1
|
Baramaki I, Altıntop MD, Arslan R, Alyu Altınok F, Özdemir A, Dallali I, Hasan A, Bektaş Türkmen N. Design, Synthesis, and In Vivo Evaluation of a New Series of Indole-Chalcone Hybrids as Analgesic and Anti-Inflammatory Agents. ACS OMEGA 2024; 9:12175-12183. [PMID: 38497028 PMCID: PMC10938421 DOI: 10.1021/acsomega.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/19/2024]
Abstract
Indole-chalcone hybrids have burst into prominence as potent weapons in the battle against pain and inflammation due to their unique features, allowing these ligands to form pivotal interactions with biological targets. In this context, the base-catalyzed Claisen-Schmidt condensation of 3',4'-(methylenedioxy)acetophenone with heteroaromatic aldehydes carrying an indole scaffold yielded new chalcones (1-7). The central and peripheral antinociceptive activities of all chalcones (compounds 1-7) at the dose of 10 mg/kg (i.p.) were evaluated by hot plate (supraspinal response), tail immersion (spinal response), and acetic acid-induced writhing tests in mice. The anti-inflammatory activities of compounds 1-7 were also investigated by means of a carrageenan-induced mouse paw edema model. The results revealed that compounds 1-7 extended the latency of response to thermal stimulus significantly in a hot-plate test similar to dipyrone (300 mg/kg; i.p.), the positive control drug. However, only compounds 2-7 were found to be significantly effective in the tail-immersion test. Compounds 1-7 also significantly showed analgesic effect by reducing the number of writhes and anti-inflammatory activity by inhibiting edema formation at different time intervals and levels. 1-(1,3-Benzodioxol-5-yl)-3-(1-methyl-1H-indol-2-yl)prop-2-en-1-one (4) drew attention by providing the highest efficacy results in both acute analgesia and inflammation models. Based on the in silico data acquired from the QikProp module, compound 4 was predicted to possess favorable oral bioavailability and drug-like properties. Taken together, it can be concluded that chalcones (1-7), especially compound 4, are outstanding candidates for further research to investigate their potential use in the management of pain and inflammation.
Collapse
Affiliation(s)
- Iman Baramaki
- Laboratory
of Neurotherapeutics, Drug Research Program, Division of Pharmacology
and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Mehlika Dilek Altıntop
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Rana Arslan
- Department
of Pharmacology, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
| | - Feyza Alyu Altınok
- Department
of Pharmacology, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
| | - Ahmet Özdemir
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Ilhem Dallali
- Department
of Pharmacology, Graduate School of Health Sciences, Anadolu University, 26470 Eskişehir, Turkey
| | - Ahmed Hasan
- Department
of Pharmacology, Graduate School of Health Sciences, Anadolu University, 26470 Eskişehir, Turkey
| | - Nurcan Bektaş Türkmen
- Department
of Pharmacology, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
| |
Collapse
|
2
|
Benny F, Kumar S, Binu A, Parambi DGT, Alsahli TG, Al-Sehemi AG, Chandran N, Manisha DS, Sreekumar S, Bhatt A, Madhu K, Mathew B. Targeting GABA receptors with chalcone derivative compounds, what is the evidence? Expert Opin Ther Targets 2023; 27:1257-1269. [PMID: 38112471 DOI: 10.1080/14728222.2023.2293752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
INTRODUCTION In medicinal chemistry, privileged structures have been frequently exploited as a successful template for drug discovery. Common simple scaffolds like chalcone are present in a wide range of naturally occurring chemicals. Chalcone exhibits extensive biological activity and has drawn attention in this context due to its function in the GABA receptor. Epilepsy and GABA receptors are related. It is a chronic neurological condition that affects globally. AREAS COVERED Numerous neurological disorders, including anxiety and epilepsy, have been related to GABA, the brain's most prevalent inhibitory neurotransmitter. We go through the role of GABA receptors in anxiety and epilepsy in this review. The structure-activity relationship of chalcone and its derivatives on the GABA receptor is covered in our final section. EXPERT OPINION GABA is a potential therapeutic target for issues associated with the nervous system. We talk about the potential effects of chalcone as a treatment for epilepsy and anxiety on the GABA receptor. Therefore, thorough research is necessary in this regard; the value of in silico tools in developing and enhancing GABA agonists is significant.
Collapse
Affiliation(s)
- Feba Benny
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Aiswarya Binu
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Della Grace Thomas Parambi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf university, Sakaka, Al Jouf, Saudi Arabia
| | - Tariq G Alsahli
- College of Pharmacy, Department of Pharmacology, Jouf university, Sakaka, Al Jouf, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Namitha Chandran
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Deepthi S Manisha
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Sarath Sreekumar
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Akanksha Bhatt
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand, India
| | - Krishnadas Madhu
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| |
Collapse
|
3
|
Kamecki F, Knez D, Carvalho D, Marcucci C, Rademacher M, Higgs J, Žakelj S, Marcos A, de Tezanos Pinto F, Abin-Carriquiry JA, Gobec S, Colettis N, Marder M. Multitarget 2'-hydroxychalcones as potential drugs for the treatment of neurodegenerative disorders and their comorbidities. Neuropharmacology 2021; 201:108837. [PMID: 34653442 DOI: 10.1016/j.neuropharm.2021.108837] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 02/01/2023]
Abstract
The complex nature of neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD) calls for multidirectional treatment. Restoring neurotransmitter levels by combined inhibition of cholinesterases (ChEs) and monoamine oxidases (MAOs, MAO-A and MAO-B), in conjunction with strategies to counteract amyloid β (Aβ) aggregation, may constitute a therapeutically strong multi-target approach for the treatment of NDDs. Chalcones are a subgroup of flavonoids with a broad spectrum of biological activity. We report here the synthesis of 2'-hydroxychalcones as MAO-A and MAO-B inhibitors. Compounds 5c (IC50 = 0.031 ± 0.001 μM), 5a (IC50 = 0.084 ± 0.003 μM), 2c (IC50 = 0.095 ± 0.019 μM) and 2a (IC50 = 0.111 ± 0.006 μM) were the most potent, selective and reversible inhibitors of human (h)MAO-B isoform. hMAO-B inhibitors 1a, 2a and 5a also inhibited murine MAO-B in vivo in mouse brain homogenates. Molecular modelling rationalised the binding mode of 2'-hydroxychalcones in the active site of hMAO-B. Additionally, several derivatives inhibited murine acetylcholinesterase (mAChE) (IC50 values from 4.37 ± 0.83 μM to 15.17 ± 6.03 μM) and reduced the aggregation propensity of Aβ. Moreover, some derivatives bound to the benzodiazepine binding site (BDZ-bs) of the γ-aminobutyric acid A (GABAA) receptors (1a and 2a with Ki = 4.9 ± 1.1 μM and 5.0 ± 1.1 μM, respectively), and exerted sedative and/or anxiolytic like effects on mice. The biological results reported here on 2'-hydroxychalcones provide an extension to previous studies on chalcone scaffold and show them as a potential treatment strategy for NDDs and their associated comorbidities.
