1
|
Wang C, Shu Y, Xu L, Liu Q, Zhang B, Zhang H. Maternal exposure to low doses of bisphenol A affects learning and memory in male rat offspring with abnormal N-methyl-d-aspartate receptors in the hippocampus. Toxicol Ind Health 2021; 37:303-313. [PMID: 33881370 DOI: 10.1177/0748233720984624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bisphenol A (BPA), a component of polycarbonate and epoxy resins, has been reported to induce learning and memory deficits. However, the mechanisms have not been fully elucidated. Growing evidence has suggested that N-methyl-d-aspartate receptors (NMDARs) are involved in cognitive impairments. In this study, BPA was administered to female Sprague-Dawley rats (six per dose group) at concentrations of 0 (control), 4, 40, and 400 μg/kg·body weight/day from gestation day 1 through lactation day 21. Spatial learning was evaluated using the Morris water maze on postnatal day 22. Expression levels of NMDARs were determined using real-time polymerase chain reaction and Western blot. The results showed that male offspring exposed to BPA exhibited increased latency in reaching the platform and reduced time in the target quadrant, and the number of crossing the platform was less, as compared with the control group. The mRNA and protein expression levels of NMDARs in the hippocampus were significantly downregulated when compared with the control group of male offspring. The data showed that maternal exposure to BPA at low dosage can cause cognitive deficits in male rat offspring, probably due to a decrease in NMDARs in the hippocampus.
Collapse
Affiliation(s)
- Chong Wang
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yao Shu
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Li Xu
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Qiling Liu
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Bei Zhang
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Hong Zhang
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| |
Collapse
|
2
|
Vaseghi S, Nasehi M, Zarrindast MR. How do stupendous cannabinoids modulate memory processing via affecting neurotransmitter systems? Neurosci Biobehav Rev 2020; 120:173-221. [PMID: 33171142 DOI: 10.1016/j.neubiorev.2020.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022]
Abstract
In the present study, we wanted to review the role of cannabinoids in learning and memory in animal models, with respect to their interaction effects with six principal neurotransmitters involved in learning and memory including dopamine, glutamate, GABA (γ-aminobutyric acid), serotonin, acetylcholine, and noradrenaline. Cannabinoids induce a wide-range of unpredictable effects on cognitive functions, while their mechanisms are not fully understood. Cannabinoids in different brain regions and in interaction with different neurotransmitters, show diverse responses. Previous findings have shown that cannabinoids agonists and antagonists induce various unpredictable effects such as similar effect, paradoxical effect, or dualistic effect. It should not be forgotten that brain neurotransmitter systems can also play unpredictable roles in mediating cognitive functions. Thus, we aimed to review and discuss the effect of cannabinoids in interaction with neurotransmitters on learning and memory. In addition, we mentioned to the type of interactions between cannabinoids and neurotransmitter systems. We suggested that investigating the type of interactions is a critical neuropharmacological issue that should be considered in future studies.
Collapse
Affiliation(s)
- Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Beheshti S, Sami M, Mirzabeh A, Yazdi A. D-Lys-3-GHRP-6 impairs memory consolidation and downregulates the hippocampal serotonin HT1A, HT7 receptors and glutamate GluA1 subunit of AMPA receptors. Physiol Behav 2020; 223:112969. [DOI: 10.1016/j.physbeh.2020.112969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 01/08/2023]
|
4
|
Wenneberg C, Nordentoft M, Rostrup E, Glenthøj LB, Bojesen KB, Fagerlund B, Hjorthøj C, Krakauer K, Kristensen TD, Schwartz C, Edden RAE, Broberg BV, Glenthøj BY. Cerebral Glutamate and Gamma-Aminobutyric Acid Levels in Individuals at Ultra-high Risk for Psychosis and the Association With Clinical Symptoms and Cognition. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:569-579. [PMID: 32008981 DOI: 10.1016/j.bpsc.2019.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Studies examining glutamate or gamma-aminobutyric acid (GABA) in ultra-high risk for psychosis (UHR) and the association with pathophysiology and cognition have shown conflicting results. We aimed to determine whether perturbed glutamate and GABA levels in the anterior cingulate cortex and glutamate levels in the left thalamus were present in UHR individuals and to investigate associations between metabolite levels and clinical symptoms and cognition. METHODS We included 122 UHR individuals and 60 healthy control subjects. Participants underwent proton magnetic resonance spectroscopy to estimate glutamate and GABA levels and undertook clinical and cognitive assessments. RESULTS We found no differences in metabolite levels between UHR individuals and healthy control subjects. In UHR individuals, we found negative correlations in the anterior cingulate cortex between the composite of glutamate and glutamine (Glx) and the Comprehensive Assessment of At-Risk Mental States composite score (p = .04) and between GABA and alogia (p = .01); positive associations in the anterior cingulate cortex between glutamate (p = .01) and Glx (p = .01) and spatial working memory and between glutamate (p = .04), Glx (p = .04), and GABA (p = .02) and set-shifting; and a positive association in the thalamus between glutamate and attention (p = .04). No associations between metabolites and clinical or cognitive scores were found in the healthy control subjects. CONCLUSIONS An association between glutamate and GABA levels and clinical symptoms and cognition found only in UHR individuals suggests a loss of the normal relationship between metabolite levels and cognitive function. Longitudinal studies with investigation of clinical and cognitive outcome and the association with baseline levels of glutamate and GABA could illuminate whether glutamatergic and GABAergic dysfunction predicts clinical outcome.
Collapse
Affiliation(s)
- Christina Wenneberg
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Hellerup, Denmark; Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark; Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark.
| | - Merete Nordentoft
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Hellerup, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark; Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Louise Birkedal Glenthøj
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Hellerup, Denmark; Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark
| | - Kirsten Borup Bojesen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark
| | - Birgitte Fagerlund
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark
| | - Carsten Hjorthøj
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Hellerup, Denmark; Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Krakauer
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Hellerup, Denmark; Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark; Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Tina Dam Kristensen
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Hellerup, Denmark; Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark
| | - Camilla Schwartz
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Brian Villumsen Broberg
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark
| | - Birte Yding Glenthøj
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
5
|
Lee G, Zhou Y. NMDAR Hypofunction Animal Models of Schizophrenia. Front Mol Neurosci 2019; 12:185. [PMID: 31417356 PMCID: PMC6685005 DOI: 10.3389/fnmol.2019.00185] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
The N-methyl-d-aspartate receptor (NMDAR) hypofunction hypothesis has been proposed to help understand the etiology and pathophysiology of schizophrenia. This hypothesis was based on early observations that NMDAR antagonists could induce a full range of symptoms of schizophrenia in normal human subjects. Accumulating evidence in humans and animal studies points to NMDAR hypofunctionality as a convergence point for various symptoms of schizophrenia. Here we review animal models of NMDAR hypofunction generated by pharmacological and genetic approaches, and how they relate to the pathophysiology of schizophrenia. In addition, we discuss the limitations of animal models of NMDAR hypofunction and their potential utility for therapeutic applications.
Collapse
Affiliation(s)
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
6
|
Interaction between NMDA and CB2 function in the dorsal hippocampus on memory consolidation impairment: an isobologram analysis. Psychopharmacology (Berl) 2017; 234:507-514. [PMID: 27858086 DOI: 10.1007/s00213-016-4481-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 11/07/2016] [Indexed: 12/31/2022]
Abstract
RATIONALE Convincing evidence has supported the pivotal role of N-methyl-D-aspartate receptors (NMDARs) and CB2Rs in the regulation of learning and memory. OBJECTIVE In this study, the role of hippocampal (CA1 region) CB2 receptors on aversive memory consolidation deficit induced by D-AP5, a NMDA receptor antagonist, was evaluated. METHODS Adult male Wistar rats received cannula implants that bilaterally targeted the CA1 region. Long-term memory was examined using the step-through type of passive avoidance task. RESULTS Post-training, intra-CA1 microinjection of D-AP5 (0.5 and 0.75 μg/rat), GP1a (CB2 receptor agonist at dose of 150 ng/rat) and AM630 (CB2 receptor antagonist at doses 75 and 100 ng/rat) impaired memory consolidation processes. Intra-CA1 microinjection of a lower dose of GP1a or AM630 restored memory impairment induced by D-AP5 at the two higher doses, while AM630 decreased D-AP5 memory response at the lower dose. The isobologram analysis showed that there is a synergistic effect between D-AP5 and AM630 on memory consolidation deficit. CONCLUSIONS These results suggest that CA1 CB2 receptors modulate memory consolidation impairment induced by D-AP5.
