1
|
Duarte JMN. Concentrations of glutamate and N-acetylaspartate detected by magnetic resonance spectroscopy in the rat hippocampus correlate with hippocampal-dependent spatial memory performance. Front Mol Neurosci 2024; 17:1458070. [PMID: 39219740 PMCID: PMC11362093 DOI: 10.3389/fnmol.2024.1458070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Magnetic resonance spectroscopy (MRS) has been employed to investigate brain metabolite concentrations in vivo, and they vary during neuronal activation, across brain activity states, or upon disease with neurological impact. Whether resting brain metabolites correlate with functioning in behavioral tasks remains to be demonstrated in any of the widely used rodent models. This study tested the hypothesis that, in the absence of neurological disease or injury, the performance in a hippocampal-dependent memory task is correlated with the hippocampal levels of metabolites that are mainly synthesized in neurons, namely N-acetylaspartate (NAA), glutamate and GABA. Experimentally naïve rats were tested for hippocampal-dependent spatial memory performance by measuring spontaneous alternation in the Y-maze, followed by anatomical magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) in the hippocampus and cortex. Memory performance correlated with hippocampal concentrations of NAA (p = 0.024) and glutamate (p = 0.014) but not GABA. Concentrations of glutamate in the cortex also correlated with spatial memory (p = 0.035). In addition, memory performance was also correlated with the relative volume of the hippocampus (p = 0.041). Altogether, this exploratory study suggests that levels of the neuronal maker NAA and the main excitatory neurotransmitter glutamate are associated with physiological functional capacity.
Collapse
Affiliation(s)
- João M. N. Duarte
- Diabetes and Brain Function Unit, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Jang MH, Song J. Adenosine and adenosine receptors in metabolic imbalance-related neurological issues. Biomed Pharmacother 2024; 177:116996. [PMID: 38897158 DOI: 10.1016/j.biopha.2024.116996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/08/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024] Open
Abstract
Metabolic syndromes (e.g., obesity) are characterized by insulin resistance, chronic inflammation, impaired glucose metabolism, and dyslipidemia. Recently, patients with metabolic syndromes have experienced not only metabolic problems but also neuropathological issues, including cognitive impairment. Several studies have reported blood-brain barrier (BBB) disruption and insulin resistance in the brain of patients with obesity and diabetes. Adenosine, a purine nucleoside, is known to regulate various cellular responses (e.g., the neuroinflammatory response) by binding with adenosine receptors in the central nervous system (CNS). Adenosine has four known receptors: A1R, A2AR, A2BR, and A3R. These receptors play distinct roles in various physiological and pathological processes in the brain, including endothelial cell homeostasis, insulin sensitivity, microglial activation, lipid metabolism, immune cell infiltration, and synaptic plasticity. Here, we review the recent findings on the role of adenosine receptor-mediated signaling in neuropathological issues related to metabolic imbalance. We highlight the importance of adenosine signaling in the development of therapeutic solutions for neuropathological issues in patients with metabolic syndromes.
Collapse
Affiliation(s)
- Mi-Hyeon Jang
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea.
| |
Collapse
|
3
|
Miron VV, Assmann CE, Mostardeiro VB, da Silveira MV, Copetti PM, Bissacotti BF, Schirmann AA, Castro MFV, Gutierres JM, da Cruz Fernandes M, Viero FT, Morsch VM, Schetinger MRC, Cardoso AM. Neuroprotective effect of long-term resistance physical exercise against memory damage elicited by a lipopolysaccharide-induced neuroinflammation model in male rats. J Neurosci Res 2024; 102:e25370. [PMID: 39158105 DOI: 10.1002/jnr.25370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 08/20/2024]
Abstract
Resistance exercise training (RET) is considered an excellent tool for preventing diseases with an inflammatory background. Its neuroprotective, antioxidant, and anti-inflammatory properties are responsible for positively modulating cholinergic and oxidative systems, promoting neurogenesis, and improving memory. However, the mechanisms behind these actions are largely unknown. In order to investigate the pathways related to these effects of exercise, we conducted a 12-week long-term exercise training protocol and used lipopolysaccharide (LPS) to induce damage to the cortex and hippocampus of male Wistar rats. The cholinergic system, oxidative stress, and histochemical parameters were analyzed in the cerebral cortex and hippocampus, and memory tests were also performed. It was observed that LPS: (1) caused memory loss in the novel object recognition (NOR) test; (2) increased the activity of acetylcholinesterase (AChE) and Iba1 protein density; (3) reduced the protein density of brain-derived neurotrophic factor (BDNF) and muscarinic acetylcholine receptor M1 (CHRM1); (4) elevated the levels of lipid peroxidation (TBARS) and reactive species (RS); and (5) caused inflammatory damage to the dentate gyrus. RET, on the other hand, was able to prevent all alterations induced by LPS, as well as increase per se the protein density of the alpha-7 nicotinic acetylcholine receptor (nAChRα7) and Nestin, and the levels of protein thiols (T-SH). Overall, our study elucidates some mechanisms that support resistance physical exercise as a valuable approach against LPS-induced neuroinflammation and memory loss.
Collapse
Affiliation(s)
- Vanessa Valéria Miron
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Charles Elias Assmann
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Vitor Bastianello Mostardeiro
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Marcylene Vieira da Silveira
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Priscila Marquezan Copetti
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Bianca Fagan Bissacotti
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Adriel Antonio Schirmann
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Milagros Fanny Vera Castro
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Jessié Martins Gutierres
- Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Marilda da Cruz Fernandes
- Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Fernanda Tibolla Viero
- Department of Pharmacology and Physiology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Vera Maria Morsch
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Maria Rosa Chitolina Schetinger
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Andréia Machado Cardoso
- Graduate Program in Biomedical Sciences, Medical School, Federal University of the South Border, Chapecó, Brazil
| |
Collapse
|
4
|
Skoug C, Erdogan H, Vanherle L, Vieira JPP, Matthes F, Eliasson L, Meissner A, Duarte JMN. Density of Sphingosine-1-Phosphate Receptors Is Altered in Cortical Nerve-Terminals of Insulin-Resistant Goto-Kakizaki Rats and Diet-Induced Obese Mice. Neurochem Res 2024; 49:338-347. [PMID: 37794263 PMCID: PMC10787890 DOI: 10.1007/s11064-023-04033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/21/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a phosphosphingolipid with pleiotropic biological functions. S1P acts as an intracellular second messenger, as well as extracellular ligand to five G-protein coupled receptors (S1PR1-5). In the brain, S1P regulates neuronal proliferation, apoptosis, synaptic activity and neuroglia activation. Moreover, S1P metabolism alterations have been reported in neurodegenerative disorders. We have previously reported that S1PRs are present in nerve terminals, exhibiting distinct sub-synaptic localization and neuromodulation actions. Since type 2 diabetes (T2D) causes synaptic dysfunction, we hypothesized that S1P signaling is modified in nerve terminals. In this study, we determined the density of S1PRs in cortical synaptosomes from insulin-resistant Goto-Kakizaki (GK) rats and Wistar controls, and from mice fed a high-fat diet (HFD) and low-fat-fed controls. Relative to their controls, GK rats showed similar cortical S1P concentration despite higher S1P levels in plasma, yet lower density of S1PR1, S1PR2 and S1PR4 in nerve-terminal-enriched membranes. HFD-fed mice exhibited increased plasma and cortical concentrations of S1P, and decreased density of S1PR1 and S1PR4. These findings point towards altered S1P signaling in synapses of insulin resistance and diet-induced obesity models, suggesting a role of S1P signaling in T2D-associated synaptic dysfunction.
Collapse
Affiliation(s)
- Cecilia Skoug
- Department of Experimental Medical Science (EMV), Faculty of Medicine, Lund University, Sölvegatan 19, BMC C11, 221 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Hüseyin Erdogan
- Department of Experimental Medical Science (EMV), Faculty of Medicine, Lund University, Sölvegatan 19, BMC C11, 221 84, Lund, Sweden
| | - Lotte Vanherle
- Department of Experimental Medical Science (EMV), Faculty of Medicine, Lund University, Sölvegatan 19, BMC C11, 221 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - João P P Vieira
- Department of Experimental Medical Science (EMV), Faculty of Medicine, Lund University, Sölvegatan 19, BMC C11, 221 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Frank Matthes
- Department of Experimental Medical Science (EMV), Faculty of Medicine, Lund University, Sölvegatan 19, BMC C11, 221 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Lena Eliasson
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
- Clinical Research Center, Skåne University Hospital, Malmö, Sweden
| | - Anja Meissner
- Department of Experimental Medical Science (EMV), Faculty of Medicine, Lund University, Sölvegatan 19, BMC C11, 221 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Physiology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - João M N Duarte
- Department of Experimental Medical Science (EMV), Faculty of Medicine, Lund University, Sölvegatan 19, BMC C11, 221 84, Lund, Sweden.
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
5
|
Palazzo E, Marabese I, Boccella S, Belardo C, Pierretti G, Maione S. Affective and Cognitive Impairments in Rodent Models of Diabetes. Curr Neuropharmacol 2024; 22:1327-1343. [PMID: 38279738 PMCID: PMC11092917 DOI: 10.2174/1570159x22666240124164804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 01/28/2024] Open
Abstract
Diabetes and related acute and long-term complications have a profound impact on cognitive, emotional, and social behavior, suggesting that the central nervous system (CNS) is a crucial substrate for diabetic complications. When anxiety, depression, and cognitive deficits occur in diabetic patients, the symptoms and complications related to the disease worsen, contributing to lower quality of life while increasing health care costs and mortality. Experimental models of diabetes in rodents are a fundamental and valuable tool for improving our understanding of the mechanisms underlying the close and reciprocal link between diabetes and CNS alterations, including the development of affective and cognitive disorders. Such models must reproduce the different components of this pathological condition in humans and, therefore, must be associated with affective and cognitive behavioral alterations. Beyond tight glycemic control, there are currently no specific therapies for neuropsychiatric comorbidities associated with diabetes; animal models are, therefore, essential for the development of adequate therapies. To our knowledge, there is currently no review article that summarizes changes in affective and cognitive behavior in the most common models of diabetes in rodents. Therefore, in this review, we have reported the main evidence on the alterations of affective and cognitive behavior in the different models of diabetes in rodents, the main mechanisms underlying these comorbidities, and the applicable therapeutic strategy.
