1
|
Shirsath KR, Patil VK, Awathale SN, Goyal SN, Nakhate KT. Pathophysiological and therapeutic implications of neuropeptide S system in neurological disorders. Peptides 2024; 175:171167. [PMID: 38325715 DOI: 10.1016/j.peptides.2024.171167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Neuropeptide S (NPS) is a 20 amino acids-containing neuroactive molecule discovered by the reverse pharmacology method. NPS is detected in specific brain regions like the brainstem, amygdala, and hypothalamus, while its receptor (NPSR) is ubiquitously expressed in the central nervous system (CNS). Besides CNS, NPS and NPSR are also expressed in the peripheral nervous system. NPSR is a G-protein coupled receptor that primarily uses Gq and Gs signaling pathways to mediate the actions of NPS. In animal models of Parkinsonism and Alzheimer's disease, NPS exerts neuroprotective effects. NPS suppresses oxidative stress, anxiety, food intake, and pain, and promotes arousal. NPSR facilitates reward, reinforcement, and addiction-related behaviors. Genetic variation and single nucleotide polymorphism in NPSR are associated with depression, schizophrenia, rheumatoid arthritis, and asthma. NPS interacts with several neurotransmitters including glutamate, noradrenaline, serotonin, corticotropin-releasing factor, and gamma-aminobutyric acid. It also modulates the immune system via augmenting pro-inflammatory cytokines and plays an important role in the pathogenesis of rheumatoid arthritis and asthma. In the present review, we discussed the distribution profile of NPS and NPSR, signaling pathways, and their importance in the pathophysiology of various neurological disorders. We have also proposed the areas where further investigations on the NPS system are warranted.
Collapse
Affiliation(s)
- Kamini R Shirsath
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Vaishnavi K Patil
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sanjay N Awathale
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sameer N Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India.
| |
Collapse
|
2
|
Huang Y, Wojciechowski A, Feldman K, Ettaro R, Veros K, Ritter M, Carvalho Costa P, DiStasio J, Peirick JJ, Reissner KJ, Runyon SP, Clark SD. RTI-263, a biased neuropeptide S receptor agonist that retains an anxiolytic effect, attenuates cocaine-seeking behavior in rats. Neuropharmacology 2023; 241:109743. [PMID: 37820934 DOI: 10.1016/j.neuropharm.2023.109743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
Neuropeptide S (NPS) is a neuromodulatory peptide that acts via a G protein-coupled receptor. Centrally administered NPS suppresses anxiety-like behaviors in rodents while producing a paradoxical increase in arousal. In addition, NPS increases drug-seeking behavior when administered during cue-induced reinstatement. Conversely, an NPS receptor (NPSR) antagonist, RTI-118, decreases cocaine-seeking behavior. A biased NPSR ligand, RTI-263, produces anxiolytic-like effects and has memory-enhancing effects similar to those of NPS but without the increase in arousal. In the present study, we show that RTI-263 decreased cocaine seeking by both male and female rats during cue-induced reinstatement. However, RTI-263 did not modulate the animals' behaviors during natural reward paradigms, such as palatable food intake, feeding during a fasting state, and cue-induced reinstatement of sucrose seeking. Therefore, NPSR biased agonists are a potential pharmacotherapy for substance use disorder because of the combined benefits of decreased drug seeking and the suppression of anxiety.
Collapse
Affiliation(s)
- Yuanli Huang
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, USA
| | - Alaina Wojciechowski
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, USA
| | - Kyle Feldman
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, USA
| | - Robert Ettaro
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, USA
| | - Kaliana Veros
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, USA
| | - Morgan Ritter
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, USA
| | - Paula Carvalho Costa
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, USA
| | - Jacob DiStasio
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, USA
| | - Jennifer J Peirick
- Laboratory Animal Facilities, University at Buffalo, Buffalo, NY 14214, USA
| | - Kathryn J Reissner
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Scott P Runyon
- Research Triangle Institute, Center for Drug Discovery, Research Triangle Park, NC 27709, USA
| | - Stewart D Clark
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
3
|
Akçalı İ, Akkan SS, Bülbül M. The regulatory role of central neuropeptide-S in locomotion. Peptides 2023; 170:171110. [PMID: 37832875 DOI: 10.1016/j.peptides.2023.171110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/13/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Central exogenous Neuropeptide-S (NPS) was demonstrated to increase locomotor activity (LMA) in rodent studies. NPS receptor (NPSR) is produced in locomotion-related brain regions including basal ganglia while NPS mediates dopaminergic neurotransmission suggesting that endogenous brain NPS is involved in the regulation of locomotion. Aim of the study was to elucidate whether antagonism of NPSR impairs locomotion and to determine the neurochemical profile of NPSR-expressing cells in basal ganglia network. In the rats received intracerebroventricular injection of selective non-peptide NPSR antagonist ML154 (20 nmol/5 µL) or vehicle, in addition to measurement of catalepsy, motor performance, and motor coordination were evaluated by assessment of LMA and RR test, respectively. The immunoreactivities for NPSR, tyrosine hydroxylase (TH), glutamate decarboxylase 67 (GAD67), and choline acetyltransferase (ChAT) were detected by immunofluorescence in frozen sections. Compared to the control rats, total LMA was significantly declined following ML154 administration. The ML154-injected rats were more prone to fall in rotarod (RR) test, while they exhibited remarkably high catalepsy time. The most robust immunoreactivity for NPSR was detected in globus pallidus externa (GPe), while moderate levels of NPSR expression were observed in substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA), but not in striatum. The NPSR-ir cell bodies were found to express GAD67 in GPe and TH in SNpc and VTA, respectively. NPSR expression was detected in SNpc-projecting pallidal cells. The present findings indicate the regulatory role of central endogenous NPS in the control of locomotion. NPSR may be a potential therapeutic target for the treatment of movement disorders.
Collapse
Affiliation(s)
- İrem Akçalı
- Department of Physiology, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | - Simla Su Akkan
- Department of Physiology, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | - Mehmet Bülbül
- Department of Physiology, Akdeniz University, Faculty of Medicine, Antalya, Turkey.
| |
Collapse
|
4
|
Weerasinghe-Mudiyanselage PD, Kang S, Kim JS, Moon C. Therapeutic Approaches to Non-Motor Symptoms of Parkinson's Disease: A Current Update on Preclinical Evidence. Curr Neuropharmacol 2023; 21:560-577. [PMID: 36200159 PMCID: PMC10207906 DOI: 10.2174/1570159x20666221005090126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
Despite being classified as a movement disorder, Parkinson's disease (PD) is characterized by a wide range of non-motor symptoms that significantly affect the patients' quality of life. However, clear evidence-based therapy recommendations for non-motor symptoms of PD are uncommon. Animal models of PD have previously been shown to be useful for advancing the knowledge and treatment of motor symptoms. However, these models may provide insight into and assess therapies for non-motor symptoms in PD. This paper highlights non-motor symptoms in preclinical models of PD and the current position regarding preclinical therapeutic approaches for these non-motor symptoms. This information may be relevant for designing future preclinical investigations of therapies for nonmotor symptoms in PD.
Collapse
Affiliation(s)
- Poornima D.E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
5
|
Neuropeptide S facilitates extinction of fear via modulation of mesolimbic dopaminergic circuitry. Neuropharmacology 2022; 221:109274. [DOI: 10.1016/j.neuropharm.2022.109274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
|
6
|
Gołyszny M, Zieliński M, Paul-Samojedny M, Pałasz A, Obuchowicz E. Chronic treatment with escitalopram and venlafaxine affects the neuropeptide S pathway differently in adult Wistar rats exposed to maternal separation. AIMS Neurosci 2022; 9:395-422. [PMID: 36329901 PMCID: PMC9581731 DOI: 10.3934/neuroscience.2022022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/20/2022] [Accepted: 09/05/2022] [Indexed: 07/05/2024] Open
Abstract
Neuropeptide S (NPS), which is a peptide that is involved in the regulation of the stress response, seems to be relevant to the mechanism of action of antidepressants that have anxiolytic properties. However, to date, there have been no reports regarding the effect of long-term treatment with escitalopram or venlafaxine on the NPS system under stress conditions. This study aimed to investigate the effects of the above-mentioned antidepressants on the NPS system in adult male Wistar rats that were exposed to neonatal maternal separation (MS). Animals were exposed to MS for 360 min. on postnatal days (PNDs) 2-15. MS causes long-lasting behavioral, endocrine and neurochemical consequences that mimic anxiety- and depression-related features. MS and non-stressed rats were given escitalopram or venlafaxine (10mg/kg) IP from PND 69 to 89. The NPS system was analyzed in the brainstem, hypothalamus, amygdala and anterior olfactory nucleus using quantitative RT-PCR and immunohistochemical methods. The NPS system was vulnerable to MS in the brainstem and amygdala. In the brainstem, escitalopram down-regulated NPS and NPS mRNA in the MS rats and induced a tendency to reduce the number of NPS-positive cells in the peri-locus coeruleus. In the MS rats, venlafaxine insignificantly decreased the NPSR mRNA levels in the amygdala and a number of NPSR cells in the basolateral amygdala, and increased the NPS mRNA levels in the hypothalamus. Our data show that the studied antidepressants affect the NPS system differently and preliminarily suggest that the NPS system might partially mediate the pharmacological effects that are induced by these drugs.
Collapse
Affiliation(s)
- Miłosz Gołyszny
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Michał Zieliński
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Monika Paul-Samojedny
- Department of Medical Genetics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland
| | - Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Ewa Obuchowicz
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| |
Collapse
|
7
|
A Role for Neuropeptide S in Alcohol and Cocaine Seeking. Pharmaceuticals (Basel) 2022; 15:ph15070800. [PMID: 35890099 PMCID: PMC9317571 DOI: 10.3390/ph15070800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/25/2023] Open
Abstract
The neuropeptide S (NPS) is the endogenous ligand of the NPS receptor (NPSR). The NPSR is widely expressed in brain regions that process emotional and affective behavior. NPS possesses a unique physio-pharmacological profile, being anxiolytic and promoting arousal at the same time. Intracerebroventricular NPS decreased alcohol consumption in alcohol-preferring rats with no effect in non-preferring control animals. This outcome is most probably linked to the anxiolytic properties of NPS, since alcohol preference is often associated with high levels of basal anxiety and intense stress-reactivity. In addition, NPSR mRNA was overexpressed during ethanol withdrawal and the anxiolytic-like effects of NPS were increased in rodents with a history of alcohol dependence. In line with these preclinical findings, a polymorphism of the NPSR gene was associated with anxiety traits contributing to alcohol use disorders in humans. NPS also potentiated the reinstatement of cocaine and ethanol seeking induced by drug-paired environmental stimuli and the blockade of NPSR reduced reinstatement of cocaine-seeking. Altogether, the work conducted so far indicates the NPS/NPSR system as a potential target to develop new treatments for alcohol and cocaine abuse. An NPSR agonist would be indicated to help individuals to quit alcohol consumption and to alleviate withdrawal syndrome, while NPSR antagonists would be indicated to prevent relapse to alcohol- and cocaine-seeking behavior.
Collapse
|
8
|
Piwowarczyk-Nowak A, Pałasz A, Bogus K, Krzystanek M, Błaszczyk I, Worthington JJ, Grajoszek A. Modulatory effect of long-term treatment with escitalopram and clonazepam on the expression of anxiety-related neuropeptides: neuromedin U, neuropeptide S and their receptors in the rat brain. Mol Biol Rep 2022; 49:9041-9049. [PMID: 35690686 DOI: 10.1007/s11033-022-07578-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/17/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Newly identified multifunctional peptidergic modulators of stress responses: neuromedin U (NMU) and neuropeptide S (NPS) are involved in the wide spectrum of brain functions. However, there are no reports dealing with potential molecular relationships between the action of diverse anxiolytic or antidepressant drugs and NMU and NPS signaling in the brain. The present work was therefore focused on local expression of the aforementioned stress-related neuropeptides in the rat brain after long-term treatment with escitalopram and clonazepam. METHODS Studies were carried out on adult, male Sprague-Dawley rats that were divided into 3 groups: animals injected with saline (control) and experimental individuals treated with escitalopram (at single dose 5 mg/kg daily), and clonazepam (at single dose 0.5 mg/kg). All individuals were sacrificed under anaesthesia and the whole brain excised. Total mRNA was isolated from homogenized samples of amygdala, hippocampus, hypothalamus, thalamus, cerebellum and brainstem. Real time-PCR method was used for estimation of related NPS, NPS receptor (NPSR), NMU, NMU and receptor 2 (NMUR2) mRNA expression. The whole brains were also sliced for general immunohistochemical assessment of the neuropeptides expression. RESULTS Chronic administration of clonazepam resulted in an increase of NMU mRNA expression and formation of NMU-expressing fibers in the amygdala, while escitalopram produced a significant decrease in NPSR mRNA level in hypothalamus. Long-term escitalopram administration affects the local expression of examined neuropeptides mRNA in a varied manner depending on the brain structure. CONCLUSIONS Pharmacological effects of escitalopram may be connected with local at least partially NPSR-related alterations in the NPS/NMU/NMUR2 gene expression at the level selected rat brain regions. A novel alternative mode of SSRI action can be therefore cautiously proposed.
