1
|
Su XB, Saiardi A. The role of inositol in the environmental organic phosphate cycle. Curr Opin Biotechnol 2024; 90:103196. [PMID: 39276615 DOI: 10.1016/j.copbio.2024.103196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/17/2024]
Abstract
Cellular synthesis of phytic acid sequesters phosphates in the sugar inositol. Phytic acid in soil represents the most abundant form of organic phosphates. The supplementation of phytase or phytase-producing organisms has been considered as a strategy to improve usable soil phosphates. However, the impacts on the environmental flow of inositol, which is generated along with phosphate by phytase, have not been examined. In this review, we discuss the origin and nature of inositol produced in soil and the several possible destinations of inositol released by phytase activities. We emphasise how an improved understanding of soil inositol flow could help to provide new solutions to the phosphate shortage problem in agriculture.
Collapse
Affiliation(s)
- Xue B Su
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Adolfo Saiardi
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
2
|
Richardson JA, Rose BD, Garcia K. X-ray fluorescence and XANES spectroscopy revealed diverse potassium chemistries and colocalization with phosphorus in the ectomycorrhizal fungus Paxillus ammoniavirescens. Fungal Biol 2024; 128:2054-2061. [PMID: 39174240 DOI: 10.1016/j.funbio.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/13/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024]
Abstract
Ectomycorrhizal (ECM) fungi play a major role in forest ecosystems and managed tree plantations. Particularly, they facilitate mineral weathering and nutrient transfer towards colonized roots. Among nutrients provided by these fungi, potassium (K) has been understudied compared to phosphorus (P) or nitrogen (N). The ECM fungus Paxillus ammoniavirescens is a generalist species that interacts with the root of many trees and can directly transfer K to them, including loblolly pine. However, the forms of K that ECM fungi can store is still unknown. Here, we used synchrotron potassium X-ray fluorescence (XRF) and K-edge X-ray Absorption Near Edge Structure (XANES) spectroscopy on P. ammoniavirescens growing in axenic conditions to investigate the K chemistries accumulating in the center and the edge of the mycelium. We observed that various K forms accumulated in different part of the mycelium, including K-nitrate (KNO3), K-C-O compounds (such as K-tartrate K2(C4H4O6) and K-oxalate (K2C2O4)), K-S and K-P compounds. Saprotrophic fungi have been shown to excrete carboxylic acids, which in turn play a role in soil mineral weathering. Our finding of several K counter-ions to carboxylic acids may suggest that, besides their direct transfer to colonized roots, K ions can also be involved in the production of compounds necessary for sourcing nutrients from their surrounding environment by ECM fungi. Additionally, this work reveals that XANES spectroscopy can be used to identify the various forms of K accumulating in biological systems.
Collapse
Affiliation(s)
- Jocelyn A Richardson
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Benjamin D Rose
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kevin Garcia
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
3
|
Mahmood S, Fahad Z, Bolou-Bi EB, King K, Köhler SJ, Bishop K, Ekblad A, Finlay RD. Ectomycorrhizal fungi integrate nitrogen mobilisation and mineral weathering in boreal forest soil. THE NEW PHYTOLOGIST 2024; 242:1545-1560. [PMID: 37697631 DOI: 10.1111/nph.19260] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023]
Abstract
Tree growth in boreal forests is driven by ectomycorrhizal fungal mobilisation of organic nitrogen and mineral nutrients in soils with discrete organic and mineral horizons. However, there are no studies of how ectomycorrhizal mineral weathering and organic nitrogen mobilisation processes are integrated across the soil profile. We studied effects of organic matter (OM) availability on ectomycorrhizal functioning by altering the proportions of natural organic and mineral soil in reconstructed podzol profiles containing Pinus sylvestris plants, using 13CO2 pulse labelling, patterns of naturally occurring stable isotopes (26Mg and 15N) and high-throughput DNA sequencing of fungal amplicons. Reduction in OM resulted in nitrogen limitation of plant growth and decreased allocation of photosynthetically derived carbon and mycelial growth in mineral horizons. Fractionation patterns of 26Mg indicated that magnesium mobilisation and uptake occurred primarily in the deeper mineral horizon and was driven by carbon allocation to ectomycorrhizal mycelium. In this horizon, relative abundance of ectomycorrhizal fungi, carbon allocation and base cation mobilisation all increased with increased OM availability. Allocation of carbon through ectomycorrhizal fungi integrates organic nitrogen mobilisation and mineral weathering across soil horizons, improving the efficiency of plant nutrient acquisition. Our findings have fundamental implications for sustainable forest management and belowground carbon sequestration.
Collapse
Affiliation(s)
- Shahid Mahmood
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, SE-750 07, Uppsala, Sweden
| | - Zaenab Fahad
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, SE-750 07, Uppsala, Sweden
| | - Emile B Bolou-Bi
- UFR des Sciences de la Terre et des Ressources Minières, Département des Sciences du sol, Université Felix Houphouët-Boigny, 22 BP 582, Abidjan, Côte d'Ivoire
| | - Katharine King
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, SE-750 07, Uppsala, Sweden
| | - Stephan J Köhler
- Department of Aquatic Sciences and Assessment, Soil-Water-Environment Center, Swedish University of Agricultural Sciences, Box 7050, SE-750 07, Uppsala, Sweden
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Soil-Water-Environment Center, Swedish University of Agricultural Sciences, Box 7050, SE-750 07, Uppsala, Sweden
| | - Alf Ekblad
- School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden
| | - Roger D Finlay
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, SE-750 07, Uppsala, Sweden
| |
Collapse
|
4
|
Philippot L, Chenu C, Kappler A, Rillig MC, Fierer N. The interplay between microbial communities and soil properties. Nat Rev Microbiol 2024; 22:226-239. [PMID: 37863969 DOI: 10.1038/s41579-023-00980-5] [Citation(s) in RCA: 170] [Impact Index Per Article: 170.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/22/2023]
Abstract
In recent years, there has been considerable progress in determining the soil properties that influence the structure of the soil microbiome. By contrast, the effects of microorganisms on their soil habitat have received less attention with most previous studies focusing on microbial contributions to soil carbon and nitrogen dynamics. However, soil microorganisms are not only involved in nutrient cycling and organic matter transformations but also alter the soil habitat through various biochemical and biophysical mechanisms. Such microbially mediated modifications of soil properties can have local impacts on microbiome assembly with pronounced ecological ramifications. In this Review, we describe the processes by which microorganisms modify the soil environment, considering soil physics, hydrology and chemistry. We explore how microorganism-soil interactions can generate feedback loops and discuss how microbially mediated modifications of soil properties can serve as an alternative avenue for the management and manipulation of microbiomes to combat soil threats and global change.
