1
|
Falcó I, Randazzo W, Sánchez G. Antiviral Activity of Natural Compounds for Food Safety. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:280-296. [PMID: 38884930 PMCID: PMC11422275 DOI: 10.1007/s12560-024-09605-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024]
Abstract
Gastroenteritis and hepatitis are the most common illnesses resulting from the consumption of food contaminated with human enteric viruses. Several natural compounds have demonstrated antiviral activity against human enteric viruses, such as human norovirus and hepatitis A virus, while little information is available for hepatitis E virus. Many in-vitro studies have evaluated the efficacy of different natural compounds against human enteric viruses or their surrogates. However, only few studies have investigated their antiviral activity in food applications. Among them, green tea extract, grape seed extract and carrageenans have been extensively investigated as antiviral natural compounds to improve food safety. Indeed, these extracts have been studied as sanitizers on food-contact surfaces, in produce washing solutions, as active fractions in antiviral food-packaging materials, and in edible coatings. The most innovative applications of these antiviral natural extracts include the development of coatings to extend the shelf life of berries or their combination with established food technologies for improved processes. This review summarizes existing knowledge in the underexplored field of natural compounds for enhancing the safety of viral-contaminated foods and underscores the research needs to be covered in the near future.
Collapse
Affiliation(s)
- Irene Falcó
- VISAFELab, Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain.
- Department of Microbiology and Ecology, University of Valencia, C/Doctor Moliner, 50, 46100, Burjassot, Valencia, Spain.
| | - Walter Randazzo
- VISAFELab, Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain
- Universidad Internacional de Valencia, Valencia, Spain
| | - Gloria Sánchez
- VISAFELab, Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain
| |
Collapse
|
2
|
Stoppel SM, Lunestad BT, Myrmel M. The effect of enzymatic and viability dye treatment in combination with long-range PCR on assessing Tulane virus infectivity. J Virol Methods 2024; 327:114919. [PMID: 38531509 DOI: 10.1016/j.jviromet.2024.114919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
Human norovirus (HuNoV) is regularly involved in food-borne infections. To detect infectious HuNoV in food, RT-qPCR remains state of the art but also amplifies non-infectious virus. The present study combines pre-treatments, RNase and propidium monoazide, with three molecular analyses, including long-range PCR, to predominantly detect infectious Tulane virus (TuV), a culturable HuNoV surrogate. TuV was exposed to inactivating conditions to assess which molecular method most closely approximates the reduction in infectious virus determined by cell culture (TCID50). After thermal treatments (56 °C/5 min, 70 °C/5 min, 72 °C/20 min), TCID50 reductions of 0.3, 4.4 and 5.9 log10 were observed. UV exposure (40/100/1000 mJ/cm2) resulted in 1.1, 2.5 and 5.9 log10 reductions. Chlorine (45/100 mg/L for 1 h) reduced infectious TuV by 2.0 and 3.0 log10. After thermal inactivation standard RT-qPCR, especially with pre-treatments, showed the smallest deviation from TCID50. On average, RT-qPCR with pre-treatments deviated by 1.1-1.3 log10 from TCID50. For UV light, long-range PCR was closest to TCID50 results. Long-range reductions deviated from TCID50 by ≤0.1 log10 for mild and medium UV-conditions. However, long-range analyses often resulted in qPCR non-detects. At higher UV doses, RT-qPCR with pre-treatments differed by ≤1.0 log10 from TCID50. After chlorination the molecular methods repeatedly deviated from TCID50 by >1.0 log10, Overall, each method needs to be further optimized for the individual types of inactivation treatment.
Collapse
Affiliation(s)
- Sarah M Stoppel
- Institute of Marine Research, Section for Seafood Hazards, Nordnesgaten 50, Bergen 5005, Norway.
| | - Bjørn Tore Lunestad
- Institute of Marine Research, Section for Seafood Hazards, Nordnesgaten 50, Bergen 5005, Norway
| | - Mette Myrmel
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Elizabeth Stephansens vei 15, Ås 1430, Norway
| |
Collapse
|
3
|
A split NanoLuc complementation-based human norovirus-like particle entry assay facilitates evaluation of anti-norovirus antibodies in live cells. Antiviral Res 2021; 197:105231. [PMID: 34965447 DOI: 10.1016/j.antiviral.2021.105231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/06/2021] [Accepted: 12/23/2021] [Indexed: 11/20/2022]
Abstract
Human noroviruses (NoVs) are the most common cause of acute gastroenteritis worldwide. One major obstacle in developing NoV vaccines is the lack of robust cell culture for efficacy evaluation. In this study, we successfully developed a NoV virus-like particle (VLP) entry assay based on split NanoLuc luciferase (LgBiT and HiBiT) complementation. HiBiT-tagged NoV GII.4 VLP (VLP-HiBiT) can be efficiently produced in Pichia pastoris and retain binding activity towards NoV receptor histo-blood group antigens (HBGAs). A 293T-FUT2-LgBiT cell line was established and was shown to stably express cell surface HBGAs and intracellular LgBiT. GII.4 VLP-HiBiT can bind and enter into the 293-FUT2-LgBiT cells, producing strong luminescence signals in live cells. Anti-GII.4 sera can inhibit VLP-HiBiT entry into the 293-FUT2-LgBiT cells in a dose-dependent manner, and neutralizing titers well correlate with their blocking titers measured by HBGAs-binding blockade assay. Moreover, such a surrogate infection/neutralization assay can be applied to other NoV genotypes such as GI.1 and GII.17. Together, the VLP-HiBiT entry assay can mimic both NoV attachment and internalization in live cells and thus facilitate reliable and comprehensive evaluation of NoV vaccine and antibodies.
Collapse
|
4
|
Marczynski M, Kimna C, Lieleg O. Purified mucins in drug delivery research. Adv Drug Deliv Rev 2021; 178:113845. [PMID: 34166760 DOI: 10.1016/j.addr.2021.113845] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022]
Abstract
One of the main challenges in the field of drug delivery remains the development of strategies to efficiently transport pharmaceuticals across mucus barriers, which regulate the passage and retention of molecules and particles in all luminal spaces of the body. A thorough understanding of the molecular mechanisms, which govern such selective permeability, is key for achieving efficient translocation of drugs and drug carriers. For this purpose, model systems based on purified mucins can contribute valuable information. In this review, we summarize advances that were made in the field of drug delivery research with such mucin-based model systems: First, we give an overview of mucin purification procedures and discuss the suitability of model systems reconstituted from purified mucins to mimic native mucus. Then, we summarize techniques to study mucin binding. Finally, we highlight approaches that made use of mucins as building blocks for drug delivery platforms or employ mucins as active compounds.
Collapse
|
5
|
van Loben Sels JM, Meredith LW, Sosnovtsev SV, de Graaf M, Koopmans MP, Lindesmith LC, Baric RS, Green KY, Goodfellow IG. A luciferase-based approach for measuring HBGA blockade antibody titers against human norovirus. J Virol Methods 2021; 297:114196. [PMID: 34019938 PMCID: PMC9924141 DOI: 10.1016/j.jviromet.2021.114196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Noroviruses are the most common cause of viral gastroenteritis worldwide, yet there is a deficit in the understanding of protective immunity. Surrogate neutralization assays have been widely used that measure the ability of antibodies to block virus-like particle (VLP) binding to histo-blood group antigens (HBGAs). However, screening large sample sets against multiple antigens using the traditional HBGA blocking assay requires significant investment in terms of time, equipment, and technical expertise, largely associated with the generation of purified VLPs. METHODS To address these issues, a luciferase immunoprecipitation system (LIPS) assay was modified to measure the norovirus-specific HBGA blockade activity of antibodies. The assay (designated LIPS-Blockade) was validated using a panel of well-characterized homotypic and heterotypic hyperimmune sera as well as strain-specific HBGA blocking monoclonal antibodies. RESULTS The LIPS-Blockade assay was comparable in specificity to a standard HBGA blocking protocol performed with VLPs. Using time-ordered patient sera, the luciferase-based approach was also able to detect changes in HBGA blocking titers following viral challenge and natural infection with norovirus. CONCLUSION In this study we developed a rapid, robust, and scalable surrogate neutralization assay for noroviruses that circumvented the need for purified VLPs. This LIPS-Blockade assay should streamline the process of large-scale immunological studies, ultimately aiding in the characterization of protective immunity to human noroviruses.
Collapse
Affiliation(s)
- Jessica M. van Loben Sels
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, CB2 2QQ UK,Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892 USA
| | - Luke W. Meredith
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, CB2 2QQ UK
| | - Stanislav V. Sosnovtsev
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892 USA
| | - Miranda de Graaf
- Department of Viroscience, Erasmus University Medical Center, 3015 CN, Rotterdam, the Netherlands.
| | - Marion P.G. Koopmans
- Department of Viroscience, Erasmus University Medical Center, 3015 CN Rotterdam, NL
| | - Lisa C. Lindesmith
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Kim Y. Green
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892 USA,Corresponding author at: Dr. Kim Y. Green, Caliciviruses Section, LID/DIR/NIAID, National Institutes of Health (NIH), Building 50, Room 6318, 50 South Drive, Bethesda, MD 20892 USA –
| | - Ian G. Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, CB2 2QQ UK
| |
Collapse
|
6
|
Tenge VR, Hu L, Prasad BVV, Larson G, Atmar RL, Estes MK, Ramani S. Glycan Recognition in Human Norovirus Infections. Viruses 2021; 13:2066. [PMID: 34696500 PMCID: PMC8537403 DOI: 10.3390/v13102066] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022] Open
Abstract
Recognition of cell-surface glycans is an important step in the attachment of several viruses to susceptible host cells. The molecular basis of glycan interactions and their functional consequences are well studied for human norovirus (HuNoV), an important gastrointestinal pathogen. Histo-blood group antigens (HBGAs), a family of fucosylated carbohydrate structures that are present on the cell surface, are utilized by HuNoVs to initially bind to cells. In this review, we describe the discovery of HBGAs as genetic susceptibility factors for HuNoV infection and review biochemical and structural studies investigating HuNoV binding to different HBGA glycans. Recently, human intestinal enteroids (HIEs) were developed as a laboratory cultivation system for HuNoV. We review how the use of this novel culture system has confirmed that fucosylated HBGAs are necessary and sufficient for infection by several HuNoV strains, describe mechanisms of antibody-mediated neutralization of infection that involve blocking of HuNoV binding to HBGAs, and discuss the potential for using the HIE model to answer unresolved questions on viral interactions with HBGAs and other glycans.