Collapse
Affiliation(s)
- Enza Palazzo
- Department of Experimental Medicine, Pharamacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Ida Marabese
- Department of Experimental Medicine, Pharamacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Serena Boccella
- Department of Experimental Medicine, Pharamacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Carmela Belardo
- Department of Experimental Medicine, Pharamacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Gorizio Pierretti
- Department of Plastic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Pharamacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| |
Collapse
|
6
|
Miron VV, Assmann CE, Mostardeiro VB, Bottari NB, Baldissarelli J, Reichert KP, da Silva AD, Castro MFV, de Jesus LB, da Silveira MV, Palma TV, Morsch VM, Cardoso AM, Schetinger MRC. Resistance physical exercise alleviates lipopolysaccharide-triggered neuroinflammation in cortex and hippocampus of rats via purinergic signaling. Neurotoxicology 2023; 99:217-225. [PMID: 37890558 DOI: 10.1016/j.neuro.2023.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Resistance physical exercise has neuroprotective and anti-inflammatory effects on many known diseases and, therefore, it has been increasingly explored. The way in which this type of exercise exerts these actions is still under investigation. In this study, we aimed to analyze the enzymes and components of the purinergic system involved in the inflammatory process triggered by the P2X7R. Rats were divided into four groups: control, exercise (EX), lipopolysaccharide (LPS), and EX + LPS. The animals in the exercise groups were subjected to a 12-week ladder-climbing resistance physical exercise and received LPS after the last session for sepsis induction. Enzymes activities (NTPDase, 5'-nucleotidase, and adenosine deaminase), purinoceptors' density (P2X7R, A1, and A2A), and the levels of inflammatory indicators (pyrin domain-containing protein 3 (NLRP3), Caspase-1, interleukin (IL)- 6, IL-1B, and tumor necrosis factor (TNF) -α) were measured in the cortex and hippocampus of the animals. The results show that exercise prevented (in the both structures) the increase of: 1) nucleoside-triphosphatase (NTPDase) and 5'-nucleotidase activities; 2) P2X7R density; 3) NLRP3 and Caspase-1; and 4) IL-6, IL-1β, and TNF-α It is suggested that the purinergic system and the inflammatory pathway of P2X7R are of fundamental importance and influence the effects of resistance physical exercise on LPS-induced inflammation. Thus, the modulation of the P2X7R by resistance physical exercise offers new avenues for the management of inflammatory-related illnesses.
Collapse
Affiliation(s)
- Vanessa Valéria Miron
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Charles Elias Assmann
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Vitor Bastianello Mostardeiro
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Nathieli Bianchin Bottari
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil; Institute of Biology, Department of Microbiology and Parasitology, Federal University of Pelotas (UFPEL), Brazil
| | - Jucimara Baldissarelli
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Karine Paula Reichert
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Aniélen Dutra da Silva
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Milagros Fanny Vera Castro
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Loren Borba de Jesus
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Marcylene Vieira da Silveira
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Tais Vidal Palma
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Vera Maria Morsch
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Andréia Machado Cardoso
- Undergraduate Program in Biomedical Sciences, Medical School, Federal University of Fronteira Sul, Campus Chapecó, Chapecó, Santa Catarina, Brazil.
| | - Maria Rosa Chitolina Schetinger
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
7
|
Garcia-Serrano AM, Vieira JPP, Fleischhart V, Duarte JMN. Taurine and N-acetylcysteine treatments prevent memory impairment and metabolite profile alterations in the hippocampus of high-fat diet-fed female mice. Nutr Neurosci 2023; 26:1090-1102. [PMID: 36222315 DOI: 10.1080/1028415x.2022.2131062] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Background: Obesity constitutes a risk factor for cognitive impairment. In rodent models, long-term exposure to obesogenic diets leads to hippocampal taurine accumulation. Since taurine has putative cyto-protective effects, hippocampal taurine accumulation in obese and diabetic models might constitute a counteracting response to metabolic stress. Objective: We tested the hypothesis that treatment with taurine or with N-acetylcysteine (NAC), which provides cysteine for the synthesis of taurine and glutathione, prevent high-fat diet (HFD)-associated hippocampal alterations and memory impairment. Methods: Female mice were fed either a regular diet or HFD. Some mice had access to 3%(w/v) taurine or 3%(w/v) NAC in the drinking water. After 2 months, magnetic resonance spectroscopy (MRS) was used to measure metabolite profiles. Memory was assessed in novel object and novel location recognition tests. Results: HFD feeding caused memory impairment in both tests, and reduced concentration of lactate, phosphocreatine-to-creatine ratio, and the neuronal marker N-acetylaspartate in the hippocampus. Taurine and NAC prevented HFD-induced memory impairment and N-acetylaspartate reduction. NAC, but not taurine, prevented the reduction of lactate and phosphocreatine-to-creatine ratio. MRS revealed NAC/taurine-induced increase of hippocampal glutamate and GABA levels. Conclusion: NAC and taurine can prevent memory impairment, while only NAC prevents alterations of metabolite concentrations in HFD-exposed female mice.
Collapse
Affiliation(s)
- Alba M Garcia-Serrano
- Faculty of Medicine, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Joao P P Vieira
- Faculty of Medicine, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Veronika Fleischhart
- Faculty of Medicine, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - João M N Duarte
- Faculty of Medicine, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Pereira ADS, Miron VV, Castro MFV, Bottari NB, Assmann CE, Nauderer JN, Bissacotti BF, Mostardeiro VB, Stefanello N, Baldissarelli J, Palma TV, Morsch VMM, Schetinger MRC. Neuromodulatory effect of the combination of metformin and vitamin D 3 triggered by purinergic signaling in type 1 diabetes induced-rats. Mol Cell Endocrinol 2023; 563:111852. [PMID: 36657632 DOI: 10.1016/j.mce.2023.111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Several studies have indicated the vitamin D deficiency in the development of macro- and microvascular complications of diabetes mellitus (DM) including DM-related cognitive dysfunction. The purinergic system plays an important role in the modulation of a variety of mechanisms, including neuroinflammation, plasticity, and cell-cell communication. In addition, purines, their receptors, and enzymes can regulate the purinergic axis at different levels in type 1 DM (T1DM). This study evaluated the effects of vitamin D3 alone or in combination with metformin in the behavioral performance of streptozotocin-induced T1DM rats. The effects of this combination on the metabolism of ATP and ADP were also studied by NTPDase (CD39), AMP by 5'-nucleotidase (CD73), and adenosine by adenosine deaminase (E-ADA) in the brain and peripheral lymphocytes of type 1 diabetic STZ-induced rats. The results showed that anxiety and memory loss from the DM condition reverted after 30 days of vitamin D3 treatment. Furthermore, the DM state affected systemic enzymes, with no effect on the central enzymes hydrolyzing extracellular nucleotides and nucleosides. Vitamin D3 treatment positively regulated ectonucleotidase (NTPDase and 5'-nucleotidase) activity, E-ADA, and the purinergic receptors as a mechanism to prevent oxidative damage in the cerebral cortex of T1DM rats. A neuroprotector effect of vitamin D3 through adenosine signaling was also observed, by regulating A1 and A2A receptors proteins levels. The present findings suggest that purinergic signaling through vitamin D3 modulation may be a novel alternative strategy for T1DM treatment, and may compensate for the negative changes in the central nervous system.
Collapse
Affiliation(s)
- Aline da Silva Pereira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Vanessa Valéria Miron
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Milagros Fanny Vera Castro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Nathieli Bianchin Bottari
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Charles Elias Assmann
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Jelson Norberto Nauderer
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Bianca Fagan Bissacotti
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Vitor Bastianello Mostardeiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Naiara Stefanello
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Jucimara Baldissarelli
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Taís Vidal Palma
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Vera Maria Melchiors Morsch
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|
9
|
Effects of Chronic Caffeine Consumption on Synaptic Function, Metabolism and Adenosine Modulation in Different Brain Areas. Biomolecules 2023; 13:biom13010106. [PMID: 36671491 PMCID: PMC9855869 DOI: 10.3390/biom13010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Adenosine receptors mainly control synaptic function, and excessive activation of adenosine receptors may worsen the onset of many neurological disorders. Accordingly, the regular intake of moderate doses of caffeine antagonizes adenosine receptors and affords robust neuroprotection. Although caffeine intake alters brain functional connectivity and multi-omics analyses indicate that caffeine intake modifies synaptic and metabolic processes, it is unclear how caffeine intake affects behavior, synaptic plasticity and its modulation by adenosine. We now report that male mice drinking caffeinated water (0.3 g/L) for 2 weeks were behaviorally indistinguishable (locomotion, mood, memory) from control mice (drinking water) and displayed superimposable synaptic plasticity (long-term potentiation) in different brain areas (hippocampus, prefrontal cortex, amygdala). Moreover, there was a general preservation of the efficiency of adenosine A1 and A2A receptors to control synaptic transmission and plasticity, although there was a tendency for lower levels of endogenous adenosine ensuring A1 receptor-mediated inhibition. In spite of similar behavioral and neurophysiological function, caffeine intake increased the energy charge and redox state of cortical synaptosomes. This increased metabolic competence likely involved a putative increase in the glycolytic rate in synapses and a prospective greater astrocyte-synapse lactate shuttling. It was concluded that caffeine intake does not trigger evident alterations of behavior or of synaptic plasticity but increases the metabolic competence of synapses, which might be related with the previously described better ability of animals consuming caffeine to cope with deleterious stimuli triggering brain dysfunction.
Collapse
|
10
|
Mhlomi YN, Oshiomame Unuofin J, Otunola GA, Afolayan AJ. Assessment of Rats Fed Protein-Deficient Diets Supplemented with Moringa Oleifera Leaf Meal. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2022. [DOI: 10.12944/crnfsj.10.1.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This report is part of a larger study on bioavailability of nutrients in Moringa oleifera leaf meal (MOLM) grown in South Africa. Albino male rats were assigned into five groups each having a replicate of five; PD-protein deficient diet, PD3, PD5 and PD10 had protein insufficient diets augmented with MOLM at 3, 5 and 10% respectively, while control (C)- was fed normal rat chow, for 28 days. Growth performances were recorded weekly, blood biochemistry and histopathology of the animals were evaluated in the serum and selected organs respectively. Severe loss in body weight caused by PD was slightly ameliorated by MOLM supplementation; improved protein quality indicated by higher red blood cells count was noticed in animals fed the augmented diets, while decrease in lymphocytes count reflected possible leucopoiesis and immunomodulatory effect of MOLM. High platelet counts (807.5 x109/L-1011.27x109/L) could indicate secondary anaemia caused by PD, while decrease in calcium and total protein was improved by MOLM. Increase in creatinine for all treatments could imply that kidney function was compromised. Serum ALP, ALT and AST activities were down regulated significantly in animals fed MOLM diets, suggesting organ-protective properties of Moringa. Histopathological evaluation of organs supported the biochemical findings and confirmed the negative effect of dietary protein deficiency. Although MOLM is nutrient-rich, unprocessed MOLM impacted negatively on physiology of the rats and could not completely replace protein in the diet.
Collapse
Affiliation(s)
- Yanga Nonelela Mhlomi
- 1Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, University of Fort Hare, Alice, South Africa
| | | | - Gloria Aderonke Otunola
- 1Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, University of Fort Hare, Alice, South Africa
| | - Anthony Jide Afolayan
- 1Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, University of Fort Hare, Alice, South Africa
| |
Collapse
|
11
|
Gomaa AA, Farghaly HS, Ahmed AM, El-Mokhtar MA, Hemida FK. Advancing combination treatment with cilostazol and caffeine for Alzheimer's disease in high fat-high fructose-STZ induced model of amnesia. Eur J Pharmacol 2022; 921:174873. [DOI: 10.1016/j.ejphar.2022.174873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022]
|
12
|
Rafiee Z, García-Serrano AM, Duarte JMN. Taurine Supplementation as a Neuroprotective Strategy upon Brain Dysfunction in Metabolic Syndrome and Diabetes. Nutrients 2022; 14:1292. [PMID: 35334949 PMCID: PMC8952284 DOI: 10.3390/nu14061292] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Obesity, type 2 diabetes, and their associated comorbidities impact brain metabolism and function and constitute risk factors for cognitive impairment. Alterations to taurine homeostasis can impact a number of biological processes, such as osmolarity control, calcium homeostasis, and inhibitory neurotransmission, and have been reported in both metabolic and neurodegenerative disorders. Models of neurodegenerative disorders show reduced brain taurine concentrations. On the other hand, models of insulin-dependent diabetes, insulin resistance, and diet-induced obesity display taurine accumulation in the hippocampus. Given the possible cytoprotective actions of taurine, such cerebral accumulation of taurine might constitute a compensatory mechanism that attempts to prevent neurodegeneration. The present article provides an overview of brain taurine homeostasis and reviews the mechanisms by which taurine can afford neuroprotection in individuals with obesity and diabetes. We conclude that further research is needed for understanding taurine homeostasis in metabolic disorders with an impact on brain function.
