1
|
Wang H, Zeng P, Zhu PH, Wang ZF, Cai YJ, Deng CY, Yang H, Mai LP, Zhang MZ, Kuang SJ, Rao F, Xu JS. Downregulation of stromal interaction molecule-1 is implicated in the age-associated vasoconstriction dysfunction of aorta, intrarenal, and coronary arteries. Eur J Pharmacol 2024; 979:176832. [PMID: 39038639 DOI: 10.1016/j.ejphar.2024.176832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
The contractile function of vascular smooth muscle cells (VSMCs) typically undergoes significant changes with advancing age, leading to severe vascular aging-related diseases. The precise role and mechanism of stromal interaction molecule-1 (STIM1) in age-mediated Ca2+ signaling and vasocontraction remain unclear. The connection between STIM1 and age-related vascular dysfunction was investigated using a multi-myograph system, immunohistochemical analysis, protein blotting, and SA-β-gal staining. Results showed that vasoconstrictor responses in the thoracic aorta, intrarenal artery, and coronary artery decreased with age. STIM1 knockdown in the intrarenal and coronary arteries reduced vascular tone in young mice, while no change was observed in the thoracic aorta. A significant reduction in vascular tone occurred in the STIM1 knockout group with nifedipine. In the thoracic aorta, vasoconstriction significantly decreased with age following the use of nifedipine and thapsigargin and almost disappeared after STIM1 knockdown. The proportion of senescent VSMCs increased significantly in aged mice and further increased in sm-STIM1 KO aged mice. Moreover, the expression of senescence markers p21, p16, and IL-6 significantly increased with age, with p21 expression further increased in the STIM1 knockdown aged group, but not p16 or IL-6. These findings indicate that different arteries exhibit distinct organ-specific features and that STIM1 downregulation may contribute to age-related vasoconstrictive dysfunction through activation of the p21 pathway.
Collapse
Affiliation(s)
- Hao Wang
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Peng Zeng
- Medical Research Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Peng-Hao Zhu
- The First Clinical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Zi-Fan Wang
- Medical Research Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yong-Jiang Cai
- Medical Research Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Chun-Yu Deng
- Medical Research Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Hui Yang
- Medical Research Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Li-Ping Mai
- Medical Research Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Meng-Zhen Zhang
- Medical Research Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Su-Juan Kuang
- Medical Research Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Fang Rao
- Medical Research Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Jin-Song Xu
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
2
|
Conte E, Mantuano P, Boccanegra B, Imbrici P, Dinoi G, Lenti R, Cappellari O, Cappetta D, De Angelis A, Berrino L, Gordish-Dressman H, Bianchini G, Aramini A, Allegretti M, Liantonio A, De Luca A. Branched-chain amino acids and L-alanine supplementation ameliorate calcium dyshomeostasis in sarcopenia: New insights for nutritional interventions. Front Pharmacol 2024; 15:1393746. [PMID: 38962308 PMCID: PMC11220240 DOI: 10.3389/fphar.2024.1393746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/24/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction: During aging, sarcopenia and decline in physiological processes lead to partial loss of muscle strength, atrophy, and increased fatigability. Muscle changes may be related to a reduced intake of essential amino acids playing a role in proteostasis. We have recently shown that branched-chain amino acid (BCAA) supplements improve atrophy and weakness in models of muscle disuse and aging. Considering the key roles that the alteration of Ca2+-related homeostasis and store-operated calcium entry (SOCE) play in several muscle dysfunctions, this study has been aimed at gaining insight into the potential ability of BCAA-based dietary formulations in aged mice on various players of Ca2+ dyshomeostasis. Methods: Seventeen-month-old male C57BL/6J mice received a 12-week supplementation with BCAAs alone or boosted with two equivalents of L-alanine (2-Ala) or with dipeptide L-alanyl-L-alanine (Di-Ala) in drinking water. Outcomes were evaluated on ex vivo skeletal muscles indices vs. adult 3-month-old male C57BL/6J mice. Results: Ca2+ imaging confirmed a decrease in SOCE and an increase of resting Ca2+ concentration in aged vs. adult mice without alteration in the canonical components of SOCE. Aged muscles vs. adult muscles were characterized by a decrease in the expression of ryanodine receptor 1 (RyR1), the Sarco-Endoplasmic Reticulum Calcium ATPase (SERCA) pump, and sarcalumenin together with an alteration of the expression of mitsugumin 29 and mitsugumin 53, two recently recognized players in the SOCE mechanism. BCAAs, particularly the formulation BCAAs+2-Ala, were able to ameliorate all these alterations. Discussion: These results provide evidence that Ca2+ homeostasis dysfunction plays a role in the functional deficit observed in aged muscle and supports the interest of dietary BCAA supplementation in counteracting sarcopenia-related SOCE dysregulation.
Collapse
Affiliation(s)
- Elena Conte
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Paola Mantuano
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Brigida Boccanegra
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Paola Imbrici
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Giorgia Dinoi
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Roberta Lenti
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Ornella Cappellari
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Donato Cappetta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Heather Gordish-Dressman
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC, United States
| | - Gianluca Bianchini
- Research & Early Development, Dompé farmaceutici S.p.A., L’Aquila, Italy
| | - Andrea Aramini
- Research & Early Development, Dompé farmaceutici S.p.A., L’Aquila, Italy
| | | | - Antonella Liantonio
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
3
|
Bryson V, Wang C, Zhou Z, Singh K, Volin N, Yildirim E, Rosenberg P. The D84G mutation in STIM1 causes nuclear envelope dysfunction and myopathy in mice. J Clin Invest 2024; 134:e170317. [PMID: 38300705 PMCID: PMC10977986 DOI: 10.1172/jci170317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 01/26/2024] [Indexed: 02/03/2024] Open
Abstract
Stromal interaction molecule 1 (STIM1) is a Ca2+ sensor located in the sarcoplasmic reticulum (SR) of skeletal muscle, where it is best known for its role in store-operated Ca2+ entry (SOCE). Genetic syndromes resulting from STIM1 mutations are recognized as a cause of muscle weakness and atrophy. Here, we focused on a gain-of-function mutation that occurs in humans and mice (STIM1+/D84G mice), in which muscles exhibited constitutive SOCE. Unexpectedly, this constitutive SOCE did not affect global Ca2+ transients, SR Ca2+ content, or excitation-contraction coupling (ECC) and was therefore unlikely to underlie the reduced muscle mass and weakness observed in these mice. Instead, we demonstrate that the presence of D84G STIM1 in the nuclear envelope of STIM1+/D84G muscle disrupted nuclear-cytosolic coupling, causing severe derangement in nuclear architecture, DNA damage, and altered lamina A-associated gene expression. Functionally, we found that D84G STIM1 reduced the transfer of Ca2+ from the cytosol to the nucleus in myoblasts, resulting in a reduction of [Ca2+]N. Taken together, we propose a novel role for STIM1 in the nuclear envelope that links Ca2+ signaling to nuclear stability in skeletal muscle.
Collapse
Affiliation(s)
| | - Chaojian Wang
- Department of Medicine
- Duke Cardiovascular Research Center
| | | | | | | | - Eda Yildirim
- Department of Cell Biology
- Duke Cancer Institute, Duke University Medical Center, and
| | - Paul Rosenberg
- Department of Medicine
- Duke Cardiovascular Research Center
- Duke Molecular Physiology Institute, School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
4
|
O’Connor TN, Zhao N, Orciuoli HM, Brasile A, Pietrangelo L, He M, Groom L, Leigh J, Mahamed Z, Liang C, Malik S, Protasi F, Dirksen RT. Voluntary wheel running mitigates disease in an Orai1 gain-of-function mouse model of tubular aggregate myopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.559036. [PMID: 37808709 PMCID: PMC10557777 DOI: 10.1101/2023.09.29.559036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Tubular aggregate myopathy (TAM) is an inherited skeletal muscle disease associated with progressive muscle weakness, cramps, and myalgia. Tubular aggregates (TAs) are regular arrays of highly ordered and densely packed SR straight-tubes in muscle biopsies; the extensive presence of TAs represent a key histopathological hallmark of this disease in TAM patients. TAM is caused by gain-of-function mutations in proteins that coordinate store-operated Ca2+ entry (SOCE): STIM1 Ca2+ sensor proteins in the sarcoplasmic reticulum (SR) and Ca2+-permeable ORAI1 channels in the surface membrane. We have previously shown that voluntary wheel running (VWR) prevents formation of TAs in aging mice. Here, we assessed the therapeutic potential of endurance exercise (in the form of VWR) in mitigating the functional and structural alterations in a knock-in mouse model of TAM (Orai1G100S/+ or GS mice) based on a gain-of-function mutation in the ORAI1 pore. WT and GS mice were singly-housed for six months (from two to eight months of age) with either free-spinning or locked low profile wheels. Six months of VWR exercise significantly increased soleus peak tetanic specific force production, normalized FDB fiber Ca2+ store content, and markedly reduced TAs in EDL muscle from GS mice. Six months of VWR exercise normalized the expression of mitochondrial proteins found to be altered in soleus muscle of sedentary GS mice in conjunction with a signature of increased protein translation and biosynthetic processes. Parallel proteomic analyses of EDL muscles from sedentary WT and GS mice revealed changes in a tight network of pathways involved in formation of supramolecular complexes, which were also normalized following six months of VWR. In summary, sustained voluntary endurance exercise improved slow twitch muscle function, reduced the presence of TAs in fast twitch muscle, and normalized the muscle proteome of GS mice consistent with protective adaptions in proteostasis, mitochondrial structure/function, and formation of supramolecular complexes.
Collapse
Affiliation(s)
- Thomas N. O’Connor
- Department of Biomedical Genetics, Genetics and Genomics Graduate Program, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Nan Zhao
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Haley M. Orciuoli
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biology, Biological Sciences, University of Rochester, Rochester, NY, USA
| | - Alice Brasile
- CAST, Center for Advanced Studies and Technology & DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology & DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Miao He
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Linda Groom
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jennifer Leigh
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Zahra Mahamed
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Chen Liang
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Feliciano Protasi
- CAST, Center for Advanced Studies and Technology & DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
5
|
Lara-Castillo N, Masunaga J, Brotto L, Vallejo JA, Javid K, Wacker MJ, Brotto M, Bonewald LF, Johnson ML. Muscle secreted factors enhance activation of the PI3K/Akt and β-catenin pathways in murine osteocytes. Bone 2023; 174:116833. [PMID: 37385426 PMCID: PMC10926931 DOI: 10.1016/j.bone.2023.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Skeletal muscle and bone interact at the level of mechanical loading through the application of force by muscles to the skeleton and more recently focus has been placed on molecular/biochemical coupling of these two tissues. We sought to determine if muscle and muscle-derived factors were essential to the osteocyte response to loading. Botox® induced muscle paralysis was used to investigate the role of muscle contraction during in vivo tibia compression loading. 5-6 month-old female TOPGAL mice had their right hindlimb muscles surrounding the tibia injected with either BOTOX® or saline. At four days post injections when muscle paralysis peaked, the right tibia was subjected to a single session of in vivo compression loading at ∼2600 με. At 24 h post-load we observed a 2.5-fold increase in β-catenin signaling in osteocytes in the tibias of the saline injected mice, whereas loading of tibias from Botox® injected mice failed to active β-catenin signaling in osteocytes. This suggests that active muscle contraction produces a factor(s) that is necessary for or conditions the osteocyte's ability to respond to load. To further investigate the role of muscle derived factors, MLO-Y4 osteocyte-like cells and a luciferase based β-catenin reporter (TOPflash-MLO-Y4) cell line we developed were treated with conditioned media (CM) from C2C12 myoblasts (MB) and myotubes (MT) and ex vivo contracted Extensor Digitorum Longus (EDL) and Soleus (Sol) muscles under static or loading conditions using fluid flow shear stress (FFSS). 10 % C2C12 myotube CM, but not myoblast or NIH3T3 fibroblast cells CM, induced a rapid activation of the Akt signaling pathway, peaking at 15 min and returning to baseline by 1-2 h under static conditions. FFSS applied to MLO-Y4 cells for 2 h in the presence of 10 % MT-CM resulted in a 6-8 fold increase in pAkt compared to a 3-4 fold increase under control or when exposed to 10 % MB-CM. A similar response was observed in the presence of 10 % EDL-CM, but not in the presence of 10 % Sol-CM. TOPflash-MLO-Y4 cells were treated with 10 ng/ml Wnt3a in the presence or absence of MT-CM. While MT-CM resulted in a 2-fold activation and Wnt3a produced a 10-fold activation, the combination of MT-CM + Wnt3a resulted in a 25-fold activation of β-catenin signaling, implying a synergistic effect of factors in MT-CM with Wnt3a. These data provide clear evidence that specific muscles and myotubes produce factors that alter important signaling pathways involved in the response of osteocytes to mechanical load. These data strongly suggest that beyond mechanical loading there is a molecular coupling of muscle and bone.