Collapse
Affiliation(s)
- Fabiola Kamecki
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia.
| | - Diego Carvalho
- Department of Neurochemistry, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay.
| | - Carolina Marcucci
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Marina Rademacher
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Josefina Higgs
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Simon Žakelj
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia.
| | - Alejandra Marcos
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Felicitas de Tezanos Pinto
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Juan Andrés Abin-Carriquiry
- Department of Neurochemistry, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay.
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia.
| | - Natalia Colettis
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Mariel Marder
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Ferreira MKA, da Silva AW, Dos Santos Moura AL, Sales KVB, Marinho EM, do Nascimento Martins Cardoso J, Marinho MM, Bandeira PN, Magalhães FEA, Marinho ES, de Menezes JESA, Dos Santos HS. Chalcones reverse the anxiety and convulsive behavior of adult zebrafish. Epilepsy Behav 2021; 117:107881. [PMID: 33711684 DOI: 10.1016/j.yebeh.2021.107881] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/22/2021] [Accepted: 02/20/2021] [Indexed: 01/07/2023]
Abstract
In the treatment of anxiety and seizures, drugs of the benzodiazepine (BZD) class are used, which act on the Central Nervous System (CNS) through the neurotransmitter gamma-aminobutyric acid (GABA). Flavonoids modulate GABAA receptors. The aim of this study was to evaluate the anxiolytic and anticonvulsant effects of synthetic chalcones and their mechanisms of action via the GABAergic system, using adult zebrafish (ZFa). The animals were treated with chalcones (4.0 or 20 or 40 mg/kg; 20 µL; i.p) and submitted to the open field and 96 h toxicity test. Chalcones that cause locomotor alteration were evaluated in the light and dark anxiolytic test. The same doses of chalcones were evaluated in the anticonvulsant test. The lowest effective dose was chosen to assess the possible involvement in the GABAA receptor by blocking the flumazenil (fmz) antagonist. No chalcone was toxic and altered ZFa's locomotion. All chalcones had anxiolytic and anticonvulsant effects, mainly chalcones 1, where all doses showed effects in both tests. These effects were blocked by Fmz (antagonist GABAA), where it shows evidence of the performance of these activities of the GABA system. Therefore, this study demonstrated in relation to structure-activity, that the position of the substituents is important in the intensity of activities and that the absence of toxicity and the action of these compounds in the CNS, shows the pharmacological potential of these molecules, and, therefore, the insights are designed for the development of new drugs.
Collapse
Affiliation(s)
| | | | - Atilano Lucas Dos Santos Moura
- State University of Ceará, Graduate Program in Natural Sciences, Natural Products Chemistry Laboratory, Fortaleza, Ceará, Brazil
| | - Ketelly Vanessa Barros Sales
- State University of Ceará, Graduate Program in Natural Sciences, Natural Products Chemistry Laboratory, Fortaleza, Ceará, Brazil
| | - Emanuelle Machado Marinho
- Federal University of Ceará, Department of Analytical Chemistry and Physical Chemistry, Group of Theoretical Chemistry, Fortaleza, Ceará, Brazil
| | | | - Márcia Machado Marinho
- State University of Ceará, Iguatu Faculty of Education, Science and Letters, Ceará, Brazil
| | - Paulo Nogueira Bandeira
- Center for Exact Sciences and Technology, Vale do Acaraú State University, Sobral, Ceará, Brazil
| | - Francisco Ernani Alves Magalhães
- State University of Ceará, Department of Chemistry, Laboratory of Natural Products Bioprospecting and Biotechnology, Tauá, Ceará, Brazil
| | - Emmanuel Silva Marinho
- State University of Ceará, Department of Chemistry, Group of Theoretical Chemistry And Electrochemistry, Limoeiro do Norte, Ceará, Brazil
| | | | - Hélcio Silva Dos Santos
- State University of Ceará, Graduate Program in Natural Sciences, Natural Products Chemistry Laboratory, Fortaleza, Ceará, Brazil; Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, Brazil; Center for Exact Sciences and Technology, Vale do Acaraú State University, Sobral, Ceará, Brazil.
| |
Collapse
|
5
|
Adelusi TI, Du L, Chowdhury A, Xiaoke G, Lu Q, Yin X. Signaling pathways and proteins targeted by antidiabetic chalcones. Life Sci 2020; 284:118982. [PMID: 33387581 DOI: 10.1016/j.lfs.2020.118982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/13/2020] [Accepted: 12/20/2020] [Indexed: 12/24/2022]
Abstract
Chalcones have shown a broad spectrum of biological activities with clinical potential against various diseases. The biological activities are mainly attributed to the presence of α, β-unsaturated carbonyl system, perceived as potential Michael acceptors. In this review, we discussed the antioxidant potential of chalcones and elucidated the mechanisms of pathways and proteins such as carbohydrate digestive enzymes (α-amylase and α-glucosidase), aldose reductase, SGLT-2, and Nrf2 that are targeted by antidiabetic chalcones. In addition to their insulin mimetic potential, we explore the major molecular targets of chalcones and discuss the biochemical and therapeutic implication of modulating these targets. Finally, we dwell on the opulence of the literature and envisage how RNA interference-mediated gene silencing technique and in silico molecular docking could be exploited in the search for novel and more efficacious antidiabetic chalcones.
Collapse
Affiliation(s)
- Temitope Isaac Adelusi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Lei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Apu Chowdhury
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Gu Xiaoke
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
6
|
Mathew B, Parambi DGT, Sivasankarapillai VS, Uddin MS, Suresh J, Mathew GE, Joy M, Marathakam A, Gupta SV. Perspective Design of Chalcones for the Management of CNS Disorders: A Mini-Review. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:432-445. [PMID: 31187716 DOI: 10.2174/1871527318666190610111246] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/09/2019] [Accepted: 04/24/2019] [Indexed: 11/22/2022]
Abstract
The development of chalcone-based compounds for CNS disorders has been explored by many research groups. Chalcones are being considered as a potent organic scaffold with widespread applications in the field of drug discovery and medicinal chemistry. The planar or semi-planar geometry of chalcones with various functionalities impinged on the terminal aromatic systems renders the molecule its bio-activity including anti-cancer, anti-malarial, anti-microbial, anti-fungal, antileishmanial, anti-viral, anti-diabetic, anti-hypertensive properties, etc. Moreover, cutting-edge research has been executed in the domain of Central Nervous System (CNS) based scheme, further, their identification and classifications also remain of high interest in the field of medicinal chemistry but the specific reviews are limited. Hence, the present review highlights the significance of chalcones toward their CNS activities (up to 2019), which include anti-depressant activity, anxiolytic activity, activity with GABA receptors, acetylcholinesterase (AChE) and butyryl cholinesterase (BChE) inhibitions, activity as adenosine receptor antagonists anti-Alzheimer's agents, β-amyloid plaques imaging agents, monoamine oxidase inhibition. To our knowledge, this is the first review exclusively for CNS activity profile of chalcones.
