1
|
Huang Y, Sun W, Gao F, Ma H, Yuan T, Liu Z, Liu H, Hu J, Bai J, Zhang X, Wang R. Brain-Derived Estrogen Regulates Neurogenesis, Learning and Memory with Aging in Female Rats. BIOLOGY 2023; 12:760. [PMID: 37372046 DOI: 10.3390/biology12060760] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023]
Abstract
Although 17β-estradiol (E2) can be locally synthesized in the brain, whether and how brain-derived E2 (BDE2) impacts neurogenesis with aging is largely unclear. In this study, we examined the hippocampal neural stem cells, neurogenesis, and gliogenesis of 1, 3, 6, 14, and 18-month (Mon) female rats. Female forebrain neuronal aromatase knockout (FBN-ARO-KO) rats and letrozole-treated rats were also employed. We demonstraed that (1) the number of neural stem cells declined over 14-Mon age, and the differentiation of astrocytes and microglia markedly elevated and exhibited excessive activation. KO rats showed declines in astrocyte A2 subtype and elevation in A1 subtype at 18 Mon; (2) neurogenesis sharply dropped from 1-Mon age; (3) KO suppressed dentate gyrus (DG) neurogenesis at 1, 6 and 18 Mon. Additionally, KO and letrozole treatment led to declined neurogenesis at 1-Mon age, compared to age-matched WT controls; (4) FBN-ARO-KO inhibited CREB-BDNF activation, and decreased protein levels of neurofilament, spinophilin and PSD95. Notably, hippocampal-dependent spatial learning and memory was impaired in juvenile (1 Mon) and adulthood (6 Mon) KO rats. Taken together, we demonstrated that BDE2 plays a pivotal role for hippocampal neurogenesis, as well as learning and memory during female aging, especially in juvenile and middle age.
Collapse
Affiliation(s)
- Yuanyuan Huang
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
- School of Basic Medical Science, North China University of Science and Technology, Tangshan 063210, China
| | - Wuxiang Sun
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
- School of Basic Medical Science, North China University of Science and Technology, Tangshan 063210, China
| | - Fujia Gao
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Haoran Ma
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Tao Yuan
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Zixuan Liu
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
- School of Basic Medical Science, North China University of Science and Technology, Tangshan 063210, China
| | - Huiyu Liu
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Jiewei Hu
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
- School of Basic Medical Science, North China University of Science and Technology, Tangshan 063210, China
| | - Jing Bai
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
- School of Basic Medical Science, North China University of Science and Technology, Tangshan 063210, China
| | - Xin Zhang
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Ruimin Wang
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
- School of Basic Medical Science, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
2
|
Lods M, Mortessagne P, Pacary E, Terral G, Farrugia F, Mazier W, Masachs N, Charrier V, Cota D, Ferreira G, Abrous DN, Tronel S. Chemogenetic stimulation of adult neurogenesis, and not neonatal neurogenesis, is sufficient to improve long-term memory accuracy. Prog Neurobiol 2022; 219:102364. [DOI: 10.1016/j.pneurobio.2022.102364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/21/2022] [Accepted: 10/06/2022] [Indexed: 12/05/2022]
|
3
|
Culig L, Chu X, Bohr VA. Neurogenesis in aging and age-related neurodegenerative diseases. Ageing Res Rev 2022; 78:101636. [PMID: 35490966 PMCID: PMC9168971 DOI: 10.1016/j.arr.2022.101636] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022]
Abstract
Adult neurogenesis, the process by which neurons are generated in certain areas of the adult brain, declines in an age-dependent manner and is one potential target for extending cognitive healthspan. Aging is a major risk factor for neurodegenerative diseases and, as lifespans are increasing, these health challenges are becoming more prevalent. An age-associated loss in neural stem cell number and/or activity could cause this decline in brain function, so interventions that reverse aging in stem cells might increase the human cognitive healthspan. In this review, we describe the involvement of adult neurogenesis in neurodegenerative diseases and address the molecular mechanistic aspects of neurogenesis that involve some of the key aggregation-prone proteins in the brain (i.e., tau, Aβ, α-synuclein, …). We summarize the research pertaining to interventions that increase neurogenesis and regulate known targets in aging research, such as mTOR and sirtuins. Lastly, we share our outlook on restoring the levels of neurogenesis to physiological levels in elderly individuals and those with neurodegeneration. We suggest that modulating neurogenesis represents a potential target for interventions that could help in the fight against neurodegeneration and cognitive decline.
Collapse
Affiliation(s)
- Luka Culig
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xixia Chu
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
4
|
Koehl M, Ladevèze E, Montcouquiol M, Abrous DN. Vangl2, a Core Component of the WNT/PCP Pathway, Regulates Adult Hippocampal Neurogenesis and Age-Related Decline in Cognitive Flexibility. Front Aging Neurosci 2022; 14:844255. [PMID: 35370613 PMCID: PMC8965557 DOI: 10.3389/fnagi.2022.844255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Decline in episodic memory is one of the hallmarks of aging and represents one of the most important health problems facing Western societies. A key structure in episodic memory is the hippocampal formation and the dentate gyrus in particular, as the continuous production of new dentate granule neurons in this brain region was found to play a crucial role in memory and age-related decline in memory. As such, understanding the molecular processes that regulate the relationship between adult neurogenesis and aging of memory function holds great therapeutic potential. Recently, we found that Vang-Gogh like 2 (Vangl2), a core component of the Planar Cell Polarity (PCP) signaling pathway, is enriched in the dentate gyrus of adult mice. In this context, we sought to evaluate the involvement of this member of the Wnt/PCP pathway in both adult neurogenesis and memory abilities in adult and middle-aged mice. Using a heterozygous mouse model carrying a dominant-negative mutation in the Vangl2 gene, called Looptail (Vangl2Lp), we show that alteration in Vangl2 expression decreases the survival of adult-born granule cells and advances the onset of a decrease in cognitive flexibility. The inability of mutant mice to erase old irrelevant information to the benefit of new relevant ones highlights a key role of Vangl2 in interference-based forgetting. Taken together, our findings show that Vangl2 activity may constitute an interesting target to prevent age-related decline in hippocampal plasticity and memory.
Collapse
Affiliation(s)
- Muriel Koehl
- Univ. Bordeaux, INSERM, Magendie, U1215, Neurogenesis and Pathophysiology group, Bordeaux, France
- *Correspondence: Muriel Koehl
| | - Elodie Ladevèze
- Univ. Bordeaux, INSERM, Magendie, U1215, Neurogenesis and Pathophysiology group, Bordeaux, France
| | - Mireille Montcouquiol
- Univ. Bordeaux, INSERM, Magendie, U1215, Planar Polarity and Plasticity Group, Bordeaux, France
| | - Djoher Nora Abrous
- Univ. Bordeaux, INSERM, Magendie, U1215, Neurogenesis and Pathophysiology group, Bordeaux, France
| |
Collapse
|
5
|
p27, The Cell Cycle and Alzheimer´s Disease. Int J Mol Sci 2022; 23:ijms23031211. [PMID: 35163135 PMCID: PMC8835212 DOI: 10.3390/ijms23031211] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/29/2022] Open
Abstract
The cell cycle consists of successive events that lead to the generation of new cells. The cell cycle is regulated by different cyclins, cyclin-dependent kinases (CDKs) and their inhibitors, such as p27Kip1. At the nuclear level, p27Kip1 has the ability to control the evolution of different phases of the cell cycle and oppose cell cycle progression by binding to CDKs. In the cytoplasm, diverse functions have been described for p27Kip1, including microtubule remodeling, axonal transport and phagocytosis. In Alzheimer’s disease (AD), alterations to cycle events and a purported increase in neurogenesis have been described in the early disease process before significant pathological changes could be detected. However, most neurons cannot progress to complete their cell division and undergo apoptotic cell death. Increased levels of both the p27Kip1 levels and phosphorylation status have been described in AD. Increased levels of Aβ42, tau hyperphosphorylation or even altered insulin signals could lead to alterations in p27Kip1 post-transcriptional modifications, causing a disbalance between the levels and functions of p27Kip1 in the cytoplasm and nucleus, thus inducing an aberrant cell cycle re-entry and alteration of extra cell cycle functions. Further studies are needed to completely understand the role of p27Kip1 in AD and the therapeutic opportunities associated with the modulation of this target.
Collapse
|
6
|
Katano A. A narrative review of clinical manifestations and pathogenetic mechanisms of neuropathy induced by radiation therapy. JOURNAL OF RADIATION AND CANCER RESEARCH 2022. [DOI: 10.4103/jrcr.jrcr_57_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
7
|
Kahn M. Taking the road less traveled - the therapeutic potential of CBP/β-catenin antagonists. Expert Opin Ther Targets 2021; 25:701-719. [PMID: 34633266 PMCID: PMC8745629 DOI: 10.1080/14728222.2021.1992386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
AREAS COVERED This perspective discusses the challenges of targeting the Wnt signaling cascade, the safety, efficacy, and therapeutic potential of specific CBP/β-catenin antagonists and a rationale for the pleiotropic effects of CBP/β-catenin antagonists beyond Wnt signaling. EXPERT OPINION CBP/β-catenin antagonists can correct lineage infidelity, enhance wound healing, both normal and aberrant (e.g. fibrosis) and force the differentiation and lineage commitment of stem cells and cancer stem cells by regulating enhancer and super-enhancer coactivator occupancy. Small molecule CBP/β-catenin antagonists rebalance the equilibrium between CBP/β-catenin versus p300/β-catenin dependent transcription and may be able to treat or prevent many diseases of aging, via maintenance of our somatic stem cell pool, and regulating mitochondrial function and metabolism involved in differentiation and immune cell function.
Collapse
Affiliation(s)
- Michael Kahn
- Department of Molecular Medicine, City of Hope, Beckman Research Institute, 1500 East Duarte Road Flower Building, Duarte, CA, USA
| |
Collapse
|
8
|
Bourin M. Neurogenesis and Neuroplasticity in Major Depression: Its Therapeutic Implication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1305:157-173. [PMID: 33834400 DOI: 10.1007/978-981-33-6044-0_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The neurochemical model of depression, based on monoaminergic theories, does not allow on its own to understand the mechanism of action of antidepressants. This approach does not explain the gap between the immediate biochemical modulations induced by antidepressants and the time required for their clinical action. Several hypotheses have been developed to try to explain more precisely the action of these molecules, each of them involving mechanisms of receptor regulation. At the same time, data on the neuroanatomy of depression converge toward the existence of specific lesions of this pathology. This chapter aims to provide an overview of recent advances in understanding the mechanisms of neural plasticity involved in pathophysiology depression and in its treatment.