Collapse
Affiliation(s)
- Victoria R. Tenge
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (V.R.T.); (B.V.V.P.); (R.L.A.); (M.K.E.)
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - B. V. Venkataram Prasad
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (V.R.T.); (B.V.V.P.); (R.L.A.); (M.K.E.)
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Göran Larson
- Department of Laboratory Medicine, University of Gothenburg, SE 413 45 Gothenburg, Sweden;
| | - Robert L. Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (V.R.T.); (B.V.V.P.); (R.L.A.); (M.K.E.)
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (V.R.T.); (B.V.V.P.); (R.L.A.); (M.K.E.)
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (V.R.T.); (B.V.V.P.); (R.L.A.); (M.K.E.)
| |
Collapse
|
7
|
Oyster Heat Shock Protein 70 Plays a Role in Binding of Human Noroviruses. Appl Environ Microbiol 2021; 87:e0079021. [PMID: 34232705 DOI: 10.1128/aem.00790-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human noroviruses (HuNoVs) are important foodborne pathogens causing acute gastroenteritis. Oysters are an important vehicle for the transmission of HuNoVs. Histo-blood group antigen (HBGA)-like substances are considered the primary ligands for bioaccumulation of HuNoVs in oyster tissues. In this study, proteinaceous ligands for specific binding of HuNoVs were mined from oyster tissues using a bacterial cell surface display system. The macromolecular target was captured and identified in proteomic analysis. The distribution of viral particles, oyster heat shock protein 70 (oHSP 70), and type A HBGA (positive control) in oyster tissue was investigated by multiplex immunofluorescence assays after artificial contamination with HuNoVs (GII.4). Our results demonstrated that oHSP 70 is a candidate vital ligand for specific binding of HuNoVs in oyster tissues. In addition, P proteins (GI.1 and GII.4) and viral particles (GI.1 and GII.4) were captured by recombinant oHSP 70 in an enzyme-linked immunosorbent assay with a sample signal/negative signal of 7.8, 6.3, 17.0, and 8.8, respectively. The findings suggested that oHSP 70 plays an important role in the binding of these foodborne viruses. IMPORTANCE Human noroviruses (HuNoVs) are the most important pathogen for nonbacterial epidemic gastroenteritis cases. Foodborne transmission plays an important role in HuNoVs infection. Oysters, filter-feeding epibenthic bivalves, can be contaminated by fecal discharge in harvest water. A new proteinaceous ligand for HuNoVs other than HBGA is identified in oyster tissues. The significance of our research is in identifying and verifying the ligands in oyster tissues for HuNoV binding. Our data will allow a better understanding of HuNoV attachment in and transmission by oysters, leading to the control of undesired foodborne disease.
Collapse
|
8
|
Connor AJ, Zha RH, Koffas M. Bioproduction of biomacromolecules for antiviral applications. Curr Opin Biotechnol 2021; 69:263-272. [PMID: 33667798 DOI: 10.1016/j.copbio.2021.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
The societal damage brought on by viral epidemics indicates that next-generation antiviral treatments must be developed and deployed. Biomacromolecules are a diverse class of compounds that can potentially exhibit potent antiviral activity. Their efficacy and mechanisms of action are dependent upon multiple structural factors, including molecular weight, degree and position of sulfation, and backbone stereochemistry. Extracting biomacromolecules from animals and plants for healthcare applications is undesirable, as these methods are unable to yield products with well-defined chemical structures. Modern advances utilizing recombinant microbes and metabolic pathway engineering can be a key step towards large-scale bioproduction of tailored biomacromolecules for targeted antiviral applications.
Collapse
Affiliation(s)
- Alexander J Connor
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Runye H Zha
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
9
|
Abstract
The lumen of the gastrointestinal tract harbors a diverse community of microbes, fungi, archaea, and viruses. In addition to occupying the same enteric niche, recent evidence suggests that microbes and viruses can act synergistically and, in some cases, promote disease. In this review, we focus on the disease-promoting interactions of the gut microbiota and rotavirus, norovirus, poliovirus, reovirus, and astrovirus. Microbes and microbial compounds can directly interact with viruses, promote viral fitness, alter the glycan structure of viral adhesion sites, and influence the immune system, among other mechanisms. These interactions can directly and indirectly affect viral infection. By focusing on microbe–virus interplay, we hope to identify potential strategies for targeting offending microbes and minimizing viral infection.
Collapse
|
10
|
Liu D, Zhang Z, Liao N, Zou S, Tang H, Tian P, Young GM, Wu Q, Wang D. Culturable bacteria resident on lettuce might contribute to accumulation of human noroviruses. Int J Food Microbiol 2020; 317:108492. [PMID: 31896043 DOI: 10.1016/j.ijfoodmicro.2019.108492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 01/14/2023]
Abstract
Human noroviruses (HuNoVs) are the primary non-bacterial pathogens causing acute gastroenteritis worldwide. Attachment and invasion of HuNoVs are thought to involve histo-blood group antigens (HBGAs). Romaine lettuce, which is usually consumed raw, is a common food-related vehicle for HuNoVs transmission. This study investigated the possibility that bacteria resident on the surface of lettuce leaves contribute to norovirus adherence to this food. To test this hypothesis, bacteria were isolated from romaine lettuce and screened to evaluate whether they produced any polysaccharides with structures resembling HBGAs. Twenty-seven bacterial isolates were screened and 18, belonging to 13 different genera, were found to produce HBGAs-like polysaccharides that were recognized by monoclonal antibodies specific to type A, B, H and Lewis a, b, x and y. One bacterial isolate, belonging to the genus Pseudomonas was further investigated because it produced polysaccharides with the widest range of HBGA types, including type B, H and Lewis a, b and x. The Pseudomonas HBGAs-like polysaccharides were found to be extracellular and their production was enhanced when the bacteria were cultured in oligotrophic medium. HuNoVs capture assays revealed that GI.1, GI.8, and GII.2, GII.3, GII.4, GII.6, GII.12, GII.17 genotypes can be bind to Pseudomonas HBGAs-like polysaccharides. The direct evidence of bacterial production HBGAs-like polysaccharides demonstrates one possible mechanism driving accumulation of HuNoVs on lettuce.
Collapse
Affiliation(s)
- Danlei Liu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Zilei Zhang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Ningbo Liao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310000, China
| | - Songyan Zou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310000, China
| | - Haoxuan Tang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Tian
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service-United States Department of Agriculture, Albany, CA 94706, USA
| | - Glenn M Young
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
| | - Qingping Wu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Dapeng Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
11
|
A Survey of Analytical Techniques for Noroviruses. Foods 2020; 9:foods9030318. [PMID: 32164213 PMCID: PMC7142446 DOI: 10.3390/foods9030318] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/07/2020] [Accepted: 03/07/2020] [Indexed: 12/17/2022] Open
Abstract
As the leading cause of acute gastroenteritis worldwide, human noroviruses (HuNoVs) have caused around 685 million cases of infection and nearly $60 billion in losses every year. Despite their highly contagious nature, an effective vaccine for HuNoVs has yet to become commercially available. Therefore, rapid detection and subtyping of noroviruses is crucial for preventing viral spread. Over the past half century, there has been monumental progress in the development of techniques for the detection and analysis of noroviruses. However, currently no rapid, portable assays are available to detect and subtype infectious HuNoVs. The purpose of this review is to survey and present different analytical techniques for the detection and characterization of noroviruses.
Collapse
|
12
|
Onodera T, Hashi K, Shukla RK, Miki M, Takai-Todaka R, Fujimoto A, Kuraoka M, Miyoshi T, Kobayashi K, Hasegawa H, Ato M, Kelsoe G, Katayama K, Takahashi Y. Immune-Focusing Properties of Virus-like Particles Improve Protective IgA Responses. THE JOURNAL OF IMMUNOLOGY 2019; 203:3282-3292. [PMID: 31704880 DOI: 10.4049/jimmunol.1900481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023]
Abstract
Virus-like particles (VLPs) provide a well-established vaccine platform; however, the immunogenic properties acquired by VLP structure remain poorly understood. In this study, we showed that systemic vaccination with norovirus VLP recalls human IgA responses at higher magnitudes than IgG responses under a humanized mouse model that was established by introducing human PBMCs in severely immunodeficient mice. The recall responses elicited by VLP vaccines depended on VLP structure and the disruption of VLP attenuated recall responses, with a more profound reduction being observed in IgA responses. The IgA-focusing property was also conserved in a murine norovirus-primed model under which murine IgA responses were recalled in a manner dependent on VLP structure. Importantly, the VLP-driven IgA response preferentially targeted virus-neutralizing epitopes located in the receptor-binding domain. Consequently, VLP-driven IgA responses were qualitatively superior to IgG responses in terms of the virus-neutralizing activity in vitro. Furthermore, the IgA in mucosa obtained remarkable protective function toward orally administrated virus in vivo. Thus, our results indicate the immune-focusing properties of the VLP vaccine that improve the quality/quantity of mucosal IgA responses, a finding with important implications for developing mucosal vaccines.