Collapse
Affiliation(s)
- Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad 678557, Kerala, India
| | | | | | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Jerad Suresh
- Department of Pharmaceutical Chemistry, College of Pharmacy, Madras Medical College, Chennai 600004, India
| | | | - Monu Joy
- School of Pure & Applied Physics, M.G. University, Kottayam 686560, India
| | - Akash Marathakam
- Department of Pharmaceutical Chemistry, National College of Pharmacy, Calicut 673602, Kerala, India
| | - Sheeba Varghese Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, United States
| |
Collapse
|
7
|
Anxiolytic-like effect of chalcone N-{4'[(2E)-3-(3-nitrophenyl)-1-(phenyl)prop-2-en-1-one]} acetamide on adult zebrafish (Danio rerio): Involvement of the 5-HT system. Biochem Biophys Res Commun 2020; 526:505-511. [PMID: 32241546 DOI: 10.1016/j.bbrc.2020.03.129] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 03/21/2020] [Indexed: 02/05/2023]
Abstract
The action of anxiolytic compounds that act on selective serotonin receptors (SSRIs) have been scarcely evaluated. Serotonergic drugs have been shown to be effective in treating anxiety without presenting adverse effects as benzodiazepines. However, the anxiolytic effects take days to occur. This study aimed to evaluate the anxiolytic effect of the synthetic chalcone, 4'-[(2E) -3- (3-nitrophenyl) -1- (phenyl) prop-2-en-1-one] acetamide (PAAMNBA), and its possible mechanism of action in adult zebrafish (Danio rerio). PAAMNBA was synthesized with a yield of 51.3% and its chemical structure was determined by 1H and 13C NMR. Initially, PAAPMNBA was intraperitoneally administered to zebrafish (n = 6/group) at doses of 4, 12, or 40 mg/kg, and the animals were subsequently subjected to acute and open field toxicity tests. PAAMNBA was administered to the other groups (n = 6/group) for analyzing its effect in the light and dark test. The involvement of the serotonergic (5HT) system was also evaluated using 5-HTR 1, 5-HTR 2A/2C, and 5-HTR 3A/3B receptor antagonists, namely, pizotifeo, granizetron, and ciproeptadina, respectively. Molecular coupling was performed using the 5-HT1 receptor. PAAMNBA was found to be non-toxic, reduced the locomotor activity, and had an anxiolytic effect in adult zebrafish. The effect was reduced by pretreatment with pizotifene and was not reversed by treatment with granizetron and cyproeptadine. A previous in vivo molecular coupling study indicated that chalcones interact with the 5-HT1 receptor. The results suggested that the chalcone, PAAPMNBA, has anxiolytic activity, that is mediated by the serotonergic system via the 5-HT1 receptor. The interaction of PAAPMNBA with the 5-HT1 receptor was confirmed by molecular docking studies.
Collapse
|
8
|
Isoliquiritigenin Attenuates Anxiety-Like Behavior and Locomotor Sensitization in Rats after Repeated Exposure to Nicotine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9692321. [PMID: 32256666 PMCID: PMC7102418 DOI: 10.1155/2020/9692321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/21/2020] [Indexed: 11/18/2022]
Abstract
As important components of positive and negative reinforcement, locomotor sensitization and withdrawal anxiety following repeated exposure to nicotine (NIC) constitute crucial risk factors for relapse to NIC use after abstinence. Glycyrrhiza radix (G. radix), an important tonic used in traditional Oriental medicine, has not only anxiolytic effects but also reduces NIC-induced locomotor sensitization. Isoliquiritigenin (ISL), a bioactive ingredient of G. radix, also exhibits neuropharmacological effects, including anxiolytic action. Previously, we reported that ISL suppressed cocaine-induced extracellular dopamine release in the nucleus accumbens shell (NaccSh) and attenuated methamphetamine-induced neurotoxicity. The present study was performed to evaluate the effects of ISL on both NIC withdrawal anxiety and locomotor sensitization. Adult male rats received subcutaneous administration of NIC hydrogen tartrate (0.4 mg/kg, twice a day) for 7 days followed by 4 days of withdrawal. During the period of NIC withdrawal, the rats received four intragastric treatments with ISL (3, 10, or 30 mg/kg/day). All three doses of ISL significantly inhibited NIC withdrawal-induced anxiety-like behaviors in the elevated plus maze (EPM) test, but only the 10 mg/kg/day and 30 mg/kg/day ISL doses attenuated locomotor sensitization induced by a challenge dose of NIC. Intracerebroventricular ISL also inhibited both NIC-induced withdrawal anxiety and locomotor sensitization, but intra-NaccSh injection of ISL blocked only NIC locomotor sensitization, which was abolished by post-ISL infusion of tert-butyl hydroperoxide (an oxidant) or N-methyl-d-aspartate (NMDA) into the NaccSh. Moreover, there was increased protein expression of phosphorylated Erk1/2 in the NIC-sensitized NaccSh, which was suppressed by ISL. Taken together, these results suggest that ISL can inhibit repeated NIC-induced withdrawal anxiety and locomotor sensitization, and the latter is mediated by antagonizing accumbal reactive oxygen species and NMDA receptor signaling.