Collapse
Affiliation(s)
- Zeinab Rafiee
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22100 Lund, Sweden; (Z.R.); (A.M.G.-S.)
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
| | - Alba M. García-Serrano
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22100 Lund, Sweden; (Z.R.); (A.M.G.-S.)
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
| | - João M. N. Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22100 Lund, Sweden; (Z.R.); (A.M.G.-S.)
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
| |
Collapse
|
13
|
Garcia-Serrano AM, Mohr AA, Philippe J, Skoug C, Spégel P, Duarte JMN. Cognitive Impairment and Metabolite Profile Alterations in the Hippocampus and Cortex of Male and Female Mice Exposed to a Fat and Sugar-Rich Diet are Normalized by Diet Reversal. Aging Dis 2022; 13:267-283. [PMID: 35111373 PMCID: PMC8782561 DOI: 10.14336/ad.2021.0720] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetes impacts on brain metabolism, structure, and function. Alterations in brain metabolism have been observed in obesity and diabetes models induced by exposure to diets rich in saturated fat and/or sugar and have been linked to memory impairment. However, it remains to be determined whether brain dysfunction induced by obesogenic diets results from permanent brain alterations. We tested the hypothesis that an obesogenic diet (high-fat and high-sucrose diet; HFHSD) causes reversible changes in hippocampus and cortex metabolism and alterations in behavior. Mice were exposed to HFHSD for 24 weeks or for 16 weeks followed by 8 weeks of diet normalization. Development of the metabolic syndrome, changes in behavior, and brain metabolite profiles by magnetic resonance spectroscopy (MRS) were assessed longitudinally. Control mice were fed an ingredient-matched low-fat and low-sugar diet. Mice fed the HFHSD developed obesity, glucose intolerance and insulin resistance, with a more severe phenotype in male than female mice. Relative to controls, both male and female HFHSD-fed mice showed increased anxiety-like behavior, impaired memory in object recognition tasks, but preserved working spatial memory as evaluated by spontaneous alternation in a Y-maze. Alterations in the metabolite profiles were observed both in the hippocampus and cortex but were more distinct in the hippocampus. HFHSD-induced metabolic changes included altered levels of lactate, glutamate, GABA, glutathione, taurine, N-acetylaspartate, total creatine and total choline. Notably, HFHSD-induced metabolic syndrome, anxiety, memory impairment, and brain metabolic alterations recovered upon diet normalization for 8 weeks. In conclusion, cortical and hippocampal derangements induced by long-term HFHSD consumption are reversible rather than being the result of permanent tissue damage.
Collapse
Affiliation(s)
- Alba M Garcia-Serrano
- 1Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,2Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Adélaïde A Mohr
- 3Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Juliette Philippe
- 1Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,2Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Cecilia Skoug
- 1Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,2Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Peter Spégel
- 4Department of Chemistry, Centre for Analysis and Synthesis, Lund University, Lund Sweden
| | - João M N Duarte
- 1Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,2Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Kermanian F, Seghatoleslam M, Mahakizadeh S. MDMA related neuro-inflammation and adenosine receptors. Neurochem Int 2022; 153:105275. [PMID: 34990730 DOI: 10.1016/j.neuint.2021.105275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 12/20/2022]
Abstract
3,4-methylenedioxymethamphetamine (MDMA) is a world-wide abused psychostimulant, which has the neurotoxic effects on dopaminergic and serotonergic neurons in both rodents and non-human primates. Adenosine acts as a neurotransmitter in the brain through the activation of four specific G-protein-coupled receptors and it acts as a neuromodulator of dopamine neurotransmission. Recent studies suggest that stimulation of adenosine receptors oppose many behavioral effects of methamphetamines. This review summarizes the specific cellular mechanisms involved in MDMA neuroinflammatory effects, along with the protective effects of adenosine receptors.
Collapse
Affiliation(s)
- Fatemeh Kermanian
- Department of Anatomy, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Masoumeh Seghatoleslam
- Evaluative Clinical Sciences, Sunnybrook Research Institute, University of Toronto, ON, Canada
| | - Simin Mahakizadeh
- Department of Anatomy, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
15
|
Alzobaidi N, Quasimi H, Emad NA, Alhalmi A, Naqvi M. Bioactive Compounds and Traditional Herbal Medicine: Promising Approaches for the Treatment of Dementia. Degener Neurol Neuromuscul Dis 2021; 11:1-14. [PMID: 33880073 PMCID: PMC8051957 DOI: 10.2147/dnnd.s299589] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Dementia is a term that encompasses a group of clinical symptoms affecting memory, thinking and social abilities, characterized by progressive impairment of memory performance and cognitive functions. There are several factors involved in the pathogenesis and progression of dementia, such as old age, brain ischemia, toxin exposure, and oxidative stress. There are extensive similarities between dementia and Alzheimer's disease (AD) either in clinical manifestations or experimental animal models. AD is the most dominant form of dementia, characterized by the accumulation of beta-amyloid protein and cholinergic neurotransmission deficits in the brain. Currently available medications for the treatment of dementia, such as choline esterase inhibitors, N-methyl-D-aspartate (NMDA) antagonists (memantine), have short-term efficacy and only relieve symptoms rather than targeting the main underlying pathogenesis. Several animal studies and clinical trials are being conducted to provide a rational approach to these medicinal plants in the prevention or treatment of memory deficits. This review highlights the potential effects of medicinal plants and their derived lead molecules, and explains the related mechanisms and effects reviewed from published literature as major thrust aspects and hopeful strategies in the prevention or treatment of dementia.
Collapse
Affiliation(s)
- Nafaa Alzobaidi
- Department of Pharmacology, Hamdard Institute of Medical Sciences and Research (HIMSR), Jamia Hamdard, New Delhi, India
| | - Huma Quasimi
- Department of Physiology, Hamdard Institute of Medical Sciences and Research (HIMSR), Jamia Hamdard, New Delhi, India
| | - Nasr A Emad
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, College of Pharmacy, Aden University, Aden, Yemen
| | - Maaz Naqvi
- Department of Pharmacology, Hamdard Institute of Medical Sciences and Research (HIMSR), Jamia Hamdard, New Delhi, India
| |
Collapse
|
16
|
Dias L, Lopes CR, Gonçalves FQ, Nunes A, Pochmann D, Machado NJ, Tomé AR, Agostinho P, Cunha RA. Crosstalk Between ATP-P 2X7 and Adenosine A 2A Receptors Controlling Neuroinflammation in Rats Subject to Repeated Restraint Stress. Front Cell Neurosci 2021; 15:639322. [PMID: 33732112 PMCID: PMC7957057 DOI: 10.3389/fncel.2021.639322] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/08/2021] [Indexed: 01/02/2023] Open
Abstract
Depressive conditions precipitated by repeated stress are a major socio-economical burden in Western countries. Previous studies showed that ATP-P2X7 receptors (P2X7R) and adenosine A2A receptors (A2AR) antagonists attenuate behavioral modifications upon exposure to repeated stress. Since it is unknown if these two purinergic modulation systems work independently, we now investigated a putative interplay between P2X7R and A2AR. Adult rats exposed to restraint stress for 14 days displayed an anxious (thigmotaxis, elevated plus maze), depressive (anhedonia, increased immobility), and amnesic (modified Y maze, object displacement) profile, together with increased expression of Iba-1 (a marker of microglia “activation”) and interleukin-1β (IL1β) and tumor necrosis factor α (TNFα; proinflammatory cytokines) and an up-regulation of P2X7R (mRNA) and A2AR (receptor binding) in the hippocampus and prefrontal cortex. All these features were attenuated by the P2X7R-preferring antagonist brilliant blue G (BBG, 45 mg/kg, i.p.) or by caffeine (0.3 g/L, p.o.), which affords neuroprotection through A2AR blockade. Notably, BBG attenuated A2AR upregulation and caffeine attenuated P2X7R upregulation. In microglial N9 cells, the P2X7R agonist BzATP (100 μM) or the A2AR agonist CGS26180 (100 nM) increased calcium levels, which was abrogated by the P2X7R antagonist JNJ47965567 (1 μM) and by the A2AR antagonist SCH58261 (50 nM), respectively; notably JNJ47965567 prevented the effect of CGS21680 and the effect of BzATP was attenuated by SCH58261 and increased by CGS21680. These results provide the first demonstration of a functional interaction between P2X7R and A2AR controlling microglia reactivity likely involved in behavioral adaptive responses to stress and are illustrative of a cooperation between the two arms of the purinergic system in the control of brain function.
Collapse
Affiliation(s)
- Liliana Dias
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Cátia R Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Francisco Q Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana Nunes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Daniela Pochmann
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Nuno J Machado
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Angelo R Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Paula Agostinho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
17
|
Potential of Caffeine in Alzheimer's Disease-A Review of Experimental Studies. Nutrients 2021; 13:nu13020537. [PMID: 33562156 PMCID: PMC7915779 DOI: 10.3390/nu13020537] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia leading to progressive memory loss and cognitive impairment. Considering that pharmacological treatment options for AD are few and not satisfactory, increasing attention is being paid to dietary components that may affect the development of the disease. Such a dietary component may be caffeine contained in coffee, tea or energy drinks. Although epidemiological data suggest that caffeine intake may counteract the development of cognitive impairment, results of those studies are not conclusive. The aim of the present study is to review the existing experimental studies on the efficacy of caffeine against AD and AD-related cognitive impairment, focusing on the proposed protective mechanisms of action. In conclusion, the reports of studies on experimental AD models generally supported the notion that caffeine may exert some beneficial effects in AD. However, further studies are necessary to elucidate the role of caffeine in the effects of its sources on cognition and possibly AD risk.
Collapse
|
18
|
de Bem AF, Krolow R, Farias HR, de Rezende VL, Gelain DP, Moreira JCF, Duarte JMDN, de Oliveira J. Animal Models of Metabolic Disorders in the Study of Neurodegenerative Diseases: An Overview. Front Neurosci 2021; 14:604150. [PMID: 33536868 PMCID: PMC7848140 DOI: 10.3389/fnins.2020.604150] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022] Open
Abstract
The incidence of metabolic disorders, as well as of neurodegenerative diseases—mainly the sporadic forms of Alzheimer’s and Parkinson’s disease—are increasing worldwide. Notably, obesity, diabetes, and hypercholesterolemia have been indicated as early risk factors for sporadic forms of Alzheimer’s and Parkinson’s disease. These conditions share a range of molecular and cellular features, including protein aggregation, oxidative stress, neuroinflammation, and blood-brain barrier dysfunction, all of which contribute to neuronal death and cognitive impairment. Rodent models of obesity, diabetes, and hypercholesterolemia exhibit all the hallmarks of these degenerative diseases, and represent an interesting approach to the study of the phenotypic features and pathogenic mechanisms of neurodegenerative disorders. We review the main pathological aspects of Alzheimer’s and Parkinson’s disease as summarized in rodent models of obesity, diabetes, and hypercholesterolemia.