Collapse
Affiliation(s)
- N Lara-Castillo
- Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 East 25th Street, Kansas City, MO 64108, United States of America.
| | - J Masunaga
- Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 East 25th Street, Kansas City, MO 64108, United States of America
| | - L Brotto
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, 411 S. Nedderman Dr, Arlington, TX 76019, United States of America
| | - J A Vallejo
- Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 East 25th Street, Kansas City, MO 64108, United States of America; Department of Biomedical Sciences, UMKC School of Medicine, 2411 Holmes, Kansas City, MO 64108, United States of America
| | - K Javid
- Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 East 25th Street, Kansas City, MO 64108, United States of America
| | - M J Wacker
- Department of Biomedical Sciences, UMKC School of Medicine, 2411 Holmes, Kansas City, MO 64108, United States of America
| | - M Brotto
- Department of Biomedical Sciences, UMKC School of Medicine, 2411 Holmes, Kansas City, MO 64108, United States of America
| | - L F Bonewald
- Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 East 25th Street, Kansas City, MO 64108, United States of America; Indiana Center for Musculoskeletal Health, Barnhill Drive, Indianapolis, IN 46202, United States of America
| | - M L Johnson
- Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 East 25th Street, Kansas City, MO 64108, United States of America
| |
Collapse
|
6
|
Bryson V, Wang C, Zhou Z, Singh K, Volin N, Yildirim E, Rosenberg P. The D84G mutation in STIM1 causes nuclear envelope dysfunction and myopathy in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539279. [PMID: 37205564 PMCID: PMC10187192 DOI: 10.1101/2023.05.03.539279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Stromal interaction molecule 1 (STIM1) is a Ca 2+ sensor located in the sarcoplasmic reticulum (SR) of skeletal muscle where it is best known for its role in store operated Ca 2+ entry (SOCE). Genetic syndromes resulting from STIM1 mutations are recognized as a cause of muscle weakness and atrophy. Here, we focus on a gain of function mutation that occurs in humans and mice (STIM1 +/D84G mice) where muscles exhibit constitutive SOCE. Unexpectedly, this constitutive SOCE did not affect global Ca 2+ transients, SR Ca 2+ content or excitation contraction coupling (ECC) and was therefore unlikely to underlie the reduced muscle mass and weakness observed in these mice. Instead, we demonstrate that the presence of D84G STIM1 in the nuclear envelope of STIM1 +/D84G muscle disrupts nuclear-cytosolic coupling causing severe derangement in nuclear architecture, DNA damage, and altered lamina A associated gene expression. Functionally, we found D84G STIM1 reduced the transfer of Ca 2+ from the cytosol to the nucleus in myoblasts resulting in a reduction of [Ca 2+ ] N . Taken together, we propose a novel role for STIM1 in the nuclear envelope that links Ca 2+ signaling to nuclear stability in skeletal muscle.
Collapse
|
7
|
Protasi F, Girolami B, Roccabianca S, Rossi D. Store-operated calcium entry: From physiology to tubular aggregate myopathy. Curr Opin Pharmacol 2023; 68:102347. [PMID: 36608411 DOI: 10.1016/j.coph.2022.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 01/06/2023]
Abstract
Store-Operated Ca2+ entry (SOCE) is recognized as a key mechanism in muscle physiology necessary to refill intracellular Ca2+ stores during sustained muscle activity. For many years the cell structures expected to mediate SOCE in skeletal muscle fibres remained unknown. Recently, the identification of Ca2+ Entry Units (CEUs) in exercised muscle fibres opened new insights into the role of extracellular Ca2+ in muscle contraction and, more generally, in intracellular Ca2+ homeostasis. Accordingly, intracellular Ca2+ unbalance due to alterations in SOCE strictly correlates with muscle disfunction and disease. Mutations in proteins involved in SOCE (STIM1, ORAI1, and CASQ1) have been linked to tubular aggregate myopathy (TAM), a disease that causes muscle weakness and myalgia and is characterized by a typical accumulation of highly ordered and packed membrane tubules originated from the sarcoplasmic reticulum (SR). Achieving a full understanding of the molecular pathways activated by alterations in Ca2+ entry mechanisms is a necessary step to design effective therapies for human SOCE-related disorders.
Collapse
Affiliation(s)
- Feliciano Protasi
- CAST, Center for Advanced Studies and Technology; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy; DMSI, Department of Medicine and Aging Sciences; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy
| | - Barbara Girolami
- CAST, Center for Advanced Studies and Technology; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy; DMSI, Department of Medicine and Aging Sciences; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy
| | - Sara Roccabianca
- DMMS, Department of Molecular and Developmental Medicine; University of Siena, I-53100, Siena Italy
| | - Daniela Rossi
- DMMS, Department of Molecular and Developmental Medicine; University of Siena, I-53100, Siena Italy.
| |
Collapse
|
8
|
Paez HG, Pitzer CR, Alway SE. Age-Related Dysfunction in Proteostasis and Cellular Quality Control in the Development of Sarcopenia. Cells 2023; 12:cells12020249. [PMID: 36672183 PMCID: PMC9856405 DOI: 10.3390/cells12020249] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Sarcopenia is a debilitating skeletal muscle disease that accelerates in the last decades of life and is characterized by marked deficits in muscle strength, mass, quality, and metabolic health. The multifactorial causes of sarcopenia have proven difficult to treat and involve a complex interplay between environmental factors and intrinsic age-associated changes. It is generally accepted that sarcopenia results in a progressive loss of skeletal muscle function that exceeds the loss of mass, indicating that while loss of muscle mass is important, loss of muscle quality is the primary defect with advanced age. Furthermore, preclinical models have suggested that aged skeletal muscle exhibits defects in cellular quality control such as the degradation of damaged mitochondria. Recent evidence suggests that a dysregulation of proteostasis, an important regulator of cellular quality control, is a significant contributor to the aging-associated declines in muscle quality, function, and mass. Although skeletal muscle mammalian target of rapamycin complex 1 (mTORC1) plays a critical role in cellular control, including skeletal muscle hypertrophy, paradoxically, sustained activation of mTORC1 recapitulates several characteristics of sarcopenia. Pharmaceutical inhibition of mTORC1 as well as caloric restriction significantly improves muscle quality in aged animals, however, the mechanisms controlling cellular proteostasis are not fully known. This information is important for developing effective therapeutic strategies that mitigate or prevent sarcopenia and associated disability. This review identifies recent and historical understanding of the molecular mechanisms of proteostasis driving age-associated muscle loss and suggests potential therapeutic interventions to slow or prevent sarcopenia.
Collapse
Affiliation(s)
- Hector G. Paez
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Christopher R. Pitzer
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Stephen E. Alway
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- The Tennessee Institute of Regenerative Medicine, Memphis, TN 38163, USA
- Correspondence:
| |
Collapse
|
9
|
Collins HE, Zhang D, Chatham JC. STIM and Orai Mediated Regulation of Calcium Signaling in Age-Related Diseases. FRONTIERS IN AGING 2022; 3:876785. [PMID: 35821821 PMCID: PMC9261457 DOI: 10.3389/fragi.2022.876785] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/30/2022] [Indexed: 01/19/2023]
Abstract
Tight spatiotemporal regulation of intracellular Ca2+ plays a critical role in regulating diverse cellular functions including cell survival, metabolism, and transcription. As a result, eukaryotic cells have developed a wide variety of mechanisms for controlling Ca2+ influx and efflux across the plasma membrane as well as Ca2+ release and uptake from intracellular stores. The STIM and Orai protein families comprising of STIM1, STIM2, Orai1, Orai2, and Orai3, are evolutionarily highly conserved proteins that are core components of all mammalian Ca2+ signaling systems. STIM1 and Orai1 are considered key players in the regulation of Store Operated Calcium Entry (SOCE), where release of Ca2+ from intracellular stores such as the Endoplasmic/Sarcoplasmic reticulum (ER/SR) triggers Ca2+ influx across the plasma membrane. SOCE, which has been widely characterized in non-excitable cells, plays a central role in Ca2+-dependent transcriptional regulation. In addition to their role in Ca2+ signaling, STIM1 and Orai1 have been shown to contribute to the regulation of metabolism and mitochondrial function. STIM and Orai proteins are also subject to redox modifications, which influence their activities. Considering their ubiquitous expression, there has been increasing interest in the roles of STIM and Orai proteins in excitable cells such as neurons and myocytes. While controversy remains as to the importance of SOCE in excitable cells, STIM1 and Orai1 are essential for cellular homeostasis and their disruption is linked to various diseases associated with aging such as cardiovascular disease and neurodegeneration. The recent identification of splice variants for most STIM and Orai isoforms while complicating our understanding of their function, may also provide insight into some of the current contradictions on their roles. Therefore, the goal of this review is to describe our current understanding of the molecular regulation of STIM and Orai proteins and their roles in normal physiology and diseases of aging, with a particular focus on heart disease and neurodegeneration.
Collapse
Affiliation(s)
- Helen E. Collins
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Dingguo Zhang
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at Birmingham, Birmingham, AL, United States
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: John C. Chatham,
| |
Collapse
|
10
|
Conte E, Imbrici P, Mantuano P, Coppola MA, Camerino GM, De Luca A, Liantonio A. Alteration of STIM1/Orai1-Mediated SOCE in Skeletal Muscle: Impact in Genetic Muscle Diseases and Beyond. Cells 2021; 10:2722. [PMID: 34685702 PMCID: PMC8534495 DOI: 10.3390/cells10102722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 02/08/2023] Open
Abstract
Intracellular Ca2+ ions represent a signaling mediator that plays a critical role in regulating different muscular cellular processes. Ca2+ homeostasis preservation is essential for maintaining skeletal muscle structure and function. Store-operated Ca2+ entry (SOCE), a Ca2+-entry process activated by depletion of intracellular stores contributing to the regulation of various function in many cell types, is pivotal to ensure a proper Ca2+ homeostasis in muscle fibers. It is coordinated by STIM1, the main Ca2+ sensor located in the sarcoplasmic reticulum, and ORAI1 protein, a Ca2+-permeable channel located on transverse tubules. It is commonly accepted that Ca2+ entry via SOCE has the crucial role in short- and long-term muscle function, regulating and adapting many cellular processes including muscle contractility, postnatal development, myofiber phenotype and plasticity. Lack or mutations of STIM1 and/or Orai1 and the consequent SOCE alteration have been associated with serious consequences for muscle function. Importantly, evidence suggests that SOCE alteration can trigger a change of intracellular Ca2+ signaling in skeletal muscle, participating in the pathogenesis of different progressive muscle diseases such as tubular aggregate myopathy, muscular dystrophy, cachexia, and sarcopenia. This review provides a brief overview of the molecular mechanisms underlying STIM1/Orai1-dependent SOCE in skeletal muscle, focusing on how SOCE alteration could contribute to skeletal muscle wasting disorders and on how SOCE components could represent pharmacological targets with high therapeutic potential.
Collapse
Affiliation(s)
- Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.I.); (P.M.); (M.A.C.); (G.M.C.); (A.D.L.)
| | | | | | | | | | | | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.I.); (P.M.); (M.A.C.); (G.M.C.); (A.D.L.)
| |
Collapse
|
11
|
Lilliu E, Koenig S, Koenig X, Frieden M. Store-Operated Calcium Entry in Skeletal Muscle: What Makes It Different? Cells 2021; 10:cells10092356. [PMID: 34572005 PMCID: PMC8468011 DOI: 10.3390/cells10092356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 01/26/2023] Open
Abstract
Current knowledge on store-operated Ca2+ entry (SOCE) regarding its localization, kinetics, and regulation is mostly derived from studies performed in non-excitable cells. After a long time of relative disinterest in skeletal muscle SOCE, this mechanism is now recognized as an essential contributor to muscle physiology, as highlighted by the muscle pathologies that are associated with mutations in the SOCE molecules STIM1 and Orai1. This review mainly focuses on the peculiar aspects of skeletal muscle SOCE that differentiate it from its counterpart found in non-excitable cells. This includes questions about SOCE localization and the movement of respective proteins in the highly organized skeletal muscle fibers, as well as the diversity of expressed STIM isoforms and their differential expression between muscle fiber types. The emerging evidence of a phasic SOCE, which is activated during EC coupling, and its physiological implication is described as well. The specific issues related to the use of SOCE modulators in skeletal muscles are discussed. This review highlights the complexity of SOCE activation and its regulation in skeletal muscle, with an emphasis on the most recent findings and the aim to reach a current picture of this mesmerizing phenomenon.