Collapse
Affiliation(s)
- Taishi Onodera
- Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Kana Hashi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Rajni Kant Shukla
- Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Motohiro Miki
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Kitasato Institute for Life Sciences, Kitasato University, Tokyo 108-8641, Japan.,Vaccine & Biomedicine Department, Life Innovation Research Institute, Denka Innovation Center, Denka Co., Ltd., Tokyo 194-8560, Japan
| | - Reiko Takai-Todaka
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Kitasato Institute for Life Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Akira Fujimoto
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Kitasato Institute for Life Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Masayuki Kuraoka
- Department of Immunology and Human Vaccine Institute, Duke University, Durham, NC 27710
| | - Tatsuya Miyoshi
- Sakai City Institute of Public Health, Osaka 590-0953, Japan
| | - Kazuo Kobayashi
- Division of Public Health, Osaka Institute of Public Health, Osaka 537-0025, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Manabu Ato
- Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Garnett Kelsoe
- Department of Immunology and Human Vaccine Institute, Duke University, Durham, NC 27710
| | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Kitasato Institute for Life Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan;
| |
Collapse
|
13
|
Esseili MA, Gao X, Boley P, Hou Y, Saif LJ, Brewer-Jensen P, Lindesmith LC, Baric RS, Atmar RL, Wang Q. Human Norovirus Histo-Blood Group Antigen (HBGA) Binding Sites Mediate the Virus Specific Interactions with Lettuce Carbohydrates. Viruses 2019; 11:E833. [PMID: 31500340 PMCID: PMC6784273 DOI: 10.3390/v11090833] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 12/30/2022] Open
Abstract
Lettuce is often implicated in human norovirus (HuNoV) foodborne outbreaks. We identified H-like histo-blood group antigens (HBGAs) on lettuce leaves as specific binding moieties for virus-like particles (VLPs) of HuNoV GII.4/HS194/2009 strain. The objective of this study was to determine whether HuNoV-lettuce binding is mediated through the virus HBGA binding sites (HBS). Toward this objective, VLPs of historical HuNoV GII.4 strains (1987, 1997, 2002, 2004 and 2006) with known natural mutations in their HBS, two newly generated VLP mutants of GII.4/HS194/2009 (D374A and G443A) and a VLP mutant (W375A) of GI.1/Norwalk/1968 along with its wild type VLPs, which displays distinct HBS, were investigated for their binding to lettuce. ELISA revealed that historical GII.4 strains binding to lettuce was dependent on their HBGAs profiles. The VLP mutants D374A and G443A lost binding to HBGAs and displayed no to minimal binding to lettuce, respectively. The VLPs of GI.1/Norwalk/1968 strain bound to lettuce through an H-like HBGA and the binding was inhibited by fucosidase digestion. Mutant W375A which was previously shown not to bind to HBGAs, displayed significantly reduced binding to lettuce. We conclude that the binding of HuNoV GII.4 and GI.1 strains to lettuce is mediated through the virus HBS.
Collapse
Affiliation(s)
- Malak A Esseili
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA.
- Currently at Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA 30223, USA.
| | - Xiang Gao
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA.
| | - Patricia Boley
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA.
| | - Yixuan Hou
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA.
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA.
| | - Paul Brewer-Jensen
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599-7435, USA.
| | - Lisa C Lindesmith
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599-7435, USA.
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599-7435, USA.
| | - Robert L Atmar
- Department of Molecular Virology and Microbiology and Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Qiuhong Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA.
| |
Collapse
|
14
|
Extended direct lysis method for virus detection on berries including droplet digital RT-PCR or real time RT-PCR with reduced influence from inhibitors. J Virol Methods 2019; 271:113638. [DOI: 10.1016/j.jviromet.2019.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 03/11/2019] [Accepted: 04/02/2019] [Indexed: 11/24/2022]
|
15
|
Abstract
Individual virus particles have long been accepted as the infectious unit during cellular infection and host-to-host transmission. In this issue of Cell Host & Microbe, Santiana et al. (2018) uncover vesicle-cloaked rotavirus and norovirus clusters in feces of infected hosts that are more infectious than free virus particles during fecal-oral transmission.
Collapse
Affiliation(s)
- Carmen Mirabelli
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
16
|
DiCaprio E, Ye M, Chen H, Li J. Inactivation of Human Norovirus and Tulane Virus by High Pressure Processing in Simple Mediums and Strawberry Puree. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Todd KV, Tripp RA. Human Norovirus: Experimental Models of Infection. Viruses 2019; 11:v11020151. [PMID: 30759780 PMCID: PMC6410082 DOI: 10.3390/v11020151] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 12/21/2022] Open
Abstract
Human noroviruses (HuNoVs) are a leading cause of acute gastroenteritis worldwide. HuNoV infections lead to substantial societal and economic burdens. There are currently no licensed vaccines or therapeutics for the prevention or treatment of HuNoVs. A lack of well-characterized in vitro and in vivo infection models has limited the development of HuNoV countermeasures. Experimental infection of human volunteers and the use of related viruses such as murine NoV have provided helpful insights into HuNoV biology and vaccine and therapeutic development. There remains a need for robust animal models and reverse genetic systems to further HuNoV research. This review summarizes available HuNoV animal models and reverse genetic systems, while providing insight into their usefulness for vaccine and therapeutic development.
Collapse
Affiliation(s)
- Kyle V Todd
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
18
|
Falcó I, Randazzo W, Rodríguez-Díaz J, Gozalbo-Rovira R, Luque D, Aznar R, Sánchez G. Antiviral activity of aged green tea extract in model food systems and under gastric conditions. Int J Food Microbiol 2018; 292:101-106. [PMID: 30594741 DOI: 10.1016/j.ijfoodmicro.2018.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/30/2018] [Accepted: 12/19/2018] [Indexed: 01/24/2023]
Abstract
Aged-green tea extract (GTE) is known to reduce the infectivity of hepatitis A virus (HAV) and murine norovirus (MNV), a human norovirus surrogate, in vitro and in washing solutions. Initially, the effect of aged-GTE was evaluated on virus like particles (VLPs) of human norovirus (HuNoV) genogroup I (GI) by a porcine gastric mucine (PGM)-enzyme-linked immunosorbent assay (ELISA) and transmission electron microscopy (TEM), and on HuNoV GI suspensions by an in situ capture-RT-qPCR method, suggesting that HuNoVs are very sensitive to aged-GTE treatment at 37 °C. Moreover, the potential application of aged-GTE was evaluated using model foods and simulated gastric conditions. Then, aged-GTE samples prepared in orange juice, apple juice, horchata, and milk, respectively, were individually mixed with each virus and incubated overnight at 37 °C. Aged-GTE at 5 mg/ml in apple juice reduced MNV infectivity to undetectable levels and from 1.0 to 1.8 log in milk, horchata and orange juice. Aged-GTE at 5 mg/ml in orange juice, apple juice, horchata and milk reduced HAV infectivity by 1.2, 2.1, 1.5, and 1.7 log, respectively. Additionally, aged-GTE at 5 mg/ml in simulated intestinal fluid reduced MNV titers to undetectable levels and reduced HAV infectivity by ca. 2.0 log. The results show a potential for aged-GTE as a suitable natural option for preventive strategies for foodborne viral diseases.
Collapse
Affiliation(s)
- Irene Falcó
- Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50. 46100 Burjassot, Valencia, Spain; Department of Preservation and Food Safety Technologies, IATA-CSIC, Avda. Agustin Escardino 7, 46980 Paterna, Valencia, Spain
| | - Walter Randazzo
- Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50. 46100 Burjassot, Valencia, Spain; Department of Preservation and Food Safety Technologies, IATA-CSIC, Avda. Agustin Escardino 7, 46980 Paterna, Valencia, Spain
| | - Jesús Rodríguez-Díaz
- Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50. 46100 Burjassot, Valencia, Spain; Institute for Clinical Research of the Hospital Clínico Universitario (INCLIVA), Valencia, Spain
| | - Roberto Gozalbo-Rovira
- Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50. 46100 Burjassot, Valencia, Spain; Institute for Clinical Research of the Hospital Clínico Universitario (INCLIVA), Valencia, Spain
| | - Daniel Luque
- Unidad de Microscopía Electrónica y Confocal Centro Nacional de Microbiología - ISCIII, Majadahonda, Madrid, Spain
| | - Rosa Aznar
- Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50. 46100 Burjassot, Valencia, Spain; Department of Preservation and Food Safety Technologies, IATA-CSIC, Avda. Agustin Escardino 7, 46980 Paterna, Valencia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Avda. Agustin Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
19
|
Liu D, Zhang Z, Yin Y, Jia F, Wu Q, Tian P, Wang D. Development and evaluation of a novel in situ target-capture approach for aptamer selection of human noroviruses. Talanta 2018; 193:199-205. [PMID: 30368291 DOI: 10.1016/j.talanta.2018.09.084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/18/2018] [Accepted: 09/23/2018] [Indexed: 12/22/2022]
Abstract
Human noroviruses (HuNoVs) is the primary non-bacterial pathogen causing acute gastroenteritis worldwide. Molecular approaches have been mainly used for detection of HuNoVs. Aptamer-based assay has been also applied for detection of HuNoVs through affinity binding of viral capsid. In a conventional systematic evolution of ligands by exponential enrichment process, the target protein-bound sequences in the library were recovered by complicated process including affinity chromatography, extraction, membrane-filtration or antibody-conjugated magnetic beads. In this study, a novel approach was applied to select aptamers for HuNoVs. The new approach incorporated an in situ capture assay and next generation sequencing (NSG) for selecting the aptamers. P particles of HuNoV (GII.4) were purified and coated on the module to capture sequences that were specifically bound with the protein. The unbound sequences were easily removed by washing. The sequences with high affinity were amplified just in the wells and selected by repeated in situ selection process. From the total of 30,622,226 tested sequences, two aptamers, APTL-1 and APTL-6, were finally selected to incorporate with in situ capture RT-qPCR assay for detection of HuNoVs from clinical samples. The sensitivity of these two aptamers was compared with porcine gastric mucin (PGM) that contains well-known viral receptors, and the reported aptamer APT-M6-2. Both GI and GII HuNoVs could be detected from 5 clinical samples tested. The selected aptamer APTL-1 was comparable to PGM and slightly superior to the reported APTM6-2 aptamer for detection of HuNoVs from clinical samples. The results demonstrated that this in situ target-capture approach for aptamer selection is practicable.
