1
|
Furlong MA, Paul KC, Parra KL, Fournier AJ, Ellsworth PC, Cockburn MG, Arellano AF, Bedrick EJ, Beamer PI, Ritz B. Preconception and first trimester exposure to pesticides and associations with stillbirth. Am J Epidemiol 2025; 194:44-55. [PMID: 39013781 DOI: 10.1093/aje/kwae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/22/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Associations of pesticide exposures during preconception with stillbirth have not been well explored. We linked Arizona pesticide use records with birth certificates from 2006 to 2020 and estimated associations of living within 500 m of any pyrethroid, organophosphate (OP), or carbamate pesticide applications during a 90-day preconception window or the first trimester, with stillbirth. We considered a binary measure of exposure (any exposure), as well as log-pounds and log-acres applied within 500 m, in a negative control exposure framework with log-binomial regression. We included 1 237 750 births, 2290 stillbirths, and 27 pesticides. During preconception, any exposure to pesticides was associated with stillbirth, including cyfluthrin (risk ratio [RR] = 1.97; 95% CI, 1.17-3.32); zeta-cypermethrin (RR = 1.81; 95% CI, 1.20-2.74); OPs as a class (RR = 1.60; 95% CI, 1.16-2.19); malathion (RR = 2.02; 95% CI, 1.26-3.24); carbaryl (RR = 6.39; 95% CI, 2.07-19.74); and propamocarb hydrochloride (RR = 7.72; 95% CI, 1.10-54.20). During the first trimester, fenpropathrin (RR = 4.36; 95% CI, 1.09-17.50); permethrin (RR = 1.57; 95% CI, 1.02-2.42); OPs as a class (RR = 1.50; 95% CI, 1.11-2.01); acephate (RR = 2.31; 95% CI, 1.22-4.40); and formetanate hydrochloride (RR = 7.22; 95% CI, 1.03-50.58) were associated with stillbirth. Interpretations were consistent when using continuous measures of pounds or acres of exposure. Pesticide exposures during preconception and first trimester may be associated with stillbirth. This article is part of a Special Collection on Environmental Epidemiology.
Collapse
Affiliation(s)
- Melissa A Furlong
- Department of Community, Environment, and Policy, Environmental Health Sciences, University of Arizona, Tucson, Arizona, United States
| | - Kimberly C Paul
- Department of Neurology, University of California at Los Angeles, Los Angeles, California, United States
| | - Kimberly L Parra
- Department of Epidemiology & Biostatistics, University of Arizona College of Public Health, Tucson, Arizona, United States
| | - Alfred J Fournier
- Department of Entomology, University of Arizona College of Agricultural and Life Sciences, Tucson, Arizona, United States
| | - Peter C Ellsworth
- Department of Entomology, University of Arizona College of Agricultural and Life Sciences, Tucson, Arizona, United States
| | - Myles G Cockburn
- Department of Community Medicine, University of Southern California, Los Angeles, California, United States
| | - Avelino F Arellano
- Department of Hydrology and Atmospheric Sciences, University of Arizona College of Science, Tucson, Arizona, United States
| | - Edward J Bedrick
- Department of Epidemiology & Biostatistics, University of Arizona College of Public Health, Tucson, Arizona, United States
| | - Paloma I Beamer
- Department of Community, Environment, and Policy, Environmental Health Sciences, University of Arizona, Tucson, Arizona, United States
| | - Beate Ritz
- Department of Epidemiology, University of California at Los Angeles, Los Angeles, California, United States
| |
Collapse
|
2
|