Collapse
Affiliation(s)
- Elena Lilliu
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Stéphane Koenig
- Department of Cell Physiology and Metabolism, University of Geneva, 1201 Geneva, Switzerland;
| | - Xaver Koenig
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria;
- Correspondence: (X.K.); (M.F.)
| | - Maud Frieden
- Department of Cell Physiology and Metabolism, University of Geneva, 1201 Geneva, Switzerland;
- Correspondence: (X.K.); (M.F.)
| |
Collapse
|
12
|
Michelucci A, Liang C, Protasi F, Dirksen RT. Altered Ca 2+ Handling and Oxidative Stress Underlie Mitochondrial Damage and Skeletal Muscle Dysfunction in Aging and Disease. Metabolites 2021; 11:metabo11070424. [PMID: 34203260 PMCID: PMC8304741 DOI: 10.3390/metabo11070424] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle contraction relies on both high-fidelity calcium (Ca2+) signals and robust capacity for adenosine triphosphate (ATP) generation. Ca2+ release units (CRUs) are highly organized junctions between the terminal cisternae of the sarcoplasmic reticulum (SR) and the transverse tubule (T-tubule). CRUs provide the structural framework for rapid elevations in myoplasmic Ca2+ during excitation-contraction (EC) coupling, the process whereby depolarization of the T-tubule membrane triggers SR Ca2+ release through ryanodine receptor-1 (RyR1) channels. Under conditions of local or global depletion of SR Ca2+ stores, store-operated Ca2+ entry (SOCE) provides an additional source of Ca2+ that originates from the extracellular space. In addition to Ca2+, skeletal muscle also requires ATP to both produce force and to replenish SR Ca2+ stores. Mitochondria are the principal intracellular organelles responsible for ATP production via aerobic respiration. This review provides a broad overview of the literature supporting a role for impaired Ca2+ handling, dysfunctional Ca2+-dependent production of reactive oxygen/nitrogen species (ROS/RNS), and structural/functional alterations in CRUs and mitochondria in the loss of muscle mass, reduction in muscle contractility, and increase in muscle damage in sarcopenia and a wide range of muscle disorders including muscular dystrophy, rhabdomyolysis, central core disease, and disuse atrophy. Understanding the impact of these processes on normal muscle function will provide important insights into potential therapeutic targets designed to prevent or reverse muscle dysfunction during aging and disease.
Collapse
Affiliation(s)
- Antonio Michelucci
- DNICS, Department of Neuroscience, Imaging, and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
- Correspondence:
| | - Chen Liang
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (C.L.); (R.T.D.)
| | - Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy;
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (C.L.); (R.T.D.)
| |
Collapse
|
13
|
Protasi F, Pietrangelo L, Boncompagni S. Improper Remodeling of Organelles Deputed to Ca 2+ Handling and Aerobic ATP Production Underlies Muscle Dysfunction in Ageing. Int J Mol Sci 2021; 22:6195. [PMID: 34201319 PMCID: PMC8228829 DOI: 10.3390/ijms22126195] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/28/2022] Open
Abstract
Proper skeletal muscle function is controlled by intracellular Ca2+ concentration and by efficient production of energy (ATP), which, in turn, depend on: (a) the release and re-uptake of Ca2+ from sarcoplasmic-reticulum (SR) during excitation-contraction (EC) coupling, which controls the contraction and relaxation of sarcomeres; (b) the uptake of Ca2+ into the mitochondrial matrix, which stimulates aerobic ATP production; and finally (c) the entry of Ca2+ from the extracellular space via store-operated Ca2+ entry (SOCE), a mechanism that is important to limit/delay muscle fatigue. Abnormalities in Ca2+ handling underlie many physio-pathological conditions, including dysfunction in ageing. The specific focus of this review is to discuss the importance of the proper architecture of organelles and membrane systems involved in the mechanisms introduced above for the correct skeletal muscle function. We reviewed the existing literature about EC coupling, mitochondrial Ca2+ uptake, SOCE and about the structural membranes and organelles deputed to those functions and finally, we summarized the data collected in different, but complementary, projects studying changes caused by denervation and ageing to the structure and positioning of those organelles: a. denervation of muscle fibers-an event that contributes, to some degree, to muscle loss in ageing (known as sarcopenia)-causes misplacement and damage: (i) of membrane structures involved in EC coupling (calcium release units, CRUs) and (ii) of the mitochondrial network; b. sedentary ageing causes partial disarray/damage of CRUs and of calcium entry units (CEUs, structures involved in SOCE) and loss/misplacement of mitochondria; c. functional electrical stimulation (FES) and regular exercise promote the rescue/maintenance of the proper architecture of CRUs, CEUs, and of mitochondria in both denervation and ageing. All these structural changes were accompanied by related functional changes, i.e., loss/decay in function caused by denervation and ageing, and improved function following FES or exercise. These data suggest that the integrity and proper disposition of intracellular organelles deputed to Ca2+ handling and aerobic generation of ATP is challenged by inactivity (or reduced activity); modifications in the architecture of these intracellular membrane systems may contribute to muscle dysfunction in ageing and sarcopenia.
Collapse
Affiliation(s)
- Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Simona Boncompagni
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DNICS, Department of Neuroscience and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| |
Collapse
|
14
|
Osteocytic Connexin43 Channels Regulate Bone-Muscle Crosstalk. Cells 2021; 10:cells10020237. [PMID: 33530465 PMCID: PMC7911162 DOI: 10.3390/cells10020237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 02/01/2023] Open
Abstract
Bone–muscle crosstalk plays an important role in skeletal biomechanical function, the progression of numerous pathological conditions, and the modulation of local and distant cellular environments. Previous work has revealed that the deletion of connexin (Cx) 43 in osteoblasts, and consequently, osteocytes, indirectly compromises skeletal muscle formation and function. However, the respective roles of Cx43-formed gap junction channels (GJs) and hemichannels (HCs) in the bone–muscle crosstalk are poorly understood. To this end, we used two Cx43 osteocyte-specific transgenic mouse models expressing dominant negative mutants, Δ130–136 (GJs and HCs functions are inhibited), and R76W (only GJs function is blocked), to determine the effect of these two types of Cx43 channels on neighboring skeletal muscle. Blockage of osteocyte Cx43 GJs and HCs in Δ130–136 mice decreased fast-twitch muscle mass with reduced muscle protein synthesis and increased muscle protein degradation. Both R76W and Δ130–136 mice exhibited decreased muscle contractile force accompanied by a fast-to-slow fiber transition in typically fast-twitch muscles. In vitro results further showed that myotube formation of C2C12 myoblasts was inhibited after treatment with the primary osteocyte conditioned media (PO CM) from R76W and Δ130–136 mice. Additionally, prostaglandin E2 (PGE2) level was significantly reduced in both the circulation and PO CM of the transgenic mice. Interestingly, the injection of PGE2 to the transgenic mice rescued fast-twitch muscle mass and function; however, this had little effect on protein synthesis and degradation. These findings indicate a channel-specific response: inhibition of osteocytic Cx43 HCs decreases fast-twitch skeletal muscle mass alongside reduced protein synthesis and increased protein degradation. In contrast, blockage of Cx43 GJs results in decreased fast-twitch skeletal muscle contractile force and myogenesis, with PGE2 partially accounting for the measured differences.
Collapse
|
15
|
Boncompagni S, Pecorai C, Michelucci A, Pietrangelo L, Protasi F. Long-Term Exercise Reduces Formation of Tubular Aggregates and Promotes Maintenance of Ca 2+ Entry Units in Aged Muscle. Front Physiol 2021; 11:601057. [PMID: 33469430 PMCID: PMC7813885 DOI: 10.3389/fphys.2020.601057] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Tubular aggregates (TAs) in skeletal muscle fibers are unusual accumulation of sarcoplasmic reticulum (SR) tubes that are found in different disorders including TA myopathy (TAM). TAM is a muscular disease characterized by muscle pain, cramping, and weakness that has been recently linked to mutations in STIM1 and ORAI1. STIM1 and ORAI1 are the two main proteins mediating store-operated Ca2+ entry (SOCE), a mechanism activated by depletion of intracellular Ca2+ stores (e.g., SR) that allows recovery of Ca2+ from the extracellular space during repetitive muscle activity. We have recently shown that exercise triggers the formation of unique intracellular junctions between SR and transverse tubules named Ca 2+ entry units (CEUs). CEUs promote colocalization of STIM1 with ORAI1 and improve muscle function in presence of external Ca2+. TAs virtually identical to those of TAM patients are also found in fast-twitch fibers of aging male mice. Here, we used a combination of electron and confocal microscopy, Western blotting, and ex vivo stimulation protocols (in presence or absence of external Ca2+) to evaluate the presence of TAs, STIM1-ORAI1 localization and expression and fatigue resistance of intact extensor digitorum longus (EDL) muscles in wild-type male adult (4-month-old) and aged (24-month-old) mice and in mice trained in wheel cages for 15 months (from 9 to 24 months of age). The results collected indicate that (i) aging causes STIM1 and ORAI1 to accumulate in TAs and (ii) long-term exercise significantly reduced formation of TAs. In addition, (iii) EDL muscles from aged mice exhibited a faster decay of contractile force than adult muscles, likely caused by their inability to refill intracellular Ca2+ stores, and (iv) exercise in wheel cages restored the capability of aged EDL muscles to use external Ca2+ by promoting maintenance of CEUs. In conclusion, exercise prevented improper accumulation of STIM1 and ORAI1 in TAs during aging, maintaining the capability of aged muscle to refill intracellular Ca2+ stores via SOCE.
Collapse
Affiliation(s)
- Simona Boncompagni
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences (DNICS), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
| | - Claudia Pecorai
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences (DMSI), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
| | - Antonio Michelucci
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences (DMSI), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
| | - Laura Pietrangelo
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences (DMSI), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
| | - Feliciano Protasi
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences (DMSI), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
16
|
Protasi F, Pietrangelo L, Boncompagni S. Calcium entry units (CEUs): perspectives in skeletal muscle function and disease. J Muscle Res Cell Motil 2020; 42:233-249. [PMID: 32812118 PMCID: PMC8332569 DOI: 10.1007/s10974-020-09586-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022]
Abstract
In the last decades the term Store-operated Ca2+ entry (SOCE) has been used in the scientific literature to describe an ubiquitous cellular mechanism that allows recovery of calcium (Ca2+) from the extracellular space. SOCE is triggered by a reduction of Ca2+ content (i.e. depletion) in intracellular stores, i.e. endoplasmic or sarcoplasmic reticulum (ER and SR). In skeletal muscle the mechanism is primarily mediated by a physical interaction between stromal interaction molecule-1 (STIM1), a Ca2+ sensor located in the SR membrane, and ORAI1, a Ca2+-permeable channel of external membranes, located in transverse tubules (TTs), the invaginations of the plasma membrane (PM) deputed to propagation of action potentials. It is generally accepted that in skeletal muscle SOCE is important to limit muscle fatigue during repetitive stimulation. We recently discovered that exercise promotes the assembly of new intracellular junctions that contains colocalized STIM1 and ORAI1, and that the presence of these new junctions increases Ca2+ entry via ORAI1, while improving fatigue resistance during repetitive stimulation. Based on these findings we named these new junctions Ca2+ Entry Units (CEUs). CEUs are dynamic organelles that assemble during muscle activity and disassemble during recovery thanks to the plasticity of the SR (containing STIM1) and the elongation/retraction of TTs (bearing ORAI1). Interestingly, similar structures described as SR stacks were previously reported in different mouse models carrying mutations in proteins involved in Ca2+ handling (calsequestrin-null mice; triadin and junctin null mice, etc.) or associated to microtubules (MAP6 knockout mice). Mutations in Stim1 and Orai1 (and calsequestrin-1) genes have been associated to tubular aggregate myopathy (TAM), a muscular disease characterized by: (a) muscle pain, cramping, or weakness that begins in childhood and worsens over time, and (b) the presence of large accumulations of ordered SR tubes (tubular aggregates, TAs) that do not contain myofibrils, mitochondria, nor TTs. Interestingly, TAs are also present in fast twitch muscle fibers of ageing mice. Several important issues remain un-answered: (a) the molecular mechanisms and signals that trigger the remodeling of membranes and the functional activation of SOCE during exercise are unclear; and (b) how dysfunctional SOCE and/or mutations in Stim1, Orai1 and calsequestrin (Casq1) genes lead to the formation of tubular aggregates (TAs) in aging and disease deserve investigation.
Collapse
Affiliation(s)
- Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy.
- DMSI, Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy.
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
- DMSI, Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
| | - Simona Boncompagni
- CAST, Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
- DNICS, Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
| |
Collapse
|
17
|
Choi JH, Jeong SY, Oh MR, Allen PD, Lee EH. TRPCs: Influential Mediators in Skeletal Muscle. Cells 2020; 9:cells9040850. [PMID: 32244622 PMCID: PMC7226745 DOI: 10.3390/cells9040850] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
Ca2+ itself or Ca2+-dependent signaling pathways play fundamental roles in various cellular processes from cell growth to death. The most representative example can be found in skeletal muscle cells where a well-timed and adequate supply of Ca2+ is required for coordinated Ca2+-dependent skeletal muscle functions, such as the interactions of contractile proteins during contraction. Intracellular Ca2+ movements between the cytosol and sarcoplasmic reticulum (SR) are strictly regulated to maintain the appropriate Ca2+ supply in skeletal muscle cells. Added to intracellular Ca2+ movements, the contribution of extracellular Ca2+ entry to skeletal muscle functions and its significance have been continuously studied since the early 1990s. Here, studies on the roles of channel proteins that mediate extracellular Ca2+ entry into skeletal muscle cells using skeletal myoblasts, myotubes, fibers, tissue, or skeletal muscle-originated cell lines are reviewed with special attention to the proposed functions of transient receptor potential canonical proteins (TRPCs) as store-operated Ca2+ entry (SOCE) channels under normal conditions and the potential abnormal properties of TRPCs in muscle diseases such as Duchenne muscular dystrophy (DMD).
