1
|
Qi J, Wang X, Zhang T, Li C, Wang Z. Adult Feeding Experience Determines the Fecundity and Preference of the Henosepilachna vigintioctopunctata (F.) (Coleoptera: Coccinellidae). BIOLOGY 2024; 13:250. [PMID: 38666862 PMCID: PMC11048397 DOI: 10.3390/biology13040250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024]
Abstract
Both larvae and adults of the Henosepilachna vigintioctopunctata feed on leaves of potatoes, tomatoes, and eggplants. Given the variation in planting times of host plants in the Jianghan Plain, host switching between larvae and adults of H. vigintioctopunctata is inevitable to ensure continuous food availability. We evaluated the effect of consistent versus diverse larval and adult host plant feeding experience on growth performance, fecundity, longevity, and feeding preferences of H. vigintioctopunctata through match-mismatch experiments. Host plant quality significantly influences larval development and adult reproduction. Potatoes are identified as the optimal host plant for H. vigintioctopunctata, whereas eggplants significantly negatively affect the adult fecundity. Adult stage host feeding experience determines the fecundity of H. vigintioctopunctata, irrespective of the larval feeding experience. The fecundity of H. vigintioctopunctata adults on eggplant leaves remains significantly lower than that observed on potato leaves. Similarly, adult H. vigintioctopunctata demonstrate a preference for consuming potato leaves, irrespective of the larval feeding experience. Although host switching between larval and adult stages offers lesser benefits for the performance of herbivorous insects compared to a consistent diet with potato leaves, it maintains H. vigintioctopunctata population continuity amidst shortages of high-quality potato hosts.
Collapse
Affiliation(s)
| | | | | | | | - Zailing Wang
- Hubei Engineering Research Center for Pest Forewarning and Management, Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, China; (J.Q.); (X.W.); (T.Z.); (C.L.)
| |
Collapse
|
2
|
Le Couteur DG, Raubenheimer D, Solon-Biet S, de Cabo R, Simpson SJ. Does diet influence aging? Evidence from animal studies. J Intern Med 2024; 295:400-415. [PMID: 35701180 DOI: 10.1111/joim.13530] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nutrition profoundly influences the risk for many age-related diseases. Whether nutrition influences human aging biology directly is less clear. Studies in different animal species indicate that reducing food intake ("caloric restriction" [CR]) can increase lifespan and delay the onset of diseases and the biological hallmarks of aging. Obesity has been described as "accelerated aging" and therefore the lifespan and health benefits generated by CR in both aging and obesity may occur via similar mechanisms. Beyond calorie intake, studies based on nutritional geometry have shown that protein intake and the interaction between dietary protein and carbohydrates influence age-related health and lifespan. Studies where animals are calorically restricted by providing free access to diluted diets have had less impact on lifespan than those studies where animals are given a reduced aliquot of food each day and are fasting between meals. This has drawn attention to the role of fasting in health and aging, and exploration of the health effects of various fasting regimes. Although definitive human clinical trials of nutrition and aging would need to be unfeasibly long and unrealistically controlled, there is good evidence from animal experiments that some nutritional interventions based on CR, manipulating dietary macronutrients, and fasting can influence aging biology and lifespan.
Collapse
Affiliation(s)
- David G Le Couteur
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- ANZAC Research Institute, The Concord Hospital, Concord, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Samantha Solon-Biet
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Rafael de Cabo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging (NIH), Baltimore, Maryland, USA
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
3
|
Akter H, Fanson BG, Inskeep J, Rempoulakis P. Raspberry ketone feeding makes Queensland fruit fly, Bactrocera tryoni (Froggatt), more vulnerable to desiccation but not starvation. PEST MANAGEMENT SCIENCE 2023; 79:4858-4867. [PMID: 37507354 DOI: 10.1002/ps.7687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/26/2023] [Accepted: 07/29/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Queensland fruit fly (Qfly) males exhibit accelerated sexual maturation when their diet is supplemented with raspberry ketone (RK) for 48 h following emergence, which is beneficial for sterile insect technique operation. The present study tests whether RK supplementation makes Qfly more vulnerable to starvation or desiccation. RESULTS Flies were fed for 48 h with a yeast hydrolysate and sugar diet (1:3) that contained 0% RK (control), 1.25% RK (low dose) or 5% RK (high dose) to test subsequent vulnerability to starvation and desiccation. RK feeding decreased body weight and water content in males and increased lipid levels in both sexes before exposure to any stress treatment. Under nutritional stress, flies fed the low RK dose, but not the high RK dose, had higher survival than controls. Under desiccation stress, flies fed both the low and high RK doses had lower survival than the controls. Body weight, water content and lipid reserves at death were all affected by RK dose when under nutritional stress, but not when under desiccation stress. In the absence of stress, body weight at death was higher than controls in flies provided with the high RK dose and lipids were lower than controls in flies provided with the low RK dose. CONCLUSION Feeding with RK makes Qflies more vulnerable to desiccation but not starvation. In most conditions, it is expected that the disadvantage of increased desiccation vulnerability would be outweighed by the benefits of accelerated sexual maturation in RK-fed young adult Qflies. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Humayra Akter
- Applied BioSciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Benjamin G Fanson
- Arthur Rylah Institute for Environmental Research, Department of Energy, Environment, and Climate Action, Heidelberg, Melbourne, Victoria, Australia
| | - Jess Inskeep
- Applied BioSciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Polychronis Rempoulakis
- NSW DPI, Central Coast Primary Industries Centre, University of Newcastle Ourimbah Campus, Ourimbah, New South Wales, Australia
| |
Collapse
|
4
|
Mubayiwa M, Machekano H, Chidawanyika F, Mvumi BM, Segaiso B, Nyamukondiwa C. Sub-optimal host plants have developmental and thermal fitness costs to the invasive fall armyworm. FRONTIERS IN INSECT SCIENCE 2023; 3:1204278. [PMID: 38469519 PMCID: PMC10926449 DOI: 10.3389/finsc.2023.1204278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/04/2023] [Indexed: 03/13/2024]
Abstract
The fall armyworm (FAW) Spodoptera frugiperda (J.E. Smith) is a global invasive pest of cereals. Although this pest uses maize and sorghum as its main hosts, it is associated with a wide range of host plants due to its polyphagous nature. Despite the FAW's polyphagy being widely reported in literature, few studies have investigated the effects of the non-preferred conditions or forms (e.g., drought-stressed forms) of this pest's hosts on its physiological and ecological fitness. Thus, the interactive effects of biotic and abiotic stresses on FAW fitness costs or benefits have not been specifically investigated. We therefore assessed the effects of host plant quality on the developmental rates and thermal tolerance of the FAW. Specifically, we reared FAW neonates on three hosts (maize, cowpeas, and pearl millet) under two treatments per host plant [unstressed (well watered) and stressed (water deprived)] until the adult stage. Larval growth rates and pupal weights were determined. Thermal tolerance traits viz critical thermal maxima (CTmax), critical thermal minima (CTmin), heat knockdown time (HKDT), chill-coma recovery time (CCRT), and supercooling points (SCPs) were measured for the emerging adults from each treatment. The results showed that suboptimal diets significantly prolonged the developmental time of FAW larvae and reduced their growth rates and ultimate body weights, but did not impair their full development. Suboptimal diets (comprising non-cereal plants and drought-stressed cereal plants) increased the number of larval instars to eight compared to six for optimal natural diets (unstressed maize and pearl millet). Apart from direct effects, in all cases, suboptimal diets significantly reduced the heat tolerance of FAWs, but their effect on cold tolerance was recorded only in select cases (e.g., SCP). These results suggest host plant effects on the physical and thermal fitness of FAW, indicating a considerable degree of resilience against multiple stressors. This pest's resilience can present major drawbacks to its cultural management using suboptimal hosts (in crop rotations or intercrops) through its ability to survive on most host plants despite their water stress condition and gains in thermal fitness. The fate of FAW population persistence under multivariate environmental stresses is therefore not entirely subject to prior environmental host plant history or quality.
Collapse
Affiliation(s)
- Macdonald Mubayiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Honest Machekano
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Frank Chidawanyika
- Plant Health Department, International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa
| | - Brighton M. Mvumi
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Environment and Food Systems, University of Zimbabwe, Harare, Zimbabwe
| | - Bame Segaiso
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
- Department of Zoology and Entomology, Rhodes University, Makhanda, South Africa
| |
Collapse
|
5
|
Malod K, Archer CR, Hunt J, Nicolson SW, Weldon CW. Selection on female reproductive schedules in the marula fly, Ceratitis cosyra (Diptera: Tephritidae) affects dietary optima for female reproductive traits but not lifespan. FRONTIERS IN INSECT SCIENCE 2023; 3:1166753. [PMID: 38469485 PMCID: PMC10926420 DOI: 10.3389/finsc.2023.1166753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/28/2023] [Indexed: 03/13/2024]
Abstract
Introduction A changing environment can select on life-history traits and trade-offs in a myriad of ways. For example, global warming may shift phenology and thus the availability of host-plants. This may alter selection on survival and fertility schedules in herbivorous insects. If selection on life-histories changes, this may in turn select for altered nutrient intake, because the blend of nutrients organisms consume helps determine the expression of life-history traits. However, we lack empirical work testing whether shifts in the timing of oviposition alter nutrient intake and life-history strategies. Methods We tested in the marula fruit fly, Ceratitis cosyra, how upward-selection on the age of female oviposition, in comparison with laboratory adapted control flies, affects the sex-specific relationship between protein and carbohydrate intake and life-history traits including lifespan, female lifetime egg production and daily egg production. We then determined the macronutrient ratio consumed when flies from each selection line and sex were allowed to self-regulate their intake. Results Lifespan, lifetime egg production and daily egg production were optimised at similar protein to carbohydrate (P:C) ratios in flies from both selection lines. Likewise, females and males of both lines actively defended similar nutrient intake ratios (control =1:3.6 P:C; upward-selected = 1:3.2 P:C). Discussion Our results are comparable to those in non-selected C. cosyra, where the optima for each trait and the self-selected protein to carbohydrate ratio observed were nearly identical. The nutrient blend that needs to be ingested for optimal expression of a given trait appeared to be well conserved across laboratory adapted and experimentally selected populations. These results suggest that in C. cosyra, nutritional requirements do not respond to a temporal change in oviposition substrate availability.