Collapse
Affiliation(s)
- Laurent Philippot
- Université de Bourgogne Franche-Comté, INRAE, Institut Agro Dijon, Department of Agroecology, Dijon, France.
| | - Claire Chenu
- University of Paris-Saclay, INRAE, AgroParisTech, Palaiseau, France
| | - Andreas Kappler
- Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Matthias C Rillig
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
5
|
Zhou B, Cheng S, Peng S, Li W, Li C, Wang Q, Wang Y, Guo J. Response of bacterial community structure to different phosphorus additions in a tobacco-growing soil. FRONTIERS IN PLANT SCIENCE 2024; 15:1344733. [PMID: 38516665 PMCID: PMC10954889 DOI: 10.3389/fpls.2024.1344733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
Introduction Phosphorus (P), which plays a vital role in plant growth, is continually added to soil to maximize biomass production, leading to excessive P accumulation and water eutrophication. Results In this study, a pot experiment using a subtropical tobacco-growing soil fertilized with four P levels-no P, low P, medium P, and high P-was conducted and rhizosphere and bulk soils were analyzed. Results P addition significantly increased tobacco biomass production (except under low P input) and total soil P and available P content (P<0.05), whereas total nitrogen content decreased in the rhizosphere soils, although this was only significant with medium P application. P fertilization also significantly altered the bacterial communities of rhizosphere soils (P<0.05), but those of bulk soils were unchanged (P>0.05). Moreover, a significant difference was found between rhizosphere soils with low (LR) and high (HR) P inputs (P<0.05). Additionally, compared with rhizosphere soils with no P (CKR), Shannon diversity showed a declining trend, which was significant with LR and HR (P<0.05), whereas an increasing tendency was observed for Chao1 diversity except in LR (P>0.05). Functional prediction revealed that P application significantly decreased the total P and N metabolism of microorganisms in rhizosphere soils (P<0.05). Discussion Collectively, our results indicate that maintaining sustainable agricultural ecosystems under surplus P conditions requires more attention to be directed toward motivating the potential of soil functional microbes in P cycling, rather than just through continual P input.
Collapse
Affiliation(s)
- Beibei Zhou
- School of Environment and Ecology, Jiangsu Open University, Nanjing, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Shiqian Cheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Shuang Peng
- School of Environment and Ecology, Jiangsu Open University, Nanjing, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Wenqing Li
- Fujian Tobacco Research Institute, Fuzhou, China
| | - Chunying Li
- Fujian Tobacco Research Institute, Fuzhou, China
| | - Qianqian Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yiming Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jinping Guo
- Fujian Tobacco Research Institute, Fuzhou, China
| |
Collapse
|
6
|
Li Z, Wu S, Yi Q, Liu Y, Wang J, Nguyen TAH, Ma Y, You F, Chan TS, Klein A, Levett A, Southam G, Alessi DS, Huang Y, Huang L. Arbuscular Mycorrhizal Fungi Drive Organo-Mineral Association in Iron Ore Tailings: Unravelling Microstructure at the Submicron Scale by Synchrotron-Based FTIR and STXM-NEXAFS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21779-21790. [PMID: 38091466 DOI: 10.1021/acs.est.3c07614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi play an important role in organic matter (OM) stabilization in Fe ore tailings for eco-engineered soil formation. However, little has been understood about the AM fungi-derived organic signature and organo-mineral interactions in situ at the submicron scale. In this study, a compartmentalized cultivation system was used to investigate the role of AM fungi in OM formation and stabilization in tailings. Particularly, microspectroscopic analyses including synchrotron-based transmission Fourier transform infrared (FTIR) and scanning transmission X-ray microspectroscopy combined with near-edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS) were employed to characterize the chemical signatures at the AM fungal-mineral and mineral-OM interfaces at the submicron scale. The results indicated that AM fungal mycelia developed well in the tailings and entangled mineral particles for aggregation. AM fungal colonization enhanced N-rich OM stabilization through organo-mineral association. Bulk spectroscopic analysis together with FTIR mapping revealed that fungi-derived lipids, proteins, and carbohydrates were associated with Fe/Si minerals. Furthermore, STXM-NEXAFS analysis revealed that AM fungi-derived aromatic, aliphatic, and carboxylic/amide compounds were heterogeneously distributed and trapped by Fe(II)/Fe(III)-bearing minerals originating from biotite-like minerals weathering. These findings imply that AM fungi can stimulate mineral weathering and provide organic substances to associate with minerals, contributing to OM stabilization and aggregate formation as key processes for eco-engineered soil formation in tailings.
Collapse
Affiliation(s)
- Zhen Li
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Songlin Wu
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Yi
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yunjia Liu
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jian Wang
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, Saskatchewan S7N2 V3, Canada
| | - Tuan A H Nguyen
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yuanying Ma
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fang You
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30092, Taiwan
| | - Annaleise Klein
- Australian Synchrotron, ANSTO, Melbourne, Victoria 3168, Australia
| | - Alan Levett
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gordon Southam
- School of the Environment, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Yuanfang Huang
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Longbin Huang
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
7
|
Jingjing Y, Huiqin G, Fry EL, De Long JR, Shiming T, Ting Y, Weibo R. Plant roots send metabolic signals to microbes in response to long-term overgrazing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156241. [PMID: 35644397 DOI: 10.1016/j.scitotenv.2022.156241] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/22/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Overgrazing directly and indirectly affects soil microorganisms, which can have feedback effects on plant growth. Little is known about the root metabolites plants produce and whether they recruit beneficial microbes in response to overgrazing. Here, we used the dominant grassland species Leymus chinensis to explore correlations between root metabolites and the rhizosphere microbiome shaped by long-term overgrazing, which was determined by using LC-MS technology and high-throughput sequencing. In total, 839 metabolites were detected, with 41 significantly higher and 3 significantly lower in overgrazing versus grazing exclusion plots. The rhizosphere bacterial community was changed, but the fungal community was not altered. Moreover, 11 bacterial orders were found only in the overgrazed samples, and these showed close relationships to root metabolites and certain soil properties. Of these, Latescibacterales, B10-SB3A, and Nitrosococcales are known to be involved in growth promotion, C and N metabolism, respectively. In addition, root metabolites play an important role in mediating root-fungi interactions. The beneficial fungal orders Agaricales and Sordariales have a tread to be higher maybe due to root metabolites, mainly facilitate nutrient absorption and protect organic carbon in the soil, respectively. Our results indicate that grassland plants send metabolic signals to recruit key beneficial bacteria and stabilize fungal communities to alleviate grazing-induced stress in typical grassland ecosystems.
Collapse
Affiliation(s)
- Yin Jingjing
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Guo Huiqin
- Faculty of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Ellen L Fry
- Department of Biology, Edge Hill University, Ormskirk, Lancashire L39 4QP, UK
| | | | - Tang Shiming
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Yuan Ting
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China.
| | - Ren Weibo
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
8
|
Vertebrate Taphonomy and Diagenesis: Implications of Structural and Compositional Alterations of Phosphate Biominerals. MINERALS 2022. [DOI: 10.3390/min12020180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Biominerals are recorders of evolution and palaeoenvironments. Predation is one of the most frequent modes leading to the concentration of small vertebrates in fossil assemblages. Consumption by predators produces damages on bones and teeth from prey species, and one of the greatest challenges to taphonomists is differentiating original biological and secondary, geologically altered attributes of fossils. Excellent morphological preservation is often used to assume that the structure and composition of fossils are not modified. Nevertheless, during predation and fossilization, both the physical structure and chemical composition of enamel, dentine and bone are altered, the degree and extent of which varies from site to site, depending on the nature of the burial environment. A relationship between the surficial alterations and the compositional changes which take place during fossilization has yet to be established. Herein, I present a review of old and recent taphonomic studies that collectively reveal the wide diversity of microstructural and chemical changes that typically take place during fossilization of vertebrate remains, including common taphonomic biases and the challenges inherent to reconstructing the history of vertebrate fossil assemblages.