Collapse
Affiliation(s)
- Jun Hee Choi
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Seung Yeon Jeong
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Mi Ri Oh
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Paul D. Allen
- Leeds Institute of Biomedical & Clinical Sciences, St. James’s University Hospital, University of Leeds, Leeds LS97TF, UK
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: ; Tel.: +82-2-2258-7279
| |
Collapse
|
18
|
Stacchiotti A, Favero G, Rodella LF. Impact of Melatonin on Skeletal Muscle and Exercise. Cells 2020; 9:cells9020288. [PMID: 31991655 PMCID: PMC7072499 DOI: 10.3390/cells9020288] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle disorders are dramatically increasing with human aging with enormous sanitary costs and impact on the quality of life. Preventive and therapeutic tools to limit onset and progression of muscle frailty include nutrition and physical training. Melatonin, the indole produced at nighttime in pineal and extra-pineal sites in mammalians, has recognized anti-aging, anti-inflammatory, and anti-oxidant properties. Mitochondria are the favorite target of melatonin, which maintains them efficiently, scavenging free radicals and reducing oxidative damage. Here, we discuss the most recent evidence of dietary melatonin efficacy in age-related skeletal muscle disorders in cellular, preclinical, and clinical studies. Furthermore, we analyze the emerging impact of melatonin on physical activity. Finally, we consider the newest evidence of the gut-muscle axis and the influence of exercise and probably melatonin on the microbiota. In our opinion, this review reinforces the relevance of melatonin as a safe nutraceutical that limits skeletal muscle frailty and prolongs physical performance.
Collapse
Affiliation(s)
- Alessandra Stacchiotti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.F.); (L.F.R.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Correspondence: ; Tel.: +39-030-3717478; Fax: +39-030-3717486
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.F.); (L.F.R.)
| | - Luigi Fabrizio Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.F.); (L.F.R.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
19
|
Huang J, Wang K, Shiflett LA, Brotto L, Bonewald LF, Wacker MJ, Dallas SL, Brotto M. Fibroblast growth factor 9 (FGF9) inhibits myogenic differentiation of C2C12 and human muscle cells. Cell Cycle 2019; 18:3562-3580. [PMID: 31735119 PMCID: PMC6927711 DOI: 10.1080/15384101.2019.1691796] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Osteoporosis and sarcopenia (osteosarcopenia (OS)) are twin-aging diseases. The biochemical crosstalk between muscle and bone seems to play a role in OS. We have previously shown that osteocytes produce soluble factors with beneficial effects on muscle and vice versa. Recently, enhanced FGF9 production was observed in the OmGFP66 osteogenic cell line. To test its role in myogenic differentiation, C2C12 myoblasts were treated with recombinant FGF9. FGF9 as low as 10 ng/mL inhibited myogenic differentiation, suggesting that FGF9 might be a potential inhibitory factor produced from bone cells with effects on muscle cells. FGF9 (10–50 ng/mL) significantly decreased mRNA expression of MyoG and Mhc while increasing the expression of Myostatin. Consistent with the phenotype, RT-qPCR array revealed that FGF9 (10 ng/mL) increased the expression of Icam1 while decreased the expression of Wnt1 and Wnt6 decreased, respectively. FGF9 decreased caffeine-induced Ca2+ release from the sarcoplasmic reticulum (SR) of C2C12 myotubes and reduced the expression of genes (i.e. Cacna1s, RyR2, Naftc3) directly associated with intracellular Ca2+ homeostasis. Myogenic differentiation in human skeletal muscle cells was similarly inhibited by FGF9 but required higher doses of 200 ng/mL FGF9. FGF9 was also shown to stimulate C2C12 myoblast proliferation. FGF2 and the FGF9 subfamily members FGF16 and FGF20 also inhibited C2C12 myoblast differentiation and enhanced proliferation. Intriguingly, the differentiation inhibition was independent of proliferation enhancement. These findings suggest that FGF9 may modulate myogenesis via a complex signaling mechanism.
Collapse
Affiliation(s)
- Jian Huang
- Bone-Muscle Research Center, College of Nursing & Health Innovation, the University of Texas at Arlington, Arlington, TX, USA
| | - Kun Wang
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Lora A Shiflett
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Leticia Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, the University of Texas at Arlington, Arlington, TX, USA
| | - Lynda F Bonewald
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN USA
| | - Michael J Wacker
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, the University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
20
|
Koenig X, Choi RH, Schicker K, Singh DP, Hilber K, Launikonis BS. Mechanistic insights into store-operated Ca 2+ entry during excitation-contraction coupling in skeletal muscle. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1239-1248. [PMID: 30825472 DOI: 10.1016/j.bbamcr.2019.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 01/11/2023]
Abstract
Skeletal muscle fibres support store-operated Ca2+-entry (SOCE) across the t-tubular membrane upon exhaustive depletion of Ca2+ from the sarcoplasmic reticulum (SR). Recently we demonstrated the presence of a novel mode of SOCE activated under conditions of maintained [Ca2+]SR. This phasic SOCE manifested in a fast and transient manner in synchrony with excitation contraction (EC)-coupling mediated SR Ca2+-release (Communications Biology 1:31, doi: https://doi.org/10.1038/s42003-018-0033-7). Stromal interaction molecule 1 (STIM1) and calcium release-activated calcium channel 1 (ORAI1), positioned at the SR and t-system membranes, respectively, are the considered molecular correlate of SOCE. The evidence suggests that at the triads, where the terminal cisternae of the SR sandwich a t-tubule, STIM1 and ORAI1 proteins pre-position to allow for enhanced SOCE transduction. Here we show that phasic SOCE is not only shaped by global [Ca2+]SR but provide evidence for a local activation within nanodomains at the terminal cisternae of the SR. This feature may allow SOCE to modulate [Ca2+]SR during EC coupling. We define SOCE to occur on the same timescale as EC coupling and determine the temporal coherence of SOCE activation to SR Ca2+ release. We derive a delay of 0.3 ms reflecting diffusive Ca2+-equilibration at the luminal ryanodine receptor 1 (RyR1) channel mouth upon SR Ca2+-release. Numerical simulations of Ca2+-calsequestrin binding estimates a characteristic diffusion length and confines an upper limit for the spatial distance between STIM1 and RyR1. Experimental evidence for a 4- fold change in t-system Ca2+-permeability upon prolonged electrical stimulation in conjunction with numerical simulations of Ca2+-STIM1 binding suggests a Ca2+ dissociation constant of STIM1 below 0.35 mM. Our results show that phasic SOCE is intimately linked with RyR opening and closing, with only μs delays, because [Ca2+] in the terminal cisternae is just above the threshold for Ca2+ dissociation from STIM1 under physiological resting conditions. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Xaver Koenig
- Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Wien, Austria.
| | - Rocky H Choi
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Klaus Schicker
- Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Wien, Austria
| | - Daniel P Singh
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Karlheinz Hilber
- Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Wien, Austria
| | - Bradley S Launikonis
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
21
|
Maurel DB, Matsumoto T, Vallejo JA, Johnson ML, Dallas SL, Kitase Y, Brotto M, Wacker MJ, Harris MA, Harris SE, Bonewald LF. Characterization of a novel murine Sost ER T2 Cre model targeting osteocytes. Bone Res 2019; 7:6. [PMID: 30820362 PMCID: PMC6382861 DOI: 10.1038/s41413-018-0037-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/25/2018] [Accepted: 10/19/2018] [Indexed: 12/28/2022] Open
Abstract
Transgenic mice are widely used to delete or overexpress genes in a cell specific manner to advance knowledge of bone biology, function and disease. While numerous Cre models exist to target gene recombination in osteoblasts and osteoclasts, few target osteocytes specifically, particularly mature osteocytes. Our goal was to create a spatial and temporal conditional Cre model using tamoxifen to induce Cre activity in mature osteocytes using a Bac construct containing the 5' and 3' regions of the Sost gene (Sost ERT2 Cre). Four founder lines were crossed with the Ai9 Cre reporter mice. One founder line showed high and specific activity in mature osteocytes. Bones and organs were imaged and fluorescent signal quantitated. While no activity was observed in 2 day old pups, by 2 months of age some osteocytes were positive as osteocyte Cre activity became spontaneous or 'leaky' with age. The percentage of positive osteocytes increased following tamoxifen injection, especially in males, with 43% to 95% positive cells compared to 19% to 32% in females. No signal was observed in any bone surface cell, bone marrow, nor in muscle with or without tamoxifen injection. No spontaneous signal was observed in any other organ. However, with tamoxifen injection, a few positive cells were observed in kidney, eye, lung, heart and brain. All other organs, 28 in total, were negative with tamoxifen injection. However, with age, a muscle phenotype was apparent in the Sost-ERT2 Cre mice. Therefore, although this mouse model may be useful for targeting gene deletion or expression to mature osteocytes, the muscle phenotype may restrict the use of this model to specific applications and should be considered when interpreting data.
Collapse
Affiliation(s)
- Delphine B Maurel
- 1Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, MO USA.,7Present Address: Pharmaceutical Sciences Department, Universite de Bordeaux, Bio-Tis, INSERM Unité 1026 BioTis, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Tsutomu Matsumoto
- 2Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Julian A Vallejo
- 1Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, MO USA
| | - Mark L Johnson
- 1Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, MO USA
| | - Sarah L Dallas
- 1Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, MO USA
| | - Yukiko Kitase
- 2Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Marco Brotto
- 3Bone-Muscle Collaborative Sciences, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, USA
| | - Michael J Wacker
- 4Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, MO USA
| | - Marie A Harris
- 5University of Texas Health Science Center, San Antonio, TX USA
| | | | - Lynda F Bonewald
- 1Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, MO USA.,2Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN USA.,6Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN USA
| |
Collapse
|
22
|
Role of STIM1/ORAI1-mediated store-operated Ca 2+ entry in skeletal muscle physiology and disease. Cell Calcium 2018; 76:101-115. [PMID: 30414508 DOI: 10.1016/j.ceca.2018.10.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 11/23/2022]
Abstract
Store-operated Ca2+ entry (SOCE) is a Ca2+ entry mechanism activated by depletion of intracellular Ca2+ stores. In skeletal muscle, SOCE is mediated by an interaction between stromal-interacting molecule-1 (STIM1), the Ca2+ sensor of the sarcoplasmic reticulum, and ORAI1, the Ca2+-release-activated-Ca2+ (CRAC) channel located in the transverse tubule membrane. This review focuses on the molecular mechanisms and physiological role of SOCE in skeletal muscle, as well as how alterations in STIM1/ORAI1-mediated SOCE contribute to muscle disease. Recent evidence indicates that SOCE plays an important role in both muscle development/growth and fatigue. The importance of SOCE in muscle is further underscored by the discovery that loss- and gain-of-function mutations in STIM1 and ORAI1 result in an eclectic array of disorders with clinical myopathy as central defining component. Despite differences in clinical phenotype, all STIM1/ORAI1 gain-of-function mutations-linked myopathies are characterized by the abnormal accumulation of intracellular membranes, known as tubular aggregates. Finally, dysfunctional STIM1/ORAI1-mediated SOCE also contributes to the pathogenesis of muscular dystrophy, malignant hyperthermia, and sarcopenia. The picture to emerge is that tight regulation of STIM1/ORAI1-dependent Ca2+ signaling is critical for optimal skeletal muscle development/function such that either aberrant increases or decreases in SOCE activity result in muscle dysfunction.
Collapse
|
23
|
Cho CH, Lee KJ, Lee EH. With the greatest care, stromal interaction molecule (STIM) proteins verify what skeletal muscle is doing. BMB Rep 2018; 51:378-387. [PMID: 29898810 PMCID: PMC6130827 DOI: 10.5483/bmbrep.2018.51.8.128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle contracts or relaxes to maintain the body position and locomotion. For the contraction and relaxation of skeletal muscle, Ca2+ in the cytosol of skeletal muscle fibers acts as a switch to turn on and off a series of contractile proteins. The cytosolic Ca2+ level in skeletal muscle fibers is governed mainly by movements of Ca2+ between the cytosol and the sarcoplasmic reticulum (SR). Store-operated Ca2+ entry (SOCE), a Ca2+ entryway from the extracellular space to the cytosol, has gained a significant amount of attention from muscle physiologists. Orai1 and stromal interaction molecule 1 (STIM1) are the main protein identities of SOCE. This mini-review focuses on the roles of STIM proteins and SOCE in the physiological and pathophysiological functions of skeletal muscle and in their correlations with recently identified proteins, as well as historical proteins that are known to mediate skeletal muscle function.