Collapse
|
7
|
Cercato MC, Vázquez CA, Kornisiuk E, Aguirre AI, Colettis N, Snitcofsky M, Jerusalinsky DA, Baez MV. GluN1 and GluN2A NMDA Receptor Subunits Increase in the Hippocampus during Memory Consolidation in the Rat. Front Behav Neurosci 2017; 10:242. [PMID: 28133447 PMCID: PMC5233710 DOI: 10.3389/fnbeh.2016.00242] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/12/2016] [Indexed: 01/14/2023] Open
Abstract
It is widely accepted that NMDA receptors (NMDAR) are required for learning and memory formation, and for synaptic plasticity induction. We have previously shown that hippocampal GluN1 and GluN2A NMDAR subunits significantly increased following habituation of rats to an open field (OF), while GluN2B remained unchanged. Similar results were obtained after CA1-long-term potentiation (LTP) induction in rat hippocampal slices. Other studies have also shown NMDAR up regulation at earlier and later time points after LTP induction or learning acquisition. In this work, we have studied NMDAR subunits levels in the hippocampus and prefrontal cortex (PFC) after OF habituation and after object recognition (OR), to find out whether rising of NMDAR subunits is a general and structure-specific feature during memory formation. In 1, 2 and 3 month old rats there was an increase in hippocampal GluN1 and GluN2A, but not in GluN2B levels 70 min after OF habituation. This rise overlaps with early phase of memory consolidation, suggesting a putative relationship between them. The increases fell down to control levels 90 min after training. Similar results were obtained in the hippocampus of adult rats 70 min after OR training, without changes in PFC. Following OF test or OR discrimination phase, NMDAR subunits remained unchanged. Hence, rising of hippocampal GluN1 and GluN2A appears to be a general feature after novel “spatial/discrimination” memory acquisition. To start investigating the dynamics and possible mechanisms of these changes, we have studied hippocampal neuron cultures stimulated by KCl to induce plasticity. GluN1 and GluN2A increased both in dendrites and neuronal bodies, reaching a maximum 75 min later and returning to control levels at 90 min. Translation and/or transcription and mobilization differentially contribute to this rise in subunits in bodies and dendrites. Our results showed that the NMDAR subunits increase follows a similar time course both in vitro and in vivo. These changes happen in the hippocampus where a spatial representation of the environment is being formed making possible short term and long term memories (STM and LTM); appear to be structure-specific; are preserved along life; and could be related to synaptic tagging and/or to memory consolidation of new spatial/discrimination information.
Collapse
Affiliation(s)
- Magali C Cercato
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biología Celular y Neurociencia, Universidad de Buenos Aires (UBA)-CONICET Buenos Aires, Argentina
| | - Cecilia A Vázquez
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biología Celular y Neurociencia, Universidad de Buenos Aires (UBA)-CONICET Buenos Aires, Argentina
| | - Edgar Kornisiuk
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biología Celular y Neurociencia, Universidad de Buenos Aires (UBA)-CONICET Buenos Aires, Argentina
| | - Alejandra I Aguirre
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biología Celular y Neurociencia, Universidad de Buenos Aires (UBA)-CONICET Buenos Aires, Argentina
| | - Natalia Colettis
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biología Celular y Neurociencia, Universidad de Buenos Aires (UBA)-CONICET Buenos Aires, Argentina
| | - Marina Snitcofsky
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biología Celular y Neurociencia, Universidad de Buenos Aires (UBA)-CONICET Buenos Aires, Argentina
| | - Diana A Jerusalinsky
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biología Celular y Neurociencia, Universidad de Buenos Aires (UBA)-CONICETBuenos Aires, Argentina; Ciclo Básico Común-Universidad de Buenos AiresBuenos Aires, Argentina
| | - María V Baez
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biología Celular y Neurociencia, Universidad de Buenos Aires (UBA)-CONICETBuenos Aires, Argentina; 1UA de Biología Celular, Histología, Embriología y Genética, Departamento de Histología, Facultad de Medicina, Universidad de Buenos AiresBuenos Aires, Argentina
| |
Collapse
|
8
|
Ultimate Translation: Developing Therapeutics Targeting on N-Methyl-d-Aspartate Receptor. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 76:257-309. [PMID: 27288080 DOI: 10.1016/bs.apha.2016.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
N-Methyl-d-aspartate receptors (NMDARs) are broadly distributed in the central nervous system (CNS), where they mediate excitatory signaling. NMDAR-mediated neurotransmission (NMDARMN) is the molecular engine of learning, memory and cognition, which are the basis for high cortical function. NMDARMN is also critically involved in the development and plasticity of CNS. Due to its essential and critical role, either over- or under-activation of NMDARMN can contribute substantially to the development of CNS disorders. The involvement of NMDARMN has been demonstrated in a variety of CNS disorders, including schizophrenia, depression, posttraumatic stress disorder, aging, mild cognitive impairment and Alzheimer's dementia, amyotrophic lateral sclerosis, and anti-NMDAR encephalitis. Several targets to "correct" or "reset" the NMDARMN in these CNS disorders have been identified and confirmed. With analogy to aminergic treatments, these targets include the glycine/d-serine co-agonist site, channel ionophore, glycine transporter-1, and d-amino acid oxidase. It is still early days in terms of developing novel therapeutics targeting the NMDAR. However, agents modulating NMDARMN hold promise as the next generation of CNS therapeutics.
Collapse
|
9
|
Ju P, Cui D. The involvement of N-methyl-D-aspartate receptor (NMDAR) subunit NR1 in the pathophysiology of schizophrenia. Acta Biochim Biophys Sin (Shanghai) 2016; 48:209-19. [PMID: 26837414 DOI: 10.1093/abbs/gmv135] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/26/2015] [Indexed: 01/22/2023] Open
Abstract
Schizophrenia is a severe mental illness that afflicts nearly 1% of the world population. Although the exact pathophysiology of schizophrenia is unknown, the N-methyl-d-aspartate receptor (NMDAR), a major glutamate receptor subtype, has received great attention. The NR1 subunit is often considered indispensable for functional NMDAR assemblies, abnormal modulation of which is found in patients with schizophrenia. In this review, we discuss how disrupted function of NR1 subunits in NMDAR leads to the progression and development of symptoms of schizophrenia-like behaviors in a variety of genetically modified mouse models. We also discuss some of the susceptible genes and shared signaling pathways among the schizophrenia, and how their mutations lead to NR1 subunits hypofunction. Finally, we suggest that the subunit-selective modulators of NR1 subunits in NMDA receptors may be promising tools for the therapy of schizophrenia.