Collapse
|
9
|
Yang D, Luo J, Peng P, Li W, Shi W, Jia L, He Y. Dynamics of nitrogen and phosphorus accumulation and their stoichiometry along a chronosequence of forest primary succession in the Hailuogou Glacier retreat area, eastern Tibetan Plateau. PLoS One 2021; 16:e0246433. [PMID: 33529264 PMCID: PMC7853510 DOI: 10.1371/journal.pone.0246433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/19/2021] [Indexed: 11/26/2022] Open
Abstract
As the two limiting nutrients for plants in most terrestrial ecosystems, nitrogen (N) and phosphorus (P) are essential for the development of succession forests. Vegetation N:P stoichiometry is a useful tool for detecting nutrient limitation. In the present work, chronosequence analysis was employed to research N and P accumulation dynamics and their stoichiometry during forest primary succession in a glacier retreat area on the Tibetan Plateau. Our results showed that: (1) total ecosystem N and P pools increased from 97 kg hm-2 to 7186 kg hm-2 and 25 kg hm-2 to 487 kg hm-2, respectively, with increasing glacier retreat year; (2) the proportion of the organic soil N pool to total ecosystem N sharply increased with increasing glacier retreat year, but the proportion of the organic soil and the vegetation P pools to the total ecosystem P was equivalent after 125 y of recession; (3) the N:P ratio for tree leaves ranged from 10.1 to 14.3, whereas the N:P ratio for total vegetation decreased form 13.3 to 8.4 and remained constant after 35 y of recession, and the N:P ratio for organic soil increased from 0.2 to 23.1 with increasing glacier retreat. These results suggested that organic soil N increased with increasing years of glacier retreat, which may be the main sink for atmospheric N, whereas increased P accumulation in vegetation after 125 y of recession suggested that much of the soil P was transformed into the biomass P pool. As the N:P ratio for vegetation maintained a low level for 35-125 y of recession, we suggested that N might be the main limiting element for plant growth in the development of this ecosystem.
Collapse
Affiliation(s)
- Danli Yang
- College of Earth Sciences, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Ji Luo
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Peihao Peng
- College of Earth Sciences, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Wei Li
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Wenbo Shi
- Tourism and Urban-Rural Planning College, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Longyu Jia
- College of Earth Sciences, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Yongmei He
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Mineral phosphorus drives glacier algal blooms on the Greenland Ice Sheet. Nat Commun 2021; 12:570. [PMID: 33495440 PMCID: PMC7835244 DOI: 10.1038/s41467-020-20627-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Melting of the Greenland Ice Sheet is a leading cause of land-ice mass loss and cryosphere-attributed sea level rise. Blooms of pigmented glacier ice algae lower ice albedo and accelerate surface melting in the ice sheet’s southwest sector. Although glacier ice algae cause up to 13% of the surface melting in this region, the controls on bloom development remain poorly understood. Here we show a direct link between mineral phosphorus in surface ice and glacier ice algae biomass through the quantification of solid and fluid phase phosphorus reservoirs in surface habitats across the southwest ablation zone of the ice sheet. We demonstrate that nutrients from mineral dust likely drive glacier ice algal growth, and thereby identify mineral dust as a secondary control on ice sheet melting. Melting of the Greenland Ice Sheet—a threat for sea level rise—is accelerated by ice algal blooms. Here the authors find a link between mineral phosphorus and glacier algae, indicating that dust-derived nutrients aid bloom development, thereby impacting ice sheet melting.
Collapse
|
11
|
Paparokidou C, Leake JR, Beerling DJ, Rolfe SA. Phosphate availability and ectomycorrhizal symbiosis with Pinus sylvestris have independent effects on the Paxillus involutus transcriptome. MYCORRHIZA 2021; 31:69-83. [PMID: 33200348 PMCID: PMC7782400 DOI: 10.1007/s00572-020-01001-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Many plant species form symbioses with ectomycorrhizal fungi, which help them forage for limiting nutrients in the soil such as inorganic phosphate (Pi). The transcriptional responses to symbiosis and nutrient-limiting conditions in ectomycorrhizal fungal hyphae, however, are largely unknown. An artificial system was developed to study ectomycorrhizal basidiomycete Paxillus involutus growth in symbiosis with its host tree Pinus sylvestris at different Pi concentrations. RNA-seq analysis was performed on P. involutus hyphae growing under Pi-limiting conditions, either in symbiosis or alone. We show that Pi starvation and ectomycorrhizal symbiosis have an independent effect on the P. involutus transcriptome. Notably, low Pi availability induces expression of newly identified putative high-affinity Pi transporter genes, while reducing the expression of putative organic acid transporters. Additionally, low Pi availability induces a close transcriptional interplay between P and N metabolism. GTP-related signalling was found to have a positive effect in the maintenance of ectomycorrhizal symbiosis, whereas multiple putative cytochrome P450 genes were found to be downregulated, unlike arbuscular mycorrhizal fungi. We provide the first evidence of global transcriptional changes induced by low Pi availability and ectomycorrhizal symbiosis in the hyphae of P. involutus, revealing both similarities and differences with better-characterized arbuscular mycorrhizal fungi.
Collapse
Affiliation(s)
| | - Jonathan R Leake
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - David J Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Stephen A Rolfe
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.
| |
Collapse
|
12
|
Forsmark B, Wallander H, Nordin A, Gundale MJ. Long‐term nitrogen enrichment does not increase microbial phosphorus mobilization in a northern coniferous forest. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Benjamin Forsmark
- Department of Forest Ecology and Management Swedish University of Agricultural Sciences Umeå Sweden
| | | | - Annika Nordin
- Department of Forest Genetics and Plant Physiology Umeå Plant Science Centre Swedish University of Agricultural Sciences Umeå Sweden
| | - Michael J. Gundale
- Department of Forest Ecology and Management Swedish University of Agricultural Sciences Umeå Sweden
| |
Collapse
|
13
|
Herndon E, Kinsman-Costello L, Di Domenico N, Duroe K, Barczok M, Smith C, Wullschleger SD. Iron and iron-bound phosphate accumulate in surface soils of ice-wedge polygons in arctic tundra. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1475-1490. [PMID: 32475995 DOI: 10.1039/d0em00142b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phosphorus (P) is a limiting or co-limiting nutrient to plants and microorganisms in diverse ecosystems that include the arctic tundra. Certain soil minerals can adsorb or co-precipitate with phosphate, and this mineral-bound P provides a potentially large P reservoir in soils. Iron (Fe) oxyhydroxides have a high capacity to adsorb phosphate; however, the ability of Fe oxyhydroxides to adsorb phosphate and limit P bioavailability in organic tundra soils is not known. Here, we examined the depth distribution of soil Fe and P species in the active layer (<30 cm) of low-centered and high-centered ice-wedge polygons at the Barrow Environmental Observatory on the Alaska North Slope. Soil reservoirs of Fe and P in bulk horizons and in narrower depth increments were characterized using sequential chemical extractions and synchrotron-based X-ray absorption spectroscopy (XAS). Organic horizons across all polygon features (e.g., trough, ridge, and center) were enriched in extractable Fe and P relative to mineral horizons. Soil Fe was dominated by organic-bound Fe and short-range ordered Fe oxyhydroxides, while soil P was primarily associated with oxides and organic matter in organic horizons but apatite and/or calcareous minerals in mineral horizons. Iron oxyhydroxides and Fe-bound inorganic P (Pi) were most enriched at the soil surface and decreased gradually with depth, and Fe-bound Pi was >4× greater than water-soluble Pi. These results demonstrate that Fe-bound Pi is a large and ecologically important reservoir of phosphate. We contend that Fe oxyhydroxides and other minerals may regulate Pi solubility under fluctuating redox conditions in organic surface soils on the arctic tundra.