Collapse
Affiliation(s)
- Kevin Malod
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - C. Ruth Archer
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - John Hunt
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Susan W. Nicolson
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Christopher W. Weldon
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| |
Collapse
|
6
|
Klüber P, Arous E, Zorn H, Rühl M. Protein- and Carbohydrate-Rich Supplements in Feeding Adult Black Soldier Flies ( Hermetia illucens) Affect Life History Traits and Egg Productivity. Life (Basel) 2023; 13:355. [PMID: 36836709 PMCID: PMC9966864 DOI: 10.3390/life13020355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The black soldier fly, Hermetia illucens (BSF; Diptera: Stratiomyidae), has come into the focus of research over the past decade since its larvae are polyphagous feeders with an exceptional substrate range, making them a promising candidate for the bioconversion of various organic side streams into valuable insect protein. While larval nutritional requirements have been studied in detail, basic information on adult feeding is still lacking. The reproduction of adult flies is a bottleneck and key determinant in rearing BSF, which has extensive potential for improvement. In the present study, we examined the impact of different carbohydrate (honey and d-glucose) and protein sources (Spirulina and Chlorella powder) on a variety of life history traits using a highly standardized single pair approach. Feeding a 5% honey solution was shown to make females live 2.8 d longer, become more fecund (9 egg clutches per 10 females), lay more eggs (increasing 1.7-fold to 182.4 mg per 10 females), reduce the number of failed oviposition events 3-fold and increase multiple oviposition events from 2 to 15. Additionally, female longevity after oviposition improved 1.7-fold from 6.7 to 11.5 d. In order to further optimize adult feeding, mixtures of proteins and carbohydrates with varying ratios should be tested.
Collapse
Affiliation(s)
- Patrick Klüber
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), 35392 Giessen, Germany
| | - Emna Arous
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), 35392 Giessen, Germany
| | - Holger Zorn
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), 35392 Giessen, Germany
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University, 35392 Giessen, Germany
| | - Martin Rühl
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), 35392 Giessen, Germany
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University, 35392 Giessen, Germany
| |
Collapse
|
7
|
A Synthetic Blend of Fruit and Live Yeast Odours Shows Promise for Trapping Mated Female Queensland Fruit Fly, Bactrocera tryoni, in the Field. J Chem Ecol 2022; 48:817-826. [PMID: 36222963 DOI: 10.1007/s10886-022-01387-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 01/18/2023]
Abstract
Tephritid fruit flies are major horticultural pests of fruit and vegetable crops. Developing an odour lure that can attract mated female flies under field conditions has presented a major challenge to chemical ecologists around the globe. We have designed a new lure to attract female Queensland fruit fly, Bactrocera tryoni, based on the knowledge that this pest tephritid is attracted not only to odours from ripening fruits, but also to odours of symbiotic (gut-associated) yeasts on which the larvae feed. Initial field trials screened four volatile mixtures, each containing a base mix of three, short-chain "fruit ripening" esters and differing in the addition of long-chain "fruity" esters and / or alcohols produced by live yeasts. Results demonstrated that the lure formulated from short-chain esters and live yeast alcohols attracted the most female flies, with significantly higher catches than an odourless control trap, and a protein-baited trap. As electrophysiological studies exploring peripheral responses in tephritids to alcohols associated with fermentation have not been extensively investigated, we conducted this work on both the antennae and maxillary palps, and discovered that three yeast alcohols were detected by both sensory organs. Performance trials conducted in pome fruit and stone fruit orchards evaluated the six-component blend of short-chain ester and live yeast alcohol lure against a commercially available synthetic fruit-odour lure and a protein-based lure. In the apple orchard, the new lure caught significantly more female flies, and in particular mated females, compared to the commercially available lures. In the stone fruit orchard, while the new lure again caught the most mated female flies compared to the other lures, differences were not significant. The visual stimulus (trap design) used had a significant effect on capture, with a Ladd trap (red sphere on a yellow panel) being considerably more effective than the other traps. We discuss the implications of this study, including why the degree of effectiveness of the new lure might have differed among the test orchards (citrus, apple, stonefruit), and why yeast odours might increase attractiveness to "ripening fruit" volatile blends under field conditions.
Collapse
|
8
|
Tonk-Rügen M, Vilcinskas A, Wagner AE. Insect Models in Nutrition Research. Biomolecules 2022; 12:1668. [PMID: 36421682 PMCID: PMC9687203 DOI: 10.3390/biom12111668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 09/08/2024] Open
Abstract
Insects are the most diverse organisms on earth, accounting for ~80% of all animals. They are valuable as model organisms, particularly in the context of genetics, development, behavior, neurobiology and evolutionary biology. Compared to other laboratory animals, insects are advantageous because they are inexpensive to house and breed in large numbers, making them suitable for high-throughput testing. They also have a short life cycle, facilitating the analysis of generational effects, and they fulfil the 3R principle (replacement, reduction and refinement). Many insect genomes have now been sequenced, highlighting their genetic and physiological similarities with humans. These factors also make insects favorable as whole-animal high-throughput models in nutritional research. In this review, we discuss the impact of insect models in nutritional science, focusing on studies investigating the role of nutrition in metabolic diseases and aging/longevity. We also consider food toxicology and the use of insects to study the gut microbiome. The benefits of insects as models to study the relationship between nutrition and biological markers of fitness and longevity can be exploited to improve human health.
Collapse
Affiliation(s)
- Miray Tonk-Rügen
- Institute of Nutritional Science, Justus Liebig University, Wilhelmstrasse 20, 35392 Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch of Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Anika E. Wagner
- Institute of Nutritional Science, Justus Liebig University, Wilhelmstrasse 20, 35392 Giessen, Germany
| |
Collapse
|
9
|
Morimoto J, Conceição P, Smoczyk K. Nutrigonometry III: curvature, area and differences between performance landscapes. ROYAL SOCIETY OPEN SCIENCE 2022; 9:221326. [PMID: 36465681 PMCID: PMC9709515 DOI: 10.1098/rsos.221326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/04/2022] [Indexed: 05/25/2023]
Abstract
Nutrition is one of the underlying factors necessary for the expression of life-histories and fitness across the tree of life. In recent decades, the geometric framework (GF) has become a powerful framework to obtain biological insights through the construction of multidimensional performance landscapes. However, to date, many properties of these multidimensional landscapes have remained inaccessible due to our lack of mathematical and statistical frameworks for GF analysis. This has limited our ability to understand, describe and estimate parameters which may contain useful biological information from GF multidimensional performance landscapes. Here, we propose a new model to investigate the curvature of GF multidimensional landscapes by calculating the parameters from differential geometry known as Gaussian and mean curvatures. We also estimate the surface area of multidimensional performance landscapes as a way to measure landscape deviations from flat. We applied the models to a landmark dataset in the field, where we also validate the assumptions required for the calculations of curvature. In particular, we showed that linear models perform as well as other models used in GF data, enabling landscapes to be approximated by quadratic polynomials. We then introduced the Hausdorff distance as a metric to compare the similarity of multidimensional landscapes.
Collapse
Affiliation(s)
- Juliano Morimoto
- Institute of Mathematics, University of Aberdeen, King’s College, Aberdeen AB24 3FX, UK
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
- Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba 82590-300, Brazil
- Institute of Differential Geometry, Riemann Centre for Geometry and Physics, Welfengarten 1, Hannover 30167, Germany
| | - Pedro Conceição
- Institute of Mathematics, University of Aberdeen, King’s College, Aberdeen AB24 3FX, UK
| | - Knut Smoczyk
- Institute of Differential Geometry, Riemann Centre for Geometry and Physics, Welfengarten 1, Hannover 30167, Germany
| |
Collapse
|
10
|
miR-275/305 cluster is essential for maintaining energy metabolic homeostasis by the insulin signaling pathway in Bactrocera dorsalis. PLoS Genet 2022; 18:e1010418. [PMID: 36197879 PMCID: PMC9534453 DOI: 10.1371/journal.pgen.1010418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Increasing evidence indicates that miRNAs play crucial regulatory roles in various physiological processes of insects, including systemic metabolism. However, the molecular mechanisms of how specific miRNAs regulate energy metabolic homeostasis remain largely unknown. In the present study, we found that an evolutionarily conserved miR-275/305 cluster was essential for maintaining energy metabolic homeostasis in response to dietary yeast stimulation in Bactrocera dorsalis. Depletion of miR-275 and miR-305 by the CRISPR/Cas9 system significantly reduced triglyceride and glycogen contents, elevated total sugar levels, and impaired flight capacity. Combined in vivo and in vitro experiments, we demonstrated that miR-275 and miR-305 can bind to the 3'UTR regions of SLC2A1 and GLIS2 to repress their expression, respectively. RNAi-mediated knockdown of these two genes partially rescued metabolic phenotypes caused by inhibiting miR-275 and miR-305. Furthermore, we further illustrated that the miR-275/305 cluster acting as a regulator of the metabolic axis was controlled by the insulin signaling pathway. In conclusion, our work combined genetic and physiological approaches to clarify the molecular mechanism of metabolic homeostasis in response to different dietary stimulations and provided a reference for deciphering the potential targets of physiologically important miRNAs in a non-model organism.
Collapse
|
11
|
Dasgupta P, Halder S, Dari D, Nabeel P, Vajja SS, Nandy B. Evolution of a novel female reproductive strategy in Drosophila melanogaster populations subjected to long-term protein restriction. Evolution 2022; 76:1836-1848. [PMID: 35796749 DOI: 10.1111/evo.14560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 05/19/2022] [Indexed: 01/22/2023]
Abstract
Reproductive output is often constrained by availability of macronutrients, especially protein. Long-term protein restriction, therefore, is expected to select for traits maximizing reproduction even under nutritional challenge. We subjected four replicate populations of Drosophila melanogaster to a complete deprivation of yeast supplement, thereby mimicking a protein-restricted ecology. Following 24 generations, compared to their matched controls, females from experimental populations showed increased reproductive output early in life, both in presence and absence of yeast supplement. The observed increase in reproductive output was without associated alterations in egg size, development time, preadult survivorship, body mass at eclosion, and life span of the females. Further, selection was ineffective on lifelong cumulative fecundity. However, females from experiment regime were found to have a significantly faster rate of reproductive senescence following the attainment of the reproductive peak early in life. Therefore, adaptation to yeast deprivation ecology in our study involved a novel reproductive strategy whereby females attained higher reproductive output early in life followed by faster reproductive aging. To the best of our knowledge, this is one of the cleanest demonstrations of optimization of fitness by fine-tuning of reproductive schedule during adaptation to a prolonged nutritional deprivation.
Collapse
Affiliation(s)
- Purbasha Dasgupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India
| | - Subhasish Halder
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India
| | - Debapriya Dari
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India
| | - Poolakkal Nabeel
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India.,Central University of Kerala, Tejaswini Hills,Periye, Kasaragod, Kerala, 671316, India
| | - Sai Samhitha Vajja
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India.,Current Address: Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, 462066, India
| | - Bodhisatta Nandy
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India
| |
Collapse
|
12
|
Wu Q, Gao ZJ, Yu X, Wang P. Dietary regulation in health and disease. Signal Transduct Target Ther 2022; 7:252. [PMID: 35871218 PMCID: PMC9308782 DOI: 10.1038/s41392-022-01104-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 02/08/2023] Open
Abstract
Nutriments have been deemed to impact all physiopathologic processes. Recent evidences in molecular medicine and clinical trials have demonstrated that adequate nutrition treatments are the golden criterion for extending healthspan and delaying ageing in various species such as yeast, drosophila, rodent, primate and human. It emerges to develop the precision-nutrition therapeutics to slow age-related biological processes and treat diverse diseases. However, the nutritive advantages frequently diversify among individuals as well as organs and tissues, which brings challenges in this field. In this review, we summarize the different forms of dietary interventions extensively prescribed for healthspan improvement and disease treatment in pre-clinical or clinical. We discuss the nutrient-mediated mechanisms including metabolic regulators, nutritive metabolism pathways, epigenetic mechanisms and circadian clocks. Comparably, we describe diet-responsive effectors by which dietary interventions influence the endocrinic, immunological, microbial and neural states responsible for improving health and preventing multiple diseases in humans. Furthermore, we expatiate diverse patterns of dietotheroapies, including different fasting, calorie-restricted diet, ketogenic diet, high-fibre diet, plants-based diet, protein restriction diet or diet with specific reduction in amino acids or microelements, potentially affecting the health and morbid states. Altogether, we emphasize the profound nutritional therapy, and highlight the crosstalk among explored mechanisms and critical factors to develop individualized therapeutic approaches and predictors.