Collapse
Affiliation(s)
- Aneta Piwowarczyk-Nowak
- Department of Anatomy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland.
| | - Katarzyna Bogus
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Marek Krzystanek
- Clinic of Psychiatric Rehabilitation, Department of Psychiatry and Psychotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Ziolowa 45/47 Katowice 40- 635, Katowice, Poland
| | - Iwona Błaszczyk
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - John J Worthington
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, LA1 4YQ, Lancaster, UK
| | - Aniela Grajoszek
- Department for Experimental Medicine, Medical University of Silesia, ul. Medyków 4, 40-752, Katowice, Poland
| |
Collapse
|
9
|
Piwowarczyk-Nowak A, Pałasz A, Suszka-Świtek A, Della Vecchia A, Grajoszek A, Krzystanek M, Worthington JJ. Escitalopram alters local expression of noncanonical stress-related neuropeptides in the rat brain via NPS receptor signaling. Pharmacol Rep 2022; 74:637-653. [PMID: 35653031 DOI: 10.1007/s43440-022-00374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Neuropeptide S (NPS) is a multifunctional regulatory factor that exhibits a potent anxiolytic activity in animal models. However, there are no reports dealing with the potential molecular relationships between the anxiolytic activity of selective serotonin reuptake inhibitors (SSRIs) and NPS signaling, especially in the context of novel stress-related neuropeptides action. The present work therefore focused on gene expression of novel stress neuropeptides in the rat brain after acute treatment with escitalopram and in combination with neuropeptide S receptor (NPSR) blockade. METHODS Studies were carried out on adult, male Sprague-Dawley rats that were divided into five groups: animals injected with saline (control) and experimental rats treated with escitalopram (at single dose 10 mg/kg daily), escitalopram and SHA-68, a selective NPSR antagonist (at a single dose of 40 mg/kg), SHA-68 alone and corresponding vehicle (solvent SHA-68) control. To measure anxiety-like behavior and locomotor activity the open field test was performed. All individuals were killed under anaesthesia and the whole brain was excised. Total mRNA was isolated from homogenized samples of the amygdala, hippocampus, hypothalamus, thalamus, cerebellum, and brainstem. Real-time PCR was used for estimation of related NPS, NPSR, neuromedin U (NMU), NMU receptor 2 (NMUR2) and nesfatin-1 precursor nucleobindin-2 (NUCB2) gene expression. RESULTS Acute escitalopram administration affects the local expression of the examined neuropeptides mRNA in a varied manner depending on brain location. An increase in NPSR and NUCB2 mRNA expression in the hypothalamus and brainstem was abolished by SHA-68 coadministration, while NMU mRNA expression was upregulated after NPSR blockade in the hippocampus and cerebellum. CONCLUSIONS The pharmacological effects of escitalopram may be connected with local NPSR-related alterations in NPS/NMU/NMUR2 and nesfatin-1 gene expression at the level of selected rat brain regions. A novel alternative mode of SSRI action can be therefore cautiously proposed.
Collapse
Affiliation(s)
- Aneta Piwowarczyk-Nowak
- Department of Anatomy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland.
| | - Aleksandra Suszka-Świtek
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Alessandra Della Vecchia
- Section of Psychiatry, Department of Clinical and Experimental Medicine, University of Pisa, 67, Via Roma, 56100, Pisa, Italy
| | - Aniela Grajoszek
- Department for Experimental Medicine, Medical University of Silesia, ul. Medyków 4, 40-752, Katowice, Poland
| | - Marek Krzystanek
- Department of Psychiatry and Psychotherapy, Faculty of Medical Sciences in Katowice, Clinic of Psychiatric Rehabilitation, Medical University of Silesia, ul. Ziolowa 45/47, 40-635, Katowice, Poland
| | - John J Worthington
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
10
|
Holanda VAD, Didonet JJ, Costa MBB, do Nascimento Rangel AH, da Silva ED, Gavioli EC. Neuropeptide S Receptor as an Innovative Therapeutic Target for Parkinson Disease. Pharmaceuticals (Basel) 2021; 14:ph14080775. [PMID: 34451872 PMCID: PMC8401573 DOI: 10.3390/ph14080775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022] Open
Abstract
Parkinson disease (PD) is a neurodegenerative disease mainly characterized by the loss of nigral dopaminergic neurons in the substantia nigra pars compacta. Patients suffering from PD develop severe motor dysfunctions and a myriad of non-motor symptoms. The treatment mainly consists of increasing central dopaminergic neurotransmission and alleviating motor symptoms, thus promoting severe side effects without modifying the disease’s progress. A growing body of evidence suggests a close relationship between neuropeptide S (NPS) and its receptor (NPSR) system in PD: (i) double immunofluorescence labeling studies showed that NPSR is expressed in the nigral tyrosine hydroxylase (TH)-positive neurons; (ii) central administration of NPS increases spontaneous locomotion in naïve rodents; (iii) central administration of NPS ameliorates motor and nonmotor dysfunctions in animal models of PD; (iv) microdialysis studies showed that NPS stimulates dopamine release in naïve and parkinsonian rodents; (v) central injection of NPS decreases oxidative damage to proteins and lipids in the rodent brain; and, (vi) 7 days of central administration of NPS protects from the progressive loss of nigral TH-positive cells in parkinsonian rats. Taken together, the NPS/NPSR system seems to be an emerging therapeutic strategy for alleviating motor and non-motor dysfunctions of PD and, possibly, for slowing disease progress.
Collapse
Affiliation(s)
- Victor A. D. Holanda
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
| | - Julia J. Didonet
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
| | - Manara B. B. Costa
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
| | | | - Edilson D. da Silva
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
| | - Elaine C. Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil; (V.A.D.H.); (J.J.D.); (M.B.B.C.); (E.D.d.S.J.)
- Correspondence:
| |
Collapse
|
11
|
Sinen O, Bülbül M, Derin N, Ozkan A, Akcay G, Aslan MA, Agar A. The effect of chronic neuropeptide-S treatment on non-motor parameters in experimental model of Parkinson's disease. Int J Neurosci 2021; 131:765-774. [PMID: 32441169 DOI: 10.1080/00207454.2020.1754213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/28/2020] [Accepted: 03/28/2020] [Indexed: 10/24/2022]
Abstract
AIM Besides motor impairment, non-motor symptoms including cognitive decline, anxiety, and depression are observed in Parkinson's Disease (PD). The aim of this study was to investigate whether chronic administration of central neuropeptide-S (NPS) improves non-motor symptoms in 6-hydroxydopamine (6-OHDA)-induced parkinsonian rats. MATERIAL AND METHODS Experimental PD was utilized by unilateral stereotaxic injection of the 6-OHDA into the medial forebrain bundle (MFB), while the sham-operated animals underwent the same surgical procedures. NPS (1 nmol) or vehicle was daily administered through an intracerebroventricular (icv) cannula for 7 days. Radial arm maze (RAM) test was used to evaluate the working memory; whereas, elevated plus maze (EPM) test and sucrose preference test were used to monitor the anxiety and depression status, respectively. The levels of dopamine, glutamic acid, and glutamine was determined in harvested striatal and hippocampal tissue samples. The immunoreactivities for tyrosine hydroxylase (TH) was determined using immunohistochemistry. RESULTS In the RAM test, the 6-OHDA-induced increases in the reference and working memory errors were reduced by the central NPS administration. The decreased sucrose preference in the parkinsonian rats was increased by centrally administered NPS. The levels of dopamine levels in striatum and hippocampus were decreased in the parkinsonian rats, however, they were not altered by the centrally administered NPS. Additionally, NPS treatment significantly attenuated the 6-OHDA-induced loss of TH neuronal number. CONCLUSION Consequently, NPS appears to be a therapeutic candidate for the treatment of non-motor complications of PD.
Collapse
Affiliation(s)
- Osman Sinen
- Faculty of Medicine, Department of Physiology, Akdeniz University, Antalya, Turkey
| | - Mehmet Bülbül
- Faculty of Medicine, Department of Physiology, Akdeniz University, Antalya, Turkey
| | - Narin Derin
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Ayse Ozkan
- Faculty of Medicine, Department of Physiology, Akdeniz University, Antalya, Turkey
| | - Guven Akcay
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Mutay Aydın Aslan
- Faculty of Medicine, Department of Medical Biochemistry, Akdeniz University, Antalya, Turkey
| | - Aysel Agar
- Faculty of Medicine, Department of Physiology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
12
|
Effect of Neuropeptide S Administration on Ultrasonic Vocalizations and Behaviour in Rats with Low vs. High Exploratory Activity. Pharmaceuticals (Basel) 2021; 14:ph14060524. [PMID: 34070724 PMCID: PMC8229755 DOI: 10.3390/ph14060524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/20/2022] Open
Abstract
Neuropeptide S (NPS) is a peptide neurotransmitter that in animal studies promotes wakefulness and arousal with simultaneous anxiety reduction, in some inconsistency with results in humans. We examined the effect of NPS on rat ultrasonic vocalizations (USV) as an index of affective state and on behaviour in novel environments in rats with persistent inter-individual differences in exploratory activity. Adult male Wistar rats were categorised as of high (HE) or low (LE) exploratory activity and NPS was administered intracerebroventricularly (i.c.v.) at a dose of 1.0 nmol/5 µL, after which USVs were recorded in the home-cage and a novel standard housing cage, and behaviour evaluated in exploration/anxiety tests. NPS induced a massive production of long and short 22 kHz USVs in the home cage that continued later in the novel environment; no effect on 50 kHz USVs were found. In LE-rats, the long 22 kHz calls were emitted at lower frequencies and were louder. The effects of NPS on behaviour appeared novelty- and test-dependent. NPS had an anxiolytic-like effect in LE-rats only in the elevated zero-maze, whereas in HE-rats, locomotor activity in the zero-maze and in a novel standard cage was increased. Thus NPS appears as a psychostimulant peptide but with a complex effect on dimensions of affect.
Collapse
|
13
|
Si W, Liu X, Pape HC, Reinscheid RK. Neuropeptide S-Mediated Modulation of Prepulse Inhibition Depends on Age, Gender, Stimulus-Timing, and Attention. Pharmaceuticals (Basel) 2021; 14:489. [PMID: 34065431 PMCID: PMC8160819 DOI: 10.3390/ph14050489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Conflicting reports about the role of neuropeptide S (NPS) in animal models of psychotic-like behavior and inconsistent results from human genetic studies seeking potential associations with schizophrenia prompted us to reevaluate the effects of NPS in the prepulse inhibition (PPI) paradigm in mice. Careful examination of NPS receptor (NPSR1) knockout mice at different ages revealed that PPI deficits are only expressed in young male knockout animals (<12 weeks of age), that can be replicated in NPS precursor knockout mice and appear strain-independent, but are absent in female mice. PPI deficits can be aggravated by MK-801 and alleviated by clozapine. Importantly, treatment of wildtype mice with a centrally-active NPSR1 antagonist was able to mimic PPI deficits. PPI impairment in young male NPSR1 and NPS knockout mice may be caused by attentional deficits that are enhanced by increasing interstimulus intervals. Our data reveal a substantial NPS-dependent developmental influence on PPI performance and confirm a significant role of attentional processes for sensory-motor gating. Through its influence on attention and arousal, NPS appears to positively modulate PPI in young animals, whereas compensatory mechanisms may alleviate NPS-dependent deficits in older mice.
