1
|
Cucinotta C, Dell R, Alavattam K, Tsukiyama T. Sir2 is required for the quiescence-specific condensed three-dimensional chromatin structure of rDNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628092. [PMID: 39713455 PMCID: PMC11661206 DOI: 10.1101/2024.12.12.628092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Quiescence in Saccharomyces cerevisiae is a reversible G0 crucial for long-term survival under nutrient-deprived conditions. During quiescence, the genome is hypoacetylated and chromatin undergoes significant compaction. However, the 3D structure of the ribosomal DNA (rDNA) locus in this state is not well understood. Here, we report that the rDNA locus in quiescent cells forms a distinct condensed loop-like structure, different from structures observed during the mitotic cell cycle. Deletion of SIR2 disrupts this structure, causing it to collapse into a small dot and resulting in quiescence entry and exit defects. In contrast, Sir2 affects rDNA structure only modestly in G2/M phase. In the absence of Sir2, occupancy of both RNA Polymerase II and histone H3 increase at the rDNA locus during quiescence and through quiescence exit, further indicating gross defects in chromatin structure. Together, these results uncover a previously undescribed rDNA chromatin structure specific to quiescent cells and underscore the importance of Sir2 in facilitating the transition between cellular states.
Collapse
Affiliation(s)
- Christine Cucinotta
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Molecular Genetics, Ohio State University, Columbus, OH, 43210, USA
| | - Rachel Dell
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Kris Alavattam
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
2
|
He Y, Fan Y, Ahmadpoor X, Wang Y, Li ZA, Zhu W, Lin H. Targeting lysosomal quality control as a therapeutic strategy against aging and diseases. Med Res Rev 2024; 44:2472-2509. [PMID: 38711187 DOI: 10.1002/med.22047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 05/08/2024]
Abstract
Previously, lysosomes were primarily referred to as the digestive organelles and recycling centers within cells. Recent discoveries have expanded the lysosomal functional scope and revealed their critical roles in nutrient sensing, epigenetic regulation, plasma membrane repair, lipid transport, ion homeostasis, and cellular stress response. Lysosomal dysfunction is also found to be associated with aging and several diseases. Therefore, function of macroautophagy, a lysosome-dependent intracellular degradation system, has been identified as one of the updated twelve hallmarks of aging. In this review, we begin by introducing the concept of lysosomal quality control (LQC), which is a cellular machinery that maintains the number, morphology, and function of lysosomes through different processes such as lysosomal biogenesis, reformation, fission, fusion, turnover, lysophagy, exocytosis, and membrane permeabilization and repair. Next, we summarize the results from studies reporting the association between LQC dysregulation and aging/various disorders. Subsequently, we explore the emerging therapeutic strategies that target distinct aspects of LQC for treating diseases and combatting aging. Lastly, we underscore the existing knowledge gap and propose potential avenues for future research.
Collapse
Affiliation(s)
- Yuchen He
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yishu Fan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xenab Ahmadpoor
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yumin Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, China
| | - Weihong Zhu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Calubag MF, Robbins PD, Lamming DW. A nutrigeroscience approach: Dietary macronutrients and cellular senescence. Cell Metab 2024; 36:1914-1944. [PMID: 39178854 PMCID: PMC11386599 DOI: 10.1016/j.cmet.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Cellular senescence, a process in which a cell exits the cell cycle in response to stressors, is one of the hallmarks of aging. Senescence and the senescence-associated secretory phenotype (SASP)-a heterogeneous set of secreted factors that disrupt tissue homeostasis and promote the accumulation of senescent cells-reprogram metabolism and can lead to metabolic dysfunction. Dietary interventions have long been studied as methods to combat age-associated metabolic dysfunction, promote health, and increase lifespan. A growing body of literature suggests that senescence is responsive to diet, both to calories and specific dietary macronutrients, and that the metabolic benefits of dietary interventions may arise in part through reducing senescence. Here, we review what is currently known about dietary macronutrients' effect on senescence and the SASP, the nutrient-responsive molecular mechanisms that may mediate these effects, and the potential for these findings to inform the development of a nutrigeroscience approach to healthy aging.
Collapse
Affiliation(s)
- Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Paul D Robbins
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
4
|
Bernhardt A, Jamil A, Morshed MT, Ponnath P, Gille V, Stephan N, Sauer H, Wartenberg M. Oxidative stress and regulation of adipogenic differentiation capacity by sirtuins in adipose stem cells derived from female patients of advancing age. Sci Rep 2024; 14:19885. [PMID: 39191852 DOI: 10.1038/s41598-024-70382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Patient age is critical for mesenchymal stem cell quality and differentiation capacity. We demonstrate that proliferation and adipogenic capacity of subcutaneous adipose stem cells (ASCs) from female patients declined with advanced age, associated with reduction in cell nucleus size, increase in nuclear lamina protein lamin B1/B2, and lamin A, upregulation of senescence marker p16INK4a and senescence-associated β-galactosidase activity. Adipogenic induction resulted in differentiation of adipocytes and upregulation of adipogenic genes CCAAT enhancer binding protein alpha, fatty acid binding protein 4, lipoprotein lipase, and peroxisome proliferator-activated receptor-γ, which was not affected by the Sirt-1 activator YK-3-237 or the Sirt-1 inhibitor EX-527. Protein expression of the stem cell markers Oct4 and Sox2 was not significantly downregulated with advanced patient age. Mitochondrial reactive oxygen species were increased in ASCs from old-aged patients, whereas protein expression of NADPH oxidases NOX1 and NOX4 was downregulated, and dual oxidase isoforms remained unchanged. Generation of nitric oxide and iNOS expression was downregulated. Protein expression of Sirt-1 and Sirt-3 decreased with patient age, whereas Sirt-2 and Sirt-5 remained unchanged. Induction of adipogenesis stimulated protein expression of Sirt-1 and Sirt-3, which was not affected upon pre-incubation with the Sirt-1-activator YK-3-237 or the Sirt-1-inhibitor EX-527. The Sirt-1 inhibitor Sirtinol downregulated adiponectin protein expression and the number of adipocytes, whereas YK-3-237 exerted stimulatory effects. In summary, our data demonstrate increased oxidative stress in ASCs of aging patients, and decline of adipogenic capacity due to Sirt-1- mediated adiponectin downregulation in elderly patients.
Collapse
Affiliation(s)
- Anne Bernhardt
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany
| | - Alan Jamil
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Md Tanvir Morshed
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Pia Ponnath
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany
| | - Veronika Gille
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany
| | - Nadine Stephan
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany
| | - Heinrich Sauer
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Maria Wartenberg
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
5
|
Li R, Li Y, Zuo H, Pei G, Huang S, Hou Y. Alzheimer's Amyloid-β Accelerates Cell Senescence and Suppresses SIRT1 in Human Neural Stem Cells. Biomolecules 2024; 14:189. [PMID: 38397428 PMCID: PMC10886734 DOI: 10.3390/biom14020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
As a lifelong source of neurons, neural stem cells (NSCs) serve multiple crucial functions in the brain. The senescence of NSCs may be associated with the onset and progression of Alzheimer's disease (AD). Our study reveals a noteworthy finding, indicating that the AD-associated pathogenic protein amyloid-β (Aβ) substantially enhances senescence-related characteristics of human NSCs. These characteristics encompass the enhanced expression of p16 and p21, the upregulation of genes associated with the senescence-associated secretory phenotype (SASP), increased SA-β-gal activity, and the activation of the DNA damage response. Further studies revealed that Aβ treatment significantly downregulates the SIRT1 protein which plays a crucial role in regulating the aging process and decreases downstream PGC-1α and FOXO3. Subsequently, we found that SIRT1 overexpression significantly alleviates a range of Aβ-induced senescent markers in human NSCs. Taken together, our results uncover that Aβ accelerates cellular senescence in human NSCs, making SIRT1 a highly promising therapeutic target for senescent NSCs which may contribute to age-related neurodegenerative diseases, including AD.
Collapse
Affiliation(s)
- Rongyao Li
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (R.L.); (Y.L.); (H.Z.)
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (R.L.); (Y.L.); (H.Z.)
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- The First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou 310000, China
| | - Haowei Zuo
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (R.L.); (Y.L.); (H.Z.)
| | - Gang Pei
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100100, China
| | - Shichao Huang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yujun Hou
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (R.L.); (Y.L.); (H.Z.)
| |
Collapse
|
6
|
Zhang T, Wang L, Duan X, Niu Y, Li M, Yun L, Sun H, Ma Y, Guo Y. Sirtuins mediate mitochondrial quality control mechanisms: a novel therapeutic target for osteoporosis. Front Endocrinol (Lausanne) 2024; 14:1281213. [PMID: 38264287 PMCID: PMC10805026 DOI: 10.3389/fendo.2023.1281213] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/01/2023] [Indexed: 01/25/2024] Open
Abstract
Mitochondria plays a role in cell differentiation and apoptosis processes. Maintaining mitochondrial function is critical, and this involves various aspects of mitochondrial quality control such as protein homeostasis, biogenesis, dynamics, and mitophagy. Osteoporosis, a metabolic bone disorder, primarily arises from two factors: the dysregulation between lipogenic and osteogenic differentiation of aging bone marrow mesenchymal stem cells, and the imbalance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption. Mitochondrial quality control has the potential to mitigate or even reverse the effects. Among the Sirtuin family, consisting of seven Sirtuins (SIRT1-7), SIRT1-SIRT6 play a crucial role in maintaining mitochondrial quality control. Additionally, SIRT1, SIRT3, SIRT6, and SIRT7 are directly involved in normal bone development and homeostasis by modulating bone cells. However, the precise mechanism by which these Sirtuins exert their effects remains unclear. This article reviews the impact of various aspects of mitochondrial quality control on osteoporosis, focusing on how SIRT1, SIRT3, and SIRT6 can improve osteoporosis by regulating mitochondrial protein homeostasis, biogenesis, and mitophagy. Furthermore, we provide an overview of the current state of clinical and preclinical drugs that can activate Sirtuins to improve osteoporosis. Specific Sirtuin-activating compounds are effective, but further studies are needed. The findings of this study may offer valuable insights for future research on osteoporosis and the development of clinical prevention and therapeutic target strategies.
Collapse
Affiliation(s)
- Tianchi Zhang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lining Wang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiping Duan
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Niu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Muzhe Li
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Li Yun
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Haitao Sun
- Department of Orthopedic, Wuxi Huishan District People’s Hospital, Wuxi, Jiangsu, China
| | - Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Chin T, Lee XE, Ng PY, Lee Y, Dreesen O. The role of cellular senescence in skin aging and age-related skin pathologies. Front Physiol 2023; 14:1297637. [PMID: 38074322 PMCID: PMC10703490 DOI: 10.3389/fphys.2023.1297637] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2024] Open
Abstract
Aging is the result of a gradual functional decline at the cellular, and ultimately, organismal level, resulting in an increased risk of developing a variety of chronic illnesses, such as cardiovascular disease, stroke, cancer and diabetes. The skin is the largest organ of the human body, and the site where signs of aging are most visible. These signs include thin and dry skin, sagging, loss of elasticity, wrinkles, as well as aberrant pigmentation. The appearance of these features is accelerated by exposure to extrinsic factors such as ultraviolet (UV) radiation or pollution, as well as intrinsic factors including time, genetics, and hormonal changes. At the cellular level, aging is associated with impaired proteostasis and an accumulation of macromolecular damage, genomic instability, chromatin reorganization, telomere shortening, remodelling of the nuclear lamina, proliferation defects and premature senescence. Cellular senescence is a state of permanent growth arrest and a key hallmark of aging in many tissues. Due to their inability to proliferate, senescent cells no longer contribute to tissue repair or regeneration. Moreover, senescent cells impair tissue homeostasis, promote inflammation and extracellular matrix (ECM) degradation by secreting molecules collectively known as the "senescence-associated secretory phenotype" (SASP). Senescence can be triggered by a number of different stimuli such as telomere shortening, oncogene expression, or persistent activation of DNA damage checkpoints. As a result, these cells accumulate in aging tissues, including human skin. In this review, we focus on the role of cellular senescence during skin aging and the development of age-related skin pathologies, and discuss potential strategies to rejuvenate aged skin.