Collapse
Affiliation(s)
- Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhi-Jie Gao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
13
|
Weldon CW, Terblanche JS, Bosua H, Malod K, Chown SL. Male Mediterranean fruit flies prefer warmer temperatures that improve sexual performance. J Therm Biol 2022; 108:103298. [DOI: 10.1016/j.jtherbio.2022.103298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022]
|
14
|
Sieksmeyer T, He S, Esparza-Mora MA, Jiang S, Petrašiūnaitė V, Kuropka B, Banasiak R, Julseth MJ, Weise C, Johnston PR, Rodríguez-Rojas A, McMahon DP. Eating in a losing cause: limited benefit of modified macronutrient consumption following infection in the oriental cockroach Blatta orientalis. BMC Ecol Evol 2022; 22:67. [PMID: 35585501 PMCID: PMC9118584 DOI: 10.1186/s12862-022-02007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Host-pathogen interactions can lead to dramatic changes in host feeding behaviour. One aspect of this includes self-medication, where infected individuals consume substances such as toxins or alter their macronutrient consumption to enhance immune competence. Another widely adopted animal response to infection is illness-induced anorexia, which is thought to assist host immunity directly or by limiting the nutritional resources available to pathogens. Here, we recorded macronutrient preferences of the global pest cockroach, Blatta orientalis to investigate how shifts in host macronutrient dietary preference and quantity of carbohydrate (C) and protein (P) interact with immunity following bacterial infection. RESULTS We find that B. orientalis avoids diets enriched for P under normal conditions, and that high P diets reduce cockroach survival in the long term. However, following bacterial challenge, cockroaches significantly reduced their overall nutrient intake, particularly of carbohydrates, and increased the relative ratio of protein (P:C) consumed. Surprisingly, these behavioural shifts had a limited effect on cockroach immunity and survival, with minor changes to immune protein abundance and antimicrobial activity between individuals placed on different diets, regardless of infection status. CONCLUSIONS We show that cockroach feeding behaviour can be modulated by a pathogen, resulting in an illness-induced anorexia-like feeding response and a shift from a C-enriched to a more P:C equal diet. However, our results also indicate that such responses do not provide significant immune protection in B. orientalis, suggesting that the host's dietary shift might also result from random rather than directed behaviour. The lack of an apparent benefit of the shift in feeding behaviour highlights a possible reduced importance of diet in immune regulation in these invasive animals, although further investigations employing pathogens with alternative infection strategies are warranted.
Collapse
Affiliation(s)
- Thorben Sieksmeyer
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany.,Department of Biotechnology, German Institute of Food Technology (DIL e.V.), Prof.-von-Klitzing-Str. 7, 49610, Quakenbrück, Germany
| | - Shulin He
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - M Alejandra Esparza-Mora
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - Shixiong Jiang
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - Vesta Petrašiūnaitė
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Ronald Banasiak
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - Mara Jean Julseth
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Paul R Johnston
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany.,Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Str. 6-8, 14195, Berlin, Germany
| | - Alexandro Rodríguez-Rojas
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Internal Medicine, Vetmeduni Vienna, Veterinaerplätz 1, 1210, Vienna, Austria
| | - Dino P McMahon
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany. .,Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany.
| |
Collapse
|
15
|
Chandler JA, Innocent LV, Martinez DJ, Huang IL, Yang JL, Eisen MB, Ludington WB. Microbiome-by-ethanol interactions impact Drosophila melanogaster fitness, physiology, and behavior. iScience 2022; 25:104000. [PMID: 35313693 PMCID: PMC8933687 DOI: 10.1016/j.isci.2022.104000] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/24/2021] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota can affect how animals respond to ingested toxins, such as ethanol, which is prevalent in the diets of diverse animals and often leads to negative health outcomes in humans. Ethanol is a complex dietary factor because it acts as a toxin, behavioral manipulator, and nutritional source, with both direct effects on the host as well as indirect ones through the microbiome. Here, we developed a model for chronic, non-intoxicating ethanol ingestion in the adult fruit fly, Drosophila melanogaster, and paired this with the tractability of the fly gut microbiota, which can be experimentally removed. We linked numerous physiological, behavioral, and transcriptional variables to fly fitness, including a combination of intestinal barrier integrity, stored triglyceride levels, feeding behavior, and the immunodeficiency pathway. Our results reveal a complex tradeoff between lifespan and fecundity that is microbiome-dependent and modulated by dietary ethanol and feeding behavior.
Collapse
Affiliation(s)
- James Angus Chandler
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Lina Victoria Innocent
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | - Isaac Li Huang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jane Lani Yang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Michael Bruce Eisen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - William Basil Ludington
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
16
|
Malod K, du Rand EE, Archer CR, Nicolson SW, Weldon CW. Oxidative Damage Is Influenced by Diet But Unaffected by Selection for Early Age of Oviposition in the Marula Fly, Ceratitis cosyra (Diptera: Tephritidae). Front Physiol 2022; 13:794979. [PMID: 35295580 PMCID: PMC8918681 DOI: 10.3389/fphys.2022.794979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/27/2022] [Indexed: 12/20/2022] Open
Abstract
The expression of life-history traits, such as lifespan or reproductive effort, is tightly correlated with the amount and blend of macronutrients that individuals consume. In a range of herbivorous insects, consuming high protein to carbohydrate ratios (P:C) decreases lifespan but increases female fecundity. In other words, females face a resource-based trade-off between lifespan and fecundity. Redox metabolism may help mediate this trade-off, if oxidative damage is elevated by reproductive investment and if this damage, in turn, reduces lifespan. Here, we test how diets varying in P:C ratio affect oxidative damage and antioxidant protection in female and male of the marula fly, Ceratitis cosyra (Diptera: Tephritidae). We use replicated lines that have been subjected to experimental evolution and differ in their lifespan and reproductive scheduling. We predicted that high fecundity would be associated with high oxidative damage and reduced antioxidant defences, while longer lived flies would show reduced damage and elevated antioxidant defences. However, higher levels of oxidative damage were observed in long-lived control lines than selection lines, but only when fed the diet promoting lifespan. Flies fed diets promoting female fecundity (1:4 and 1:2 P:C) suffered greater oxidative damage to lipids than flies fed the best diet (0:1 P:C) for lifespan. Total antioxidant capacity was not affected by the selection regime or nutrition. Our results reiterate the importance of nutrition in affecting life-history traits, but suggest that in C. cosyra, reactive oxygen species play a minimal role in mediating dietary trade-offs between lifespan and reproduction.
Collapse
Affiliation(s)
- Kevin Malod
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Esther E. du Rand
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - C. Ruth Archer
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Susan W. Nicolson
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Christopher W. Weldon
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
- *Correspondence: Christopher W. Weldon,
| |
Collapse
|
17
|
Carey MR, Archer CR, Rapkin J, Castledine M, Jensen K, House CM, Hosken DJ, Hunt J. Mapping sex differences in the effects of protein and carbohydrates on lifespan and reproduction in Drosophila melanogaster: is measuring nutrient intake essential? Biogerontology 2022; 23:129-144. [PMID: 35122572 PMCID: PMC8888493 DOI: 10.1007/s10522-022-09953-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/21/2022] [Indexed: 01/03/2023]
Abstract
Understanding how diet affects reproduction and survival is a central aim in evolutionary biology. Although this relationship is likely to differ between the sexes, we lack data relating diet to male reproductive traits. One exception to this general pattern is Drosophila melanogaster, where male dietary intake was quantified using the CApillary FEeder (CAFE) method. However, CAFE feeding reduces D. melanogaster survival and reproduction, so may distort diet-fitness outcomes. Here, we use the Geometric Framework of Nutrition to create nutrient landscapes that map sex-specific relationships between protein, carbohydrate, lifespan and reproduction in D. melanogaster. Rather than creating landscapes with consumption data, we map traits onto the nutrient composition of forty agar-based diets, generating broad coverage of nutrient space. We find that male and female lifespan was maximised on low protein, high carbohydrate blends (~ 1P:15.9C). This nutrient ratio also maximised male reproductive rates, but females required more protein to maximise daily fecundity (1P:1.22C). These results are consistent with CAFE assay outcomes. However, the approach employed here improved female fitness relative to CAFE assays, while effects of agar versus CAFE feeding on male fitness traits depended on the nutrient composition of experimental diets. We suggest that informative nutrient landscapes can be made without measuring individual nutrient intake and that in many cases, this may be preferable to using the CAFE approach. The most appropriate method will depend on the question and species being studied, but the approach adopted here has the advantage of creating nutritional landscapes when dietary intake is hard to quantify.