Fotopoulou A, Angelopoulou MT, Pratsinis H, Mavrogonatou E, Kletsas D. A subset of human dermal fibroblasts overexpressing Cockayne syndrome group B protein resist UVB radiation-mediated premature senescence. Aging Cell 2024:e14422. [PMID: 39698891 DOI: 10.1111/acel.14422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/23/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Ultraviolet B (UVB) radiation is a major contributor to skin photoaging. Although mainly absorbed by the epidermis, UVB photons managing to penetrate the upper dermis affect human dermal fibroblasts (HDFs), leading, among others, to the accumulation of senescent cells. In vitro studies have shown that repeated exposures to subcytotoxic UVB radiation doses provoke HDFs' premature senescence shortly after the end of the treatment period. Here, we found that repetitive exposures to non-cytotoxic UVB radiation doses after several days lead to mixed cultures, containing both senescent cells and fibroblasts resisting senescence. "Resistant" fibroblasts were more resilient to a novel intense UVB radiation stimulus. RNA-seq analysis revealed that ERCC6, encoding Cockayne syndrome group B (CSB) protein, is up-regulated in resistant HDFs compared to young and senescent cells. CSB was found to be a key molecule conferring protection toward UVB-induced cytotoxicity and senescence, as siRNA-mediated CSB loss-of-expression rendered HDFs significantly more susceptible to a high UVB radiation dose, while cells from a CSB-deficient patient were found to be more sensitive to UVB-mediated toxicity, as well as senescence. UVB-resistant HDFs remained normal (able to undergo replicative senescence) and non-tumorigenic. Even though they formed a distinct population in-between young and senescent cells, resistant HDFs retained numerous tissue-impairing characteristics of the senescence-associated secretory phenotype, including increased matrix metalloprotease activity and promotion of epidermoid tumor xenografts in immunodeficient mice. Collectively, here we describe a novel subpopulation of HDFs showing increased resistance to UVB-mediated premature senescence while retaining undesirable traits that may negatively affect skin homeostasis.
Collapse
Affiliation(s)
- Asimina Fotopoulou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
- Department of Chemistry, University of Patras, Patras, Greece
| | - Maria T Angelopoulou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
3
|
Zhang L, Cai L, Cai Y, Ke W, Zhou L, Yang Y, Huang W, Zou J, Chen H. Studies on the role of moderate doses of ionizing radiation-induced cellular senescence in mouse lung tissue. Int J Radiat Biol 2024; 100:1650-1664. [PMID: 39302851 DOI: 10.1080/09553002.2024.2404456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE To investigate the role of moderate doses of ionizing radiation-induced cellular senescence in mouse lung tissue and whole-body inflammation levels. MATERIAL AND METHODS Forty-two C57BL/6J mice were randomly divided into the control group, the 1, 3, and 7 days after 2 Gy irradiation group, and the 1, 3, and 7 days after 4 Gy irradiation group, with six mice in each group. The histopathology, cellular senescence, oxidative-antioxidant, DNA damage repair, and inflammation-related indicators of irradiated mice were examined. RESULTS Compared with the control group, the histopathological scores, the positive area of senescence-associated-β-galactosidase (SA-β-Gal) staining, and the mRNA levels of senescence-related genes in the lung tissues in all dose groups increased on 1, 3, and 7 days after irradiation. In peripheral blood, erythrocytes, leukocytes, platelets, hemoglobin, 8-hydroxydeoxyguanosine (8-OHdG), C-reactive protein, and other indicators showed a different trend in all dose groups. The levels of malondialdehyde(MDA), superoxide dismutase (SOD), glutathione (GSH), and 8-OHdG in the lung tissue showed different trends after 2 Gy and 4 Gy irradiation. The 8-Oxoguanine DNA glycosylase 1 (hOGG1) and O-6-methylguanine-DNA methyltransferase (MGMT) mRNA levels showed a trend of increasing and then decreasing. The levels of whole-body inflammation were significantly correlated with the levels of indicators related to cellular senescence and damage repair in the lung tissue of mice. CONCLUSIONS The moderate doses of ionizing radiation induce oxidative stress, and DNA damage and increase DNA repair gene expression in mouse lung tissue. The lung tissue cellular senescence correlates with the level of whole-body inflammation.