Collapse
Affiliation(s)
- Wei Si
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA; (W.S.); (X.L.)
| | - Xiaobin Liu
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA; (W.S.); (X.L.)
| | - Hans-Christian Pape
- Institute of Physiology I, Westfälische-Wilhelms University, 48149 Münster, Germany;
| | - Rainer K. Reinscheid
- Institute of Physiology I, Westfälische-Wilhelms University, 48149 Münster, Germany;
- Institute of Pharmacology and Toxicology, Friedrich-Schiller University, 07747 Jena, Germany
| |
Collapse
|
14
|
Reinscheid RK, Ruzza C. Pharmacology, Physiology and Genetics of the Neuropeptide S System. Pharmaceuticals (Basel) 2021; 14:ph14050401. [PMID: 33922620 PMCID: PMC8146834 DOI: 10.3390/ph14050401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 12/28/2022] Open
Abstract
The Neuropeptide S (NPS) system is a rather ‘young’ transmitter system that was discovered and functionally described less than 20 years ago. This review highlights the progress that has been made in elucidating its pharmacology, anatomical distribution, and functional involvement in a variety of physiological effects, including behavior and immune functions. Early on, genetic variations of the human NPS receptor (NPSR1) have attracted attention and we summarize current hypotheses of genetic linkage with disease and human behaviors. Finally, we review the therapeutic potential of future drugs modulating NPS signaling. This review serves as an introduction to the broad collection of original research papers and reviews from experts in the field that are presented in this Special Issue.
Collapse
Affiliation(s)
- Rainer K. Reinscheid
- Institute of Pharmacology & Toxicology, University Hospital Jena, Friedrich-Schiller University, 07747 Jena, Germany
- Institute of Physiology I, University Hospital Münster, Westfälische-Wilhelms University, 48149 Münster, Germany
- Correspondence: (R.K.R.); (C.R.)
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (R.K.R.); (C.R.)
| |
Collapse
|
15
|
The Neural Network of Neuropeptide S (NPS): Implications in Food Intake and Gastrointestinal Functions. Pharmaceuticals (Basel) 2021; 14:ph14040293. [PMID: 33810221 PMCID: PMC8065993 DOI: 10.3390/ph14040293] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
The Neuropeptide S (NPS), a 20 amino acids peptide, is recognized as the endogenous ligand of a previously orphan G protein-coupled receptor, now termed NPS receptor (NPSR). The limited distribution of the NPS-expressing neurons in few regions of the brainstem is in contrast with the extensive expression of NPSR in the rodent central nervous system, suggesting the involvement of this receptor in several brain functions. In particular, NPS promotes locomotor activity, behavioral arousal, wakefulness, and unexpectedly, at the same time, it exerts anxiolytic-like properties. Intriguingly, the NPS system is implicated in the rewarding properties of drugs of abuse and in the regulation of food intake. Here, we focus on the anorexigenic effect of NPS, centrally injected in different brain areas, in both sated and fasted animals, fed with standard or palatable food, and, in addition, on its influence in the gastrointestinal tract. Further investigations, regarding the role of the NPS/NPSR system and its potential interaction with other neurotransmitters could be useful to understand the mechanisms underlying its action and to develop novel pharmacological tools for the treatment of aberrant feeding patterns and obesity.
Collapse
|
16
|
Sinen O, Özkan A, Ağar A, Bülbül M. Neuropeptide-S prevents 6-OHDA-induced gastric dysmotility in rats. Brain Res 2021; 1762:147442. [PMID: 33753063 DOI: 10.1016/j.brainres.2021.147442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 12/20/2022]
Abstract
This study aims to explore the effect of chronic central neuropeptide-S (NPS) treatment on gastrointestinal dysmotility and the changes of cholinergic neurons in the dorsal motor nucleus of the vagus (DMV) of a Parkinson's disease (PD) rat model. The PD model was induced through a unilateral medial forebrain bundle (MFB) administration of the 6-hydroxydopamine (6-OHDA). Locomotor activity (LMA), solid gastric emptying (GE), and gastrointestinal transit (GIT) were measured 7 days after the surgery. NPS was daily administered (1 nmol, icv, 7 days). In substantia nigra (SN), dorsal motor nucleus of the vagus (DMV), and gastric whole-mount samples, changes in tyrosine hydroxylase (TH), choline acetyltransferase (ChAT), neuronal nitric oxide synthase (nNOS), glial fibrillary acidic protein (GFAP), NPS receptor (NPSR), and alpha-synuclein (Ser129) were examined by immunohistochemistry. Cuprolinic blue staining was used to evaluate the number of neuronal cells in myenteric ganglia. The GIT rate, the total number of myenteric neurons, and the expressions of ChAT, nNOS, TH, and GFAP in the myenteric plexus were not changed in rats that received the 6-OHDA. Chronic NPS treatment reversed 6-OHDA-induced impairment of the motor performance, and GE, while preventing the loss of dopaminergic and cholinergic neurons in SN and DMV, respectively. NPS attenuated 6-OHDA-induced α-syn (Ser129) pathology both in SN and DMV. Additionally, expression of NPSR protein was detected in gastro-projecting cells in DMV. Taken together, centrally applied NPS seems to prevent 6-OHDA-induced gastric dysmotility through a neuroprotective action on central vagal circuitry.
Collapse
Affiliation(s)
- Osman Sinen
- Department of Physiology, Akdeniz University, Medical School, Antalya, Turkey
| | - Ayşe Özkan
- Department of Physiology, Akdeniz University, Medical School, Antalya, Turkey
| | - Aysel Ağar
- Department of Physiology, Akdeniz University, Medical School, Antalya, Turkey
| | - Mehmet Bülbül
- Department of Physiology, Akdeniz University, Medical School, Antalya, Turkey.
| |
Collapse
|
17
|
de Santana Souza L, de Siqueira PA, Fernandes A, Silva Martins R, Cussa Kubrusly RC, Paes-de-Carvalho R, Cunha RA, Dos Santos-Rodrigues A, Pandolfo P. Role of Neuropeptide S on Behavioural and Neurochemical Changes of an Animal Model of Attention-Deficit/Hyperactivity Disorder. Neuroscience 2020; 448:140-148. [PMID: 32976984 DOI: 10.1016/j.neuroscience.2020.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
Neuropeptide S (NPS) is a recently discovered peptide signalling through its receptor NPSR, which is expressed throughout the brain. Since NPSR activation increases dopaminergic transmission, we now tested if NPSR modulates behavioural and neurochemical alterations displayed by an animal model of attention-deficit/hyperactivity disorder (ADHD), Spontaneous Hypertensive Rats (SHR), compared to its control strain, Wistar Kyoto rats (WKY). NPS (0.1 and 1 nmol, intracerebroventricularly (icv)) did not modify the performance in the open field test in both strains; however, NPSR antagonism with [tBu-d-Gly5]NPS (3 nmol, icv) increased, per se, the total distance travelled by WKY. In the elevated plus-maze, NPS (1 nmol, icv) increased the percentage of entries in the open arms (%EO) only in WKY, an effect prevented by pretreatment with [tBu-d-Gly5]NPS (3 nmol, icv), which decreased per se the %EO in WKY and increased their number of entries in the closed arms. Immunoblotting of frontal cortical extracts showed no differences of NPSR density, although SHR had a lower NPS content than WKY. SHR showed higher activity of dopamine uptake than WKY, and NPS (1 nmol, icv) did not change this profile. Overall, the present work shows that the pattern of functioning of the NPS system is distinct in WKY and SHR, suggesting that this system may contribute to the pathophysiology of ADHD.
Collapse
Affiliation(s)
| | | | - Arlete Fernandes
- Department of Physiology and Pharmacology, Universidade Federal Fluminense, Niterói, Brazil
| | - Robertta Silva Martins
- Department of Physiology and Pharmacology, Universidade Federal Fluminense, Niterói, Brazil
| | | | | | - Rodrigo A Cunha
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | - Pablo Pandolfo
- Department of Neurobiology, Universidade Federal Fluminense, Niterói, Brazil.
| |
Collapse
|
18
|
Holanda VAD, Oliveira MC, Souza LS, Lobão-Soares B, André E, Da Silva Junior ED, Guerrini R, Calo G, Ruzza C, Gavioli EC. Dopamine D 1 and D 2 receptors mediate neuropeptide S-induced antinociception in the mouse formalin test. Eur J Pharmacol 2019; 859:172557. [PMID: 31326375 DOI: 10.1016/j.ejphar.2019.172557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/31/2022]
Abstract
Neuropeptide S (NPS) is the endogenous ligand of a G-protein coupled receptor named NPS receptor. The NPS system controls several biological functions, including anxiety, wakefulness, locomotor activity, food intake, and pain transmission. A growing body of evidence supports facilitatory effects for NPS over dopaminergic neurotransmission. The present study was aimed to investigate the role of dopamine receptors signaling in the antinociceptive effects of NPS in the mouse formalin test. The following dopamine receptor antagonists were employed: SCH 23390 (selective dopamine D1 antagonist, 0.05 mg/kg, ip), haloperidol (non-selective dopamine D2-like receptor antagonist; 0.03 mg/kg, ip), and sulpiride (selective dopamine D2-like receptor antagonist; 25 mg/kg, ip). Mice were pretreated with dopamine antagonists before the supraspinal administration of NPS (0.1 nmol, icv). Morphine (5 mg/kg, sc) and indomethacin (10 mg/kg, ip) were used as positive controls to set up the experimental conditions. Morphine-induced antinociceptive effects were observed during phases 1 and 2 of the test, while indomethacin was only active at phase 2. Central NPS significantly reduced formalin-induced nociception during both phases. The systemic administration of SCH 23390 slightly blocked the effects of NPS only during phase 2. Haloperidol prevented NPS-induced antinociceptive effects. Similar to haloperidol, sulpiride also counteracted the antinociceptive effects of NPS in both phases of the formalin test. In conclusion, the present findings suggest that the analgesic effects of NPS are linked with dopaminergic neurotransmission mainly through dopamine D2-like receptor signaling.
Collapse
Affiliation(s)
- Victor A D Holanda
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Matheus C Oliveira
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Lisiane S Souza
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Bruno Lobão-Soares
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Eunice André
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | - Edilson D Da Silva Junior
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Remo Guerrini
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Girolamo Calo
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Chiara Ruzza
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Elaine C Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Do Norte, Natal, RN, Brazil.
| |
Collapse
|
19
|
Relapse of drunk driving and association with traffic accidents, alcohol-related problems and biomarkers of impulsivity. Acta Neuropsychiatr 2019; 31:84-92. [PMID: 30472966 DOI: 10.1017/neu.2018.30] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Individual biological predispositions should play a role in risky driving behaviour. Platelet monoamine oxidase (MAO) activity, dopamine transporter gene (DAT1) and neuropeptide S receptor 1 (NPSR1) gene polymorphisms have been identified as markers of impulsivity, alcohol use and excessive risk-taking. We aimed to find out how this knowledge on neurobiology of impulsivity applies to drunk driving and traffic behaviour in general. METHODS We have longitudinally examined the behaviour of drunk drivers (n = 203) and controls (n = 211) in traffic, in association with their alcohol-related problems, personality measures and the three biomarkers. We analysed differences between the subjects based on whether they had committed driving while impaired by alcohol (DWI) violation in a 10-year time period after recruitment or not and investigated further, what kind of predictive value do the different biomarkers have in committing DWI and other traffic violations and accidents. RESULTS The original drunk drivers group had lower platelet MAO activity but further DWI was not significantly associated with this measure. Being a NPSR1 T-allele carrier contributed to the risk of repeatedly committing DWI. DAT1 9R carriers in contrast were involved in more traffic accidents by their own fault (active accidents), compared to 10R homozygotes in the whole sample. All groups with DWI also had significantly more alcohol-related problems and higher scores in maladaptive impulsivity compared to controls without DWI. CONCLUSIONS Established biological markers of alcohol use and impulsivity can be reliably associated with everyday traffic behaviour and help in contributing to the understanding of the need for more personalized prevention activities.