Collapse
|
9
|
Ferreira MKA, da Silva AW, Silva FCO, Holanda CLA, Barroso SM, Lima JDR, Vieira Neto AE, Campos AR, Bandeira PN, dos Santos HS, de Lemos TLG, Siqueira SMC, Magalhães FEA, de Menezes JES. Anxiolytic-like effect of chalcone N-{(4′-[(E)-3-(4-fluorophenyl)-1-(phenyl) prop-2-en-1-one]} acetamide on adult zebrafish (Danio rerio): Involvement of the GABAergic system. Behav Brain Res 2019; 374:111871. [DOI: 10.1016/j.bbr.2019.03.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/24/2019] [Accepted: 03/24/2019] [Indexed: 01/31/2023]
|
10
|
Higgs J, Wasowski C, Marcos A, Jukič M, Paván CH, Gobec S, de Tezanos Pinto F, Colettis N, Marder M. Chalcone derivatives: synthesis, in vitro and in vivo evaluation of their anti-anxiety, anti-depression and analgesic effects. Heliyon 2019; 5:e01376. [PMID: 30949609 PMCID: PMC6430037 DOI: 10.1016/j.heliyon.2019.e01376] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/11/2019] [Accepted: 03/13/2019] [Indexed: 11/17/2022] Open
Abstract
Anxiety disorders, depression and pain are highly prevalent pathologies. Their pharmacotherapy is associated with unwanted side effects; hence there is a clinical need to develop more effective drugs with fewer adverse reactions. Chalcones are one of the major classes of naturally occurring compounds. Chalcones and their derivatives have a huge importance in medicinal chemistry, displaying a wide range of pharmacological activities including anti-inflammatory, antimicrobial, antioxidant, cytotoxic and antitumor actions. The aim of this work was to evaluate chalcone effects on different targets involved in these pathologies. We have synthesized a series of simple chalcone derivatives taking common structural requirements described in literature related to their anxiolytic-like, antidepressant-like and/or antinociceptive properties into account. Furthermore, their potential in vitro effects towards different targets involved in these pathologies were evaluated. We have obtained twenty chalcones with moderate to high yields and assessed their ability to bind distinctive receptors, from rat brain homogenates, by displacement of labelled specific ligands: [3H] FNZ (binding site of benzodiazepines/GABAA), [3H] 8-OH-DPAT (serotonin 5-HT1A) and [3H] DAMGO (μ-opioid). Those compounds that showed the better in vitro activities were evaluated in mice using different behavioural tasks. In vivo results showed that 5′-methyl-2′-hydroxychalcone (9) exerted anxiolytic-like effects in mice in the plus maze test. While chalcone nuclei (1) revealed antidepressant-like activities in the tail suspension test. In addition, the novel 5′-methyl-2′-hydroxy-3′-nitrochalcone (12) exhibited antinociceptive activity in acute chemical and thermal nociception tests (writhing and hot plate tests). In conclusion, chalcones are thus promising compounds for the development of novel drugs with central nervous system (CNS) actions.
Collapse
Affiliation(s)
- Josefina Higgs
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Junín 956 (C1113AAD), Buenos Aires, Argentina
| | - Cristina Wasowski
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Junín 956 (C1113AAD), Buenos Aires, Argentina
| | - Alejandra Marcos
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Junín 956 (C1113AAD), Buenos Aires, Argentina
| | - Marko Jukič
- University of Ljubljana, Faculty of Pharmacy, Department of Medicinal Chemistry, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Carlos Humberto Paván
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Laboratorio Nacional de Investigación y Servicios de Péptidos y Proteínas Espectrometría de Masa (LANAIS PROEM), Buenos Aires, Argentina
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Department of Medicinal Chemistry, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Felicitas de Tezanos Pinto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Junín 956 (C1113AAD), Buenos Aires, Argentina
| | - Natalia Colettis
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Junín 956 (C1113AAD), Buenos Aires, Argentina
| | - Mariel Marder
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Junín 956 (C1113AAD), Buenos Aires, Argentina
- Corresponding author.
| |
Collapse
|
11
|
Benkherouf AY, Soini SL, Stompor M, Uusi-Oukari M. Positive allosteric modulation of native and recombinant GABA A receptors by hops prenylflavonoids. Eur J Pharmacol 2019; 852:34-41. [PMID: 30797788 DOI: 10.1016/j.ejphar.2019.02.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Abstract
Hops are a major component of beer that is added during brewing. In addition to its wide range of bioactivity, it exhibits neuroactive properties as a sedative and sleeping aid. The compounds responsible for this activity are yet to be revealed and understood in terms of their pharmacological properties. Here we evaluated the potential of several hops flavonoids in modulating the GABAergic activity and assessed their selectivity to GABAA receptors subtypes. GABA-potentiating effects were measured using [3H]ethynylbicycloorthobenzoate (EBOB) radioligand binding assay in native and recombinant α1β3γ2, α2β3γ2 and α6β3δ receptors expressed in HEK293 cells. Flumazenil sensitivity of GABA-potentiating effects and [3H]Ro 15-4513 binding assay were used to examine the flavonoids binding to benzodiazepine site. The prenylflavonoids xanthohumol (XN), isoxanthohumol (IXN) and 8-prenylnaringenin (8PN) potentiated GABA-induced displacement of [3H]EBOB binding in a concentration-dependent manner. The IC50 for this potentiation in native GABAA receptors were 29.7 µM, 11.6 µM, 7.3 µM, respectively. In recombinant receptors, the sensitivity to prenylflavonoid potentiation of GABA-induced displacement of [3H]EBOB binding followed the order α6β3δ > α2β3γ2 > α1β3γ2 with the strongest inhibition observed by 8PN in α6β3δ (IC50 = 3.6 μM). Flumazenil had no significant effect on the prenylflavonoid-induced displacement of [3H]EBOB binding and [3H]Ro 15-4513 displacement from native GABAA receptors was only detected at high micromolar concentrations (100 µM). We identified potent prenylflavonoids in hops that positively modulate GABA-induced responses in native and αβγ/δ recombinant GABAA receptors at low micromolar concentrations. These GABAergic modulatory effects were not mediated via the high-affinity benzodiazepine binding site.
Collapse
Affiliation(s)
- Ali Y Benkherouf
- Centre of Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - Sanna L Soini
- Centre of Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - Monika Stompor
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszów, Poland
| | - Mikko Uusi-Oukari
- Centre of Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland.
| |
Collapse
|
12
|
Mahapatra DK, Ghorai S, Bharti SK, Patil AG, Gayen S. Current Discovery Progress of Some Emerging Anti-infective Chalcones: Highlights from 2016 to 2017. Curr Drug Discov Technol 2018; 17:30-44. [PMID: 30033873 DOI: 10.2174/1570163815666180720170030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 11/22/2022]
Abstract
The anti-infective potentials of the natural products are very well known for centuries and are a part of traditional healing. The foremost therapeutic classes include flavones, isoflavones, flavonols, flavanones, flavanols, proanthocyanidins, anthocyanidins, chalcones, and aurones. The chalcone or 1,3-diphenyl-2E-propene-1-one represents the class of natural products which are comprised of benzylideneacetophenone function; i.e. two aromatic moieties linked together by an α, β-unsaturated carbonyl bridge comprising three-carbons. At present, chalcone is one of the privileged scaffolds that can be synthesized in the laboratory to derive different pharmacologically active compounds. This article is the continued form of the previously published work on anti-infective perspectives of chalcones (highlighted till 2015). The current work emphasizes on the discovery process of the chalcone in the period of 2016 to 2017 on malaria, trypanosomiasis, leishmaniasis, filaria, tuberculosis, netamodes, Human Immunodeficiency Virus (HIV), Tobacco Mosaic Virus (TMV), Severe Acute Respiratory Syndrome (SARS), and miscellaneous conditions. This review comprehensively focuses on the latest progress related with the anti-infective chalcones. The content includes the crucial structural features of chalcone scaffold including structure-activity relationship(s) along with their plausible mechanism of action(s) from the duration Jan 2016 to Dec 2017. This literature will be of prime interest to medicinal chemists in getting ideas and concepts for better rational development of potential anti-infective inhibitors.