Collapse
Affiliation(s)
- Matthew R Carey
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.,Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Cornwall, UK
| | - C Ruth Archer
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Cornwall, UK.,Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89069, Ulm, Germany
| | - James Rapkin
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Cornwall, UK
| | - Meaghan Castledine
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Cornwall, UK
| | - Kim Jensen
- Department of Animal Science - ANIS Nutrition, Aarhus University, Tjele, Denmark
| | - Clarissa M House
- School of Science, Western Sydney University, Hawkesbury Campus, Richmond, NSW, Australia
| | - David J Hosken
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Cornwall, UK
| | - John Hunt
- School of Science, Western Sydney University, Hawkesbury Campus, Richmond, NSW, Australia.
| |
Collapse
|
18
|
Hawkes M, Lane SM, Rapkin J, Jensen K, House C, Sakaluk SK, Hunt J. Intralocus sexual conflict over optimal nutrient intake and the evolution of sex differences in life span and reproduction. Funct Ecol 2022. [DOI: 10.1111/1365-2435.13995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael Hawkes
- Centre for Ecology and Conservation College of Life and Environmental Sciences University of Exeter Penryn UK
| | - Sarah M. Lane
- Centre for Ecology and Conservation College of Life and Environmental Sciences University of Exeter Penryn UK
- School of Biological and Marine Sciences Animal Behaviour Research Group University of Plymouth Plymouth UK
| | - James Rapkin
- Centre for Ecology and Conservation College of Life and Environmental Sciences University of Exeter Penryn UK
| | - Kim Jensen
- Centre for Ecology and Conservation College of Life and Environmental Sciences University of Exeter Penryn UK
- Department of Bioscience Aarhus University Silkeborg Denmark
| | - Clarissa M. House
- School of Science Western Sydney University Penrith NSW Australia
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
| | - Scott K. Sakaluk
- Behavior, Ecology, Evolution and Systematics Section School of Biological Sciences Illinois State University Normal IL USA
| | - John Hunt
- Centre for Ecology and Conservation College of Life and Environmental Sciences University of Exeter Penryn UK
- School of Science Western Sydney University Penrith NSW Australia
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
| |
Collapse
|
19
|
Hsu J, Chou M, Mau RFL, Maeda C, Shikano I, Manoukis NC, Vargas RI. Spinosad resistance in field populations of melon fly, Zeugodacus cucurbitae (Coquillett), in Hawaii. PEST MANAGEMENT SCIENCE 2021; 77:5439-5444. [PMID: 34331843 PMCID: PMC9290140 DOI: 10.1002/ps.6583] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/31/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND Control of Zeugodacus cucurbitae, a serious agricultural pest worldwide, often includes or is dependent on the use of spinosad-based insecticides. This is especially the case in Hawaii, where GF-120, a protein bait containing spinosad as the active ingredient, has been in use as a key integrated pest management (IPM) tool against this Tephritid for the last two decades. Here, we report on resistance to spinosad [resistance ratios (RRs) and median lethal concentration (LC50 )] in Hawaii's populations of Z. cucurbitae. RESULTS High resistance was found in populations from three farms on Oahu (RR = 102-303; LC50 = 191-567 mg L-1 ) and in a population from Maui (RR = 8.50; LC50 = 15.9 mg L-1 ). These will be problematic for control given that the most concentrated dilution ratio on the GF-120 label is 96 mg L-1 of spinosad (1 part GF-120 to 1.5 parts water). Background resistance in a naïve wild population from the Island of Hawaii (RR = 2.73; LC50 = 5.1 mg L-1 ) was relatively low compared with a spinosad-susceptible laboratory colony (LC50 = 1.87 mg L-1 ). Resistance in the three Oahu and one Maui populations declined over generations in the absence of spinosad but remained elevated in some cases. Moreover, melon flies collected from one of the Oahu farms 1 year after the cessation of spinosad use revealed high persistence of resistance. CONCLUSION Compared with a 2008 survey of spinosad resistance, our findings indicate a 34-fold increase in resistance on one of the Oahu farms over 9 years. The evolution and persistence of high levels of resistance to spinosad in Z. cucurbitae in Hawaii highlights the need for alternative control tactics, particularly rotation of active ingredients. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ju‐Chun Hsu
- Department of EntomologyNational Taiwan UniversityTaipeiTaiwan
| | - Ming‐Yi Chou
- Agricultural Extension CenterNational Chung Hsing UniversityTaichungTaiwan
| | - Ronald FL Mau
- Department of Plant and Environmental Protection SciencesUniversity of Hawai'iMānoaHIUSA
| | - Colby Maeda
- US Department of Agriculture, Agricultural Research ServiceDaniel K. Inouye US Pacific Basin Agricultural Research CenterHiloHIUSA
| | - Ikkei Shikano
- Department of Plant and Environmental Protection SciencesUniversity of Hawai'iMānoaHIUSA
| | - Nicholas C Manoukis
- US Department of Agriculture, Agricultural Research ServiceDaniel K. Inouye US Pacific Basin Agricultural Research CenterHiloHIUSA
| | - Roger I Vargas
- US Department of Agriculture, Agricultural Research ServiceDaniel K. Inouye US Pacific Basin Agricultural Research CenterHiloHIUSA
| |
Collapse
|
20
|
Wilson KA, Chamoli M, Hilsabeck TA, Pandey M, Bansal S, Chawla G, Kapahi P. Evaluating the beneficial effects of dietary restrictions: A framework for precision nutrigeroscience. Cell Metab 2021; 33:2142-2173. [PMID: 34555343 PMCID: PMC8845500 DOI: 10.1016/j.cmet.2021.08.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Dietary restriction (DR) has long been viewed as the most robust nongenetic means to extend lifespan and healthspan. Many aging-associated mechanisms are nutrient responsive, but despite the ubiquitous functions of these pathways, the benefits of DR often vary among individuals and even among tissues within an individual, challenging the aging research field. Furthermore, it is often assumed that lifespan interventions like DR will also extend healthspan, which is thus often ignored in aging studies. In this review, we provide an overview of DR as an intervention and discuss the mechanisms by which it affects lifespan and various healthspan measures. We also review studies that demonstrate exceptions to the standing paradigm of DR being beneficial, thus raising new questions that future studies must address. We detail critical factors for the proposed field of precision nutrigeroscience, which would utilize individualized treatments and predict outcomes using biomarkers based on genotype, sex, tissue, and age.
Collapse
Affiliation(s)
| | - Manish Chamoli
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Tyler A Hilsabeck
- The Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Manish Pandey
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Sakshi Bansal
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Geetanjali Chawla
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India.
| | - Pankaj Kapahi
- The Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
21
|
Archer CR, Fähnle J, Pretzner M, Üstüner C, Weber N, Sutter A, Doublet V, Wilfert L. Complex relationship between amino acids, fitness and food intake in Bombus terrestris. Amino Acids 2021; 53:1545-1558. [PMID: 34590185 PMCID: PMC8519840 DOI: 10.1007/s00726-021-03075-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/30/2021] [Indexed: 10/31/2022]
Abstract
The ratio of amino acids to carbohydrates (AA:C) that bumble bees consume has been reported to affect their survival. However, it is unknown how dietary AA:C ratio affects other bumble bee fitness traits (e.g., fecundity, condition) and possible trade-offs between them. Moreover, while individual AAs affect phenotype in many species, the effects of AA blend on bumble bee fitness and food intake are unclear. We test how the AA:C ratio that bumble bees (Bombus terrestris) consume affects their condition (abdomen lipid and dry mass), survival following food removal, and ovarian activation. We then compare ovarian activation and food intake in bees fed identical AA:C ratios, but where the blend of AAs in diets differ, i.e., diets contained the same 10 AAs in an equimolar ratio or in the same ratio as in bee collected pollen. We found that AA:C ratio did not significantly affect survival following food removal or ovarian activation; however, high AA intake increased body mass, which is positively correlated with multiple fitness traits in bumble bees. AA blend (i.e., equimolar versus pollen) did not significantly affect overall ovarian activation or consumption of each experimental diet. However, there was an interaction between AA mix and dietary AA:C ratio affecting survival during the feeding experiment, and signs that there may have been weak, interactive effects of AA mix and AA:C ratio on food consumption. These results suggest that the effect of total AA intake on bumble bee phenotype may depend on the blend of individual AAs in experimental diets. We suggest that research exploring how AA blend affects bumble bee performance and dietary intake is warranted, and highlight that comparing research on bee nutrition is complicated by even subtle variation in experimental diet composition.
Collapse
Affiliation(s)
- C Ruth Archer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Johannes Fähnle
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Maximilian Pretzner
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Cansu Üstüner
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Nina Weber
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Andreas Sutter
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Vincent Doublet
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Lena Wilfert
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.,College of Life and Environment Sciences, University of Exeter, Tremough Campus, Penryn, TR10 8FL, UK
| |
Collapse
|
22
|
The importance of environmental microbes for Drosophila melanogaster during seasonal macronutrient variability. Sci Rep 2021; 11:18850. [PMID: 34552121 PMCID: PMC8458401 DOI: 10.1038/s41598-021-98119-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Experiments manipulating the nutritional environment and the associated microbiome of animals have demonstrated their importance for key fitness components. However, there is little information on how macronutrient composition and bacterial communities in natural food sources vary across seasons in nature and on how these factors affect the fitness components of insects. In this study, diet samples from an orchard compost heap, which is a natural habitat for many Drosophila species and other arthropods, were collected over 9 months covering all seasons in a temperate climate. We developed D. melanogaster on diet samples and investigated stress resistance and life-history traits as well as the microbial community of flies and compost. Nutrient and microbial community analysis of the diet samples showed marked differences in macronutrient composition and microbial community across seasons. However, except for the duration of development on these diet samples and Critical Thermal maximum, fly stress resistance and life-history traits were unaffected. The resulting differences in the fly microbial community were also more stable and less diverse than the microbial community of the diet samples. Our study suggests that when D. melanogaster are exposed to a vastly varying nutritional environment with a rich, diverse microbial community, the detrimental consequences of an unfavourable macronutrient composition are offset by the complex interactions between microbes and nutrients.
Collapse
|
23
|
Malod K, Roets PD, Bosua H, Archer CR, Weldon CW. Selecting on age of female reproduction affects lifespan in both sexes and age-dependent reproductive effort in female (but not male) Ceratitis cosyra. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03063-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
Dinh H, Nguyen B, Morimoto J, Lundback I, Kumar SS, Ponton F. Transgenerational Effects of Parental Diet on Offspring Development and Disease Resistance in Flies. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.606993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The environmental conditions experienced by parents influence next generations, with the parental nutritional status playing an important role in shaping offspring phenotypes. Our understanding of transgenerational effects of parental diet on offspring pathogen resistance is, however, poorly documented. We manipulated the quality of parental diet (i.e., mother, father, or both) and measured effects on offspring development and survival after an immune challenge by septic infection. We used Bactrocera tryoni as host model infected with the pathogenic bacterium, Serratia marcescens. Our results showed no significant effect of maternal, or paternal, diet on offspring resistance. Interestingly, when the diet of both parents was manipulated, sons from parents fed either carbohydrate- or protein-biased diets had higher survival upon pathogen infection than sons from parents fed balanced diets. The quality of the parental diet had no effect on offspring developmental traits with the exception of egg hatching percentage which decreased when mothers were fed a protein-biased diet. Our results emphasised the complexity of nutritional transgenerational effects on offspring pathogen resistance and development.
Collapse
|
25
|
Roberts KE, Longdon B. Viral susceptibility across host species is largely independent of dietary protein to carbohydrate ratios. J Evol Biol 2021; 34:746-756. [PMID: 33586293 PMCID: PMC8436156 DOI: 10.1111/jeb.13773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 12/23/2022]
Abstract
The likelihood of a successful host shift of a parasite to a novel host species can be influenced by environmental factors that can act on both the host and parasite. Changes in nutritional resource availability have been shown to alter pathogen susceptibility and the outcome of infection in a range of systems. Here, we examined how dietary protein to carbohydrate altered susceptibility in a large cross-infection experiment. We infected 27 species of Drosophilidae with an RNA virus on three food types of differing protein to carbohydrate ratios. We then measured how viral load and mortality across species was affected by changes in diet. We found that changes in the protein:carbohydrate in the diet did not alter the outcomes of infection, with strong positive inter-species correlations in both viral load and mortality across diets, suggesting no species-by-diet interaction. Mortality and viral load were strongly positively correlated, and this association was consistent across diets. This suggests changes in diet may give consistent outcomes across host species, and may not be universally important in determining host susceptibility to pathogens.