Collapse
Affiliation(s)
- Michel Bourin
- Neurobiology of Mood Disorders, University of Nantes, Nantes, France.
| |
Collapse
|
9
|
Montaron M, Charrier V, Blin N, Garcia P, Abrous DN. Responsiveness of dentate neurons generated throughout adult life is associated with resilience to cognitive aging. Aging Cell 2020; 19:e13161. [PMID: 32599664 PMCID: PMC7431828 DOI: 10.1111/acel.13161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 01/10/2023] Open
Abstract
During aging, some individuals are resilient to the decline of cognitive functions whereas others are vulnerable. These inter-individual differences in memory abilities have been associated with differences in the rate of hippocampal neurogenesis measured in elderlies. Whether the maintenance of the functionality of neurons generated throughout adult life is linked to resilience to cognitive aging remains completely unexplored. Using the immediate early gene Zif268, we analyzed the activation of dentate granule neurons born in adult (3-month-old), middle-aged (12-month-old), or senescent (18-month-old) rats (n = 96) in response to learning when animals reached 21 months of age. The activation of neurons born during the developmental period was also examined. We show that adult-born neurons can survive up to 19 months and that neurons generated 4, 10, or 19 months before learning, but not developmentally born neurons, are activated in senescent rats with good learning abilities. In contrast, aged rats with bad learning abilities do not exhibit activity-dependent regulation of newborn cells, whatever their birthdate. In conclusion, we propose that resilience to cognitive aging is associated with responsiveness of neurons born during adult life. These data add to our current knowledge by showing that the aging of memory abilities stems not only from the number but also from the responsiveness of adult-born neurons.
Collapse
Affiliation(s)
- Marie‐Françoise Montaron
- INSERM UMR 1215, Magendie Neurocenter Neurogenesis and Pathophysiology Group Bordeaux France
- Université de Bordeaux Bordeaux France
| | - Vanessa Charrier
- INSERM UMR 1215, Magendie Neurocenter Neurogenesis and Pathophysiology Group Bordeaux France
- Université de Bordeaux Bordeaux France
| | - Nicolas Blin
- INSERM UMR 1215, Magendie Neurocenter Neurogenesis and Pathophysiology Group Bordeaux France
- Université de Bordeaux Bordeaux France
| | - Pierre Garcia
- INSERM UMR 1215, Magendie Neurocenter Neurogenesis and Pathophysiology Group Bordeaux France
- Université de Bordeaux Bordeaux France
| | - Djoher Nora Abrous
- INSERM UMR 1215, Magendie Neurocenter Neurogenesis and Pathophysiology Group Bordeaux France
- Université de Bordeaux Bordeaux France
| |
Collapse
|
10
|
Zhou Y, Duan Y, Huang S, Zhou X, Zhou L, Hu T, Yang Y, Lu J, Ding K, Guo D, Cao X, Pei G. Polysaccharides from Lycium barbarum ameliorate amyloid pathology and cognitive functions in APP/PS1 transgenic mice. Int J Biol Macromol 2020; 144:1004-1012. [PMID: 31715236 DOI: 10.1016/j.ijbiomac.2019.09.177] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/29/2019] [Accepted: 09/22/2019] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is the most common degenerative disease of the central nervous system. It is associated with abnormal accumulation of amyloid-β (Aβ) plaques, impaired neurogenesis, and damaged cognitive functions. We have known for a long time that natural compounds and their derivatives have gained increasing attention in AD drug research due to their multiple effects and inherently enormous chemicals. In this study, we will demonstrate that polysaccharides from L. barbarum (LBP1), a traditional natural compound, can reduce Aβ level and improve the cognitive functions in APP/PS1 transgenic mouse. LBP1 can enhance neurogenesis as indicated by BrdU/NeuN double labeling. Furthermore, it can restore synaptic dysfunction at hippocampus CA3-CA1 pathway. Additionally, in vitro cell assay indicates that LBP1 may affect Aβ processing. In conclusion, our study indicates that LBP1 might be a potential therapeutic agent for the treatment of AD against multiple targets that include synaptic plasticity, Aβ pathology and neuropathology.
Collapse
Affiliation(s)
- Yue Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yanhong Duan
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Science, East China Normal University, Shanghai, China
| | - Shichao Huang
- School of Life Science and Technology, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China
| | - Xuan Zhou
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Science, East China Normal University, Shanghai, China
| | - Lishuang Zhou
- Glycochemistry & Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tingting Hu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yongfeng Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jing Lu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Kan Ding
- Glycochemistry & Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Dean Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Xiaohua Cao
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Science, East China Normal University, Shanghai, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101,China.
| | - Gang Pei
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
11
|
Bielefeld P, Durá I, Danielewicz J, Lucassen P, Baekelandt V, Abrous D, Encinas J, Fitzsimons C. Insult-induced aberrant hippocampal neurogenesis: Functional consequences and possible therapeutic strategies. Behav Brain Res 2019; 372:112032. [DOI: 10.1016/j.bbr.2019.112032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/29/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023]
|
12
|
Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Front Cell Neurosci 2019; 13:363. [PMID: 31440144 PMCID: PMC6692714 DOI: 10.3389/fncel.2019.00363] [Citation(s) in RCA: 738] [Impact Index Per Article: 147.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
Brain Derived Neurotrophic Factor (BDNF) is a key molecule involved in plastic changes related to learning and memory. The expression of BDNF is highly regulated, and can lead to great variability in BDNF levels in healthy subjects. Changes in BDNF expression are associated with both normal and pathological aging and also psychiatric disease, in particular in structures important for memory processes such as the hippocampus and parahippocampal areas. Some interventions like exercise or antidepressant administration enhance the expression of BDNF in normal and pathological conditions. In this review, we will describe studies from rodents and humans to bring together research on how BDNF expression is regulated, how this expression changes in the pathological brain and also exciting work on how interventions known to enhance this neurotrophin could have clinical relevance. We propose that, although BDNF may not be a valid biomarker for neurodegenerative/neuropsychiatric diseases because of its disregulation common to many pathological conditions, it could be thought of as a marker that specifically relates to the occurrence and/or progression of the mnemonic symptoms that are common to many pathological conditions.
Collapse
Affiliation(s)
- Magdalena Miranda
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| | - Juan Facundo Morici
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| | - María Belén Zanoni
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| |
Collapse
|
13
|
Gong Z, Huang J, Xu B, Ou Z, Zhang L, Lin X, Ye X, Kong X, Long D, Sun X, He X, Xu L, Li Q, Xuan A. Urolithin A attenuates memory impairment and neuroinflammation in APP/PS1 mice. J Neuroinflammation 2019; 16:62. [PMID: 30871577 PMCID: PMC6417212 DOI: 10.1186/s12974-019-1450-3] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/05/2019] [Indexed: 12/30/2022] Open
Abstract
Background Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by an abnormal accumulation of amyloid-β (Aβ) plaques, neuroinflammation, and impaired neurogenesis. Urolithin A (UA), a gut-microbial metabolite of ellagic acid, has been reported to exert anti-inflammatory effects in the brain. However, it is unknown whether UA exerts its properties of anti-inflammation and neuronal protection in the APPswe/PS1ΔE9 (APP/PS1) mouse model of AD. Methods Morris water maze was used to detect the cognitive function. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay was performed to detect neuronal apoptosis. Immunohistochemistry analyzed the response of glia, Aβ deposition, and neurogenesis. The expression of inflammatory mediators were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). The modulating effects of UA on cell signaling pathways were assayed by Western blotting. Results We demonstrated that UA ameliorated cognitive impairment, prevented neuronal apoptosis, and enhanced neurogenesis in APP/PS1 mice. Furthermore, UA attenuated Aβ deposition and peri-plaque microgliosis and astrocytosis in the cortex and hippocampus. We also found that UA affected critical cell signaling pathways, specifically by enhancing cerebral AMPK activation, decreasing the activation of P65NF-κB and P38MAPK, and suppressing Bace1 and APP degradation. Conclusions Our results indicated that UA imparted cognitive protection by protecting neurons from death and triggering neurogenesis via anti-inflammatory signaling in APP/PS1 mice, suggesting that UA might be a promising therapeutic drug to treat AD.
Collapse
Affiliation(s)
- Zhuo Gong
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Jingyi Huang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Biao Xu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Zhenri Ou
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Le Zhang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Xiaohong Lin
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Xiujuan Ye
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Xuejian Kong
- Department of Neurology of the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511518, China
| | - Dahong Long
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Xiangdong Sun
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Xiaosong He
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Liping Xu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Qingqing Li
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Aiguo Xuan
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China.