Collapse
Affiliation(s)
- Debarshi K Mahapatra
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Vishwavidyalaya (A Central University), Sagar 470003, Madhya Pradesh, India
| | - Soumajit Ghorai
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Vishwavidyalaya (A Central University), Sagar 470003, Madhya Pradesh, India
| | - Sanjay K Bharti
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Asmita G Patil
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Vishwavidyalaya (A Central University), Sagar 470003, Madhya Pradesh, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Vishwavidyalaya (A Central University), Sagar 470003, Madhya Pradesh, India
| |
Collapse
|
13
|
Villas Boas GR, Stefanello da Silveira AP, Feitosa Farinelli BC, Lima Cardoso CA, Arce E, Oesterreich SA. The ethanolic extract obtained from Campomanesia pubescens (D.C.) O.BERG fruits exerts anxiolytic and antidepressant effects on chronic mild stress model and on anxiety models in Wistar rats: Behavioral evidences. Nutr Neurosci 2018; 23:16-26. [DOI: 10.1080/1028415x.2018.1466513] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | | | | | | | - Emely Arce
- Faculty of Medicine, State University of Paraná, Francisco Beltrão, Paraná, Brazil
| | | |
Collapse
|
14
|
Karimi-Sales E, Mohaddes G, Alipour MR. Chalcones as putative hepatoprotective agents: Preclinical evidence and molecular mechanisms. Pharmacol Res 2018; 129:177-187. [DOI: 10.1016/j.phrs.2017.11.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 02/08/2023]
|
15
|
Tripathi AC, Upadhyay S, Paliwal S, Saraf SK. Privileged scaffolds as MAO inhibitors: Retrospect and prospects. Eur J Med Chem 2018; 145:445-497. [PMID: 29335210 DOI: 10.1016/j.ejmech.2018.01.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/01/2017] [Accepted: 01/01/2018] [Indexed: 12/24/2022]
Abstract
This review aims to be a comprehensive, authoritative, critical, and readable review of general interest to the medicinal chemistry community because it focuses on the pharmacological, chemical, structural and computational aspects of diverse chemical categories as monoamine oxidase inhibitors (MAOIs). Monoamine oxidases (MAOs), namely MAO-A and MAO-B represent an enormously valuable class of neuronal enzymes embodying neurobiological origin and functions, serving as potential therapeutic target in neuronal pharmacotherapy, and hence we have coined the term "Neurozymes" which is being introduced for the first time ever. Nowadays, therapeutic attention on MAOIs engrosses two imperative categories; MAO-A inhibitors, in certain mental disorders such as depression and anxiety, and MAO-B inhibitors, in neurodegenerative disorders like Alzheimer's disease (AD) and Parkinson's disease (PD). The use of MAOIs declined due to some potential side effects, food and drug interactions, and introduction of other classes of drugs. However, curiosity in MAOIs is reviving and the recent developments of new generation of highly selective and reversible MAOIs, have renewed the therapeutic prospective of these compounds. The initial section of the review emphasizes on the detailed classification, structural and binding characteristics, therapeutic potential, current status and future challenges of the privileged pharmacophores. However, the chemical prospective of privileged scaffolds such as; aliphatic and aromatic amines, amides, hydrazines, azoles, diazoles, tetrazoles, indoles, azines, diazines, xanthenes, tricyclics, benzopyrones, and more interestingly natural products, along with their conclusive SARs have been discussed in the later segment of review. The last segment of the article encompasses some patents granted in the field of MAOIs, in a simplistic way.
Collapse
Affiliation(s)
- Avinash C Tripathi
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, UP, India
| | - Savita Upadhyay
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, UP, India
| | - Sarvesh Paliwal
- Pharmacy Department, Banasthali Vidyapith, Banasthali, Tonk 304022, Rajasthan, India
| | - Shailendra K Saraf
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, UP, India.
| |
Collapse
|
16
|
Tsuchiya H. Anesthetic Agents of Plant Origin: A Review of Phytochemicals with Anesthetic Activity. Molecules 2017; 22:E1369. [PMID: 28820497 PMCID: PMC6152143 DOI: 10.3390/molecules22081369] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022] Open
Abstract
The majority of currently used anesthetic agents are derived from or associated with natural products, especially plants, as evidenced by cocaine that was isolated from coca (Erythroxylum coca, Erythroxylaceae) and became a prototype of modern local anesthetics and by thymol and eugenol contained in thyme (Thymus vulgaris, Lamiaceae) and clove (Syzygium aromaticum, Myrtaceae), respectively, both of which are structurally and mechanistically similar to intravenous phenolic anesthetics. This paper reviews different classes of phytochemicals with the anesthetic activity and their characteristic molecular structures that could be lead compounds for anesthetics and anesthesia-related drugs. Phytochemicals in research papers published between 1996 and 2016 were retrieved from the point of view of well-known modes of anesthetic action, that is, the mechanistic interactions with Na⁺ channels, γ-aminobutyric acid type A receptors, N-methyl-d-aspartate receptors and lipid membranes. The searched phytochemicals include terpenoids, alkaloids and flavonoids because they have been frequently reported to possess local anesthetic, general anesthetic, antinociceptive, analgesic or sedative property. Clinical applicability of phytochemicals to local and general anesthesia is discussed by referring to animal in vivo experiments and human pre-clinical trials. This review will give structural suggestions for novel anesthetic agents of plant origin.
Collapse
Affiliation(s)
- Hironori Tsuchiya
- Department of Dental Basic Education, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu 501-0296, Japan.
| |
Collapse
|
17
|
Gomes MN, Alcântara LM, Neves BJ, Melo-Filho CC, Freitas-Junior LH, Moraes CB, Ma R, Franzblau SG, Muratov E, Andrade CH. Computer-aided discovery of two novel chalcone-like compounds active and selective against Leishmania infantum. Bioorg Med Chem Lett 2017; 27:2459-2464. [PMID: 28434763 PMCID: PMC6020026 DOI: 10.1016/j.bmcl.2017.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 01/09/2023]
Abstract
Leishmaniasis are infectious diseases caused by parasites of genus Leishmania that affect affects 12 million people in 98 countries mainly in Africa, Asia, and Latin America. Effective treatments for this disease are urgently needed. In this study, we present a computer-aided approach to investigate a set of 32 recently synthesized chalcone and chalcone-like compounds to act as antileishmanial agents. As a result, nine most promising compounds and three potentially inactive compounds were experimentally evaluated against Leishmania infantum amastigotes and mammalian cells. Four compounds exhibited EC50 in the range of 6.2-10.98μM. In addition, two compounds, LabMol-65 and LabMol-73, exhibited cytotoxicity in macrophages >50μM that resulted in better selectivity compared to standard drug amphotericin B. These two compounds also demonstrated low cytotoxicity and high selectivity towards Vero cells. The results of target fishing followed by homology modeling and docking studies suggest that these chalcone compounds could act in Leishmania because of their interaction with cysteine proteases, such as procathepsin L. Finally, we have provided structural recommendations for designing new antileishmanial chalcones.