Collapse
Affiliation(s)
- Katherine E. Roberts
- Centre for Ecology & ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynUK
| | - Ben Longdon
- Centre for Ecology & ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynUK
| |
Collapse
|
26
|
Macronutrient composition and availability affects repeatability of fly activity through changes in among- and within-individual (residual) variation. Evol Ecol 2021. [DOI: 10.1007/s10682-021-10113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Negroni MA, Feldmeyer B, Foitzik S. Experimental increase in fecundity causes upregulation of fecundity and body maintenance genes in the fat body of ant queens. Biol Lett 2021; 17:20200909. [PMID: 33592155 PMCID: PMC8086957 DOI: 10.1098/rsbl.2020.0909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
In most organisms, fecundity and longevity are negatively associated and the molecular regulation of these two life-history traits is highly interconnected. In addition, nutrient intake often has opposing effects on lifespan and reproduction. In contrast to solitary insects, the main reproductive individual of social hymenopterans, the queen, is also the most long-lived. During development, queen larvae are well-nourished, but we are only beginning to understand the impact of nutrition on the queens' adult life and the molecular regulation and connectivity of fecundity and longevity. Here, we used two experimental manipulations to alter queen fecundity in the ant Temnothorax rugatulus and investigated associated changes in fat body gene expression. Egg removal triggered a fecundity increase, leading to expression changes in genes with functions in fecundity such as oogenesis and body maintenance. Dietary restriction lowered the egg production of queens and altered the expression of genes linked to autophagy, Toll signalling, cellular homeostasis and immunity. Our study reveals that an experimental increase in fecundity causes the co-activation of reproduction and body maintenance mechanisms, shedding light on the molecular regulation of the link between longevity and fecundity in social insects.
Collapse
Affiliation(s)
- Matteo Antoine Negroni
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University of Mainz, Biozentrum, Hanns Dieter Hüsch Weg 15, D-55128 Mainz, Germany
| | - Barbara Feldmeyer
- Molecular Ecology Group, Biodiversity and Climate Research Centre (SBiK-F), Georg-Voigt-Str. 14–16, D-60325 Frankfurt am Main, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University of Mainz, Biozentrum, Hanns Dieter Hüsch Weg 15, D-55128 Mainz, Germany
| |
Collapse
|
28
|
Savola E, Montgomery C, Waldron FM, Monteith KM, Vale P, Walling C. Testing evolutionary explanations for the lifespan benefit of dietary restriction in fruit flies (Drosophila melanogaster). Evolution 2021; 75:450-463. [PMID: 33320333 PMCID: PMC8609428 DOI: 10.1111/evo.14146] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 12/22/2022]
Abstract
Dietary restriction (DR), limiting calories or specific nutrients without malnutrition, extends lifespan across diverse taxa. Traditionally, this lifespan extension has been explained as a result of diet-mediated changes in the trade-off between lifespan and reproduction, with survival favored when resources are scarce. However, a recently proposed alternative suggests that the selective benefit of the response to DR is the maintenance of reproduction. This hypothesis predicts that lifespan extension is a side effect of benign laboratory conditions, and DR individuals would be frailer and unable to deal with additional stressors, and thus lifespan extension should disappear under more stressful conditions. We tested this by rearing outbred female fruit flies (Drosophila melanogaster) on 10 different protein:carbohydrate diets. Flies were either infected with a bacterial pathogen (Pseudomonas entomophila), injured with a sterile pinprick, or unstressed. We monitored lifespan, fecundity, and measures of aging. DR extended lifespan and reduced reproduction irrespective of injury and infection. Infected flies on lower protein diets had particularly poor survival. Exposure to infection and injury did not substantially alter the relationship between diet and aging patterns. These results do not provide support for lifespan extension under DR being a side effect of benign laboratory conditions.
Collapse
Affiliation(s)
- Eevi Savola
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| | - Clara Montgomery
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| | - Fergal M Waldron
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| | - Katy M Monteith
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| | - Pedro Vale
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| | - Craig Walling
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| |
Collapse
|
29
|
Gómez-Moracho T, Durand T, Pasquaretta C, Heeb P, Lihoreau M. Artificial Diets Modulate Infection Rates by Nosema ceranae in Bumblebees. Microorganisms 2021; 9:microorganisms9010158. [PMID: 33445614 PMCID: PMC7827189 DOI: 10.3390/microorganisms9010158] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/25/2022] Open
Abstract
Parasites alter the physiology and behaviour of their hosts. In domestic honey bees, the microsporidia Nosema ceranae induces energetic stress that impairs the behaviour of foragers, potentially leading to colony collapse. Whether this parasite similarly affects wild pollinators is little understood because of the low success rates of experimental infection protocols. Here, we present a new approach for infecting bumblebees (Bombus terrestris) with controlled amounts of N. ceranae by briefly exposing individual bumblebees to parasite spores before feeding them with artificial diets. We validated our protocol by testing the effect of two spore dosages and two diets varying in their protein to carbohydrate ratio on the prevalence of the parasite (proportion of PCR-positive bumblebees), the intensity of parasites (spore count in the gut and the faeces), and the survival of bumblebees. Overall, insects fed a low-protein, high-carbohydrate diet showed the highest parasite prevalence (up to 70%) but lived the longest, suggesting that immunity and survival are maximised at different protein to carbohydrate ratios. Spore dosage did not affect parasite infection rate and host survival. The identification of experimental conditions for successfully infecting bumblebees with N. ceranae in the lab will facilitate future investigations of the sub-lethal effects of this parasite on the behaviour and cognition of wild pollinators.
Collapse
Affiliation(s)
- Tamara Gómez-Moracho
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse, France; (T.D.); (C.P.); (M.L.)
- Correspondence:
| | - Tristan Durand
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse, France; (T.D.); (C.P.); (M.L.)
| | - Cristian Pasquaretta
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse, France; (T.D.); (C.P.); (M.L.)
| | - Philipp Heeb
- Laboratoire Evolution et Diversité Biologique, UMR 5174 Centre National de la Recherche Scientifique, Université Paul Sabatier, ENSFEA, 31062 Toulouse, France;
| | - Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse, France; (T.D.); (C.P.); (M.L.)
| |
Collapse
|
30
|
Seyedsadjadi N, Grant R. The Potential Benefit of Monitoring Oxidative Stress and Inflammation in the Prevention of Non-Communicable Diseases (NCDs). Antioxidants (Basel) 2020; 10:E15. [PMID: 33375428 PMCID: PMC7824370 DOI: 10.3390/antiox10010015] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The significant increase in worldwide morbidity and mortality from non-communicable diseases (NCDs) indicates that the efficacy of existing strategies addressing this crisis may need improvement. Early identification of the metabolic irregularities associated with the disease process may be a key to developing early intervention strategies. Unhealthy lifestyle behaviours are well established drivers of the development of several NCDs, but the impact of such behaviours on health can vary considerably between individuals. How can it be determined if an individual's unique set of lifestyle behaviours is producing disease? Accumulating evidence suggests that lifestyle-associated activation of oxidative and inflammatory processes is primary driver of the cell and tissue damage which underpins the development of NCDs. However, the benefit of monitoring subclinical inflammation and oxidative activity has not yet been established. After reviewing relevant studies in this context, we suggest that quantification of oxidative stress and inflammatory biomarkers during the disease-free prodromal stage of NCD development may have clinical relevance as a timely indicator of the presence of subclinical metabolic changes, in the individual, portending the development of disease. Monitoring markers of oxidative and inflammatory activity may therefore enable earlier and more efficient strategies to both prevent NCD development and/or monitor the effectiveness of treatment.
Collapse
Affiliation(s)
- Neda Seyedsadjadi
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, NSW 2076, Australia;
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ross Grant
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, NSW 2076, Australia;
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Adventist Hospital Clinical School, University of Sydney, Sydney, NSW 2076, Australia
| |
Collapse
|
31
|
Duffield KR, Hampton KJ, Houslay TM, Rapkin J, Hunt J, Sadd BM, Sakaluk SK. Macronutrient intake and simulated infection threat independently affect life history traits of male decorated crickets. Ecol Evol 2020; 10:11766-11778. [PMID: 33144999 PMCID: PMC7593159 DOI: 10.1002/ece3.6813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/07/2020] [Accepted: 08/28/2020] [Indexed: 01/11/2023] Open
Abstract
Nutritional geometry has advanced our understanding of how macronutrients (e.g., proteins and carbohydrates) influence the expression of life history traits and their corresponding trade-offs. For example, recent work has revealed that reproduction and immune function in male decorated crickets are optimized at very different protein:carbohydrate (P:C) dietary ratios. However, it is unclear how an individual's macronutrient intake interacts with its perceived infection status to determine investment in reproduction or other key life history traits. Here, we employed a fully factorial design in which calling effort and immune function were quantified for male crickets fed either diets previously demonstrated to maximize calling effort (P:C = 1:8) or immune function (P:C = 5:1), and then administered a treatment from a spectrum of increasing infection cue intensity using heat-killed bacteria. Both diet and a simulated infection threat independently influenced the survival, immunity, and reproductive effort of males. If they called, males increased calling effort at the low infection cue dose, consistent with the terminal investment hypothesis, but interpretation of responses at the higher threat levels was hampered by the differential mortality of males across infection cue and diet treatments. A high protein, low carbohydrate diet severely reduced the health, survival, and overall fitness of male crickets. There was, however, no evidence of an interaction between diet and infection cue dose on calling effort, suggesting that the threshold for terminal investment was not contingent on diet as investigated here.