Collapse
Affiliation(s)
- Elizabeth Herndon
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA. and Department of Geology, Kent State University, Kent, OH, USA
| | | | | | - Kiersten Duroe
- Department of Geology, Kent State University, Kent, OH, USA
| | | | - Chelsea Smith
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Stan D Wullschleger
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
14
|
Sun Q, Liu X, Wang S, Lian B. Effects of mineral substrate on ectomycorrhizal fungal colonization and bacterial community structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137663. [PMID: 32172104 DOI: 10.1016/j.scitotenv.2020.137663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/29/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Ectomycorrhizal (ECM) fungi can promote the nutrient uptake of plants from soil minerals by bioweathering. However, effects of different minerals on ECM fungal colonization and bacterial community structures in the soil remains poorly documented. Here, we investigated ECM fungal composition and bacterial communities in different mineral-filled mesh bags buried in forest soil. Control (filled with quartz, which has little nutrients for plants) and mineral (apatite, potash feldspar and serpentine) -filled mesh bags were buried in E-horizon soil for six months. After incubation, the contents of available elements in bags were determined, bacterial population sizes were quantified by quantitative PCR, and bacterial and ECM fungal community structures in mesh bags were assessed using high-throughput sequencing. The results showed that dozens of ECM fungal species colonized in different mesh bags, of which 17, 54 and 47 ECM species were observed in apatite-, potash feldspar- and serpentine-filled bags, respectively. Ectomycorrhizal fungal composition and bacterial community structure are affected significantly by mineral types. Pseudomonas, Sphingomonas, Bacillus and Paenibacillus, known for high weathering potential, were the preponderant bacteria in mineral-filled bags compared to the control. Ectomycorrhizal fungi are able to selectively colonize mesh bags based on mineral types, and may have a certain influence on the formation of bacterial community structure, implying a possible cooperation of ECM fungi and bacteria in soil mineral weathering.
Collapse
Affiliation(s)
- Qibiao Sun
- College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xiuming Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China; Puding Karst Ecosystem Research Station, Chinese Ecosystem Research Network, Chinese Academy of Sciences, Puding 562100, China
| | - Shijie Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China; Puding Karst Ecosystem Research Station, Chinese Ecosystem Research Network, Chinese Academy of Sciences, Puding 562100, China.
| | - Bin Lian
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
15
|
Laccaria bicolor Mobilizes both Labile Aluminum and Inorganic Phosphate in Rhizosphere Soil of Pinus massoniana Seedlings Field Grown in a Yellow Acidic Soil. Appl Environ Microbiol 2020; 86:AEM.03015-19. [PMID: 32060022 DOI: 10.1128/aem.03015-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/05/2020] [Indexed: 11/20/2022] Open
Abstract
Plant growth is often limited by highly activated aluminum (Al) and low available phosphorus (P) in acidic soil. Ectomycorrhizal (ECM) fungi can improve their host plants' Al tolerance by increasing P availability while decreasing Al activity in vitro or in hydroponic or sand culture systems. However, the effect of ECM fungi on inorganic P (IP) and labile Al in acidic soil in the field, particularly in conjunction with Al treatment, remains poorly understood. The present study aimed to determine the influence of ECM fungal association on the mobilization of IP and labile Al in rhizosphere soil of host plants grown in the field with external Al treatment and the underlying nutritional mechanism in plant Al tolerance. To do so, 4-week-old Pinus massoniana seedlings were inoculated with three ECM isolates (Laccaria bicolor 270, L. bicolor S238A, and L. bicolor S238N) and grown in a Haplic Alisol field with or without Al treatment for 12 weeks. Results showed that L. bicolor association enhanced the available P depletion and facilitated the mobilization of IP and labile Al, in turn improving the capacity of host plant to use Al-bound P, Ca-bound P, and occluded P, particularly when P. massoniana seedlings were inoculated with L. bicolor S238A. Inoculation with L. bicolor isolates also enhanced the solubility of labile Al and facilitated the conversion of acid-soluble Al into exchangeable Al. Our findings suggested that ECM inoculation could enhance plant Al tolerance in the field by mobilizing IP to improve the P bioavailability but not by decreasing Al activity.IMPORTANCE Here, we reveal the underlying nutritional mechanism in plant Al tolerance conferred by ectomycorrhizal (ECM)-fungus inoculation in the field and report the screening of a promising ECM isolate to assist phytoremediation and afforestation using Pinus massoniana in acidic soil in southern China. This study advances our understanding of the contribution of ECM fungi to plant-ECM-fungus symbiosis and highlights the vital role of ECM-fungus inoculation in plant Al tolerance. In addition, the results described in the present study confirm the importance of carrying out studies in the field rather than only in vitro studies. Our findings strengthen our understanding of the role of ECM-fungus association in detecting, utilizing, and transporting unavailable nutrients in the soil to enhance host plant growth and adaptability in response to adverse habitats.
Collapse
|
16
|
Accumulation and Translocation of Phosphorus, Calcium, Magnesium, and Aluminum in Pinus massoniana Lamb. Seedlings Inoculated with Laccaria bicolor Growing in an Acidic Yellow Soil. FORESTS 2019. [DOI: 10.3390/f10121153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Research Highlights: We demonstrate that ectomycorrhizal (ECM) fungi improve plant aluminum (Al)-tolerance in the field and Laccaria bicolor S238A is a promising ECM isolate. Furthermore, we interpret the underlying nutritional mechanism that ECM inoculation facilitates aboveground biomass production as well as nutrients accumulation and translocation. Background and Objectives: Al toxicity is a primary limiting factor for plants growing in acidic soils. Hydroponic/sand culture studies have shown that some ECM fungi could enhance plant Al-tolerance. However, the underlying mechanisms of ECM fungi in improving plant Al-tolerance in the field are still unknown. To fill this knowledge gap, the present study aimed to examine roles of ECM inoculation in biomass production, accumulation and translocation of nutrients and Al in the host plant grown in the field under Al treatment. Materials and Methods: 4-week-old Pinus massoniana seedlings were inoculated with three Laccaria bicolor isolates (L. bicolor 270, L. bicolor S238A or L. bicolor S238N) and grown in an acidic yellow soil under 1.0 mM Al treatment for 12 weeks in the field. Biomass production, accumulation and translocation of P, Ca, Mg, and Al were investigated in these 16-week-old P. massoniana seedlings. Results: All three of these L. bicolor isolates improved biomass production as well as P, Ca and Mg accumulation in P. massoniana seedlings. Moreover, the three ECM isolates facilitated the translocation of P, Ca, and Mg to aboveground in response to Al treatment, particularly when seedlings were inoculated with L. bicolor S238A. In addition, both L. bicolor 270 and L. bicolor S238A had no apparent effects on Al accumulation, while enhanced Al translocation to aboveground. In contrast, L. bicolor S238N decreased Al accumulation but had no significant effect on Al translocation. Conclusions: ECM fungi in the field improved plant Al-resistance by increasing nutrient uptake, and this was mostly due to translocation of P, Ca, and Mg to aboveground, not by decreasing the uptake and translocation of Al.