Collapse
Affiliation(s)
- Peijun Ju
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
| | - Donghong Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
| |
Collapse
|
10
|
Zeng Y, Zhang J, Zhu Y, Zhang J, Shen H, Lu J, Pan X, Lin N, Dai X, Zhou M, Chen X. Tripchlorolide improves cognitive deficits by reducing amyloid β and upregulating synapse-related proteins in a transgenic model of Alzheimer's Disease. J Neurochem 2015; 133:38-52. [DOI: 10.1111/jnc.13056] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Yuqi Zeng
- Department of Neurology and Geriatrics; Fujian Institute of Geriatrics; Fujian Medical University Union Hospital; Fuzhou China
- Key Laboratory of Brain Aging and Neurodegenerative Disease; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University; Fuzhou China
| | - Jian Zhang
- Department of Neurology and Geriatrics; Fujian Institute of Geriatrics; Fujian Medical University Union Hospital; Fuzhou China
- Key Laboratory of Brain Aging and Neurodegenerative Disease; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University; Fuzhou China
| | - Yuangui Zhu
- Key Laboratory of Brain Aging and Neurodegenerative Disease; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University; Fuzhou China
| | - Jing Zhang
- Key Laboratory of Brain Aging and Neurodegenerative Disease; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University; Fuzhou China
| | - Hui Shen
- Key Laboratory of Brain Aging and Neurodegenerative Disease; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University; Fuzhou China
| | - Jianping Lu
- Department of Neurology and Geriatrics; Fujian Institute of Geriatrics; Fujian Medical University Union Hospital; Fuzhou China
- Key Laboratory of Brain Aging and Neurodegenerative Disease; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University; Fuzhou China
| | - Xiaodong Pan
- Department of Neurology and Geriatrics; Fujian Institute of Geriatrics; Fujian Medical University Union Hospital; Fuzhou China
- Key Laboratory of Brain Aging and Neurodegenerative Disease; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University; Fuzhou China
| | - Nan Lin
- Key Laboratory of Brain Aging and Neurodegenerative Disease; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University; Fuzhou China
| | - Xiaoman Dai
- Key Laboratory of Brain Aging and Neurodegenerative Disease; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University; Fuzhou China
| | - Meng Zhou
- Key Laboratory of Brain Aging and Neurodegenerative Disease; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University; Fuzhou China
| | - Xiaochun Chen
- Department of Neurology and Geriatrics; Fujian Institute of Geriatrics; Fujian Medical University Union Hospital; Fuzhou China
- Key Laboratory of Brain Aging and Neurodegenerative Disease; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University; Fuzhou China
| |
Collapse
|
11
|
Wei L, Lv S, Huang Q, Wei J, Zhang S, Huang R, Lu Z, Lin X. Pratensein attenuates Aβ-induced cognitive deficits in rats: Enhancement of synaptic plasticity and cholinergic function. Fitoterapia 2015; 101:208-17. [DOI: 10.1016/j.fitote.2015.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/24/2015] [Accepted: 01/30/2015] [Indexed: 12/11/2022]
|
12
|
Cercato MC, Colettis N, Snitcofsky M, Aguirre AI, Kornisiuk EE, Baez MV, Jerusalinsky DA. Hippocampal NMDA receptors and the previous experience effect on memory. ACTA ACUST UNITED AC 2014; 108:263-9. [PMID: 25132342 DOI: 10.1016/j.jphysparis.2014.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 06/19/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022]
Abstract
N-methyl-D-aspartate receptors (NMDAR) are thought to be responsible for switching synaptic activity specific patterns into long-term changes in synaptic function and structure, which would support learning and memory. Hippocampal NMDAR blockade impairs memory consolidation in rodents, while NMDAR stimulation improves it. Adult rats that explored twice an open field (OF) before a weak though overthreshold training in inhibitory avoidance (IA), expressed IA long-term memory in spite of the hippocampal administration of MK-801, which currently leads to amnesia. Those processes would involve different NMDARs. The selective blockade of hippocampal GluN2B-containing NMDAR with ifenprodil after training promoted memory in an IA task when the training was weak, suggesting that this receptor negatively modulates consolidation. In vivo, after 1h of an OF exposure-with habituation to the environment-, there was an increase in GluN1 and GluN2A subunits in the rat hippocampus, without significant changes in GluN2B. Coincidentally, in vitro, in both rat hippocampal slices and neuron cultures there was an increase in GluN2A-NMDARs surface expression at 30min; an increase in GluN1 and GluN2A levels at about 1h after LTP induction was also shown. We hypothesize that those changes in NMDAR composition could be involved in the "anti-amnesic effect" of the previous OF. Along certain time interval, an increase in GluN1 and GluN2A would lead to an increase in synaptic NMDARs, facilitating synaptic plasticity and memory; while then, an increase in GluN2A/GluN2B ratio could protect the synapse and the already established plasticity, perhaps saving the specific trace.
Collapse
Affiliation(s)
- Magalí C Cercato
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biologia Celular y Neurociencia (IBCN), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155 3er Piso, Buenos Aires, Argentina.
| | - Natalia Colettis
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biologia Celular y Neurociencia (IBCN), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155 3er Piso, Buenos Aires, Argentina.
| | - Marina Snitcofsky
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biologia Celular y Neurociencia (IBCN), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155 3er Piso, Buenos Aires, Argentina.
| | - Alejandra I Aguirre
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biologia Celular y Neurociencia (IBCN), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155 3er Piso, Buenos Aires, Argentina.
| | - Edgar E Kornisiuk
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biologia Celular y Neurociencia (IBCN), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155 3er Piso, Buenos Aires, Argentina.
| | - María V Baez
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biologia Celular y Neurociencia (IBCN), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155 3er Piso, Buenos Aires, Argentina.
| | - Diana A Jerusalinsky
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biologia Celular y Neurociencia (IBCN), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155 3er Piso, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Lin X, Zhang S, Huang R, Wei L, Tan S, Liang C, Lv S, Chen Y, Liang S, Tian Y, Lu Z, Huang Q. Protective effect of madecassoside against cognitive impairment induced by D-galactose in mice. Pharmacol Biochem Behav 2014; 124:434-42. [PMID: 25106808 DOI: 10.1016/j.pbb.2014.07.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 07/22/2014] [Accepted: 07/26/2014] [Indexed: 12/11/2022]
Abstract
This study was designed to investigate the protective effect of madecassoside from Hydrocotyle sibthorpioides against cognitive impairment induced by D-galactose (D-gal) in mice. The result revealed that treatment with madecassoside significantly reversed D-gal-induced learning and memory impairments, as measured by the Morris water-maze test. Studies on the potential mechanisms of this action showed that madecassoside significantly reduced oxidative stress and suppress inflammatory responses via blocking NF-κB and ERK/p38 MAPK pathways. Moreover, madecassoside markedly attenuated the content and deposition of β-amyloid peptide by inducing a decrease in the expression of amyloid protein precursor, β-site amyloid cleaving enzyme-1 and cathepsin B and an increase in the levels of neprilysin and insulin-degrading enzyme. Madecassoside significantly increased the expression of synapse plasticity-related proteins in the hippocampus, such as postsynaptic density 95, long-term potentiation, N-methyl-D-aspartic acid receptors, Ca(2+)/calmodulin-dependent protein kinase II, NMDA receptor subunit 1, protein kinase C, protein kinase A, cAMP-response element binding protein, and brain-derived neurotrophic factor. In addition, madecassoside significantly increased the levels of acetylcholine but decreased cholinesterase activity. In conclusion, the protective effect of madecassoside against d-gal-induced cognitive impairment was mainly due to its ability to reduce oxidative damage, improve synaptic plasticity and restore cholinergic function. These findings suggest that madecassoside can be considered as a potential agent for preventing cognitive impairment.