Collapse
Affiliation(s)
- Lingyu Zhang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China
- School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lina Cai
- Hospital of Hunan Agricultural University, Changsha, Hunan, China
| | - Yashi Cai
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Weiyi Ke
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China
| | - Linqian Zhou
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China
| | - Yuhua Yang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China
| | - Weixu Huang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China
| | - Jianming Zou
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China
| | - Huifeng Chen
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China
- School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Saha B, Pallatt S, Banerjee A, Banerjee AG, Pathak R, Pathak S. Current Insights into Molecular Mechanisms and Potential Biomarkers for Treating Radiation-Induced Liver Damage. Cells 2024; 13:1560. [PMID: 39329744 PMCID: PMC11429644 DOI: 10.3390/cells13181560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Highly conformal delivery of radiation therapy (RT) has revolutionized the treatment landscape for primary and metastatic liver cancers, yet concerns persist regarding radiation-induced liver disease (RILD). Despite advancements, RILD remains a major dose-limiting factor due to the potential damage to normal liver tissues by therapeutic radiation. The toxicity to normal liver tissues is associated with a multitude of physiological and pathological consequences. RILD unfolds as multifaceted processes, intricately linking various responses, such as DNA damage, oxidative stress, inflammation, cellular senescence, fibrosis, and immune reactions, through multiple signaling pathways. The DNA damage caused by ionizing radiation (IR) is a major contributor to the pathogenesis of RILD. Moreover, current treatment options for RILD are limited, with no established biomarker for early detection. RILD diagnosis often occurs at advanced stages, highlighting the critical need for early biomarkers to adjust treatment strategies and prevent liver failure. This review provides an outline of the diverse molecular and cellular mechanisms responsible for the development of RILD and points out all of the available biomarkers for early detection with the aim of helping clinicians decide on advance treatment strategies from a single literature recourse.
Collapse
Affiliation(s)
- Biki Saha
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Sneha Pallatt
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Abhijit G. Banerjee
- R&D, Genomic Bio-Medicine Research and Incubation (GBMRI), Durg 491001, Chhattisgarh, India
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| |
Collapse
|
5
|
Ma L, Yu J, Fu Y, He X, Ge S, Jia R, Zhuang A, Yang Z, Fan X. The dual role of cellular senescence in human tumor progression and therapy. MedComm (Beijing) 2024; 5:e695. [PMID: 39161800 PMCID: PMC11331035 DOI: 10.1002/mco2.695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024] Open
Abstract
Cellular senescence, one of the hallmarks of cancer, is characterized by cell cycle arrest and the loss of most normal cellular functions while acquiring a hypersecretory, proinflammatory phenotype. The function of senescent cells in cancer cells varies depending on the cellular conditions. Before the occurrence of cancer, senescent cells act as a barrier to prevent its development. But once cancer has occurred, senescent cells play a procancer role. However, few of the current studies have adequately explained the diversity of cellular senescence across cancers. Herein, we concluded the latest intrinsic mechanisms of cellular senescence in detail and emphasized the senescence-associated secretory phenotype as a key contributor to heterogeneity of senescent cells in tumor. We also discussed five kinds of inducers of cellular senescence and the advancement of senolytics in cancer, which are drugs that tend to clear senescent cells. Finally, we summarized the various effects of senescent cells in different cancers and manifested that their functions may be diametrically opposed under different circumstances. In short, this paper contributes to the understanding of the diversity of cellular senescence in cancers and provides novel insight for tumor therapy.