Collapse
Affiliation(s)
- Danlei Liu
- School of Agriculture and Biology, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zilei Zhang
- School of Agriculture and Biology, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yujie Yin
- School of Agriculture and Biology, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Jia
- School of Agriculture and Biology, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Peng Tian
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service-United States Department of Agriculture, Albany, CA 94706, USA
| | - Dapeng Wang
- School of Agriculture and Biology, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
20
|
Farkas K, Cooper DM, McDonald JE, Malham SK, de Rougemont A, Jones DL. Seasonal and spatial dynamics of enteric viruses in wastewater and in riverine and estuarine receiving waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:1174-1183. [PMID: 29710623 DOI: 10.1016/j.scitotenv.2018.04.038] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 04/14/2023]
Abstract
Enteric viruses represent a global public health threat and are implicated in numerous foodborne and waterborne disease outbreaks. Nonetheless, relatively little is known of their fate and stability in the environment. In this study we used carefully validated methods to monitor enteric viruses, namely adenovirus (AdV), JC polyomavirus (JCV), noroviruses (NoVs), sapovirus (SaV) and hepatitis A and E viruses (HAV and HEV) from wastewater source to beaches and shellfish beds. Wastewater influent and effluent, surface water, sediment and shellfish samples were collected in the Conwy catchment (North Wales, UK) once a month for one year. High concentrations of AdV and JCV were found in the majority of samples, and no seasonal patterns were observed. No HAV and HEV were detected and no related illnesses were reported in the area during the period of sampling. Noroviruses and SaV were also detected at high concentrations in wastewater and surface water, and their presence correlated with local gastroenteritis outbreaks during the spring and autumn seasons. Noroviruses were also found in estuarine sediment and in shellfish harvested for human consumption. As PCR-based methods were used for quantification, viral infectivity and degradation was estimated using a NoV capsid integrity assay. The assay revealed low-levels of viral decay in wastewater effluent compared to influent, and more significant decay in environmental waters and sediment. Results suggest that AdV and JCV may be suitable markers for the assessment of the spatial distribution of wastewater contamination in the environment; and pathogenic viruses can be directly monitored during and after reported outbreaks to prevent further environment-derived illnesses.
Collapse
Affiliation(s)
- Kata Farkas
- School of Environment, Natural Resources and Geography, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK.
| | - David M Cooper
- Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor LL57 2UW, UK
| | - James E McDonald
- School of Biological Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Alexis de Rougemont
- Centre National de Référence Virus des gastro-entérites, Laboratoire de Virologie-Sérologie, CHU de Dijon, 2 rue Angélique Ducoudray, BP37013, 21070 Dijon cedex, France; UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, 1 Esplanade Erasme, 21000 Dijon, France
| | - Davey L Jones
- School of Environment, Natural Resources and Geography, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
| |
Collapse
|
21
|
Birch D, Diedrichsen RG, Christophersen PC, Mu H, Nielsen HM. Evaluation of drug permeation under fed state conditions using mucus-covered Caco-2 cell epithelium. Eur J Pharm Sci 2018. [DOI: 10.1016/j.ejps.2018.02.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Randazzo W, Fabra MJ, Falcó I, López-Rubio A, Sánchez G. Polymers and Biopolymers with Antiviral Activity: Potential Applications for Improving Food Safety. Compr Rev Food Sci Food Saf 2018; 17:754-768. [DOI: 10.1111/1541-4337.12349] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Walter Randazzo
- Dept. of Microbiology and Ecology; Univ. of Valencia.; Av. Dr. Moliner, 50. 46100 Burjassot Valencia Spain
- Dept. of Preservation and Food Safety Technologies; IATA-CSIC; Avda. Agustin Escardino 7 46980 Paterna Valencia Spain
| | - María José Fabra
- Dept. of Preservation and Food Safety Technologies; IATA-CSIC; Avda. Agustin Escardino 7 46980 Paterna Valencia Spain
| | - Irene Falcó
- Dept. of Microbiology and Ecology; Univ. of Valencia.; Av. Dr. Moliner, 50. 46100 Burjassot Valencia Spain
- Dept. of Preservation and Food Safety Technologies; IATA-CSIC; Avda. Agustin Escardino 7 46980 Paterna Valencia Spain
| | - Amparo López-Rubio
- Dept. of Preservation and Food Safety Technologies; IATA-CSIC; Avda. Agustin Escardino 7 46980 Paterna Valencia Spain
| | - Gloria Sánchez
- Dept. of Preservation and Food Safety Technologies; IATA-CSIC; Avda. Agustin Escardino 7 46980 Paterna Valencia Spain
| |
Collapse
|
23
|
Tian P, Yang D, Shan L, Li Q, Liu D, Wang D. Estimation of Human Norovirus Infectivity from Environmental Water Samples by In Situ Capture RT-qPCR Method. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:29-38. [PMID: 28856596 DOI: 10.1007/s12560-017-9317-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/12/2017] [Indexed: 05/05/2023]
Abstract
Human noroviruses (HuNoVs) are highly infectious viruses for which water is an important medium of transmission. In this study, we explored a new in situ capture RT-qPCR (ISC-RT-qPCR) methodology to estimate the infectivity of HuNoV in environmental water samples. This assay was based on capturing encapsidated HuNoV by viral receptors, followed by in situ amplification of the captured viral genomes by RT-qPCR. We demonstrated that the ISC-RT-qPCR did not capture and enable signal amplification of heat-denatured Tulane Virus (TV) and HuNoVs. We further demonstrated that the sensitivity of ISC-RT-qPCR was equal or better than that of conventional RT-qPCR procedures for the detection of HuNoV GI and GII. We then utilized the ISC-RT-qPCR to detect HuNoV in environmental water samples for comparison against that from a conventional RT-qPCR procedure. TV was used as a process control virus. While complete inhibition of TV genomic signal was observed in 27% of samples tested by RT-qPCR, no inhibition of TV genomic signal was observed by ISC-RT-qPCR. From 72 samples tested positive for HuNoV GI signal by RT-qPCR, only 20 (27.8%) of these samples tested positive by ISC-RT-qPCR, suggesting that 72.2% of RT-qPCR-positive samples were unlikely to be infectious. From 16 samples tested positive for HuNoV GII signal by RT-qPCR, only one of these samples tested positive by ISC-RT-qPCR. Five samples that had initially tested negative for HuNoV GII signal by RT-qPCR, was tested as positive by ISC-RT-qPCR. Overall, ISC-RT-qPCR method provided an alternative assay to estimate infectivity of HuNoV in environmental samples.
Collapse
Affiliation(s)
- Peng Tian
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan St., Albany, CA, 94710-1105, USA.
| | - David Yang
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan St., Albany, CA, 94710-1105, USA
| | - Lei Shan
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan St., Albany, CA, 94710-1105, USA
| | - Qianqian Li
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai, 100 Haiquan Road, Fengxian District, Shanghai, 201418, People's Republic of China
| | - Danlei Liu
- MOST-USDA Joint Research Center for Food Safety & Bor Luh Food Safety Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Dapeng Wang
- MOST-USDA Joint Research Center for Food Safety & Bor Luh Food Safety Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
24
|
Deng W, Gibson KE. Interaction of microorganisms within leafy green phyllospheres: Where do human noroviruses fit in? Int J Food Microbiol 2017; 258:28-37. [DOI: 10.1016/j.ijfoodmicro.2017.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/21/2017] [Accepted: 07/18/2017] [Indexed: 02/06/2023]
|
25
|
Zhou Z, Tian Z, Li Q, Tian P, Wu Q, Wang D, Shi X. In Situ Capture RT-qPCR: A New Simple and Sensitive Method to Detect Human Norovirus in Oysters. Front Microbiol 2017; 8:554. [PMID: 28421051 PMCID: PMC5376551 DOI: 10.3389/fmicb.2017.00554] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/16/2017] [Indexed: 11/13/2022] Open
Abstract
Human noroviruses (HuNoVs) are the major cause worldwide for non-bacterial acute gastroenteritis. In this study, we applied a novel viral receptor mediated in situ capture RT-qPCR (ISC-RT-qPCR) to detect HuNoVs in oysters and compared with the traditional RT-qPCR method. Ten HuNoVs RT-PCR positive and 5 negative clinical samples from gastroenteritis patients were used to compare specificity and sensitivity of ISC-RT-qPCR against that of the RT-qPCR assay. ISC-RT-qPCR had at a one-log and a two-log increase in sensitivity over that of the RT-qPCR assay for genotype I (GI) and GII, respectively. Distributions of HuNoVs in oyster tissues were investigated in artificially inoculated oysters. GI HuNoVs could be detected in all tissues in inoculated oysters by both ISC-RT-qPCR and RT-qPCR. GII HuNoVs could only be detected in gills and digestive glands by both methods. The number of viral genomic copies (vgc) measured by ISC-RT-qPCR was comparable with RT-qPCR in the detection of GI and GII HuNoVs in inoculated oysters. Thirty-six oyster samples from local market were assayed for HuNoVs by both assays. More HuNoVs could be detected by ISC-RT-qPCR in retail oysters. The detection rates of GI HuNoVs in gills, digestive glands, and residual tissues were 33.3, 25.0, and 19.4% by ISC-RT-qPCR; and 5.6, 11.1, and 11.1% by RT-qPCR, respectively. The detection rates of GII HuNoVs in gills were 2.8% by ISC-RT-qPCR; no GII HuNoV was detected in these oysters by RT-qPCR. Overall, all results demonstrated that ISC-RT-qPCR is a promising method for detecting HuNoVs in oyster samples.