Collapse
|
20
|
Bülbül M, Sinen O, Özkan A, Aslan MA, Ağar A. Central neuropeptide-S treatment improves neurofunctions of 6-OHDA-induced Parkinsonian rats. Exp Neurol 2019; 317:78-86. [PMID: 30825442 DOI: 10.1016/j.expneurol.2019.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/12/2019] [Accepted: 02/26/2019] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is characterized by degeneration of the dopaminergic neurons in substantia nigra (SN). The motor symptoms of PD include tremor, rigidity, bradykinesia and postural impairment. In rodents, central administration of neuropeptide-S (NPS) has been shown to induce locomotor activity, dopamine release and neuronal survival by decreasing lipid peroxidation, additionally, the NPS receptor (NPSR) was detected in SN. Accumulating findings suggest that central NPS may ameliorate the parkinsonian symptoms, however, this has been explored incompletely due to the scarcity of experimental studies. Therefore, the present study was designed to test whether central NPS treatment exerts protective and/or alleviative effects on 6-OHDA-induced rat experimental PD model. Adult male Wistar rats received acute (alleviate; 10 nmol, icv) or chronic (protective; 1 nmol, icv for 7 days) NPS treatment following the central injection of 6-OHDA in medial forebrain bundle. Motor performance tests and in vivo nigral microdialysis were performed before and 7 days after the central 6-OHDA injection. The immunoreactivities for tyrosine hydroxylase (TH), NPSR, 4-hydroxynonenal (4-HNE) and c-Fos were detected by immunohistochemistry in frozen SN sections. Our double immunofluorescence labeling studies demonstrated that NPSR is present in the nigral TH-positive neurons. Central NPS injection caused a remarkable c-Fos expression in SN; whereas, no change was observed following vehicle injection. In both chronic and acute treatment groups, the 6-OHDA-induced motor dysfunction and impaired nigral dopamine release were improved significantly. However, only chronic, but not acute treatment restored the loss of nigral TH-positive cells, while decreasing the 4-HNE immunoreactivity in SN. Our findings demonstrate that central NPS treatment not only exerts a neuroprotective action on nigral dopaminergic neurons, it also improves the striatal dopaminergic signaling. Therefore, the present study candidates the NPSR agonism as a novel therapeutic approach for PD treatment.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Faculty of Medicine, Department of Physiology, Akdeniz University, Antalya, Turkey
| | - Osman Sinen
- Faculty of Medicine, Department of Physiology, Akdeniz University, Antalya, Turkey
| | - Ayşe Özkan
- Faculty of Medicine, Department of Physiology, Akdeniz University, Antalya, Turkey
| | - Mutay Aydın Aslan
- Faculty of Medicine, Department of Medical Biochemistry, Akdeniz University, Antalya, Turkey
| | - Aysel Ağar
- Faculty of Medicine, Department of Physiology, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
21
|
Blough B, Namjoshi O. Small Molecule Neuropeptide S and Melanocortin 4 Receptor Ligands as Potential Treatments for Substance Use Disorders. Handb Exp Pharmacol 2019; 258:61-87. [PMID: 31628605 DOI: 10.1007/164_2019_313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is a vital need for novel approaches and biological targets for drug discovery and development. Treatment strategies for substance use disorders (SUDs) to date have been mostly ineffective other than substitution-like therapeutics. Two such targets are the peptide G-protein-coupled receptors neuropeptide S (NPS) and melanocortin 4 (MC4). Preclinical evidence suggests that antagonists, inverse agonists, or negative allosteric modulators of these receptors might be novel therapeutics for SUDs. NPS is a relatively unexplored receptor with high potential for treating SUD. MC4 has a strong link to early-onset obesity, and emerging evidence suggests significant overlap between food-maintained and drug-maintained behaviors making MC4 an intriguing target for SUD. This chapter provides an overview of the literature in relation to the roles of NPS and MC4 in drug-seeking behaviors and then provides a medicinal chemistry-based survey of the small molecule ligands for each receptor.
Collapse
Affiliation(s)
- Bruce Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, NC, USA.
| | - Ojas Namjoshi
- Center for Drug Discovery, RTI International, Research Triangle Park, NC, USA
| |
Collapse
|
22
|
Xu X, Wei Y, Guo Q, Zhao S, Liu Z, Xiao T, Liu Y, Qiu Y, Hou Y, Zhang G, Wang K. Pharmacological Characterization of H05, a Novel Serotonin and Noradrenaline Reuptake Inhibitor with Moderate 5-HT 2A Antagonist Activity for the Treatment of Depression. J Pharmacol Exp Ther 2018; 365:624-635. [PMID: 29615471 DOI: 10.1124/jpet.118.248351] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/28/2018] [Indexed: 01/16/2023] Open
Abstract
Multitarget antidepressants selectively inhibiting monoaminergic transporters and 5-hydroxytryptamine (5-HT) 2A receptor have demonstrated higher efficacy and fewer side effects than selective serotonin reuptake inhibitors. In the present study, we synthesized a series of novel 3-(benzo[d][1,3]dioxol-4-yloxy)-3-arylpropyl amine derivatives, among which compound H05 was identified as a lead, exhibiting potent inhibitory effects on both serotonin (Ki = 4.81 nM) and norepinephrine (NE) (Ki = 6.72 nM) transporters and moderate 5-HT2A antagonist activity (IC50 = 60.37 nM). H05 was able to dose-dependently reduce the immobility duration in mouse forced swimming test and tail suspension test, with the minimal effective doses lower than those of duloxetine, and showed no stimulatory effect on locomotor activity. The administration of H05 (5, 10, and 20 mg/kg, by mouth) significantly shortened the immobility time of adrenocorticotropin-treated rats that serve as a model of treatment-resistant depression, whereas imipramine (30 mg/kg, by mouth) and duloxetine (30 mg/kg, by mouth) showed no obvious effects. Chronic treatment with H05 reversed the depressive-like behaviors in a rat model of chronic unpredictable mild stress and a mouse model of corticosterone-induced depression. Microdialysis analysis revealed that the administration of H05 at either 10 or 20 mg/kg increased the release of 5-HT and NE from the frontal cortex. The pharmacokinetic (PK) and brain penetration analyses suggest that H05 has favorable PK properties with good blood-brain penetration ability. Therefore, it can be concluded that H05, a novel serotonin and NE reuptake inhibitor with 5-HT2A antagonist activity, possesses efficacious activity in the preclinical models of depression and treatment-resistant depression, and it may warrant further evaluation for clinical development.
Collapse
Affiliation(s)
- Xiangqing Xu
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China (X.X., T.X., K.W.); School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China (Y.W.); Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd., Xuzhou, Jiangsu, People's Republic of China (Q.G., S.Z., Z.L., Y.Q., Y.H., G.Z.); and Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, People's Republic of China (Y.L., K.W.)
| | - Yaqin Wei
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China (X.X., T.X., K.W.); School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China (Y.W.); Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd., Xuzhou, Jiangsu, People's Republic of China (Q.G., S.Z., Z.L., Y.Q., Y.H., G.Z.); and Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, People's Republic of China (Y.L., K.W.)
| | - Qiang Guo
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China (X.X., T.X., K.W.); School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China (Y.W.); Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd., Xuzhou, Jiangsu, People's Republic of China (Q.G., S.Z., Z.L., Y.Q., Y.H., G.Z.); and Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, People's Republic of China (Y.L., K.W.)
| | - Song Zhao
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China (X.X., T.X., K.W.); School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China (Y.W.); Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd., Xuzhou, Jiangsu, People's Republic of China (Q.G., S.Z., Z.L., Y.Q., Y.H., G.Z.); and Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, People's Republic of China (Y.L., K.W.)
| | - Zhiqiang Liu
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China (X.X., T.X., K.W.); School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China (Y.W.); Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd., Xuzhou, Jiangsu, People's Republic of China (Q.G., S.Z., Z.L., Y.Q., Y.H., G.Z.); and Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, People's Republic of China (Y.L., K.W.)
| | - Ting Xiao
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China (X.X., T.X., K.W.); School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China (Y.W.); Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd., Xuzhou, Jiangsu, People's Republic of China (Q.G., S.Z., Z.L., Y.Q., Y.H., G.Z.); and Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, People's Republic of China (Y.L., K.W.)
| | - Yani Liu
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China (X.X., T.X., K.W.); School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China (Y.W.); Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd., Xuzhou, Jiangsu, People's Republic of China (Q.G., S.Z., Z.L., Y.Q., Y.H., G.Z.); and Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, People's Republic of China (Y.L., K.W.)
| | - Yinli Qiu
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China (X.X., T.X., K.W.); School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China (Y.W.); Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd., Xuzhou, Jiangsu, People's Republic of China (Q.G., S.Z., Z.L., Y.Q., Y.H., G.Z.); and Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, People's Republic of China (Y.L., K.W.)
| | - Yuanyuan Hou
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China (X.X., T.X., K.W.); School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China (Y.W.); Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd., Xuzhou, Jiangsu, People's Republic of China (Q.G., S.Z., Z.L., Y.Q., Y.H., G.Z.); and Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, People's Republic of China (Y.L., K.W.)
| | - Guisen Zhang
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China (X.X., T.X., K.W.); School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China (Y.W.); Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd., Xuzhou, Jiangsu, People's Republic of China (Q.G., S.Z., Z.L., Y.Q., Y.H., G.Z.); and Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, People's Republic of China (Y.L., K.W.)
| | - KeWei Wang
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China (X.X., T.X., K.W.); School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China (Y.W.); Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd., Xuzhou, Jiangsu, People's Republic of China (Q.G., S.Z., Z.L., Y.Q., Y.H., G.Z.); and Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, People's Republic of China (Y.L., K.W.)
| |
Collapse
|
23
|
Clark T, Hapiak V, Oakes M, Mills H, Komuniecki R. Monoamines differentially modulate neuropeptide release from distinct sites within a single neuron pair. PLoS One 2018; 13:e0196954. [PMID: 29723289 PMCID: PMC5933757 DOI: 10.1371/journal.pone.0196954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/23/2018] [Indexed: 12/14/2022] Open
Abstract
Monoamines and neuropeptides often modulate the same behavior, but monoaminergic-peptidergic crosstalk remains poorly understood. In Caenorhabditis elegans, the adrenergic-like ligands, tyramine (TA) and octopamine (OA) require distinct subsets of neuropeptides in the two ASI sensory neurons to inhibit nociception. TA selectively increases the release of ASI neuropeptides encoded by nlp-14 or nlp-18 from either synaptic/perisynaptic regions of ASI axons or the ASI soma, respectively, and OA selectively increases the release of ASI neuropeptides encoded by nlp-9 asymmetrically, from only the synaptic/perisynaptic region of the right ASI axon. The predicted amino acid preprosequences of genes encoding either TA- or OA-dependent neuropeptides differed markedly. However, these distinct preprosequences were not sufficient to confer monoamine-specificity and additional N-terminal peptide-encoding sequence was required. Collectively, our results demonstrate that TA and OA specifically and differentially modulate the release of distinct subsets of neuropeptides from different subcellular sites within the ASIs, highlighting the complexity of monoaminergic/peptidergic modulation, even in animals with a relatively simple nervous system.
Collapse
Affiliation(s)
- Tobias Clark
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Vera Hapiak
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Mitchell Oakes
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Holly Mills
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Richard Komuniecki
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
24
|
Thomasson J, Canini F, Poly-Thomasson B, Trousselard M, Granon S, Chauveau F. Neuropeptide S overcomes short term memory deficit induced by sleep restriction by increasing prefrontal cortex activity. Eur Neuropsychopharmacol 2017; 27:1308-1318. [PMID: 28941995 DOI: 10.1016/j.euroneuro.2017.08.431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 07/27/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023]
Abstract
Sleep restriction (SR) impairs short term memory (STM) that might be related to different processes. Neuropeptide S (NPS), an endogenous neuropeptide that improves short term memory, activates arousal and decreases anxiety is likely to counteract the SR-induced impairment of STM. The objective of the present study was to find common cerebral pathways in sleep restriction and NPS action in order to ultimately antagonize SR effect on memory. The STM was assessed using a spontaneous spatial alternation task in a T-maze. C57-Bl/6J male mice were distributed in 4 groups according to treatment (0.1nmol of NPS or vehicle intracerebroventricular injection) and to 20h-SR. Immediately after behavioural testing, regional c-fos immunohistochemistry was performed and used as a neural activation marker for spatial short term memory (prefrontal cortex, dorsal hippocampus) and emotional reactivity (basolateral amygdala and ventral hippocampus). Anxiety-like behaviour was assessed using elevated-plus maze task. Results showed that SR impaired short term memory performance and decreased neuronal activation in cingular cortex.NPS injection overcame SR-induced STM deficits and increased neuronal activation in infralimbic cortex. SR spared anxiety-like behavior in the elevated-plus maze. Neural activation in basolateral nucleus of amygdala and ventral hippocampus were not changed after SR.In conclusion, the present study shows that NPS overcomes SR-induced STM deficits by increasing prefrontal cortex activation independently of anxiety-like behaviour.