Collapse
Affiliation(s)
- Liang Ma
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Jie Yu
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Yidian Fu
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Xiaoyu He
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Shengfang Ge
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Renbing Jia
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Ai Zhuang
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Zhi Yang
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Xianqun Fan
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| |
Collapse
|
6
|
Konstantinou E, Longange E, Kaya G. Mechanisms of Senescence and Anti-Senescence Strategies in the Skin. BIOLOGY 2024; 13:647. [PMID: 39336075 PMCID: PMC11428750 DOI: 10.3390/biology13090647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024]
Abstract
The skin is the layer of tissue that covers the largest part of the body in vertebrates, and its main function is to act as a protective barrier against external environmental factors, such as microorganisms, ultraviolet light and mechanical damage. Due to its important function, investigating the factors that lead to skin aging and age-related diseases, as well as understanding the biology of this process, is of high importance. Indeed, it has been reported that several external and internal stressors contribute to skin aging, similar to the aging of other tissues. Moreover, during aging, senescent cells accumulate in the skin and express senescence-associated factors, which act in a paracrine manner on neighboring healthy cells and tissues. In this review, we will present the factors that lead to skin aging and cellular senescence, as well as ways to study senescence in vitro and in vivo. We will further discuss the adverse effects of the accumulation of chronic senescent cells and therapeutic agents and tools to selectively target and eliminate them.
Collapse
Affiliation(s)
- Evangelia Konstantinou
- Department of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1206 Geneva, Switzerland; (E.K.); (E.L.)
| | - Eliane Longange
- Department of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1206 Geneva, Switzerland; (E.K.); (E.L.)
| | - Gürkan Kaya
- Department of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1206 Geneva, Switzerland; (E.K.); (E.L.)
- Departments of Dermatology and Clinical Pathology, Geneva University Hospitals, Rue Gabrielle Perret-Gentil 4, CH-1205 Geneva, Switzerland
| |
Collapse
|
7
|
He K, Zhou D, Pu Z, Chen S, Shen Y, Zhao S, Qian X, Hu Q, Wu X, Xie Z, Xu X. Cellular Senescence in Acute Liver Injury: What Happens to the Young Liver? Aging Dis 2024:AD.2024.0586. [PMID: 38913043 DOI: 10.14336/ad.2024.0586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024] Open
Abstract
Cellular senescence, characterized by irreversible cell cycle arrest, not only exists in age-related physiological states, but has been found to exist in various diseases. It plays a crucial role in both physiological and pathological processes and has become a trending topic in global research in recent years. Acute liver injury (ALI) has a high incidence worldwide, and recent studies have shown that hepatic senescence can be induced following ALI. Therefore, we reviewed the significance of cellular senescence in ALI. To minimize the potential confounding effects of aging on cellular senescence and ALI outcomes, we selected studies involving young individuals to identify the characteristics of senescent cells, the value of cellular senescence in liver repair, its regulation mechanisms in ALI, its potential as a biomarker for ALI, the prospect of treatment, and future research directions.
Collapse
|
8
|
Saito Y, Yamamoto S, Chikenji TS. Role of cellular senescence in inflammation and regeneration. Inflamm Regen 2024; 44:28. [PMID: 38831382 PMCID: PMC11145896 DOI: 10.1186/s41232-024-00342-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
Cellular senescence is the state in which cells undergo irreversible cell cycle arrest and acquire diverse phenotypes. It has been linked to chronic inflammation and fibrosis in various organs as well as to individual aging. Therefore, eliminating senescent cells has emerged as a potential target for extending healthy lifespans. Cellular senescence plays a beneficial role in many biological processes, including embryonic development, wound healing, and tissue regeneration, which is mediated by the activation of stem cells. Therefore, a comprehensive understanding of cellular senescence, including both its beneficial and detrimental effects, is critical for developing safe and effective treatment strategies to target senescent cells. This review provides an overview of the biological and pathological roles of cellular senescence, with a particular focus on its beneficial or detrimental functions among its various roles.