Collapse
Affiliation(s)
- Kristin R. Duffield
- Behavior, Ecology, Evolution and Systematics SectionSchool of Biological SciencesIllinois State UniversityNormalILUSA
- Present address:
Crop Bioprotection Research UnitUnited States Department of AgricultureNational Center for Agricultural Utilization Research, Agricultural Research ServicePeoriaILUSA
| | - Kylie J. Hampton
- Behavior, Ecology, Evolution and Systematics SectionSchool of Biological SciencesIllinois State UniversityNormalILUSA
- Present address:
Crop Bioprotection Research UnitUnited States Department of AgricultureNational Center for Agricultural Utilization Research, Agricultural Research ServicePeoriaILUSA
| | | | - James Rapkin
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| | - John Hunt
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
- School of Science and Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSWAustralia
| | - Ben M. Sadd
- Behavior, Ecology, Evolution and Systematics SectionSchool of Biological SciencesIllinois State UniversityNormalILUSA
| | - Scott K. Sakaluk
- Behavior, Ecology, Evolution and Systematics SectionSchool of Biological SciencesIllinois State UniversityNormalILUSA
| |
Collapse
|
32
|
Le Gall M, Word ML, Thompson N, Beye A, Cease AJ. Nitrogen fertilizer decreases survival and reproduction of female locusts by increasing plant protein to carbohydrate ratio. J Anim Ecol 2020; 89:2214-2221. [PMID: 32743808 DOI: 10.1111/1365-2656.13288] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/19/2020] [Indexed: 12/01/2022]
Abstract
Nitrogen limitation theory predicts that terrestrial plants should benefit from nitrogen inputs and that herbivores should benefit from subsequent higher plant protein contents. While this pattern has generally been supported, some herbivorous insects have shown preference and higher performance on low protein (p), high carbohydrate (c) diets as juveniles. However, little is known about the effects on reproduction in adults. Using nitrogen fertilizer, we demonstrate that high plant p:c has negative effects on Senegalese locust (Orthoptera: Oedaeleus senegalensis) reproduction and survival in an agroecological setting. For this, we measured p:c in millet plants Pennisetum glaucum that received two levels of fertilizer (high and moderate) and a control, then we caged locusts on these plants for 2 weeks. In the laboratory, we gave locusts the choice between untreated millet leaves and leaves that received one of the two fertilization treatment. We found that fertilization increased p:c ratio in a concentration-dependent fashion. We counted the number of locusts alive over the course of 2 weeks and showed that fewer females survived on fertilized plants than on control plants. Females that ate plants from the high fertilization treatment laid lighter eggs. Finally, we showed that female locusts prefer unfertilized plants to plants with a high p:c. We hypothesize that this pattern will apply broadly to species that have extensive carbohydrate needs, such as long-distance migrators. Because many ecological studies focus primarily on nitrogen or protein, and fail to consider carbohydrates, this study has important implications for how ecologists consider nutrient limitation of primary consumers in ecosystems globally.
Collapse
Affiliation(s)
- Marion Le Gall
- School of Sustainability, Arizona State University, Tempe, AZ, USA
| | - Mira L Word
- Earth Wonder Consulting, Columbia Falls, MT, USA
| | - Natalia Thompson
- School of Liberal Arts and Sciences, Arizona State University, Tempe, AZ, USA
| | - Alioune Beye
- School of Liberal Arts and Sciences, Arizona State University, Tempe, AZ, USA
| | - Arianne J Cease
- School of Sustainability, Arizona State University, Tempe, AZ, USA.,Direction de la Protection des Végétaux, Nganda, Senegal.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
33
|
Moatt JP, Savola E, Regan JC, Nussey DH, Walling CA. Lifespan Extension Via Dietary Restriction: Time to Reconsider the Evolutionary Mechanisms? Bioessays 2020; 42:e1900241. [DOI: 10.1002/bies.201900241] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/24/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Joshua P. Moatt
- Institute of Evolutionary BiologySchool of Biological ScienceUniversity of Edinburgh Edinburgh EH9 3FL UK
| | - Eevi Savola
- Institute of Evolutionary BiologySchool of Biological ScienceUniversity of Edinburgh Edinburgh EH9 3FL UK
| | - Jennifer C. Regan
- Institute for Immunology and InfectionSchool of Biological ScienceUniversity of Edinburgh Edinburgh EH9 3FL UK
| | - Daniel H. Nussey
- Institute of Evolutionary BiologySchool of Biological ScienceUniversity of Edinburgh Edinburgh EH9 3FL UK
| | - Craig A. Walling
- Institute of Evolutionary BiologySchool of Biological ScienceUniversity of Edinburgh Edinburgh EH9 3FL UK
| |
Collapse
|
34
|
Alqurashi S, English S, Wall R. Nutritional requirements for reproduction and survival in the blowfly Lucilia sericata. MEDICAL AND VETERINARY ENTOMOLOGY 2020; 34:207-214. [PMID: 31846089 DOI: 10.1111/mve.12425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/31/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Insects with access to finite energy resources must allocate these between maintenance and reproduction in a way that maximizes fitness. This will be influenced by a range of life-history characteristics and the environment in which any particular insect species lives. In the present study, females of the blowfly Lucilia sericata (Diptera: Calliphoridae) were fed diets differing in protein and carbohydrate (sucrose) content and the allocation of lipid to reproduction was quantified using a spectrophotometric method of analysis. Immediately after adult emergence, total body lipid, scaled for differences in body size, showed an initial decline as it was utilized to meet the metabolic demands of cuticle deposition, muscle maturation and then flight. When flies were denied access to sucrose, stored lipid then continued to decrease until flies died, usually within 4 days of emergence. However, flies given access to sucrose were able to increase body lipid content, demonstrating that carbohydrate is essential for homeostasis and that it can be used to synthesize lipid. Nevertheless, female flies fed sucrose only were unable to synthesize egg yolk. Only flies provided with protein were able to mature eggs. However, the rate of egg maturation and number and size of eggs matured were greater for female flies given liver compared with flies provided with pure whey protein powder. The results demonstrate the importance of different dietary components for different elements of the life-history of L. sericata, namely survival and reproduction.
Collapse
Affiliation(s)
- S Alqurashi
- School of Biological Sciences, University of Bristol, Bristol, U.K
- Faculty of Sciences, Department of Biology, University of Jeddah, Jeddah, Saudi Arabia
| | - S English
- School of Biological Sciences, University of Bristol, Bristol, U.K
| | - R Wall
- School of Biological Sciences, University of Bristol, Bristol, U.K
| |
Collapse
|
35
|
Majumder R, Sutcliffe B, Taylor PW, Chapman TA. Microbiome of the Queensland Fruit Fly through Metamorphosis. Microorganisms 2020; 8:microorganisms8060795. [PMID: 32466500 PMCID: PMC7356580 DOI: 10.3390/microorganisms8060795] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Bactrocera tryoni (Froggatt) (Queensland fruit fly, or “Qfly”) is a highly polyphagous tephritid fruit fly and a serious economic pest in Australia. Qfly biology is intimately linked to the bacteria and fungi of its microbiome. While there are numerous studies of the microbiome in larvae and adults, the transition of the microbiome through the pupal stage remains unknown. To address this knowledge gap, we used high-throughput Next-Generation Sequencing (NGS) to examine microbial communities at each developmental stage in the Qfly life cycle, targeting the bacterial 16S rRNA and fungal ITS regions. We found that microbial communities were similar at the larval and pupal stage and were also similar between adult males and females, yet there were marked differences between the larval and adult stages. Specific bacterial and fungal taxa are present in the larvae and adults (fed hydrolyzed yeast with sugar) which is likely related to differences in nutritional biology of these life stages. We observed a significant abundance of the Acetobacteraceae at the family level, both in the larval and pupal stages. Conversely, Enterobacteriaceae was highly abundant (>80%) only in the adults. The majority of fungal taxa present in Qfly were yeasts or yeast-like fungi. In addition to elucidating changes in the microbiome through developmental stages, this study characterizes the Qfly microbiome present at the establishment of laboratory colonies as they enter the domestication process.
Collapse
Affiliation(s)
- Rajib Majumder
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (P.W.T.); (T.A.C.)
- Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW 2568, Australia
- Correspondence:
| | - Brodie Sutcliffe
- Department of Environmental Sciences, Macquarie University, North Ryde, NSW 2109, Australia;
- Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW 2568, Australia
| | - Phillip W. Taylor
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (P.W.T.); (T.A.C.)
| | - Toni A. Chapman
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (P.W.T.); (T.A.C.)
- Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW 2568, Australia
| |
Collapse
|
36
|
Senior AM, Solon-Biet SM, Cogger VC, Le Couteur DG, Nakagawa S, Raubenheimer D, Simpson SJ. Dietary macronutrient content, age-specific mortality and lifespan. Proc Biol Sci 2020; 286:20190393. [PMID: 31039722 DOI: 10.1098/rspb.2019.0393] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Protein and calorie restrictions extend median lifespan in many organisms. However, studies suggest that among-individual variation in the age at death is also affected. Ultimately, both of these outcomes must be caused by effects of nutrition on underlying patterns of age-specific mortality (ASM). Using model life tables, we tested for effects of dietary macronutrients on ASM in mice ( Mus musculus). High concentrations of protein and fat relative to carbohydrates were associated with low life expectancy and high variation in the age at death, a result caused predominantly by high mortality prior to middle age. A lifelong diet comprising the ratio of macronutrients self-selected by mouse (in early adulthood) was associated with low mortality up until middle age, but higher late-life mortality. This pattern results in reasonably high life expectancy, but very low variation in the age at death. Our analyses also indicate that it may be possible to minimize ASM across life by altering the ratio of dietary protein to carbohydrate in the approach to old age. Mortality in early and middle life was minimized at around one-part protein to two-parts carbohydrate, whereas in later life slightly greater than equal parts protein to carbohydrate reduced mortality.
Collapse
Affiliation(s)
- Alistair M Senior
- 1 Charles Perkins Centre, The University of Sydney , Camperdown, New South Wales 2006 , Australia.,2 School of Life and Environmental Sciences, The University of Sydney , Camperdown, New South Wales 2006 , Australia
| | - Samantha M Solon-Biet
- 1 Charles Perkins Centre, The University of Sydney , Camperdown, New South Wales 2006 , Australia.,2 School of Life and Environmental Sciences, The University of Sydney , Camperdown, New South Wales 2006 , Australia
| | - Victoria C Cogger
- 1 Charles Perkins Centre, The University of Sydney , Camperdown, New South Wales 2006 , Australia.,3 School of Medicine, The University of Sydney , Camperdown, New South Wales 2006 , Australia.,4 Ageing and Alzheimers Institute and ANZAC Research Institute, Concord Hospital Concord , New South Wales , Australia
| | - David G Le Couteur
- 1 Charles Perkins Centre, The University of Sydney , Camperdown, New South Wales 2006 , Australia.,3 School of Medicine, The University of Sydney , Camperdown, New South Wales 2006 , Australia.,4 Ageing and Alzheimers Institute and ANZAC Research Institute, Concord Hospital Concord , New South Wales , Australia
| | - Shinichi Nakagawa
- 5 Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales , Sydney, New South Wales 2052 , Australia.,6 Diabetes and Metabolism Division, Garvan Institute of Medical Research , Darlinghurst, Sydney, New South Wales 2010 , Australia
| | - David Raubenheimer
- 1 Charles Perkins Centre, The University of Sydney , Camperdown, New South Wales 2006 , Australia.,2 School of Life and Environmental Sciences, The University of Sydney , Camperdown, New South Wales 2006 , Australia
| | - Stephen J Simpson
- 1 Charles Perkins Centre, The University of Sydney , Camperdown, New South Wales 2006 , Australia.,2 School of Life and Environmental Sciences, The University of Sydney , Camperdown, New South Wales 2006 , Australia
| |
Collapse
|
37
|
Grund-Mueller N, Ruedenauer FA, Spaethe J, Leonhardt SD. Adding Amino Acids to a Sucrose Diet Is Not Sufficient to Support Longevity of Adult Bumble Bees. INSECTS 2020; 11:insects11040247. [PMID: 32326445 PMCID: PMC7240467 DOI: 10.3390/insects11040247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 01/18/2023]
Abstract
Dietary macro-nutrients (i.e., carbohydrates, protein, and fat) are important for bee larval development and, thus, colony health and fitness. To which extent different diets (varying in macro-nutrient composition) affect adult bees and whether they can thrive on nectar as the sole amino acid source has, however, been little investigated. We investigated how diets varying in protein concentration and overall nutrient composition affected consumption, longevity, and breeding behavior of the buff-tailed bumble bee, Bombus terrestris (Hymenoptera: Apidae). Queenless micro-colonies were fed either natural nutrient sources (pollen), nearly pure protein (i.e., the milk protein casein), or sucrose solutions with low and with high essential amino acid content in concentrations as can be found in nectar. We observed micro-colonies for 110 days. We found that longevity was highest for pure pollen and lowest for pure sucrose solution and sucrose solution supplemented with amino acids in concentrations as found in the nectar of several plant species. Adding higher concentrations of amino acids to sucrose solution did only slightly increase longevity compared to sucrose alone. Consequently, sucrose solution with the applied concentrations and proportions of amino acids or other protein sources (e.g., casein) alone did not meet the nutritional needs of healthy adult bumble bees. In fact, longevity was highest and reproduction only successful in micro-colonies fed pollen. These results indicate that, in addition to carbohydrates and protein, adult bumble bees, like larvae, need further nutrients (e.g., lipids and micro-nutrients) for their well-being. An appropriate nutritional composition seemed to be best provided by floral pollen, suggesting that pollen is an essential dietary component not only for larvae but also for adult bees.