Collapse
Affiliation(s)
- Julien Thomasson
- Institut de Recherche Biomédicale des Armées Brétigny-sur-Orge, France
| | - Frédéric Canini
- Institut de Recherche Biomédicale des Armées Brétigny-sur-Orge, France; Ecole du Val de Grâce, 1 Place Laveran, Paris, France
| | | | - Marion Trousselard
- Institut de Recherche Biomédicale des Armées Brétigny-sur-Orge, France; Ecole du Val de Grâce, 1 Place Laveran, Paris, France
| | - Sylvie Granon
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), CNRS UMR 9197, Université Paris-Saclay, Orsay, France
| | - Frédéric Chauveau
- Institut de Recherche Biomédicale des Armées Brétigny-sur-Orge, France.
| |
Collapse
|
25
|
Zhao W, Yang W, Zheng S, Hu Q, Qiu P, Huang X, Hong X, Lan F. A new bioinformatic insight into the associated proteins in psychiatric disorders. SPRINGERPLUS 2016; 5:1967. [PMID: 27917343 PMCID: PMC5108746 DOI: 10.1186/s40064-016-3655-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/04/2016] [Indexed: 01/21/2023]
Abstract
BACKGROUND Psychiatric diseases severely affect the quality of patients' lives and bring huge economic pressure to their families. Also, the great phenotypic variability among these patients makes it difficult to investigate the pathogenesis. Nowadays, bioinformatics is hopeful to be used as an effective tool for the diagnosis of psychiatric disorders, which can identify sensitive biomarkers and explore associated signaling pathways. METHODS In this study, we performed an integrated bioinformatic analysis on 1945 mental-associated proteins including 91 secreted proteins and 593 membrane proteins, which were screened from the Universal Protein Resource (Uniport) database. Then the function and pathway enrichment analyses, ontological classification, and constructed PPI network were executed. RESULTS Our present study revealed that the majority of mental proteins were closely related to metabolic processes and cellular processes. We also identified some significant molecular biomarkers in the progression of mental disorders, such as HRAS, ALS2, SLC6A1, SLC39A12, SIL1, IDUA, NEPH2 and XPO1. Furthermore, it was found that hub proteins, such as COMT, POMC, NPS and BDNF, might be the potential targets for mental disorders therapy. Finally, we demonstrated that psychiatric disorders may share the same signaling pathways with cancers, involving ESR1, BCL2 and MAPK3. CONCLUSION Our data are expected to contribute to explaining the possible mechanisms of psychiatric diseases and providing a useful reference for the diagnosis and therapy of them.
Collapse
Affiliation(s)
- Wenlong Zhao
- Department of Neurology, Affiliated Dongfang Hospital of Xiamen University (Fuzhou General Hospital), Fuzhou, Fujian People's Republic of China
| | - Wenjing Yang
- Department of Neurology, Affiliated Dongfang Hospital of Xiamen University (Fuzhou General Hospital), Fuzhou, Fujian People's Republic of China
| | - Shuanglin Zheng
- Department of Neurology, Affiliated Dongfang Hospital of Xiamen University (Fuzhou General Hospital), Fuzhou, Fujian People's Republic of China
| | - Qiong Hu
- Department of Neurology, Affiliated Dongfang Hospital of Xiamen University (Fuzhou General Hospital), Fuzhou, Fujian People's Republic of China
| | - Ping Qiu
- Department of Neurology, Affiliated Dongfang Hospital of Xiamen University (Fuzhou General Hospital), Fuzhou, Fujian People's Republic of China
| | - Xinghua Huang
- Department of Clinical Genetics and Experimental Medicine, Fuzhou General Hospital, No. 156, Xier Huan Road, Gulou District, Fuzhou, 350025 Fujian People's Republic of China
| | - Xiaoqian Hong
- Department of Neurology, Affiliated Dongfang Hospital of Xiamen University (Fuzhou General Hospital), Fuzhou, Fujian People's Republic of China
| | - Fenghua Lan
- Department of Clinical Genetics and Experimental Medicine, Fuzhou General Hospital, No. 156, Xier Huan Road, Gulou District, Fuzhou, 350025 Fujian People's Republic of China
| |
Collapse
|
26
|
Long-term treatment with haloperidol affects neuropeptide S and NPSR mRNA levels in the rat brain. Acta Neuropsychiatr 2016; 28:110-6. [PMID: 26467816 DOI: 10.1017/neu.2015.56] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The brainstem-derived neuropeptide S (NPS) has a multidirectional regulatory activity, especially as a potent anxiolytic factor. Accumulating data suggests that neuroleptics affect peptidergic signalling in various brain structures. However, there is no information regarding the influence of haloperidol on NPS and NPS receptor (NPSR) expression. METHODS We assessed NPS and NPSR mRNA levels in brains of rats treated with haloperidol using quantitative real-time polymerase chain reaction. RESULTS Chronic haloperidol treatment (4 weeks) led to a striking upregulation of NPS and NPSR expression in the rat brainstem. Conversely, the NPSR mRNA expression was decreased in the hippocampus and striatum. CONCLUSIONS This stark increase of NPS in response to haloperidol treatment supports the hypothesis that this neuropeptide is involved in the dopamine-dependent anxiolytic actions of neuroleptics and possibly also in the pathophysiology of mental disorders. Furthermore, our findings underline the complex nature of potential interactions between dopamine receptors and brain peptidergic pathways, which has potential clinical applications.
Collapse
|
27
|
Sartori SB, Maurer V, Murphy C, Schmuckermair C, Muigg P, Neumann ID, Whittle N, Singewald N. Combined Neuropeptide S and D-Cycloserine Augmentation Prevents the Return of Fear in Extinction-Impaired Rodents: Advantage of Dual versus Single Drug Approaches. Int J Neuropsychopharmacol 2015; 19:pyv128. [PMID: 26625894 PMCID: PMC4926792 DOI: 10.1093/ijnp/pyv128] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/24/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Despite its success in treating specific anxiety disorders, the effect of exposure therapy is limited by problems with tolerability, treatment resistance, and fear relapse after initial response. The identification of novel drug targets facilitating fear extinction in clinically relevant animal models may guide improved treatment strategies for these disorders in terms of efficacy, acceleration of fear extinction, and return of fear. METHODS The extinction-facilitating potential of neuropeptide S, D-cycloserine, and a benzodiazepine was investigated in extinction-impaired high anxiety HAB rats and 129S1/SvImJ mice using a classical cued fear conditioning paradigm followed by extinction training and several extinction test sessions to study fear relapse. RESULTS Administration of D-cycloserine improved fear extinction in extinction-limited, but not in extinction-deficient, rodents compared with controls. Preextinction neuropeptide S caused attenuated fear responses in extinction-deficient 129S1/SvImJ mice at extinction training onset and further reduced freezing during this session. While the positive effects of either D-cycloserine or neuropeptide S were not persistent in 129S1/SvImJ mice after 10 days, the combination of preextinction neuropeptide S with postextinction D-cycloserine rendered the extinction memory persistent and context independent up to 5 weeks after extinction training. This dual pharmacological adjunct to extinction learning also protected against fear reinstatement in 129S1/SvImJ mice. CONCLUSIONS By using the potentially nonsedative anxiolytic neuropeptide S and the cognitive enhancer D-cycloserine to facilitate deficient fear extinction, we provide here the first evidence of a purported efficacy of a dual over a single drug approach. This approach may render exposure sessions less aversive and more efficacious for patients, leading to enhanced protection from fear relapse in the long term.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens-University of Innsbruck, Innsbruck, Austria (Dr Sartori, Ms Maurer, Mr Murphy, and Drs Schmuckermair, Muigg, Whittle, and Singewald); Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany (Dr Neumann).
| |
Collapse
|
28
|
Neuroleptics Affect Neuropeptide S and NPSR mRNA Levels in the Rat Brain. J Mol Neurosci 2015; 57:352-7. [PMID: 26227793 DOI: 10.1007/s12031-015-0625-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 07/16/2015] [Indexed: 12/13/2022]
Abstract
Neuropeptide S (NPS) has a multidirectional regulatory activity, especially when considered as a potent endogenous anxiolytic factor. Accumulating data suggests that neuroleptics affect peptidergic signaling in various brain structures. However, there is no information regarding the influence of treatment with antipsychotics on brain NPS expression. In the current study, we assessed the NPS and NPS receptor (NPSR) mRNA levels in the brains of rats shortly and chronically treated with chlorpromazine and olanzapine using quantitative real-time PCR. Both single-dose and long-term (4 months) olanzapine treatment led to the upregulation of NPS expression in the rat hypothalamus. It supports the hypothesis that NPS is involved in the dopamine-dependent anxiolytic actions of selected neuroleptics and possibly also in the pathophysiology of mental disorders. On the other hand, NPSR expression decreased after single-dose and chronic chlorpromazine administration in the hypothalamus, as well as after chronic olanzapine and chlorpromazine administration in the striatum and hippocampus. These results cast a new light on the pharmacology of antipsychotics and contribute to a better understanding of the mechanisms responsible for their action. Furthermore, our findings underline the complex nature of potential interactions between dopamine receptors and brain peptidergic pathways, which has potential clinical applications.
Collapse
|
29
|
Ruzza C, Asth L, Guerrini R, Trapella C, Gavioli EC. Neuropeptide S reduces mouse aggressiveness in the resident/intruder test through selective activation of the neuropeptide S receptor. Neuropharmacology 2015; 97:1-6. [PMID: 25979487 DOI: 10.1016/j.neuropharm.2015.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/29/2015] [Accepted: 05/02/2015] [Indexed: 11/17/2022]
Abstract
Neuropeptide S (NPS) regulates various biological functions by selectively activating the NPS receptor (NPSR). In particular NPS evokes robust anxiolytic-like effects in rodents together with a stimulant and arousal promoting action. The aim of the study was to investigate the effects of NPS on the aggressiveness of mice subjected to the resident/intruder test. Moreover the putative role played by the endogenous NPS/NPSR system in regulating mice aggressiveness was investigating using mice lacking the NPSR receptor (NPSR(-/-)) and the NPSR selective antagonists [(t)Bu-D-Gly(5)]NPS and SHA 68. NPS (0.01-1 nmol, icv) reduced, in a dose dependent manner, both the time that resident mice spent attacking the intruder mice and their number of attacks, producing pharmacological effects similar to those elicited by the standard anti-aggressive drug valproate (300 mg/kg, ip). This NPS effect was evident in NPSR wild type (NPSR(+/+)) mice but completely disappeared in NPSR(-/-) mice. Moreover, NPSR(-/-) mice displayed a significantly higher time spent attacking than NPSR(+/+) mice. [(t)Bu-D-Gly(5)]NPS (10 nmol, icv) did not change the behavior of mice in the resident/intruder test but completely counteracted NPS effects. SHA 68 (50 mg/kg, ip) was inactive per se and against NPS. In conclusion, this study demonstrated that NPS produces anti-aggressive effects in mice through the selective activation of NPSR and that the endogenous NPS/NPSR system can exert a role in the control of aggressiveness levels under the present experimental conditions.