Collapse
Affiliation(s)
- Andreza Fabro de Bem
- Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brazilia, Brazil
| | - Rachel Krolow
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Hémelin Resende Farias
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Victória Linden de Rezende
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Daniel Pens Gelain
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - José Cláudio Fonseca Moreira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - João Miguel das Neves Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Jade de Oliveira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
19
|
Xu P, Ning J, Jiang Q, Li C, Yan J, Zhao L, Gao H, Zheng H. Region-specific metabolic characterization of the type 1 diabetic brain in mice with and without cognitive impairment. Neurochem Int 2020; 143:104941. [PMID: 33333211 DOI: 10.1016/j.neuint.2020.104941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 11/28/2022]
Abstract
Type 1 diabetes (T1D) has been reported to cause cognitive decline, but brain metabolic changes during this process are still far from being fully understood. Here, we found that streptozotocin (STZ)-induced T1D mice exhibited impaired learning and memory at 11 weeks after STZ treatment but not at 3 weeks. Therefore, we studied metabolic alterations in six different brain regions of T1D mice with and without cognitive decline, and attempted to identify key metabolic pathways related to diabetic cognitive dysfunction. The results demonstrate that lactate had already increased in all brain regions of T1D mice prior to cognitive decline, but a decreased TCA cycle was only observed in hippocampus, cortex and striatum of T1D mice with cognitive impairment. Reduced N-acetylaspartate and choline were found in all brain regions of T1D mice, irrespective of cognitive decline. In addition, disrupted neurotransmitter metabolism was noted to occur in T1D mice before cognitive deficit. Of note, we found that the level of uridine was significantly reduced in cerebellum, cortex, hypothalamus and midbrain of T1D mice when cognitive decline was presented. Therefore, brain region-specific metabolic alterations may comprise possible biomarkers for the early-diagnosis and monitoring of diabetic cognitive decline. Moreover, down-regulated TCA cycle and pyrimidine metabolism could be closely related to T1D-associated cognitive impairment.
Collapse
Affiliation(s)
- Pengtao Xu
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jie Ning
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qiaoying Jiang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chen Li
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Junjie Yan
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Liangcai Zhao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hongchang Gao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Hong Zheng
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
20
|
Garcia-Serrano AM, Duarte JMN. Brain Metabolism Alterations in Type 2 Diabetes: What Did We Learn From Diet-Induced Diabetes Models? Front Neurosci 2020; 14:229. [PMID: 32265637 PMCID: PMC7101159 DOI: 10.3389/fnins.2020.00229] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/02/2020] [Indexed: 12/27/2022] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disease with impact on brain function through mechanisms that include glucose toxicity, vascular damage and blood–brain barrier (BBB) impairments, mitochondrial dysfunction, oxidative stress, brain insulin resistance, synaptic failure, neuroinflammation, and gliosis. Rodent models have been developed for investigating T2D, and have contributed to our understanding of mechanisms involved in T2D-induced brain dysfunction. Namely, mice or rats exposed to diabetogenic diets that are rich in fat and/or sugar have been widely used since they develop memory impairment, especially in tasks that depend on hippocampal processing. Here we summarize main findings on brain energy metabolism alterations underlying dysfunction of neuronal and glial cells promoted by diet-induced metabolic syndrome that progresses to a T2D phenotype.
Collapse
Affiliation(s)
- Alba M Garcia-Serrano
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - João M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
21
|
Bednařík P, Henry PG, Khowaja A, Rubin N, Kumar A, Deelchand D, Eberly LE, Seaquist E, Öz G, Moheet A. Hippocampal Neurochemical Profile and Glucose Transport Kinetics in Patients With Type 1 Diabetes. J Clin Endocrinol Metab 2020; 105:5601935. [PMID: 31637440 PMCID: PMC7046023 DOI: 10.1210/clinem/dgz062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/27/2019] [Indexed: 01/28/2023]
Abstract
CONTEXT Longstanding type 1 diabetes (T1D) may lead to alterations in hippocampal neurochemical profile. Upregulation of hippocampal glucose transport as a result of recurrent exposure to hypoglycemia may preserve cognitive function during future hypoglycemia in subjects with T1D and impaired awareness of hypoglycemia (IAH). The effect of T1D on hippocampal neurochemical profile and glucose transport is unknown. OBJECTIVE To test the hypothesis that hippocampal neurochemical composition is altered in T1D and glucose transport is upregulated in T1D with IAH. DESIGN AND PARTICIPANTS Hippocampal neurochemical profile was measured with single-voxel magnetic resonance spectroscopy at 3T during euglycemia in 18 healthy controls (HC), 10 T1D with IAH, and 12 T1D with normal awareness to hypoglycemia (NAH). Additionally, 12 HC, 8 T1D-IAH, and 6 T1D-NAH were scanned during hyperglycemia to assess hippocampal glucose transport with metabolic modeling. SETTING University medical center. MAIN OUTCOME MEASURES Concentrations of hippocampal neurochemicals measured during euglycemia and ratios of maximal transport rate to cerebral metabolic rate of glucose (Tmax/CMRGlc), derived from magnetic resonance spectroscopy-measured hippocampal glucose as a function of plasma glucose. RESULTS Comparison of hippocampal neurochemical profile revealed no group differences (HC, T1D, T1D-IAH, and T1D-NAH). The ratio Tmax/CMRGlc was not significantly different between the groups, T1D-IAH (1.58 ± 0.09) and HC (1.65 ± 0.07, P = 0.54), between T1D-NAH (1.50 ± 0.09) and HC (P = 0.19), and between T1D-IAH and T1D-NAH (P = 0.53). CONCLUSIONS Subjects with T1D with sufficient exposure to recurrent hypoglycemia to create IAH did not have alteration of Tmax/CMRglc or neurochemical profile compared with participants with T1D-NAH or HC.
Collapse
Affiliation(s)
- Petr Bednařík
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Imaging Methods, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Amir Khowaja
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Nathan Rubin
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Anjali Kumar
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Dinesh Deelchand
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Lynn E Eberly
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Elizabeth Seaquist
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Amir Moheet
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- Correspondence and Reprint Requests: Amir Moheet, MBBS, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, MMC 101, 420 Delaware St. SE, Minneapolis, MN 55455. E-mail:
| |
Collapse
|
22
|
Gerzson MFB, Bona NP, Soares MSP, Teixeira FC, Rahmeier FL, Carvalho FB, da Cruz Fernandes M, Onzi G, Lenz G, Gonçales RA, Spanevello RM, Stefanello FM. Tannic Acid Ameliorates STZ-Induced Alzheimer's Disease-Like Impairment of Memory, Neuroinflammation, Neuronal Death and Modulates Akt Expression. Neurotox Res 2020; 37:1009-1017. [PMID: 31997154 DOI: 10.1007/s12640-020-00167-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/18/2019] [Accepted: 01/22/2020] [Indexed: 12/28/2022]
Abstract
Tannic acid (TA) is a hydrolysable glycosidic polyphenol polymer of gallic acid, which possesses neuroprotective properties. The aim of this study was to evaluate the effect of TA treatment on cognitive performance and neurochemical changes in an experimental model of sporadic dementia of Alzheimer's type (SDAT) induced by intracerebroventricular (ICV) injection of streptozotocin (STZ) and to explore the potential cellular and molecular mechanisms underlying these effects. Adult male rats were divided into four groups: control, TA, STZ, and TA + STZ. Animals from TA and TA + STZ groups were treated with TA (30 mg/kg) daily, by gavage, for 21 days; others groups received water (1 mL/kg). Subsequently, an ICV injection of STZ (3 mg/kg) was administered into the lateral ventricles of animals from STZ and TA + STZ groups, while other groups received citrate buffer. Cognitive deficits (short-term memory), neuronal survival, neuroinflammation as well as expression of SNAP-25, Akt, and pAkt were evaluated in the cerebral cortex. TA treatment protected against the impairment of memory in STZ-induced SDAT. STZ promoted an increase in neuronal death and the levels of proinflammatory cytokines (IL-6 and TNF-α) and a decrease in Akt and pAkt expression; TA was able to restore these changes. Neither STZ nor TA altered SNAP-25 expression or the levels of IL-12 and IL-4 in the cerebral cortex. Our study highlights that treatment with TA prevents memory deficits and reestablishes Akt and pAkt expression, protecting against neuronal death and neuroinflammation in STZ-induced SDAT in rats.
Collapse
Affiliation(s)
- Mariana F B Gerzson
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Natália P Bona
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Mayara S P Soares
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Fernanda C Teixeira
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Francine L Rahmeier
- Laboratório de Pesquisa em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite, 245, Porto Alegre, RS, Brazil
| | - Fabiano B Carvalho
- Laboratório de Pesquisa em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite, 245, Porto Alegre, RS, Brazil
| | - Marilda da Cruz Fernandes
- Laboratório de Pesquisa em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite, 245, Porto Alegre, RS, Brazil
| | - Giovana Onzi
- Laboratório de Sinalização e Plasticidade Celular, Departamento de Biofísica, Universidade Federal do Rio Grande do Sul , Porto Alegre, RS, Brazil
| | - Guido Lenz
- Laboratório de Sinalização e Plasticidade Celular, Departamento de Biofísica, Universidade Federal do Rio Grande do Sul , Porto Alegre, RS, Brazil
| | - Relber A Gonçales
- Laboratório de Biologia Molecular, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Roselia M Spanevello
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil.
| | - Francieli M Stefanello
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil.
| |
Collapse
|
23
|
Mitochondria and the Brain: Bioenergetics and Beyond. Neurotox Res 2019; 36:219-238. [DOI: 10.1007/s12640-019-00061-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
|
24
|
Soares AF, Nissen JD, Garcia‐Serrano AM, Nussbaum SS, Waagepetersen HS, Duarte JMN. Glycogen metabolism is impaired in the brain of male type 2 diabetic Goto‐Kakizaki rats. J Neurosci Res 2019; 97:1004-1017. [DOI: 10.1002/jnr.24437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Ana Francisca Soares
- Laboratory for Functional and Metabolic Imaging École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Jakob D. Nissen
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology University of Copenhagen Copenhagen Denmark
| | - Alba M. Garcia‐Serrano
- Faculty of Medicine, Department of Experimental Medical Science Lund University Lund Sweden
- Wallenberg Centre for Molecular Medicine Lund University Lund Sweden
| | - Sakura S. Nussbaum
- Laboratory for Functional and Metabolic Imaging École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Helle S. Waagepetersen
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology University of Copenhagen Copenhagen Denmark
| | - João M. N. Duarte
- Laboratory for Functional and Metabolic Imaging École Polytechnique Fédérale de Lausanne Lausanne Switzerland
- Faculty of Medicine, Department of Experimental Medical Science Lund University Lund Sweden
- Wallenberg Centre for Molecular Medicine Lund University Lund Sweden
| |
Collapse
|
25
|
Barros L, Eichwald T, Solano AF, Scheffer D, da Silva RA, Gaspar JM, Latini A. Epigenetic modifications induced by exercise: Drug-free intervention to improve cognitive deficits associated with obesity. Physiol Behav 2019; 204:309-323. [PMID: 30876771 DOI: 10.1016/j.physbeh.2019.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 12/30/2022]
Abstract
Obesity and metabolic disorders are increasing worldwide and are associated with brain atrophy and dysfunction, which are risk factors for late-onset dementia and Alzheimer's disease. Epidemiological studies demonstrated that changes in lifestyle, including the frequent practice of physical exercise are able to prevent and treat not only obesity/metabolic disorders, but also to improve cognitive function and dementia. Several biochemical pathways and epigenetic mechanisms have been proposed to understand the beneficial effects of physical exercise on cognition. This manuscript revised central ongoing research on epigenetic mechanisms induced by exercise and the beneficial effects on obesity-associated cognitive decline, highlighting potential mechanistic mediators.