Collapse
Affiliation(s)
- Toby Chin
- Lee Kong Chiang School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Xin Er Lee
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Pei Yi Ng
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yaelim Lee
- Mechanobiology Institute, National University of Singapore, T-Lab, Singapore, Singapore
| | - Oliver Dreesen
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, T-Lab, Singapore, Singapore
| |
Collapse
|
8
|
Wan R, Wang L, Zhu M, Li W, Duan Y, Yu G. Cellular Senescence: A Troy Horse in Pulmonary Fibrosis. Int J Mol Sci 2023; 24:16410. [PMID: 38003600 PMCID: PMC10671822 DOI: 10.3390/ijms242216410] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Pulmonary fibrosis (PF) is a chronic interstitial lung disease characterized by myofibroblast abnormal activation and extracellular matrix deposition. However, the pathogenesis of PF remains unclear, and treatment options are limited. Epidemiological studies have shown that the average age of PF patients is estimated to be over 65 years, and the incidence of the disease increases with age. Therefore, PF is considered an age-related disease. A preliminary study on PF patients demonstrated that the combination therapy of the anti-senescence drugs dasatinib and quercetin improved physical functional indicators. Given the global aging population and the role of cellular senescence in tissue and organ aging, understanding the impact of cellular senescence on PF is of growing interest. This article systematically summarizes the causes and signaling pathways of cellular senescence in PF. It also objectively analyzes the impact of senescence in AECs and fibroblasts on PF development. Furthermore, potential intervention methods targeting cellular senescence in PF treatment are discussed. This review not only provides a strong theoretical foundation for understanding and manipulating cellular senescence, developing new therapies to improve age-related diseases, and extending a healthy lifespan but also offers hope for reversing the toxicity caused by the massive accumulation of senescence cells in humans.
Collapse
Affiliation(s)
- Ruyan Wan
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Lan Wang
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Miaomiao Zhu
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Wenwen Li
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Yudi Duan
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Guoying Yu
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
9
|
Thakur BL, Kusi NA, Mosavarpour S, Zhu R, Redon CE, Fu H, Dhall A, Pongor LS, Sebastian R, Indig FE, Aladjem MI. SIRT1 Prevents R-Loops during Chronological Aging by Modulating DNA Replication at rDNA Loci. Cells 2023; 12:2630. [PMID: 37998365 PMCID: PMC10669956 DOI: 10.3390/cells12222630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
In metazoans, the largest sirtuin, SIRT1, is a nuclear protein implicated in epigenetic modifications, circadian signaling, DNA recombination, replication, and repair. Our previous studies have demonstrated that SIRT1 binds replication origins and inhibits replication initiation from a group of potential initiation sites (dormant origins). We studied the effects of aging and SIRT1 activity on replication origin usage and the incidence of transcription-replication collisions (creating R-loop structures) in adult human cells obtained at different time points during chronological aging and in cancer cells. In primary, untransformed cells, SIRT1 activity declined and the prevalence of R-loops rose with chronological aging. Both the reduction in SIRT1 activity and the increased abundance of R-loops were also observed during the passage of primary cells in culture. All cells, regardless of donor age or transformation status, reacted to the short-term, acute chemical inhibition of SIRT1 with the activation of excessive replication initiation events coincident with an increased prevalence of R-loops. However, cancer cells activated dormant replication origins, genome-wide, during long-term proliferation with mutated or depleted SIRT1, whereas, in primary cells, the aging-associated SIRT1-mediated activation of dormant origins was restricted to rDNA loci. These observations suggest that chronological aging and the associated decline in SIRT1 activity relax the regulatory networks that protect cells against excess replication and that the mechanisms protecting from replication-transcription collisions at the rDNA loci manifest as differentially enhanced sensitivities to SIRT1 decline and chronological aging.
Collapse
Affiliation(s)
- Bhushan L. Thakur
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.L.T.); (N.A.K.); (S.M.); (R.Z.); (C.E.R.); (H.F.); (A.D.); (L.S.P.); (R.S.)
| | - Nana A. Kusi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.L.T.); (N.A.K.); (S.M.); (R.Z.); (C.E.R.); (H.F.); (A.D.); (L.S.P.); (R.S.)
| | - Sara Mosavarpour
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.L.T.); (N.A.K.); (S.M.); (R.Z.); (C.E.R.); (H.F.); (A.D.); (L.S.P.); (R.S.)
| | - Roger Zhu
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.L.T.); (N.A.K.); (S.M.); (R.Z.); (C.E.R.); (H.F.); (A.D.); (L.S.P.); (R.S.)
| | - Christophe E. Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.L.T.); (N.A.K.); (S.M.); (R.Z.); (C.E.R.); (H.F.); (A.D.); (L.S.P.); (R.S.)
| | - Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.L.T.); (N.A.K.); (S.M.); (R.Z.); (C.E.R.); (H.F.); (A.D.); (L.S.P.); (R.S.)
| | - Anjali Dhall
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.L.T.); (N.A.K.); (S.M.); (R.Z.); (C.E.R.); (H.F.); (A.D.); (L.S.P.); (R.S.)
| | - Lorinc S. Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.L.T.); (N.A.K.); (S.M.); (R.Z.); (C.E.R.); (H.F.); (A.D.); (L.S.P.); (R.S.)
| | - Robin Sebastian
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.L.T.); (N.A.K.); (S.M.); (R.Z.); (C.E.R.); (H.F.); (A.D.); (L.S.P.); (R.S.)
| | - Fred E. Indig
- Confocal Imaging Facility, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA;
| | - Mirit I. Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.L.T.); (N.A.K.); (S.M.); (R.Z.); (C.E.R.); (H.F.); (A.D.); (L.S.P.); (R.S.)
| |
Collapse
|
10
|
Xu H, Zeng S, Wang Y, Yang T, Wang M, Li X, He Y, Peng X, Li X, Qiao Q, Zhang J. Cytoplasmic SIRT1 promotes paclitaxel resistance in ovarian carcinoma through increased formation and survival of polyploid giant cancer cells. J Pathol 2023; 261:210-226. [PMID: 37565313 DOI: 10.1002/path.6167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 08/12/2023]
Abstract
Therapeutic resistance is a notable cause of death in patients with ovarian carcinoma. Polyploid giant cancer cells (PGCCs), commonly arising in tumor tissues following chemotherapy, have recently been considered to contribute to drug resistance. As a type III deacetylase, Sirtuin1 (SIRT1) plays essential roles in the cell cycle, cellular senescence, and drug resistance. Accumulating evidence has suggested that alteration in its subcellular localization via nucleocytoplasmic shuttling is a critical process influencing the functions of SIRT1. However, the roles of SIRT1 subcellular localization in PGCC formation and subsequent senescence escape remain unclear. In this study, we compared the differences in the polyploid cell population and senescence state of PGCCs following paclitaxel treatment between tumor cells overexpressing wild-type SIRT1 (WT SIRT1) and those expressing nuclear localization sequence (NLS)-mutated SIRT1 (SIRT1NLSmt ). We investigated the involvement of cytoplasmic SIRT1 in biological processes and signaling pathways, including the cell cycle and cellular senescence, in ovarian carcinoma cells' response to paclitaxel treatment. We found that the SIRT1NLSmt tumor cell population contained more polyploid cells and fewer senescent PGCCs than the SIRT1-overexpressing tumor cell population. Comparative proteomic analyses using co-immunoprecipitation (Co-IP) combined with liquid chromatography-mass spectrometry (LC-MS)/MS showed the differences in the differentially expressed proteins related to PGCC formation, cell growth, and death, including CDK1 and CDK2, between SIRT1NLSmt and SIRT1 cells or PGCCs. Our results suggested that ovarian carcinoma cells utilize polyploidy formation as a survival mechanism during exposure to paclitaxel-based treatment via the effect of cytoplasmic SIRT1 on PGCC formation and survival, thereby boosting paclitaxel resistance. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Hong Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Shujun Zeng
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Yingmei Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Tong Yang
- Department of Pathology, No. 971 Hospital of People's Liberation Army Navy, Qingdao, PR China
| | - Minmin Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Xuan Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Yejun He
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, PR China
| | - Xin Peng
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, PR China
| | - Xia Li
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, PR China
| | - Qing Qiao
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Jing Zhang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, PR China
| |
Collapse
|
11
|
Tang B, Chen Y, Zhao P, Yan W, Huang X, Jiang W, Sun M, Zhang H, Xiang D, Chen T, Lian C, Zhang J. MiR-601-induced BMSCs senescence accelerates steroid-induced osteonecrosis of the femoral head progression by targeting SIRT1. Cell Mol Life Sci 2023; 80:261. [PMID: 37597099 PMCID: PMC11072729 DOI: 10.1007/s00018-023-04903-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/05/2023] [Accepted: 07/30/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND The imbalance between osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is not only the primary pathological feature but also a major contributor to the pathogenesis of steroid-induced osteonecrosis of the femoral head (SONFH). Cellular senescence is one of the main causes of imbalanced BMSCs differentiation. The purpose of this study was to reveal whether cellular senescence could participate in the progression of SONFH and the related mechanisms. METHODS The rat SONFH model was constructed, and rat BMSCs were extracted. Aging-related indicators were detected by SA-β-Gal staining, qRT-PCR and Western Blot experiments. Using H2O2 to construct a senescent cell model, and overexpressing and knocking down miR-601 and SIRT1 in hBMSCs, the effect on BMSCs differentiation was explored by qRT-PCR, Western Blot experiment, oil red O staining (ORO), alizarin red staining (ARS), and luciferase reporter gene experiment. A rat SONFH model was established to test the effects of miR-601 and metformin in vivo. RESULTS The current study showed that glucocorticoids (GCs)-induced BMSCs senescence, which caused imbalanced osteogenesis and adipogenesis of BMSCs, was responsible for the SONFH progression. Further, elevated miR-601 caused by GCs was demonstrated to contribute to BMSCs senescence through targeting SIRT1. In addition, the anti-aging drug metformin was shown to be able to alleviate GCs-induced BMSCs senescence and SONFH progression. CONCLUSIONS Considering the role of BMSCs aging in the progression of SONFH, this provides a new idea for the prevention and treatment of SONFH.
Collapse
Affiliation(s)
- Boyu Tang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Yu Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Pei Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Wenlong Yan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Xiao Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Weiqian Jiang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Mingjie Sun
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Hongrui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Dulei Xiang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Chengjie Lian
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China.
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China.
| | - Jian Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China.
