta 4Glc beta 1Cer) (SM3 [sulfated lactosylceramide]) and sulfated Gg3Cer (GalNAc beta 4(HSO3-3)Gal beta 4Glc beta 1Cer) (SM2 [sulfated gangliotriaosylceramide]) were clearly detected in renal tubule cells. The major SM4s was composed of ceramides possessing d18:1 with C22 hydroxy fatty acids (C22:0 h), C23:0 h, and C24:0 h, whereas the major SM3/SM2 were composed of ceramides possessing t18:0 with C22 normal fatty acids (C22:0), C23:0, C24:0. Namely, in these two series of sulfatides, either fatty acids or sphingoids were hydroxylated, and chain lengths of these components were exactly the same, consequently resulting in a similar polarity of ceramide moieties in these sulfatide species. These results demonstrated diversities of sulfatide molecular species, not only with respect to sugar moieties but also to ceramide moieties, which are probably important for specific effective functions in particular microenvironments such as lipid membrane microdomains.
Collapse
Affiliation(s)
- Mamoru Kyogashima
- Department of Metabolic Regulation, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, 3-1-1, Asahi, Matsumoto, Nagano, 390-8621, Japan.
| | | | | | | | | | | | | | | |
Collapse
|