| |
Collapse
|
14
|
Semënov MV. Adult Hippocampal Neurogenesis Is a Developmental Process Involved in Cognitive Development. Front Neurosci 2019; 13:159. [PMID: 30894797 PMCID: PMC6415654 DOI: 10.3389/fnins.2019.00159] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/12/2019] [Indexed: 12/26/2022] Open
Affiliation(s)
- Mikhail V Semënov
- Bedford Division, New England Geriatric Research Education and Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, United States.,The Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
15
|
Micheli L, D'Andrea G, Ceccarelli M, Ferri A, Scardigli R, Tirone F. p16Ink4a Prevents the Activation of Aged Quiescent Dentate Gyrus Stem Cells by Physical Exercise. Front Cell Neurosci 2019; 13:10. [PMID: 30792628 PMCID: PMC6374340 DOI: 10.3389/fncel.2019.00010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
In the neurogenic niches—the dentate gyrus of the hippocampus and the subventricular zone (SVZ) adjacent to lateral ventricles—stem cells continue to divide during adulthood, generating progenitor cells and new neurons, and to self-renew, thus maintaining the stem cell pool. During aging, the numbers of stem/progenitor cells in the neurogenic niches are reduced. The preservation of the neurogenic pool is committed to a number of antiproliferative genes, with the role of maintaining the quiescence of neural cells. The cyclin-dependent kinase inhibitor p16Ink4a, whose expression increases with age, controls the expansion of SVZ aging stem cells, since in mice its deficiency prevents the decline of neurogenesis in SVZ. No change of neurogenesis is however observed in the p16Ink4a-null dentate gyrus. Here, we hypothesized that p16Ink4a plays a role as a regulator of the self-renewal of the stem cell pool also in the dentate gyrus, and to test this possibility we stimulated the dentate gyrus neural cells of p16Ink4a-null aging mice with physical exercise, a powerful neurogenic activator. We observed that running highly induced the generation of new stem cells in the p16Ink4a-null dentate gyrus, forcing them to exit from quiescence. Stem cells, notably, are not induced to proliferate by running in wild-type (WT) mice. Moreover, p16Ink4a-null progenitor cells were increased by running significantly above the number observed in WT mice. The new stem and progenitor cells generated new neurons, and continued to actively proliferate in p16Ink4a-null mice longer than in the WT after cessation of exercise. Thus, p16Ink4a prevents aging dentate gyrus stem cells from being activated by exercise. Therefore, p16Ink4a may play a role in the maintenance of dentate gyrus stem cells after stimulus, by keeping a reserve of their self-renewal capacity during aging.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Cell Biology and Neurobiology, National Research Council, Foundation Santa Lucia, Rome, Italy
| | - Giorgio D'Andrea
- Institute of Cell Biology and Neurobiology, National Research Council, Foundation Santa Lucia, Rome, Italy.,Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Manuela Ceccarelli
- Institute of Cell Biology and Neurobiology, National Research Council, Foundation Santa Lucia, Rome, Italy
| | - Alessandra Ferri
- Institute of Cell Biology and Neurobiology, National Research Council, Foundation Santa Lucia, Rome, Italy
| | - Raffaella Scardigli
- Institute of Translational Pharmacology (IFT), National Research Council, Rome, Italy
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology, National Research Council, Foundation Santa Lucia, Rome, Italy
| |
Collapse
|
16
|
Smith K, Semënov MV. The impact of age on number and distribution of proliferating cells in subgranular zone in adult mouse brain. IBRO Rep 2018; 6:18-30. [PMID: 30582065 PMCID: PMC6297242 DOI: 10.1016/j.ibror.2018.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/07/2018] [Indexed: 01/16/2023] Open
Abstract
The mouse brain retains an ability to produce hippocampal granule neurons during the mouse’s entire lifespan. The neurons are produced in the subgranular zone (SGZ) located on the inner surface of the granule cell layer in the dentate gyrus (DG). In our study, we used a point cloud approach to characterize how the production and distribution of neural precursors for new hippocampal neurons change in the mouse brain relative to age. We found that the production of neural precursors decreases 64 fold from the age of 30 days to the age of 2.5 years. Within the SGZ the decline of cell proliferation continues during entire mouse life. We reconstructed the distribution of proliferating cells along the longitudinal axis of the SGZ and found that the highest number of proliferating cells are located approximately 0.75 mm from the dorsomedial end of the SGZ that corresponds to the most dorsal part of the DG in the mouse brain. The distribution of proliferating cells in the SGZ showed no apparent aggregations, periodicity or any other readily identifiable spatial characteristics. Proliferating cells in the SGZ tended to be located separately from other proliferating cells. About two thirds of them have no closely located other proliferating cells, and the remaining third is located in small clusters comprised of 2 or 3 proliferating cells. Based on our measurements, we calculated that from the age of 30 days to the age of 2.5 years 1.5 million neural precursors are produced in the SGZ.
Collapse
Affiliation(s)
- Karen Smith
- New England Geriatric Research Education and Clinical Center, Bedford Division, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, United States
| | - Mikhail V Semënov
- New England Geriatric Research Education and Clinical Center, Bedford Division, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, United States.,The Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
17
|
Shetty AK, Kodali M, Upadhya R, Madhu LN. Emerging Anti-Aging Strategies - Scientific Basis and Efficacy. Aging Dis 2018; 9:1165-1184. [PMID: 30574426 PMCID: PMC6284760 DOI: 10.14336/ad.2018.1026] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022] Open
Abstract
The prevalence of age-related diseases is in an upward trend due to increased life expectancy in humans. Age-related conditions are among the leading causes of morbidity and death worldwide currently. Therefore, there is an urgent need to find apt interventions that slow down aging and reduce or postpone the incidence of debilitating age-related diseases. This review discusses the efficacy of emerging anti-aging approaches for maintaining better health in old age. There are many anti-aging strategies in development, which include procedures such as augmentation of autophagy, elimination of senescent cells, transfusion of plasma from young blood, intermittent fasting, enhancement of adult neurogenesis, physical exercise, antioxidant intake, and stem cell therapy. Multiple pre-clinical studies suggest that administration of autophagy enhancers, senolytic drugs, plasma from young blood, drugs that enhance neurogenesis and BDNF are promising approaches to sustain normal health during aging and also to postpone age-related neurodegenerative diseases such as Alzheimer's disease. Stem cell therapy has also shown promise for improving regeneration and function of the aged or Alzheimer's disease brain. Several of these approaches are awaiting critical appraisal in clinical trials to determine their long-term efficacy and possible adverse effects. On the other hand, procedures such as intermittent fasting, physical exercise, intake of antioxidants such as resveratrol and curcumin have shown considerable promise for improving function in aging, some of which are ready for large-scale clinical trials, as they are non-invasive, and seem to have minimal side effects. In summary, several approaches are at the forefront of becoming mainstream therapies for combating aging and postponing age-related diseases in the coming years.
Collapse
Affiliation(s)
- Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas 77843, USA
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, Texas 76504, USA
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas 77843, USA
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, Texas 76504, USA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas 77843, USA
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, Texas 76504, USA
| | - Leelavathi N. Madhu
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas 77843, USA
| |
Collapse
|
18
|
Hatami M, Conrad S, Naghsh P, Alvarez-Bolado G, Skutella T. Cell-Biological Requirements for the Generation of Dentate Gyrus Granule Neurons. Front Cell Neurosci 2018; 12:402. [PMID: 30483057 PMCID: PMC6240695 DOI: 10.3389/fncel.2018.00402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/18/2018] [Indexed: 12/22/2022] Open
Abstract
The dentate gyrus (DG) receives highly processed information from the associative cortices functionally integrated in the trisynaptic hippocampal circuit, which contributes to the formation of new episodic memories and the spontaneous exploration of novel environments. Remarkably, the DG is the only brain region currently known to have high rates of neurogenesis in adults (Andersen et al., 1966, 1971). The DG is involved in several neurodegenerative disorders, including clinical dementia, schizophrenia, depression, bipolar disorder and temporal lobe epilepsy. The principal neurons of the DG are the granule cells. DG granule cells generated in culture would be an ideal model to investigate their normal development and the causes of the pathologies in which they are involved and as well as possible therapies. Essential to establish such in vitro models is the precise definition of the most important cell-biological requirements for the differentiation of DG granule cells. This requires a deeper understanding of the precise molecular and functional attributes of the DG granule cells in vivo as well as the DG cells derived in vitro. In this review we outline the neuroanatomical, molecular and cell-biological components of the granule cell differentiation pathway, including some growth- and transcription factors essential for their development. We summarize the functional characteristics of DG granule neurons, including the electrophysiological features of immature and mature granule cells and the axonal pathfinding characteristics of DG neurons. Additionally, we discuss landmark studies on the generation of dorsal telencephalic precursors from pluripotent stem cells (PSCs) as well as DG neuron differentiation in culture. Finally, we provide an outlook and comment critical aspects.
Collapse
Affiliation(s)
- Maryam Hatami
- Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | | | - Pooyan Naghsh
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | | | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
19
|
Noggin rescues age-related stem cell loss in the brain of senescent mice with neurodegenerative pathology. Proc Natl Acad Sci U S A 2018; 115:11625-11630. [PMID: 30352848 PMCID: PMC6233090 DOI: 10.1073/pnas.1813205115] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of age-related neurodegeneration. Damage initially occurs in the hippocampus, a neurogenic brain region essential in forming memories. Since there is no cure for AD, therapeutic strategies that may aid to slow hippocampal dysfunction are necessary. We describe the precocious hippocampal stem cell loss of a mouse model that mimics the onset of pathological AD-like neurodegeneration. The loss is due to an increase in BMP6 that limits neurogenesis. We demonstrate that blocking BMP signaling by means of Noggin administration is beneficial to the hippocampal microenvironment, restoring stem cell numbers, neurogenesis, and behavior. Our findings support further development of BMP antagonists into translatable molecules for the rescue of stem cells and neurogenesis in neurodegeneration/aging. Increasing age is the greatest known risk factor for the sporadic late-onset forms of neurodegenerative disorders such as Alzheimer’s disease (AD). One of the brain regions most severely affected in AD is the hippocampus, a privileged structure that contains adult neural stem cells (NSCs) with neurogenic capacity. Hippocampal neurogenesis decreases during aging and the decrease is exacerbated in AD, but the mechanistic causes underlying this progressive decline remain largely unexplored. We here investigated the effect of age on NSCs and neurogenesis by analyzing the senescence accelerated mouse prone 8 (SAMP8) strain, a nontransgenic short-lived strain that spontaneously develops a pathological profile similar to that of AD and that has been employed as a model system to study the transition from healthy aging to neurodegeneration. We show that SAMP8 mice display an accelerated loss of the NSC pool that coincides with an aberrant rise in BMP6 protein, enhanced canonical BMP signaling, and increased astroglial differentiation. In vitro assays demonstrate that BMP6 severely impairs NSC expansion and promotes NSC differentiation into postmitotic astrocytes. Blocking the dysregulation of the BMP pathway and its progliogenic effect in vivo by intracranial delivery of the antagonist Noggin restores hippocampal NSC numbers, neurogenesis, and behavior in SAMP8 mice. Thus, manipulating the local microenvironment of the NSC pool counteracts hippocampal dysfunction in pathological aging. Our results shed light on interventions that may allow taking advantage of the brain’s natural plastic capacity to enhance cognitive function in late adulthood and in chronic neurodegenerative diseases such as AD.
Collapse
|
20
|
Whole-Body 12C Irradiation Transiently Decreases Mouse Hippocampal Dentate Gyrus Proliferation and Immature Neuron Number, but Does Not Change New Neuron Survival Rate. Int J Mol Sci 2018; 19:ijms19103078. [PMID: 30304778 PMCID: PMC6213859 DOI: 10.3390/ijms19103078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 02/08/2023] Open
Abstract
High-charge and -energy (HZE) particles comprise space radiation and they pose a challenge to astronauts on deep space missions. While exposure to most HZE particles decreases neurogenesis in the hippocampus—a brain structure important in memory—prior work suggests that 12C does not. However, much about 12C’s influence on neurogenesis remains unknown, including the time course of its impact on neurogenesis. To address this knowledge gap, male mice (9–11 weeks of age) were exposed to whole-body 12C irradiation 100 cGy (IRR; 1000 MeV/n; 8 kEV/µm) or Sham treatment. To birthdate dividing cells, mice received BrdU i.p. 22 h post-irradiation and brains were harvested 2 h (Short-Term) or three months (Long-Term) later for stereological analysis indices of dentate gyrus neurogenesis. For the Short-Term time point, IRR mice had fewer Ki67, BrdU, and doublecortin (DCX) immunoreactive (+) cells versus Sham mice, indicating decreased proliferation (Ki67, BrdU) and immature neurons (DCX). For the Long-Term time point, IRR and Sham mice had similar Ki67+ and DCX+ cell numbers, suggesting restoration of proliferation and immature neurons 3 months post-12C irradiation. IRR mice had fewer surviving BrdU+ cells versus Sham mice, suggesting decreased cell survival, but there was no difference in BrdU+ cell survival rate when compared within treatment and across time point. These data underscore the ability of neurogenesis in the mouse brain to recover from the detrimental effect of 12C exposure.