Collapse
|
17
|
Sun Q, Fu Z, Finlay R, Lian B. Transcriptome Analysis Provides Novel Insights into the Capacity of the Ectomycorrhizal Fungus Amanita pantherina To Weather K-Containing Feldspar and Apatite. Appl Environ Microbiol 2019; 85:e00719-19. [PMID: 31126945 PMCID: PMC6643233 DOI: 10.1128/aem.00719-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/18/2019] [Indexed: 02/05/2023] Open
Abstract
Ectomycorrhizal (ECM) fungi, symbiotically associated with woody plants, markedly improve the uptake of mineral nutrients such as potassium (K) and phosphorus (P) by their host trees. Although it is well known that ECM fungi can obtain K and P from soil minerals through biological weathering, the mechanisms regulating this process are still poorly understood at the molecular level. Here, we investigated the transcriptional regulation of the ECM fungus Amanita pantherina in weathering K-containing feldspar and apatite using transcriptome sequencing (RNA-seq) and validated these results for differentially expressed genes using real-time quantitative PCR. The results showed that A. pantherina was able to improve relevant metabolic processes, such as promoting the biosynthesis of unsaturated fatty acids and steroids in the weathering of K-containing feldspar and apatite. The expression of genes encoding ion transporters was markedly enhanced during exposure to solid K-containing feldspar and apatite, and transcripts of the high-affinity K transporter ApHAK1, belonging to the HAK family, were significantly upregulated. The results also demonstrated that there was no upregulation of organic acid biosynthesis, reflecting the weak weathering capacity of the A. pantherina isolate used in this study, especially its inability to utilize P in apatite. Our findings suggest that under natural conditions in forests, some ECM fungi with low weathering potential of their own may instead enhance the uptake of mineral nutrients using their high-affinity ion transporter systems.IMPORTANCE In this study, we revealed the molecular mechanism and possible strategies of A. pantherina with weak weathering potential in the uptake of insoluble mineral nutrients by using transcriptome sequencing (RNA-seq) technology and found that ApHAK1, a K transporter gene of this fungus, plays a very important role in the acquisition of K and P. Ectomycorrhizal (ECM) fungi play critical roles in the uptake of woody plant nutrients in forests that are usually characterized by nutrient limitation and in maintaining the stability of forest ecosystems. However, the regulatory mechanisms of ECM fungi in acquiring nutrients from minerals/rocks are poorly understood. This study investigated the transcriptional regulation of A. pantherina weathering K-containing feldspar and apatite and improves the understanding of fungal-plant interactions in promoting plant nutrition enabling increased productivity in sustainable forestry.
Collapse
Affiliation(s)
- Qibiao Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ziyu Fu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Roger Finlay
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bin Lian
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
18
|
Azaiez A, Beaudoin Nadeau M, Bertrand A, Khasa DP. In vitro selection of ecologically adapted ectomycorrhizal fungi through production of fungal biomass and metabolites for use in reclamation of biotite mine tailings. Mycologia 2018; 110:1017-1032. [PMID: 30481136 DOI: 10.1080/00275514.2018.1520036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mineral weathering plays an important role in poor-nutrient environments such as mine spoils and tailings. Ectomycorrhizal (ECM) fungi are able to enhance mineral weathering through different mechanisms, thereby increasing the availability of minerals and nutrients to plants. Six ECM fungi (Cadophora finlandia, Cenococcum geophilum, Hebeloma crustuliniforme, Lactarius aurantiosordidus, Paxillus involutes, and Tricholoma scalpturatum) were tested here for their tolerance to biotite-quartz-rich mine tailings. Either solid- or liquid-medium methods were used for in vitro selection of ECM fungi for their ability to grow on mine tailings. ECM fungi were selected based on their mycelial radial growth and metabolite production (ergosterol and low-molecular-mass organic acids, LMMOAs). We found a strong correlation between fungal ergosterol content and mycelial radial growth using the solid-medium method. However, the liquid-medium method was more appropriate for ergosterol synthesis and permitted direct measurement of organic acid production. We found that LMMOAs were exuded by ECM fungi, which solubilized mine tailings for their own growth and nutrition. Finally, we concluded that the ECM fungi C. finlandia and T. scalpturatum are the species most tolerant to tailings and could potentially improve the survival rate, growth, and health of white spruce seedlings planted on biotite mine spoils and tailings.
Collapse
Affiliation(s)
- Aïda Azaiez
- a Centre for Forest Research and Institute of Integrative and Systems Biology, Université Laval , Québec , Québec , G1V 0A6 , Canada
| | - Martin Beaudoin Nadeau
- a Centre for Forest Research and Institute of Integrative and Systems Biology, Université Laval , Québec , Québec , G1V 0A6 , Canada
| | - Annick Bertrand
- b Soil and Crops Research and Development Centre, Agriculture and AgriFood , Québec , Québec , G1V 0A6 , Canada
| | - Damase P Khasa
- a Centre for Forest Research and Institute of Integrative and Systems Biology, Université Laval , Québec , Québec , G1V 0A6 , Canada
| |
Collapse
|
19
|
Sun D, Hale L, Kar G, Soolanayakanahally R, Adl S. Phosphorus recovery and reuse by pyrolysis: Applications for agriculture and environment. CHEMOSPHERE 2018; 194:682-691. [PMID: 29245134 DOI: 10.1016/j.chemosphere.2017.12.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
Phosphorus ore extraction for soil fertilization supports the demand of modern agriculture, but extractable resource limitations, due to scarcity, impose a P reuse and recycling research agenda. Here we propose to integrate biochar production (pyrogenic carbon) with municipal and agricultural waste management systems, to recover and reuse phosphorous that would otherwise be lost from the ecological food web. A meta-analysis and available data on total P in biochar indicated that P-enriched feedstocks include animal manure, human excreta, and plant-biomass collected from P-polluted sites. Phosphorus in biochar could participate in P equilibriums in soils and is expected to supply P. The release, sorption and desorption of P by biochar will codetermine the potential of P replenishment by biochar and P loss from biochar-amended soils. Abiotic and biotic factors are expected to affect sorption/desorption of P between biochar and soil aggregates, and P acquisition by plants. Chemical extraction, using acid or alkaline solutions, is considered as a means for P retrieval from high P biochar, especially for biochar with high heavy metal contents. To bridge the gap between academia and practice, this paper proposes future development for phosphorus acclamation by pyrolysis: 1) identification of high-P bio-waste for pyrolysis; 2) retrieval of P by using biochar as soil amendment or by chemical leaching; 3) biochar modification by inorganic nutrients, P solubilizing microorganisms and other organic matter; and 4) compatible pyrolysis equipment fit to the current waste management context, such as households, and waste water treatment plants.