Collapse
Affiliation(s)
- Yuki Saito
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Sena Yamamoto
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Takako S Chikenji
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
| |
Collapse
|
9
|
Goyer ML, Desaulniers-Langevin C, Sonn A, Mansour Nehmo G, Lisi V, Benabdallah B, Raynal NJM, Beauséjour C. Induced Pluripotent Stem Cell-Derived Fibroblasts Efficiently Engage Senescence Pathways but Show Increased Sensitivity to Stress Inducers. Cells 2024; 13:849. [PMID: 38786071 PMCID: PMC11119907 DOI: 10.3390/cells13100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
The risk of aberrant growth of induced pluripotent stem cell (iPSC)-derived cells in response to DNA damage is a potential concern as the tumor suppressor genes TP53 and CDKN2A are transiently inactivated during reprogramming. Herein, we evaluate the integrity of cellular senescence pathways and DNA double-strand break (DSB) repair in Sendai virus reprogrammed iPSC-derived human fibroblasts (i-HF) compared to their parental skin fibroblasts (HF). Using transcriptomics analysis and a variety of functional assays, we show that the capacity of i-HF to enter senescence and repair DSB is not compromised after damage induced by ionizing radiation (IR) or the overexpression of H-RASV12. Still, i-HF lines are transcriptionally different from their parental lines, showing enhanced metabolic activity and higher expression of p53-related effector genes. As a result, i-HF lines generally exhibit increased sensitivity to various stresses, have an elevated senescence-associated secretory phenotype (SASP), and cannot be immortalized unless p53 expression is knocked down. In conclusion, while our results suggest that i-HF are not at a greater risk of transformation, their overall hyperactivation of senescence pathways may impede their function as a cell therapy product.
Collapse
Affiliation(s)
- Marie-Lyn Goyer
- Centre de Recherche du CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montréal, QC H3T 1C5, Canada; (M.-L.G.); (C.D.-L.); (A.S.); (G.M.N.); (V.L.); (B.B.); (N.J.-M.R.)
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Cynthia Desaulniers-Langevin
- Centre de Recherche du CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montréal, QC H3T 1C5, Canada; (M.-L.G.); (C.D.-L.); (A.S.); (G.M.N.); (V.L.); (B.B.); (N.J.-M.R.)
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Anthony Sonn
- Centre de Recherche du CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montréal, QC H3T 1C5, Canada; (M.-L.G.); (C.D.-L.); (A.S.); (G.M.N.); (V.L.); (B.B.); (N.J.-M.R.)
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Georgio Mansour Nehmo
- Centre de Recherche du CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montréal, QC H3T 1C5, Canada; (M.-L.G.); (C.D.-L.); (A.S.); (G.M.N.); (V.L.); (B.B.); (N.J.-M.R.)
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Véronique Lisi
- Centre de Recherche du CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montréal, QC H3T 1C5, Canada; (M.-L.G.); (C.D.-L.); (A.S.); (G.M.N.); (V.L.); (B.B.); (N.J.-M.R.)
| | - Basma Benabdallah
- Centre de Recherche du CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montréal, QC H3T 1C5, Canada; (M.-L.G.); (C.D.-L.); (A.S.); (G.M.N.); (V.L.); (B.B.); (N.J.-M.R.)
| | - Noël J.-M. Raynal
- Centre de Recherche du CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montréal, QC H3T 1C5, Canada; (M.-L.G.); (C.D.-L.); (A.S.); (G.M.N.); (V.L.); (B.B.); (N.J.-M.R.)
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Christian Beauséjour
- Centre de Recherche du CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montréal, QC H3T 1C5, Canada; (M.-L.G.); (C.D.-L.); (A.S.); (G.M.N.); (V.L.); (B.B.); (N.J.-M.R.)