Collapse
Affiliation(s)
- Leonardo Barros
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Tuany Eichwald
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Alexandre Francisco Solano
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Débora Scheffer
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Rodrigo Augusto da Silva
- Departamento de Química e Bioquímica, Laboratório de Bioensaios e Dinâmica Celular, Universidade Estadual Paulista (UNESP), Instituto de Biociências, Campus Botucatu, Botucatu, Brazil
| | - Joana M Gaspar
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil; Programa de Pós-Graduação em Bioquímica, UFSC, Florianópolis, Brazil
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil.
| |
Collapse
|
26
|
Duarte JMN, Skoug C, Silva HB, Carvalho RA, Gruetter R, Cunha RA. Impact of Caffeine Consumption on Type 2 Diabetes-Induced Spatial Memory Impairment and Neurochemical Alterations in the Hippocampus. Front Neurosci 2019; 12:1015. [PMID: 30686981 PMCID: PMC6333904 DOI: 10.3389/fnins.2018.01015] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
Diabetes affects the morphology and plasticity of the hippocampus, and leads to learning and memory deficits. Caffeine has been proposed to prevent memory impairment upon multiple chronic disorders with neurological involvement. We tested whether long-term caffeine consumption prevents type 2 diabetes (T2D)-induced spatial memory impairment and hippocampal alterations, including synaptic degeneration, astrogliosis, and metabolic modifications. Control Wistar rats and Goto-Kakizaki (GK) rats that develop T2D were treated with caffeine (1 g/L in drinking water) for 4 months. Spatial memory was evaluated in a Y-maze. Hippocampal metabolic profile and glucose homeostasis were investigated by 1H magnetic resonance spectroscopy. The density of neuronal, synaptic, and glial-specific markers was evaluated by Western blot analysis. GK rats displayed reduced Y-maze spontaneous alternation and a lower amplitude of hippocampal long-term potentiation when compared to controls, suggesting impaired hippocampal-dependent spatial memory. Diabetes did not impact the relation of hippocampal to plasma glucose concentrations, but altered the neurochemical profile of the hippocampus, such as increased in levels of the osmolites taurine (P < 0.001) and myo-inositol (P < 0.05). The diabetic hippocampus showed decreased density of the presynaptic proteins synaptophysin (P < 0.05) and SNAP25 (P < 0.05), suggesting synaptic degeneration, and increased GFAP (P < 0.001) and vimentin (P < 0.05) immunoreactivities that are indicative of astrogliosis. The effects of caffeine intake on hippocampal metabolism added to those of T2D, namely reducing myo-inositol levels (P < 0.001) and further increasing taurine levels (P < 0.05). Caffeine prevented T2D-induced alterations of GFAP, vimentin and SNAP25, and improved memory deficits. We conclude that caffeine consumption has beneficial effects counteracting alterations in the hippocampus of GK rats, leading to the improvement of T2D-associated memory impairment.
Collapse
Affiliation(s)
- João M N Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Cecilia Skoug
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Henrique B Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rui A Carvalho
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Radiology, University of Lausanne, Lausanne, Switzerland.,Department of Radiology, University of Geneva, Geneva, Switzerland
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
27
|
Lizarbe B, Soares AF, Larsson S, Duarte JMN. Neurochemical Modifications in the Hippocampus, Cortex and Hypothalamus of Mice Exposed to Long-Term High-Fat Diet. Front Neurosci 2019; 12:985. [PMID: 30670942 PMCID: PMC6331468 DOI: 10.3389/fnins.2018.00985] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/10/2018] [Indexed: 11/13/2022] Open
Abstract
Metabolic syndrome and diabetes impact brain function and metabolism. While it is well established that rodents exposed to diets rich in saturated fat develop brain dysfunction, contrasting results abound in the literature, likely as result of exposure to different high-fat diet (HFD) compositions and for varied periods of time. In the present study, we investigated alterations of hippocampal-dependent spatial memory by measuring Y-maze spontaneous alternation, metabolic profiles of the hippocampus, cortex and hypothalamus by 1H magnetic resonance spectroscopy (MRS), and levels of proteins specific to synaptic and glial compartments in mice exposed for 6 months to different amounts of fat (10, 45, or 60% of total energy intake). Increasing the dietary amount of fat from 10 to 45% or 60% resulted in obesity accompanied by increased leptin, fasting blood glucose and insulin, and reduced glucose tolerance. In comparison to controls (10%-fat), only mice fed the 60%-fat diet showed increased fed glycemia, as well as plasma corticosterone that has a major impact on brain function. HFD-induced metabolic profile modifications measured by 1H MRS were observed across the three brain areas in mice exposed to 60%- but not 45%-fat diet, while both HFD groups displayed impaired hippocampal-dependent memory. HFD also affected systems involved in neuro- or gliotransmission in the hippocampus. Namely, relative to controls, 60%-fat-fed mice showed reduced SNAP-25, PSD-95 and syntaxin-4 immunoreactivity, while 45%-fat-fed mice showed reduced gephyrin and syntaxin-4 immunoreactivity. For both HFD levels, reductions of the vesicular glutamate transporter vGlut1 and levels of the vesicular GABA transporter were observed in the hippocampus and hypothalamus, relative to controls. Immunoreactivity against GFAP and/or Iba-1 in the hypothalamus was higher in mice exposed to HFD than controls, suggesting occurrence of gliosis. We conclude that different levels of dietary fat result in distinct neurochemical alterations in the brain.
Collapse
Affiliation(s)
- Blanca Lizarbe
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Francisca Soares
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sara Larsson
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - João M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
28
|
Zhao X, Han Q, Gang X, Wang G. Altered brain metabolites in patients with diabetes mellitus and related complications - evidence from 1H MRS study. Biosci Rep 2018; 38:BSR20180660. [PMID: 30104398 PMCID: PMC6127672 DOI: 10.1042/bsr20180660] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/23/2018] [Accepted: 08/09/2018] [Indexed: 12/24/2022] Open
Abstract
In recent years, diabetes mellitus (DM) has been acknowledged as an important factor for brain disorders. Significant alterations in brain metabolism have been demonstrated during the development of DM and its complications. Magnetic resonance spectroscopy (MRS), a cutting-edge technique used in biochemical analyses, non-invasively provides insights into altered brain metabolite levels in vivo This review aims to discuss current MRS data describing brain metabolite levels in DM patients with or without complications. Cerebral metabolites including N-acetylaspartate (NAA), creatine (Cr), choline (Cho), myo-inositol (mI), glutamate, and glutamine were significantly altered in DM patients, suggesting that energy metabolism, neurotransmission, and lipid membrane metabolism might be disturbed during the progression of DM. Changes in brain metabolites may be non-invasive biomarkers for DM and DM-related complications. Different brain regions presented distinct metabolic signatures, indicating region-specific diabetic brain damages. In addition to serving as biomarkers, MRS data on brain metabolites can also shed light on diabetic treatment monitoring. For example, exercise may restore altered brain metabolite levels and has beneficial effects on cognition in DM patients. Future studies should validate the above findings in larger populations and uncover the mechanisms of DM-induced brain damages.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Qing Han
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
29
|
Lizarbe B, Cherix A, Duarte JMN, Cardinaux JR, Gruetter R. High-fat diet consumption alters energy metabolism in the mouse hypothalamus. Int J Obes (Lond) 2018; 43:1295-1304. [PMID: 30301962 DOI: 10.1038/s41366-018-0224-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/14/2018] [Accepted: 08/29/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND/OBJECTIVES High-fat diet consumption is known to trigger an inflammatory response in the hypothalamus, which has been characterized by an initial expression of pro-inflammatory genes followed by hypothalamic astrocytosis, microgliosis, and the appearance of neuronal injury markers. The specific effects of high-fat diet on hypothalamic energy metabolism and neurotransmission are however not yet known and have not been investigated before. SUBJECTS/METHODS We used 1H and 13C magnetic resonance spectroscopy (MRS) and immunofluorescence techniques to evaluate in vivo the consequences of high-saturated fat diet administration to mice, and explored the effects on hypothalamic metabolism in three mouse cohorts at different time points for up to 4 months. RESULTS We found that high-fat diet increases significantly the hypothalamic levels of glucose (P < 0.001), osmolytes (P < 0.001), and neurotransmitters (P < 0.05) from 2 months of diet, and alters the rates of metabolic (P < 0.05) and neurotransmission fluxes (P < 0.001), and the contribution of non-glycolytic substrates to hypothalamic metabolism (P < 0.05) after 10 weeks of high-fat feeding. CONCLUSIONS/INTERPRETATION We report changes that reveal a high-fat diet-induced alteration of hypothalamic metabolism and neurotransmission that is quantifiable by 1H and 13C MRS in vivo, and present the first evidence of the extension of the inflammation pathology to a localized metabolic imbalance.
Collapse
Affiliation(s)
- Blanca Lizarbe
- Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Antoine Cherix
- Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - João M N Duarte
- Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Jean-René Cardinaux
- Center for Psychiatric Neuroscience (CNP), Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Radiology, University of Geneva, Geneva, Switzerland.,Department of Radiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
30
|
Stefanello N, Spanevello RM, Passamonti S, Porciúncula L, Bonan CD, Olabiyi AA, Teixeira da Rocha JB, Assmann CE, Morsch VM, Schetinger MRC. Coffee, caffeine, chlorogenic acid, and the purinergic system. Food Chem Toxicol 2018; 123:298-313. [PMID: 30291944 DOI: 10.1016/j.fct.2018.10.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/29/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022]
Abstract
Coffee is a drink prepared from roasted coffee beans and is lauded for its aroma and flavour. It is the third most popular beverage in the world. This beverage is known by its stimulant effect associated with the presence of methylxanthines. Caffeine, a purine-like molecule (1,3,7 trymetylxantine), is the most important bioactive compound in coffee, among others such as chlorogenic acid (CGA), diterpenes, and trigonelline. CGA is a phenolic acid with biological properties as antioxidant, anti-inflammatory, neuroprotector, hypolipidemic, and hypoglicemic. Purinergic system plays a key role inneuromodulation and homeostasis. Extracellular ATP, other nucleotides and adenosine are signalling molecules that act through their specific receptors, namely purinoceptors, P1 for nucleosides and P2 for nucleotides. They regulate many pathological processes, since adenosine, for instance, can limit the damage caused by ATP in the excitotoxicity from the neuronal cells. The primary purpose of this review is to discuss the effects of coffee, caffeine, and CGA on the purinergic system. This review focuses on the relationship/interplay between coffee, caffeine, CGA, and adenosine, and their effects on ectonucleotidases activities as well as on the modulation of P1 and P2 receptors from central nervous system and also in peripheral tissue.