Collapse
Affiliation(s)
- Marcelo N Gomes
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmacia, Universidade Federal de Goias, Rua 240, Qd.87, Setor Leste Universitário, Goiania, Goias 74605-510, Brazil
| | - Laura M Alcântara
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, Sao Paulo, Brazil. d Instituto Butantan - Sao Paulo, Sao Paulo 05503-900, Brazil
| | - Bruno J Neves
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmacia, Universidade Federal de Goias, Rua 240, Qd.87, Setor Leste Universitário, Goiania, Goias 74605-510, Brazil; Postgraduate Program on Society, Technology and Enviroment, University Center of Anápolis/UniEVANGELICA, Anápolis, Goiás 75083-515, Brazil
| | - Cleber C Melo-Filho
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmacia, Universidade Federal de Goias, Rua 240, Qd.87, Setor Leste Universitário, Goiania, Goias 74605-510, Brazil
| | | | - Carolina B Moraes
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, Sao Paulo, Brazil. d Instituto Butantan - Sao Paulo, Sao Paulo 05503-900, Brazil
| | - Rui Ma
- Institute for Tuberculosis Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, United States
| | - Scott G Franzblau
- Institute for Tuberculosis Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, United States
| | - Eugene Muratov
- Laboratory for Molecular Modeling, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States; Department of Chemical Technology, Odessa National Polytechnic University, Odessa 65000, Ukraine; Currently Visiting Professor at Universidade Federal de Goias, Goiania, Brazil
| | - Carolina Horta Andrade
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmacia, Universidade Federal de Goias, Rua 240, Qd.87, Setor Leste Universitário, Goiania, Goias 74605-510, Brazil.
| |
Collapse
|
18
|
Gomes MN, Braga RC, Grzelak EM, Neves BJ, Muratov E, Ma R, Klein LL, Cho S, Oliveira GR, Franzblau SG, Andrade CH. QSAR-driven design, synthesis and discovery of potent chalcone derivatives with antitubercular activity. Eur J Med Chem 2017; 137:126-138. [PMID: 28582669 DOI: 10.1016/j.ejmech.2017.05.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
New anti-tuberculosis (anti-TB) drugs are urgently needed to battle drug-resistant Mycobacterium tuberculosis strains and to shorten the current 6-12-month treatment regimen. In this work, we have continued the efforts to develop chalcone-based anti-TB compounds by using an in silico design and QSAR-driven approach. Initially, we developed SAR rules and binary QSAR models using literature data for targeted design of new heteroaryl chalcone compounds with anti-TB activity. Using these models, we prioritized 33 compounds for synthesis and biological evaluation. As a result, 10 heteroaryl chalcone compounds (4, 8, 9, 11, 13, 17-20, and 23) were found to exhibit nanomolar activity against replicating mycobacteria, low micromolar activity against nonreplicating bacteria, and nanomolar and micromolar against rifampin (RMP) and isoniazid (INH) monoresistant strains (rRMP and rINH) (<1 μM and <10 μM, respectively). The series also show low activity against commensal bacteria and generally show good selectivity toward M. tuberculosis, with very low cytotoxicity against Vero cells (SI = 11-545). Our results suggest that our designed heteroaryl chalcone compounds, due to their high potency and selectivity, are promising anti-TB agents.
Collapse
Affiliation(s)
- Marcelo N Gomes
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Rua 240, Qd.87, Setor Leste Universitário, Goiânia, Goiás 74605-510, Brazil
| | - Rodolpho C Braga
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Rua 240, Qd.87, Setor Leste Universitário, Goiânia, Goiás 74605-510, Brazil
| | - Edyta M Grzelak
- Institute for Tuberculosis Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, United States
| | - Bruno J Neves
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Rua 240, Qd.87, Setor Leste Universitário, Goiânia, Goiás 74605-510, Brazil; Postgraduate Program of Society, Technology and Environment, University Center of Anápolis/UniEVANGELICA, Anápolis, Goiás, 75083-515, Brazil
| | - Eugene Muratov
- Laboratory for Molecular Modeling, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27955-7568, United States; Department of Chemical Technology, Odessa National Polytechnic University, Odessa, 65000, Ukraine
| | - Rui Ma
- Institute for Tuberculosis Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, United States
| | - Larry L Klein
- Institute for Tuberculosis Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, United States
| | - Sanghyun Cho
- Institute for Tuberculosis Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, United States
| | | | - Scott G Franzblau
- Institute for Tuberculosis Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, United States.
| | - Carolina Horta Andrade
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Rua 240, Qd.87, Setor Leste Universitário, Goiânia, Goiás 74605-510, Brazil.
| |
Collapse
|
19
|
Therapeutic potential of chalcones as cardiovascular agents. Life Sci 2016; 148:154-72. [PMID: 26876916 DOI: 10.1016/j.lfs.2016.02.048] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 01/21/2016] [Accepted: 02/10/2016] [Indexed: 02/06/2023]
Abstract
Cardiovascular diseases are the leading cause of death affecting 17.3 million people across the globe and are estimated to affect 23.3 million people by year 2030. In recent years, about 7.3 million people died due to coronary heart disease, 9.4 million deaths due to high blood pressure and 6.2 million due to stroke, where obesity and atherosclerotic progression remain the chief pathological factors. The search for newer and better cardiovascular agents is the foremost need to manage cardiac patient population across the world. Several natural and (semi) synthetic chalcones deserve the credit of being potential candidates to inhibit various cardiovascular, hematological and anti-obesity targets like angiotensin converting enzyme (ACE), cholesteryl ester transfer protein (CETP), diacylglycerol acyltransferase (DGAT), acyl-coenzyme A: cholesterol acyltransferase (ACAT), pancreatic lipase (PL), lipoprotein lipase (LPL), calcium (Ca(2+))/potassium (K(+)) channel, COX-1, TXA2 and TXB2. In this review, a comprehensive study of chalcones, their therapeutic targets, structure activity relationships (SARs), mechanisms of actions (MOAs) have been discussed. Chemically diverse chalcone scaffolds, their derivatives including structural manipulation of both aryl rings, replacement with heteroaryl scaffold(s) and hybridization through conjugation with other pharmacologically active scaffold have been highlighted. Chalcones which showed promising activity and have a well-defined MOAs, SARs must be considered as prototype for the design and development of potential anti-hypertensive, anti-anginal, anti-arrhythmic and cardioprotective agents. With the knowledge of these molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective chalcone derivatives as potential cardiovascular agents.