Collapse
Affiliation(s)
- Nils Grund-Mueller
- Department of Animal Ecology and Tropical Biology (Zoology III), University of Würzburg, 97074 Würzburg, Germany; (N.G.-M.); (F.A.R.); (S.D.L.)
| | - Fabian A. Ruedenauer
- Department of Animal Ecology and Tropical Biology (Zoology III), University of Würzburg, 97074 Würzburg, Germany; (N.G.-M.); (F.A.R.); (S.D.L.)
- Plant-Insect Interactions Group, Technical University of Munich, 85354 Freising, Germany
| | - Johannes Spaethe
- Department of Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, 97074 Würzburg, Germany
- Correspondence: ; Tel.: +49-931-31-83408
| | - Sara D. Leonhardt
- Department of Animal Ecology and Tropical Biology (Zoology III), University of Würzburg, 97074 Würzburg, Germany; (N.G.-M.); (F.A.R.); (S.D.L.)
- Plant-Insect Interactions Group, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
38
|
Open Data for Open Questions in Comparative Nutrition. INSECTS 2020; 11:insects11040236. [PMID: 32283710 PMCID: PMC7240530 DOI: 10.3390/insects11040236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 11/26/2022]
Abstract
Achieving a better understanding of the consequences of nutrition to animal fitness and human health is a major challenge of our century. Nutritional ecology studies increasingly use nutritional landscapes to map the complex interacting effects of nutrient intake on animal performances, in a wide range of species and ecological contexts. Here, we argue that opening access to these hard-to-obtain, yet considerably insightful, data is fundamental to develop a comparative framework for nutrition research and offer new quantitative means to address open questions about the ecology and evolution of nutritional processes.
Collapse
|
39
|
Hosking CJ, Raubenheimer D, Charleston MA, Simpson SJ, Senior AM. Macronutrient intakes and the lifespan-fecundity trade-off: a geometric framework agent-based model. J R Soc Interface 2020; 16:20180733. [PMID: 30958189 DOI: 10.1098/rsif.2018.0733] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lifespan and fecundity, the main components in evolutionary fitness, are both strongly affected by nutritional state. Geometric framework of nutrition (GFN) experiments has shown that lifespan and fecundity are separated in nutrient space leading to a functional trade-off between the two traits. Here we develop a spatially explicit agent-based model (ABM) using the GFN to explore how ecological factors may cause selection on macronutrient appetites to optimally balance these life-history traits. We show that increasing the risk of extrinsic mortality favours intake of a mixture of nutrients that is associated with maximal fecundity at the expense of reduced longevity and that this result is robust across spatial and nutritional environments. These model behaviours are consistent with what has been observed in studies that quantify changes in life history in response to environmental manipulations. Previous GFN-derived ABMs have treated fitness as a single value. This is the first such model to instead decompose fitness into its primary component traits, longevity and fecundity, allowing evolutionary fitness to be an emergent property of the two. Our model demonstrates that selection on macronutrient appetites may affect life-history trade-offs and makes predictions that can be directly tested in artificial selection experiments.
Collapse
Affiliation(s)
- Cameron J Hosking
- 1 Charles Perkins Centre, The University of Sydney , Sydney, New South Wales , Australia.,2 School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales , Australia
| | - David Raubenheimer
- 1 Charles Perkins Centre, The University of Sydney , Sydney, New South Wales , Australia.,2 School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales , Australia
| | - Michael A Charleston
- 3 School of Physical Sciences, University of Tasmania , Hobart, Tasmania 7005 , Australia
| | - Stephen J Simpson
- 1 Charles Perkins Centre, The University of Sydney , Sydney, New South Wales , Australia.,2 School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales , Australia
| | - Alistair M Senior
- 1 Charles Perkins Centre, The University of Sydney , Sydney, New South Wales , Australia.,2 School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales , Australia
| |
Collapse
|
40
|
Henry Y, Overgaard J, Colinet H. Dietary nutrient balance shapes phenotypic traits of Drosophila melanogaster in interaction with gut microbiota. Comp Biochem Physiol A Mol Integr Physiol 2020; 241:110626. [DOI: 10.1016/j.cbpa.2019.110626] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/04/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022]
|
41
|
Woruba DN, Morrow JL, Reynolds OL, Chapman TA, Collins DP, Riegler M. Diet and irradiation effects on the bacterial community composition and structure in the gut of domesticated teneral and mature Queensland fruit fly, Bactrocera tryoni (Diptera: Tephritidae). BMC Microbiol 2019; 19:281. [PMID: 31870300 PMCID: PMC6929413 DOI: 10.1186/s12866-019-1649-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mass-rearing, domestication and gamma irradiation of tephritid fruit flies used in sterile insect technique (SIT) programmes can negatively impact fly quality and performance. Symbiotic bacteria supplied as probiotics to mass-reared fruit flies may help to overcome some of these issues. However, the effects of tephritid ontogeny, sex, diet and irradiation on their microbiota are not well known. RESULTS We have used next-generation sequencing to characterise the bacterial community composition and structure within Queensland fruit fly, Bactrocera tryoni (Froggatt), by generating 16S rRNA gene amplicon libraries derived from the guts of 58 individual teneral and mature, female and male, sterile and fertile adult flies reared on artificial larval diets in a laboratory or mass-rearing environment, and fed either a full adult diet (i.e. sugar and yeast hydrolysate) or a sugar only adult diet. Overall, the amplicon sequence read volume in tenerals was low and smaller than in mature adult flies. Operational taxonomic units (OTUs), belonging to the families Enterobacteriaceae (8 OTUs) and Acetobacteraceae (1 OTU) were most prevalent. Enterobacteriaceae dominated laboratory-reared tenerals from a colony fed a carrot-based larval diet, while Acetobacteraceae dominated mass-reared tenerals from a production facility colony fed a lucerne chaff based larval diet. As adult flies matured, Enterobacteriaceae became dominant irrespective of larval origin. The inclusion of yeast in the adult diet strengthened this shift away from Acetobacteraceae towards Enterobacteriaceae. Interestingly, irradiation increased 16S rRNA gene sequence read volume. CONCLUSIONS Our findings suggest that bacterial populations in fruit flies experience significant bottlenecks during metamorphosis. Gut bacteria in teneral flies were less abundant and less diverse, and impacted by colony origin. In contrast, mature adult flies had selectively increased abundances for some gut bacteria, or acquired these bacteria from the adult diet and environment. Furthermore, irradiation augmented bacterial abundance in mature flies. This implies that either some gut bacteria were compensating for damage caused by irradiation or irradiated flies had lost their ability to regulate bacterial load. Our findings suggest that the adult stage prior to sexual maturity may be ideal to target for probiotic manipulation of fly microbiota to increase fly performance in SIT programmes.
Collapse
Affiliation(s)
- Deane N Woruba
- Plant Biosecurity Cooperative Research Centre, LPO, Box 5012, Bruce, ACT, 2617, Australia. .,Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia. .,Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Private Bag 4008, Narellan, NSW, 2567, Australia.
| | - Jennifer L Morrow
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Olivia L Reynolds
- Plant Biosecurity Cooperative Research Centre, LPO, Box 5012, Bruce, ACT, 2617, Australia.,Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Private Bag 4008, Narellan, NSW, 2567, Australia.,Graham Centre for Agricultural Innovation (an alliance between Charles Sturt University and NSW DPI), Locked Bag 588, Wagga Wagga, NSW, 2678, Australia.,cesar Pty Ltd, 293 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Toni A Chapman
- Plant Biosecurity Cooperative Research Centre, LPO, Box 5012, Bruce, ACT, 2617, Australia.,Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Private Bag 4008, Narellan, NSW, 2567, Australia
| | - Damian P Collins
- Biometrics Unit, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Private Bag 4008, Narellan, NSW, 2567, Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
42
|
Ponton F, Morimoto J, Robinson K, Kumar SS, Cotter SC, Wilson K, Simpson SJ. Macronutrients modulate survival to infection and immunity in Drosophila. J Anim Ecol 2019; 89:460-470. [PMID: 31658371 PMCID: PMC7027473 DOI: 10.1111/1365-2656.13126] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022]
Abstract
Immunity and nutrition are two essential modulators of individual fitness. However, while the implications of immune function and nutrition on an individual's lifespan and reproduction are well established, the interplay between feeding behaviour, infection and immune function remains poorly understood. Asking how ecological and physiological factors affect immune responses and resistance to infections is a central theme of eco‐immunology. In this study, we used the fruit fly, Drosophila melanogaster, to investigate how infection through septic injury modulates nutritional intake and how macronutrient balance affects survival to infection by the pathogenic Gram‐positive bacterium Micrococcus luteus. Our results show that infected flies maintain carbohydrate intake, but reduce protein intake, thereby shifting from a protein‐to‐carbohydrate (P:C) ratio of ~1:4 to ~1:10 relative to non‐infected and sham‐infected flies. Strikingly, the proportion of flies dying after M. luteus infection was significantly lower when flies were fed a low‐P high‐C diet, revealing that flies shift their macronutrient intake as means of nutritional self‐medication against bacterial infection. These results are likely due to the effects of the macronutrient balance on the regulation of the constitutive expression of innate immune genes, as a low‐P high‐C diet was linked to an upregulation in the expression of key antimicrobial peptides. Together, our results reveal the intricate relationship between macronutrient intake and resistance to infection and integrate the molecular cross‐talk between metabolic and immune pathways into the framework of nutritional immunology.