Collapse
Affiliation(s)
- Daquan Sun
- Department of Soil Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N5A8, Canada.
| | - Lauren Hale
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Gourango Kar
- Department of Soil Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N5A8, Canada
| | - Raju Soolanayakanahally
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon SK, S7N 0X2, Canada
| | - Sina Adl
- Department of Soil Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N5A8, Canada
| |
Collapse
|
20
|
|
21
|
Geomicrobiology of the built environment. Nat Microbiol 2017; 2:16275. [DOI: 10.1038/nmicrobiol.2016.275] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/21/2016] [Indexed: 01/28/2023]
|
22
|
Mineral Types and Tree Species Determine the Functional and Taxonomic Structures of Forest Soil Bacterial Communities. Appl Environ Microbiol 2017; 83:AEM.02684-16. [PMID: 28003192 DOI: 10.1128/aem.02684-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/15/2016] [Indexed: 11/20/2022] Open
Abstract
Although minerals represent important soil constituents, their impact on the diversity and structure of soil microbial communities remains poorly documented. In this study, pure mineral particles with various chemistries (i.e., obsidian, apatite, and calcite) were considered. Each mineral type was conditioned in mesh bags and incubated in soil below different tree stands (beech, coppice with standards, and Corsican pine) for 2.5 years to determine the relative impacts of mineralogy and mineral weatherability on the taxonomic and functional diversities of mineral-associated bacterial communities. After this incubation period, the minerals and the surrounding bulk soil were collected to determine mass loss and to perform soil analyses, enzymatic assays, and cultivation-dependent and -independent analyses. Notably, our 16S rRNA gene pyrosequencing analyses revealed that after the 2.5-year incubation period, the mineral-associated bacterial communities strongly differed from those of the surrounding bulk soil for all tree stands considered. When focusing only on minerals, our analyses showed that the bacterial communities associated with calcite, the less recalcitrant mineral type, significantly differed from those that colonized obsidian and apatite minerals. The cultivation-dependent analysis revealed significantly higher abundances of effective mineral-weathering bacteria on the most recalcitrant minerals (i.e., apatite and obsidian). Together, our data showed an enrichment of Betaproteobacteria and effective mineral-weathering bacteria related to the Burkholderia and Collimonas genera on the minerals, suggesting a key role for these taxa in mineral weathering and nutrient cycling in nutrient-poor forest ecosystems.IMPORTANCE Forests are usually developed on nutrient-poor and rocky soils, while nutrient-rich soils have been dedicated to agriculture. In this context, nutrient recycling and nutrient access are key processes in such environments. Deciphering how soil mineralogy influences the diversity, structure, and function of soil bacterial communities in relation to the soil conditions is crucial to better understanding the relative role of the soil bacterial communities in nutrient cycling and plant nutrition in nutrient-poor environments. The present study determined in detail the diversity and structure of bacterial communities associated with different mineral types incubated for 2.5 years in the soil under different tree species using cultivation-dependent and -independent analyses. Our data showed an enrichment of specific bacterial taxa on the minerals, specifically on the most weathered minerals, suggesting that they play key roles in mineral weathering and nutrient cycling in nutrient-poor forest ecosystems.
Collapse
|
23
|
Gadd GM. The Geomycology of Elemental Cycling and Transformations in the Environment. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0010-2016. [PMID: 28128071 PMCID: PMC11687428 DOI: 10.1128/microbiolspec.funk-0010-2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Indexed: 01/22/2023] Open
Abstract
Geomicrobiology addresses the roles of microorganisms in geological and geochemical processes, and geomycology is a part of this topic focusing on the fungi. Geoactive roles of fungi include organic and inorganic transformations important in nutrient and element cycling, rock and mineral bioweathering, mycogenic biomineral formation, and metal-fungal interactions. Lichens and mycorrhizas are significant geoactive agents. Organic matter decomposition is important for cycling of major biomass-associated elements, e.g., C, H, N, O, P, and S, as well as all other elements found in lower concentrations. Transformations of metals and minerals are central to geomicrobiology, and fungi affect changes in metal speciation, as well as mediate mineral formation or dissolution. Such mechanisms are components of biogeochemical cycles for metals as well as associated elements in biomass, soil, rocks, and minerals, e.g., S, P, and metalloids. Fungi may have the greatest geochemical influence within the terrestrial environment. However, they are also important in the aquatic environment and are significant components of the deep subsurface, extreme environments, and habitats polluted by xenobiotics, metals, and radionuclides. Applications of geomycology include metal and radionuclide bioleaching, biorecovery, detoxification, bioremediation, and the production of biominerals or metal(loid) elements with catalytic or other properties. Adverse effects include biodeterioration of natural and synthetic materials, rock and mineral-based building materials (e.g., concrete), cultural heritage, metals, alloys, and related substances and adverse effects on radionuclide mobility and containment. The ubiquity and importance of fungi in the biosphere underline the importance of geomycology as a conceptual framework encompassing the environmental activities of fungi.
Collapse
Affiliation(s)
- Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom and Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, People's Republic of China
| |
Collapse
|
24
|
Fahad ZA, Bolou-Bi EB, Köhler SJ, Finlay RD, Mahmood S. Fractionation and assimilation of Mg isotopes by fungi is species dependent. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:956-965. [PMID: 27588362 DOI: 10.1111/1758-2229.12459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/18/2016] [Accepted: 08/25/2016] [Indexed: 06/06/2023]
Abstract
Symbiotic ectomycorrhizal fungi mobilize nutrients from both organic and inorganic substrates and supply them to their host plants. Their role in mobilizing base cations and phosphorus from mineral substrates through weathering has received increasing attention in recent years but the processes involved remain to be elucidated. We grew selected ectomycorrhizal and nonmycorrhizal fungi in axenic systems containing mineral and organic substrates and examined their capacity to fractionate and assimilate stable isotopes of magnesium. The mycorrhizal fungi were significantly depleted in heavy isotopes with the lowest Δ26 Mg values (the difference between δ26 Mg in fungal tissue and δ26 Mg in the substrate) compared with nonmycorrhizal fungi, when grown on mineral substrates containing granite particles. The ectomycorrhizal fungi accumulated significantly higher concentrations of Mg, K and P than the nonmycorrhizal fungi. There was a highly significant statistical relationship between δ26 Mg tissue signature and mycelial concentration of Mg, with a clear separation between most ectomycorrhizal fungi and the nonmycorrhizal fungi. These results are consistent with the idea that ectomycorrhizal fungi have evolved efficient mechanisms to mobilize, transport and store Mg within their mycelia.
Collapse
Affiliation(s)
- Zaenab A Fahad
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, SE, 750 07, Sweden
| | - Emile B Bolou-Bi
- Department of Earth Sciences, Uppsala University, Uppsala, SE, 752 36, Sweden
- Institut d'Ecologie et des Sciences de l'Environnement IEES Paris, équipe Géomicrobiologie des sols et des eaux, Université de Paris-Est Créteil Val de Marne, Créteil Cedex, FR, 94 010, France
| | - Stephan J Köhler
- Department of Aquatic Sciences and Assessment, Soil-Water-Environment Center, Swedish University of Agricultural Sciences, Uppsala, SE, 750 07, Sweden
| | - Roger D Finlay
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, SE, 750 07, Sweden
| | - Shahid Mahmood
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, SE, 750 07, Sweden
| |
Collapse
|
25
|
Nadeau MB, P. Khasa D. Edaphic Selection Pressures as Drivers of Contrasting White Spruce Ectomycorrhizal Fungal Community Structure and Diversity in the Canadian Boreal Forest of Abitibi-Témiscamingue Region. PLoS One 2016; 11:e0166420. [PMID: 27835688 PMCID: PMC5106017 DOI: 10.1371/journal.pone.0166420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 10/30/2016] [Indexed: 11/19/2022] Open
Abstract
Little is known about edaphic selection pressures as drivers of contrasting white spruce ectomycorrhizal fungal community structure and diversity in the Canadian boreal forest. We hypothesized that community composition differs among the four sites sampled-nursery, mining site, forest edge, and natural forest. Ectomycorrhizal (ECM) fungal community structure and diversity was studied at the four locations with soil fertility gradient through morpho-molecular and phylogenetic analyses in relationships with rhizospheric soil chemical properties. 41 different species were identified. Mining site had a significantly different species composition than the surrounding environments. Soil pH and percentage of roots colonized by ECM fungi increased while soil P, N, Fe, C, K, Mg, Al, Ca, and Na contents declined across the soil fertility gradient: nursery → natural forest → forest edge → mining site. Contrary to the preference of acid soils by ECM fungi, a few ecologically adapted to high pH, poor soil chemical fertility, and low organic matter content colonize white spruce roots on the non-acidogenic mining site, allowing natural regeneration of white spruce seedlings. Other ECM fungi are adapted to high fertigation level of commercial nursery. This study clearly shows the contrasting difference in white spruce ectomycorrhizal fungal community structure and diversity driven by edaphic selection pressures.