Collapse
Affiliation(s)
- Zhenhuan Zhou
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Zhengan Tian
- Shanghai Entry-Exit Inspection and Quarantine Bureau of P.R.CShanghai, China
| | - Qianqian Li
- Department of Bioengineering, Shanghai Institute of TechnologyShanghai, China
| | - Peng Tian
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of AgricultureAlbany, CA, USA
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Dapeng Wang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
26
|
|
27
|
Wang M, Rong S, Tian P, Zhou Y, Guan S, Li Q, Wang D. Bacterial Surface-Displayed GII.4 Human Norovirus Capsid Proteins Bound to HBGA-Like Molecules in Romaine Lettuce. Front Microbiol 2017; 8:251. [PMID: 28265267 PMCID: PMC5316531 DOI: 10.3389/fmicb.2017.00251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/06/2017] [Indexed: 11/13/2022] Open
Abstract
Human Noroviruses (HuNoVs) are the main cause of non-bacterial gastroenteritis. Contaminated produce is a main vehicle for dissemination of HuNoVs. In this study, we used an ice nucleation protein mediated surface display system to present the protruding domain of GII.4 HuNoV capsid protein on bacterial surface and used it as a new strategy to explore interaction between HuNoV protein and receptor candidates from romaine lettuce. The surface-displayed HuNoV proteins were confirmed on the surface of the transformed bacteria by an immunofluorescence assay. The distribution patterns of the surface-displayed HuNoV proteins in romaine lettuce were identified through a confocal immunofluorescence assay. The surface-displayed HuNoV proteins could be found in the stomata, and the surfaces of vein and leaf of romaine lettuce. The surface-displayed HuNoV proteins could be captured by an ELISA assay utilizing extract from leaf (LE) or vein (VE). The binding of the surface-displayed HuNoV proteins to LE or VE could be competitively blocked by histo-blood group antigens from human saliva. In addition, the binding of the surface-displayed HuNoV proteins to LE or VE could also be attenuated by heat denaturation of lettuce proteins, and abolished by oxidation of lettuce carbohydrates. The results indicated that histo-blood group antigen-like molecules in LE or VE were involved in the binding of the surface-displayed HuNoV proteins to romaine lettuce. All data demonstrated that the surface-displayed HuNoV proteins could be utilized in a new and simple system for investigation of the interaction between the HuNoVs and their candidate ligands.
Collapse
Affiliation(s)
- Ming Wang
- Department of Bioengineering, Shanghai Institute of Technology Shanghai, China
| | - Shaofeng Rong
- Department of Bioengineering, Shanghai Institute of Technology Shanghai, China
| | - Peng Tian
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service - United States Department of Agriculture, Albany CA, USA
| | - Yue Zhou
- Department of Bioengineering, Shanghai Institute of Technology Shanghai, China
| | - Shimin Guan
- Department of Bioengineering, Shanghai Institute of Technology Shanghai, China
| | - Qianqian Li
- Department of Bioengineering, Shanghai Institute of Technology Shanghai, China
| | - Dapeng Wang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
28
|
DiCaprio E, Phantkankum N, Culbertson D, Ma Y, Hughes JH, Kingsley D, Uribe RM, Li J. Inactivation of human norovirus and Tulane virus in simple media and fresh whole strawberries by ionizing radiation. Int J Food Microbiol 2016; 232:43-51. [PMID: 27240219 DOI: 10.1016/j.ijfoodmicro.2016.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/22/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022]
Abstract
Human norovirus (NoV) is a major cause of fresh produce-associated outbreaks and human NoV in irrigation water can potentially lead to viral internalization in fresh produce. Therefore, there is a need to develop novel intervention strategies to target internalized viral pathogens while maintaining fresh produce quality. In this study electron beam (E-beam) and gamma radiation were evaluated for efficacy against a human NoV GII.4 strain and Tulane virus (TV). Virus survival following ionizing radiation treatments was determined using direct quantitative reverse transcriptase PCR (RT-qPCR), the porcine gastric mucin magnetic bead (PGM-MB) binding assay followed by RT-qPCR, and plaque assay. In simple media, a high dose of E-beam treatment was required to completely abolish the receptor binding ability of human NoV (35.3kGy) and TV (19.5-24.1kGy), as assessed using the PGM-MB binding assay. Both human NoV and TV were more susceptible to gamma irradiation than E-beam, requiring 22.4kGy to achieve complete inactivation. In whole strawberries, no human NoV or TV RNA was detected following 28.7kGy of E-beam treatment using the PGM-MB binding assay. Overall, human NoV and TV are highly resistant to ionizing radiation and therefore the technology may not be suitable to eliminate viruses in fresh produce at the currently approved levels. In addition, the PGM-MB binding assay is an improved method to detect viral infectivity compared to direct RT-qPCR.
Collapse
Affiliation(s)
- Erin DiCaprio
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus OH 43210, United States
| | - Nuttapong Phantkankum
- College of Applied Engineering Sustainability and Technology, Kent State Universtiy, Kent, OH 44242, United States
| | - Doug Culbertson
- Department of Food Science and Technology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus OH 43210, United States
| | - Yuanmei Ma
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus OH 43210, United States
| | - John H Hughes
- Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - David Kingsley
- U.S. Department of Agriculture, Agricultural Research Service, Food Safety and Intervention Technologies Research Unit, James W. W. Baker Center, Delaware State University, Dover, DE 19901, United States
| | - Roberto M Uribe
- College of Applied Engineering Sustainability and Technology, Kent State Universtiy, Kent, OH 44242, United States
| | - Jianrong Li
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus OH 43210, United States.
| |
Collapse
|
29
|
Bartsch C, Szabo K, Dinh-Thanh M, Schrader C, Trojnar E, Johne R. Comparison and optimization of detection methods for noroviruses in frozen strawberries containing different amounts of RT-PCR inhibitors. Food Microbiol 2016; 60:124-30. [PMID: 27554153 DOI: 10.1016/j.fm.2016.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 01/01/2023]
Abstract
Frozen berries have been repeatedly identified as vehicles for norovirus (NoV) transmission causing large gastroenteritis outbreaks. However, virus detection in berries is often hampered by the presence of RT-PCR-inhibiting substances. Here, several virus extraction methods for subsequent real-time RT-PCR-based NoV-RNA detection in strawberries were compared and optimized. NoV recovery rates (RRs) between 0.21 ± 0.13% and 10.29 ± 6.03% were found when five different artificially contaminated strawberry batches were analyzed by the ISO/TS15216-2 method indicating the presence of different amounts of RT-PCR inhibitors. A comparison of five different virus extraction methods using artificially contaminated strawberries containing high amounts of RT-PCR inhibitors revealed the best NoV RRs for the ISO/TS15216 method. Further improvement of NoV RRs from 2.83 ± 2.92% to 15.28 ± 9.73% was achieved by the additional use of Sephacryl(®)-based columns for RNA purification. Testing of 22 frozen strawberry samples from a batch involved in a gastroenteritis outbreak resulted in 5 vs. 13 NoV GI-positive and in 9 vs. 20 NoV GII-positive samples using the original ISO/TS15216 method vs. the extended protocol, respectively. It can be concluded that the inclusion of an additional RNA purification step can increase NoV detection by the ISO/TS15216-2 method in frozen berries containing high amounts of RT-PCR inhibitors.
Collapse
Affiliation(s)
- Christina Bartsch
- Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Kathrin Szabo
- Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Mai Dinh-Thanh
- Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Christina Schrader
- Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Eva Trojnar
- Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Reimar Johne
- Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| |
Collapse
|
30
|
Afolayan OT, Webb CC, Cannon JL. Evaluation of a Porcine Gastric Mucin and RNase A Assay for the Discrimination of Infectious and Non-infectious GI.1 and GII.4 Norovirus Following Thermal, Ethanol, or Levulinic Acid Plus Sodium Dodecyl Sulfate Treatments. FOOD AND ENVIRONMENTAL VIROLOGY 2016; 8:70-78. [PMID: 26514820 DOI: 10.1007/s12560-015-9219-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/24/2015] [Indexed: 06/05/2023]
Abstract
Human noroviruses (NoVs) are a major source of foodborne illnesses worldwide. Since human NoVs cannot be cultured in vitro, methods that discriminate infectious from non-infectious NoVs are needed. The purpose of this study was to evaluate binding of NoV genotypes GI.1 and GII.4 to histo-blood group antigens expressed in porcine gastric mucin (PGM) as a surrogate for detecting infectious virus following thermal (99 °C/5 min), 70% ethanol or 0.5% levulinic acid (LV) plus 0.01 or 0.1% sodium dodecyl sulfate (SDS) sanitizer treatments and to determine the limit of detection of GI.1 and GII.4 binding to PGM. Treated and control virus samples were applied to 96-well plates coated with 1 µg/ml PGM followed by RNase A (5 ng/µl) treatment for degradation of exposed RNA. Average log genome copies per ml (gc/ml) reductions and relative differences (RD) in quantification cycle (Cq) values after thermal treatment were 1.77/5.62 and 1.71/7.25 (RNase A) and 1.73/5.50 and 1.56/6.58 (no RNase A) for GI.1 and GII.4, respectively. Treatment of NoVs with 70% EtOH resulted in 0.05/0.16 (GI.1) and 3.54/10.19 (GII.4) log reductions in gc/ml and average RD in Cq value, respectively. LV (0.5%) combined with 0.1 % SDS provided a greater decrease of GI.1 and GII.4 NoVs with 8.97 and 8.13 average RD in Cq values obtained, respectively than 0.5% LV/0.01 % SDS. Virus recovery after PGM binding was variable with GII.4 > GI.1. PGM binding is a promising surrogate for identifying infectious and non-infectious NoVs after capsid destruction, however, results vary depending on virus strain and inactivation method.