Collapse
Affiliation(s)
- Naiara Stefanello
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil.
| | - Roselia Maria Spanevello
- Programa de Pós Graduação em Bioquímica e Bioprospecção: Centro de Ciências Farmacêuticas, Químicas e de Alimentos, UFPel, Campus Capão do Leão 96010-900, Pelotas, RS, Brazil
| | - Sabina Passamonti
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri 1, 34127, Trieste, Italy
| | - Lisiane Porciúncula
- Departamento de Bioquímica, UFRGS, 90040-060, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carla Denise Bonan
- Programa de Pós-graduação em Biologia Celular e Molecular Faculdade de Biociências da Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, RS, Brazil
| | | | - João Batista Teixeira da Rocha
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Charles Elias Assmann
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Vera Maria Morsch
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
31
|
Martinez M, Rossetto IMU, Neto FSL, Tirapelli LF, Tirapelli DPC, Chuffa LGA, Cagnon VHA, Martinez FE. Interactions of ethanol and caffeine on apoptosis in the rat cerebellum (voluntary ethanol consumers). Cell Biol Int 2018; 42:1575-1583. [DOI: 10.1002/cbin.11054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/08/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Marcelo Martinez
- Department of Morphology and Pathology; Federal University of São Carlos; SP Brazil
| | | | | | - Luiz F. Tirapelli
- Department of Surgery and Anatomy; USP-University of São Paulo; Ribeirão Preto SP Brazil
| | | | | | - Valeria H. A. Cagnon
- Department of Anatomy; Cellular Biology, Physiology and Biophysics, UNICAMP; Campinas SP Brazil
| | | |
Collapse
|
32
|
Miron VV, Bottari NB, Assmann CE, Stefanello N, da Costa P, Pelinson LP, Reichert KP, da Silva AD, Lopes TF, da Cruz IBM, Sévigny J, Morsch VM, Schetinger MRC, Cardoso AM. Physical exercise prevents alterations in purinergic system and oxidative status in lipopolysaccharide-induced sepsis in rats. J Cell Biochem 2018; 120:3232-3242. [PMID: 30230598 DOI: 10.1002/jcb.27590] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022]
Abstract
Sepsis is a generalized infection that involves alterations in inflammatory parameters, oxidant status, and purinergic signaling in many tissues. Physical exercise has emerged as a tool to prevent this disease because of its anti-inflammatory and antioxidant properties. Thus, in this study, we investigated the effects of physical exercise on preventing alterations in purinergic system components, oxidative stress, and inflammatory parameters in lipopolysaccharide (LPS)-induced sepsis in rats. Male Wistar rats were divided into four groups: control, exercise (EX), LPS, and EX+LPS. The resisted physical exercise was performed for 12 weeks on a ladder with 1 m height. After 72 hours of the last exercise session, the animals received 2.5 mg/kg of LPS for induction of sepsis, and after 24 hours, lungs and blood samples were collected for analysis. The results showed that the exercise protocol used was able to prevent, in septic animals: (1) the increase in body temperature; (2) the increase of lipid peroxidation and reactive species levels in the lung, (3) the increase in adenosine triphosphate levels in serum; (4) the change in the activity of the enzymes ectonucleotidases in lymphocytes, partially; (5) the change in the density of purinergic enzymes and receptors in the lung, and (6) the increase of IL-6 and IL-1β gene expression. Our results revealed the involvement of purinergic signaling and oxidative damage in the mechanisms by which exercise prevents sepsis aggravations. Therefore, the regular practice of physical exercise is encouraged as a better way to prepare the body against sepsis complications.
Collapse
Affiliation(s)
- Vanessa Valéria Miron
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Nathieli Bianchin Bottari
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Charles Elias Assmann
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Naiara Stefanello
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Pauline da Costa
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Luana Paula Pelinson
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Karine Paula Reichert
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Anielen Dutra da Silva
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Thauan Faccin Lopes
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Ivana Beatrice Mânica da Cruz
- Morphology Department, Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Jean Sévigny
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Centre de recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada
| | - Vera Maria Morsch
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Maria Rosa Chitolina Schetinger
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Andréia Machado Cardoso
- Federal University of Fronteira Sul, Academic Coordination, Medicine, Campus Chapecó, Chapecó, Santa Catarina, Brazil
| |
Collapse
|
33
|
Villalba H, Shah K, Albekairi TH, Sifat AE, Vaidya B, Abbruscato TJ. Potential role of myo-inositol to improve ischemic stroke outcome in diabetic mouse. Brain Res 2018; 1699:166-176. [PMID: 30165043 DOI: 10.1016/j.brainres.2018.08.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/17/2018] [Accepted: 08/26/2018] [Indexed: 12/17/2022]
Abstract
Brain edema is one of the critical factors causing hightened disability and mortality in stroke patients, which is exaggerated further in diabetic patients. Organic osmolytes could play a critical role in the maintenance of cytotoxic edema. The present study was aimed to assess the role of myo-inositol, an organic osmolyte, on stroke outcome in diabetic and non-diabetic animals. In situ brain perfusion and acute brain slice methods were used to assess transport of myo-inositol across the blood-brain barrier and uptake by brain cells using non-diabetic (C57BL/6) and diabetic (streptozotocin-induced) mice, respectively. In vitro studies were conducted to assess the role of myo-inositol during and after ischemia utilizing oxygen glucose deprivation (OGD) and reperfusion. Further, the expression of transporters, such as SGLT6, SMIT1 and AQP4 were measured using immunofluorescence. Therapeutic efficacy of myo-inositol was evaluated in a transient middle cerebral artery occlusion (tMCAO) mouse model using non-diabetic (C57BL/6) and diabetic (db/db) mice. Myo-inositol release from and uptake in astrocytes and altered expression of myo-inositol transporters at different OGD timepoints revealed the role of myo-inositol and myo-inositol transporters during ischemia reperfusion. Further, hyperglycemic conditions reduced myo-inositol uptake in astrocytes. Interestingly, in in-vivo tMCAO, infarct and edema ratios following 24 h reperfusion decreased in myo-inositol treated mice. These results were supported by improvement in behavioral outcomes in open-field test, corner test and neurological score in both non-diabetic and db/db animals. Our data suggest that myo-inositol and myo-inositol transporters may provide neuroprotection during/following stroke both in non-diabetic and diabetic conditions.
Collapse
Affiliation(s)
- Heidi Villalba
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Kaushik Shah
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Thamer H Albekairi
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Ali E Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
34
|
Tur DA, Shevelev OB, Sharapova MВ, Zolotykh MA, Akulov AE. The effect of a single administration of streptozotocin on hippocampus metabolites in NODSCID mice. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
35
|
Dewanjee S, Das S, Das AK, Bhattacharjee N, Dihingia A, Dua TK, Kalita J, Manna P. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur J Pharmacol 2018; 833:472-523. [DOI: 10.1016/j.ejphar.2018.06.034] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/15/2018] [Accepted: 06/26/2018] [Indexed: 02/07/2023]
|
36
|
Imam-Fulani AO, Sanusi KO, Owoyele BV. Effects of acetone extract of Cola nitida on brain sodium-potassium adenosine triphosphatase activity and spatial memory in healthy and streptozotocin-induced diabetic female Wistar rats. J Basic Clin Physiol Pharmacol 2018; 29:411-416. [PMID: 29634481 DOI: 10.1515/jbcpp-2016-0019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/10/2018] [Indexed: 06/08/2023]
Abstract
Background This study was carried out to investigate the effects of acetone extract of Cola nitida on brain Na+/K+-ATPase activity and spatial memory of healthy and streptozotocin (STZ)-induced diabetic female Wistar rats. Methods Forty-two female Wistar rats were used for this study and were randomly distributed into six groups (n=7). Rats in group 1 were used as control and were administered normal saline; group 2 rats were healthy rats administered 50 mg/kg of kola nut extract per day; group 3 rats were healthy rats administered 100 mg/kg of kola nut extract per day; group 4 rats were a diabetic group also administered normal saline; group 5 rats were diabetic rats administered 50 mg/kg of kola nut extract per day; and group 6 rats were diabetic rats administered 100 mg/kg of kola nut extract per day. Diabetes was induced with 50 mg/kg of STZ. After 3 weeks of administration, the spatial memories of the rats were tested using the Y-maze, followed by assay of Na+/K+-ATPase activity. Results The result shows a significant increase in Na+/K+-ATPase activity of diabetic treated groups (5 and 6) when compared with the diabetic group (4) and a significant increase in Na+/K+-ATPase activity of healthy treated groups (2 and 3) when compared with control. Also, there was a significant increase in spatial memory of the diabetic treated groups when compared with diabetic group. Conclusions This study revealed that kola nut extract has restorative effect on brain Na+/K+-ATPase activities and spatial memory of STZ-induced diabetic female Wistar rats.
Collapse
Affiliation(s)
- Aminat Omolola Imam-Fulani
- Department of Physiology, College of Health Sciences, University of Ilorin, P. M. B. 1515, Ilorin 23401, Kwara, Nigeria, Phone: +2348032145355
| | | | - Bamidele Victor Owoyele
- Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Kwara, Nigeria
| |
Collapse
|
37
|
Zhao L, Dong M, Wang D, Ren M, Zheng Y, Zheng H, Li C, Gao H. Characteristic Metabolic Alterations Identified in Primary Neurons Under High Glucose Exposure. Front Cell Neurosci 2018; 12:207. [PMID: 30065632 PMCID: PMC6056731 DOI: 10.3389/fncel.2018.00207] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/25/2018] [Indexed: 12/29/2022] Open
Abstract
Cognitive dysfunction is a central nervous system (CNS) complication of diabetes mellitus (DM) that is characterized by impaired memory and cognitive ability. An in-depth understanding of metabolic alterations in the brain associated with DM will facilitate our understanding of the pathogenesis of cognitive dysfunction. The present study used an in vitro culture of primary neurons in a high-glucose (HG) environment to investigate characteristic alterations in neuron metabolism using nuclear magnetic resonance (NMR)-based metabonomics. High performance liquid chromatography (HPLC) was also used to measure changes in the adenosine phosphate levels in the hippocampal regions of streptozotocin (STZ)-induced diabetic rats. Our results revealed significant elevations in phosphocholine and ATP production in neurons and decreased formate, nicotinamide adenine dinucleotide (NAD+), tyrosine, methionine, acetate and phenylalanine levels after HG treatment. However, the significant changes in lactate, glutamate, taurine and myo-inositol levels in astrocytes we defined previously in astrocytes, were not found in neurons, suggested cell-specific metabolic alterations. We also confirmed an astrocyte-neuron lactate shuttle between different compartments in the brain under HG conditions, which was accompanied by abnormal acetate transport. These alterations reveal specific information on the metabolite levels and transport processes related to neurons under diabetic conditions. Our findings contribute to the understanding of the metabolic alterations and underlying pathogenesis of cognitive decline in diabetic patients.