Collapse
Affiliation(s)
- Chung-Hyun Cho
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul 08826, Korea
| | - Keon Jin Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea; Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea; Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
24
|
Nelson HA, Roe MW. Molecular physiology and pathophysiology of stromal interaction molecules. Exp Biol Med (Maywood) 2018; 243:451-472. [PMID: 29363328 DOI: 10.1177/1535370218754524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ca2+ release from the endoplasmic reticulum is an important component of Ca2+ signal transduction that controls numerous physiological processes in eukaryotic cells. Release of Ca2+ from the endoplasmic reticulum is coupled to the activation of store-operated Ca2+ entry into cells. Store-operated Ca2+ entry provides Ca2+ for replenishing depleted endoplasmic reticulum Ca2+ stores and a Ca2+ signal that regulates Ca2+-dependent intracellular biochemical events. Central to connecting discharge of endoplasmic reticulum Ca2+ stores following G protein-coupled receptor activation with the induction of store-operated Ca2+ entry are stromal interaction molecules (STIM1 and STIM2). These highly homologous endoplasmic reticulum transmembrane proteins function as sensors of the Ca2+ concentration within the endoplasmic reticulum lumen and activators of Ca2+ release-activated Ca2+ channels. Emerging evidence indicates that in addition to their role in Ca2+ release-activated Ca2+ channel gating and store-operated Ca2+ entry, STIM1 and STIM2 regulate other cellular signaling events. Recent studies have shown that disruption of STIM expression and function is associated with the pathogenesis of several diseases including autoimmune disorders, cancer, cardiovascular disease, and myopathies. Here, we provide an overview of the latest developments in the molecular physiology and pathophysiology of STIM1 and STIM2. Impact statement Intracellular Ca2+ signaling is a fundamentally important regulator of cell physiology. Recent studies have revealed that Ca2+-binding stromal interaction molecules (Stim1 and Stim2) expressed in the membrane of the endoplasmic reticulum (ER) are essential components of eukaryote Ca2+ signal transduction that control the activity of ion channels and other signaling effectors present in the plasma membrane. This review summarizes the most recent information on the molecular physiology and pathophysiology of stromal interaction molecules. We anticipate that the work presented in our review will provide new insights into molecular interactions that participate in interorganelle signaling crosstalk, cell function, and the pathogenesis of human diseases.
Collapse
Affiliation(s)
- Heather A Nelson
- 1 Department of Cell and Developmental Biology, 12302 SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael W Roe
- 1 Department of Cell and Developmental Biology, 12302 SUNY Upstate Medical University, Syracuse, NY 13210, USA.,2 Department of Medicine, 12302 SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
25
|
Alzheimer's disease pathology and the unfolded protein response: prospective pathways and therapeutic targets. Behav Pharmacol 2018; 28:161-178. [PMID: 28252521 DOI: 10.1097/fbp.0000000000000299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Many vital interdependent cellular functions including proteostasis, lipogenesis and Ca homeostasis are executed by the endoplasmic reticulum (ER). Exogenous insults can impair ER performance: this must be rapidly corrected or cell death will ensue. Protective adaptations can boost the functional capacity of the ER and form the basis of the unfolded protein response (UPR). Activated in response to the accumulation of misfolded proteins, the UPR can halt protein translation while increasing protein-handling chaperones and the degradation of erroneous proteins through a conserved three-tier molecular cascade. However, prolonged activation of the UPR can result in the maladaptation of the system, resulting in the activation of inflammatory and apoptotic effectors. Recently, UPR and its involvement in neurodegenerative disease has attracted much interest and numerous potentially 'drugable' points of crosstalk are now emerging. Here, we summarize the functions of the ER and UPR, and highlight evidence for its potential role in the pathogenesis of Alzheimer's disease, before discussing several key targets with therapeutic potential.
Collapse
|
26
|
SOCE Is Important for Maintaining Sarcoplasmic Calcium Content and Release in Skeletal Muscle Fibers. Biophys J 2018; 113:2496-2507. [PMID: 29212003 DOI: 10.1016/j.bpj.2017.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/01/2017] [Accepted: 09/21/2017] [Indexed: 11/20/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is a Ca2+-entry process activated by the depletion of intracellular stores and has an important role in many cell types. In skeletal muscle, however, its role during physiological muscle activation has been controversial. To address this question, sarcoplasmic reticulum (SR) calcium release in a mouse strain with a naturally occurring mutation in the myostatin gene (Compact (Cmpt)) leading to a hypermuscular yet reduced muscle-force phenotype was compared to that in wild-type mice. To elicit Ca2+ release from the SR of flexor digitorum brevis (FDB) fibers, either a ryanodine receptor agonist (4-chloro-meta-cresol) or depolarizing pulses were used. In muscles from Cmpt mice, endogenous protein levels of STIM1 and Orai1 were reduced, and consequently, SOCE after 4-chloro-meta-cresol-induced store depletion was suppressed. Although the voltage dependence of SR calcium release was not statistically different between wild-type and Cmpt fibers, the amount of releasable calcium was significantly reduced in the latter, indicating a smaller SR content. To assess the immediate role of SOCE in replenishing the SR calcium store, the evolution of intracellular calcium concentration during a train of long-lasting depolarizations to a maximally activating voltage was monitored. Cmpt mice exhibited a faster decline in calcium release, suggesting a compromised ability to refill the SR. A simple model that incorporates a reduced SOCE as an important partner in regulating immediate calcium influx through the surface membrane readily accounts for the steady-state reduction in SR calcium content and its more pronounced decline after calcium release.
Collapse
|
27
|
Boncompagni S, Michelucci A, Pietrangelo L, Dirksen RT, Protasi F. Exercise-dependent formation of new junctions that promote STIM1-Orai1 assembly in skeletal muscle. Sci Rep 2017; 7:14286. [PMID: 29079778 PMCID: PMC5660245 DOI: 10.1038/s41598-017-14134-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE), a ubiquitous mechanism that allows recovery of Ca2+ ions from the extracellular space, has been proposed to limit fatigue during repetitive skeletal muscle activity. However, the subcellular location for SOCE in muscle fibers has not been unequivocally identified. Here we show that exercise drives a significant remodeling of the sarcotubular system to form previously unidentified junctions between the sarcoplasmic reticulum (SR) and transverse-tubules (TTs). We also demonstrate that these new SR-TT junctions contain the molecular machinery that mediate SOCE: stromal interaction molecule-1 (STIM1), which functions as the SR Ca2+ sensor, and Orai1, the Ca2+-permeable channel in the TT. In addition, EDL muscles isolated from exercised mice exhibit an increased capability of maintaining contractile force during repetitive stimulation in the presence of 2.5 mM extracellular Ca2+, compared to muscles from control mice. This functional difference is significantly reduced by either replacement of extracellular Ca2+ with Mg2+ or the addition of SOCE inhibitors (BTP-2 and 2-APB). We propose that the new SR-TT junctions formed during exercise, and that contain STIM1 and Orai1, function as Ca2+Entry Units (CEUs), structures that provide a pathway to rapidly recover Ca2+ ions from the extracellular space during repetitive muscle activity.
Collapse
Affiliation(s)
- Simona Boncompagni
- CeSI-Met - Center for Research on Ageing and Translational Medicine, University G. d'Annunzio, Chieti, I-66100, Italy.,DNICS - Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio, Chieti, I-66100, Italy
| | - Antonio Michelucci
- CeSI-Met - Center for Research on Ageing and Translational Medicine, University G. d'Annunzio, Chieti, I-66100, Italy.,DNICS - Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio, Chieti, I-66100, Italy
| | - Laura Pietrangelo
- CeSI-Met - Center for Research on Ageing and Translational Medicine, University G. d'Annunzio, Chieti, I-66100, Italy.,DNICS - Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio, Chieti, I-66100, Italy
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Feliciano Protasi
- CeSI-Met - Center for Research on Ageing and Translational Medicine, University G. d'Annunzio, Chieti, I-66100, Italy. .,DMSI - Department of Medicine and Aging Science, University G. d'Annunzio, Chieti, I-66100, Italy.
| |
Collapse
|
28
|
A focus on extracellular Ca 2+ entry into skeletal muscle. Exp Mol Med 2017; 49:e378. [PMID: 28912570 PMCID: PMC5628281 DOI: 10.1038/emm.2017.208] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/16/2017] [Accepted: 06/28/2017] [Indexed: 01/06/2023] Open
Abstract
The main task of skeletal muscle is contraction and relaxation for body movement and posture maintenance. During contraction and relaxation, Ca2+ in the cytosol has a critical role in activating and deactivating a series of contractile proteins. In skeletal muscle, the cytosolic Ca2+ level is mainly determined by Ca2+ movements between the cytosol and the sarcoplasmic reticulum. The importance of Ca2+ entry from extracellular spaces to the cytosol has gained significant attention over the past decade. Store-operated Ca2+ entry with a low amplitude and relatively slow kinetics is a main extracellular Ca2+ entryway into skeletal muscle. Herein, recent studies on extracellular Ca2+ entry into skeletal muscle are reviewed along with descriptions of the proteins that are related to extracellular Ca2+ entry and their influences on skeletal muscle function and disease.
Collapse
|
29
|
Wang Z, Bian L, Mo C, Kukula M, Schug KA, Brotto M. Targeted quantification of lipid mediators in skeletal muscles using restricted access media-based trap-and-elute liquid chromatography-mass spectrometry. Anal Chim Acta 2017; 984:151-161. [PMID: 28843558 DOI: 10.1016/j.aca.2017.07.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/15/2017] [Accepted: 07/09/2017] [Indexed: 12/18/2022]
Abstract
Lipid mediators (LMs) are a class of bioactive metabolites of the essential polyunsaturated fatty acids (PUFA), which are involved in many physiological processes. Their quantification in biological samples is critical for understanding their functions in lifestyle and chronic diseases, such as diabetes, as well allergies, cancers, and in aging processes. We developed a rapid, and sensitive LC-MS/MS method to quantify the concentrations of 14 lipid mediators of interest in mouse skeletal muscle tissue without time-consuming liquid-liquid or solid-phase extractions. A restricted-access media (RAM) based trap was used prior to LC-MS as cleanup process to prevent the analytical column from clogging and deterioration. The system enabled automatic removal of residual proteins and other biological interferences presented in the tissue extracts; the target analytes were retained in the trap and then eluted to an analytical column for separation. Matrix evaluation tests demonstrated that the use of the combined RAM trap and chromatographic separation efficiently eliminated the biological or chemical matrix interferences typically encountered in bioanalytical analysis. Using 14 LM standards and 12 corresponding deuterated compounds as internal standards, the five-point calibration curves, established over the concentration range of 0.031-320 ng mL-1, demonstrated good linearity of r2 > 0.9903 (0.9903-0.9983). The lower detection limits obtained were 0.016, 0.031, 0.062, and 0.31 ng mL-1 (0.5, 1, 2, and 10 pg on column), respectively, depending on the specific compounds. Good accuracy (87.1-114.5%) and precision (<13.4%) of the method were observed for low, medium, and high concentration quality control samples. The method was applied to measure the amount of 14 target LMs in mouse skeletal muscle tissues. All 14 analytes in this study were successfully detected and quantified in the gastrocnemius muscle samples, which provided crucial information for both age and gender-related aspects of LMs signaling in skeletal muscles previously unknown. This method could be applied to advance the understanding of skeletal muscle pathophysiology to study the role of LMs in health and disease. Furthermore, we will expand the application of this methodology to humans and other tissues/matrices in the near future.
Collapse
Affiliation(s)
- Zhiying Wang
- College of Nursing and Health Innovation, The University of Texas at Arlington, 411 S. Nedderman Dr., Arlington, TX 76019, USA
| | - Liangqiao Bian
- Shimadzu Center for Advanced Analytical Chemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, TX 76019, USA
| | - Chenglin Mo
- College of Nursing and Health Innovation, The University of Texas at Arlington, 411 S. Nedderman Dr., Arlington, TX 76019, USA
| | - Maciej Kukula
- Shimadzu Center for Advanced Analytical Chemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, TX 76019, USA
| | - Kevin A Schug
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, TX 76019, USA
| | - Marco Brotto
- College of Nursing and Health Innovation, The University of Texas at Arlington, 411 S. Nedderman Dr., Arlington, TX 76019, USA.
| |
Collapse
|
30
|
Nicoll BK, Ferreira C, Hopkins PM, Shaw MA, Hope IA. Aging Effects of Caenorhabditis elegans Ryanodine Receptor Variants Corresponding to Human Myopathic Mutations. G3 (BETHESDA, MD.) 2017; 7:1451-1461. [PMID: 28325813 PMCID: PMC5427508 DOI: 10.1534/g3.117.040535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/07/2017] [Indexed: 12/31/2022]
Abstract
Delaying the decline in skeletal muscle function will be critical to better maintenance of an active lifestyle in old age. The skeletal muscle ryanodine receptor, the major intracellular membrane channel through which calcium ions pass to elicit muscle contraction, is central to calcium ion balance and is hypothesized to be a significant factor for age-related decline in muscle function. The nematode Caenorhabditis elegans is a key model system for the study of human aging, and strains were generated with modified C. elegans ryanodine receptors corresponding to human myopathic variants linked with malignant hyperthermia and related conditions. The altered response of these strains to pharmacological agents reflected results of human diagnostic tests for individuals with these pathogenic variants. Involvement of nerve cells in the C. elegans responses may relate to rare medical symptoms concerning the central nervous system that have been associated with ryanodine receptor variants. These single amino acid modifications in C. elegans also conferred a reduction in lifespan and an accelerated decline in muscle integrity with age, supporting the significance of ryanodine receptor function for human aging.