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
12
|
Sun C, Bai S, Liang Y, Liu D, Liao J, Chen Y, Zhao X, Wu B, Huang D, Chen M, Wu D. The role of Sirtuin 1 and its activators in age-related lung disease. Biomed Pharmacother 2023; 162:114573. [PMID: 37018986 DOI: 10.1016/j.biopha.2023.114573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Aging is a major driving factor in lung diseases. Age-related lung disease is associated with downregulated expression of SIRT1, an NAD+-dependent deacetylase that regulates inflammation and stress resistance. SIRT1 acts by inducing the deacetylation of various substrates and regulates several mechanisms that relate to lung aging, such as genomic instability, lung stem cell exhaustion, mitochondrial dysfunction, telomere shortening, and immune senescence. Chinese herbal medicines have many biological activities, exerting anti-inflammatory, anti-oxidation, anti-tumor, and immune regulatory effects. Recent studies have confirmed that many Chinese herbs have the effect of activating SIRT1. Therefore, we reviewed the mechanism of SIRT1 in age-related lung disease and explored the potential roles of Chinese herbs as SIRT1 activators in the treatment of age-related lung disease.
Collapse
|
13
|
Saito H, Yayama T, Mori K, Kumagai K, Fujikawa H, Chosei Y, Imai S. Increased Cellular Expression of Interleukin-6 in Patients With Ossification of the Posterior Longitudinal Ligament. Spine (Phila Pa 1976) 2023; 48:E78-E86. [PMID: 36729990 DOI: 10.1097/brs.0000000000004557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/24/2022] [Indexed: 02/03/2023]
Abstract
STUDY DESIGN We performed histologic, immunohistochemical, immunoblot examination and suspension array analyses of cytokine expression in cultured cells derived from human cervical ossification of the posterior longitudinal ligament (OPLL). OBJECTIVE To determine the roles of interleukin-6 (IL-6) during the maturation of osteoblasts and chondrocytes associated with the development of OPLL. SUMMARY OF BACKGROUND DATA Ectopic OPLL affects ~3% of the general population, with a higher incidence in Asian ethnic groups. Alterations in cytokine profiles may influence osteoblast differentiation, but the mechanisms and signaling pathways associated with the ossification process remain unclear. METHODS Samples were collected from 14 patients with OPLL who had undergone spinal surgery and seven with cervical spondylotic myelopathy without OPLL. Tissue sections were used for histologic and immunohistochemical studies, and primary cells from ligamentum samples were used for cytokine array and immunoblotting. A suspension array was used to measure the concentrations of 27 inflammatory cytokines or growth factors. RESULTS Suspension array and immunoblot analyses revealed significantly elevated levels of IL-6 in OPLL patients. Alterations in IL-6 concentrations were found to alter the expression of the genes Sox9 , Runx2 , and SIRT1 . In addition, immunohistochemical analysis revealed that these factors are present in mesenchymal cells within the degenerative portion of the ligament matrix that is adjacent to the ossification front. CONCLUSIONS IL-6 plays a profound role in the osteoblast differentiation process along with the induction of chondrocyte hypertrophy and cell apoptosis in the early stages of ossification in OPLL. These changes in cytokine profiles are essential factors for regulation of the ectopic ossified plaque in OPLL.
Collapse
Affiliation(s)
- Hideki Saito
- Department of Orthopaedic Surgery, Shiga University of Medical Science, Shiga, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Wu Q, Lv Q, Liu X, Ye X, Cao L, Wang M, Li J, Yang Y, Li L, Wang S. Natural compounds from botanical drugs targeting mTOR signaling pathway as promising therapeutics for atherosclerosis: A review. Front Pharmacol 2023; 14:1083875. [PMID: 36744254 PMCID: PMC9894899 DOI: 10.3389/fphar.2023.1083875] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease that is a major cause of cardiovascular diseases (CVDs), including coronary artery disease, hypertension, myocardial infarction, and heart failure. Hence, the mechanisms of AS are still being explored. A growing compendium of evidence supports that the activity of the mechanistic/mammalian target of rapamycin (mTOR) is highly correlated with the risk of AS. The mTOR signaling pathway contributes to AS progression by regulating autophagy, cell senescence, immune response, and lipid metabolism. Various botanical drugs and their functional compounds have been found to exert anti- AS effects by modulating the activity of the mTOR signaling pathway. In this review, we summarize the pathogenesis of AS based on the mTOR signaling pathway from the aspects of immune response, autophagy, cell senescence, and lipid metabolism, and comb the recent advances in natural compounds from botanical drugs to inhibit the mTOR signaling pathway and delay AS development. This review will provide a new perspective on the mechanisms and precision treatments of AS.
Collapse
Affiliation(s)
- Qian Wu
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Qianyu Lv
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao’an Liu
- Capital University of Medical, Beijing, China
| | - Xuejiao Ye
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Cao
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Manshi Wang
- Beijing Xicheng District Guangwai Hospital, Beijing, China
| | - Junjia Li
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yingtian Yang
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Lanlan Li
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Shihan Wang
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Chrysanthemum coronarium L. Protects against Premature Senescence in Human Endothelial Cells. Curr Issues Mol Biol 2022; 44:5839-5847. [PMID: 36547058 PMCID: PMC9776405 DOI: 10.3390/cimb44120397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The senescence of vascular endothelial cells (EC) leads to vascular dysfunction. However, the molecular mechanisms of EC senescence and its associated pathophysiological changes have not yet been clearly studied. This study sought to inspect the Chrysanthemum coronarium L. (CC) extract's mechanism in preventing premature senescence of EC. A senescent endothelial cell model was created in human umbilical vein endothelial cells (HUVECs) with 100 µmol/L H2O2 treatment for 24 h. The effect of CC on senescent HUVECs was elucidated by measuring the activity of β-galactosidase (SA-β-gal), which exhibits an aging-related phenotype. SA-β-gal activity increased to 13.2 ± 2.85% in H2O2-treated HUVECs, whereas this activity was attenuated in the CC group. Immunoblot analyses revealed that p21, p53, and PAI-1 levels increased in the senescent HUVECs; however, the levels decreased in the HUVECs treated with various concentrations of CC (10, 20, and 50 μg/mL). The CC extract reduced the production of reactive oxygen species and reversed the decrease in NO production. Additionally, pretreatment with an Nω-nitro-l-arginine methyl ester (eNOS inhibitor) and nicotinamide (sirtuin 1 inhibitor) inhibited the anti-senescent effect of CC extract in HUVECs. Taken together, this study validated the novel endothelial protective effect of CC extract and its prevention of senescence in HUVECs through the mechanism regulated by eNOS and SIRT1 expression.
Collapse
|
16
|
Wu SJ, Tung YJ, Yen MH, Ng LT. Chemical composition and anti-aging effects of standardized herbal chicken essence on D-galactose- induced senescent mice. Front Nutr 2022; 9:989067. [PMID: 36176640 PMCID: PMC9513449 DOI: 10.3389/fnut.2022.989067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
This study aimed to examine the chemical and anti-aging properties of chicken essence (CE) prepared with Sesamum indicum, Angelica acutiloba, and Zingiber officinale (HCE). HCE was analyzed for nutritional and phytochemical composition, and its anti-aging effects were investigated on the D-galactose (Gal)-induced aging mice. Results showed that HCE possessed significantly higher calories and contents of valine and total phenols than CE; it also contained significant amounts of ferulic acid, sesamin, and sesamolin. HCE significantly decreased MDA and NO levels in serum and liver and increased liver GSH levels in the D-Gal-induced mice. HCE greatly enhanced SOD and CAT activities in serum and liver, and liver GPx activity, as well as upregulating SIRT1 expression and downregulating TNF-α, IL-1β, IL-6, iNOS, Cox-2, and MCP-1 expression in liver tissues. This study demonstrates that HCE was effective in suppressing the aging process through enhancing antioxidant and anti-inflammatory activities and modulating the aging-related gene expression.
Collapse
Affiliation(s)
- Shu-Jing Wu
- Department of Nutritional Health, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Yi-Jou Tung
- Department of Nutritional Health, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Ming-Hong Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lean-Teik Ng
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
- *Correspondence: Lean-Teik Ng
| |
Collapse
|
17
|
Cummings MJ, Yu H, Paudel S, Hu G, Li X, Hemberger M, Wang X. Uterine-specific SIRT1 deficiency confers premature uterine aging and impairs invasion and spacing of blastocyst, and stromal cell decidualization, in mice. Mol Hum Reprod 2022; 28:gaac016. [PMID: 35536234 PMCID: PMC10689003 DOI: 10.1093/molehr/gaac016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/28/2022] [Indexed: 12/02/2023] Open
Abstract
A distinct age-related alteration in the uterine environment has recently been identified as a prevalent cause of the reproductive decline in older female mice. However, the molecular mechanisms that underlie age-associated uterine adaptability to pregnancy are not known. Sirtuin 1 (SIRT1), a multifunctional NAD+-dependent deacetylase that regulates cell viability, senescence and inflammation during aging, is reduced in aged decidua. Thus, we hypothesize that SIRT1 plays a critical role in uterine adaptability to pregnancy and that uterine-specific ablation of Sirt1 gene accelerates premature uterine aging. Female mice with uterine ablation of Sirt1 gene using progesterone receptor Cre (PgrCre) exhibit subfertility and signs of premature uterine aging. These Sirt1-deficient mothers showed decreases in litter size from their 1st pregnancy and became sterile (25.1 ± 2.5 weeks of age) after giving birth to the third litter. We report that uterine-specific Sirt1 deficiency impairs invasion and spacing of blastocysts, and stromal cell decidualization, leading to abnormal placentation. We found that these problems traced back to the very early stages of hormonal priming of the uterus. During the window of receptivity, Sirt1 deficiency compromises uterine epithelial-stromal crosstalk, whereby estrogen, progesterone and Indian hedgehog signaling pathways are dysregulated, hampering stromal cell priming for decidualization. Uterine transcriptomic analyses also link these causes to perturbations of histone proteins and epigenetic modifiers, as well as adrenomedullin signaling, hyaluronic acid metabolism, and cell senescence. Strikingly, our results also identified genes with significant overlaps with the transcriptome of uteri from aged mice and transcriptomes related to master regulators of decidualization (e.g. Foxo1, Wnt4, Sox17, Bmp2, Egfr and Nr2f2). Our results also implicate accelerated deposition of aging-related fibrillar Type I and III collagens in Sirt1-deficient uteri. Collectively, SIRT1 is an important age-related regulator of invasion and spacing of blastocysts, as well as decidualization of stromal cells.
Collapse
Affiliation(s)
- Magdalina J Cummings
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
- The Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Hongyao Yu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Sudikshya Paudel
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
- The Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Guang Hu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Myriam Hemberger
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Xiaoqiu Wang
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
- The Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
18
|
Ungurianu A, Zanfirescu A, Margină D. Regulation of Gene Expression through Food—Curcumin as a Sirtuin Activity Modulator. PLANTS 2022; 11:plants11131741. [PMID: 35807694 PMCID: PMC9269530 DOI: 10.3390/plants11131741] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
Abstract
The sirtuin family comprises NAD+-dependent protein lysine deacylases, mammalian sirtuins being either nuclear (SIRT1, SIRT2, SIRT6, and SIRT7), mitochondrial (SIRT3, SIRT4, and SIRT5) or cytosolic enzymes (SIRT2 and SIRT5). They are able to catalyze direct metabolic reactions, thus regulating several physiological functions, such as energy metabolism, stress response, inflammation, cell survival, DNA repair, tissue regeneration, neuronal signaling, and even circadian rhythms. Based on these data, recent research was focused on finding molecules that could regulate sirtuins’ expression and/or activity, natural compounds being among the most promising in the field. Curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) can induce, through SIRT, modulation of cancer cell senescence, improve endothelial cells protection against atherosclerotic factors, enhance muscle regeneration in atrophy models, and act as a pro-longevity factor counteracting the neurotoxicity of amyloid-beta. Although a plethora of protective effects was reported (antioxidant, anti-inflammatory, anticancer, etc.), its therapeutical use is limited due to its bioavailability issues. However, all the reported effects may be explained via the bioactivation theory, which postulates that curcumin’s observed actions are modulated via its metabolites and/or degradation products. The present article is focused on bringing together the literature data correlating the ability of curcumin and its metabolites to modulate SIRT activity and its consequent beneficial effects.