Collapse
Affiliation(s)
- Xing Lin
- Guangxi Medical University, Nanning 530021, China
| | - Shijun Zhang
- Guangxi Medical University, Nanning 530021, China
| | - Renbin Huang
- Guangxi Medical University, Nanning 530021, China
| | - Ling Wei
- Guangxi Medical University, Nanning 530021, China
| | - Shimei Tan
- Guangxi Medical University, Nanning 530021, China
| | | | - Shujuan Lv
- Guangxi Medical University, Nanning 530021, China
| | - Yongxin Chen
- Guangxi Medical University, Nanning 530021, China
| | - Shuang Liang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, China
| | - Yuanchun Tian
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, China
| | - Zhongpeng Lu
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, China; Ronald O. Perelman Department of Dermatology, NYU - Langone Medical Center, USA
| | - Quanfang Huang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, China.
| |
Collapse
|
14
|
Tripchlorolide improves age-associated cognitive deficits by reversing hippocampal synaptic plasticity impairment and NMDA receptor dysfunction in SAMP8 mice. Behav Brain Res 2014; 258:8-18. [DOI: 10.1016/j.bbr.2013.10.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/29/2013] [Accepted: 10/03/2013] [Indexed: 02/02/2023]
|
15
|
Lin X, Huang R, Zhang S, Wei L, Zhuo L, Wu X, Tang A, Huang Q. Beneficial effects of asiaticoside on cognitive deficits in senescence-accelerated mice. Fitoterapia 2013; 87:69-77. [PMID: 23562630 DOI: 10.1016/j.fitote.2013.03.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/19/2013] [Accepted: 03/24/2013] [Indexed: 11/20/2022]
Abstract
The effect of asiaticoside isolated from Hydrocotyle sibthorpioides (AHS) on the promotion of cognition in senescence-accelerated mice (SAMP) was evaluated. Six-month old male SAMP8 mice were orally administered 20, 40 or 80 mg/kg AHS daily for three months. SAMR1 mice were used as a "normal aging" control. The results showed that treatment with AHS significantly improved learning and memory abilities in behavioral tests. AHS-treated mice showed higher antioxidant enzyme activity and lower lipid oxidation in serum compared with untreated SAMP8 mice. Mechanistically, studies showed that AHS markedly reduced the content and deposition of β-amyloid peptide (Aβ) by inhibiting the expression of mRNA for amyloid protein precursor, β-site amyloid cleaving enzyme-1 and cathepsin B and promoting the expression of mRNA for neprilysin and insulin degrading enzyme. In addition, AHS significantly increased the expression of plasticity-related proteins including postsynaptic density-95, phosphor-N-methyl-D-aspartate receptor 1, phospho-calcium-calmodulin dependent kinase II, phospho-protein kinase A Catalyticβ subunit, protein kinase Cγ subunit, phospho-CREB and brain derived neurotrophic factor. Furthermore, AHS increased the levels of acetylcholine (Ach), but decreased cholinesterase (AchE) activity. These results demonstrated that AHS administration may prevent spatial learning and memory decline by scavenging free radicals, up-regulating the activity of antioxidant enzymes, decreasing the level of Aβ, ameliorating dysfunction in synaptic plasticity, and reversing abnormal changes in Ach level and AchE activity. Thus, AHS should be developed as a new drug to prevent age-related cognitive deficits.
Collapse
Affiliation(s)
- Xing Lin
- Guangxi Medical University, Nanning 530021, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Sun CY, Qi SS, Zhou P, Cui HR, Chen SX, Dai KY, Tang ML. Neurobiological and pharmacological validity of curcumin in ameliorating memory performance of senescence-accelerated mice. Pharmacol Biochem Behav 2013; 105:76-82. [DOI: 10.1016/j.pbb.2013.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 01/28/2013] [Accepted: 02/01/2013] [Indexed: 10/27/2022]
|
17
|
Marsman A, van den Heuvel MP, Klomp DWJ, Kahn RS, Luijten PR, Hulshoff Pol HE. Glutamate in schizophrenia: a focused review and meta-analysis of ¹H-MRS studies. Schizophr Bull 2013; 39:120-9. [PMID: 21746807 PMCID: PMC3523901 DOI: 10.1093/schbul/sbr069] [Citation(s) in RCA: 337] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a severe chronic psychiatric illness, characterized by hallucinations and delusions. Decreased brain volumes have been observed in the disease, although the origin of these changes is unknown. Changes in the n-methyl-d-aspartate (NMDA)-receptor mediated glutamatergic neurotransmission are implicated, since it is hypothesized that NMDA-receptor dysfunction in schizophrenia leads to increased glutamate release, which can have excitotoxic effects. However, the magnitude and extent of changes in glutamatergic metabolites in schizophrenia are not clear. With (1)H magnetic resonance spectroscopy ((1)H-MRS), in vivo information about glutamate and glutamine concentrations can be obtained in the brain. A systematic search through the MEDLINE database was conducted to identify relevant (1)H-MRS studies that examined differences in glutamate and glutamine concentrations between patients with schizophrenia and healthy control subjects. Twenty-eight studies were identified and included a total of 647 patients with schizophrenia and 608 healthy-control subjects. For each study, Cohen's d was calculated and main effects for group analyses were performed using the random-effects model. Medial frontal region glutamate was decreased and glutamine was increased in patients with schizophrenia as compared with healthy individuals. Group-by-age associations revealed that in patients with schizophrenia, glutamate and glutamine concentrations decreased at a faster rate with age as compared with healthy controls. This could reflect aberrant processes in schizophrenia, such as altered synaptic activity, changed glutamate receptor functioning, abnormal glutamine-glutamate cycling, or dysfunctional glutamate transport.
Collapse
Affiliation(s)
- Anouk Marsman
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Internal address A.01.126, PO Box 85500, 3508 GA Utrecht, The Netherlands.
| | - Martijn P. van den Heuvel
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W. J. Klomp
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - René S. Kahn
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter R. Luijten
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hilleke E. Hulshoff Pol
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
18
|
Depew DC, Basu N, Burgess NM, Campbell LM, Evers DC, Grasman KA, Scheuhammer AM. Derivation of screening benchmarks for dietary methylmercury exposure for the common loon (Gavia immer): rationale for use in ecological risk assessment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:2399-2407. [PMID: 22865698 DOI: 10.1002/etc.1971] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/03/2012] [Accepted: 06/20/2012] [Indexed: 06/01/2023]
Abstract
The current understanding of methylmercury (MeHg) toxicity to avian species has improved considerably in recent years and indicates that exposure to environmentally relevant concentrations of MeHg through the diet can adversely affect various aspects of avian health, reproduction, and survival. Because fish-eating birds are at particular risk for elevated MeHg exposure, the authors surveyed the available primary and secondary literature to summarize the effects of dietary MeHg on the common loon (Gavia immer) and to derive ecologically relevant toxic thresholds for dietary exposure to MeHg in fish prey. After considering the available data, the authors propose three screening benchmarks of 0.1, 0.18, and 0.4 µg g(-1) wet weight MeHg in prey fish. The lowest benchmark (0.1 µg g(-1) wet wt) is the threshold for adverse behavioral impacts in adult loons and is close to the empirically determined no observed adverse effects level for subclinical effects observed in captive loon chicks. The remaining benchmarks (0.18 and 0.4 µg g(-1) wet wt) correspond to MeHg levels in prey fish associated with significant reproductive impairment and reproductive failure in wild adult loons. Overall, these benchmarks incorporate recent findings and reviews of MeHg toxicity in aquatic fish-eating birds and provide the basis for a national ecological risk assessment for Hg and loons in Canada.
Collapse
Affiliation(s)
- David C Depew
- Department of Biology and School of Environmental Studies, Queen's University, Kingston, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
19
|
Jerusalinsky D, Baez MV, Epstein AL. Herpes simplex virus type 1-based amplicon vectors for fundamental research in neurosciences and gene therapy of neurological diseases. ACTA ACUST UNITED AC 2011; 106:2-11. [PMID: 22108428 DOI: 10.1016/j.jphysparis.2011.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 10/11/2011] [Accepted: 11/04/2011] [Indexed: 12/24/2022]
Abstract
Somatic manipulation of the nervous system without the involvement of the germinal line appears as a powerful counterpart of the transgenic strategy. The use of viral vectors to produce specific, transient and localized knockout, knockdown, ectopic expression or overexpression of a gene, leads to the possibility of analyzing both in vitro and in vivo molecular basis of neural function. In this approach, viral particles engineered to carry transgenic sequences are delivered into discrete brain regions, to transduce cells that will express the transgenic products. Amplicons are replication-incompetent helper-dependent vectors derived from herpes simplex virus type 1 (HSV-1), with several advantages that potentiate their use in neurosciences: (1) minimal toxicity: amplicons do not encode any virus proteins, are neither toxic for the infected cells nor pathogenic for the inoculated animals and elicit low levels of adaptive immune responses; (2) extensive transgene capacity to carry up to 150-kb of foreign DNA; i.e., entire genes with regulatory sequences could be delivered; (3) widespread cellular tropism: amplicons can experimentally infect several cell types including glial cells, though naturally the virus infects mainly neurons and epithelial cells; (4) since the viral genome does not integrate into cellular chromosomes there is low probability to induce insertional mutagenesis. Recent investigations on gene transfer into the brain using these vectors, have focused on gene therapy of inherited genetic diseases affecting the nervous system, such as ataxias, or on neurodegenerative disorders using experimental models of Parkinson's or Alzheimer's disease. Another group of studies used amplicons to investigate complex neural functions such as neuroplasticity, anxiety, learning and memory. In this short review, we summarize recent data supporting the potential of HSV-1 based amplicon vector model for gene delivery and modulation of gene expression in primary cultures of neuronal cells and into the brain of living animals.