Collapse
Affiliation(s)
- Liangcai Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Minjian Dong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dan Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mengqian Ren
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongquan Zheng
- Department of Pharmacy, Women's Hospital, Medicine of School, Zhejiang University, Hangzhou, China
| | - Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chen Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
38
|
Hammoum I, Benlarbi M, Dellaa A, Kahloun R, Messaoud R, Amara S, Azaiz R, Charfeddine R, Dogui M, Khairallah M, Lukáts Á, Ben Chaouacha-Chekir R. Retinal dysfunction parallels morphologic alterations and precede clinically detectable vascular alterations in Meriones shawi, a model of type 2 diabetes. Exp Eye Res 2018; 176:174-187. [PMID: 30009825 DOI: 10.1016/j.exer.2018.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/19/2018] [Accepted: 07/05/2018] [Indexed: 12/22/2022]
Abstract
Diabetic retinopathy is a major cause of reduced visual acuity and acquired blindness. The aim of this work was to analyze functional and vascular changes in diabetic Meriones shawi (M.sh) an animal model of metabolic syndrome and type 2 diabetes. The animals were divided into four groups. Two groups were fed a high fat diet (HFD) for 3 and 7 months, two other groups served as age-matched controls. Retinal function was assessed using full field electroretinogram (Ff-ERG). Retinal thickness and vasculature were examined by optical coherence tomography, eye fundus and fluorescein angiography. Immunohistochemistry was used to examine key proteins of glutamate metabolism and synaptic transmission. Diabetic animals exhibited significantly delayed scotopic and photopic ERG responses and decreases in scotopic and photopic a- and b-wave amplitudes at both time points. Furthermore, a decrease of the amplitude of the flicker response and variable changes in the scotopic and photopic oscillatory potentials was reported. A significant decrease in retinal thickness was observed. No evident change in the visual streak area and no sign of vascular abnormality was present; however, some exudates in the periphery were visible in 7 months diabetic animals. Imunohistochemistry detected a decrease in the expression of glutamate synthetase, vesicular glutamate transporter 1 and synaptophysin proteins. Results indicate that a significant retinal dysfunction was present in the HFD induced diabetes involving both rod and cone pathways and this dysfunction correlate well with the morphological abnormalities reported previously. Furthermore, neurodegeneration and abnormalities in retinal function occur before vascular alterations would be detectable in diabetic M.sh.
Collapse
Affiliation(s)
- Imane Hammoum
- Laboratory of Physiopathology, Food and Biomolecules (PAB) of the High Institute of Biotechnology, Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Tunisia; Faculty of Sciences of Tunis, El Manar University (UTM), Tunis, Tunisia
| | - Maha Benlarbi
- Laboratory of Physiopathology, Food and Biomolecules (PAB) of the High Institute of Biotechnology, Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Tunisia
| | - Ahmed Dellaa
- Laboratory of Physiopathology, Food and Biomolecules (PAB) of the High Institute of Biotechnology, Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Tunisia
| | - Rim Kahloun
- Service of Ophtalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Riadh Messaoud
- Service of Ophtalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Soumaya Amara
- Service of Ophtalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Rached Azaiz
- UNIMED Pharmaceutical Industry, Industrial Area Kalaa Kebira, Sousse, Tunisia
| | - Ridha Charfeddine
- UNIMED Pharmaceutical Industry, Industrial Area Kalaa Kebira, Sousse, Tunisia
| | - Mohamed Dogui
- Service of Functional Explorations of the Nervous System, Sahloul University Hospital, Sousse, Tunisia
| | - Moncef Khairallah
- Service of Ophtalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Ákos Lukáts
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Rafika Ben Chaouacha-Chekir
- Laboratory of Physiopathology, Food and Biomolecules (PAB) of the High Institute of Biotechnology, Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Tunisia.
| |
Collapse
|
39
|
Monteiro J, Alves MG, Oliveira PF, Silva BM. Pharmacological potential of methylxanthines: Retrospective analysis and future expectations. Crit Rev Food Sci Nutr 2018; 59:2597-2625. [PMID: 29624433 DOI: 10.1080/10408398.2018.1461607] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methylated xanthines (methylxanthines) are available from a significant number of different botanical species. They are ordinarily included in daily diet, in many extremely common beverages and foods. Caffeine, theophylline and theobromine are the main methylxanthines available from natural sources. The supposedly relatively low toxicity of methylxanthines, combined with the many beneficial effects that have been attributed to these compounds through time, generated a justified attention and a very prolific ground for dedicated scientific reports. Methylxanthines have been widely used as therapeutical tools, in an intriguing range of medicinal scopes. In fact, methylxanthines have been/were medically used as Central Nervous System stimulants, bronchodilators, coronary dilators, diuretics and anti-cancer adjuvant treatments. Other than these applications, methylxanthines have also been hinted to hold other beneficial health effects, namely regarding neurodegenerative diseases, cardioprotection, diabetes and fertility. However, it seems now consensual that toxicity concerns related to methylxanthine consumption and/or therapeutic use should not be dismissed. Taking all the knowledge and expectations on the potential of methylxanthines into account, we propose a systematic look at the past and future of methylxanthine pharmacologic applications, discussing all the promise and anticipating possible constraints. Anyways, methylxanthines will still substantiate considerable meaningful research and discussion for years to come.
Collapse
Affiliation(s)
- João Monteiro
- Mass Spectrometry Centre, Department of Chemistry & CESAM, University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto , Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto , Portugal.,Institute of Health Research an Innovation (i3S), University of Porto , Porto , Portugal
| | | |
Collapse
|
40
|
Oeltzschner G, Zöllner HJ, Jonuscheit M, Lanzman RS, Schnitzler A, Wittsack HJ. J-difference-edited MRS measures of γ-aminobutyric acid before and after acute caffeine administration. Magn Reson Med 2018; 80:2356-2365. [PMID: 29752742 DOI: 10.1002/mrm.27233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/28/2018] [Accepted: 04/03/2018] [Indexed: 12/28/2022]
Abstract
PURPOSE The aim of this study was to investigate potential effects of acute caffeine intake on J-difference-edited MRS measures of the primary inhibitory neurotransmitter γ-aminobutyric acid (GABA). METHODS J-difference-edited Mescher-Garwood PRESS (MEGA-PRESS) and conventional PRESS data were acquired at 3T from voxels in the anterior cingulate and occipital area of the brain in 15 healthy subjects, before and after oral intake of a 200-mg caffeine dose. MEGA-PRESS data were analyzed with the MATLAB-based Gannet tool to estimate GABA+ macromolecule (GABA+) levels, while PRESS data were analyzed with LCModel to estimate levels of glutamate, glutamate+glutamine, N-acetylaspartate, and myo-inositol. All metabolites were quantified with respect to the internal reference compounds creatine and tissue water, and compared between the pre- and post-caffeine intake condition. RESULTS For both MRS voxels, mean GABA+ estimates did not differ before and after caffeine intake. Slightly lower estimates of myo-inositol were observed after caffeine intake in both voxels. N-acetylaspartate, glutamate, and glutamate+glutamine did not show significant differences between conditions. CONCLUSION Mean GABA+ estimates from J-difference-edited MRS in two different brain regions are not altered by acute oral administration of caffeine. These findings may increase subject recruitment efficiency for MRS studies.
Collapse
Affiliation(s)
- Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Helge J Zöllner
- Institute for Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marc Jonuscheit
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rotem S Lanzman
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute for Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
41
|
Ribeiro M, Castelhano J, Petrella LI, Sereno J, Rodrigues T, Neves C, Letra L, Baptista FI, Seiça R, Matafome P, Castelo-Branco M. High-fat diet induces a neurometabolic state characterized by changes in glutamate and N-acetylaspartate pools associated with early glucose intolerance: An in vivo multimodal MRI study. J Magn Reson Imaging 2018; 48:757-766. [PMID: 29377412 DOI: 10.1002/jmri.25942] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/18/2017] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Type-2 diabetes mellitus (T2DM) is a metabolic disorder with a broad range of complications in the brain that depend on the conditions that precede its onset, such as obesity and metabolic syndromes. It has been suggested that neurotransmitter and metabolic perturbations may emerge even before the early stages of T2DM and that high-caloric intake could adversely influence the brain in such states. Notwithstanding, evidence for neurochemical and structural alterations in these conditions are still sparse and controversial. PURPOSE To evaluate the influence of high-fat diet in the neurochemical profile and structural integrity of the rodent brain. STUDY TYPE Prospective. SUBJECTS Wistar rats (n = 12/group). FIELD STRENGTH/SEQUENCE A PRESS, ISIS, RARE, and EPI sequences were performed at 9.4T. ASSESSMENT Neurochemical and structural parameters were assessed by magnetic resonance spectroscopy, voxel-based morphometry, volumetry, and diffusion tensor imaging. STATISTICAL TESTS Measurements were compared through Student and Mann-Whitney tests. Pearson correlation was used to assess relationships between parameters. RESULTS Animals submitted to high-caloric intake gained weight (P = 0.003) and developed glucose intolerance (P < 0.001) but not hyperglycemia. In the hippocampus, the diet induced perturbations in glutamatergic metabolites reflected by increased levels of glutamine (P = 0.016) and glutamatergic pool (Glx) (P = 0.036), which were negatively correlated with glucose intolerance (glutamine, r = -0.804, P = 0.029), suggesting a link with neurometabolic dysregulation. At caudate-putamen, high-fat diet led to a surprising increase in the pool of N-acetylaspartate (P = 0.028). A relation with metabolic changes was again suggested by the negative correlation between glucose intolerance and levels of glutamatergic metabolites in this region (glutamate, r = -0.845, P = 0.014; Glx, r = -0.834, P = 0.020). Neither changes in phosphate compounds nor major structural alterations were observed for both regions. DATA CONCLUSION We found evidence that high-fat diet-induced obesity leads to distinct early and region-specific metabolic/neurochemical imbalances in the presence of early glucose intolerance even when structural alterations or T2DM are absent. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018.