Collapse
Affiliation(s)
- Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Traian Vuia, 020956 Bucharest, Romania; (A.U.); (D.M.)
| | - Anca Zanfirescu
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Traian Vuia, 020956 Bucharest, Romania
- Correspondence:
| | - Denisa Margină
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Traian Vuia, 020956 Bucharest, Romania; (A.U.); (D.M.)
| |
Collapse
|
19
|
Lunin SM, Novoselova EG, Glushkova OV, Parfenyuk SB, Novoselova TV, Khrenov MO. Cell Senescence and Central Regulators of Immune Response. Int J Mol Sci 2022; 23:ijms23084109. [PMID: 35456927 PMCID: PMC9028919 DOI: 10.3390/ijms23084109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/13/2022] Open
Abstract
Pathways regulating cell senescence and cell cycle underlie many processes associated with ageing and age-related pathologies, and they also mediate cellular responses to exposure to stressors. Meanwhile, there are central mechanisms of the regulation of stress responses that induce/enhance or weaken the response of the whole organism, such as hormones of the hypothalamic-pituitary-adrenal (HPA) axis, sympathetic and parasympathetic systems, thymic hormones, and the pineal hormone melatonin. Although there are many analyses considering relationships between the HPA axis and organism ageing, we found no systematic analyses of relationships between the neuroendocrine regulators of stress and inflammation and intracellular mechanisms controlling cell cycle, senescence, and apoptosis. Here, we provide a review of the effects of neuroendocrine regulators on these mechanisms. Our analysis allowed us to postulate a multilevel system of central regulators involving neurotransmitters, glucocorticoids, melatonin, and the thymic hormones. This system finely regulates the cell cycle and metabolic/catabolic processes depending on the level of systemic stress, stage of stress response, and energy capabilities of the body, shifting the balance between cell cycle progression, cell cycle stopping, senescence, and apoptosis. These processes and levels of regulation should be considered when studying the mechanisms of ageing and the proliferation on the level of the whole organism.
Collapse
|
20
|
Hu C, Zhang X, Teng T, Ma ZG, Tang QZ. Cellular Senescence in Cardiovascular Diseases: A Systematic Review. Aging Dis 2022; 13:103-128. [PMID: 35111365 PMCID: PMC8782554 DOI: 10.14336/ad.2021.0927] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is a prominent risk factor for cardiovascular diseases, which is the leading cause of death around the world. Recently, cellular senescence has received potential attention as a promising target in preventing cardiovascular diseases, including acute myocardial infarction, atherosclerosis, cardiac aging, pressure overload-induced hypertrophy, heart regeneration, hypertension, and abdominal aortic aneurysm. Here, we discuss the mechanisms underlying cellular senescence and describe the involvement of senescent cardiovascular cells (including cardiomyocytes, endothelial cells, vascular smooth muscle cells, fibroblasts/myofibroblasts and T cells) in age-related cardiovascular diseases. Then, we highlight the targets (SIRT1 and mTOR) that regulating cellular senescence in cardiovascular disorders. Furthermore, we review the evidence that senescent cells can exert both beneficial and detrimental implications in cardiovascular diseases on a context-dependent manner. Finally, we summarize the emerging pro-senescent or anti-senescent interventions and discuss their therapeutic potential in preventing cardiovascular diseases.
Collapse
Affiliation(s)
- Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| |
Collapse
|
21
|
Nishigaki A, Tsubokura H, Tsuzuki-Nakao T, Okada H. Hypoxia: Role of SIRT1 and the protective effect of resveratrol in ovarian function. Reprod Med Biol 2021; 21:e12428. [PMID: 34934403 PMCID: PMC8656197 DOI: 10.1002/rmb2.12428] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
Background Ovarian function is closely related to the degree of vascular network development surrounding the ovary. Maternal aging‐related construction defects in this vascular network can cause ovarian hypoxia, which impedes oocyte nutrient supply, leading to physiological changes in the ovaries and oocytes. The anti‐aging gene Sirtuin 1 (SIRT1) senses and adapts to ambient stress and is associated with hypoxic environments and mitochondrial biogenesis. Methods The present study is a literature review focusing on investigations involving the changes in SIRT1 and mitochondrial expression during hypoxia and the cytoprotective effects of the SIRT1 activator, resveratrol. Main findings Hypoxia suppresses SIRT1 and mitochondrial expression. Resveratrol can reverse the hypoxia‐induced decrease in mitochondrial and SIRT1 activity. Resveratrol suppresses the production of hypoxia‐inducible factor‐1α and vascular endothelial growth factor proteins. Conclusion Resveratrol exhibits protective activity against hypoxic stress and may prevent hypoxia‐ or aging‐related mitochondrial dysfunction. Resveratrol treatment may be a potential option for infertility therapy.
Collapse
Affiliation(s)
- Akemi Nishigaki
- Department of Obstetrics and Gynecology Kansai Medical University Osaka Japan
| | - Hiroaki Tsubokura
- Department of Obstetrics and Gynecology Kansai Medical University Osaka Japan
| | | | - Hidetaka Okada
- Department of Obstetrics and Gynecology Kansai Medical University Osaka Japan
| |
Collapse
|
22
|
Thoma OM, Neurath MF, Waldner MJ. Cyclin-Dependent Kinase Inhibitors and Their Therapeutic Potential in Colorectal Cancer Treatment. Front Pharmacol 2021; 12:757120. [PMID: 35002699 PMCID: PMC8733931 DOI: 10.3389/fphar.2021.757120] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/26/2021] [Indexed: 12/17/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are key players in cell cycle regulation. So far, more than ten CDKs have been described. Their direct interaction with cyclins allow progression through G1 phase, transitions to S and G2 phase and finally through mitosis (M). While CDK activation is important in cell renewal, its aberrant expression can lead to the development of malignant tumor cells. Dysregulations in CDK pathways are often encountered in various types of cancer, including all gastrointestinal (GI) tract tumors. This prompted the development of CDK inhibitors as novel therapies for cancer. Currently, CDK inhibitors such as CDK4/6 inhibitors are used in pre-clinical studies for cancer treatment. In this review, we will focus on the therapeutic role of various CDK inhibitors in colorectal cancer, with a special focus on the CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Oana-Maria Thoma
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- German Center for Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- German Center for Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian J Waldner
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- German Center for Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
23
|
Sharma R. Bioactive food components for managing cellular senescence in aging and disease: A critical appraisal and perspectives. PHARMANUTRITION 2021. [DOI: 10.1016/j.phanu.2021.100281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Saikumar J, Bonini NM. Synergistic effects of brain injury and aging: common mechanisms of proteostatic dysfunction. Trends Neurosci 2021; 44:728-740. [PMID: 34301397 DOI: 10.1016/j.tins.2021.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 01/09/2023]
Abstract
The aftermath of TBI is associated with an acute stress response and the accumulation of insoluble protein aggregates. Even after the symptoms of TBI are resolved, insidious molecular processes continue to develop, which often ultimately result in the development of age-associated neurodegenerative disorders. The precise molecular cascades that drive unhealthy brain aging are still largely unknown. In this review, we discuss proteostatic dysfunction as a converging mechanism contributing to accelerated brain aging after TBI. We examine evidence from human tissue and in vivo animal models, spanning both the aging and injury contexts. We conclude that TBI has a sustained debilitating effect on the proteostatic machinery, which may contribute to the accelerated pathological and cognitive hallmarks of aging that are observed following injury.
Collapse
Affiliation(s)
- Janani Saikumar
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Barberis M. Quantitative model of eukaryotic Cdk control through the Forkhead CONTROLLER. NPJ Syst Biol Appl 2021; 7:28. [PMID: 34117265 PMCID: PMC8196193 DOI: 10.1038/s41540-021-00187-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/07/2021] [Indexed: 12/20/2022] Open
Abstract
In budding yeast, synchronization of waves of mitotic cyclins that activate the Cdk1 kinase occur through Forkhead transcription factors. These molecules act as controllers of their sequential order and may account for the separation in time of incompatible processes. Here, a Forkhead-mediated design principle underlying the quantitative model of Cdk control is proposed for budding yeast. This design rationalizes timing of cell division, through progressive and coordinated cyclin/Cdk-mediated phosphorylation of Forkhead, and autonomous cyclin/Cdk oscillations. A "clock unit" incorporating this design that regulates timing of cell division is proposed for both yeast and mammals, and has a DRIVER operating the incompatible processes that is instructed by multiple CLOCKS. TIMERS determine whether the clocks are active, whereas CONTROLLERS determine how quickly the clocks shall function depending on external MODULATORS. This "clock unit" may coordinate temporal waves of cyclin/Cdk concentration/activity in the eukaryotic cell cycle making the driver operate the incompatible processes, at separate times.
Collapse
Affiliation(s)
- Matteo Barberis
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, UK.
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Russo M, Bono E, Ghigo A. The Interplay Between Autophagy and Senescence in Anthracycline Cardiotoxicity. Curr Heart Fail Rep 2021; 18:180-190. [PMID: 34081265 PMCID: PMC8342382 DOI: 10.1007/s11897-021-00519-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Doxorubicin (DOXO) is a highly effective chemotherapeutic drug employed for the treatment of a wide spectrum of cancers, spanning from solid tumours to haematopoietic malignancies. However, its clinical use is hampered by severe and dose-dependent cardiac side effects that ultimately lead to heart failure (HF). RECENT FINDINGS Mitochondrial dysfunction and oxidative stress are well-established mechanisms of DOXO-induced cardiotoxicity, although recent evidence suggests that deregulation of other biological processes, like autophagy, could be involved. It is increasingly recognized that autophagy deregulation is intimately interconnected with the initiation of detrimental cellular responses, including autosis and senescence, raising the possibility of using autophagy modulators as well as senolytics and senomorphics for preventing DOXO cardiotoxicity. This review aims at providing an overview of the signalling pathways that are common to autophagy and senescence, with a special focus on how the relationship between these two processes is deregulated in response to cardiotoxic treatments. Finally, we will discuss the potential therapeutic utility of drugs modulating autophagy and/or senescence for counteracting DOXO cardiotoxicity.