Collapse
Affiliation(s)
- Chiara Ruzza
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Via Fossato di Mortara 19, 44121 Ferrara, Italy.
| | - Laila Asth
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy
| | - Claudio Trapella
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy
| | - Elaine C Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
30
|
Laas K, Reif A, Akkermann K, Kiive E, Domschke K, Lesch KP, Veidebaum T, Harro J. Neuropeptide S receptor gene variant and environment: contribution to alcohol use disorders and alcohol consumption. Addict Biol 2015; 20:605-16. [PMID: 24754478 DOI: 10.1111/adb.12149] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The functional polymorphism Asn(107) Ile (rs324981, A > T) of the neuropeptide S receptor (NPSR1) gene is involved in the modulation of traits that affect alcohol use. Hence, we have examined whether the NPSR1 A/T polymorphism is associated with alcohol use disorders (AUD) and alcohol use in a population-representative sample. Lifetime AUD were assessed by the MINI psychiatric interview (n = 501) in the older cohort of the longitudinal Estonian Children Personality Behaviour and Health Study at age 25. Alcohol use, environmental adversities and personality were reported by both the younger (original n = 583) and the older cohort (original n = 593) in three study waves. NPSR1 associations with AUD and alcohol use differed by sex. In females, both AUD [odds ratio (OR) = 7.20 (0.94-55.0), P = 0.029] and harmful alcohol use were more prevalent in A-allele carriers. In contrast, in males, AUD was more frequent in T-allele carriers [OR = 2.75 (1.19-6.36), P = 0.017], especially if exposed to adverse environments at age 15 [OR = 10 (1.18-84.51), P = 0.019]. Alcohol use was higher in male T-allele carriers at ages 15 and 18 as well. Similarly to females, however, the risk allele for higher alcohol use for males at age 25 was the A-allele. Many of the effects on alcohol use were explained by genotype effects on measures of personality. In the general population, the NPSR1 Asn(107) Ile polymorphism is associated with AUD and alcohol consumption, dependent on sex, environment and age. The results are in line with the impulsivity and personality regulating role of the NPSR1.
Collapse
Affiliation(s)
- Kariina Laas
- Department of Psychology; University of Tartu; Estonia
| | - Andreas Reif
- Department of Psychiatry, Psychosomatics and Psychotherapy; University of Würzburg; Germany
- Comprehensive Heart Failure Center; University of Würzburg; Germany
| | | | - Evelyn Kiive
- Department of Psychology; University of Tartu; Estonia
| | - Katharina Domschke
- Department of Psychiatry, Psychosomatics and Psychotherapy; University of Würzburg; Germany
| | - Klaus-Peter Lesch
- Department of Psychiatry, Psychosomatics and Psychotherapy; University of Würzburg; Germany
- Comprehensive Heart Failure Center; University of Würzburg; Germany
- Department of Neuroscience; School of Mental Health and Neuroscience; Maastricht University; The Netherlands
| | | | - Jaanus Harro
- Department of Psychology; University of Tartu; Estonia
| |
Collapse
|
31
|
Modulation of prefrontal functioning in attention systems by NPSR1 gene variation. Neuroimage 2015; 114:199-206. [PMID: 25842293 DOI: 10.1016/j.neuroimage.2015.03.064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/19/2015] [Accepted: 03/25/2015] [Indexed: 01/04/2023] Open
Abstract
Evidence has accumulated for a dysfunction of arousal and executive attention in anxiety. The neuropeptide S (NPS) system has been shown to play a pivotal role in the mediation of arousal and to be associated with anxiety/panic disorder. The present study aims at investigating the impact of functional neuropeptide S receptor (NPSR1) gene variation on neural attention patterns applying an imaging genetics approach. In an event-related functional magnetic resonance imaging (fMRI) setting, 47 healthy subjects (f=23) evenly pre-stratified for NPSR1 rs324981 A/T genotype were investigated for brain activation patterns while performing the Attention Network Task (ANT), simultaneously probing alerting and executive control functions. Anxiety sensitivity was ascertained by the Anxiety Sensitivity Index (ASI). In the alerting condition, NPSR1 TT homozygotes showed higher activations in the right prefrontal cortex and the locus coeruleus region as compared to A allele carriers. In the executive control condition, TT homozygotes displayed increased activations in fronto-parietal regions. Genotype-driven activation differences in the prefrontal cortex correlated with anxiety sensitivity, in both the alerting and the executive control system. The present results for the first time suggest NPSR1 gene variation to be associated with alterations of prefrontal functioning in the attentional functions alerting and executive control partly modulated by anxiety sensitivity. These findings may aid in unraveling the neurobiological underpinnings of distorted arousal and attention in anxiety and thereby possibly in the biomarker-guided development of preventive/therapeutic strategies targeting attention processes in anxiety disorders.
Collapse
|
32
|
Singewald N, Schmuckermair C, Whittle N, Holmes A, Ressler KJ. Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders. Pharmacol Ther 2014; 149:150-90. [PMID: 25550231 PMCID: PMC4380664 DOI: 10.1016/j.pharmthera.2014.12.004] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 12/24/2014] [Indexed: 12/20/2022]
Abstract
Pathological fear and anxiety are highly debilitating and, despite considerable advances in psychotherapy and pharmacotherapy they remain insufficiently treated in many patients with PTSD, phobias, panic and other anxiety disorders. Increasing preclinical and clinical evidence indicates that pharmacological treatments including cognitive enhancers, when given as adjuncts to psychotherapeutic approaches [cognitive behavioral therapy including extinction-based exposure therapy] enhance treatment efficacy, while using anxiolytics such as benzodiazepines as adjuncts can undermine long-term treatment success. The purpose of this review is to outline the literature showing how pharmacological interventions targeting neurotransmitter systems including serotonin, dopamine, noradrenaline, histamine, glutamate, GABA, cannabinoids, neuropeptides (oxytocin, neuropeptides Y and S, opioids) and other targets (neurotrophins BDNF and FGF2, glucocorticoids, L-type-calcium channels, epigenetic modifications) as well as their downstream signaling pathways, can augment fear extinction and strengthen extinction memory persistently in preclinical models. Particularly promising approaches are discussed in regard to their effects on specific aspects of fear extinction namely, acquisition, consolidation and retrieval, including long-term protection from return of fear (relapse) phenomena like spontaneous recovery, reinstatement and renewal of fear. We also highlight the promising translational value of the preclinial research and the clinical potential of targeting certain neurochemical systems with, for example d-cycloserine, yohimbine, cortisol, and L-DOPA. The current body of research reveals important new insights into the neurobiology and neurochemistry of fear extinction and holds significant promise for pharmacologically-augmented psychotherapy as an improved approach to treat trauma and anxiety-related disorders in a more efficient and persistent way promoting enhanced symptom remission and recovery.
Collapse
Affiliation(s)
- N Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| | - C Schmuckermair
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - N Whittle
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - A Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - K J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
33
|
Hassler C, Zhang Y, Gilmour B, Graf T, Fennell T, Snyder R, Deschamps J, Reinscheid RK, Garau C, Runyon SP. Identification of neuropeptide S antagonists: structure-activity relationship studies, X-ray crystallography, and in vivo evaluation. ACS Chem Neurosci 2014; 5:731-44. [PMID: 24964000 PMCID: PMC4140596 DOI: 10.1021/cn500113c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/24/2014] [Indexed: 12/16/2022] Open
Abstract
Modulation of the neuropeptide S (NPS) system has been linked to a variety of CNS disorders such as panic disorder, anxiety, sleeping disorders, asthma, obesity, PTSD, and substance abuse. In this study, a series of diphenyltetrahydro-1H-oxazolo[3,4-α]pyrazin-3(5H)-ones were synthesized and evaluated for antagonist activity at the neuropeptide S receptor. The absolute configuration was determined by chiral resolution of the key synthetic intermediate, followed by analysis of one of the individual enantiomers by X-ray crystallography. The R isomer was then converted to a biologically active compound (34) that had a Ke of 36 nM. The most potent compound displayed enhanced aqueous solubility compared with the prototypical antagonist SHA-68 and demonstrated favorable pharmacokinetic properties for behavioral assessment. In vivo analysis in mice indicated a significant blockade of NPS induced locomotor activity at an ip dose of 50 mg/kg. This suggests that analogs having improved drug-like properties will facilitate more detailed studies of the neuropeptide S receptor system.
Collapse
Affiliation(s)
- Carla Hassler
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Yanan Zhang
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Brian Gilmour
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Tyler Graf
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Timothy Fennell
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Rodney Snyder
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Jeffrey
R. Deschamps
- Center
for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6930, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Rainer K. Reinscheid
- Department
of Pharmaceutical Sciences, University of
California, Irvine, 2214
Natural Sciences I, Mail Code: 3958, Irvine, California 92697-3958, United States
| | - Celia Garau
- Department
of Pharmaceutical Sciences, University of
California, Irvine, 2214
Natural Sciences I, Mail Code: 3958, Irvine, California 92697-3958, United States
| | - Scott P. Runyon
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| |
Collapse
|
34
|
Bukalo O, Pinard CR, Holmes A. Mechanisms to medicines: elucidating neural and molecular substrates of fear extinction to identify novel treatments for anxiety disorders. Br J Pharmacol 2014; 171:4690-718. [PMID: 24835117 DOI: 10.1111/bph.12779] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/28/2014] [Accepted: 05/04/2014] [Indexed: 12/11/2022] Open
Abstract
The burden of anxiety disorders is growing, but the efficacy of available anxiolytic treatments remains inadequate. Cognitive behavioural therapy for anxiety disorders focuses on identifying and modifying maladaptive patterns of thinking and behaving, and has a testable analogue in rodents in the form of fear extinction. A large preclinical literature has amassed in recent years describing the neural and molecular basis of fear extinction in rodents. In this review, we discuss how this work is being harnessed to foster translational research on anxiety disorders and facilitate the search for new anxiolytic treatments. We begin by summarizing the anatomical and functional connectivity of a medial prefrontal cortex (mPFC)-amygdala circuit that subserves fear extinction, including new insights from optogenetics. We then cover some of the approaches that have been taken to model impaired fear extinction and associated impairments with mPFC-amygdala dysfunction. The principal goal of the review is to evaluate evidence that various neurotransmitter and neuromodulator systems mediate fear extinction by modulating the mPFC-amygdala circuitry. To that end, we describe studies that have tested how fear extinction is impaired or facilitated by pharmacological manipulations of dopamine, noradrenaline, 5-HT, GABA, glutamate, neuropeptides, endocannabinoids and various other systems, which either directly target the mPFC-amygdala circuit, or produce behavioural effects that are coincident with functional changes in the circuit. We conclude that there are good grounds to be optimistic that the progress in defining the molecular substrates of mPFC-amygdala circuit function can be effectively leveraged to identify plausible candidates for extinction-promoting therapies for anxiety disorders.
Collapse
Affiliation(s)
- Olena Bukalo
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | | | | |
Collapse
|
35
|
Fitzgerald PJ, Seemann JR, Maren S. Can fear extinction be enhanced? A review of pharmacological and behavioral findings. Brain Res Bull 2014; 105:46-60. [PMID: 24374101 PMCID: PMC4039692 DOI: 10.1016/j.brainresbull.2013.12.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 12/21/2022]
Abstract
There is considerable interest, from both a basic and clinical standpoint, in gaining a greater understanding of how pharmaceutical or behavioral manipulations alter fear extinction in animals. Not only does fear extinction in rodents model exposure therapy in humans, where the latter is a cornerstone of behavioral intervention for anxiety disorders such as post-traumatic stress disorder and specific phobias, but also understanding more about extinction provides basic information into learning and memory processes and their underlying circuitry. In this paper, we briefly review three principal approaches that have been used to modulate extinction processes in animals and humans: a purely pharmacological approach, the more widespread approach of combining pharmacology with behavior, and a purely behavioral approach. The pharmacological studies comprise modulation by: brain derived neurotrophic factor (BDNF), d-cycloserine, serotonergic and noradrenergic drugs, neuropeptides, endocannabinoids, glucocorticoids, histone deacetylase (HDAC) inhibitors, and others. These studies strongly suggest that extinction can be modulated by drugs, behavioral interventions, or their combination, although not always in a lasting manner. We suggest that pharmacotherapeutic manipulations provide considerable promise for promoting effective and lasting fear reduction in individuals with anxiety disorders. This article is part of a Special Issue entitled 'Memory enhancement'.