Collapse
Affiliation(s)
- Mário Ribeiro
- Center for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Coimbra, Portugal
- CiBIT, Institute of Nuclear Science Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - João Castelhano
- Center for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Coimbra, Portugal
- CiBIT, Institute of Nuclear Science Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Lorena I Petrella
- Center for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Coimbra, Portugal
- CiBIT, Institute of Nuclear Science Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - José Sereno
- Center for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Coimbra, Portugal
- CiBIT, Institute of Nuclear Science Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Tiago Rodrigues
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Coimbra, Portugal
| | - Christian Neves
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Coimbra, Portugal
| | - Liliana Letra
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Coimbra, Portugal
| | - Filipa I Baptista
- Center for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Coimbra, Portugal
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Coimbra, Portugal
| | - Raquel Seiça
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Coimbra, Portugal
| | - Paulo Matafome
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Coimbra, Portugal
- Coimbra Health School (ESTeSC), Department of Complementary Sciences, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Center for Neuroscience and Cell Biology - Institute of Biomedical Imaging and Life Science (CNC.IBILI), University of Coimbra, Coimbra, Portugal
- CiBIT, Institute of Nuclear Science Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
42
|
Barrière DA, Noll C, Roussy G, Lizotte F, Kessai A, Kirby K, Belleville K, Beaudet N, Longpré JM, Carpentier AC, Geraldes P, Sarret P. Combination of high-fat/high-fructose diet and low-dose streptozotocin to model long-term type-2 diabetes complications. Sci Rep 2018; 8:424. [PMID: 29323186 PMCID: PMC5765114 DOI: 10.1038/s41598-017-18896-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
The epidemic of type 2 diabetes mellitus (T2DM) is fueled by added fructose consumption. Here, we thus combined high-fat/high-fructose diet, with multiple low-dose injections of streptozotocin (HF/HF/Stz) to emulate the long-term complications of T2DM. HF/HF/Stz rats, monitored over 56 weeks, exhibited metabolic dysfunctions associated with the different stages of the T2DM disease progression in humans: an early prediabetic phase characterized by an hyperinsulinemic period with modest dysglycemia, followed by a late stage of T2DM with frank hyperglycemia, normalization of insulinemia, marked dyslipidemia, hepatic fibrosis and pancreatic β-cell failure. Histopathological analyses combined to [18F]-FDG PET imaging further demonstrated the presence of several end-organ long-term complications, including reduction in myocardial glucose utilization, renal dysfunction as well as microvascular neuropathy and retinopathy. We also provide for the first time a comprehensive µ-PET whole brain imaging of the changes in glucose metabolic activity within discrete cerebral regions in HF/HF/Stz diabetic rats. Altogether, we developed and characterized a unique non-genetic preclinical model of T2DM adapted to the current diet and lifestyle that recapitulates the major metabolic features of the disease progression, from insulin resistance to pancreatic β-cell dysfunction, and closely mimicking the target-organ damage occurring in type 2 diabetic patients at advanced stages.
Collapse
Affiliation(s)
- David André Barrière
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada.
| | - Christophe Noll
- Département de Médecine, Service d'Endocrinologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Québec, Canada
| | - Geneviève Roussy
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | - Farah Lizotte
- Département de Médecine, Service d'Endocrinologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Québec, Canada
| | - Anissa Kessai
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | - Karyn Kirby
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | - Karine Belleville
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | - Nicolas Beaudet
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | - Jean-Michel Longpré
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | - André C Carpentier
- Département de Médecine, Service d'Endocrinologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Québec, Canada
| | - Pedro Geraldes
- Département de Médecine, Service d'Endocrinologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Québec, Canada
| | - Philippe Sarret
- Département de Pharmacologie et Physiologie/Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Québec, Canada.
| |
Collapse
|
43
|
Patel SS, Udayabanu M. Effect of natural products on diabetes associated neurological disorders. Rev Neurosci 2018; 28:271-293. [PMID: 28030360 DOI: 10.1515/revneuro-2016-0038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus, a metabolic disorder, is associated with neurological complications such as depression, anxiety, hypolocomotion, cognitive dysfunction, phobias, anorexia, stroke, pain, etc. Traditional system of medicine is long known for its efficient management of diabetes. The current review discusses the scope of some common medicinal herbs as well as secondary metabolites with a special focus on diabetes-mediated central nervous system complications. Literatures suggest that natural products reduce diabetes-mediated neurological complications partly by reducing oxidative stress and/or inflammation or apoptosis in certain brain regions. Natural products are known to modulate diabetes-mediated alterations in the level of acetylcholinesterase, choline acetyltransferase, monoamine oxidase, serotonin receptors, muscarinic receptors, insulin receptor, nerve growth factor, brain-derived neurotrophic factor, and neuropeptide in brain. Further, there are several natural products reported to manage diabetic complications with unknown mechanism. In conclusion, medicinal plants or their secondary metabolites have a wide scope and possess therapeutic potential to effectively manage neurological complications associated with chronic diabetes.
Collapse
|
44
|
Li S, Wang X, Yang J, Lei H, Wang X, Xiang Y. Metabolic profile of visual cortex in diabetic rats measured with in vivo proton MRS. NMR IN BIOMEDICINE 2017; 30:e3783. [PMID: 28915340 DOI: 10.1002/nbm.3783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 07/09/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
The purpose of the present study was to characterize the metabolic profile of the visual cortex in streptozotocin-induced Type 1 diabetic rats by means of in vivo proton MRS. Several metabolite concentration ratios in the visual cortex were calculated. In addition, postmortem histologic analyses for retinal ganglion cell (RGC) loss, optic nerve injury and visual cortex alterations were monitored. The results showed that diabetes induced several changes in visual cortex metabolites, such as reduced N-acetylaspartate, glutamate, γ-aminobutyric acid, taurine and choline-containing compound levels. Nevertheless, myo-inositol levels increased significantly as compared with controls. Remarkable RGC loss and optic nerve degeneration were observed by morphological analysis. Moreover, the results showed significant neuronal loss and glial activation in the visual cortex. These findings indicated that, besides vascular abnormalities, neuronal loss and degeneration in the visual pathway were induced due to disrupted glucose homeostasis in diabetes. Metabolic or functional abnormalities were induced in cerebral neurons of the visual cortex by diabetes.
Collapse
Affiliation(s)
- Shuang Li
- Department of Ophthalmology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xinghua Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junjie Yang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hao Lei
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xuxia Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yi Xiang
- Department of Ophthalmology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| |
Collapse
|
45
|
Treatment with A 2A receptor antagonist KW6002 and caffeine intake regulate microglia reactivity and protect retina against transient ischemic damage. Cell Death Dis 2017; 8:e3065. [PMID: 28981089 PMCID: PMC5680573 DOI: 10.1038/cddis.2017.451] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/27/2017] [Accepted: 07/02/2017] [Indexed: 01/04/2023]
Abstract
Transient retinal ischemia is a major complication of retinal degenerative diseases and contributes to visual impairment and blindness. Evidences indicate that microglia-mediated neuroinflammation has a key role in the neurodegenerative process, prompting the hypothesis that the control of microglia reactivity may afford neuroprotection to the retina against the damage induced by ischemia–reperfusion (I–R). The available therapeutic strategies for retinal degenerative diseases have limited potential, but the blockade of adenosine A2A receptor (A2AR) emerges as candidate strategy. Therefore, we evaluated the therapeutic potential of a selective A2AR antagonist (KW6002) against the damage elicited by I–R. The administration of KW6002 after I–R injury reduced microglia reactivity and inflammatory response and afforded protection to the retina. Moreover, we tested the ability of caffeine, an adenosine receptor antagonist, in mediating protection to the retina in the I–R injury model. We demonstrated that caffeine administration dually regulated microglia reactivity and cell death in the transient retinal ischemic model, depending on the reperfusion time. At 24 h of reperfusion, caffeine increased microglial reactivity, inflammatory response and cell death elicited by I–R. However, at 7 days of reperfusion, caffeine administration decreased microglia reactivity and reduced the levels of proinflammatory cytokines and cell death. Together, these results provide a novel evidence for the use of adenosine A2AR antagonists as potential therapy for retinal ischemic diseases and demonstrate the effect of caffeine on the regulation of microglia-mediated neuroinflammation in the transient ischemic model.
Collapse
|
46
|
Girault FM, Sonnay S, Gruetter R, Duarte JMN. Alterations of Brain Energy Metabolism in Type 2 Diabetic Goto-Kakizaki Rats Measured In Vivo by 13C Magnetic Resonance Spectroscopy. Neurotox Res 2017; 36:268-278. [DOI: 10.1007/s12640-017-9821-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/21/2017] [Accepted: 09/20/2017] [Indexed: 12/11/2022]
|
47
|
Taurine counteracts the neurotoxic effects of streptozotocin-induced diabetes in rats. Amino Acids 2017; 50:95-104. [DOI: 10.1007/s00726-017-2495-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/18/2017] [Indexed: 01/07/2023]
|
48
|
Varani K, Vincenzi F, Merighi S, Gessi S, Borea PA. Biochemical and Pharmacological Role of A1 Adenosine Receptors and Their Modulation as Novel Therapeutic Strategy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1051:193-232. [DOI: 10.1007/5584_2017_61] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Insulin deprivation induces PP2A inhibition and tau hyperphosphorylation in hTau mice, a model of Alzheimer's disease-like tau pathology. Sci Rep 2017; 7:46359. [PMID: 28402338 PMCID: PMC5389355 DOI: 10.1038/srep46359] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/16/2017] [Indexed: 01/05/2023] Open
Abstract
Abnormally hyperphosphorylated tau aggregated as intraneuronal neurofibrillary tangles is one of the two neuropathological hallmarks of Alzheimer’s disease (AD). The majority of AD cases are sporadic with numerous environmental, biological and genetic risks factors. Interestingly, insulin dysfunction and hyperglycaemia are both risk factors for sporadic AD. However, how hyperglycaemia and insulin dysfunction affect tau pathology, is not well understood. In this study, we examined the effects of insulin deficiency on tau pathology in transgenic hTau mice by injecting different doses of streptozotocin (STZ), a toxin that destroys insulin-producing cells in the pancreas. One high dose of STZ resulted in marked diabetes, and five low doses led to a milder diabetes. Both groups exhibited brain tau hyperphosphorylation but no increased aggregation. Tau hyperphosphorylation correlated with inhibition of Protein Phosphatase 2A (PP2A), the main tau phosphatase. Interestingly, insulin injection 30 minutes before sacrifice partially restored tau phosphorylation to control levels in both STZ-injected groups. Our results confirm a link between insulin homeostasis and tau phosphorylation, which could explain, at least in part, a higher incidence of AD in diabetic patients.
Collapse
|
50
|
Sonnay S, Duarte JMN, Just N, Gruetter R. Energy metabolism in the rat cortex under thiopental anaesthesia measured In Vivo by 13 C MRS. J Neurosci Res 2017; 95:2297-2306. [PMID: 28316083 DOI: 10.1002/jnr.24032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/05/2017] [Accepted: 01/16/2017] [Indexed: 01/05/2023]
Abstract
Barbiturates, commonly used as general anaesthetics, depress neuronal activity and thus cerebral metabolism. Moreover, they are likely to disrupt the metabolic support of astrocytes to neurons, as well as the uptake of nutrients from circulation. By employing 13 C magnetic resonance spectroscopy (MRS) in vivo at high magnetic field, we characterized neuronal and astrocytic pathways of energy metabolism in the rat cortex under thiopental anaesthesia. The neuronal tricarboxylic acid (TCA) cycle rate was 0.46 ± 0.02 µmol/g/min, and the rate of the glutamate-glutamine cycle was 0.09 ± 0.02 µmol/g/min. In astrocytes, the TCA cycle rate was 0.16 ± 0.02 µmol/g/min, accounting for a quarter of whole brain glucose oxidation, pyruvate carboxylase rate was 0.02 ± 0.01 µmol/g/min, and glutamine synthetase was 0.12 ± 0.01 µmol/g/min. Relative to previous experiments under light α-chloralose anaesthesia, thiopental reduced oxidative metabolism in neurons and even more so in astrocytes. Interestingly, total oxidative metabolism in the cortex under thiopental anaesthesia surpassed the rate of pyruvate production by glycolysis, indicating substantial utilisation of substrates other than glucose, likely plasma lactate. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sarah Sonnay
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale Lausanne, Switzerland
| | - João M N Duarte
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale Lausanne, Switzerland
| | - Nathalie Just
- Centre d'Imagerie Biomédicale - Animal and Technology Core, Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale Lausanne, Switzerland.,Department of Radiology, University of Geneva, Switzerland.,Department of Radiology, University of Lausanne, Switzerland
| |
Collapse
|