Collapse
Affiliation(s)
- Olamide T Afolayan
- Department of Food Science and Technology, Center for Food Safety, University of Georgia, 1109 Experiment Street, Griffin, GA, 30223, USA
| | - Cathy C Webb
- Department of Food Science and Technology, Center for Food Safety, University of Georgia, 1109 Experiment Street, Griffin, GA, 30223, USA.
| | - Jennifer L Cannon
- Department of Food Science and Technology, Center for Food Safety, University of Georgia, 1109 Experiment Street, Griffin, GA, 30223, USA.
| |
Collapse
|
31
|
Thermal Inactivation of Enteric Viruses and Bioaccumulation of Enteric Foodborne Viruses in Live Oysters (Crassostrea virginica). Appl Environ Microbiol 2016; 82:2086-99. [PMID: 26826225 DOI: 10.1128/aem.03573-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/18/2016] [Indexed: 12/30/2022] Open
Abstract
Human enteric viruses are among the main causative agents of shellfish-associated outbreaks. In this study, the kinetics of viral bioaccumulation in live oysters and the heat stabilities of the predominant enteric viruses were determined both in tissue culture and in oyster tissues. A human norovirus (HuNoV) GII.4 strain, HuNoV surrogates (murine norovirus [MNV-1], Tulane virus [TV]), hepatitis A virus (HAV), and human rotavirus (RV) bioaccumulated to high titers within oyster tissues, with different patterns of bioaccumulation for the different viruses. We tested the thermal stability of each virus at 62, 72, and 80°C in culture medium. The viruses can be ranked from the most heat resistant to the least stable as follows: HAV, RV, TV, MNV-1. In addition, we found that oyster tissues provided protection to the viruses during heat treatment. To decipher the mechanism underlying viral inactivation by heat, purified TV was treated at 80°C for increasing time intervals. It was found that the integrity of the viral capsid was disrupted, whereas viral genomic RNA remained intact. Interestingly, heat treatment leading to complete loss of TV infectivity was not sufficient to completely disrupt the receptor binding activity of TV, as determined by the porcine gastric mucin-magnetic bead binding assay. Similarly, HuNoV virus-like particles (VLPs) and a HuNoV GII.4 strain retained some receptor binding ability following heat treatment. Although foodborne viruses have variable heat stability, 80°C for >6 min was sufficient to completely inactivate enteric viruses in oysters, with the exception of HAV.
Collapse
|
32
|
Nowald C, Penk A, Chiu H, Bein T, Huster D, Lieleg O. A Selective Mucin/Methylcellulose Hybrid Gel with Tailored Mechanical Properties. Macromol Biosci 2016; 16:567-79. [DOI: 10.1002/mabi.201500353] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/25/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Constantin Nowald
- Department of Mechanical Engineering Institute for Medical Engineering IMETUM Technische Universität München 85748 Garching Germany
| | - Anja Penk
- Institute of Medical Physics and Biophysics University of Leipzig 04107 Leipzig Germany
| | - Hsin‐Yi Chiu
- Department of Chemistry and Center for NanoScience (CeNS) University of Munich (LMU) 81377 München Germany
| | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS) University of Munich (LMU) 81377 München Germany
| | - Daniel Huster
- Institute of Medical Physics and Biophysics University of Leipzig 04107 Leipzig Germany
| | - Oliver Lieleg
- Department of Mechanical Engineering Institute for Medical Engineering IMETUM Technische Universität München 85748 Garching Germany
| |
Collapse
|
33
|
A Gnotobiotic Pig Model for Determining Human Norovirus Inactivation by High-Pressure Processing. Appl Environ Microbiol 2015; 81:6679-87. [PMID: 26187968 DOI: 10.1128/aem.01566-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/12/2015] [Indexed: 11/20/2022] Open
Abstract
Human norovirus (NoV) is responsible for over 90% of outbreaks of acute nonbacterial gastroenteritis worldwide and accounts for 60% of cases of foodborne illness in the United States. Currently, the infectivity of human NoVs is poorly understood due to the lack of a cell culture system. In this study, we determined the survival of a human NoV genogroup II, genotype 4 (GII.4) strain in seeded oyster homogenates after high-pressure processing (HPP) using a novel receptor binding assay and a gnotobiotic pig model. Pressure conditions of 350 MPa at 0°C for 2 min led to a 3.7-log10 reduction in the number of viral RNA copies in oysters, as measured by the porcine gastric mucin-conjugated magnetic bead (PGM-MB) binding assay and real-time RT-PCR, whereas pressure conditions of 350 MPa at 35°C for 2 min achieved only a 1-log10 reduction in the number of RNA copies. Newborn gnotobiotic piglets orally fed oyster homogenate treated at 350 MPa and 0°C for 2 min did not have viral RNA shedding in feces, histologic lesions, or viral replication in the small intestine. In contrast, gnotobiotic piglets fed oysters treated at 350 MPa and 35°C for 2 min had high levels of viral shedding in feces and exhibited significant histologic lesions and viral replication in the small intestine. Collectively, these data demonstrate that (i) human NoV survival estimated by an in vitro PGM-MB virus binding assay is consistent with the infectivity determined by an in vivo gnotobiotic piglet model and (ii) HPP is capable of inactivating a human NoV GII.4 strain at commercially acceptable pressure levels.
Collapse
|
34
|
Abstract
Blood group antigens represent polymorphic traits inherited among individuals and populations. At present, there are 34 recognized human blood groups and hundreds of individual blood group antigens and alleles. Differences in blood group antigen expression can increase or decrease host susceptibility to many infections. Blood groups can play a direct role in infection by serving as receptors and/or coreceptors for microorganisms, parasites, and viruses. In addition, many blood group antigens facilitate intracellular uptake, signal transduction, or adhesion through the organization of membrane microdomains. Several blood groups can modify the innate immune response to infection. Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures. Microorganisms can also stimulate antibodies against blood group antigens, including ABO, T, and Kell. Finally, there is a symbiotic relationship between blood group expression and maturation of the gastrointestinal microbiome.
Collapse
Affiliation(s)
- Laura Cooling
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
35
|
Serological Correlates of Protection against a GII.4 Norovirus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:923-9. [PMID: 26041041 DOI: 10.1128/cvi.00196-15] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/29/2015] [Indexed: 01/01/2023]
Abstract
Noroviruses are the leading cause of acute gastroenteritis worldwide, and norovirus vaccine prevention strategies are under evaluation. The immunogenicity of two doses of bivalent genogroup 1 genotype 1 (GI.1)/GII.4 (50 μg of virus-like particles [VLPs] of each strain adjuvanted with aluminum hydroxide and 3-O-desacyl-4'monophosphoryl lipid A [MPL]) norovirus vaccine administered to healthy adults in a phase 1/2 double-blind placebo-controlled trial was determined using virus-specific serum total antibody enzyme-linked immunosorbent assay (ELISA), IgG, IgA, and histoblood group antigen (HBGA)-blocking assays. Trial participants subsequently received an oral live virus challenge with a GII.4 strain, and the vaccine efficacy results were reported previously (D. I. Bernstein et al., J Infect Dis 211:870-878, 2014, doi:10.1093/infdis/jiu497). This report assesses the impact of prechallenge serum antibody levels on infection and illness outcomes. Serum antibody responses were observed in vaccine recipients by all antibody assays, with first-dose seroresponse frequencies ranging from 88 to 100% for the GI.1 antigen and from 69 to 84% for the GII.4 antigen. There was little increase in antibody levels after the second vaccine dose. Among the subjects receiving the placebo, higher prechallenge serum anti-GII.4 HBGA-blocking and IgA antibody levels, but not IgG or total antibody levels, were associated with a lower frequency of virus infection and associated illness. Notably, some placebo subjects without measurable serum antibody levels prechallenge did not become infected after norovirus challenge. In vaccinees, anti-GII.4 HBGA-blocking antibody levels of >1:500 were associated with a lower frequency of moderate-to-severe vomiting or diarrheal illness. In this study, prechallenge serum HBGA antibody titers correlated with protection in subjects receiving the placebo; however, other factors may impact the likelihood of infection and illness after virus exposure. (This study is registered at ClinicalTrials.gov under registration number NCT1609257.).