Collapse
Affiliation(s)
- Paul J Fitzgerald
- Department of Psychology, Texas A&M University, College Station, TX 77843-4235, United States
| | - Jocelyn R Seemann
- Institute for Neuroscience, Texas A&M University, College Station, TX 77843-4235, United States
| | - Stephen Maren
- Department of Psychology, Texas A&M University, College Station, TX 77843-4235, United States; Institute for Neuroscience, Texas A&M University, College Station, TX 77843-4235, United States.
| |
Collapse
|
36
|
Interaction of the neuropeptide S receptor gene Asn¹⁰⁷Ile variant and environment: contribution to affective and anxiety disorders, and suicidal behaviour. Int J Neuropsychopharmacol 2014; 17:541-52. [PMID: 24331455 DOI: 10.1017/s1461145713001478] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neuropeptide S is involved in anxiety and arousal modulation, and the functional polymorphism Asn107Ile (rs324981, A > T) of the neuropeptide S receptor gene (NPSR1) is associated with panic disorder and anxiety/fear-related traits. NPSR1 also interacts with the environment in shaping personality and impulsivity. We therefore examined whether the NPSR1 A/T polymorphism is associated with affective and anxiety disorders in a population-representative sample. Lifetime psychiatric disorders were assessed by MINI interview (n = 501) in the older cohort of the longitudinal Estonian Children Personality, Behaviour and Health Study (ECPBHS). Anxiety (STAI), self-esteem (RSES), depression (MÅDRS), suicide attempts and environmental factors were self-reported in both the younger (original n = 583) and the older cohort (original n = 593). Most of the NPSR1 effects were sex-specific and depended on environmental factors. Females with the functionally least active NPSR1 AA genotype and exposed to environmental adversity had affective/anxiety disorders more frequently; they also exhibited higher anxiety and depressiveness, and lower self-esteem. Female AA homozygotes also reported suicidal behaviour more frequently, and this was further accentuated by adverse family environment. In the general population, the NPSR1 A/T polymorphism together with environmental factors is associated with anxious, depressive and activity-related traits, increased prevalence of affective/anxiety disorders and a higher likelihood of suicidal behaviour.
Collapse
|
37
|
Didonet JJ, Cavalcante JC, Souza LDS, Costa MSMO, André E, Soares-Rachetti VDP, Guerrini R, Calo' G, Gavioli EC. Neuropeptide S counteracts 6-OHDA-induced motor deficits in mice. Behav Brain Res 2014; 266:29-36. [PMID: 24613977 DOI: 10.1016/j.bbr.2014.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 02/28/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
Abstract
Neuropeptide S (NPS) is a 20-aminoacid peptide that selectively activates a G-protein coupled receptor named NPSR. Preclinical studies have shown that NPSR activation promotes anxiolysis, hyperlocomotion, arousal and weakfullness. Previous findings suggest that dopamine neurotransmission plays a role in the actions of NPS. Based on the close relationship between dopamine and Parkinson disease (PD) and on the evidence that NPSR are expressed on brain dopaminergic nuclei, the present study investigated the effects of NPS in motor deficits induced by intracerebroventricular (icv) administration of the dopaminergic neurotoxin 6-OHDA in the mouse rotarod test. 6-OHDA injection evoked motor deficits and significantly reduced tyrosine hidroxylase (TH)-positive cells in the substantia nigra (SN) and ventral tegmental area. However, a positive correlation was found only between the motor performance of 6-OHDA-injected mice and the number of TH-positive cells in SN. The systemic administration of l-DOPA+benserazide (25+6.25 mg/kg) counteracted 6-OHDA-induced motor deficits in mice. Similar to L-DOPA, the icv injection of NPS (0.1 and 1 nmol) reversed motor deficits evoked by 6-OHDA. In conclusion, NPS attenuated 6-OHDA-induced motor impairments in mice assessed in the rota-rod test. We discussed the beneficial actions of NPS based on a putative facilitation of dopaminergic neurotransmission in the brain. Finally, these findings candidate NPSR agonists as a potential innovative treatment for PD.
Collapse
Affiliation(s)
- Julia J Didonet
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Judney C Cavalcante
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Lisiane de S Souza
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Miriam S M O Costa
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Eunice André
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | - Vanessa de P Soares-Rachetti
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Remo Guerrini
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Girolamo Calo'
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Elaine C Gavioli
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
38
|
Yao Y, Su J, Zhang F, Lei Z. Effects of central and peripheral administration of neuropeptide s on the level of serum proinflammatory cytokines in pigs. Neuroimmunomodulation 2014; 21:45-51. [PMID: 24216974 DOI: 10.1159/000355977] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/23/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES The recently discovered neuropeptide S (NPS) and its cognate receptor represent a novel system of neuromodulation and are involved in many physiological and pathological processes. NPS has been implicated in the regulation of proinflammatory cytokine secretion in the pulmonary alveolar macrophages (PAMs) of pigs in vitro. In this study, we tested the hypothesis whether either central or peripheral injection of NPS would stimulate the secretion of the proinflammatory cytokines in pigs. METHODS In experiment 1, pigs were fitted with an intracerebroventricular cannula and indwelling jugular catheters, and were then randomly assigned to receive 10 or 30 nmol NPS in artificial cerebrospinal fluid. In experiment 2, pigs were fitted with indwelling jugular catheters, and randomly received 15 or 30 nmol NPS in saline. Serial blood samples were collected every 10 min for 1 h before and for 2 h after injections, and serum concentrations of IL-1β, IL-6 and TNF-α were determined. RESULTS Serum concentrations of these cytokines were increased in pigs that received central and peripheral injection of NPS, and the elevated secretion of these cytokines was in a time- and concentration-dependent manner. CONCLUSION The level of serum proinflammatory cytokines could be activated by both central and peripheral administration of NPS in a dose- and time-dependent manner in the pig. The present data support the concept that NPS may be considered as a potent modulator for the immune system and may play an important role in the inflammation and immune system of pigs.
Collapse
Affiliation(s)
- Yuan Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing,P.R. China
| | | | | | | |
Collapse
|
39
|
The functional coding variant Asn107Ile of the neuropeptide S receptor gene (NPSR1) influences age at onset of obsessive-compulsive disorder. Int J Neuropsychopharmacol 2013; 16:1951-8. [PMID: 23680103 DOI: 10.1017/s1461145713000382] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neuropeptide S (NPS) is a novel central acting neuropeptide that modulates several brain functions. NPS has shown strong anxiolytic-like effects and interactions with other central transmitter systems, including serotonin and glutamate. A coding variation (Asn107Ile) of the NPS receptor gene (NPSR1) was associated with panic disorder and schizophrenia. Based on these encouraging findings, the present study aimed at exploring a potential role of NPSR1 in obsessive–compulsive disorder (OCD). A sample of 232 OCD patients was successfully genotyped for the NPSR1 Asn107Ile variant (rs324981). Age at onset was taken into account to address the heterogeneity of the OCD phenotype. The NPSR1 genotype significantly affected age at onset of the OCD patients, with a mean age at onset approximately 4 yr earlier in homozygous carriers of the low-functioning Asn107 variant compared to patients with at least one Ile107 variant (p=0.032). Case–control analyses with 308 healthy control subjects reveal a highly significant association of the Asn107 variant with early onset OCD (odds ratio=2.36, p=0.0004) while late onset OCD or the OCD group as a whole were unrelated to the NPSR1 genotype. Based on our association finding relating NPSR1 genotype to early onset OCD, we suggest a differential role of the NPS system in OCD. In particular, the early onset OCD subtype seems to be characterized by a genetically driven low NPS tone, which might affect other OCD-related transmitter systems, including the serotonin and glutamate systems. In agreement with preclinical research, we suggest that NPS may be a promising pharmacological candidate with anti-obsessional properties.
Collapse
|
40
|
Ubaldi M, Bifone A, Ciccocioppo R. Translational approach to develop novel medications on alcohol addiction: focus on neuropeptides. Curr Opin Neurobiol 2013; 23:684-91. [PMID: 23648086 DOI: 10.1016/j.conb.2013.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 11/28/2022]
Abstract
Research on alcohol and drug dependence has shown that the development of addiction depends on a complex interplay of psychological factors, genetic or epigenetic predisposing factors, and neurobiological adaptations induced by drug consumption. A greater understanding of the mechanisms leading to alcohol abuse will allow researchers to identify genetic variation that corresponds to a specific biological vulnerability to addiction, thus defining robust endophenotypes that might help deconstruct these complex syndromes into more tractable components. To this end, it is critical to develop a translational framework that links alterations at the molecular level, to changes in neuronal function, and ultimately to changes at the behavioral and clinical levels. Translational phenotypes can be identified by the combination of animal and human studies designed to elucidate the neurofunctional, anatomical and pharmacological mechanisms underlying the etiology of alcohol addiction. The present article offers an overview of medication development in alcoholism with a focus on the critical aspect of translational research. Moreover, significant examples of promising targets from neuropeptidergic systems, namely nociceptin/orphanin FQ and neuropeptide S are given.
Collapse
Affiliation(s)
- Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032, Camerino, Italy
| | | | | |
Collapse
|
41
|
Beste C, Konrad C, Uhlmann C, Arolt V, Zwanzger P, Domschke K. Neuropeptide S receptor (NPSR1) gene variation modulates response inhibition and error monitoring. Neuroimage 2013; 71:1-9. [DOI: 10.1016/j.neuroimage.2013.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 12/28/2012] [Accepted: 01/05/2013] [Indexed: 02/02/2023] Open
|
42
|
Han RW, Zhang RS, Xu HJ, Chang M, Peng YL, Wang R. Neuropeptide S enhances memory and mitigates memory impairment induced by MK801, scopolamine or Aβ₁₋₄₂ in mice novel object and object location recognition tasks. Neuropharmacology 2013; 70:261-7. [PMID: 23454528 DOI: 10.1016/j.neuropharm.2013.02.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 01/24/2013] [Accepted: 02/02/2013] [Indexed: 11/18/2022]
Abstract
Neuropeptide S (NPS), the endogenous ligand of NPSR, has been shown to promote arousal and anxiolytic-like effects. According to the predominant distribution of NPSR in brain tissues associated with learning and memory, NPS has been reported to modulate cognitive function in rodents. Here, we investigated the role of NPS in memory formation, and determined whether NPS could mitigate memory impairment induced by selective N-methyl-D-aspartate receptor antagonist MK801, muscarinic cholinergic receptor antagonist scopolamine or Aβ₁₋₄₂ in mice, using novel object and object location recognition tasks. Intracerebroventricular (i.c.v.) injection of 1 nmol NPS 5 min after training not only facilitated object recognition memory formation, but also prolonged memory retention in both tasks. The improvement of object recognition memory induced by NPS could be blocked by the selective NPSR antagonist SHA 68, indicating pharmacological specificity. Then, we found that i.c.v. injection of NPS reversed memory disruption induced by MK801, scopolamine or Aβ₁₋₄₂ in both tasks. In summary, our results indicate that NPS facilitates memory formation and prolongs the retention of memory through activation of the NPSR, and mitigates amnesia induced by blockage of glutamatergic or cholinergic system or by Aβ₁₋₄₂, suggesting that NPS/NPSR system may be a new target for enhancing memory and treating amnesia.
Collapse
Affiliation(s)
- Ren-Wen Han
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, PR China
| | | | | | | | | | | |
Collapse
|
43
|
Aksu I, Ates M, Baykara B, Kiray M, Sisman AR, Buyuk E, Baykara B, Cetinkaya C, Gumus H, Uysal N. Anxiety correlates to decreased blood and prefrontal cortex IGF-1 levels in streptozotocin induced diabetes. Neurosci Lett 2012; 531:176-81. [PMID: 23123774 DOI: 10.1016/j.neulet.2012.10.045] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 10/12/2012] [Accepted: 10/14/2012] [Indexed: 01/03/2023]
Abstract
It is well known that diabetes mellitus may cause neuropsychiatric disorders such as anxiety disorders. Diabetes may also cause reduced IGF-1 (insulin like growth factor-1) levels in brain and blood. The purpose of the present study was to investigate the relationship between diabetes induced anxiety and IGF-1 levels in diabetic rats. The anxiety levels of rats were assessed 2 weeks after intraperitoneal injection of streptozotocin. Diabetic rats had higher levels of anxiety, as they spent more time in closed branches in elevated-plus-maze-test and less time in the center cells of open-field-arena. Prefrontal cortex (PFC) IGF-1 levels and neuron numbers were decreased and apoptosis was increased in diabetic rats. Blood IGF-1 levels decreased in a time dependent fashion following streptozotocin injection while blood corticosterone levels increased. They had higher malondialdehyde levels and lower superoxide dismutase enzyme activity. Oxidative stress may negatively affect blood and PFC tissue IGF-1 levels. Reduction in IGF-1 may cause PFC damage, which may eventually trigger anxiety in diabetic rats. Therapeutic strategies that increase blood and brain tissue IGF-1 levels may be promising to prevent psychiatric sequelae of diabetes mellitus.