Collapse
|
21
|
Yang W, Zhou K, Zhou Y, An Y, Hu T, Lu J, Huang S, Pei G. Naringin Dihydrochalcone Ameliorates Cognitive Deficits and Neuropathology in APP/PS1 Transgenic Mice. Front Aging Neurosci 2018; 10:169. [PMID: 29922152 PMCID: PMC5996202 DOI: 10.3389/fnagi.2018.00169] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/18/2018] [Indexed: 01/30/2023] Open
Abstract
Alzheimer’s disease (AD) is a multi-factorial neurodegenerative disorder with abnormal accumulation of amyloid-β (Aβ) plaques, neuroinflammation and impaired neurogenesis. Mounting evidences suggest that single-target drugs have limited effects on clinical treatment and alternative or multiple targets are required. In recent decades, natural compounds and their derivatives have gained increasing attention in AD drug discovery due to their inherently enormous chemical and structural diversity. In this study, we demonstrated that naringin dihydrochalcone (NDC), a widely used dietary sweetener with strong antioxidant activity, improved the cognitive function of transgenic AD mice. Pathologically, NDC attenuated Aβ deposition in AD mouse brain. Furthermore, NDC reduced periplaque activated microglia and astrocytes, indicating the inhibition of neuroinflammation. It also enhanced neurogenesis as investigated by BrdU/NeuN double labeling. Additionally, the inhibition of Aβ level and neuroinflammation by NDC treatment was also observed in an AD cell model or a microglia cell line. Taken together, our study indicated that NDC might be a potential therapeutic agent for the treatment of AD against multiple targets that include Aβ pathology, neuroinflammation and neurogenesis.
Collapse
Affiliation(s)
- Wenjuan Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Keyan Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yue Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuqian An
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Tingting Hu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jing Lu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shichao Huang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Gang Pei
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, The Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| |
Collapse
|
22
|
Polyphenol-rich extract from grape and blueberry attenuates cognitive decline and improves neuronal function in aged mice. J Nutr Sci 2018; 7:e19. [PMID: 29854398 PMCID: PMC5971226 DOI: 10.1017/jns.2018.10] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
Abstract
Ageing is characterised by memory deficits, associated with brain plasticity impairment. Polyphenols from berries, such as flavan-3-ols, anthocyanins, and resveratrol, have been suggested to modulate synaptic plasticity and cognitive processes. In the present study we assessed the preventive effect of a polyphenol-rich extract from grape and blueberry (PEGB), with high concentrations of flavonoids, on age-related cognitive decline in mice. Adult and aged (6 weeks and 16 months) mice were fed a PEGB-enriched diet for 14 weeks. Learning and memory were assessed using the novel object recognition and Morris water maze tasks. Brain polyphenol content was evaluated with ultra-high-performance LC-MS/MS. Hippocampal neurotrophin expression was measured using quantitative real-time PCR. Finally, the effect of PEGB on adult hippocampal neurogenesis was assessed by immunochemistry, counting the number of cells expressing doublecortin and the proportion of cells with dendritic prolongations. The combination of grape and blueberry polyphenols prevented age-induced learning and memory deficits. Moreover, it increased hippocampal nerve growth factor (Ngf) mRNA expression. Aged supplemented mice displayed a greater proportion of newly generated neurons with prolongations than control age-matched mice. Some of the polyphenols included in the extract were detected in the brain in the native form or as metabolites. Aged supplemented mice also displayed a better survival rate. These data suggest that PEGB may prevent age-induced cognitive decline. Possible mechanisms of action include a modulation of brain plasticity. Post-treatment detection of phenolic compounds in the brain suggests that polyphenols may act directly at the central level, while they can make an impact on mouse survival through a potential systemic effect.
Collapse
|
23
|
Musatova IB, Volina VV, Chub OV, Prokopyuk VY, Prokopyuk OS. Effects of Implantation of Cryopreserved Placental Explants on the Behavioral Indices and Morphological Characteristics of the Cerebral Structures in Senescent Mice. NEUROPHYSIOLOGY+ 2018. [DOI: 10.1007/s11062-018-9696-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Dario MFR, Sara T, Estela CO, Margarita PM, Guillermo ET, Fernando RDF, Javier SL, Carmen P. Stress, Depression, Resilience and Ageing: A Role for the LPA-LPA1 Pathway. Curr Neuropharmacol 2018; 16:271-283. [PMID: 28699486 PMCID: PMC5843979 DOI: 10.2174/1570159x15666170710200352] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/26/2017] [Accepted: 06/30/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Chronic stress affects health and the quality of life, with its effects being particularly relevant in ageing due to the psychobiological characteristics of this population. However, while some people develop psychiatric disorders, especially depression, others seem very capable of dealing with adversity. There is no doubt that along with the identification of neurobiological mechanisms involved in developing depression, discovering which factors are involved in positive adaptation under circumstances of extreme difficulty will be crucial for promoting resilience. METHODS Here, we review recent work in our laboratory, using an animal model lacking the LPA1 receptor, together with pharmacological studies and clinical evidence for the possible participation of the LPA1 receptor in mood and resilience to stress. RESULTS Substantial evidence has shown that the LPA1 receptor is involved in emotional regulation and in coping responses to chronic stress, which, if dysfunctional, may induce vulnerability to stress and predisposition to the development of depression. Given that there is commonality of mechanisms between those involved in negative consequences of stress and in ageing, this is not surprising, considering that the LPA1 receptor may be involved in coping with adversity during ageing. CONCLUSION Alterations in this receptor may be a susceptibility factor for the presence of depression and cognitive deficits in the elderly population. However, because this is only a promising hypothesis based on previous data, future studies should focus on the involvement of the LPA-LPA1 pathway in coping with stress and resilience in ageing.
Collapse
Affiliation(s)
- Moreno-Fernández Román Dario
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga; Málaga 29071, Spain
| | - Tabbai Sara
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga; Málaga 29071, Spain
| | - Castilla-Ortega Estela
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga; Málaga 29010, Spain
| | - Pérez-Martín Margarita
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de
Málaga; Málaga 29071, Spain
| | - Estivill-Torrús Guillermo
- Unidad de Gestión Clínica de Neurociencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitarios de Málaga, Málaga, Spain
| | - Rodríguez de Fonseca Fernando
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga; Málaga 29010, Spain
| | - Santin Luis Javier
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga; Málaga 29071, Spain
| | - Pedraza Carmen
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga; Málaga 29071, Spain
| |
Collapse
|
25
|
Lee HJ, Choi BT. Effects of α-asarone on Proliferation and Differentiation of Neural Progenitor Cells. ACTA ACUST UNITED AC 2018. [DOI: 10.11637/kjpa.2018.31.2.41] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hong Ju Lee
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Busan, Korea
- BK21 Graduate Training Program of Korean Medicine for Healthy-Aging, School of Korean Medicine, Pusan National University, Busan, Korea
| | - Byung Tae Choi
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Busan, Korea
- BK21 Graduate Training Program of Korean Medicine for Healthy-Aging, School of Korean Medicine, Pusan National University, Busan, Korea
- Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Busan, Korea
| |
Collapse
|
26
|
Jiang DQ, Wang Y, Li MX, Ma YJ, Wang Y. SIRT3 in Neural Stem Cells Attenuates Microglia Activation-Induced Oxidative Stress Injury Through Mitochondrial Pathway. Front Cell Neurosci 2017; 11:7. [PMID: 28197079 PMCID: PMC5281640 DOI: 10.3389/fncel.2017.00007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/12/2017] [Indexed: 01/21/2023] Open
Abstract
Sirtuin 3 (SIRT3), a mitochondrial protein, is involved in energy metabolism, cell apoptosis and mitochondrial function. However, the role of SIRT3 in neural stem cells (NSCs) remains unknown. In previous studies, we found that microglia activation-induced cytotoxicity negatively regulated survival of NSCs, along with mitochondrial dysfunction. The aim of this study was to investigate the potential neuroprotective effects of SIRT3 on the microglia activation-induced oxidative stress injury in NSCs and its possible mechanisms. In the present study, microglia-NSCs co-culture system was used to demonstrate the crosstalk between both cell types. The cytotoxicity of microglia activation by Amyloid-β (Aβ) resulted in the accumulation of reactive oxygen species (ROS) and down-regulation of SIRT3, manganese superoxide dismutase (MnSOD) gene expression in NSCs, concomitant to cell cycle arrest at G0/G1 phase, increased cell apoptosis rate and opening of the mitochondrial permeability transition pore (mPTP) and enhanced mitochondrial membrane potential (ΔΨm) depolarization. Furthermore, SIRT3 knockdown in NSCs via small interfering RNA (siRNA) accelerated cell injury, whereas SIRT3 overexpression provided resistance to microglia activation-induced oxidative stress cellular damage. The mechanisms of SIRT3 attenuated activated microglia-induced NSC dysfunction included the decreased mPTP opening and cyclophilin D (CypD) protein expression, inhibition of mitochondrial cytochrome C (Cyt C) release to cytoplasm, declined Bax/B-cell lymphoma 2 (Bcl-2) ratio and reduced caspase-3/9 activity. Taken together, these data imply that SIRT3 ameliorates microglia activation-induced oxidative stress injury through mitochondrial apoptosis pathway in NSCs, these results may provide a novel intervention target for NSC survival.
Collapse
Affiliation(s)
- De-Qi Jiang
- Department of Pharmacy, Zhujiang Hospital of Southern Medical UniversityGuangzhou, China; College of Biology and Pharmacy, Yulin Normal UniversityYulin, China
| | - Yan Wang
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University Guangzhou, China
| | - Ming-Xing Li
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University Guangzhou, China
| | - Yan-Jiao Ma
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University Guangzhou, China
| | - Yong Wang
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University Guangzhou, China
| |
Collapse
|
27
|
Beckervordersandforth R, Ebert B, Schäffner I, Moss J, Fiebig C, Shin J, Moore DL, Ghosh L, Trinchero MF, Stockburger C, Friedland K, Steib K, von Wittgenstein J, Keiner S, Redecker C, Hölter SM, Xiang W, Wurst W, Jagasia R, Schinder AF, Ming GL, Toni N, Jessberger S, Song H, Lie DC. Role of Mitochondrial Metabolism in the Control of Early Lineage Progression and Aging Phenotypes in Adult Hippocampal Neurogenesis. Neuron 2017; 93:560-573.e6. [PMID: 28111078 DOI: 10.1016/j.neuron.2016.12.017] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 08/06/2016] [Accepted: 11/23/2016] [Indexed: 12/20/2022]
Abstract
Precise regulation of cellular metabolism is hypothesized to constitute a vital component of the developmental sequence underlying the life-long generation of hippocampal neurons from quiescent neural stem cells (NSCs). The identity of stage-specific metabolic programs and their impact on adult neurogenesis are largely unknown. We show that the adult hippocampal neurogenic lineage is critically dependent on the mitochondrial electron transport chain and oxidative phosphorylation machinery at the stage of the fast proliferating intermediate progenitor cell. Perturbation of mitochondrial complex function by ablation of the mitochondrial transcription factor A (Tfam) reproduces multiple hallmarks of aging in hippocampal neurogenesis, whereas pharmacological enhancement of mitochondrial function ameliorates age-associated neurogenesis defects. Together with the finding of age-associated alterations in mitochondrial function and morphology in NSCs, these data link mitochondrial complex function to efficient lineage progression of adult NSCs and identify mitochondrial function as a potential target to ameliorate neurogenesis-defects in the aging hippocampus.