Collapse
Affiliation(s)
- Diana Jerusalinsky
- Instituto de Biología Celular y Neurociencia (IBCN), CONICET-UBA. Buenos Aires, Argentina.
| | | | | |
Collapse
|
20
|
Escobar M, Crouzin N, Cavalier M, Quentin J, Roussel J, Lanté F, Batista-Novais AR, Cohen-Solal C, De Jesus Ferreira MC, Guiramand J, Barbanel G, Vignes M. Early, time-dependent disturbances of hippocampal synaptic transmission and plasticity after in utero immune challenge. Biol Psychiatry 2011; 70:992-9. [PMID: 21377655 DOI: 10.1016/j.biopsych.2011.01.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 01/10/2011] [Accepted: 01/11/2011] [Indexed: 11/17/2022]
Abstract
BACKGROUND Maternal infection during pregnancy is a recognized risk factor for the occurrence of a broad spectrum of psychiatric and neurologic disorders, including schizophrenia, autism, and cerebral palsy. Prenatal exposure of rats to lipopolysaccharide (LPS) leads to impaired learning and psychotic-like behavior in mature offspring, together with an enduring modification of glutamatergic excitatory synaptic transmission. The question that arises is whether any alterations of excitatory transmission and plasticity occurred at early developmental stages after in utero LPS exposure. METHODS Electrophysiological experiments were carried out on the CA1 area of hippocampal slices from prenatally LPS-exposed male offspring from 4 to 190 days old to study the developmental profiles of long-term depression (LTD) triggered by delivering 900 shocks either single- or paired-pulse (50-msec interval) at 1 Hz and the N-methyl-D-aspartate receptor (NMDAr) contribution to synaptic transmission. RESULTS The age-dependent drop of LTD is accelerated in prenatally LPS-exposed animals, and LTD is transiently converted into a slow-onset long-term potentiation between 16 and 25 days old. This long-term potentiation depends on Group I metabotropic glutamate receptors and protein kinase A activations and is independent of NMDArs. Maternal LPS challenge also leads to a rapid developmental impairment of synaptic NMDArs. This was associated with a concomitant reduced expression of GluN1, without any detectable alteration in the developmental switch of NMDAr GluN2 subunits. CONCLUSIONS Aberrant forms of synaptic plasticity can be detected at early developmental stages after prenatal LPS challenge concomitant with a clear hypo-functioning of the NMDAr in the hippocampus. This might result in later-occurring brain dysfunctions.
Collapse
Affiliation(s)
- Marion Escobar
- Institut des Biomolécules Max Mousseron, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kumar S, Ruchi R, James SR, Chidiac EJ. Gene therapy for chronic neuropathic pain: how does it work and where do we stand today? PAIN MEDICINE 2011; 12:808-22. [PMID: 21564510 DOI: 10.1111/j.1526-4637.2011.01120.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Chronic neuropathic pain has been an enigma to physicians and researchers for decades. A better understanding of its pathophysiology has given us more insight into its various mechanisms and possible treatment options. We now have an understanding of the role of various ionic channels, biologically active molecules involved in pain, and also the intricate pain pathways where possible interventions might lead to substantial pain relief. The recent research on laboratory animals using virus-based vectors for gene transfer at targeted sites is very promising and may lead to additional human clinical trials. However, one needs to be aware that this "novel" approach is still in its infancy and that many of its details need to be further elucidated. The purpose of this article is to thoroughly review the current available literature and analyze the deficiencies in our current knowledge. DESIGN Literature review. METHODS After an extensive online literature search, a total of 133 articles were selected to synthesize a comprehensive review about chronic neuropathic pain and gene therapy in order to understand the concepts and mechanisms. RESULTS Most of the studies have shown benefits of gene therapy in animal models, and recently, phase 1 human trials using herpes simplex virus vector have started for intractable cancer pain. CONCLUSION Although animal data have shown safety and efficacy, and initial human trials have been promising, additional studies in humans are required to more completely understand the actual benefits and risks of using gene therapy for the treatment of chronic neuropathic pain.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Anesthesiology, Wayne State University/Detroit Medical Center, Harper University Hospital, MI 48201, USA
| | | | | | | |
Collapse
|
22
|
Characterization of specific cDNA background synthesis introduced by reverse transcription in RT-PCR assays. Biochimie 2010; 92:1839-46. [DOI: 10.1016/j.biochi.2010.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/27/2010] [Accepted: 07/30/2010] [Indexed: 11/23/2022]
|
23
|
Decker H, Jürgensen S, Adrover MF, Brito-Moreira J, Bomfim TR, Klein WL, Epstein AL, De Felice FG, Jerusalinsky D, Ferreira ST. N-Methyl-d-aspartate receptors are required for synaptic targeting of Alzheimer’s toxic amyloid-β peptide oligomers. J Neurochem 2010; 115:1520-9. [DOI: 10.1111/j.1471-4159.2010.07058.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Ding YX, Zhang Y, He B, Yue WH, Zhang D, Zou LP. A possible association of responsiveness to adrenocorticotropic hormone with specific GRIN1 haplotypes in infantile spasms. Dev Med Child Neurol 2010; 52:1028-32. [PMID: 20722663 DOI: 10.1111/j.1469-8749.2010.03746.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM Adrenocorticotropic hormone (ACTH) has been used as the major therapy for infantile spasms since 1958 because it effectively suppresses seizures; it also normalizes the electroencephalogram in the short-term treatment of infantile spasms. G protein-regulated inducer of neurite outgrowth 1 (GRIN1, also known as N-methyl-D-aspartate receptor 1, NMDAR1), a glutamate receptor, is the main component of functional N-methyl-D-aspartic acid receptors that are involved in the glucocorticoid-induced neuronal damage. Thus, it may be a candidate gene to be tested for responsiveness to ACTH in infantile spasms. In the present study, polymorphisms in the GRIN1 gene in infantile spasms were investigated using a case-control design. METHOD Twelve single nucleotide polymorphisms in the GRIN1 gene were genotyped in a Chinese case-control set consisting of 97 unrelated patients with infantile spasms (60 males, 37 females; mean age 6.4 mo, SD 2.7) and 96 healthy individuals (63 males, 33 females; mean age 7.3 mo, SD 3.8). Association analysis was performed on the genotyped data. RESULTS Five estimated haplotypes with a frequency of more than 3% were detected. Results of the study showed that responsiveness to treatment with ACTH in homozygous carriers of the CTA haplotype was higher than that in heterozygous carriers and non-carriers (p=0.022). Furthermore, CTG, a rare haplotype, was strongly associated with infantile spasms (p=0.013). INTERPRETATION The results suggest that haplotypes of GRIN1 may influence responsiveness to ACTH. The findings necessitate further study for confirmation.