Collapse
Affiliation(s)
- Michele Russo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Enrico Bono
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy.
| |
Collapse
|
27
|
Wang L, Zuo X, Ouyang Z, Qiao P, Wang F. A Systematic Review of Antiaging Effects of 23 Traditional Chinese Medicines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5591573. [PMID: 34055012 PMCID: PMC8143881 DOI: 10.1155/2021/5591573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Aging is an inevitable stage of body development. At the same time, aging is a major cause of cancer, cardiovascular disease, and neurodegenerative diseases. Chinese herbal medicine is a natural substance that can effectively delay aging and is expected to be developed as antiaging drugs in the future. Aim of the review. This paper reviews the antiaging effects of 23 traditional Chinese herbal medicines or their active components. Materials and methods. We reviewed the literature published in the last five years on Chinese herbal medicines or their active ingredients and their antiaging role obtained through the following databases: PubMed, EMBASE, Scopus, and Web of Science. RESULTS A total of 2485 papers were found, and 212 papers were screened after removing the duplicates and reading the titles. Twenty-three studies met the requirements of this review and were included. Among these studies, 13 articles used Caenorhabditis elegans as the animal model, and 10 articles used other animal models or cell lines. CONCLUSION Chinese herbal medicines or their active components play an antiaging role by regulating genes related to aging through a variety of signaling pathways. Chinese herbal medicines are expected to be developed as antiaging drugs or used in the medical cosmetology industry.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xu Zuo
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Zhuoer Ouyang
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Ping Qiao
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
28
|
Francois A, Canella A, Marcho LM, Stratton MS. Protein acetylation in cardiac aging. J Mol Cell Cardiol 2021; 157:90-97. [PMID: 33915138 DOI: 10.1016/j.yjmcc.2021.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/14/2021] [Accepted: 04/21/2021] [Indexed: 11/15/2022]
Abstract
Biological aging is attributed to progressive dysfunction in systems governing genetic and metabolic integrity. At the cellular level, aging is evident by accumulated DNA damage and mutation, reactive oxygen species, alternate lipid and protein modifications, alternate gene expression programs, and mitochondrial dysfunction. These effects sum to drive altered tissue morphology and organ dysfunction. Protein-acylation has emerged as a critical mediator of age-dependent changes in these processes. Despite decades of research focus from academia and industry, heart failure remains a leading cause of death in the United States while the 5 year mortality rate for heart failure remains over 40%. Over 90% of heart failure deaths occur in patients over the age of 65 and heart failure is the leading cause of hospitalization in Medicare beneficiaries. In 1931, Cole and Koch discovered age-dependent accumulation of phosphates in skeletal muscle. These and similar findings provided supporting evidence for, now well accepted, theories linking metabolism and aging. Nearly two decades later, age-associated alterations in biochemical molecules were described in the heart. From these small beginnings, the field has grown substantially in recent years. This growing research focus on cardiac aging has, in part, been driven by advances on multiple public health fronts that allow population level clinical presentation of aging related disorders. It is estimated that by 2030, 25% of the worldwide population will be over the age of 65. This review provides an overview of acetylation-dependent regulation of biological processes related to cardiac aging and introduces emerging non-acetyl, acyl-lysine modifications in cardiac function and aging.
Collapse
Affiliation(s)
- Ashley Francois
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Alessandro Canella
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Lynn M Marcho
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Matthew S Stratton
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
29
|
Cordeiro AV, Brícola RS, Braga RR, Lenhare L, Silva VRR, Anaruma CP, Katashima CK, Crisol BM, Simabuco FM, Silva ASR, Cintra DE, Moura LP, Pauli JR, Ropelle ER. Aerobic Exercise Training Induces the Mitonuclear Imbalance and UPRmt in the Skeletal Muscle of Aged Mice. J Gerontol A Biol Sci Med Sci 2021; 75:2258-2261. [PMID: 32173728 DOI: 10.1093/gerona/glaa059] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Indexed: 12/27/2022] Open
Abstract
The impairment of the mitochondrial functions is a hallmark of aging. During aging, there is a downregulation of two mechanisms strictly associated with mitochondrial integrity, including the mitonuclear imbalance (eg, imbalance in mitochondrial- versus nuclear-encoded mitochondrial proteins) and the mitochondrial unfolded protein response (UPRmt). Here, we evaluated the effects of aerobic exercise in the mitonuclear imbalance and UPRmt markers in the skeletal muscle of old mice. We combined the physiological tests, molecular and bioinformatic analyzes to evaluate the effects of 4 weeks of aerobic exercise training on mitonuclear imbalance and UPRmt markers in the skeletal muscle of young (2 months) and aged (24 months) C57BL/6J mice. Initially, we found that aging reduced several mitochondrial genes in the gastrocnemius muscle, and it was accompanied by the low levels of UPRmt markers, including Yme1l1 and Clpp mRNA. As expected, physical training improved the whole-body metabolism and physical performance of aged mice. The aerobic exercise increased key proteins involved in the mitochondrial biogenesis/functions (VDAC and SIRT1) along with mitochondrial-encoded genes (mtNd1, mtCytB, and mtD-Loop) in the skeletal muscle of old mice. Interestingly, aerobic exercise induced the mitonuclear imbalance, increasing MTCO1/ATP5a ratio and UPRmt markers in the skeletal muscle, including HSP60, Lonp1, and Yme1L1 protein levels in the gastrocnemius muscle of aged mice. These data demonstrate that aerobic exercise training induced mitonuclear imbalance and UPRmt in the skeletal muscle during aging. These phenomena could be involved in the improvement of the mitochondrial metabolism and oxidative capacity in aged individuals.
Collapse
Affiliation(s)
- André V Cordeiro
- Laboratory of Molecular Biology of Exercise, University of Campinas, Limeira, Brazil
| | - Rafael S Brícola
- Laboratory of Molecular Biology of Exercise, University of Campinas, Limeira, Brazil
| | - Renata R Braga
- Laboratory of Molecular Biology of Exercise, University of Campinas, Limeira, Brazil
| | - Luciene Lenhare
- Laboratory of Molecular Biology of Exercise, University of Campinas, Limeira, Brazil
| | - Vagner R R Silva
- Laboratory of Molecular Biology of Exercise, University of Campinas, Limeira, Brazil
| | - Chadi P Anaruma
- Laboratory of Molecular Biology of Exercise, University of Campinas, Limeira, Brazil.,Department of Physical Education, Institute of Biosciences, São Paulo State University, Rio Claro, Brazil
| | - Carlos K Katashima
- Laboratory of Molecular Biology of Exercise, University of Campinas, Limeira, Brazil
| | - Barbara M Crisol
- Laboratory of Molecular Biology of Exercise, University of Campinas, Limeira, Brazil
| | - Fernando M Simabuco
- Laboratory of Functional Properties in Foods, University of Campinas, Limeira, Brazil
| | - Adelino S R Silva
- Postgraduate Program in Rehabilitation and Functional Performance, University of São Paulo, Ribeirão Preto, Brazil.,School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Dennys E Cintra
- Laboratory of Nutritional Genomics, University of Campinas, Limeira, Brazil
| | - Leandro P Moura
- Laboratory of Molecular Biology of Exercise, University of Campinas, Limeira, Brazil.,Department of Physical Education, Institute of Biosciences, São Paulo State University, Rio Claro, Brazil.,CEPECE - Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, Brazil
| | - José R Pauli
- Laboratory of Molecular Biology of Exercise, University of Campinas, Limeira, Brazil.,CEPECE - Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise, University of Campinas, Limeira, Brazil.,CEPECE - Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, Brazil.,Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
30
|
Role of NAD + in regulating cellular and metabolic signaling pathways. Mol Metab 2021; 49:101195. [PMID: 33609766 PMCID: PMC7973386 DOI: 10.1016/j.molmet.2021.101195] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Background Nicotinamide adenine dinucleotide (NAD+), a critical coenzyme present in every living cell, is involved in a myriad of metabolic processes associated with cellular bioenergetics. For this reason, NAD+ is often studied in the context of aging, cancer, and neurodegenerative and metabolic disorders. Scope of review Cellular NAD+ depletion is associated with compromised adaptive cellular stress responses, impaired neuronal plasticity, impaired DNA repair, and cellular senescence. Increasing evidence has shown the efficacy of boosting NAD+ levels using NAD+ precursors in various diseases. This review provides a comprehensive understanding into the role of NAD+ in aging and other pathologies and discusses potential therapeutic targets. Major conclusions An alteration in the NAD+/NADH ratio or the NAD+ pool size can lead to derailment of the biological system and contribute to various neurodegenerative disorders, aging, and tumorigenesis. Due to the varied distribution of NAD+/NADH in different locations within cells, the direct role of impaired NAD+-dependent processes in humans remains unestablished. In this regard, longitudinal studies are needed to quantify NAD+ and its related metabolites. Future research should focus on measuring the fluxes through pathways associated with NAD+ synthesis and degradation. NAD+ regulates energy metabolism, DNA damage repair, gene expression, and stress response. NAD+ deterioration contributes to the progression of multiple metabolic disorders, cancers, and neurodegenerative diseases. Nicotinamide mononucleotide and nicotinamide riboside raise NAD+ levels in different tissues in preclinical models. Imaging studies on genetic models can illustrate the pathways of NAD+metabolism and their downstream functional effects. Human clinical trials to determine benefits of restoration of NAD+ by using NAD precursors are in progress.
Collapse
|
31
|
Pluquet O, Abbadie C. Cellular senescence and tumor promotion: Role of the Unfolded Protein Response. Adv Cancer Res 2021; 150:285-334. [PMID: 33858599 DOI: 10.1016/bs.acr.2021.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Senescence is a cellular state which can be viewed as a stress response phenotype implicated in various physiological and pathological processes, including cancer. Therefore, it is of fundamental importance to understand why and how a cell acquires and maintains a senescent phenotype. Direct evidence has pointed to the homeostasis of the endoplasmic reticulum whose control appears strikingly affected during senescence. The endoplasmic reticulum is one of the sensing organelles that transduce signals between different pathways in order to adapt a functional proteome upon intrinsic or extrinsic challenges. One of these signaling pathways is the Unfolded Protein Response (UPR), which has been shown to be activated during senescence. Its exact contribution to senescence onset, maintenance, and escape, however, is still poorly understood. In this article, we review the mechanisms through which the UPR contributes to the appearance and maintenance of characteristic senescent features. We also discuss whether the perturbation of the endoplasmic reticulum proteostasis or accumulation of misfolded proteins could be possible causes of senescence, and-as a consequence-to what extent the UPR components could be considered as therapeutic targets allowing for the elimination of senescent cells or altering their secretome to prevent neoplastic transformation.
Collapse
Affiliation(s)
- Olivier Pluquet
- Univ Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France.
| | - Corinne Abbadie
- Univ Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| |
Collapse
|
32
|
Yi SJ, Kim K. New Insights into the Role of Histone Changes in Aging. Int J Mol Sci 2020; 21:ijms21218241. [PMID: 33153221 PMCID: PMC7662996 DOI: 10.3390/ijms21218241] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Aging is the progressive decline or loss of function at the cellular, tissue, and organismal levels that ultimately leads to death. A number of external and internal factors, including diet, exercise, metabolic dysfunction, genome instability, and epigenetic imbalance, affect the lifespan of an organism. These aging factors regulate transcriptome changes related to the aging process through chromatin remodeling. Many epigenetic regulators, such as histone modification, histone variants, and ATP-dependent chromatin remodeling factors, play roles in chromatin reorganization. The key to understanding the role of gene regulatory networks in aging lies in characterizing the epigenetic regulators responsible for reorganizing and potentiating particular chromatin structures. This review covers epigenetic studies on aging, discusses the impact of epigenetic modifications on gene expression, and provides future directions in this area.