Collapse
Affiliation(s)
- Ruth Beckervordersandforth
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Birgit Ebert
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Munich-Neuherberg, Germany
| | - Iris Schäffner
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jonathan Moss
- Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
| | - Christian Fiebig
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jaehoon Shin
- Institute for Cell Engineering, Department of Neurology, The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Darcie L Moore
- Brain Research Institute, Faculty of Medicine and Science, University of Zurich, 8057 Zurich, Switzerland
| | - Laboni Ghosh
- Brain Research Institute, Faculty of Medicine and Science, University of Zurich, 8057 Zurich, Switzerland
| | - Mariela F Trinchero
- Laboratory of Neuronal Plasticity, Leloir Institute (IIBBA, CONICET), C1405BWE Buenos Aires, Argentina
| | - Carola Stockburger
- Molecular and Clinical Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Kristina Friedland
- Molecular and Clinical Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Kathrin Steib
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Munich-Neuherberg, Germany
| | - Julia von Wittgenstein
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Silke Keiner
- Hans Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Christoph Redecker
- Hans Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Sabine M Hölter
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Munich-Neuherberg, Germany
| | - Wei Xiang
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Munich-Neuherberg, Germany
| | - Ravi Jagasia
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Munich-Neuherberg, Germany; F. Hoffmann-La Roche Ltd, CNS Discovery; Pharma Research and Early Development, 4070 Basel, Switzerland
| | - Alejandro F Schinder
- Laboratory of Neuronal Plasticity, Leloir Institute (IIBBA, CONICET), C1405BWE Buenos Aires, Argentina
| | - Guo-Li Ming
- Institute for Cell Engineering, Department of Neurology, The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicolas Toni
- Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
| | - Sebastian Jessberger
- Brain Research Institute, Faculty of Medicine and Science, University of Zurich, 8057 Zurich, Switzerland
| | - Hongjun Song
- Institute for Cell Engineering, Department of Neurology, The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - D Chichung Lie
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
28
|
Sirtuin-2 inhibition affects hippocampal functions and sodium butyrate ameliorates the reduction in novel object memory, cell proliferation, and neuroblast differentiation. Lab Anim Res 2016; 32:224-230. [PMID: 28053616 PMCID: PMC5206229 DOI: 10.5625/lar.2016.32.4.224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/03/2016] [Accepted: 12/03/2016] [Indexed: 12/03/2022] Open
Abstract
We investigated the effects of the sirtuin-2 (SIRT2) inhibitor AK-7 on novel object memory, cell proliferation, and neuroblast differentiation in the dentate gyrus. In addition, we also observed the relationships with sodium butyrate, a histone deacetylase inhibitor, on the hippocampal functions. To investigate the effects of AK-7 on hippocampal functions, 10-week-old C57BL/6 mice were daily injected intraperitoneally with 20 mg/kg AK-7 alone or in combination with subcutaneous administration of 300 mg/kg sodium butyrate, a histone deacetylase inhibitor, for 21 days. A novel object recognition test was conducted on days 20 (training) and 21 (testing) of treatment. Thereafter, the animals were sacrificed for immunohistochemistry for Ki67 (cell proliferation) and doublecortin (DCX, neuroblast differentiation). AK-7 administration significantly reduced the time spent exploring new objects, while treatment in combination with sodium butyrate significantly alleviated this reduction. Additionally, AK-7 administration significantly reduced the number of Ki67-positive cells and DCX-immunoreactive neuroblasts in the dentate gyrus, while the treatment in combination with sodium butyrate ameliorated these changes. This result suggests that the reduction of SIRT2 may be closely related to age-related phenotypes including novel object memory, as well as cell proliferation and neuroblast differentiation in the dentate gyrus. In addition, sodium butyrate reverses SIRT2-related age phenotypes.
Collapse
|
29
|
Legrand M, Lam S, Anselme I, Gloaguen C, Ibanez C, Eriksson P, Lestaevel P, Dinocourt C. Exposure to depleted uranium during development affects neuronal differentiation in the hippocampal dentate gyrus and induces depressive-like behavior in offspring. Neurotoxicology 2016; 57:153-162. [DOI: 10.1016/j.neuro.2016.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 11/28/2022]
|
30
|
Parmalee NL, Aschner M. Manganese and aging. Neurotoxicology 2016; 56:262-268. [PMID: 27293182 DOI: 10.1016/j.neuro.2016.06.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 06/04/2016] [Accepted: 06/05/2016] [Indexed: 12/11/2022]
Abstract
Manganese (Mn) is an essential metal that is required as a cofactor for many enzymes and is necessary for optimal biological function. Mn is abundant in the earth's crust and is present in soil and well water. Mn is also found in industrial settings, including mining, welding, and battery manufacture. Mn is also present in infant formula, parenteral nutrition, as well as pesticides and gasoline additives. A sufficient amount of Mn is obtained from most diets, and Mn deficiency is exceedingly rare. Excessive exposure to Mn in high doses can result in a condition known as manganism that results in psychological and emotional disturbances and motor symptoms that are reminiscent of Parkinson's disease, including gait disturbance, tremor, rigidity, and bradykinesia. Treatment for manganism is to remove the patient from Mn exposure, though symptoms are generally irreversible. The effects of exposure to Mn at lower doses are less clear. Little work has been done to evaluate the effects of chronic exposure to subclinical levels of Mn, especially in regard to lifelong exposures and the effects on the aging process. Mn is known to have effects on some of the same mechanistic processes that are altered in aging. This review will describe the general effects of Mn exposure and will focus on how Mn may be related to some of the mechanism of aging: neurogenesis, oxidative stress, and microglial activation and inflammation.
Collapse
Affiliation(s)
- Nancy L Parmalee
- Albert Einstein College of Medicine, Department of Molecular Pharmacology, 1300 Morris Park Avenue, Bronx, NY, United States.
| | - Michael Aschner
- Albert Einstein College of Medicine, Department of Molecular Pharmacology, 1300 Morris Park Avenue, Bronx, NY, United States.
| |
Collapse
|
31
|
Insights into the Biology and Therapeutic Applications of Neural Stem Cells. Stem Cells Int 2016; 2016:9745315. [PMID: 27069486 PMCID: PMC4812498 DOI: 10.1155/2016/9745315] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/08/2016] [Indexed: 12/27/2022] Open
Abstract
The cerebral cortex is essential for our higher cognitive functions and emotional reasoning. Arguably, this brain structure is the distinguishing feature of our species, and yet our remarkable cognitive capacity has seemingly come at a cost to the regenerative capacity of the human brain. Indeed, the capacity for regeneration and neurogenesis of the brains of vertebrates has declined over the course of evolution, from fish to rodents to primates. Nevertheless, recent evidence supporting the existence of neural stem cells (NSCs) in the adult human brain raises new questions about the biological significance of adult neurogenesis in relation to ageing and the possibility that such endogenous sources of NSCs might provide therapeutic options for the treatment of brain injury and disease. Here, we highlight recent insights and perspectives on NSCs within both the developing and adult cerebral cortex. Our review of NSCs during development focuses upon the diversity and therapeutic potential of these cells for use in cellular transplantation and in the modeling of neurodevelopmental disorders. Finally, we describe the cellular and molecular characteristics of NSCs within the adult brain and strategies to harness the therapeutic potential of these cell populations in the treatment of brain injury and disease.
Collapse
|
32
|
Lopez-Rojas J, Kreutz MR. Mature granule cells of the dentate gyrus--Passive bystanders or principal performers in hippocampal function? Neurosci Biobehav Rev 2016; 64:167-74. [PMID: 26949226 DOI: 10.1016/j.neubiorev.2016.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/18/2016] [Accepted: 02/27/2016] [Indexed: 10/22/2022]
Abstract
The dentate gyrus is the main entrance of highly processed information to the hippocampus which derives from associative cortices and it is one of the few privileged areas in the brain where adult neurogenesis occurs. This creates the unique situation that neurons of diverse maturation stages are part of one neuronal network at any given point in life. While recently adult-born cells have a low induction threshold for long-term potentiation several studies suggest that following maturation granule cells are poorly excitable and they exhibit reduced Hebbian synaptic plasticity to an extent that it was even suggested that they functionally retire. Here, we review the functional properties of mature granule cells and discuss how plasticity of intrinsic excitability and alterations in excitation-inhibition balance might impact on their role in hippocampal information processing.
Collapse
Affiliation(s)
- Jeffrey Lopez-Rojas
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Brenneckestrasse 6, D-39118 Magdeburg, Germany.
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Brenneckestrasse 6, D-39118 Magdeburg, Germany; Leibniz Group 'Dendritic Organelles and Synaptic Function', University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology, ZMNH, 20251 Hamburg, Germany
| |
Collapse
|
33
|
Gros A, Veyrac A, Laroche S. [Brain and memory: new neurons to remember]. Biol Aujourdhui 2016; 209:229-248. [PMID: 26820830 DOI: 10.1051/jbio/2015028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 06/05/2023]
Abstract
A defining characteristic of the brain is its remarkable capacity to undergo activity-dependent functional and structural remodelling via mechanisms of plasticity that form the basis of our capacity to encode and retain memories. The prevailing model of how our brain stores new information about relationships between events or new abstract constructs suggests it resides in activity-driven modifications of synaptic strength and remodelling of neural networks brought about by cellular and molecular changes within the neurons activated during learning. To date, the idea that a form of activity-dependent synaptic plasticity known as long-term potentiation, or LTP, and the associated synaptic growth play a central role in the laying down of memories has received considerable support. Beyond this mechanism of plasticity at the synapse, adult neurogenesis, i.e. the birth and growth of new neurons, is another form of neural plasticity that occurs continuously in defined brain regions such as the dentate gyrus of the hippocampus. Here, based on work in the hippocampus, we review the processes and mechanisms of the generation and selection of new neurons in the adult brain and the accumulating evidence that supports the idea that this form of neural plasticity is essential to store and lead to retrievable hippocampal-dependent memories.