Collapse
|
36
|
Yazawa S, Yokobori T, Ueta G, Ide M, Altan B, Thongprachum A, Nishimura T, Nakajima T, Kominato Y, Asao T, Saniabadi AR, Furukawa K, Kuwano H, Le Pendu J, Ushijima H. Blood group substances as potential therapeutic agents for the prevention and treatment of infection with noroviruses proving novel binding patterns in human tissues. PLoS One 2014; 9:e89071. [PMID: 24558470 PMCID: PMC3928367 DOI: 10.1371/journal.pone.0089071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 01/14/2014] [Indexed: 12/19/2022] Open
Abstract
Blood group-related glycans determining ABO and Lewis blood groups are known to function as attachment factors for most of the norovirus (NoV) strains. To identify binding specificity of each NoV, recombinant norovirus-like particles (VLPs) and human saliva samples with different ABO, Lewis phenotypes and secretor status have been commonly applied. When binding specificities of VLPs prepared from 16 different genotypes of NoVs in GI and GII genogroups were characterized in samples of human gastric mucosa compared to human saliva based on blood group phenotypes, considerable differences were observed for several strains. Novel binding specificities determined by an ELISA using preparations from human gastric mucosa were also ascertained by immunohistochemical analyses using human jejunal mucosa, widely believed to be susceptible to NoV infection. Further, A, B and O(H) blood group substances prepared from porcine and squid tissues were found to be effective for preventing ABO blood group-specific binding of VLPs to both saliva and mucosa samples. Therefore, these blood group substances might have potential for the prevention and treatment of NoV infection.
Collapse
Affiliation(s)
- Shin Yazawa
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
- Tokushima Research Institute, Otsuka Pharmaceutical Co. Ltd., Tokushima, Japan
| | - Takehiko Yokobori
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Gen Ueta
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Munenori Ide
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Bolag Altan
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Aksara Thongprachum
- Department of Developmental Medical Sciences, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Toyo Nishimura
- Tokushima Research Institute, Otsuka Pharmaceutical Co. Ltd., Tokushima, Japan
| | - Tamiko Nakajima
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshihiko Kominato
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takayuki Asao
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | - Kiyoshi Furukawa
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Jacques Le Pendu
- Inserm, UMR892; CNRS, UMR 6299; University of Nantes, Nantes, France
| | - Hiroshi Ushijima
- Department of Developmental Medical Sciences, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
37
|
Lieleg O, Lieleg C, Bloom J, Buck CB, Ribbeck K. Mucin biopolymers as broad-spectrum antiviral agents. Biomacromolecules 2012; 13:1724-32. [PMID: 22475261 DOI: 10.1021/bm3001292] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mucus is a porous biopolymer matrix that coats all wet epithelia in the human body and serves as the first line of defense against many pathogenic bacteria and viruses. However, under certain conditions viruses are able to penetrate this infection barrier, which compromises the protective function of native mucus. Here, we find that isolated porcine gastric mucin polymers, key structural components of native mucus, can protect an underlying cell layer from infection by small viruses such as human papillomavirus (HPV), Merkel cell polyomavirus (MCV), or a strain of influenza A virus. Single particle analysis of virus mobility inside the mucin barrier reveals that this shielding effect is in part based on a retardation of virus diffusion inside the biopolymer matrix. Our findings suggest that purified mucins may be used as a broad-range antiviral supplement to personal hygiene products, baby formula or lubricants to support our immune system.
Collapse
Affiliation(s)
- Oliver Lieleg
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | | | | | | | |
Collapse
|
38
|
Esseili MA, Wang Q, Saif LJ. Binding of human GII.4 norovirus virus-like particles to carbohydrates of romaine lettuce leaf cell wall materials. Appl Environ Microbiol 2012; 78:786-94. [PMID: 22138991 PMCID: PMC3264112 DOI: 10.1128/aem.07081-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/17/2011] [Indexed: 11/20/2022] Open
Abstract
Norovirus (NoV) genogroup II genotype 4 (GII.4) strains are the dominant cause of the majority of food-borne outbreaks, including those that involve leafy greens, such as lettuce. Since human NoVs use carbohydrates of histo-blood group antigens as receptors/coreceptors, we examined the role of carbohydrates in the attachment of NoV to lettuce leaves by using virus-like particles (VLPs) of a human NoV/GII.4 strain. Immunofluorescence analysis showed that the VLPs attached to the leaf surface, especially to cut edges, stomata, and along minor veins. Binding was quantified using enzyme-linked immunosorbent assay (ELISA) performed on cell wall materials (CWM) from innermost younger leaves and outermost lamina of older leaves. The binding to CWM of older leaves was significantly (P < 0.05) higher (1.5- to 2-fold) than that to CWM of younger leaves. Disrupting the carbohydrates of CWM or porcine gastric mucin (PGM) (a carbohydrate control) using 100 mM sodium periodate (NaIO(4)) significantly decreased the binding an average of 17% in younger leaves, 43% in older leaves, and 92% for PGM. In addition, lectins recognizing GalNAc, GlcNAc, and sialic acid at 100 μg/ml significantly decreased the binding an average of 41%, 33%, and 20% on CWM of older leaves but had no effect on younger leaves. Lectins recognizing α-D-Gal, α-D-Man/α-D-Glc, and α-L-Fuc showed significant inhibition on CWM of older leaves as well as that of younger leaves. All lectins, except for the lectin recognizing α-D-Gal, significantly inhibited NoV VLP binding to PGM. Collectively, our results indicate that NoV VLPs bind to lettuce CWM by utilizing multiple carbohydrate moieties. This binding may enhance virus persistence on the leaf surface and prevent effective decontamination.
Collapse
Affiliation(s)
- Malak A Esseili
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio, USA
| | | | | |
Collapse
|
39
|
Juge N. Microbial adhesins to gastrointestinal mucus. Trends Microbiol 2011; 20:30-9. [PMID: 22088901 DOI: 10.1016/j.tim.2011.10.001] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/30/2011] [Accepted: 10/14/2011] [Indexed: 01/04/2023]
Abstract
The gastrointestinal tract (GIT) is lined by a layer of mucus formed by mucin glycoproteins. This layer constitutes a physical and chemical barrier between the intestinal contents and the underlying epithelia. In addition to this protective role, mucins harbor glycan-rich domains that provide preferential binding sites for pathogens and commensal bacteria. Although mucus-microbial interactions in the GIT play a crucial role in determining the outcome of relationships of both commensal and pathogens with the host, the adhesins and ligands involved in the interaction are poorly delineated. This review focuses on the current knowledge of microbial adhesins to gastrointestinal mucus and mucus components.
Collapse
Affiliation(s)
- Nathalie Juge
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK.
| |
Collapse
|
40
|
Crystal structures of GII.10 and GII.12 norovirus protruding domains in complex with histo-blood group antigens reveal details for a potential site of vulnerability. J Virol 2011; 85:6687-701. [PMID: 21525337 DOI: 10.1128/jvi.00246-11] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Noroviruses are the dominant cause of outbreaks of gastroenteritis worldwide, and interactions with human histo-blood group antigens (HBGAs) are thought to play a critical role in their entry mechanism. Structures of noroviruses from genogroups GI and GII in complex with HBGAs, however, reveal different modes of interaction. To gain insight into norovirus recognition of HBGAs, we determined crystal structures of norovirus protruding domains from two rarely detected GII genotypes, GII.10 and GII.12, alone and in complex with a panel of HBGAs, and analyzed structure-function implications related to conservation of the HBGA binding pocket. The GII.10- and GII.12-apo structures as well as the previously solved GII.4-apo structure resembled each other more closely than the GI.1-derived structure, and all three GII structures showed similar modes of HBGA recognition. The primary GII norovirus-HBGA interaction involved six hydrogen bonds between a terminal αfucose1-2 of the HBGAs and a dimeric capsid interface, which was composed of elements from two protruding subdomains. Norovirus interactions with other saccharide units of the HBGAs were variable and involved fewer hydrogen bonds. Sequence analysis revealed a site of GII norovirus sequence conservation to reside under the critical αfucose1-2 and to be one of the few patches of conserved residues on the outer virion-capsid surface. The site was smaller than that involved in full HBGA recognition, a consequence of variable recognition of peripheral saccharides. Despite this evasion tactic, the HBGA site of viral vulnerability may provide a viable target for small molecule- and antibody-mediated neutralization of GII norovirus.
Collapse
|
41
|
Tian P, Yang D, Jiang X, Zhong W, Cannon JL, Burkhardt W, Woods JW, Hartman G, Lindesmith L, Baric RS, Mandrell R. Specificity and kinetics of norovirus binding to magnetic bead-conjugated histo-blood group antigens. J Appl Microbiol 2010; 109:1753-62. [PMID: 21040268 DOI: 10.1111/j.1365-2672.2010.04812.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To characterize the specificity and effect of pH and ionic strength on the kinetics of virus binding to histo-blood group antigens (HBGA)-conjugated magnetic beads. METHODS AND RESULTS HBGAs from porcine gastric mucin (PGM) have been conjugated to magnetic beads (PGM-MB) for concentration of NoV. A GII.4 virus was used for the detailed binding kinetics study and a panel of genogroup I (GI) NoVs, genogroup II (GII) NoVs and recombinant NoVs (rNoVs) were used for specificity and binding efficiency assays. We determined that NoV can be captured after 15min of incubation with PGM-MB, and virus recovery efficiency is decreased after extended incubation times. rNoV binding as measured by ELISA and NoV recovery as measured by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), were both enhanced significantly at acidic pH conditions. rNoV binding to PGM as measured by ELISA was increased up to 66%. While real-time RT-PCR analyses suggest that NoV could be concentrated as much as 1000-fold at neutral pH, up to 3·4-fold further increase of NoV recovery was achieved by adjusting the pH of the sample to 3·0-4·2. Variation between GI and GII viral binding to the PGM-MB at basic pH was observed. All five GI rNoVs tested and 6 of 9 GII rNoVs were captured by PGM. All eight GI strains tested were concentrated by PGM-MB, ranging from 28-fold (GI.4) to 1502-fold (GI.1). Eleven of 13 GII strains were concentrated from 30-fold (GII.5) to 1014-fold (GII.4, lab strain) by PGM-MB. GI and GII rNoVs viral capsid proteins were recovered with high salt conditions, but results were inconsistent for whole virus recovery. CONCLUSIONS All GI and 85% of GII NoVs tested could be captured and concentrated by PGM-MB method. The binding occurred rapidly and was enhanced at low pH. SIGNIFICANCE AND IMPACT OF THE STUDY These results facilitated development of a prototype method for sensitive detection of NoV in samples requiring larger volumes.