Collapse
|
20
|
Yang EJ, Kim GS, Noh H, Shin YS, Song KS. Inhibitory effect of isoliquiritigenin isolated from Glycyrrhizae Radix on amyloid-β production in Swedish mutant amyloid precursor protein-transfected Neuro2a cells. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
21
|
Chalcone scaffolds as anti-infective agents: structural and molecular target perspectives. Eur J Med Chem 2015; 101:496-524. [PMID: 26188621 DOI: 10.1016/j.ejmech.2015.06.052] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/27/2015] [Accepted: 06/28/2015] [Indexed: 12/11/2022]
Abstract
In recent years, widespread outbreak of numerous infectious diseases across the globe has created havoc among the population. Particularly, the inhabitants of tropical and sub-tropical regions are mainly affected by these pathogens. Several natural and (semi) synthetic chalcones deserve the credit of being potential anti-infective candidates that inhibit various parasitic, malarial, bacterial, viral, and fungal targets like cruzain-1/2, trypanopain-Tb, trans-sialidase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fumarate reductase, falcipain-1/2, β-hematin, topoisomerase-II, plasmepsin-II, lactate dehydrogenase, protein kinases (Pfmrk and PfPK5), and sorbitol-induced hemolysis, DEN-1 NS3, H1N1, HIV (Integrase/Protease), protein tyrosine phosphatase A/B (Ptp-A/B), FtsZ, FAS-II, lactate/isocitrate dehydrogenase, NorA efflux pump, DNA gyrase, fatty acid synthase, chitin synthase, and β-(1,3)-glucan synthase. In this review, a comprehensive study (from Jan. 1982 to May 2015) of the structural features of anti-infective chalcones, their mechanism of actions (MOAs) and structure activity relationships (SARs) have been highlighted. With the knowledge of molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective anti-infective agents.
Collapse
|
22
|
Mahapatra DK, Asati V, Bharti SK. Chalcones and their therapeutic targets for the management of diabetes: structural and pharmacological perspectives. Eur J Med Chem 2015; 92:839-65. [PMID: 25638569 DOI: 10.1016/j.ejmech.2015.01.051] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/23/2015] [Accepted: 01/24/2015] [Indexed: 12/25/2022]
Abstract
Diabetes Mellitus (DM) is the fastest growing metabolic disorder affecting about 387 million people across the globe and is estimated to affect 592 million people by year 2030. The search for newer anti-diabetic agents is the foremost need to control the accelerating diabetic population. Several natural and (semi) synthetic chalcones deserve the credit of being potential candidates that act by modulating the therapeutic targets PPAR-γ, DPP-4, α-glucosidase, PTP1B, aldose reductase, and stimulate insulin secretion and tissue sensitivity. In this review, a comprehensive study (from January 1977 to October 2014) of anti-diabetic chalcones, their molecular targets, structure activity relationships (SARs), mechanism of actions (MOAs) and patents have been described. The compounds which showed promising activity and have a well-defined MOAs, SARs must be considered as prototype for the design and development of potential anti-diabetic agents. They should be evaluated critically at all clinical stages to ensure their therapeutic and toxicological profile to meet the demand of diabetics.
Collapse
Affiliation(s)
- Debarshi Kar Mahapatra
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Vivek Asati
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Sanjay Kumar Bharti
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India.
| |
Collapse
|
23
|
Yang EJ, Park GH, Song KS. Neuroprotective effects of liquiritigenin isolated from licorice roots on glutamate-induced apoptosis in hippocampal neuronal cells. Neurotoxicology 2013; 39:114-23. [DOI: 10.1016/j.neuro.2013.08.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/21/2013] [Accepted: 08/28/2013] [Indexed: 12/31/2022]
|
24
|
Effect of the licorice flavonoid isoliquiritigenin on the sleep architecture and profile in mice. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0160-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
25
|
Yang EJ, Min JS, Ku HY, Choi HS, Park MK, Kim MK, Song KS, Lee DS. Isoliquiritigenin isolated from Glycyrrhiza uralensis protects neuronal cells against glutamate-induced mitochondrial dysfunction. Biochem Biophys Res Commun 2012; 421:658-64. [PMID: 22538371 DOI: 10.1016/j.bbrc.2012.04.053] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 04/11/2012] [Indexed: 12/31/2022]
Abstract
Glutamate-mediated excitotoxicity, which is associated with reactive oxygen species (ROS), is hypothesized to be a major contributor to pathological cell death in the mammalian central nervous system, and to be involved in many acute and chronic brain diseases. Here, we showed that isoliquiritigenin (ISL) isolated from Glycyrrhiza uralensis (Gu), one of the most frequently prescribed oriental herbal medicines, protected HT22 hippocampal neuronal cells from glutamate-induced oxidative stress. In addition, we clarified the molecular mechanisms by which it protects against glutamate-induced neuronal cell death. ISL reversed glutamate-induced ROS production and mitochondrial depolarization, as well as glutamate-induced changes in expression of the apoptotic regulators Bcl-2 and Bax. Pretreatment of HT22 cells with ISL suppresses the release of apoptosis-inducing factor from mitochondria into the cytosol. Taken together, our results suggest that ISL may protect against mitochondrial dysfunction by limiting glutamate-induced oxidative stress. In conclusion, our results demonstrated that ISL isolated from Gu has protective effects against glutamate-induced mitochondrial damage and hippocampal neuronal cell death. We expect ISL to be useful in the development of drugs to prevent or treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Eun-Ju Yang
- BK21 Research Team for Developing Functional Health and Food Materials, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Benzodiazepines are the most widely prescribed class of psychoactive drugs in current therapeutic use, despite the important unwanted side effects that they produce, such as sedation, myorelaxation, ataxia, amnesia, and ethanol and barbiturate potentiation and tolerance. They exert their therapeutic effects via binding to the benzodiazepine binding site of gamma-aminobutyric acid (GABA) type A receptors, and allosterically modulating the chloride flux through the ion channel complex. First isolated from plants used as tranquilizers in folkloric medicine, some natural flavonoids have been shown to possess selective affinity for the benzodiazepine binding site with a broad spectrum of central nervous system effects. Since the initial search for alternative benzodiazepine ligands amongst the flavonoids, a list of successful synthetic derivatives has been generated with enhanced activities. This review provides an update on research developments that have established the activity of natural and synthetic flavonoids on GABA type A receptors. Flavonoids are prominent drugs in the treatment of mental disorders, and can also be used as tools to study modulatory sites at GABA type A receptors and to develop GABA type A selective agents further.