Collapse
Affiliation(s)
- Martin B. Nadeau
- Centre for Forest Research, Institute of Integrative and Systems Biology, and Canadian Research Chair in Forest and Environmental Genomics, Université Laval, Quebec city, QC, Canada, G1V0A6
| | - Damase P. Khasa
- Centre for Forest Research, Institute of Integrative and Systems Biology, and Canadian Research Chair in Forest and Environmental Genomics, Université Laval, Quebec city, QC, Canada, G1V0A6
| |
Collapse
|
26
|
Kelly LC, Colin Y, Turpault MP, Uroz S. Mineral Type and Solution Chemistry Affect the Structure and Composition of Actively Growing Bacterial Communities as Revealed by Bromodeoxyuridine Immunocapture and 16S rRNA Pyrosequencing. MICROBIAL ECOLOGY 2016; 72:428-442. [PMID: 27138048 DOI: 10.1007/s00248-016-0774-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/18/2016] [Indexed: 06/05/2023]
Abstract
Understanding how minerals affect bacterial communities and their in situ activities in relation to environmental conditions are central issues in soil microbial ecology, as minerals represent essential reservoirs of inorganic nutrients for the biosphere. To determine the impact of mineral type and solution chemistry on soil bacterial communities, we compared the diversity, composition, and functional abilities of a soil bacterial community incubated in presence/absence of different mineral types (apatite, biotite, obsidian). Microcosms were prepared containing different liquid culture media devoid of particular essential nutrients, the nutrients provided only in the introduced minerals and therefore only available to the microbial community through mineral dissolution by biotic and/or abiotic processes. By combining functional screening of bacterial isolates and community analysis by bromodeoxyuridine DNA immunocapture and 16S rRNA gene pyrosequencing, we demonstrated that bacterial communities were mainly impacted by the solution chemistry at the taxonomic level and by the mineral type at the functional level. Metabolically active bacterial communities varied with solution chemistry and mineral type. Burkholderia were significantly enriched in the obsidian treatment compared to the biotite treatment and were the most effective isolates at solubilizing phosphorous or mobilizing iron, in all the treatments. A detailed analysis revealed that the 16S rRNA gene sequences of the OTUs or isolated strains assigned as Burkholderia in our study showed high homology with effective mineral-weathering bacteria previously recovered from the same experimental site.
Collapse
Affiliation(s)
- L C Kelly
- INRA, UMR1136 "Interactions Arbres-Microorganismes", Centre INRA de Nancy, 54280, Champenoux, France
- Université de Lorraine, UMR1136 "Interactions Arbres-Microorganismes", 54500, Vandoeuvre-lès-Nancy, France
- School of Science and the Environment, Division of Biology and Conservation Ecology, Manchester Metropolitan University, M1 5GD, Manchester, UK
| | - Y Colin
- INRA, UMR1136 "Interactions Arbres-Microorganismes", Centre INRA de Nancy, 54280, Champenoux, France
- Université de Lorraine, UMR1136 "Interactions Arbres-Microorganismes", 54500, Vandoeuvre-lès-Nancy, France
- INRA UR1138 "Biogéochimie des Ecosystèmes Forestiers", Centre INRA de Nancy, 54280, Champenoux, France
| | - M-P Turpault
- INRA UR1138 "Biogéochimie des Ecosystèmes Forestiers", Centre INRA de Nancy, 54280, Champenoux, France
| | - S Uroz
- INRA, UMR1136 "Interactions Arbres-Microorganismes", Centre INRA de Nancy, 54280, Champenoux, France.
- Université de Lorraine, UMR1136 "Interactions Arbres-Microorganismes", 54500, Vandoeuvre-lès-Nancy, France.
- INRA UR1138 "Biogéochimie des Ecosystèmes Forestiers", Centre INRA de Nancy, 54280, Champenoux, France.
| |
Collapse
|
27
|
Rosenstock NP, Berner C, Smits MM, Krám P, Wallander H. The role of phosphorus, magnesium and potassium availability in soil fungal exploration of mineral nutrient sources in Norway spruce forests. THE NEW PHYTOLOGIST 2016; 211:542-553. [PMID: 26996085 DOI: 10.1111/nph.13928] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 02/02/2016] [Indexed: 06/05/2023]
Abstract
We investigated fungal growth and community composition in buried meshbags, amended with apatite, biotite or hornblende, in Norway spruce (Picea abies) forests of varying nutrient status. Norway spruce needles and soil collected from forests overlying serpentinite had low levels of potassium and phosphorus, those from granite had low levels of magnesium, whereas those from amphibolite had comparably high levels of these nutrients. We assayed the fungal colonization of meshbags by measuring ergosterol content and fungal community with 454 sequencing of the internal transcribed spacer region. In addition, we measured fine root density. Fungal biomass was increased by apatite amendment across all plots and particularly on the K- and P-deficient serpentinite plots, whereas hornblende and biotite had no effect on fungal biomass on any plots. Fungal community (total fungal and ectomycorrhizal) composition was affected strongly by sampling location and soil depth, whereas mineral amendments had no effect on community composition. Fine root biomass was significantly correlated with fungal biomass. Ectomycorrhizal communities may respond to increased host-tree phosphorus demand by increased colonization of phosphorus-containing minerals, but this does not appear to translate to a shift in ectomycorrhizal community composition. This growth response to nutrient demand does not appear to exist for potassium or magnesium limitation.
Collapse
Affiliation(s)
- Nicholas P Rosenstock
- Center for Environmental and Climate Research, Lund University, SE-22362, Lund, Sweden
| | - Christoffer Berner
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, SE-39182, Kalmar, Sweden
| | - Mark M Smits
- Center for Environmental Sciences, Hasselt University, Building D, Agoralaan, Diepenbeek, 3590, Limburg, Belgium
| | - Pavel Krám
- Czech Geological Survey, Klárov 3, 118 21, Prague 1, Czech Republic
| | - Håkan Wallander
- MEMEG, Department of Biology, Lund University, SE-22362, Lund, Sweden
| |
Collapse
|
28
|
Bonneville S, Bray AW, Benning LG. Structural Fe(II) Oxidation in Biotite by an Ectomycorrhizal Fungi Drives Mechanical Forcing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5589-5596. [PMID: 27128742 DOI: 10.1021/acs.est.5b06178] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Microorganisms are essential agents of Earth's soil weathering engine who help transform primary rock-forming minerals into soils. Mycorrhizal fungi, with their vast filamentous networks in symbiosis with the roots of most plants can alter a large number of minerals via local acidification, targeted excretion of ligands, submicron-scale biomechanical forcing, and mobilization of Mg, Fe, Al, and K at the hypha-biotite interface. Here, we present experimental evidence that Paxillus involutus-a basidiomycete fungus-in ectomycorrhizal symbiosis with Scots pine (Pinus sylvestris), is able to oxidize a substantial amount of structural Fe(II) in biotite. Iron redox chemistry, quantified by X-ray absorption near edge spectra on 13 fungi-biotite sections along three distinct hypha colonizing the [001] basal plane of biotite, revealed variable but extensive Fe(II) oxidation up to ∼2 μm in depth and a Fe(III)/Fetotal ratio of up to ∼0.8. The growth of Fe(III) hydroxide implies a volumetric change and a strain within the biotite lattice potentially large enough to induce microcrack formation, which are abundant below the hypha-biotite interface. This Fe(II) oxidation also leads to the formation of a large pool of Fe(III) (i.e., structural Fe(III) and Fe(III) oxyhydroxides) within biotite that could participate in the Fe redox cycling in soils.