Collapse
Affiliation(s)
- Baines K Nicoll
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, LS9 7TF, United Kingdom
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, United Kingdom
| | - Célia Ferreira
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, United Kingdom
| | - Philip M Hopkins
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, LS9 7TF, United Kingdom
| | - Marie-Anne Shaw
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, LS9 7TF, United Kingdom
| | - Ian A Hope
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
31
|
Tan T, Ko YG, Ma J. Dual function of MG53 in membrane repair and insulin signaling. BMB Rep 2017; 49:414-23. [PMID: 27174502 PMCID: PMC5070728 DOI: 10.5483/bmbrep.2016.49.8.079] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Indexed: 12/20/2022] Open
Abstract
MG53 is a member of the TRIM-family protein that acts as a key component of the cell membrane repair machinery. MG53 is also an E3-ligase that ubiquinates insulin receptor substrate-1 and controls insulin signaling in skeletal muscle cells. Since its discovery in 2009, research efforts have been devoted to translate this basic discovery into clinical applications in human degenerative and metabolic diseases. This review article highlights the dual function of MG53 in cell membrane repair and insulin signaling, the mechanism that underlies the control of MG53 function, and the therapeutic value of targeting MG53 function in regenerative medicine. [BMB Reports 2016; 49(8): 414-423]
Collapse
Affiliation(s)
- Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
32
|
Rivet CA, Kniss-James AS, Gran MA, Potnis A, Hill A, Lu H, Kemp ML. Calcium Dynamics of Ex Vivo Long-Term Cultured CD8+ T Cells Are Regulated by Changes in Redox Metabolism. PLoS One 2016; 11:e0159248. [PMID: 27526200 PMCID: PMC4985122 DOI: 10.1371/journal.pone.0159248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 06/29/2016] [Indexed: 12/16/2022] Open
Abstract
T cells reach a state of replicative senescence characterized by a decreased ability to proliferate and respond to foreign antigens. Calcium release associated with TCR engagement is widely used as a surrogate measure of T cell response. Using an ex vivo culture model that partially replicates features of organismal aging, we observe that while the amplitude of Ca2+ signaling does not change with time in culture, older T cells exhibit faster Ca2+ rise and a faster decay. Gene expression analysis of Ca2+ channels and pumps expressed in T cells by RT-qPCR identified overexpression of the plasma membrane CRAC channel subunit ORAI1 and PMCA in older T cells. To test whether overexpression of the plasma membrane Ca2+ channel is sufficient to explain the kinetic information, we adapted a previously published computational model by Maurya and Subramaniam to include additional details on the store-operated calcium entry (SOCE) process to recapitulate Ca2+ dynamics after T cell receptor stimulation. Simulations demonstrated that upregulation of ORAI1 and PMCA channels is not sufficient to explain the observed alterations in Ca2+ signaling. Instead, modeling analysis identified kinetic parameters associated with the IP3R and STIM1 channels as potential causes for alterations in Ca2+ dynamics associated with the long term ex vivo culturing protocol. Due to these proteins having known cysteine residues susceptible to oxidation, we subsequently investigated and observed transcriptional remodeling of metabolic enzymes, a shift to more oxidized redox couples, and post-translational thiol oxidation of STIM1. The model-directed findings from this study highlight changes in the cellular redox environment that may ultimately lead to altered T cell calcium dynamics during immunosenescence or organismal aging.
Collapse
Affiliation(s)
- Catherine A. Rivet
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Ariel S. Kniss-James
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Margaret A. Gran
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Anish Potnis
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Abby Hill
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Hang Lu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- The Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, Georgia, United States of America
| | - Melissa L. Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
- The Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, Georgia, United States of America
| |
Collapse
|
33
|
Tu MK, Levin JB, Hamilton AM, Borodinsky LN. Calcium signaling in skeletal muscle development, maintenance and regeneration. Cell Calcium 2016; 59:91-7. [PMID: 26944205 DOI: 10.1016/j.ceca.2016.02.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/06/2016] [Accepted: 02/10/2016] [Indexed: 12/28/2022]
Abstract
Skeletal muscle-specific stem cells are pivotal for tissue development and regeneration. Muscle plasticity, inherent in these processes, is also essential for daily life activities. Great advances and efforts have been made in understanding the function of the skeletal muscle-dedicated stem cells, called muscle satellite cells, and the specific signaling mechanisms that activate them for recruitment in the repair of the injured muscle. Elucidating these signaling mechanisms may contribute to devising therapies for muscular injury or disease. Here we review the studies that have contributed to our understanding of how calcium signaling regulates skeletal muscle development, homeostasis and regeneration, with a focus on the calcium dynamics and calcium-dependent effectors that participate in these processes.
Collapse
Affiliation(s)
- Michelle K Tu
- Department of Physiology and Membrane Biology and Shriners Hospital for Children Northern California, University of California Davis, Sacramento, CA 95817, United States
| | - Jacqueline B Levin
- Department of Physiology and Membrane Biology and Shriners Hospital for Children Northern California, University of California Davis, Sacramento, CA 95817, United States
| | - Andrew M Hamilton
- Department of Physiology and Membrane Biology and Shriners Hospital for Children Northern California, University of California Davis, Sacramento, CA 95817, United States
| | - Laura N Borodinsky
- Department of Physiology and Membrane Biology and Shriners Hospital for Children Northern California, University of California Davis, Sacramento, CA 95817, United States.
| |
Collapse
|
34
|
Abstract
Store-operated Ca(2+) entry (SOCE) is mediated by the store-operated Ca(2+) channel (SOC) that opens upon depletion of internal Ca(2+) stores following activation of G protein-coupled receptors or receptor tyrosine kinases. Over the past two decades, the physiological and pathological relevance of SOCE has been extensively studied. Recently, accumulating evidence suggests associations of altered SOCE with diabetic complications. This review focuses on the implication of SOCE as it pertains to various complications resulting from diabetes. We summarize recent findings by us and others on the involvement of abnormal SOCE in the development of diabetic complications, such as diabetic nephropathy and diabetic vasculopathy. The underlying mechanisms that mediate the diabetes-associated alterations of SOCE are also discussed. The SOCE pathway may be considered as a potential therapeutic target for diabetes-associated diseases.
Collapse
Affiliation(s)
- Sarika Chaudhari
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth 76107, TX, USA
| | - Rong Ma
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth 76107, TX, USA
| |
Collapse
|
35
|
Woo JS, Hwang JH, Huang M, Ahn MK, Cho CH, Ma J, Lee EH. Interaction between mitsugumin 29 and TRPC3 participates in regulating Ca(2+) transients in skeletal muscle. Biochem Biophys Res Commun 2015; 464:133-9. [PMID: 26141232 DOI: 10.1016/j.bbrc.2015.06.096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/13/2015] [Indexed: 01/03/2023]
Abstract
Mitsugumin 29 (MG29) is related to the fatigue and aging processes of skeletal muscle. To examine the roles of MG29 in conjunction with its binding protein, the canonical-type transient receptor potential cation channel 3 (TRPC3), in skeletal muscle, the binding region of MG29 to TRPC3 was studied along with the functional relevance of the binding in mouse primary skeletal myotubes using co-immunoprecipitation assays and Ca(2+) imaging experiments. The N-terminus and the I-II loop of MG29 constitute the binding region for TRPC3. The myotubes that expressed the MG29 mutant missing the entire TRPC3-binding region showed a disrupted binding between endogenous MG29 and TRPC3 and a reduction in Ca(2+) transients in response to membrane depolarization without affecting ryanodine receptor 1 activity, the resting cytosolic Ca(2+) level, and the amount of releasable Ca(2+) from the sarcoplasmic reticulum. Among the proteins mediating Ca(2+) movements in skeletal muscle, TRPC4 expression was significantly decreased by the MG29 mutant. Therefore, MG29 could be a new factor for regulating Ca(2+) transients during skeletal muscle contraction possibly via a correlation with TRPC3 and TRPC4.
Collapse
Affiliation(s)
- Jin Seok Woo
- Department of Physiology, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul 137-701, Republic of Korea
| | - Ji-Hye Hwang
- Department of Physiology, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul 137-701, Republic of Korea
| | - Mei Huang
- Department of Physiology, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul 137-701, Republic of Korea
| | - Mi Kyoung Ahn
- Department of Physiology, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul 137-701, Republic of Korea
| | - Chung-Hyun Cho
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul 137-701, Republic of Korea.
| |
Collapse
|
36
|
Abstract
Ca(2+) release from intracellular stores and influx from extracellular reservoir regulate a wide range of physiological functions including muscle contraction and rhythmic heartbeat. One of the most ubiquitous pathways involved in controlled Ca(2+) influx into cells is store-operated Ca(2+) entry (SOCE), which is activated by the reduction of Ca(2+) concentration in the lumen of endoplasmic or sarcoplasmic reticulum (ER/SR). Although SOCE is pronounced in non-excitable cells, accumulating evidences highlight its presence and important roles in skeletal muscle and heart. Recent discovery of STIM proteins as ER/SR Ca(2+) sensors and Orai proteins as Ca(2+) channel pore forming unit expedited the mechanistic understanding of this pathway. This review focuses on current advances of SOCE components, regulation and physiologic and pathophysiologic roles in muscles. The specific property and the dysfunction of this pathway in muscle diseases, and new directions for future research in this rapidly growing field are discussed.
Collapse
Affiliation(s)
- Zui Pan
- Department of Internal Medicine-Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Marco Brotto
- Muscle Biology Research Group-MUBIG, Schools of Nursing & Medicine, University of Missouri-Kansas City, MO, USA
| | - Jianjie Ma
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
37
|
Liantonio A, Camerino GM, Scaramuzzi A, Cannone M, Pierno S, De Bellis M, Conte E, Fraysse B, Tricarico D, Conte Camerino D. Calcium homeostasis is altered in skeletal muscle of spontaneously hypertensive rats: cytofluorimetric and gene expression analysis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2803-15. [PMID: 25084345 DOI: 10.1016/j.ajpath.2014.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 06/11/2014] [Accepted: 06/17/2014] [Indexed: 11/25/2022]
Abstract
Hypertension is often associated with skeletal muscle pathological conditions related to function and metabolism. The mechanisms underlying the development of these pathological conditions remain undefined. Because calcium homeostasis is a biomarker of muscle function, we assessed whether it is altered in hypertensive muscles. We measured resting intracellular calcium and store-operated calcium entry (SOCE) in fast- and slow-twitch muscle fibers from normotensive Wistar-Kyoto rats and spontaneously hypertensive rats (SHRs) by cytofluorimetric technique and determined the expression of SOCE gene machinery by real-time PCR. Hypertension caused a phenotype-dependent dysregulation of calcium homeostasis; the resting intracellular calcium of extensor digitorum longus and soleus muscles of SHRs were differently altered with respect to the related muscle of normotensive animals. In addition, soleus muscles of SHR showed reduced activity of the sarcoplasmic reticulum and decreased sarcolemmal calcium permeability at rest and after SOCE activation. Accordingly, we found an alteration of the expression levels of some SOCE components, such as stromal interaction molecule 1, calcium release-activated calcium modulator 1, and transient receptor potential canonical 1. The hypertension-induced alterations of calcium homeostasis in the soleus muscle of SHRs occurred with changes of some functional outcomes as excitability and resting chloride conductance. We provide suitable targets for therapeutic interventions aimed at counterbalancing muscle performance decline in hypertension, and propose the reported calcium-dependent parameters as indexes to predict how the antihypertensive drugs could influence muscle function.