Collapse
Affiliation(s)
- Alexandra Gros
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Alexandra Veyrac
- Centre de Recherche en Neurosciences de Lyon, UMR 5292 CNRS, INSERM U1028, Université Lyon 1, 69366 Lyon, France
| | - Serge Laroche
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
34
|
Spritzer MD, Curtis MG, DeLoach JP, Maher J, Shulman LM. Sexual interactions with unfamiliar females reduce hippocampal neurogenesis among adult male rats. Neuroscience 2016; 318:143-56. [PMID: 26794592 DOI: 10.1016/j.neuroscience.2016.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 01/01/2023]
Abstract
Recent experiments have shown that sexual interactions prior to cell proliferation cause an increase in neurogenesis in adult male rats. Because adult neurogenesis is critical for some forms of memory, we hypothesized that sexually induced changes in neurogenesis may be involved in mate recognition. Sexually naive adult male rats were either exposed repeatedly to the same sexual partner (familiar group) or to a series of novel sexual partners (unfamiliar group), while control males never engaged in sexual interactions. Ovariectomized female rats were induced into estrus every four days. Males were given two injections of 5-bromo-2'-deoxyuridine (BrdU) (200mg/kg) to label proliferating cells, and the first sexual interactions occurred three days later. Males in the familiar and unfamiliar groups engaged in four, 30-min sexual interactions at four-day intervals, and brain tissue was collected the day after the last sexual interaction. Immunohistochemistry followed by microscopy was used to quantify BrdU-labeled cells. Sexual interactions with unfamiliar females caused a significant reduction in neurogenesis in the dentate gyrus compared to males that interacted with familiar females and compared to the control group. The familiar group showed no difference in neurogenesis compared to the control group. Males in the familiar group engaged in significantly more sexual behavior (ejaculations and intromissions) than did males in the unfamiliar group, suggesting that level of sexual activity may influence neurogenesis levels. In a second experiment, we tested whether this effect was unique to sexual interactions by replicating the entire procedure using anestrus females. We found that interactions with unfamiliar anestrus females reduced neurogenesis relative to the other groups, but this effect was not statistically significant. In combination, these results indicate that interactions with unfamiliar females reduce adult neurogenesis and the effect is stronger for sexual interactions than for social interactions.
Collapse
Affiliation(s)
- M D Spritzer
- Department of Biology, Middlebury College, McCardell Bicentennial Hall, Middlebury, VT 05753, USA; Program in Neuroscience, Middlebury College, McCardell Bicentennial Hall, Middlebury, VT 05753, USA.
| | - M G Curtis
- Program in Neuroscience, Middlebury College, McCardell Bicentennial Hall, Middlebury, VT 05753, USA.
| | - J P DeLoach
- Department of Biology, Middlebury College, McCardell Bicentennial Hall, Middlebury, VT 05753, USA.
| | - J Maher
- Program in Neuroscience, Middlebury College, McCardell Bicentennial Hall, Middlebury, VT 05753, USA.
| | - L M Shulman
- Program in Neuroscience, Middlebury College, McCardell Bicentennial Hall, Middlebury, VT 05753, USA.
| |
Collapse
|
35
|
van Dijk RM, Lazic SE, Slomianka L, Wolfer DP, Amrein I. Large-scale phenotyping links adult hippocampal neurogenesis to the reaction to novelty. Hippocampus 2015; 26:646-57. [DOI: 10.1002/hipo.22548] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/23/2015] [Accepted: 11/02/2015] [Indexed: 01/25/2023]
Affiliation(s)
- R. Maarten van Dijk
- Institute of Anatomy; University of Zürich; Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH Zurich; Zürich Switzerland
- Institute of Human Movement Sciences and Sport; Department of Health Sciences and Technology; ETH Zurich; Zürich Switzerland
| | - Stanley E. Lazic
- In Silico Lead Discovery, Novartis Institutes for Biomedical Research; Basel Switzerland
| | | | - David P. Wolfer
- Institute of Anatomy; University of Zürich; Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH Zurich; Zürich Switzerland
- Institute of Human Movement Sciences and Sport; Department of Health Sciences and Technology; ETH Zurich; Zürich Switzerland
| | - Irmgard Amrein
- Institute of Anatomy; University of Zürich; Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH Zurich; Zürich Switzerland
| |
Collapse
|
36
|
Mao J, Huang S, Liu S, Feng X, Yu M, Liu J, Sun YE, Chen G, Yu Y, Zhao J, Pei G. A herbal medicine for Alzheimer's disease and its active constituents promote neural progenitor proliferation. Aging Cell 2015; 14:784-96. [PMID: 26010330 PMCID: PMC4568966 DOI: 10.1111/acel.12356] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2015] [Indexed: 12/24/2022] Open
Abstract
Aberrant neural progenitor cell (NPC) proliferation and self-renewal have been linked to age-related neurodegeneration and neurodegenerative disorders including Alzheimer’s disease (AD). Rhizoma Acori tatarinowii is a traditional Chinese herbal medicine against cognitive decline. In this study, we found that the extract of Rhizoma Acori tatarinowii (AT) and its active constituents, asarones, promote NPC proliferation. Oral administration of AT enhanced NPC proliferation and neurogenesis in the hippocampi of adult and aged mice as well as that of transgenic AD model mice. AT and its fractions also enhanced the proliferation of NPCs cultured in vitro. Further analysis identified α-asarone and β-asarone as the two active constituents of AT in promoting neurogenesis. Our mechanistic study revealed that AT and asarones activated extracellular signal-regulated kinase (ERK) but not Akt, two critical kinase cascades for neurogenesis. Consistently, the inhibition of ERK activities effectively blocked the enhancement of NPC proliferation by AT or asarones. Our findings suggest that AT and asarones, which can be orally administrated, could serve as preventive and regenerative therapeutic agents to promote neurogenesis against age-related neurodegeneration and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jianxin Mao
- State Key Laboratory of Cell Biology Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences 320 Yueyang Road Shanghai 200031 China
- Graduate School University of Chinese Academy of Sciences Chinese Academy of Sciences 320 Yueyang Road Shanghai 200031 China
| | - Shichao Huang
- State Key Laboratory of Cell Biology Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences 320 Yueyang Road Shanghai 200031 China
| | - Shangfeng Liu
- Department of Ophthalmology Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 China
| | - Xiao‐Lin Feng
- Institute of Traditional Chinese Medicine and Natural Products College of Pharmacy Jinan University Guangzhou 510632 China
| | - Miao Yu
- Key Laboratory of Structure‐Based Drug Design & Discovery Ministry of Education Shenyang Pharmaceutical University Shenyang 110016 China
| | - Junjun Liu
- Department of Ophthalmology Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 China
| | - Yi Eve Sun
- Translational Center for Stem Cell Research Tongji Hospital Tongji University School of Medicine Shanghai 200065 China
| | - Guoliang Chen
- Key Laboratory of Structure‐Based Drug Design & Discovery Ministry of Education Shenyang Pharmaceutical University Shenyang 110016 China
| | - Yang Yu
- Institute of Traditional Chinese Medicine and Natural Products College of Pharmacy Jinan University Guangzhou 510632 China
| | - Jian Zhao
- State Key Laboratory of Cell Biology Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences 320 Yueyang Road Shanghai 200031 China
| | - Gang Pei
- State Key Laboratory of Cell Biology Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences 320 Yueyang Road Shanghai 200031 China
- School of Life Science and Technology, and the Collaborative Innovation Center for Brain Science Tongji University Shanghai 200092 China
| |
Collapse
|
37
|
Tajiri N, Acosta S, Portillo-Gonzales GS, Aguirre D, Reyes S, Lozano D, Pabon M, Dela Peña I, Ji X, Yasuhara T, Date I, Solomita MA, Antonucci I, Stuppia L, Kaneko Y, Borlongan CV. Therapeutic outcomes of transplantation of amniotic fluid-derived stem cells in experimental ischemic stroke. Front Cell Neurosci 2014; 8:227. [PMID: 25165432 PMCID: PMC4131212 DOI: 10.3389/fncel.2014.00227] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/23/2014] [Indexed: 01/29/2023] Open
Abstract
Accumulating preclinical evidence suggests the use of amnion as a source of stem cells for investigations of basic science concepts related to developmental cell biology, but also for stem cells’ therapeutic applications in treating human disorders. We previously reported isolation of viable rat amniotic fluid-derived stem (AFS) cells. Subsequently, we recently reported the therapeutic benefits of intravenous transplantation of AFS cells in a rodent model of ischemic stroke. Parallel lines of investigations have provided safety and efficacy of stem cell therapy for treating stroke and other neurological disorders. This review article highlights the need for investigations of mechanisms underlying AFS cells’ therapeutic benefits and discusses lab-to-clinic translational gating items in an effort to optimize the clinical application of the cell transplantation for stroke.
Collapse
Affiliation(s)
- Naoki Tajiri
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Sandra Acosta
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Gabriel S Portillo-Gonzales
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Daniela Aguirre
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Stephanny Reyes
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Diego Lozano
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Mibel Pabon
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Ike Dela Peña
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama, Japan
| | - Marianna A Solomita
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Ivana Antonucci
- Laboratory of Molecular Genetics, DISPUTer, School of Medicine and Health Sciences, "G. d 'Annunzio" University Chieti-Pescara, Italy
| | - Liborio Stuppia
- Laboratory of Molecular Genetics, DISPUTer, School of Medicine and Health Sciences, "G. d 'Annunzio" University Chieti-Pescara, Italy
| | - Yuji Kaneko
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| |
Collapse
|
38
|
Font de Mora J, Díez Juan A. The decay of stem cell nourishment at the niche. Rejuvenation Res 2014; 16:487-94. [PMID: 23937078 DOI: 10.1089/rej.2013.1440] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
One of the main features of human aging is the loss of adult stem cell homeostasis. Organs that are very dependent on adult stem cells show increased susceptibility to aging, particularly organs that present a vascular stem cell niche. Reduced regenerative capacity in tissues correlates with reduced stem cell function, which parallels a loss of microvascular density (rarefraction) and plasticity. Moreover, the age-related loss of microvascular plasticity and rarefaction has significance beyond metabolic support for tissues because stem cell niches are regulated co-ordinately with the vascular cells. In addition, microvascular rarefaction is related to increased inflammatory signals that may negatively regulate the stem cell population. Thus, the processes of microvascular rarefaction, adult stem cell dysfunction, and inflammation underlie the cycle of physiological decline that we call aging. Observations from new mouse models and humans are discussed here to support the vascular aging theory. We develop a novel theory to explain the complexity of aging in mammals and perhaps in other organisms. The connection between vascular endothelial tissue and organismal aging provides a potential evolutionary conserved mechanism that is an ideal target for the development of therapies to prevent or delay age-related processes in humans.