Collapse
Affiliation(s)
- Steeve Bonneville
- Biogéochimie et Modélisation du Système Terre, Département Géosciences, Environnement et Société, Université Libre de Bruxelles , 50 av. F. D. Roosevelt, 1050 Brussels, Belgium
| | - Andrew W Bray
- Cohen Geochemistry, School of Earth and Environment, University of Leeds , Leeds LS2 9JT, United Kingdom
| | - Liane G Benning
- Cohen Geochemistry, School of Earth and Environment, University of Leeds , Leeds LS2 9JT, United Kingdom
- GFZ, German Research Centre for Geosciences , Telegrafenberg, Potsdam 14473, Germany
| |
Collapse
|
29
|
|
30
|
Thorley RMS, Taylor LL, Banwart SA, Leake JR, Beerling DJ. The role of forest trees and their mycorrhizal fungi in carbonate rock weathering and its significance for global carbon cycling. PLANT, CELL & ENVIRONMENT 2015; 38:1947-1961. [PMID: 25211602 DOI: 10.1111/pce.12444] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/18/2014] [Indexed: 06/03/2023]
Abstract
On million-year timescales, carbonate rock weathering exerts no net effect on atmospheric CO2 concentration. However, on timescales of decades-to-centuries, it can contribute to sequestration of anthropogenic CO2 and increase land-ocean alkalinity flux, counteracting ocean acidification. Historical evidence indicates this flux is sensitive to land use change, and recent experimental evidence suggests that trees and their associated soil microbial communities are major drivers of continental mineral weathering. Here, we review key physical and chemical mechanisms by which the symbiotic mycorrhizal fungi of forest tree roots potentially enhance carbonate rock weathering. Evidence from our ongoing field study at the UK's national pinetum confirms increased weathering of carbonate rocks by a wide range of gymnosperm and angiosperm tree species that form arbuscular (AM) or ectomycorrhizal (EM) fungal partnerships. We demonstrate that calcite-containing rock grains under EM tree species weather significantly faster than those under AM trees, an effect linked to greater soil acidification by EM trees. Weathering and corresponding alkalinity export are likely to increase with rising atmospheric CO2 and associated climate change. Our analyses suggest that strategic planting of fast-growing EM angiosperm taxa on calcite- and dolomite-rich terrain might accelerate the transient sink for atmospheric CO2 and slow rates of ocean acidification.
Collapse
Affiliation(s)
- Rachel M S Thorley
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Lyla L Taylor
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Steve A Banwart
- Kroto Research Institute, University of Sheffield - North Campus, Sheffield, S3 7HQ, UK
| | - Jonathan R Leake
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - David J Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
31
|
Schmalenberger A, Duran AL, Bray AW, Bridge J, Bonneville S, Benning LG, Romero-Gonzalez ME, Leake JR, Banwart SA. Oxalate secretion by ectomycorrhizal Paxillus involutus is mineral-specific and controls calcium weathering from minerals. Sci Rep 2015; 5:12187. [PMID: 26197714 PMCID: PMC4510491 DOI: 10.1038/srep12187] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/19/2015] [Indexed: 11/20/2022] Open
Abstract
Trees and their associated rhizosphere organisms play a major role in mineral weathering driving calcium fluxes from the continents to the oceans that ultimately control long-term atmospheric CO2 and climate through the geochemical carbon cycle. Photosynthate allocation to tree roots and their mycorrhizal fungi is hypothesized to fuel the active secretion of protons and organic chelators that enhance calcium dissolution at fungal-mineral interfaces. This was tested using (14)CO2 supplied to shoots of Pinus sylvestris ectomycorrhizal with the widespread fungus Paxillus involutus in monoxenic microcosms, revealing preferential allocation by the fungus of plant photoassimilate to weather grains of limestone and silicates each with a combined calcium and magnesium content of over 10 wt.%. Hyphae had acidic surfaces and linear accumulation of weathered calcium with secreted oxalate, increasing significantly in sequence: quartz, granite < basalt, olivine, limestone < gabbro. These findings confirmed the role of mineral-specific oxalate exudation in ectomycorrhizal weathering to dissolve calcium bearing minerals, thus contributing to the geochemical carbon cycle.
Collapse
Affiliation(s)
- A. Schmalenberger
- Cell-Mineral Research Centre, Kroto Research Institute, University of Sheffield, S3 7HQ, UK
- Animal and Plant Sciences, University of Sheffield, S10 2TN, UK
- Life Sciences, University of Limerick, Limerick, Ireland
| | - A. L. Duran
- Animal and Plant Sciences, University of Sheffield, S10 2TN, UK
| | - A. W. Bray
- Earth Surface Science Institute, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| | - J. Bridge
- Cell-Mineral Research Centre, Kroto Research Institute, University of Sheffield, S3 7HQ, UK
| | - S. Bonneville
- Earth Surface Science Institute, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| | - L. G. Benning
- Earth Surface Science Institute, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
- GFZ, German Research Centre for Geosciences, Telegrafenberg, Potsdam 14473, Germany
| | - M. E. Romero-Gonzalez
- Cell-Mineral Research Centre, Kroto Research Institute, University of Sheffield, S3 7HQ, UK
| | - J. R. Leake
- Animal and Plant Sciences, University of Sheffield, S10 2TN, UK
| | - S. A. Banwart
- Cell-Mineral Research Centre, Kroto Research Institute, University of Sheffield, S3 7HQ, UK
| |
Collapse
|
32
|
Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. FUNGAL BIOL REV 2014. [DOI: 10.1016/j.fbr.2014.05.001] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
33
|
Wei Z, Liang X, Pendlowski H, Hillier S, Suntornvongsagul K, Sihanonth P, Gadd GM. Fungal biotransformation of zinc silicate and sulfide mineral ores. Environ Microbiol 2013; 15:2173-86. [DOI: 10.1111/1462-2920.12089] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/21/2012] [Accepted: 01/10/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Zhan Wei
- Geomicrobiology Group; College of Life Sciences; University of Dundee; Dundee; DD1 5EH; UK
| | - Xinjin Liang
- Geomicrobiology Group; College of Life Sciences; University of Dundee; Dundee; DD1 5EH; UK
| | | | - Stephen Hillier
- James Hutton Institute; Craigiebuckler; Aberdeen; AB15 8QH; UK
| | | | | | - Geoffrey Michael Gadd
- Geomicrobiology Group; College of Life Sciences; University of Dundee; Dundee; DD1 5EH; UK
| |
Collapse
|