Collapse
Affiliation(s)
- Antonella Liantonio
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy.
| | - Giulia M Camerino
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Antonia Scaramuzzi
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Maria Cannone
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Sabata Pierno
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Michela De Bellis
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Elena Conte
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Bodvael Fraysse
- INRA UMR703, LUNAM Université, Oniris, École Nationale Vétérinaire, Agro-Alimentaire et de l'Alimentation Nantes-Atlantique, Nantes, France
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Diana Conte Camerino
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| |
Collapse
|
38
|
Huang J, Hsu YH, Mo C, Abreu E, Kiel DP, Bonewald LF, Brotto M, Karasik D. METTL21C is a potential pleiotropic gene for osteoporosis and sarcopenia acting through the modulation of the NF-κB signaling pathway. J Bone Miner Res 2014; 29:1531-1540. [PMID: 24677265 PMCID: PMC4074268 DOI: 10.1002/jbmr.2200] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 01/06/2023]
Abstract
Sarcopenia and osteoporosis are important public health problems that occur concurrently. A bivariate genome-wide association study (GWAS) identified METTL21c as a suggestive pleiotropic gene for both bone and muscle. The METTL21 family of proteins methylates chaperones involved in the etiology of both myopathy and inclusion body myositis with Paget's disease. To validate these GWAS results, Mettl21c mRNA expression was reduced with siRNA in a mouse myogenic C2C12 cell line and the mouse osteocyte-like cell line MLO-Y4. At day 3, as C2C12 myoblasts start to differentiate into myotubes, a significant reduction in the number of myocytes aligning/organizing for fusion was observed in the siRNA-treated cells. At day 5, both fewer and smaller myotubes were observed in the siRNA-treated cells as confirmed by histomorphometric analyses and immunostaining with myosin heavy chain (MHC) antibody, which only stains myocytes/myotubes but not myoblasts. Intracellular calcium (Ca(2+)) measurements of the siRNA-treated myotubes showed a decrease in maximal amplitude peak response to caffeine, suggesting that less Ca(2+) is available for release due to the partial silencing of Mettl21c, correlating with impaired myogenesis. In siRNA-treated MLO-Y4 cells, 48 hours after treatment with dexamethasone there was a significant increase in cell death, suggesting a role of Mettl21c in osteocyte survival. To investigate the molecular signaling machinery induced by the partial silencing of Mettl21c, we used a real-time PCR gene array to monitor the activity of 10 signaling pathways. We discovered that Mettl21c knockdown modulated only the NF-κB signaling pathway (ie, Birc3, Ccl5, and Tnf). These results suggest that Mettl21c might exert its bone-muscle pleiotropic function via the regulation of the NF-κB signaling pathway, which is critical for bone and muscle homeostasis. These studies also provide rationale for cellular and molecular validation of GWAS, and warrant additional in vitro and in vivo studies to advance our understanding of role of METTL21C in musculoskeletal biology.
Collapse
Affiliation(s)
- Jian Huang
- Muscle Biology Research Group, Schools of Nursing & Health Studies, University of Missouri Kansas City, 2464 Charlotte Street, Kansas City, MO
| | - Yi-Hsiang Hsu
- Institute for Aging Research, Hebrew SeniorLife, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Chenglin Mo
- Muscle Biology Research Group, Schools of Nursing & Health Studies, University of Missouri Kansas City, 2464 Charlotte Street, Kansas City, MO
| | - Eduardo Abreu
- Muscle Biology Research Group, Schools of Nursing & Health Studies, University of Missouri Kansas City, 2464 Charlotte Street, Kansas City, MO
| | - Douglas P. Kiel
- Institute for Aging Research, Hebrew SeniorLife, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lynda F. Bonewald
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO, USA
| | - Maxrco Brotto
- Muscle Biology Research Group, Schools of Nursing & Health Studies, University of Missouri Kansas City, 2464 Charlotte Street, Kansas City, MO
| | - David Karasik
- Institute for Aging Research, Hebrew SeniorLife, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
39
|
Zhou X, Lin P, Yamazaki D, Park KH, Komazaki S, Chen SRW, Takeshima H, Ma J. Trimeric intracellular cation channels and sarcoplasmic/endoplasmic reticulum calcium homeostasis. Circ Res 2014; 114:706-16. [PMID: 24526676 DOI: 10.1161/circresaha.114.301816] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Trimeric intracellular cation channels (TRIC) represents a novel class of trimeric intracellular cation channels. Two TRIC isoforms have been identified in both the human and the mouse genomes: TRIC-A, a subtype predominantly expressed in the sarcoplasmic reticulum (SR) of muscle cells, and TRIC-B, a ubiquitous subtype expressed in the endoplasmic reticulum (ER) of all tissues. Genetic ablation of either TRIC-A or TRIC-B leads to compromised K(+) permeation and Ca(2+) release across the SR/ER membrane, supporting the hypothesis that TRIC channels provide a counter balancing K(+) flux that reduces SR/ER membrane depolarization for maintenance of the electrochemical gradient that drives SR/ER Ca(2+) release. TRIC-A and TRIC-B seem to have differential functions in Ca(2+) signaling in excitable and nonexcitable cells. Tric-a(-/-) mice display defective Ca(2+) sparks and spontaneous transient outward currents in arterial smooth muscle and develop hypertension, in addition to skeletal muscle dysfunction. Knockout of TRIC-B results in abnormal IP3 receptor-mediated Ca(2+) release in airway epithelial cells, respiratory defects, and neonatal lethality. Double knockout mice lacking both TRIC-A and TRIC-B show embryonic lethality as a result of cardiac arrest. Such an aggravated lethality indicates that TRIC-A and TRIC-B share complementary physiological functions in Ca(2+) signaling in embryonic cardiomyocytes. Tric-a(-/-) and Tric-b(+/-) mice are viable and susceptible to stress-induced heart failure. Recent evidence suggests that TRIC-A directly modulates the function of the cardiac ryanodine receptor 2 Ca(2+) release channel, which in turn controls store-overload-induced Ca(2+) release from the SR. Thus, the TRIC channels, in addition to providing a countercurrent for SR/ER Ca(2+) release, may also function as accessory proteins that directly modulate the ryanodine receptor/IP3 receptor channel functions.
Collapse
Affiliation(s)
- Xinyu Zhou
- From the Department of Surgery, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus (X.Z., P.L., K.H.P., J.M.); Department of Biological Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan (D.Y., H.T.); Department of Anatomy, Saitama Medical University, Saitama, Japan (S.K.); and Departments of Physiology and Pharmacology, and Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (W.C.)
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Manring H, Abreu E, Brotto L, Weisleder N, Brotto M. Novel excitation-contraction coupling related genes reveal aspects of muscle weakness beyond atrophy-new hopes for treatment of musculoskeletal diseases. Front Physiol 2014; 5:37. [PMID: 24600395 PMCID: PMC3927072 DOI: 10.3389/fphys.2014.00037] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/18/2014] [Indexed: 12/16/2022] Open
Abstract
Research over the last decade strengthened the understanding that skeletal muscles are not only the major tissue in the body from a volume point of view but also function as a master regulator contributing to optimal organismal health. These new contributions to the available body of knowledge triggered great interest in the roles of skeletal muscle beyond contraction. The World Health Organization, through its Global Burden of Disease (GBD) report, recently raised further awareness about the key importance of skeletal muscles as the GDB reported musculoskeletal (MSK) diseases have become the second greatest cause of disability, with more than 1.7 billion people in the globe affected by a diversity of MSK conditions. Besides their role in MSK disorders, skeletal muscles are also seen as principal metabolic organs with essential contributions to metabolic disorders, especially those linked to physical inactivity. In this review, we have focused on the unique function of new genes/proteins (i.e., MTMR14, MG29, sarcalumenin, KLF15) that during the last few years have helped provide novel insights about muscle function in health and disease, muscle fatigue, muscle metabolism, and muscle aging. Next, we provide an in depth discussion of how these genes/proteins converge into a common function of acting as regulators of intracellular calcium homeostasis. A clear link between dysfunctional calcium homeostasis is established and the special role of store-operated calcium entry is analyzed. The new knowledge that has been generated by the understanding of the roles of previously unknown modulatory genes of the skeletal muscle excitation-contraction coupling (ECC) process brings exciting new possibilities for treatment of MSK diseases, muscle regeneration, and skeletal muscle tissue engineering. The next decade of skeletal muscle and MSK research is bound to bring to fruition applied knowledge that will hopefully offset the current heavy and sad burden of MSK diseases on the planet.
Collapse
Affiliation(s)
- Heather Manring
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center Columbus, OH, USA
| | - Eduardo Abreu
- Muscle Biology Research Group, School of Nursing and Health Studies, University of Missouri-Kansas City Kansas City, MO, USA
| | - Leticia Brotto
- Muscle Biology Research Group, School of Nursing and Health Studies, University of Missouri-Kansas City Kansas City, MO, USA
| | - Noah Weisleder
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center Columbus, OH, USA
| | - Marco Brotto
- Muscle Biology Research Group, School of Nursing and Health Studies, University of Missouri-Kansas City Kansas City, MO, USA ; Basic Medical Sciences Pharmacology, School of Medicine, University of Missouri-Kansas City Kansas City, MO, USA ; Basic Medical Sciences Pharmacology, School of Pharmacy, University of Missouri-Kansas City Kansas City, MO, USA
| |
Collapse
|
41
|
Demontis F, Piccirillo R, Goldberg AL, Perrimon N. Mechanisms of skeletal muscle aging: insights from Drosophila and mammalian models. Dis Model Mech 2013; 6:1339-52. [PMID: 24092876 PMCID: PMC3820258 DOI: 10.1242/dmm.012559] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A characteristic feature of aged humans and other mammals is the debilitating, progressive loss of skeletal muscle function and mass that is known as sarcopenia. Age-related muscle dysfunction occurs to an even greater extent during the relatively short lifespan of the fruit fly Drosophila melanogaster. Studies in model organisms indicate that sarcopenia is driven by a combination of muscle tissue extrinsic and intrinsic factors, and that it fundamentally differs from the rapid atrophy of muscles observed following disuse and fasting. Extrinsic changes in innervation, stem cell function and endocrine regulation of muscle homeostasis contribute to muscle aging. In addition, organelle dysfunction and compromised protein homeostasis are among the primary intrinsic causes. Some of these age-related changes can in turn contribute to the induction of compensatory stress responses that have a protective role during muscle aging. In this Review, we outline how studies in Drosophila and mammalian model organisms can each provide distinct advantages to facilitate the understanding of this complex multifactorial condition and how they can be used to identify suitable therapies.
Collapse
Affiliation(s)
- Fabio Demontis
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
42
|
Romero-Suarez S, Mo C, Touchberry C, Lara N, Baker K, Craig R, Brotto L, Andresen J, Wacker M, Kaja S, Abreu E, Dillmann W, Mestril R, Brotto M, Nosek T. Hyperthermia: from diagnostic and treatments to new discoveries. Recent Pat Biotechnol 2012; 6:172-183. [PMID: 23092438 PMCID: PMC8865757 DOI: 10.2174/1872208311206030172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 07/30/2012] [Accepted: 08/04/2012] [Indexed: 06/01/2023]
Abstract
Hyperthermia is an important approach for the treatment of several diseases. Hyperthermia is also thought to induce hypertrophy of skeletal muscles in vitro and in vivo, and has been used as a therapeutic tool for millennia. In the first part of our work, we revise several relevant patents related to the utilization of hyperthermia for the treatment and diagnostic of human diseases. In the second part, we present exciting new data on the effects of forced and natural overexpression of HSP72, using murine in vitro (muscle cells) and ex vivo (primary skeletal muscles) models. These studies help to demonstrate that hyperthermia effects are orchestrated by tight coupling between gene expression, protein function, and intracellular Ca2+ signaling pathways with a key role for calcium-induced calcium release. We hope that the review of current patents along with previous unknown information on molecular signaling pathways that underlie the hypertrophy response to hyperthermia in skeletal muscles may trigger the curiosity of scientists worldwide to explore new inventions that fully utilize hyperthermia for the treatment of muscle diseases.
Collapse
Affiliation(s)
- Sandra Romero-Suarez
- University of Missouri-Kansas City, Muscle Biology Research Group-MUBIG, School of Nursing
| | - Chenglin Mo
- University of Missouri-Kansas City, Muscle Biology Research Group-MUBIG, School of Nursing
| | | | - Nuria Lara
- Department of Oral Biology, School of Dentistry
| | - Kendra Baker
- University of Missouri-Kansas City, Muscle Biology Research Group-MUBIG, School of Nursing
| | - Robin Craig
- University of Missouri-Kansas City, Muscle Biology Research Group-MUBIG, School of Nursing
| | - Leticia Brotto
- University of Missouri-Kansas City, Muscle Biology Research Group-MUBIG, School of Nursing
| | - Jon Andresen
- University of Missouri-Kansas City, Muscle Biology Research Group-MUBIG, School of Nursing
- School of Medicine
| | - Michael Wacker
- University of Missouri-Kansas City, Muscle Biology Research Group-MUBIG, School of Nursing
- School of Medicine
| | - Simon Kaja
- Vision Research Center and Department of Ophthalmology, School of Medicine
| | - Eduardo Abreu
- University of Missouri-Kansas City, Muscle Biology Research Group-MUBIG, School of Nursing
| | | | - Ruben Mestril
- Loyola University Chicago, Department of Cell and Molecular Physiology
| | - Marco Brotto
- University of Missouri-Kansas City, Muscle Biology Research Group-MUBIG, School of Nursing
- School of Medicine
| | - Thomas Nosek
- Case Western Reserve University, School of Medicine
| |
Collapse
|
43
|
Abstract
There is substantial evidence indicating that disruption of Ca2+ homeostasis and activation of cytosolic proteases play a key role in the pathogenesis and progression of Duchenne Muscular Dystrophy (DMD). However, the exact nature of the Ca2+ deregulation and the Ca2+ signaling pathways that are altered in dystrophic muscles have not yet been resolved. Here we examined the contribution of the store-operated Ca2+ entry (SOCE) for the pathogenesis of DMD. RT-PCR and Western blot found that the expression level of Orai1, the pore-forming unit of SOCE, was significantly elevated in the dystrophic muscles, while parallel increases in SOCE activity and SR Ca2+ storage were detected in adult mdx muscles using Fura-2 fluorescence measurements. High-efficient shRNA probes against Orai1 were delivered into the flexor digitorum brevis muscle in live mice and knockdown of Orai1 eliminated the differences in SOCE activity and SR Ca2+ storage between the mdx and wild type muscle fibers. SOCE activity was repressed by intraperitoneal injection of BTP-2, an Orai1 inhibitor, and cytosolic calpain1 activity in single muscle fibers was measured by a membrane-permeable calpain substrate. We found that BTP-2 injection for 2 weeks significantly reduced the cytosolic calpain1 activity in mdx muscle fibers. Additionally, ultrastructural changes were observed by EM as an increase in the number of triad junctions was identified in dystrophic muscles. Compensatory changes in protein levels of SERCA1, TRP and NCX3 appeared in the mdx muscles, suggesting that comprehensive adaptations occur following altered Ca2+ homeostasis in mdx muscles. Our data indicates that upregulation of the Orai1-mediated SOCE pathway and an overloaded SR Ca2+ store contributes to the disrupted Ca2+ homeostasis in mdx muscles and is linked to elevated proteolytic activity, suggesting that targeting Orai1 activity may be a promising therapeutic approach for the prevention and treatment of muscular dystrophy.