Collapse
|
33
|
Xu C, Wang L, Fozouni P, Evjen G, Chandra V, Jiang J, Lu C, Nicastri M, Bretz C, Winkler JD, Amaravadi R, Garcia BA, Adams PD, Ott M, Tong W, Johansen T, Dou Z, Berger SL. SIRT1 is downregulated by autophagy in senescence and ageing. Nat Cell Biol 2020; 22:1170-1179. [PMID: 32989246 PMCID: PMC7805578 DOI: 10.1038/s41556-020-00579-5] [Citation(s) in RCA: 308] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 08/17/2020] [Indexed: 12/01/2022]
Abstract
SIRT1 (Sir2) is an NAD+-dependent deacetylase that plays critical roles in a broad range of biological events, including metabolism, the immune response and ageing1-5. Although there is strong interest in stimulating SIRT1 catalytic activity, the homeostasis of SIRT1 at the protein level is poorly understood. Here we report that macroautophagy (hereafter referred to as autophagy), a catabolic membrane trafficking pathway that degrades cellular components through autophagosomes and lysosomes, mediates the downregulation of mammalian SIRT1 protein during senescence and in vivo ageing. In senescence, nuclear SIRT1 is recognized as an autophagy substrate and is subjected to cytoplasmic autophagosome-lysosome degradation, via the autophagy protein LC3. Importantly, the autophagy-lysosome pathway contributes to the loss of SIRT1 during ageing of several tissues related to the immune and haematopoietic system in mice, including the spleen, thymus, and haematopoietic stem and progenitor cells, as well as in CD8+CD28- T cells from aged human donors. Our study reveals a mechanism in the regulation of the protein homeostasis of SIRT1 and suggests a potential strategy to stabilize SIRT1 to promote productive ageing.
Collapse
Affiliation(s)
- Caiyue Xu
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lu Wang
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Parinaz Fozouni
- Gladstone Institutes, San Francisco, CA, 94158, USA,Department of Medicine, University of California, San Francisco, San Francisco, CA, 94125, USA
| | - Gry Evjen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø- The Arctic University of Norway, Tromsø 9037, Norway
| | - Vemika Chandra
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jing Jiang
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA,Current address: Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Congcong Lu
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael Nicastri
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Corey Bretz
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, 92037, USA
| | - Jeffrey D. Winkler
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ravi Amaravadi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Benjamin A. Garcia
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Peter D. Adams
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, 92037, USA
| | - Melanie Ott
- Gladstone Institutes, San Francisco, CA, 94158, USA,Department of Medicine, University of California, San Francisco, San Francisco, CA, 94125, USA
| | - Wei Tong
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Terje Johansen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø- The Arctic University of Norway, Tromsø 9037, Norway
| | - Zhixun Dou
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA. .,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA. .,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | - Shelley L. Berger
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA,Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA,Correspondence should be addressed to S.L.B. () or Z.D. ()
| |
Collapse
|
34
|
|
35
|
Effect of Antioxidants on the Fibroblast Replicative Lifespan In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6423783. [PMID: 33029282 PMCID: PMC7530501 DOI: 10.1155/2020/6423783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/04/2020] [Accepted: 09/12/2020] [Indexed: 12/20/2022]
Abstract
Replicative senescence is an unalterable growth arrest of primary cells in the culture system. It has been reported that aging in vivo is related to the limited replicative capacity that normal somatic cells show in vitro. If oxidative damage contributes to the lifespan limitation, antioxidants are expected to extend the replicative lifespan of fibroblasts. This article critically reviews the results of experiments devoted to this problem performed within the last decades under conditions of in vitro culture. The results of studied are heterogeneous, some papers showing no effects of antioxidants; most finding limited enhancement of reproductive capacity of fibroblasts, some reporting a significant extension of replicative lifespan (RLS). Both natural and synthetic antioxidants were found to extend the RLS of fibroblasts, either by a direct antioxidant effect or, indirectly, by activation of signaling pathways and activation of proteasomes or hormetic effects. Most significant prolongation of RLS was reported so far for nicotinamide, N-hydroxylamines, carnosine and Methylene Blue. These results may be of importance for the design of skin-protecting cosmetics.
Collapse
|
36
|
Esparza O, Higa K, Davizon-Castillo P. Molecular and functional characteristics of megakaryocytes and platelets in aging. Curr Opin Hematol 2020; 27:302-310. [PMID: 32740036 PMCID: PMC11776438 DOI: 10.1097/moh.0000000000000601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Advances in medical care and preventive measures have contributed to increasing life expectancy. Therefore, it is critical to expand our understanding of the physiological and pathophysiological adaptations of the hematological system in aging. We highlight and review the findings from recent investigations aimed at understanding the effects of aging on megakaryocytes and platelets. RECENT FINDINGS Biochemical and transcriptomic studies of megakaryocytes and platelets from older humans and mice have advanced our understanding of the molecular and functional characteristics of megakaryocytes and platelets during aging. These studies have led to the identification of metabolic and inflammatory pathways associated with the generation of hyperreactive platelets that may significantly contribute to the high incidence of thrombosis in aging. SUMMARY By increasing our research efforts to understand and identify the characteristics of megakaryocytes and platelets in aging, we will increase our potential to develop novel therapies aimed at decreasing the incidence of aging-associated thrombosis. These efforts will also serve as a foundation to better understand the role of megakaryocytes and platelets in other age-related hematological conditions with high thrombotic risk such as clonal hematopoiesis of indeterminate potential and myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Orlando Esparza
- Department of Pediatric Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Aurora, Colorado, USA
| | - Kelly Higa
- Medical Scientist Training Program, University of Colorado, Aurora, Colorado, USA
| | - Pavel Davizon-Castillo
- Department of Pediatric Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Aurora, Colorado, USA
- Hemophilia and Thrombosis Center, School of Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
37
|
Activation of AMP-Activated Protein Kinase by A769662 Ameliorates Sepsis-Induced Acute Lung Injury in Adult Mice. Shock 2020; 52:540-549. [PMID: 30562237 DOI: 10.1097/shk.0000000000001303] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A serious consequence of sepsis is acute lung injury, whose severity is particularly impacted by the age of the patient. AMP-activated protein kinase (AMPK) is a crucial regulator of cellular metabolism, which controls mitochondrial biogenesis and autophagy. Here, we investigated the effect of pharmacological activation of AMPK with A769662 on lung injury by using a model that would preferably mimic the clinical condition of adult patients. Male C57BL/6 retired breeder mice (7-9 months old) were subjected to sepsis by cecal ligation and puncture (CLP). Mice received vehicle or A769662 (10 mg/kg) intraperitoneally at 1 h after CLP. At 6 h after CLP, vehicle-treated mice exhibited severe lung injury and elevation of plasma pro-inflammatory cytokines when compared with control mice. At molecular analysis, lung injury was associated with downregulation of AMPKα1/α2 catalytic subunits and reduced phosphorylation of AMPKβ1 regulatory subunit. Treatment with A769662 ameliorated lung architecture, reduced bacterial load in lung and blood, and attenuated plasma levels of interleukin-6. This protective effect was associated with nuclear phosphorylation of AMPKα1/α2 and AMPKβ1, increased nuclear expression of peroxisome proliferator-activated receptor γ co-activator-α and increased autophagy, as evaluated by the light-chain (LC)3B-I and LC3B-II content, without changes in sirtuin-1 cellular dynamics. Treatment with A769662 alone or in combination with the antimicrobial agent imipenem (25 mg/kg) increased survival rate (29% and 51%, respectively) when compared with vehicle treatment (10%) at 7 days after CLP. These data suggest that pharmacological activation of AMPK might be a beneficial approach for the treatment of sepsis in adult population.
Collapse
|
38
|
Wnt/β-catenin signaling may induce senescence of chondrocytes in osteoarthritis. Exp Ther Med 2020; 20:2631-2638. [PMID: 32765756 PMCID: PMC7401843 DOI: 10.3892/etm.2020.9022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 05/28/2020] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis (OA) is an autoimmune disease associated with increasing age. Typically, chondrocyte senescence is believed to serve an important role in the development and progression of OA. However, the specific mechanisms underlying chondrocyte senescence have not been fully addressed. The present study hypothesized that the Wnt/β-catenin signaling may represent a major regulator of chondrocyte senescence. In addition, the acetylated levels of p53 and sirtuin-1 (SIRT-1) were examined as putative markers for chondrocyte senescence, since activation of p53 is considered an important step in the regulation of senescence. The Wnt/β-catenin signaling pathway was activated using LiCl and inhibited using the Wnt signaling pathway inhibitor, dickkopf-1 (DKK1) in order to evaluate the role of this pathway in the development of OA. Senescent cells were detected using the senescence-associated indicator acidic senescence-associated β-galactosidase (SA-β-gal). The effects of p53 and p16 on chondrocyte senescence were assessed via activation of Wnt/β-catenin signaling using Wnt-1. In addition, β-catenin was transfected into chondrocytes to induce activation of the Wnt/β-catenin signaling pathway. Finally, a rabbit model of OA was used to assess whether the observed effects on the Wnt/β-catenin signaling pathway and the induction of chondrocyte senescence were perpetuated. Activation of Wnt/β-catenin signaling increased the expression levels of SA-β-gal, p53, p16 and acetylated p53. Transfection of β-catenin in chondrocytes increased the expression levels of acetylated p53 and decreased the expression levels of SIRT-1, which in turn deacetylated p53 and modulated its activity. Finally, the role of the Wnt/β-catenin signaling pathway was confirmed in the development of OA using a rabbit model with this condition. The present study suggested that activation of the Wnt/β-catenin signaling pathway promoted chondrocyte senescence, through downregulation of SIRT-1 and increased the expression of acetylated p53.
Collapse
|
39
|
Jang HJ, Yang KE, Oh WK, Lee SI, Hwang IH, Ban KT, Yoo HS, Choi JS, Yeo EJ, Jang IS. Nectandrin B-mediated activation of the AMPK pathway prevents cellular senescence in human diploid fibroblasts by reducing intracellular ROS levels. Aging (Albany NY) 2020; 11:3731-3749. [PMID: 31199782 PMCID: PMC6594796 DOI: 10.18632/aging.102013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022]
Abstract
Nectandrin B (NecB) is a bioactive lignan compound isolated from Myristica fragrans (nutmeg), which functions as an activator of AMP-activated protein kinase (AMPK). Because we recently found that treatment with NecB increased the cell viability of old human diploid fibroblasts (HDFs), the underlying molecular mechanism was investigated. NecB treatment in old HDFs reduced the activity staining of senescence-associated β-galactosidase and the levels of senescence markers, such as the Ser15 phosphorylated p53, caveolin-1, p21waf1, p16ink4a, p27kip1, and cyclin D1. NecB treatment increased that in S phase, indicating a enhancement of cell cycle entry. Interestingly, NecB treatment ameliorated age-dependent activation of AMPK in old HDFs. Moreover, NecB reversed the age-dependent expression and/or activity changes of certain sirtuins (SIRT1-5), and cell survival/death-related proteins. The transcriptional activity of Yin-Yang 1 and the expression of downstream proteins were elevated in NecB-treated old HDFs. In addition, NecB treatment exerted a radical scavenging effect in vitro, reduced cellular ROS levels, and increased antioxidant enzymes in old HDFs. Moreover, NecB-mediated activation of the AMPK pathway reduced intracellular ROS levels. These results suggest that NecB-induced protection against cellular senescence is mediated by ROS-scavenging through activation of AMPK. NecB might be useful in ameliorating age-related diseases and extending human lifespan.