Collapse
Affiliation(s)
- P Tian
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94547-1105, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Cliver DO. Capsid and Infectivity in Virus Detection. FOOD AND ENVIRONMENTAL VIROLOGY 2009; 1:123-128. [PMID: 20234879 PMCID: PMC2837222 DOI: 10.1007/s12560-009-9020-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 10/30/2009] [Indexed: 05/02/2023]
Abstract
The spectacular achievements and elegance of viral RNA analyses have somewhat obscured the importance of the capsid in transmission of viruses via food and water. The capsid's essential roles are protection of the RNA when the virion is outside the host cell and initiation of infection when the virion contacts a receptor on an appropriate host cell. Capsids of environmentally transmitted viruses are phenomenally durable. Fortuitous properties of the capsid include antigenicity, isoelectric point(s), sometimes hemagglutination, and perhaps others. These can potentially be used to characterize capsid changes that cause or accompany loss of viral infectivity and may be valuable in distinguishing native from inactivated virus when molecular detection methods are used.
Collapse
Affiliation(s)
- Dean O. Cliver
- Food Safety, University of California, VM:PHR, One Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|
43
|
Matsuno K, Suzuki S. Simple fluorimetric method for quantification of sialic acids in glycoproteins. Anal Biochem 2008; 375:53-9. [DOI: 10.1016/j.ab.2008.01.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Revised: 12/13/2007] [Accepted: 01/03/2008] [Indexed: 11/15/2022]
|
44
|
Tian P, Engelbrektson AL, Jiang X, Zhong W, Mandrell RE. Norovirus recognizes histo-blood group antigens on gastrointestinal cells of clams, mussels, and oysters: a possible mechanism of bioaccumulation. J Food Prot 2007; 70:2140-7. [PMID: 17900094 DOI: 10.4315/0362-028x-70.9.2140] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Outbreaks of norovirus (NoV) gastroenteritis are often associated with the consumption of contaminated bivalves such as oysters, clams, and mussels. Crassostrea virginica oysters trap the Norwalk virus through the intestinal type A-like histo-blood group antigen (HBGA), a possible mechanism of bioaccumulation responsible for NoV outbreaks. In this study, we tested binding and inhibition of binding in three species of oysters and one species each of clams and mussels with NoVs, representing four HBGA receptor-binding patterns. Our results indicated that all three oyster species expressed type A- and type O-like HBGA in their gastrointestinal tissue. Similar type A-like antigens also were found in mussels and clams, but only some of them express the O-like antigens. Both genogroups I and II recombinant norovirus-like particles (rNoVLPs) bound to gastrointestinal homogenates from oysters, mussels, and clams, and the binding was inhibited by preincubation of the rNoVLP with HBGA-specific monoclonal antibodies or with types A or O HBGA-positive human saliva. Co-localization of rNoVLPs and HBGA on gastrointestinal epithelial cells of oysters, mussels, and clams was also observed by immunofluorescent microscopy. Finally, the binding of rNoVLP to oyster gastrointestinal homogenates was inhibited by incubation with HBGA analogs. This study significantly expands our understanding that multiple HBGAs are expressed in oyster, mussel, and clam gastrointestinal tissues, which could be the major mechanism of bioaccumulation of NoVs by these bivalves. Our results also suggest that this bioaccumulation could be reversed by incubation with HBGA analogs, a possible important new strategy for depuration.
Collapse
Affiliation(s)
- Peng Tian
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, 800 Buchanan Street, Albany, California 94710, USA.
| | | | | | | | | |
Collapse
|
45
|
Tian P, Jiang X, Zhong W, Jensen HM, Brandl M, Bates AH, Engelbrektson AL, Mandrell R. Binding of recombinant norovirus like particle to histo-blood group antigen on cells in the lumen of pig duodenum. Res Vet Sci 2007; 83:410-8. [PMID: 17379264 DOI: 10.1016/j.rvsc.2007.01.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 01/25/2007] [Accepted: 01/30/2007] [Indexed: 10/23/2022]
Abstract
Histo-blood group antigens (HBGA) expressed on cells in the human GI tract have been shown to function as receptors for noroviruses. In concordance with earlier reports (Backer et al., 1997; Yamamoto and Yamamoto, 2001), this study found that individual pigs are either HBGA type A positive or type H1 (type O) positive. Recombinant norovirus like particles from a genogroup I (rNVLP) or three genogroup II (rMOH, rVA207, and rVA387) strains bound to plates coated with pig gastro-intestinal washings with similar binding patterns to humans. The binding of human norovirus like particles was inhibited by pre-incubating the wells with MAbs specific for either type A or type H1 HBGA, or by the presence of free HBGAs from human saliva. Co-localization of rNVLP and corresponding HBGA on epithelial cells of pig gastro-intestinal tissue (PGIT) was also observed. These findings suggest that rNVLP binds to HBGAs expressed on PGIT epithelial cells. This is the first report of the specific binding of human rNVLP to HBGAs in epithelial cells of pig gastrointestinal tissue. It highlights the importance of further study of human norovirus incidence and potential infection and residence in non-human animal hosts and suggests the possibility that norovirus may be a zoonotic pathogen.
Collapse
Affiliation(s)
- Peng Tian
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, CA 94710-1105, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Cheetham S, Souza M, McGregor R, Meulia T, Wang Q, Saif LJ. Binding patterns of human norovirus-like particles to buccal and intestinal tissues of gnotobiotic pigs in relation to A/H histo-blood group antigen expression. J Virol 2007; 81:3535-44. [PMID: 17215284 PMCID: PMC1866037 DOI: 10.1128/jvi.01306-06] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histo-blood group antigen (HBGA) phenotypes have been associated with susceptibility to human noroviruses (HuNoVs). Our aims were: (i) to determine the patterns of A/H HBGA expression in buccal and intestinal tissues of gnotobiotic (Gn) pigs; (ii) to determine if virus-like particles (VLPs) of HuNoV genogroup I (GI) and GII bind to A- or H-type tissues; (iii) to compare A/H expression and VLP binding patterns and confirm their binding specificities by blocking assays; (iv) to develop a hemagglutination inhibition test using buccal cells from live pigs to determine the Gn pig's A/H phenotype and to match viral strains with previously determined HuNoV VLP binding specificities; and (v) to determine the A/H phenotypes and compare these data to the infection outcomes of a previous study of 65 Gn pigs inoculated with HuNoV GII/4 strain HS66 and expressing A and/or H or neither antigen on their buccal and intestinal tissues (S. Cheetham, M. Souza, T. Meulia, S. Grimes, M. G. Han, and L. J. Saif, J. Virol. 80:10372-10381, 2006). We found that the HuNoV GI/GII VLPs of different clusters bound to tissues from four pigs tested (two A+ and two H+). The GI/1 and GII/4 VLPs bound extensively to duodenal and buccal tissues from either A+ or H+ pigs, but surprisingly, GII/1 and GII/3 VLPs bound minimally to the duodenum of an A+ pig. The VLP binding was partially inhibited by A-, H1-, or H2-specific monoclonal antibodies, but was completely blocked by porcine mucin. Comparing the A/H phenotypes of 65 HS66-inoculated Gn pigs from our previous study, we found that significantly more A+ and H(+) pigs (51%) than non-A+ and non-H+ pigs (12.5%) shed virus. From the 22 convalescent pigs, significantly more A+ or H+ pigs (66%) than non-A+ or H+ pigs (25%) seroconverted.
Collapse
Affiliation(s)
- S Cheetham
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
| | | | | | | | | | | |
Collapse
|
47
|
Tian P, Bates AH, Jensen HM, Mandrell RE. Norovirus binds to blood group A-like antigens in oyster gastrointestinal cells. Lett Appl Microbiol 2006; 43:645-51. [PMID: 17083711 DOI: 10.1111/j.1472-765x.2006.02010.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS To determine if histo-blood group antigens (HBGA) present in oyster gastrointestinal (GI) cells mediate accumulation of human noroviruses (NoV) in oyster GI cells. METHODS AND RESULTS HBGA-specific monoclonal antibodies (MAbs) were used to determine the presence of the corresponding HBGA in oyster GI cells. All oyster samples tested contained type A-like HBGA in GI tissue as measured by ELISA. Recombinant Norwalk virus viral like particles (rNVLP) were bound to plates coated with oyster GI homogenate. The binding was inhibited when rNVLPs were pre-incubated with MAbs specific for type A HBGA, or samples of human saliva from type A individuals. Co-localization of rNVLP and type A-like HBGA, but not type B-like or type H-like HBGA, on GI epithelial cells was observed by immunofluorescent histochemical staining and three-channel confocal scanning laser microscopy. CONCLUSION Type A-like HBGA is present in oyster GI cells and responsible for binding of rNVLP. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report of the presence of type A-like HBGA in oyster GI cells and the specific binding of rNVLP to type A-like HBGA on oyster GI cells. The results of this study suggest that human NoV concentrate in oyster GI cells by specific binding to concentrated type A-like HBGA rather than by a nonmolecular entrapment within the tissues.
Collapse
Affiliation(s)
- P Tian
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA 94710, USA.
| | | | | | | |
Collapse
|