Collapse
Affiliation(s)
- Jaime Font de Mora
- 1 Fundación para la Investigación Hospital La Fe and Instituto Valenciano de Patología, Facultad de Medicina, Universidad Católica de Valencia San Vicente Mártir , Valencia, Spain
| | | |
Collapse
|
39
|
Boehme M, Guenther M, Stahr A, Liebmann M, Jaenisch N, Witte OW, Frahm C. Impact of indomethacin on neuroinflammation and hippocampal neurogenesis in aged mice. Neurosci Lett 2014; 572:7-12. [DOI: 10.1016/j.neulet.2014.04.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/24/2014] [Accepted: 04/26/2014] [Indexed: 11/24/2022]
|
40
|
Hippocampal neurogenesis and antidepressive therapy: shocking relations. Neural Plast 2014; 2014:723915. [PMID: 24967107 PMCID: PMC4055571 DOI: 10.1155/2014/723915] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/25/2014] [Indexed: 12/19/2022] Open
Abstract
Speculations on the involvement of hippocampal neurogenesis, a form of neuronal plasticity, in the aetiology of depression and the mode of action of antidepressive therapies, started to arise more than a decade ago. But still, conclusive evidence that adult neurogenesis contributes to antidepressive effects of pharmacological and physical therapies has not been generated yet. This review revisits recent findings on the close relation between the mode(s) of action of electroconvulsive therapy (ECT), a powerful intervention used as second-line treatment of major depression disorders, and the neurogenic response to ECT. Following application of electroconvulsive shocks, intricate interactions between neurogenesis, angiogenesis, and microglia activation, the hypothalamic-pituitary-adrenal axis and the secretion of neurotrophic factors have been documented. Furthermore, considering the fact that neurogenesis strongly diminishes along aging, we investigated the response to electroconvulsive shocks in young as well as in aged cohorts of mice.
Collapse
|
41
|
Miguel-Hidalgo JJ, Whittom A, Villarreal A, Soni M, Meshram A, Pickett JC, Rajkowska G, Stockmeier CA. Apoptosis-related proteins and proliferation markers in the orbitofrontal cortex in major depressive disorder. J Affect Disord 2014; 158:62-70. [PMID: 24655767 PMCID: PMC3996705 DOI: 10.1016/j.jad.2014.02.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/03/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND In major depressive disorder (MDD), lowered neural activity and significant reductions of markers of cell resiliency to degeneration occur in the prefrontal cortex (PFC). It is still unclear whether changes in other relevant markers of cell vulnerability to degeneration and markers of cell proliferation are associated with MDD. METHODS Levels of caspase 8 (C8), X-linked inhibitor of apoptosis protein (XIAP), direct IAP binding protein with low pI (DIABLO), proliferating cell nuclear antigen (PCNA) and density of cells immunoreactive (-IR) for proliferation marker Ki-67 were measured in postmortem samples of the left orbitofrontal cortex (OFC) of subjects with MDD, and psychiatrically-normal comparison subjects. RESULTS There was significant increase in C8, a higher ratio of DIABLO to XIAP, lower packing density of Ki-67-IR cells, and an unexpected age-dependent increase in PCNA in subjects with MDD vs. controls. PCNA levels were significantly higher in MDD subjects unresponsive to antidepressants or untreated with antidepressants. The DIABLO/XIAP ratio was higher in MDD subjects without antidepressants than in comparison subjects. LIMITATIONS Qualitative nature of responsiveness assessments; definition of resistance to antidepressant treatment is still controversial; and unclear role of PCNA. CONCLUSIONS Markers of cell vulnerability to degeneration are increased and density of Ki67-positive cells is low MDD, but accompanied by normal XIAP levels. The results suggest increased vulnerability to cell pathology in depression that is insufficient to cause morphologically conspicuous cell death. Persistent but low-grade vulnerability to cell degeneration coexisting with reduced proliferation readiness may explain age-dependent reductions in neuronal densities in the OFC of depressed subjects.
Collapse
Affiliation(s)
- Jose J Miguel-Hidalgo
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA.
| | - Angela Whittom
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ashley Villarreal
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Madhav Soni
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ashish Meshram
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jason C Pickett
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Grazyna Rajkowska
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Craig A Stockmeier
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA; Psychiatry, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
42
|
Bolognin S, Buffelli M, Puoliväli J, Iqbal K. Rescue of cognitive-aging by administration of a neurogenic and/or neurotrophic compound. Neurobiol Aging 2014; 35:2134-46. [PMID: 24702821 DOI: 10.1016/j.neurobiolaging.2014.02.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/18/2014] [Accepted: 02/26/2014] [Indexed: 10/25/2022]
Abstract
Aging is characterized by a progressive decline of cognitive performance, which has been partially attributed to structural and functional alterations of hippocampus. Importantly, aging is the major risk factor for the development of neurodegenerative diseases, especially Alzheimer's disease. An important therapeutic approach to counteract the age-associated memory dysfunctions is to maintain an appropriate microenvironment for successful neurogenesis and synaptic plasticity. In this study, we show that chronic oral administration of peptide 021 (P021), a small peptidergic neurotrophic compound derived from the ciliary neurotrophic factor, significantly reduced the age-dependent decline in learning and memory in 22 to 24-month-old Fisher rats. Treatment with P021 inhibited the deficit in neurogenesis in the aged rats and increased the expression of brain derived neurotrophic factor. Furthermore, P021 restored synaptic deficits both in the cortex and the hippocampus. In vivo magnetic resonance spectroscopy revealed age-dependent alterations in hippocampal content of several metabolites. Remarkably, P021 was effective in significantly reducing myoinositol (INS) concentration, which was increased in aged compared with young rats. These findings suggest that stimulating endogenous neuroprotective mechanisms is a potential therapeutic approach to cognitive aging, Alzheimer's disease, and associated neurodegenerative disorders and P021 is a promising compound for this purpose.
Collapse
Affiliation(s)
- Silvia Bolognin
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Mario Buffelli
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Jukka Puoliväli
- Department of Behavioral Studies, Charles River Finland, Kuopio, Finland
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
| |
Collapse
|
43
|
Bruintjes J, Henning R, Douwenga W, van der Zee E. Hippocampal cystathionine beta synthase in young and aged mice. Neurosci Lett 2014; 563:135-9. [DOI: 10.1016/j.neulet.2014.01.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
|
44
|
Shetty GA, Hattiangady B, Shetty AK. Neural stem cell- and neurogenesis-related gene expression profiles in the young and aged dentate gyrus. AGE (DORDRECHT, NETHERLANDS) 2013; 35:2165-2176. [PMID: 23322452 PMCID: PMC3824978 DOI: 10.1007/s11357-012-9507-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 12/27/2012] [Indexed: 06/01/2023]
Abstract
Hippocampal neurogenesis, important for memory and mood function, wanes greatly in old age. Studies in rat models have implied that this decrease is not due to loss of neural stem cells (NSCs) in the subgranular zone of the dentate gyrus (DG) but rather due to an increased quiescence of NSCs. Additional studies have suggested that changes in the microenvironment, particularly declines in the concentrations of neurotrophic factors, underlie this change. In this study, we compared the expression of 84 genes that are important for NSC proliferation and neurogenesis between the DG of young (4 months old) and aged (24 months old) Fischer 344 rats, using a quantitative real-time polymerase chain reaction array. Interestingly, the expression of a vast majority of genes that have been reported previously to positively or negatively regulate NSC proliferation was unaltered with aging. Furthermore, most genes important for cell cycle arrest, regulation of cell differentiation, growth factors and cytokine levels, synaptic functions, apoptosis, cell adhesion and cell signaling, and regulation of transcription displayed stable expression in the DG with aging. The exceptions included increased expression of genes important for NSC proliferation and neurogenesis (Stat3 and Shh), DNA damage response and NF-kappaB signaling (Cdk5rap3), neuromodulation (Adora1), and decreased expression of a gene important for neuronal differentiation (HeyL). Thus, age-related decrease in hippocampal neurogenesis is not associated with a decline in the expression of selected genes important for NSC proliferation and neurogenesis in the DG.
Collapse
Affiliation(s)
- Geetha A. Shetty
- />Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, 5701 Airport Road, Module C, Temple, 76502 TX USA
- />Research Service, Olin E. Teague Veterans’ Medical Center, CTVHCS, Temple, TX USA
- />Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX USA
| | - Bharathi Hattiangady
- />Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, 5701 Airport Road, Module C, Temple, 76502 TX USA
- />Research Service, Olin E. Teague Veterans’ Medical Center, CTVHCS, Temple, TX USA
- />Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX USA
- />Division of Neurosurgery, Duke University Medical Center, Durham, NC USA
- />Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, NC USA
| | - Ashok K. Shetty
- />Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, 5701 Airport Road, Module C, Temple, 76502 TX USA
- />Research Service, Olin E. Teague Veterans’ Medical Center, CTVHCS, Temple, TX USA
- />Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX USA
- />Division of Neurosurgery, Duke University Medical Center, Durham, NC USA
- />Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, NC USA
| |
Collapse
|
45
|
A mid-life vitamin A supplementation prevents age-related spatial memory deficits and hippocampal neurogenesis alterations through CRABP-I. PLoS One 2013; 8:e72101. [PMID: 23977218 PMCID: PMC3747058 DOI: 10.1371/journal.pone.0072101] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 07/04/2013] [Indexed: 12/28/2022] Open
Abstract
Age-related memory decline including spatial reference memory is considered to begin at middle-age and coincides with reduced adult hippocampal neurogenesis. Moreover, a dysfunction of vitamin A hippocampal signalling pathway has been involved in the appearance of age-related memory deficits but also in adult hippocampal neurogenesis alterations. The present study aims at testing the hypothesis that a mid-life vitamin A supplementation would be a successful strategy to prevent age-related memory deficits. Thus, middle-aged Wistar rats were submitted to a vitamin A enriched diet and were tested 4 months later in a spatial memory task. In order to better understand the potential mechanisms mediating the effects of vitamin A supplementation on hippocampal functions, we studied different aspects of hippocampal adult neurogenesis and evaluated hippocampal CRABP-I expression, known to modulate differentiation processes. Here, we show that vitamin A supplementation from middle-age enhances spatial memory and improves the dendritic arborisation of newborn immature neurons probably resulting in a better survival and neuronal differentiation in aged rats. Moreover, our results suggest that hippocampal CRABP-I expression which controls the intracellular availability of retinoic acid (RA), may be an important regulator of neuronal differentiation processes in the aged hippocampus. Thus, vitamin A supplementation from middle-age could be a good strategy to maintain hippocampal plasticity and functions.