Collapse
Affiliation(s)
- Fleur Ponton
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Juliano Morimoto
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Katie Robinson
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Sheemal S Kumar
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Kenneth Wilson
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Stephen J Simpson
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
43
|
Le Gall M, Word ML, Thompson N, Manneh B, Beye A, Cease AJ. Linking land use and the nutritional ecology of herbivores: A case study with the Senegalese locust. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Marion Le Gall
- School of Sustainability Arizona State University Tempe AZ USA
| | - Mira L. Word
- School of Sustainability Arizona State University Tempe AZ USA
| | - Natalia Thompson
- School of Liberal Arts and Sciences Arizona State University Tempe AZ USA
| | | | - Alioune Beye
- Direction de la Protection des Végétaux Nganda Senegal
| | - Arianne J. Cease
- School of Sustainability Arizona State University Tempe AZ USA
- School of Life Sciences Arizona State University Tempe AZ USA
| |
Collapse
|
44
|
Davies LR, Schou MF, Kristensen TN, Loeschcke V. Fluctuations in nutrient composition affect male reproductive output in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2019; 118:103940. [PMID: 31493390 DOI: 10.1016/j.jinsphys.2019.103940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/13/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Insects are known to selectively balance their intake of protein and carbohydrate to optimize reproduction and survival. For insects who feed on decomposing fruit, fluctuations in macronutrient composition occur as fruits ripe and decomposition progresses which may challenge optimal resource allocation. Using Drosophila melanogaster, we tested the effect of macronutrient fluctuations and the variability of these fluctuations on starvation resistance and components of reproductive output; traits known to be sensitive to different protein to carbohydrate (P:C) ratios in the diet. For 8 days, flies were fed the same protein to carbohydrate (P:C) ratio (constant feeding), or fed diets with fluctuations in P:C ratio on each day; these fluctuations being regular (predictably fluctuating) or irregular (unpredictably fluctuating). The three feeding regimes yielded the same average P:C ratio across the duration of the experiment. We found no difference in starvation resistance across the feeding regimes. Interestingly, there was a sexual dimorphism in the effect on reproductive output with males performing worst in the unpredictable feeding regime, and with no effect of feeding regime on female performance. Our study provides evidence for means of adapting to fluctuating macronutrient composition and suggests females are more tactful than males in storing and allocating resources for reproduction.
Collapse
Affiliation(s)
| | - Mads F Schou
- Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Torsten N Kristensen
- Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark; Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg East, Denmark
| | - Volker Loeschcke
- Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
45
|
Alam I, Almajwal AM, Alam W, Alam I, Ullah N, Abulmeaaty M, Razak S, Khan S, Pawelec G, Paracha PI. The immune-nutrition interplay in aging – facts and controversies. ACTA ACUST UNITED AC 2019. [DOI: 10.3233/nha-170034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Iftikhar Alam
- Department of Community Health Sciences, Clinical Nutrition Program, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Human Nutrition & Dietetics, Bacha Khan University Charsadda, Charsadda, Khyber Pakhtunkhwa, Pakistan
- Tübingen Ageing and Tumour Immunology Group, Zentrum für Medizinische Forschung, University of Tübingen, Tübingen, Germany
| | - Ali M. Almajwal
- Department of Community Health Sciences, Clinical Nutrition Program, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Wajid Alam
- Oral and Maxillofacial Surgery, Khyber Colleg of Dentistry, KPK, Peshawar, Pakistan
| | - Ibrar Alam
- Department of Biotechnology, Bacha Khan University Charsadda, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Niamat Ullah
- Department of Human Nutrition, The Agriculture University Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Mahmoud Abulmeaaty
- Department of Community Health Sciences, Clinical Nutrition Program, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, Clinical Nutrition Program, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Saleem Khan
- Department of Human Nutrition, The Agriculture University Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Graham Pawelec
- Tübingen Ageing and Tumour Immunology Group, Zentrum für Medizinische Forschung, University of Tübingen, Tübingen, Germany
- Health Sciences North Research Institute, Sudbury, ON, Canada
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - Parvez Iqbal Paracha
- Department of Human Nutrition, The Agriculture University Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
46
|
Mautz BS, Rode NO, Bonduriansky R, Rundle HD. Comparing ageing and the effects of diet supplementation in wild vs. captive antler flies,
Protopiophila litigata. J Anim Ecol 2019; 88:1913-1924. [DOI: 10.1111/1365-2656.13079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Brian S. Mautz
- Department of Biology University of Ottawa Ottawa ON Canada
| | | | - Russell Bonduriansky
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences University of New South Wales Sydney NSW Australia
| | | |
Collapse
|
47
|
Ng SH, Simpson SJ, Simmons LW. Sex differences in nutrient intake can reduce the potential for sexual conflict over fitness maximization by female and male crickets. J Evol Biol 2019; 32:1106-1116. [DOI: 10.1111/jeb.13513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 07/03/2019] [Accepted: 07/30/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Soon Hwee Ng
- Centre for Evolutionary Biology School of Biological Sciences University of Western Australia Crawley WA Australia
| | - Stephen J. Simpson
- Charles Perkins Centre and School of Life and Environmental Sciences The University of Sydney SydneyNSW Australia
| | - Leigh W. Simmons
- Centre for Evolutionary Biology School of Biological Sciences University of Western Australia Crawley WA Australia
| |
Collapse
|
48
|
Papanastasiou SA, Carey JR, Papadopoulos NT. Effects of early-life protein starvation on longevity and sexual performance of male medfly. PLoS One 2019; 14:e0219518. [PMID: 31344046 PMCID: PMC6657835 DOI: 10.1371/journal.pone.0219518] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022] Open
Abstract
Using a well-established model species for demographic, behavioural and aging research, the Mediterranean fruit fly (Ceratitis capitata), we explored whether nutritional stress early in adult life affects the sexual performance and survival in older ages. To do so we established two different protein starvation (PS) protocols that included the elimination of proteinaceous diet either before or after sexual maturity of male medflies. The frequency of sexual signalling and the age of death were daily recorded. Sexual signalling is directly related with male mating success in this model system. PS early in adult life results in high mortality rates (similar to sugar-only fed males), which are gradually restored in more advanced ages. Provision of a proteinaceous diet following early-life PS increases straightaway male sexual signalling to levels similar with those having continuous access to proteinaceous diet. Switching diet regimes from a protein-free to a protein-rich one progressively compensates mortality rates. Apparently, males prioritize sexual signalling over lifespan. PS after attaining sexual maturity significantly reduces both longevity and sexual performance. Access to protein only early in life is insufficient to support lifetime energy-consuming behaviours such as sexual signalling. Continuous access to a proteinaceous diet determines both lifetime sexual performance and longevity. Early in life PS males prioritize the allocation of nutritional elements, when available, in sexual activities over soma-maintenance.
Collapse
Affiliation(s)
- Stella A. Papanastasiou
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - James R. Carey
- Department of Entomology, University of California, Davis, California, United States of America
| | - Nikos T. Papadopoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
- * E-mail:
| |
Collapse
|
49
|
Dinh H, Mendez V, Tabrizi ST, Ponton F. Macronutrients and infection in fruit flies. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 110:98-104. [PMID: 31082476 DOI: 10.1016/j.ibmb.2019.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/24/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Nutrition and infection are closely linked. While it is now well established that hosts can modulate their nutrition after being infected, the extent to which this change in foraging provides the host with a greater fitness remains to be fully understood. Our study explored the relationships between dietary choice, macronutrients intake [i.e., protein (P) and carbohydrate (C)], infection, survival rate and growth of pathogenic bacterial population in the true fruit fly Bactrocera tryoni. Results showed that flies injected with the bacterium Serratia marcescens decreased their macronutrient intake and shifted their diet choice to carbohydrate-biased diet compared to naïve individuals. Interestingly, flies injected with either PBS (i.e., sham-infected) or heat-killed bacteria also reduced food intake and modulated diet choice but only for a day after injection. When infected flies were restricted to the diet they selected (i.e., PC 1:8), they survived better the infection than those restricted to a protein-biased diet (i.e., PC 1:5). In addition, we did not observe any growth of pathogen load in infected flies fed PC 1:8 for the first 3 days post-infection. Finally, a decrease in lipid body reserves was found in flies injected with live bacteria and, interestingly, this loss of body lipid also occurred in flies injected with heat-killed bacteria, but in a diet-dependent manner. Our results indicated that B. tryoni flies modulated their macronutrient intake and decreased the negative effects of the infection on their survival ("nutritional self-medication") the first days following the infection.
Collapse
Affiliation(s)
- Hue Dinh
- Department of Biological Science, Macquarie University, Australia
| | - Vivian Mendez
- Department of Biological Science, Macquarie University, Australia
| | | | - Fleur Ponton
- Department of Biological Science, Macquarie University, Australia.
| |
Collapse
|
50
|
Deans C, Sword GA, Behmer ST. First evidence of protein-carbohydrate regulation in a plant bug (Lygus hesperus). JOURNAL OF INSECT PHYSIOLOGY 2019; 116:118-124. [PMID: 31112715 DOI: 10.1016/j.jinsphys.2019.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/02/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Lygus bugs are highly polyphagous piercing/sucking insects found throughout North America. Collectively, they have been reported to feed on over 330 plant species (one of the broadest host range ever documented for a group of insects); they also feed on many economically important crops. Despite its prevalence across North America and status as a common pest in many agroecosystems, very little is known about how Lygus bugs regulate their intake of nutrients. In reality, little is known about nutrient regulation for most hemipterans, specifically non-phloem feeding species in the suborder Heteroptera. This likely reflects difficulties in developing adequate artificial diets for insects with piercing/sucking mouthparts. There is, however, an artificial diet for L. hersperus, and in this study we modified it and performed choice and no-choice experiments to determine how L. hesperus regulates its intake of two macronutrients - protein (p) and carbohydrates (c) - that are tightly linked to survival and performance in other insect herbivores. In choice experiments L. hesperus was allowed to select between two foods with different protein:carbohydrate ratios. We documented strong regulation for protein and carbohydrates, with late instar nymphs selecting a slightly protein-biased intake target (protein-carbohydrate ratio = 1.5:1). We also performed no-choice experiments, where nymphs were restricted to a single food. Here, the protein-carbohydrate ratio of their food had a strong impact on survival, which was highest for nymphs reared on the treatment with a protein-carbohydrate ratio closest to the self-selected intake target (determined by the choice experiments), but no significant impact on developmental time or mass gain. Our data are the first of their kind for a non-phloem feeding hemipteran and provide a starting point for more broadly understanding and further investigating the nutritional ecology/physiology of Lygus bugs. Our study also provides a framework for exploring nutrient regulation in other hemipterans and for optimizing artificial diets for piercing/sucking insects, especially heteropterans.
Collapse
Affiliation(s)
- Carrie Deans
- Texas A&M University, College Station, TX 77843, United States; University of Minnesota, St. Paul, MN 55108, United States
| | - Gregory A Sword
- Texas A&M University, College Station, TX 77843, United States
| | | |
Collapse
|