Collapse
Affiliation(s)
- Xiaoli Zhao
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- Division of Pharmacology, College of Pharmacy, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (XZ); (NW)
| | - Joseph G. Moloughney
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Sai Zhang
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Shinji Komazaki
- Department of Anatomy, Saitama Medical University, Saitama, Japan
| | - Noah Weisleder
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (XZ); (NW)
| |
Collapse
|
44
|
Park KH, Brotto L, Lehoang O, Brotto M, Ma J, Zhao X. Ex vivo assessment of contractility, fatigability and alternans in isolated skeletal muscles. J Vis Exp 2012:e4198. [PMID: 23149471 PMCID: PMC3499085 DOI: 10.3791/4198] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Described here is a method to measure contractility of isolated skeletal muscles. Parameters such as muscle force, muscle power, contractile kinetics, fatigability, and recovery after fatigue can be obtained to assess specific aspects of the excitation-contraction coupling (ECC) process such as excitability, contractile machinery and Ca(2+) handling ability. This method removes the nerve and blood supply and focuses on the isolated skeletal muscle itself. We routinely use this method to identify genetic components that alter the contractile property of skeletal muscle though modulating Ca(2+) signaling pathways. Here, we describe a newly identified skeletal muscle phenotype, i.e., mechanic alternans, as an example of the various and rich information that can be obtained using the in vitro muscle contractility assay. Combination of this assay with single cell assays, genetic approaches and biochemistry assays can provide important insights into the mechanisms of ECC in skeletal muscle.
Collapse
Affiliation(s)
- Ki Ho Park
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, USA
| | | | | | | | | | | |
Collapse
|
45
|
Mo C, Romero-Suarez S, Bonewald L, Johnson M, Brotto M. Prostaglandin E2: from clinical applications to its potential role in bone- muscle crosstalk and myogenic differentiation. Recent Pat Biotechnol 2012; 6:223-9. [PMID: 23092433 DOI: 10.2174/1872208311206030223] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/30/2012] [Accepted: 08/04/2012] [Indexed: 12/11/2022]
Abstract
Prostaglandin E(2) (PGE(2)), a prostanoid synthesized from arachidonic acid via the cyclooxygenase pathway, is a modulator of physiological responses including inflammation, fever, and muscle regeneration. Several patents have been filed that are related to PGE(2), one of them being directly related to skeletal muscles. In this report, we first summarize the key patents describing inventions for the utilization of PGE(2) for either diagnostic or therapeutic purposes, including skeletal muscle. In the second part of our work we present new and exciting data that demonstrates that PGE(2) accelerates skeletal muscle myogenic differentiation. Our discovery resulted from our recent and novel concept of bone-muscle crosstalk. Bone and muscle are anatomically intimate endocrine organs and we aimed to determine whether this anatomical intimacy also translates into a biochemical communication from bone cells to muscle cells at the in vitro level. The effects of MLOY4 osteocyte-like cell conditioned medium (CM) and three osteocyte-secreted factors, PGE(2), sclerostin and monocyte chemotactic protein (MCP-3), on C2C12 myogenic differentiation were evaluated using morphological analyses, a customized 96-gene PCR array, and measurements of intracellular calcium levels. MLO-Y4 CM and PGE(2), but not sclerostin and MCP-3, induced acceleration of myogenesis of C2C12 myoblasts that was linked with significant modifications in intracellular calcium homeostasis. This finding should further stimulate the pursuit of new patents to explore the use of PGE(2) and the new concept of bone-muscle crosstalk for the development and application of inventions designed to treat muscle diseases characterized by enhanced muscle wasting, such as sarcopenia.
Collapse
Affiliation(s)
- Chenglin Mo
- University of Missouri-Kansas City, Muscle Biology Research Group-MUBIG, School of Nursing, Kansas City, MO, 64108, USA
| | | | | | | | | |
Collapse
|
46
|
Jähn K, Lara-Castillo N, Brotto L, Mo CL, Johnson ML, Brotto M, Bonewald LF, Bonewald LF. Skeletal muscle secreted factors prevent glucocorticoid-induced osteocyte apoptosis through activation of β-catenin. Eur Cell Mater 2012; 24:197-209; discussion 209-10. [PMID: 22972510 PMCID: PMC3484168 DOI: 10.22203/ecm.v024a14] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
It is a widely held belief that the sole effect of muscle on bone is through mechanical loading. However, as the two tissues are intimately associated, we hypothesized that muscle myokines may have positive effects on bone. We found that factors produced by muscle will protect osteocytes from undergoing cell death induced by dexamethasone (dex), a glucocorticoid known to induce osteocyte apoptosis thereby compromising their capacity to regulate bone remodeling. Both the trypan blue exclusion assay for cell death and nuclear fragmentation assay for apoptosis were used. MLO-Y4 osteocytes, primary osteocytes, and MC3T3 osteoblastic cells were protected against dex-induced apoptosis by C2C12 myotube conditioned media (MT-CM) or by CM from ex vivo electrically stimulated, intact extensor digitorum longus (EDL) or soleus muscle derived from 4 month-old mice. C2C12 MT-CM, but not undifferentiated myoblast CM prevented dex-induced cell apoptosis and was potent down to 0.1 % CM. The CM from EDL muscle electrically stimulated tetanically at 80 Hz was more potent (10 fold) in prevention of dex-induced osteocyte death than CM from soleus muscle stimulated at the same frequency or CM from EDL stimulated at 1 Hz. This suggests that electrical stimulation increases production of factors that preserve osteocyte viability and that type II fibers are greater producers than type I fibers. The muscle factor(s) appears to protect osteocytes from cell death through activation of the Wnt/β-catenin pathway, as MT-CM induces β-catenin nuclear translocation and β-catenin siRNA abrogated the positive effects of MT-CM on dex-induced apoptosis. We conclude that muscle cells naturally secrete factor(s) that preserve osteocyte viability.
Collapse
Affiliation(s)
- K. Jähn
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - N. Lara-Castillo
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - L. Brotto
- Department of Oral Biology, School of Nursing, University of Missouri-Kansas City, Kansas City, MO, USA
| | - C. L. Mo
- Department of Oral Biology, School of Nursing, University of Missouri-Kansas City, Kansas City, MO, USA,Department of Oral Biology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - M. L. Johnson
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - M. Brotto
- Department of Oral Biology, School of Nursing, University of Missouri-Kansas City, Kansas City, MO, USA,Department of Oral Biology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - L. F. Bonewald
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA,Address for correspondence: Lynda F. Bonewald, Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, 650 E. 25th Street, Kansas City, MO 64108, USA, Telephone Number: 1-816-235-2068, FAX Number: 1-816-235-5524,
| | | |
Collapse
|
47
|
Abstract
Sarcopenia remains largely undiagnosed and undertreated because of the lack of a universally accepted definition, effective ways to measure it, and identification of the outcomes that should guide treatment efficacy. An ever-growing number of clinicians and researchers along with funding and regulatory agencies have gradually recognized that sarcopenia is a human condition that requires both prevention and treatment. In this article, we review sarcopenia and its common and less known pharmacological treatments, attempt to define sarcopenia in its broader context, and present some new ideas for potential future treatment for this devastating condition.
Collapse
Affiliation(s)
- Marco Brotto
- Muscle Biology Research Group-MUBIG, University of Missouri-Kansas City, School of Nursing, Kansas City, MO 64108, USA.
| | | |
Collapse
|
48
|
Yarotskyy V, Dirksen RT. Temperature and RyR1 regulate the activation rate of store-operated Ca²+ entry current in myotubes. Biophys J 2012; 103:202-11. [PMID: 22853897 DOI: 10.1016/j.bpj.2012.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 05/29/2012] [Accepted: 06/04/2012] [Indexed: 01/22/2023] Open
Abstract
Store-operated calcium entry (SOCE) is an important Ca(2+) entry pathway in skeletal muscle. However, direct electrophysiological recording and full characterization of the underlying SOCE current in skeletal muscle cells (I(SkCRAC)) has not been reported. Here, we characterized the biophysical properties, pharmacological profile, and molecular identity of I(SkCRAC) in skeletal myotubes, as well as the regulation of its rate of activation by temperature and the type I ryanodine receptor (RyR1). I(SkCRAC) exhibited many hallmarks of Ca(2+) release activated Ca(2+) currents (I(CRAC)): store dependence, strong inward rectification, positive reversal potential, limited cesium permeability, and sensitivity to SOCE channel blockers. I(SkCRAC) was reduced by siRNA knockdown of stromal interaction molecule 1 and expression of dominant negative Orai1. Average I(SkCRAC) current density at -80mV was 1.00 ± 0.05 pA/pF. In the presence of 20 mM intracellular EGTA, I(SkCRAC) activation occurred over tens of seconds during repetitive depolarization at 0.5Hz and was inhibited by treatment with 100 μM ryanodine. The rate of SOCE activation was reduced threefold in myotubes from RyR1-null mice and increased 4.6-fold at physiological temperatures (35-37°C). These results show that I(SkCRAC) exhibits similar biophysical, pharmacological, and molecular properties as I(CRAC) in nonexcitable cells and its rate of activation during repetitive depolarization is strongly regulated by temperature and RyR1 activity.
Collapse
Affiliation(s)
- Viktor Yarotskyy
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | | |
Collapse
|
49
|
Evolving concepts on the age-related changes in "muscle quality". J Cachexia Sarcopenia Muscle 2012; 3:95-109. [PMID: 22476917 PMCID: PMC3374023 DOI: 10.1007/s13539-011-0054-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 12/26/2011] [Indexed: 01/06/2023] Open
Abstract
The deterioration of skeletal muscle with advancing age has long been anecdotally recognized and has been of scientific interest for more than 150 years. Over the past several decades, the scientific and medical communities have recognized that skeletal muscle dysfunction (e.g., muscle weakness, poor muscle coordination, etc.) is a debilitating and life-threatening condition in the elderly. For example, the age-associated loss of muscle strength is highly associated with both mortality and physical disability. It is well-accepted that voluntary muscle force production is not solely dependent upon muscle size, but rather results from a combination of neurologic and skeletal muscle factors, and that biologic properties of both of these systems are altered with aging. Accordingly, numerous scientists and clinicians have used the term "muscle quality" to describe the relationship between voluntary muscle strength and muscle size. In this review article, we discuss the age-associated changes in the neuromuscular system-starting at the level of the brain and proceeding down to the subcellular level of individual muscle fibers-that are potentially influential in the etiology of dynapenia (age-related loss of muscle strength and power).
Collapse
|
50
|
STIM1-Ca(2+) signaling is required for the hypertrophic growth of skeletal muscle in mice. Mol Cell Biol 2012; 32:3009-17. [PMID: 22645307 DOI: 10.1128/mcb.06599-11] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immediately after birth, skeletal muscle must undergo an enormous period of growth and differentiation that is coordinated by several intertwined growth signaling pathways. How these pathways are integrated remains unclear but is likely to involve skeletal muscle contractile activity and calcium (Ca(2+)) signaling. Here, we show that Ca(2+) signaling governed by stromal interaction molecule 1 (STIM1) plays a central role in the integration of signaling and, therefore, muscle growth and differentiation. Conditional deletion of STIM1 from the skeletal muscle of mice (mSTIM1(-/-) mice) leads to profound growth delay, reduced myonuclear proliferation, and perinatal lethality. We show that muscle fibers of neonatal mSTIM1(-/-) mice cannot support the activity-dependent Ca(2+) transients evoked by tonic neurostimulation, even though excitation contraction coupling (ECC) remains unperturbed. In addition, disruption of tonic Ca(2+) signaling in muscle fibers attenuates downstream muscle growth signaling, such as that of calcineurin, mitogen-activated protein (MAP) kinases, extracellular signal-regulated kinase 1 and 2 (ERK1/2), and AKT. Based on our findings, we propose a model wherein STIM1-mediated store-operated calcium entry (SOCE) governs the Ca(2+) signaling required for cellular processes that are necessary for neonatal muscle growth and differentiation.
Collapse
|