Collapse
|
46
|
Choi JH, Kim DW, Yoo DY, Jeong HJ, Kim W, Jung HY, Nam SM, Kim JH, Yoon YS, Choi SY, Hwang IK. Repeated administration of PEP-1-Cu,Zn-superoxide dismutase and PEP-1-peroxiredoxin-2 to senescent mice induced by D-galactose improves the hippocampal functions. Neurochem Res 2013; 38:2046-55. [PMID: 23892988 DOI: 10.1007/s11064-013-1112-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/02/2013] [Accepted: 07/10/2013] [Indexed: 12/30/2022]
Abstract
Oxidative stress initiates age-related reduction in hippocampal neurogenesis and the use of antioxidants has been proposed as an effective strategy to prevent or attenuate the reduction of neurogenesis in the hippocampus. In the present study, we investigated the effects of Cu,Zn-superoxide dismutase (SOD1) and/or peroxiredoxin-2 (PRX2) on cell proliferation and neuroblast differentiation in the dentate gyrus in a model of D-galactose-induced aging model. For this study, we constructed an expression vector, PEP-1, fused PEP-1 with SOD1 or PRX2, and generated PEP-1-SOD1 and PEP-1-PRX2 fusion protein. The aging model was induced by subcutaneous injection of D-galactose (100 mg/kg) to 6-week-old male mice for 10 weeks. PEP-1, PEP-1-SOD1 and/or PEP-1-PRX2 fusion protein was intraperitoneally administered to these mice at 13-week-old once a day for 3 weeks and sacrificed at 30 min after the last administrations. The administration of PEP-1-SOD1 and/or PEP-1-PRX2 significantly improved D-galactose-induced deficits on the escape latency, swimming speeds, platform crossings, spatial preference for the target quadrant in Morris water maze test. In addition, the administration of PEP-1-SOD1 and/or PEP-1-PRX2 ameliorated D-galactose-induced reductions of cell proliferation and neuroblast differentiation in the dentate gyrus and significantly reduced D-galactose-induced lipid peroxidation in the hippocampus. These effects were more prominent in the PEP-1-SOD1-treated group with PEP-1-PRX2. These results suggest that a SOD1 and/or PRX2 supplement to aged mice could improve the memory deficits, cell proliferation and neuroblast differentiation in the dentate gyrus of D-galactose induced aged mice by reducing lipid peroxidation.
Collapse
Affiliation(s)
- Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, 200-701, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Omega-3 fatty acids and brain resistance to ageing and stress: body of evidence and possible mechanisms. Ageing Res Rev 2013; 12:579-94. [PMID: 23395782 DOI: 10.1016/j.arr.2013.01.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 12/11/2022]
Abstract
The increasing life expectancy in the populations of rich countries raises the pressing question of how the elderly can maintain their cognitive function. Cognitive decline is characterised by the loss of short-term memory due to a progressive impairment of the underlying brain cell processes. Age-related brain damage has many causes, some of which may be influenced by diet. An optimal diet may therefore be a practical way of delaying the onset of age-related cognitive decline. Nutritional investigations indicate that the ω-3 poyunsaturated fatty acid (PUFA) content of western diets is too low to provide the brain with an optimal supply of docosahexaenoic acid (DHA), the main ω-3 PUFA in cell membranes. Insufficient brain DHA has been associated with memory impairment, emotional disturbances and altered brain processes in rodents. Human studies suggest that an adequate dietary intake of ω-3 PUFA can slow the age-related cognitive decline and may also protect against the risk of senile dementia. However, despite the many studies in this domain, the beneficial impact of ω-3 PUFA on brain function has only recently been linked to specific mechanisms. This review examines the hypothesis that an optimal brain DHA status, conferred by an adequate ω-3 PUFA intake, limits age-related brain damage by optimizing endogenous brain repair mechanisms. Our analysis of the abundant literature indicates that an adequate amount of DHA in the brain may limit the impact of stress, an important age-aggravating factor, and influences the neuronal and astroglial functions that govern and protect synaptic transmission. This transmission, particularly glutamatergic neurotransmission in the hippocampus, underlies memory formation. The brain DHA status also influences neurogenesis, nested in the hippocampus, which helps maintain cognitive function throughout life. Although there are still gaps in our knowledge of the way ω-3 PUFA act, the mechanistic studies reviewed here indicate that ω-3 PUFA may be a promising tool for preventing age-related brain deterioration.
Collapse
|
48
|
Jungenitz T, Radic T, Jedlicka P, Schwarzacher SW. High-frequency stimulation induces gradual immediate early gene expression in maturing adult-generated hippocampal granule cells. ACTA ACUST UNITED AC 2013; 24:1845-57. [PMID: 23425888 DOI: 10.1093/cercor/bht035] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Increasing evidence shows that adult neurogenesis of hippocampal granule cells is advantageous for learning and memory. We examined at which stage of structural maturation and age new granule cells can be activated by strong synaptic stimulation. High-frequency stimulation of the perforant pathway in urethane-anesthetized rats elicited expression of the immediate early genes c-fos, Arc, zif268 and pCREB133 in almost 100% of mature, calbindin-positive granule cells. In contrast, it failed to induce immediate early gene expression in immature doublecortin-positive granule cells. Furthermore, doublecortin-positive neurons did not react with c-fos or Arc expression to mild theta-burst stimulation or novel environment exposure. Endogenous expression of pCREB133 was increasingly present in young cells with more elaborated dendrites, revealing a close correlation to structural maturation. Labeling with bromodeoxyuridine revealed cell age dependence of stimulation-induced c-fos, Arc and zif268 expression, with only a few cells reacting at 21 days, but with up to 75% of cells activated at 35-77 days of cell age. Our results indicate an increasing synaptic integration of maturing granule cells, starting at 21 days of cell age, but suggest a lack of ability to respond to activation with synaptic potentiation on the transcriptional level as long as immature cells express doublecortin.
Collapse
Affiliation(s)
- Tassilo Jungenitz
- Institute of Clinical Neuroanatomy, Goethe-University Frankfurt, NeuroScience Center, D-60590 Frankfurt am Main, Germany
| | - Tijana Radic
- Institute of Clinical Neuroanatomy, Goethe-University Frankfurt, NeuroScience Center, D-60590 Frankfurt am Main, Germany
| | - Peter Jedlicka
- Institute of Clinical Neuroanatomy, Goethe-University Frankfurt, NeuroScience Center, D-60590 Frankfurt am Main, Germany
| | - Stephan W Schwarzacher
- Institute of Clinical Neuroanatomy, Goethe-University Frankfurt, NeuroScience Center, D-60590 Frankfurt am Main, Germany
| |
Collapse
|
49
|
Valentino T, Palmieri D, Vitiello M, Simeone A, Palma G, Arra C, Chieffi P, Chiariotti L, Fusco A, Fedele M. Embryonic defects and growth alteration in mice with homozygous disruption of the Patz1 gene. J Cell Physiol 2013; 228:646-53. [PMID: 22886576 DOI: 10.1002/jcp.24174] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 07/31/2012] [Indexed: 11/09/2022]
Abstract
PATZ1 is an emerging cancer-related gene coding for a POZ/AT-hook/kruppel Zinc finger transcription factor, which is lost or misexpressed in human neoplasias. Here, we investigated its role in development exploring wild-type and Patz1-knockout mice during embryogenesis. We report that the Patz1 gene is ubiquitously expressed at early stages of development and becomes more restricted at later stages, with high levels of expression in actively proliferating neuroblasts belonging to the ventricular zones of the central nervous system (CNS). The analysis of embryos in which Patz1 was disrupted revealed the presence of severe defects in the CNS and in the cardiac outflow tract, which eventually lead to a pre-mature in utero death during late gestation or soon after birth. Moreover, the Patz1-null mice showed a general growth retardation, which was consistent with the slower growth rate and the increased susceptibility to senescence of Patz1(-/-) mouse embryonic fibroblasts (MEFs) compared to wild-type controls. Therefore, these results indicate a critical role of PATZ1 in the control of cell growth and embryonic development.
Collapse
Affiliation(s)
- Teresa Valentino
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR and Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università di Napoli Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Morales-Garcia JA, Luna-Medina R, Alonso-Gil S, Sanz-SanCristobal M, Palomo V, Gil C, Santos A, Martinez A, Perez-Castillo A. Glycogen synthase kinase 3 inhibition promotes adult hippocampal neurogenesis in vitro and in vivo. ACS Chem Neurosci 2012; 3:963-71. [PMID: 23173075 DOI: 10.1021/cn300110c] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/24/2012] [Indexed: 02/07/2023] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase originally identified as a regulator of glycogen metabolism but it also plays a pivotal role in numerous cellular functions, including differentiation, cell cycle regulation, and proliferation. The dentate gyrus of the hippocampus, together with the subventricular zone of the lateral ventricles, is one of the regions in which neurogenesis takes place in the adult brain. Here, using a chemical genetic approach that involves the use of several diverse inhibitors of GSK-3 as pharmacological tools, we show that inhibition of GSK-3 induces proliferation, migration, and differentiation of neural stem cells toward a neuronal phenotype in in vitro studies. Also, we demonstrate that inhibition of GSK-3 with the small molecule NP03112, called tideglusib, induces neurogenesis in the dentate gyrus of the hippocampus of adult rats. Taken together, our results suggest that GSK-3 should be considered as a new target molecule for modulating the production and integration of new neurons in the hippocampus as a treatment for neurodegenerative diseases or brain injury and, consequently, its inhibitors may represent new potential therapeutic drugs in neuroregenerative medicine.
Collapse
Affiliation(s)
- Jose A. Morales-Garcia
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4 and
Centro de Investigación Biomédica en Red sobre Enfermedades
Neurodegenerativas (CIBERNED), 28029-Madrid, Spain
| | - Rosario Luna-Medina
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4 and
Centro de Investigación Biomédica en Red sobre Enfermedades
Neurodegenerativas (CIBERNED), 28029-Madrid, Spain
| | - Sandra Alonso-Gil
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4 and
Centro de Investigación Biomédica en Red sobre Enfermedades
Neurodegenerativas (CIBERNED), 28029-Madrid, Spain
| | - Marina Sanz-SanCristobal
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4 and
Centro de Investigación Biomédica en Red sobre Enfermedades
Neurodegenerativas (CIBERNED), 28029-Madrid, Spain
| | - Valle Palomo
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, 28006-Madrid,
Spain
| | - Carmen Gil
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, 28006-Madrid,
Spain
| | - Angel Santos
- Departamento de Bioquímica
y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040-Madrid,
Spain
| | - Ana Martinez
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, 28006-Madrid,
Spain
| | - Ana Perez-Castillo
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4 and
Centro de Investigación Biomédica en Red sobre Enfermedades
Neurodegenerativas (CIBERNED), 28029-Madrid, Spain
| |
Collapse
|