Collapse
Affiliation(s)
- Hyun-Jin Jang
- Drug & Disease Target Group, Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea.,Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyeong Eun Yang
- Drug & Disease Target Group, Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Song-I Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - In-Hu Hwang
- Neuroscience Research Institute, Korea University College of Medicine, Seoul 136-705, Republic of Korea
| | - Kyung-Tae Ban
- East-West Cancer Center, Daejeon University, Daejeon, 302-120, Republic of Korea
| | - Hwa-Seung Yoo
- East-West Cancer Center, Daejeon University, Daejeon, 302-120, Republic of Korea
| | - Jong-Soon Choi
- Drug & Disease Target Group, Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| | - Eui-Ju Yeo
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.,Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Ik-Soon Jang
- Drug & Disease Target Group, Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea.,Division of Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
40
|
Pi C, Yang Y, Sun Y, Wang H, Sun H, Ma M, Lin L, Shi Y, Li Y, Li Y, He X. Nicotinamide phosphoribosyltransferase postpones rat bone marrow mesenchymal stem cell senescence by mediating NAD +-Sirt1 signaling. Aging (Albany NY) 2020; 11:3505-3522. [PMID: 31175267 PMCID: PMC6594813 DOI: 10.18632/aging.101993] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 05/22/2019] [Indexed: 12/25/2022]
Abstract
In vitro replicative senescence affects MSC characteristics and functionality, thus severely restricting their application in regenerative medicine and MSC-based therapies. Previously, we found that MSC natural senescence is accompanied by altered intracellular nicotinamide adenine dinucleotide (NAD+) metabolism, in which Nampt plays a key role. However, whether Nampt influences MSC replicative senescence is still unclear. Our study showed that Nampt expression is down-regulated during MSC replicative senescence. Nampt depletion via a specific Nampt inhibitor FK866 or Nampt knockdown in early passage MSCs led to enhanced senescence as indicated by senescence-like morphology, reduced proliferation, and adipogenic and osteogenic differentiation, and increased senescence-associated-β-galactosidase activity and the expression of the senescence-associated factor p16INK4a. Conversely, Nampt overexpression ameliorated senescence-associated phenotypic features in late passage MSCs. Further, Nampt inhibition resulted in reduced intracellular NAD+ content, NAD+/NADH ratio, and Sirt1 activity, whereas overexpression had the opposite effects. Exogenous intermediates involved in NAD+ biosynthesis not only rescued replicative senescent MSCs but also alleviated FK866-induced MSC senescence. Thus, Nampt suppresses MSC senescence via mediating NAD+-Sirt1 signaling. This study provides novel mechanistic insights into MSC replicative senescence and a promising strategy for the severe shortage of cells for MSC-based therapies.
Collapse
Affiliation(s)
- Chenchen Pi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.,The First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Yue Yang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.,Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Yanan Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Huan Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Hui Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Mao Ma
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.,Department of Pathology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lin Lin
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yingai Shi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yan Li
- Division of Orthopedics and Biotechnology, Department for Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xu He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
41
|
Sarikhani M, Garbern JC, Ma S, Sereda R, Conde J, Krähenbühl G, Escalante GO, Ahmed A, Buenrostro JD, Lee RT. Sustained Activation of AMPK Enhances Differentiation of Human iPSC-Derived Cardiomyocytes via Sirtuin Activation. Stem Cell Reports 2020; 15:498-514. [PMID: 32649901 PMCID: PMC7419706 DOI: 10.1016/j.stemcr.2020.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
Recent studies suggest that metabolic regulation may improve differentiation of cardiomyocytes derived from induced pluripotent stem cells (iPSCs). AMP-activated protein kinase (AMPK) is a master regulator of metabolic activities. We investigated whether AMPK participates in iPSC-derived cardiomyocyte differentiation. We observed that AMPK phosphorylation at Thr172 increased at day 9 but then decreased after day 11 of differentiation to cardiomyocytes. Inhibition of AMPK with compound C significantly reduced mRNA and protein expression of cardiac troponins TNNT2 and TNNI3. Moreover, sustained AMPK activation using AICAR from days 9 to 14 of differentiation increased mRNA and protein expression of both TNNT2 and TNNI3. AICAR decreased acetylation of histone 3 at Lys9 and 56 and histone 4 at Lys16 (known target sites for nuclear-localized sirtuins [SIRT1, SIRT6]), suggesting that AMPK activation enhances sirtuin activity. Sustained AMPK activation during days 9–14 of differentiation induces sirtuin-mediated histone deacetylation and may enhance cardiomyocyte differentiation from iPSCs. iPSC-derived cardiomyocytes transiently increased AMPK phosphorylation at Thr172 Chemical inhibition of AMPK with compound C decreased TNNI3 and TNNT2 expression Sustained activation of AMPK using AICAR increased expression of TNNT2 and TNNI3 AICAR decreased acetylation of histones H3 (at Lys9 and Lys56) and H4 (at Lys16).
Collapse
Affiliation(s)
- Mohsen Sarikhani
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Jessica C Garbern
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA; Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Sai Ma
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biology and Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rebecca Sereda
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Jeffrey Conde
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Guido Krähenbühl
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Gabriela O Escalante
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Aishah Ahmed
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Jason D Buenrostro
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA; Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Yeo D, Kang C, Ji LL. Aging alters acetylation status in skeletal and cardiac muscles. GeroScience 2020; 42:963-976. [PMID: 32300965 PMCID: PMC7286993 DOI: 10.1007/s11357-020-00171-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
During aging, organs such as skeletal muscle and heart require sufficient NAD+ both as a coenzyme for oxidative-reductive electron transfer and as a substrate for multiple signaling pathways. Sirtuins (SIRTs), a family of NAD+-dependent deacetylase, play an important role in regulating mitochondrial homeostasis and antioxidant defense by deacetylating transcription factors and enzymes such as PGC-1α, p65, GCN5, and SOD2. However, age-related DNA damage and increased SASP activate PARP-1 and CD38, the enzymes competing with SIRTs for NAD+. Thus, it is important to know how aging alters intracellular NAD+ status and NAD+-depending enzyme expression in muscles. In this study, we report that the acetylation level of muscle protein pool, as well as major SIRTs target proteins (PGC-1α, GCN5, p65, and SOD2), was significantly increased in hindlimb and cardiac muscles of 24-month old mice compared with their 6-month old counterparts, despite the fact that most members of the SIRT family were upregulated with aging. Aging increased the protein content of PARP-1 and CD38, whereas decreased NAD+ levels in both skeletal and heart muscles. Aged muscles demonstrated clear signs of mitochondrial dysfunction, oxidative stress, and inflammation. Taken together, our data suggest that despite the upregulation of SIRTs, aged muscles suffered from NAD+ deficit partly due to the competition of elevated CD38 and PARP-1. The enhanced acetylation of several key proteins involved in broad cellular functions may contribute to the age-related muscle deterioration.
Collapse
Affiliation(s)
- Dongwook Yeo
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota Twin Cities, 1900 University Avenue SE, Minneapolis, MN, 55455, USA
| | - Chounghun Kang
- Department of Physical Education, Inha University, Incheon, 22212, South Korea
| | - Li Li Ji
- Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota Twin Cities, 1900 University Avenue SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
43
|
Han L, Long Q, Li S, Xu Q, Zhang B, Dou X, Qian M, Jiramongkol Y, Guo J, Cao L, Chin YE, Lam EWF, Jiang J, Sun Y. Senescent Stromal Cells Promote Cancer Resistance through SIRT1 Loss-Potentiated Overproduction of Small Extracellular Vesicles. Cancer Res 2020; 80:3383-3398. [PMID: 32366480 DOI: 10.1158/0008-5472.can-20-0506] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/19/2020] [Accepted: 04/29/2020] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a potent tumor-suppressive program that prevents neoplastic events. Paradoxically, senescent cells develop an inflammatory secretome, termed the senescence-associated secretory phenotype, which is implicated in age-related pathologies including cancer. Here, we report that senescent cells actively synthesize and release small extracellular vesicles (sEV) with a distinctive size distribution. Mechanistically, SIRT1 loss supported accelerated sEV production despite enhanced proteome-wide ubiquitination, a process correlated with ATP6V1A downregulation and defective lysosomal acidification. Once released, senescent stromal sEVs significantly altered the expression profile of recipient cancer cells and enhanced their aggressiveness, specifically drug resistance mediated by expression of ATP-binding cassette subfamily B member 4 (ABCB4). Targeting SIRT1 with agonist SRT2104 prevented development of cancer resistance by restraining sEV production by senescent stromal cells. In clinical oncology, sEVs in peripheral blood of posttreatment cancer patients were readily detectable by routine biotechniques, presenting an exploitable biomarker to monitor therapeutic efficacy and predict long-term outcome. Together, this study identifies a distinct mechanism supporting pathologic activities of senescent cells and provides a potent avenue to circumvent advanced human malignancies by cotargeting cancer cells and their surrounding microenvironment, which contributes to drug resistance via secretion of sEVs from senescent stromal cells. SIGNIFICANCE: Senescent stromal cells produce a large number of sEVs to promote cancer resistance in therapeutic settings, a process driven by SIRT1 decline in stromal cells and ABCB4 augmentation in cancer cells.See related commentary by Wiley, p. 3193 GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/16/3383/F1.large.jpg.
Collapse
Affiliation(s)
- Liu Han
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qilai Long
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shenjun Li
- Non-Clinical Research Department, RemeGen, Ltd. Yantai, Shandong, China
| | - Qixia Xu
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Boyi Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuefeng Dou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Qian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, China
| | - Y Eugene Chin
- Institute of Biology and Medical Sciences, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Jing Jiang
- Department of Pharmacology, Binzhou Medical University, Yantai, Shandong, China
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. .,Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Department of Medicine and VAPSHCS, University of Washington, Seattle, Washington
| |
Collapse
|
44
|
Jiang YH, Jiang LY, Wang YC, Ma DF, Li X. Quercetin Attenuates Atherosclerosis via Modulating Oxidized LDL-Induced Endothelial Cellular Senescence. Front Pharmacol 2020; 11:512. [PMID: 32410992 PMCID: PMC7198817 DOI: 10.3389/fphar.2020.00512] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/31/2020] [Indexed: 01/20/2023] Open
Abstract
Background and Aims Endothelial senescence is an important risk factor leading to atherosclerosis. The mechanism of quercetin against endothelial senescence is worth exploring. Methods Quercetin (20 mg/kg/d) was administered to ApoE-/- mice intragastrically to evaluate the effectiveness of quercetin on atherosclerotic lesion in vivo. In vitro, human aortic endothelial cells (HAECs) were used to assess the effect of quercetin on cellular senescence induced by oxidized low-density lipoprotein (ox-LDL). Transcriptome microarray and quantitative RT-PCR was conducted to study the pharmacological targets of quercetin. Results ApoE-/- mice demonstrated obvious lipid deposition in arterial lumina, high level of serum sIcam-1 and IL-6, and high density of Vcam-1 and lower density of Sirt1 in aorta. Quercetin administration decreased lipid deposition in arterial lumina, serum sIcam-1, and IL-6 and Vcam-1 in aorta, while increased the density of Sirt1 in aorta of ApoE-/- mice. In vitro, quercetin (0.3, 1, or 3 μmol/L) decreased the expression of senescence-associated β-galactosidase and improved cell morphology of HAECs. And quercetin decreased the cellular apoptosis and increased mitochondrial membrane potential (ΔΨm) in dose-dependent manner, and decreased ROS generation simultaneously. Transcriptome microarray suggested 254 differentially expressed (DE) mRNAs (110 mRNAs were upregulated and 144 mRNAs were downregulated) in HAECs after quercetin treatment (fold change > 1.5, P < 0 .05, Que vs Ox-LDL). GO and KEGG analysis indicated nitrogen metabolism, ECM-receptor interaction, complement, and coagulation cascades, p53 and mTOR signaling pathway were involved in the pharmacological mechanisms of quercetin against ox-LDL. Conclusions Quercetin alleviated atherosclerotic lesion both in vivo and in vitro.