Collapse
Affiliation(s)
- Cristina Wasowski
- Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariel Marder
- Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
27
|
Cho S, Kim S, Jin Z, Yang H, Han D, Baek NI, Jo J, Cho CW, Park JH, Shimizu M, Jin YH. Isoliquiritigenin, a chalcone compound, is a positive allosteric modulator of GABAA receptors and shows hypnotic effects. Biochem Biophys Res Commun 2011; 413:637-42. [PMID: 21945440 DOI: 10.1016/j.bbrc.2011.09.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 09/06/2011] [Indexed: 11/25/2022]
Abstract
Isoliquiritigenin (ILTG) is a chalcone compound and has valuable pharmacological properties such as antioxidant, anti-inflammatory, anticancer, and antiallergic activities. Recently, the anxiolytic effect of ILTG has been reported; however, its action mechanism and hypnotic activity have not yet been demonstrated. Therefore, we investigated the hypnotic effect and action mechanism of ILTG. ILTG significantly potentiated the pentobarbital-induced sleep in mice at doses of 25 and 50mg/kg. The hypnotic activity of ILTG was fully inhibited by flumazenil (FLU), a specific gamma-aminobutyric acid type A (GABA(A))-benzodiazepine (BZD) receptor antagonist. The binding affinity of ILTG was 0.453 μM and was found to be higher than that of the reference compound, diazepam (DZP, 0.012 μM). ILTG (10(-5)M) potentiated GABA-evoked currents to 151% of the control level on isolated dorsal raphe neurons. ILTG has 65 times higher affinity for GABA(A)-BZD receptors than DZP, and the dissociation constant for ILTG was 4.0 × 10(-10)M. The effect of ILTG on GABA currents was blocked by 10(-7)M FLU and ZK-93426. These results suggest that ILTG produces hypnotic effects by positive allosteric modulation of GABA(A)-BZD receptors.
Collapse
Affiliation(s)
- Suengmok Cho
- Korea Food Research Institute, Seongnam 463-746, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chimenti F, Fioravanti R, Bolasco A, Chimenti P, Secci D, Rossi F, Yáñez M, Orallo F, Ortuso F, Alcaro S. Chalcones: A Valid Scaffold for Monoamine Oxidases Inhibitors. J Med Chem 2009; 52:2818-24. [PMID: 19378991 DOI: 10.1021/jm801590u] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Franco Chimenti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, P. le A. Moro 5, 00185 Roma, Italy, Departamento de Farmacología and Instituto de Farmacia Industrial, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Universitario Sur, E-15782 Santiago de Compostela (La Coruña), Spain, Dipartimento di Scienze Farmacobiologiche, Università di Catanzaro “Magna Graecia”, “Complesso Ninì Barbieri”, 88021 Roccelletta di Borgia (CZ), Italy
| | - Rossella Fioravanti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, P. le A. Moro 5, 00185 Roma, Italy, Departamento de Farmacología and Instituto de Farmacia Industrial, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Universitario Sur, E-15782 Santiago de Compostela (La Coruña), Spain, Dipartimento di Scienze Farmacobiologiche, Università di Catanzaro “Magna Graecia”, “Complesso Ninì Barbieri”, 88021 Roccelletta di Borgia (CZ), Italy
| | - Adriana Bolasco
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, P. le A. Moro 5, 00185 Roma, Italy, Departamento de Farmacología and Instituto de Farmacia Industrial, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Universitario Sur, E-15782 Santiago de Compostela (La Coruña), Spain, Dipartimento di Scienze Farmacobiologiche, Università di Catanzaro “Magna Graecia”, “Complesso Ninì Barbieri”, 88021 Roccelletta di Borgia (CZ), Italy
| | - Paola Chimenti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, P. le A. Moro 5, 00185 Roma, Italy, Departamento de Farmacología and Instituto de Farmacia Industrial, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Universitario Sur, E-15782 Santiago de Compostela (La Coruña), Spain, Dipartimento di Scienze Farmacobiologiche, Università di Catanzaro “Magna Graecia”, “Complesso Ninì Barbieri”, 88021 Roccelletta di Borgia (CZ), Italy
| | - Daniela Secci
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, P. le A. Moro 5, 00185 Roma, Italy, Departamento de Farmacología and Instituto de Farmacia Industrial, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Universitario Sur, E-15782 Santiago de Compostela (La Coruña), Spain, Dipartimento di Scienze Farmacobiologiche, Università di Catanzaro “Magna Graecia”, “Complesso Ninì Barbieri”, 88021 Roccelletta di Borgia (CZ), Italy
| | - Francesca Rossi
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, P. le A. Moro 5, 00185 Roma, Italy, Departamento de Farmacología and Instituto de Farmacia Industrial, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Universitario Sur, E-15782 Santiago de Compostela (La Coruña), Spain, Dipartimento di Scienze Farmacobiologiche, Università di Catanzaro “Magna Graecia”, “Complesso Ninì Barbieri”, 88021 Roccelletta di Borgia (CZ), Italy
| | - Matilde Yáñez
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, P. le A. Moro 5, 00185 Roma, Italy, Departamento de Farmacología and Instituto de Farmacia Industrial, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Universitario Sur, E-15782 Santiago de Compostela (La Coruña), Spain, Dipartimento di Scienze Farmacobiologiche, Università di Catanzaro “Magna Graecia”, “Complesso Ninì Barbieri”, 88021 Roccelletta di Borgia (CZ), Italy
| | - Francisco Orallo
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, P. le A. Moro 5, 00185 Roma, Italy, Departamento de Farmacología and Instituto de Farmacia Industrial, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Universitario Sur, E-15782 Santiago de Compostela (La Coruña), Spain, Dipartimento di Scienze Farmacobiologiche, Università di Catanzaro “Magna Graecia”, “Complesso Ninì Barbieri”, 88021 Roccelletta di Borgia (CZ), Italy
| | - Francesco Ortuso
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, P. le A. Moro 5, 00185 Roma, Italy, Departamento de Farmacología and Instituto de Farmacia Industrial, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Universitario Sur, E-15782 Santiago de Compostela (La Coruña), Spain, Dipartimento di Scienze Farmacobiologiche, Università di Catanzaro “Magna Graecia”, “Complesso Ninì Barbieri”, 88021 Roccelletta di Borgia (CZ), Italy
| | - Stefano Alcaro
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, P. le A. Moro 5, 00185 Roma, Italy, Departamento de Farmacología and Instituto de Farmacia Industrial, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Universitario Sur, E-15782 Santiago de Compostela (La Coruña), Spain, Dipartimento di Scienze Farmacobiologiche, Università di Catanzaro “Magna Graecia”, “Complesso Ninì Barbieri”, 88021 Roccelletta di Borgia (CZ), Italy
| |
Collapse
|