Collapse
Affiliation(s)
- Ying-Xue Ding
- Department of Neurology, Beijing Children's Hospital, The Capital Medical University, Beijing, China
| | | | | | | | | | | |
Collapse
|
25
|
Da Silva LFS, Walder RY, Davidson BL, Wilson SP, Sluka KA. Changes in expression of NMDA-NR1 receptor subunits in the rostral ventromedial medulla modulate pain behaviors. Pain 2010; 151:155-161. [PMID: 20688433 PMCID: PMC2943935 DOI: 10.1016/j.pain.2010.06.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 06/29/2010] [Accepted: 06/30/2010] [Indexed: 01/11/2023]
Abstract
NMDA receptors have an important role in pain facilitation in rostral ventromedial medulla (RVM) and the NR1 subunit is essential for its function. Studies suggest that the NMDA receptors in RVM are critical to modulate both cutaneous and muscle hypersensitivity induced by repeated intramuscular acid injections. We propose that increased expression of the NR1 subunit in the RVM is critical for the full development of hypersensitivity. To test this we used recombinant lentiviruses to over-express the NR1 subunit in the RVM and measured nociceptive sensitivity to cutaneous and muscle stimuli. We also downregulated the expression of NR1 in the RVM and measured the hyperalgesia produced by repeated-acid injections. Increasing the expression of NR1 in the RVM reduces cutaneous and muscle withdrawal threshold, and decreasing the expression of NR1 in the RVM increases the muscle withdrawal threshold and prevents the development of hyperalgesia in an animal model of muscle pain. These results suggest that the NR1 subunits in the RVM are critical for modulating NMDA receptor function, which in turn sets the 'tone' of the nervous system's response to noxious stimuli and tissue injury.
Collapse
Affiliation(s)
- Luis Felipe S. Da Silva
- Veterinary Science Department, Center for Agrarian Sciences, University of Paraiba, Areia, PB 58397-000, Brazil
| | - Roxanne Y. Walder
- Graduate Program in Physical Therapy and Rehabilitation Sciences, Neuroscience Graduate Program, Pain Research Program, The University of Iowa, Iowa City, IA 52242, USA
| | | | - Steven P. Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Kathleen A. Sluka
- Graduate Program in Physical Therapy and Rehabilitation Sciences, Neuroscience Graduate Program, Pain Research Program, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
26
|
Fan G, Feng C, Wu F, Ye W, Lin F, Wang C, Yan J, Zhu G, Xiao Y, Bi Y. Methionine choline reverses lead-induced cognitive and N-methyl-d-aspartate receptor subunit 1 deficits. Toxicology 2010; 272:23-31. [DOI: 10.1016/j.tox.2010.03.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 03/27/2010] [Accepted: 03/29/2010] [Indexed: 10/19/2022]
|
27
|
van den Pol AN, Ozduman K, Wollmann G, Ho WSC, Simon I, Yao Y, Rose JK, Ghosh P. Viral strategies for studying the brain, including a replication-restricted self-amplifying delta-G vesicular stomatis virus that rapidly expresses transgenes in brain and can generate a multicolor golgi-like expression. J Comp Neurol 2009; 516:456-81. [PMID: 19672982 DOI: 10.1002/cne.22131] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Viruses have substantial value as vehicles for transporting transgenes into neurons. Each virus has its own set of attributes for addressing neuroscience-related questions. Here we review some of the advantages and limitations of herpes, pseudorabies, rabies, adeno-associated, lentivirus, and others to study the brain. We then explore a novel recombinant vesicular stomatitis virus (dG-VSV) with the G-gene deleted and transgenes engineered into the first position of the RNA genome, which replicates only in the first brain cell infected, as corroborated with ultrastructural analysis, eliminating spread of virus. Because of its ability to replicate rapidly and to express multiple mRNA copies and additional templates for more copies, reporter gene expression is amplified substantially, over 500-fold in 6 hours, allowing detailed imaging of dendrites, dendritic spines, axons, and axon terminal fields within a few hours to a few days after inoculation. Green fluorescent protein (GFP) expression is first detected within 1 hour of inoculation. The virus generates a Golgi-like appearance in all neurons or glia of regions of the brain tested. Whole-cell patch-clamp electrophysiology, calcium digital imaging with fura-2, and time-lapse digital imaging showed that neurons appeared physiologically normal after expressing viral transgenes. The virus has a wide range of species applicability, including mouse, rat, hamster, human, and Drosophila cells. By using dG-VSV, we show efferent projections from the suprachiasmatic nucleus terminating in the periventricular region immediately dorsal to the nucleus. DG-VSVs with genes coding for different color reporters allow multicolor visualization of neurons wherever applied.
Collapse
Affiliation(s)
- Anthony N van den Pol
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Briz V, Galofré M, Suñol C. Reduction of Glutamatergic Neurotransmission by Prolonged Exposure to Dieldrin Involves NMDA Receptor Internalization and Metabotropic Glutamate Receptor 5 Downregulation. Toxicol Sci 2009; 113:138-49. [DOI: 10.1093/toxsci/kfp244] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
29
|
Takao K, Miyakawa T. Intrauterine environment-genome interaction and children's development (4): Brain-behavior phenotypying of genetically-engineered mice using a comprehensive behavioral test battery on research of neuropsychiatric disorders. J Toxicol Sci 2009; 34 Suppl 2:SP293-305. [PMID: 19571483 DOI: 10.2131/jts.34.sp293] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Despite massive research efforts, the exact pathogenesis and pathophysiology of psychiatric disorders, such as schizophrenia and bipolar disorder, remain largely unknown. Animal models can serve as essential tools for investigating the etiology and treatment of such disorders. Some mutant mouse strains were found to exhibit behavioral abnormalities reminiscent of human psychiatric disorders. Here we outline our unique approach of extrapolating findings in mice to humans, and present studies on alpha-CaMKII heterozygous knockout (alpha-CaMKII+/-) mice as examples. Alpha-CaMKII+/- mice have profoundly dysregulated behavior and impaired neuronal development in the dentate gyrus (DG). The behavioral abnormalities include a severe working memory deficit and an exaggerated infradian rhythm, which are similar to symptoms seen in schizophrenia, bipolar mood disorder and other psychiatric disorders. By conducting a series of experiments, we discovered that almost all the neurons in the mutant DG were very similar to the immature DG neurons of normal rodents. In other words, alpha-CaMKII+/- mice have an "immature DG". We proposed that an "immature DG" in adulthood might induce alterations in behavior and serve as a promising candidate endophenotype of schizophrenia and other human psychiatric disorders. The impact of a large-scale mouse phenotyping on studies of psychiatric disorders and the potential utility of an "animal-model-array" of psychiatric disorders for the development of suitable therapeutic agents is also discussed.
Collapse
Affiliation(s)
- Keizo Takao
- Division of Systems Medicine, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | | |
Collapse
|
30
|
Inta D, Monyer H, Sprengel R, Meyer-Lindenberg A, Gass P. Mice with genetically altered glutamate receptors as models of schizophrenia: a comprehensive review. Neurosci Biobehav Rev 2009; 34:285-94. [PMID: 19651155 DOI: 10.1016/j.neubiorev.2009.07.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Revised: 07/24/2009] [Accepted: 07/24/2009] [Indexed: 01/28/2023]
Abstract
Recent clinical evidence for the effectiveness of new antipsychotic drugs that specifically target glutamate receptors has rekindled interest in the glutamatergic system regarding pathophysiology and treatment of schizophrenia. The glutamatergic hypothesis of schizophrenia was triggered by the clinical/behavioural observation that NMDA receptor antagonists can induce psychosis in humans and abnormal behaviour with schizophrenia-like symptoms in animals. Initial models focused on NMDA receptor hypofunction as a potential pathogenetic mechanism. More recent genetic and pharmacological studies revealed that malfunction of other components of the glutamatergic system might also be relevant in explaining specific symptoms of this complex disease. Here, we review mutant mouse models with relevance for schizophrenia. These rodent models, in which specific glutamate receptor subtypes or various components of their intracellular transduction machinery are genetically altered, permit a detailed dissection of the contribution of different components of the glutamate system in inducing schizophrenia-like behaviours. They may provide insight into the pathophysiology of schizophrenia and prove useful in the development of new therapeutics.