Collapse
Affiliation(s)
- Yue-Hua Jiang
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ling-Yu Jiang
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yong-Cheng Wang
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Du-Fang Ma
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Li
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
45
|
Tissue-Specific Metabolic Regulation of FOXO-Binding Protein: FOXO Does Not Act Alone. Cells 2020; 9:cells9030702. [PMID: 32182991 PMCID: PMC7140670 DOI: 10.3390/cells9030702] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022] Open
Abstract
The transcription factor forkhead box (FOXO) controls important biological responses, including proliferation, apoptosis, differentiation, metabolism, and oxidative stress resistance. The transcriptional activity of FOXO is tightly regulated in a variety of cellular processes. FOXO can convert the external stimuli of insulin, growth factors, nutrients, cytokines, and oxidative stress into cell-specific biological responses by regulating the transcriptional activity of target genes. However, how a single transcription factor regulates a large set of target genes in various tissues in response to a variety of external stimuli remains to be clarified. Evidence indicates that FOXO-binding proteins synergistically function to achieve tightly controlled processes. Here, we review the elaborate mechanism of FOXO-binding proteins, focusing on adipogenesis, glucose homeostasis, and other metabolic regulations in order to deepen our understanding and to identify a novel therapeutic target for the prevention and treatment of metabolic disorders.
Collapse
|
46
|
Carrera I, Martínez O, Cacabelos R. Neuroprotection with Natural Antioxidants and Nutraceuticals in the Context of Brain Cell Degeneration: The Epigenetic Connection. Curr Top Med Chem 2020; 19:2999-3011. [PMID: 31789133 DOI: 10.2174/1568026619666191202155738] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 12/26/2022]
Abstract
Bioactive antioxidant agents present in selected plants are known to provide the first line of biological defense against oxidative stress. In particular, soluble vitamin C, E, carotenoids and phenolic compounds have demonstrated crucial biological effects in cells against oxidative damage, preventing prevalent chronic diseases, such as diabetes, cancer and cardiovascular disease. The reported wide range of effects that included anti-aging, anti-atherosclerosis, anti-inflammatory and anticancer activity were studied against degenerative pathologies of the brain. Vitamins and different phytochemicals are important epigenetic modifiers that prevent neurodegeneration. In order to explore the potential antioxidant sources in functional foods and nutraceuticals against neurodegeneration, the present paper aims to show a comprehensive assessment of antioxidant activity at chemical and cellular levels. The effects of the different bioactive compounds available and their antioxidant activity through an epigenetic point of view are also discussed.
Collapse
Affiliation(s)
- Iván Carrera
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Corunna 15166,Spain
| | - Olaia Martínez
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Corunna 15166,Spain
| | - Ramón Cacabelos
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Corunna 15166,Spain
| |
Collapse
|
47
|
Deacetylation of MRTF-A by SIRT1 defies senescence induced down-regulation of collagen type I in fibroblast cells. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165723. [PMID: 32061777 DOI: 10.1016/j.bbadis.2020.165723] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/13/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
Aging provokes both morphological and functional changes in cells, which are accompanied by a fundamental shift in gene expression patterns. One of the characteristic alterations associated with senescence in fibroblast cells is the down-regulation of collagen type I genes. In the present study, we investigated the contribution of myocardin-related transcription factor A, or MRTF-A, in this process. In mouse embryonic fibroblast (MEF) cells and human foreskin fibroblast (HFF) cells, senescence, induced by either progressive passage or treatment with hydrogen peroxide (H2O2), led to augmented lysine acetylation of MRTF-A paralleling down-regulation of collagen type I and SIRT1, a lysine deacetylase. SIRT1 interacted with MRTF-A to promote MRTF-A deacetylation. SIRT1 over-expression or activation by selective agonists enhanced trans-activation of the collagen promoters by MRTF-A. On the contrary, SIRT1 depletion or inhibition by specific antagonists suppressed trans-activation of the collagen promoters by MRTF-A. Likewise, mutation of four lysine residues within MRTF-A rendered it more potent in terms of activating the collagen promoters but unresponsive to SIRT1. Importantly, SIRT1 activation in senescent fibroblasts mitigated repression of collagen type I expression whereas SIRT1 inhibition promoted the loss of collagen type I expression prematurely in young fibroblasts. Mechanistically, SIRT1 enhanced the affinity of MRTF-A for the collagen type I promoters. In conclusion, our data unveil a novel mechanism that underscores aging-associated loss of collagen type I in fibroblasts via SIRT1-mediated post-translational modification of MRTF-A.
Collapse
|
48
|
Victorelli S, Lagnado A, Halim J, Moore W, Talbot D, Barrett K, Chapman J, Birch J, Ogrodnik M, Meves A, Pawlikowski JS, Jurk D, Adams PD, van Heemst D, Beekman M, Slagboom PE, Gunn DA, Passos JF. Senescent human melanocytes drive skin ageing via paracrine telomere dysfunction. EMBO J 2019; 38:e101982. [PMID: 31633821 PMCID: PMC6885734 DOI: 10.15252/embj.2019101982] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022] Open
Abstract
Cellular senescence has been shown to contribute to skin ageing. However, the role of melanocytes in the process is understudied. Our data show that melanocytes are the only epidermal cell type to express the senescence marker p16INK4A during human skin ageing. Aged melanocytes also display additional markers of senescence such as reduced HMGB1 and dysfunctional telomeres, without detectable telomere shortening. Additionally, senescent melanocyte SASP induces telomere dysfunction in paracrine manner and limits proliferation of surrounding cells via activation of CXCR3-dependent mitochondrial ROS. Finally, senescent melanocytes impair basal keratinocyte proliferation and contribute to epidermal atrophy in vitro using 3D human epidermal equivalents. Crucially, clearance of senescent melanocytes using the senolytic drug ABT737 or treatment with mitochondria-targeted antioxidant MitoQ suppressed this effect. In conclusion, our study provides proof-of-concept evidence that senescent melanocytes affect keratinocyte function and act as drivers of human skin ageing.
Collapse
Affiliation(s)
- Stella Victorelli
- Ageing Research LaboratoriesNewcastle University Institute for AgeingNewcastle UniversityNewcastle upon TyneUK
- Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle upon TyneUK
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| | - Anthony Lagnado
- Ageing Research LaboratoriesNewcastle University Institute for AgeingNewcastle UniversityNewcastle upon TyneUK
- Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle upon TyneUK
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| | - Jessica Halim
- Ageing Research LaboratoriesNewcastle University Institute for AgeingNewcastle UniversityNewcastle upon TyneUK
- Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle upon TyneUK
| | - Will Moore
- Ageing Research LaboratoriesNewcastle University Institute for AgeingNewcastle UniversityNewcastle upon TyneUK
- Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle upon TyneUK
| | - Duncan Talbot
- Unilever DiscoverColworth Science ParkSharnbrook, BedfordshireUK
| | - Karen Barrett
- Unilever DiscoverColworth Science ParkSharnbrook, BedfordshireUK
| | - James Chapman
- Ageing Research LaboratoriesNewcastle University Institute for AgeingNewcastle UniversityNewcastle upon TyneUK
- Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle upon TyneUK
| | - Jodie Birch
- Ageing Research LaboratoriesNewcastle University Institute for AgeingNewcastle UniversityNewcastle upon TyneUK
- Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle upon TyneUK
| | - Mikolaj Ogrodnik
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| | | | | | - Diana Jurk
- Ageing Research LaboratoriesNewcastle University Institute for AgeingNewcastle UniversityNewcastle upon TyneUK
- Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle upon TyneUK
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| | - Peter D Adams
- Institute of Cancer SciencesCR‐UK Beatson InstituteUniversity of GlasgowGlasgowUK
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
| | - Diana van Heemst
- Department of Gerontology and GeriatricsLeiden University Medical CenterLeidenThe Netherlands
- Netherlands Consortium for Healthy AgingLeiden University Medical CenterLeidenThe Netherlands
| | - Marian Beekman
- Department of Biomedical Data SciencesSection of Molecular EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
| | - P Eline Slagboom
- Department of Biomedical Data SciencesSection of Molecular EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
- Max Planck Institute for Biology of AgeingCologneGermany
| | - David A Gunn
- Unilever DiscoverColworth Science ParkSharnbrook, BedfordshireUK
| | - João F Passos
- Ageing Research LaboratoriesNewcastle University Institute for AgeingNewcastle UniversityNewcastle upon TyneUK
- Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle upon TyneUK
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW The goal of this review is to discuss the role of insulin signaling in bone marrow adipocyte formation, metabolic function, and its contribution to cellular senescence in relation to metabolic bone diseases. RECENT FINDINGS Insulin signaling is an evolutionally conserved signaling pathway that plays a critical role in the regulation of metabolism and longevity. Bone is an insulin-responsive organ that plays a role in whole body energy metabolism. Metabolic disturbances associated with obesity and type 2 diabetes increase a risk of fragility fractures along with increased bone marrow adiposity. In obesity, there is impaired insulin signaling in peripheral tissues leading to insulin resistance. However, insulin signaling is maintained in bone marrow microenvironment leading to hypermetabolic state of bone marrow stromal (skeletal) stem cells associated with accelerated senescence and accumulation of bone marrow adipocytes in obesity. This review summarizes current findings on insulin signaling in bone marrow adipocytes and bone marrow stromal (skeletal) stem cells and its importance for bone and fat metabolism. Moreover, it points out to the existence of differences between bone marrow and peripheral fat metabolism which may be relevant for developing therapeutic strategies for treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Michaela Tencerova
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, 5000, Odense C, Denmark.
- Department of Molecular Physiology of Bone, Institute of Physiology, Czech Academy of Sciences, 142 20, Prague 4, Czech Republic.
| | - Meshail Okla
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Moustapha Kassem
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, 5000, Odense C, Denmark
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Department of Cellular and Molecular Medicine, The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
50
|
Angiotensin II type 1 receptor-associated protein deficiency attenuates sirtuin1 expression in an immortalised human renal proximal tubule cell line. Sci Rep 2019; 9:16550. [PMID: 31719572 PMCID: PMC6851135 DOI: 10.1038/s41598-019-52566-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/17/2019] [Indexed: 11/08/2022] Open
Abstract
The proximal tubule is a particularly important site for ageing-related kidney damage. Sirtuin 1 (SIRT1), an NAD+ (nicotinamide adenine dinucleotide)-dependent deacetylase in the proximal tubule, may be involved in renal injury associated with ageing. However, the mechanisms of SIRT1 regulation remain to be elucidated. We recently reported that angiotensin II type 1 receptor (AT1R)-associated protein (ATRAP)-deficient mice displayed age-associated renal function decline and tubulointerstitial fibrosis. Our data showed that SIRT1 protein expression was reduced in ATRAP-deficient mice, although the relationship between ATRAP deficiency and age-associated renal fibrosis is still not fully understood. It is, therefore, necessary to investigate how ATRAP affects SIRT1 protein expression to resolve ageing-associated kidney dysfunction. Here, since ageing studies are inherently lengthy, we used an ex vivo model of the proximal tubule to determine the role of ATRAP in SIRT1 protein expression. We first generated a clonal immortalised human renal proximal tubule epithelial cell line (ciRPTEC) expressing AT1R and ATRAP. Using this cell line, we demonstrated that ATRAP knockdown reduced SIRT1 protein expression in the ciRPTEC but did not alter SIRT1 mRNA expression. Thus, ATRAP likely mediates SIRT1 protein abundance in ciRPTEC.
Collapse
|