Collapse
Affiliation(s)
- Ilkay Aksu
- Dokuz Eylul University, Faculty of Medicine, Department of Physiology, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Schank JR, Ryabinin AE, Giardino WJ, Ciccocioppo R, Heilig M. Stress-related neuropeptides and addictive behaviors: beyond the usual suspects. Neuron 2012; 76:192-208. [PMID: 23040815 PMCID: PMC3495179 DOI: 10.1016/j.neuron.2012.09.026] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Addictive disorders are chronic, relapsing conditions that cause extensive disease burden. Genetic factors partly account for susceptibility to addiction, but environmental factors such as stressful experiences and prolonged exposure of the brain to addictive drugs promote its development. Progression to addiction involves neuroadaptations within neurocircuitry that mediates stress responses and is influenced by several peptidergic neuromodulators. While corticotrophin releasing factor is the prototypic member of this class, recent work has identified several additional stress-related neuropeptides that play an important role in regulation of drug intake and relapse, including the urocortins, nociceptin, substance P, and neuropeptide S. Here, we review this emerging literature, discussing to what extent the properties of these neuromodulators are shared or distinct and considering their potential as drug targets.
Collapse
Affiliation(s)
- Jesse R. Schank
- Laboratory of Clinical and Translational Studies, National Inst. on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892
| | - Andrey E. Ryabinin
- Dept. of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239-3098
| | - William J. Giardino
- Dept. of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239-3098
| | - Roberto Ciccocioppo
- Dept. of Experimental Medicine and Public Health, Camerino University, Italy
| | - Markus Heilig
- Laboratory of Clinical and Translational Studies, National Inst. on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
45
|
The role of the neuropeptide S system in addiction: focus on its interaction with the CRF and hypocretin/orexin neurotransmission. Prog Neurobiol 2012; 100:48-59. [PMID: 23041581 DOI: 10.1016/j.pneurobio.2012.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/19/2012] [Accepted: 09/26/2012] [Indexed: 11/20/2022]
Abstract
Recent behavioral, pharmacological and molecular findings have linked the NPS system to drug dependence. Most of the evidence supports the possibility that increased NPS activity may contribute to shaping vulnerability to addiction, especially relapse. However, data suggesting that the anxiolytic-like properties of NPS may have protective effects on addiction have been also published. In addition, evidence from conditioned place preference experiments, though not unequivocal, suggests that NPS per se is devoid of motivational properties. Intriguingly, several effects of NPS on drugs of abuse appear to be mediated by downstream activation of brain corticotrophin releasing factor (CRF) and hypocretin-1/orexin-A (Hcrt-1/Ox-A) systems. The major objective of the present article is to review the existing work on NPS and addiction. Particular attention is devoted to the interpretation of findings revealing complex neuroanatomical and functional interactions between NPS, CRF, and the Hcrt-1/Ox-A systems. Original data aimed at shedding light on the role of NPS in reward processing are also shown. Finally, existing findings are discussed within the framework of addiction theories, and the potential of the NPS system as a treatment target for addiction is analyzed.
Collapse
|
46
|
Ramos SF, Mendonça BP, Leffa DD, Pacheco R, Damiani AP, Hainzenreder G, Petronilho F, Dal-Pizzol F, Guerrini R, Calo' G, Gavioli EC, Boeck CR, de Andrade VM. Effects of neuropeptide S on seizures and oxidative damage induced by pentylenetetrazole in mice. Pharmacol Biochem Behav 2012; 103:197-203. [PMID: 22960046 DOI: 10.1016/j.pbb.2012.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 08/29/2012] [Accepted: 09/01/2012] [Indexed: 10/27/2022]
Abstract
Neuropeptide S (NPS) and its receptor were recently discovered in the central nervous system. In rodents, NPS promotes hyperlocomotion, wakefulness, anxiolysis, anorexia, and analgesia and enhances memory when injected intracerebroventricularly (i.c.v.). Herein, NPS at different doses (0.01, 0.1 and 1nmol) was i.c.v. administered in mice challenged with pentylenetetrazole (PTZ; 60mg/kg) repeatedly injected. Aiming to assess behavioral alterations and oxidative damage to macromolecules in the brain, NPS was injected 5min prior to the last dose of PTZ. The administration of NPS only at 1nmol increased the duration of seizures evoked by PTZ, without modifying frequency and latency of seizures. Biochemical analysis revealed that NPS attenuated PTZ-induced oxidative damage to proteins and lipids in the hippocampus and cerebral cortex. In contrast, the administration of NPS to PTZ-treated mice increased DNA damage in the hippocampus, but not cerebral cortex. In conclusion, this is the first evidence of the potential proconvulsive effects of NPS in mice. The protective effects of NPS against lipid and protein oxidative damage in the mouse hippocampus and cerebral cortex evoked by PTZ-induced seizures are quite unexpected. The present findings were discussed analyzing the paradoxical effects of NPS: facilitation of convulsive behavior and protection against oxidative damage to lipids and proteins.
Collapse
Affiliation(s)
- Saulo Fábio Ramos
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense-UNESC, Criciúma, SC, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Jüngling K, Liu X, Lesting J, Coulon P, Sosulina L, Reinscheid RK, Pape HC. Activation of neuropeptide S-expressing neurons in the locus coeruleus by corticotropin-releasing factor. J Physiol 2012; 590:3701-17. [PMID: 22570383 DOI: 10.1113/jphysiol.2011.226423] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A recently discovered neurotransmitter system, consisting of neuropeptide S (NPS), NPS receptor, and NPS-expressing neurons in the brain stem, has received considerable interest due to its modulating influence on arousal, anxiety and stress responsiveness. Comparatively little is known about the properties of NPS-expressing neurons. Therefore in the present study, a transgenic mouse line expressing enhanced green fluorescent protein (EGFP) in NPS neurons was used to characterize the cellular and functional properties of NPS-expressing neurons located close to the locus coeruleus. Particular emphasis was on the influence of corticotropin-releasing factor (CRF), given previous evidence of stress-related activation of the NPS system. Upon acute immobilization stress, an increase in c-fos expression was detected immunocytochemically in brain stem NPS-EGFP neurons that also expressed the CRF receptor 1 (CRF1). NPS-EGFP neurons were readily identified in acute slice preparations and responded to CRF application with a membrane depolarization capable of triggering action potentials. CRF-induced responses displayed pharmacological properties indicative of CRF1 that were mediated by both a reduction in membrane potassium conductance and an increase in a non-specific cation conductance different from the hyperpolarization-activated cation conductance Ih, and involved protein kinase A signalling. In conclusion, stress exposure results in activation of brain stem NPS-expressing neurons, involving a CRF1-mediated membrane depolarization via at least two ionic mechanisms. These data provide evidence for a direct interaction between the CRF and the NPS system and thereby extend previous observations of NPS-modulated stress responsiveness towards a mechanistic level.
Collapse
Affiliation(s)
- Kay Jüngling
- H.-C. Pape: Institute of Physiology I; Robert-Koch-Str. 27a, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Intranasally administered neuropeptide S (NPS) exerts anxiolytic effects following internalization into NPS receptor-expressing neurons. Neuropsychopharmacology 2012; 37:1323-37. [PMID: 22278093 PMCID: PMC3327839 DOI: 10.1038/npp.2011.317] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Experiments in rodents revealed neuropeptide S (NPS) to constitute a potential novel treatment option for anxiety diseases such as panic and post-traumatic stress disorder. However, both its cerebral target sites and the molecular underpinnings of NPS-mediated effects still remain elusive. By administration of fluorophore-conjugated NPS, we pinpointed NPS target neurons in distinct regions throughout the entire brain. We demonstrated their functional relevance in the hippocampus. In the CA1 region, NPS modulates synaptic transmission and plasticity. NPS is taken up into NPS receptor-expressing neurons by internalization of the receptor-ligand complex as we confirmed by subsequent cell culture studies. Furthermore, we tracked internalization of intranasally applied NPS at the single-neuron level and additionally demonstrate that it is delivered into the mouse brain without losing its anxiolytic properties. Finally, we show that NPS differentially modulates the expression of proteins of the glutamatergic system involved inter alia in synaptic plasticity. These results not only enlighten the path of NPS in the brain, but also establish a non-invasive method for NPS administration in mice, thus strongly encouraging translation into a novel therapeutic approach for pathological anxiety in humans.
Collapse
|
49
|
Concordant signaling pathways produced by pesticide exposure in mice correspond to pathways identified in human Parkinson's disease. PLoS One 2012; 7:e36191. [PMID: 22563483 PMCID: PMC3341364 DOI: 10.1371/journal.pone.0036191] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 04/03/2012] [Indexed: 11/19/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease in which the etiology of 90 percent of the patients is unknown. Pesticide exposure is a major risk factor for PD, and paraquat (PQ), pyridaben (PY) and maneb (MN) are amongst the most widely used pesticides. We studied mRNA expression using transcriptome sequencing (RNA-Seq) in the ventral midbrain (VMB) and striatum (STR) of PQ, PY and paraquat+maneb (MNPQ) treated mice, followed by pathway analysis. We found concordance of signaling pathways between the three pesticide models in both the VMB and STR as well as concordance in these two brain areas. The concordant signaling pathways with relevance to PD pathogenesis were e.g. axonal guidance signaling, Wnt/β-catenin signaling, as well as pathways not previously linked to PD, e.g. basal cell carcinoma, human embryonic stem cell pluripotency and role of macrophages, fibroblasts and endothelial cells in rheumatoid arthritis. Human PD pathways previously identified by expression analysis, concordant with VMB pathways identified in our study were axonal guidance signaling, Wnt/β-catenin signaling, IL-6 signaling, ephrin receptor signaling, TGF-β signaling, PPAR signaling and G-protein coupled receptor signaling. Human PD pathways concordant with the STR pathways in our study were Wnt/β-catenin signaling, axonal guidance signaling and G-protein coupled receptor signaling. Peroxisome proliferator activated receptor delta (Ppard) and G-Protein Coupled Receptors (GPCRs) were common genes in VMB and STR identified by network analysis. In conclusion, the pesticides PQ, PY and MNPQ elicit common signaling pathways in the VMB and STR in mice, which are concordant with known signaling pathways identified in human PD, suggesting that these pathways contribute to the pathogenesis of idiopathic PD. The analysis of these networks and pathways may therefore lead to improved understanding of disease pathogenesis, and potential novel therapeutic targets.
Collapse
|
50
|
Aksu I, Baykara B, Ozbal S, Cetin F, Sisman AR, Dayi A, Gencoglu C, Tas A, Büyük E, Gonenc-Arda S, Uysal N. Maternal treadmill exercise during pregnancy decreases anxiety and increases prefrontal cortex VEGF and BDNF levels of rat pups in early and late periods of life. Neurosci Lett 2012; 516:221-5. [PMID: 22503727 DOI: 10.1016/j.neulet.2012.03.091] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/25/2012] [Accepted: 03/30/2012] [Indexed: 11/30/2022]
Abstract
In a previous study we demonstrated that, regular aerobic exercise during pregnancy decreased maternal deprivation induced anxiety. The purpose of this study is to investigate whether the positive effects of maternal exercise on the male and female offspring's early and late period of life. Half of the test subjects in each group were evaluated when they were 26 days old, and the other half were evaluated when they were 4 months old. The anxiety levels of maternally exercised groups were less than the control groups in both sexes and in both prepubertal and adult periods. The locomotor activity more increased in females. The prefrontal VEGF and BDNF levels were greater for both age groups and sexes in the maternally exercised group compared to control group. Moreover, there was a strong positive correlations between prefrontal cortex BDNF levels and results of open field tests; and VEGF levels and results of elevated plus maze tests. There was no difference in serum corticosterone levels between groups. These results indicate that maternal exercise during pregnancy may protect the pups from anxiety in early and late periods of life, and affects the prefrontal cortex positively.
Collapse
Affiliation(s)
- Ilkay Aksu
- Dokuz Eylul University, Faculty of Medicine, Department of Physiology, Turkey
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|