Collapse
Affiliation(s)
- Dragos Inta
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, J5, 68159 Mannheim, Germany.
| | | | | | | | | |
Collapse
|
31
|
Kalev-Zylinska ML, Symes W, Young D, During MJ. Knockdown and overexpression of NR1 modulates NMDA receptor function. Mol Cell Neurosci 2009; 41:383-96. [PMID: 19394426 DOI: 10.1016/j.mcn.2009.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 03/24/2009] [Accepted: 04/17/2009] [Indexed: 01/17/2023] Open
Abstract
The N-methyl-d-aspartate receptor (NMDAR) is critically involved in learning and memory, neuronal survival, as well as neuroexcitotoxicity and seizures. We hypothesize that even mild reductions in the numbers of hippocampal NMDARs could impair learning and memory, whereas increasing receptor activity would facilitate learning but reduce seizure threshold. We developed novel gene transfer strategies assisted by an adeno-associated viral vector 1/2 to bi-directionally modulate expression levels of the NR1 protein in rat hippocampus. Functional consequences of the altered NR1 expression were examined in the acute seizure model, and on normal processes of fear memory and neurogenesis. We found that knocking down NR1 protected against seizures at the expense of impaired learning, as predicted. Paradoxically, NR1 overexpression not only increased fear memory and neurogenesis, but also delayed onset of more severe seizures. In conclusion, the observed consequences of NR1 knockdown and overexpression underscore NMDAR requirement for neuronal plasticity, and are in agreement with its dichotomous functions.
Collapse
Affiliation(s)
- Maggie L Kalev-Zylinska
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
32
|
Schober ME, McKnight RA, Yu X, Callaway CW, Ke X, Lane RH. Intrauterine growth restriction due to uteroplacental insufficiency decreased white matter and altered NMDAR subunit composition in juvenile rat hippocampi. Am J Physiol Regul Integr Comp Physiol 2009; 296:R681-92. [DOI: 10.1152/ajpregu.90396.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Uteroplacental insufficiency (UPI), the major cause of intrauterine growth restriction (IUGR) in developed nations, predisposes to learning impairment. The underlying mechanism is unknown. Neuronal N-methyl-d-aspartate receptors (NMDARs) are critical for synaptogenesis and learning throughout life. We hypothesized that UPI-induced IUGR alters rat hippocampal NMDAR NR2A/NR2B subunit ratio and/or NR1 mRNA isoform expression and synaptic density at day 21 (P21). To test this hypothesis, IUGR was induced by bilateral uterine artery ligation of the late-gestation Sprague-Dawley dam. At P21, hippocampal NMDAR subunit mRNA and protein were measured, as were levels of synaptophysin. Neuronal, synaptic, and glial density in CA1, CA3, and dentate gyrus (DG) was assessed by immunofluorescence. IUGR increased NR1 mRNA isoform NR1-3a and 1-3b expression in both sexes. In P21 males, IUGR increased protein levels of NR1 C2′ and decreased NR1 C2, NR2A, and the NR2A-to-NR2B ratio, whereas in females, IUGR increased NR2B protein. In males, IUGR was associated with decreased myelin basic protein-to-neuronal nuclei ratio in CA1, CA3, and DG. We conclude that IUGR has sex-specific effects and that neither neuronal loss nor decreased synaptic density appears to account for the changes in NMDAR subunits. Rather, it is possible that synaptic NMDAR subunit composition is altered. Our results suggest that apparent recovery in the IUGR hippocampus may be associated with synaptic hyperexcitability. We speculate that the NMDAR plays an important role in IUGR-associated cognitive impairment.
Collapse
|
33
|
Zhao H, Li Q, Zhang Z, Pei X, Wang J, Li Y. Long-term ginsenoside consumption prevents memory loss in aged SAMP8 mice by decreasing oxidative stress and up-regulating the plasticity-related proteins in hippocampus. Brain Res 2008; 1256:111-22. [PMID: 19133247 DOI: 10.1016/j.brainres.2008.12.031] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Revised: 12/02/2008] [Accepted: 12/09/2008] [Indexed: 12/17/2022]
Abstract
Ginsenoside, the effective component of ginseng, has been reported to have a neuron protective effect, but the preventive effect on Alzheimer's disease (AD) related memory loss and the underlying mechanisms have not been well determined. The senescence-accelerated mouse (SAM) is a useful model of AD-related memory impairment. In the present study, SAMP8 mice aged 4 months were chronically treated with ginsenoside (3 dose groups were given ginsenoside in drinking water for 7 months). The three groups were treated with ginsenoside 50, 100 and 200 mg/kg per day, respectively. Placebo-treated aged mice and young ones (4 months old) were used as controls. In addition, SAMR1 mice were used as "normal aging" control. The beneficial role of ginsenoside was manifested in the prevention of memory loss in aged SAMP8 mice. The optimal dose of ginsenoside is 100 or 200 mg/kg per day. In ginsenoside treated groups, the Abeta level markedly decreased in hippocampus and antioxidase level significantly increased in serum. In addition, the plasticity-related proteins in hippocampus significantly increased in the two ginsenoside treated groups. The plasticity-related proteins were checked in the present study including postsynaptic density-95 (PSD-95), phosphor-N-methyl-D-aspartate receptor 1 (p-NMDAR1), phospho-calcium-calmodulin dependent kinase II (p-CaMKII), phospho-protein kinase A Catalyticbeta subunit (p-PKA Cbeta) and protein kinase Cgamma subunit (PKCgamma), phospho-CREB (p-CREB) and brain derived neurotrophic factor (BDNF) etc. These findings suggest that the increase of antioxidation and up-regulation of plasticity-related proteins in hippocampus may be one of the mechanisms of ginsenoside on the memory loss prevention in aged SAMP8 mice.
Collapse
Affiliation(s)
- Haifeng Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, PR China
| | | | | | | | | | | |
Collapse
|
34
|
Millan MJ, Brocco M. Cognitive Impairment in Schizophrenia: a Review of Developmental and Genetic Models, and Pro-cognitive Profile of the Optimised D3 > D2 Antagonist, S33138. Therapie 2008; 63:187-229. [DOI: 10.2515/therapie:2008041] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2008] [Indexed: 01/23/2023]
|
35
|
Bubeníková-Valesová V, Horácek J, Vrajová M, Höschl C. Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neurosci Biobehav Rev 2008; 32:1014-23. [PMID: 18471877 DOI: 10.1016/j.neubiorev.2008.03.012] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 03/18/2008] [Accepted: 03/28/2008] [Indexed: 01/17/2023]
Abstract
The research of the glutamatergic system in schizophrenia has advanced with the use of non-competitive antagonists of glutamate NMDA receptors (phencyclidine, ketamine, and dizocilpine), which change both human and animal behaviour and induce schizophrenia-like manifestations. Models based on both acute and chronic administration of these substances in humans and rats show phenomenological validity and are suitable for searching for new substances with antipsychotic effects. Nevertheless, pathophysiology of schizophrenia remains unexplained. In the light of the neurodevelopmental model of schizophrenia based on early administration of NMDA receptor antagonists it seems that increased cellular destruction by apoptosis or changes in function of glutamatergic NMDA receptors in the early development of central nervous system are decisive for subsequent development of psychosis, which often does not manifest itself until adulthood. Chronic administration of antagonists initializes a number of adaptation mechanisms, which correlate with findings obtained in patients with schizophrenia; therefore, this model is also suitable for research into pathophysiology of this disease.
Collapse
|
36
|
Cuchet D, Potel C, Thomas J, Epstein AL. HSV-1 amplicon vectors: a promising and versatile tool for gene delivery. Expert Opin Biol Ther 2007; 7:975-95. [PMID: 17665988 DOI: 10.1517/14712598.7.7.975] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amplicons are defective and non-integrative vectors derived from herpes simplex virus type 1. They carry no virus genes in the vector genome and are, therefore, not toxic to the infected cells or pathogenic for the transduced organisms, making these vectors safe. In addition, the large transgenic capacity of amplicons, which allow delivery of < or = 150 Kbp of foreign DNA, make these vectors one of the most powerful, interesting and versatile gene delivery platforms. Here, the authors present recent technological developments that have significantly improved and extended the use of amplicons, both in cultured cells and in living organisms. In addition, this review illustrates the many possible applications that are presently being developed with amplicons and discuss the many difficulties still pending to be solved in order to achieve stable and physiologically regulated transgenic expression.
Collapse
|
37
|
Koh HY, Kim D, Lee J, Lee S, Shin HS. Deficits in social behavior and sensorimotor gating in mice lacking phospholipase Cbeta1. GENES BRAIN AND BEHAVIOR 2007; 7:120-8. [PMID: 17696993 DOI: 10.1111/j.1601-183x.2007.00351.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abnormal phospholipid metabolism has been implicated in the pathogenesis of schizophrenia, and it was reported that phospholipase C (PLC) beta1 is reduced in specific brain areas of patients with schizophrenia. However, the causal relationship of the PLCbeta1 gene with behavioral symptoms of schizophrenia remains unclear. To address this issue, we have examined the mutant mice lacking PLCbeta1 for schizophrenia-related phenotypes by performing various behavioral tests, including general locomotor activity, sensorimotor gating, social behaviors, and learning and memory. Phospholipase C beta1 knockout mice showed hyperactivities in an open field. They showed impaired prepulse inhibition of acoustic startle response, which was ameliorated by a systemic administration of an antipsychotic D2-receptor antagonist, haloperidol. In addition, they showed abnormal social behaviors, such as lack of barbering behavior, socially recessive trait and lack of nesting behavior. Furthermore, they showed impaired performance in the delayed-non-match-to-sample T-maze test. The present results show that the PLCbeta1 mutant mice share some of the behavioral abnormalities that have been reported in patients with schizophrenia. Thus, the PLCbeta1-linked signaling pathways may be involved in the neural system whose function is disrupted in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- H-Y Koh
- Center for Neural Science, Korea Institute of Science and Technology, Seoul, Korea
| | | | | | | | | |
Collapse
|
38
|
Chen S, Atkins CM, Liu CL, Alonso OF, Dietrich WD, Hu BR. Alterations in mammalian target of rapamycin signaling pathways after traumatic brain injury. J Cereb Blood Flow Metab 2007; 27:939-49. [PMID: 16955078 DOI: 10.1038/sj.jcbfm.9600393] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In response to traumatic brain injury (TBI), neurons initiate neuroplastic processes through the activation of intracellular signaling pathways. However, the molecular mechanisms underlying neuroplasticity after TBI are poorly understood. To study this, we utilized the fluid-percussion brain injury (FPI) model to investigate alterations in the mammalian target of rapamycin (mTOR) signaling pathways in response to TBI. Mammalian target of rapamycin stimulates mRNA translation through phosphorylation of eukaryotic initiation factor 4E binding protein-1 (4E-BP1), p70 ribosomal S6 kinase (p70S6K), and ribosomal protein S6 (rpS6). These pathways coordinate cell growth and neuroplasticity via dendritic protein synthesis. Rats received sham surgery or moderate parasagittal FPI on the right side of the parietal cortex, followed by 15 mins, 30 mins, 4 h, 24 h, or 72 h of recovery. Using Western blot analysis, we found that mTOR, p70S6K, rpS6, and 4E-BP1 phosphorylation levels were significantly increased in the ipsilateral parietal cortex and hippocampus from 30 mins to 24 h after TBI, whereas total protein levels were unchanged. Using confocal microscopy to localize these changes, we found that rpS6 phosphorylation was increased in the parietal cortex and all subregions of the hippocampus. In accordance with these results, eIF4E, a key, rate-limiting mRNA translation factor, was also phosphorylated by mitogen-activated protein kinase-interacting kinase 1 (Mnk1) 15 mins after TBI. Together, these results suggest that changes in mRNA translation may be one mechanism that neurons use to respond to trauma and may contribute to the neuroplastic changes observed after TBI.
Collapse
Affiliation(s)
- Shaoyi Chen
- The Neurochemistry Laboratory of Brain Injury, Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | |
Collapse
|
39
|
Basu N, Scheuhammer AM, Rouvinen-Watt K, Grochowina N, Evans RD, O'Brien M, Chan HM. Decreased N-methyl-d-aspartic acid (NMDA) receptor levels are associated with mercury exposure in wild and captive mink. Neurotoxicology 2007; 28:587-93. [PMID: 17267038 DOI: 10.1016/j.neuro.2006.12.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 12/14/2006] [Accepted: 12/20/2006] [Indexed: 11/29/2022]
Abstract
Mercury (Hg) impairs glutamate homeostasis but little is known about its effects on the N-methyl-d-aspartic acid (NMDA) receptor. Here, we investigated NMDA receptor levels, as determined by [(3)H]-MK801 binding, in both wild and captive mink (Mustela vison) that experienced different levels of methylmercury (MeHg) exposure. Competitive in vitro binding experiments showed that inorganic Hg (HgCl(2); IC(50)=1.5-20.7 microM), but not MeHg (MeHgCl; IC(50)>320 microM), inhibited binding to the NMDA receptor in several brain regions of mink. In a survey of trapped wild mink, NMDA receptor levels in the brain were negatively correlated (p<0.005) with concentrations of total Hg (R=-0.618) and MeHg (R=-0.714). These findings were supported by a laboratory feeding study in which captive mink were exposed to dietary MeHg (0-2 ppm) for 89 days. Concentration-dependent decreases in NMDA receptor levels were found in the basal ganglia, cerebellum, brain stem and occipital cortex. These findings are of physiological and ecological concern because they demonstrate that Hg, at dietary concentrations as low as 0.1 ppm, can significantly reduce NMDA receptor levels.
Collapse
Affiliation(s)
- Niladri Basu
- National Wildlife Research Center, Canadian Wildlife Service, Environment Canada, 1125 Colonel By Drive (Raven Road), Ottawa, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
40
|
Babot Z, Vilaró MT, Suñol C. Long-term exposure to dieldrin reduces γ-aminobutyric acid type A and N-methyl-D-aspartate receptor function in primary cultures of mouse cerebellar granule cells. J Neurosci Res 2007; 85:3687-95. [PMID: 17663462 DOI: 10.1002/jnr.21433] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The organochlorine pesticide dieldrin is a persistent organic pollutant that accumulates in the fatty tissue of living organisms. In mammals, it antagonizes the GABA(A) receptor, producing convulsions after acute exposure. Although accumulation in human brain has been reported, little is known about the effects of long-term exposure to dieldrin in the nervous system. Homeostatic control of the balance between excitation and inhibition has been reported when neuronal activity is chronically altered. We hypothesized that noncytotoxic concentrations of dieldrin could decrease glutamatergic neurotransmission as a consequence of a prolonged reduction in GABA(A) receptor function. Long-term exposure of primary cerebellar granule cell cultures to 3 microM dieldrin reduced the GABA(A) receptor function to 55% of control, as measured by the GABA-induced (36)Cl(-) uptake. This exposure produced a significant reduction (approximately 35%) of the NMDA-induced increase in [Ca(2+)](i) and of the [(3)H]MK-801 binding, which was not accompanied by a reduction in the NMDA receptor subunit NR1, as determined by Western blot. Consistent with the decreased NMDA receptor function, dieldrin-treated cultures were insensitive to an excitotoxic stimulus induced by exposure to high potassium. In summary, we report that the chronic reduction of GABA(A) receptor function induced by dieldrin decreases the number of functional NMDA receptors, which may be attributable to a mechanism of synaptic scaling. These effects could underlie neural mechanisms involved in cognitive impairment produced by low-level exposure to dieldrin.
Collapse
Affiliation(s)
- Zoila Babot
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas, CSIC-IDIBAPS, Rosselló 161, Barcelona, Spain
| | | | | |
Collapse
|