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
10
|
Zhang W, Zhang K, Shi J, Qiu H, Kan C, Ma Y, Hou N, Han F, Sun X. The impact of the senescent microenvironment on tumorigenesis: Insights for cancer therapy. Aging Cell 2024; 23:e14182. [PMID: 38650467 PMCID: PMC11113271 DOI: 10.1111/acel.14182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
The growing global burden of cancer, especially among people aged 60 years and over, has become a key public health issue. This trend suggests the need for a deeper understanding of the various cancer types in order to develop universally effective treatments. A prospective area of research involves elucidating the interplay between the senescent microenvironment and tumor genesis. Currently, most oncology research focuses on adulthood and tends to ignore the potential role of senescent individuals on tumor progression. Senescent cells produce a senescence-associated secretory phenotype (SASP) that has a dual role in the tumor microenvironment (TME). While SASP components can remodel the TME and thus hinder tumor cell proliferation, they can also promote tumorigenesis and progression via pro-inflammatory and pro-proliferative mechanisms. To address this gap, our review seeks to investigate the influence of senescent microenvironment changes on tumor development and their potential implications for cancer therapies.
Collapse
Affiliation(s)
- Wenqiang Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
- Department of PathologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Yujie Ma
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Fang Han
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
- Department of PathologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| |
Collapse
|
11
|
Tang R, Yin J, Liu Y, Xue J. FLASH radiotherapy: A new milestone in the field of cancer radiotherapy. Cancer Lett 2024; 587:216651. [PMID: 38342233 DOI: 10.1016/j.canlet.2024.216651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/03/2023] [Accepted: 01/13/2024] [Indexed: 02/13/2024]
Abstract
Radiotherapy plays a pivotal role in the control and eradication of tumors, but it can also induce radiation injury to surrounding normal tissues while targeting tumor cells. In recent years, FLASH-Radiotherapy (FLASH-RT) has emerged as a cutting-edge research focus in the field of radiation therapy. By delivering high radiation doses to the treatment target in an ultra-short time, FLASH-RT produces the FLASH effect, which reduces the toxicity to normal tissues while achieving comparable tumor control efficacy to conventional radiotherapy. This review provides a brief overview of the development history of FLASH-RT and its impact on tumor control. Additionally, it focuses on introducing the protective effects and molecular mechanisms of this technology on various normal tissues, as well as exploring its synergistic effects when combined with other tumor therapies. Importantly, this review discusses the challenges faced in translating FLASH-RT into clinical practice and outlines its promising future applications.
Collapse
Affiliation(s)
- Rui Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China; Division of Thoracic Tumor Multimodality Treatment, Cancer Center, The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jianqiong Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuanxin Liu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Disaster Medical Center, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
12
|
Giannini N, Gadducci G, Fuentes T, Gonnelli A, Di Martino F, Puccini P, Naso M, Pasqualetti F, Capaccioli S, Paiar F. Electron FLASH radiotherapy in vivo studies. A systematic review. Front Oncol 2024; 14:1373453. [PMID: 38655137 PMCID: PMC11035725 DOI: 10.3389/fonc.2024.1373453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/15/2024] [Indexed: 04/26/2024] Open
Abstract
FLASH-radiotherapy delivers a radiation beam a thousand times faster compared to conventional radiotherapy, reducing radiation damage in healthy tissues with an equivalent tumor response. Although not completely understood, this radiobiological phenomenon has been proved in several animal models with a spectrum of all kinds of particles currently used in contemporary radiotherapy, especially electrons. However, all the research teams have performed FLASH preclinical studies using industrial linear accelerator or LINAC commonly employed in conventional radiotherapy and modified for the delivery of ultra-high-dose-rate (UHDRs). Unfortunately, the delivering and measuring of UHDR beams have been proved not to be completely reliable with such devices. Concerns arise regarding the accuracy of beam monitoring and dosimetry systems. Additionally, this LINAC totally lacks an integrated and dedicated Treatment Planning System (TPS) able to evaluate the internal dose distribution in the case of in vivo experiments. Finally, these devices cannot modify dose-time parameters of the beam relevant to the flash effect, such as average dose rate; dose per pulse; and instantaneous dose rate. This aspect also precludes the exploration of the quantitative relationship with biological phenomena. The dependence on these parameters need to be further investigated. A promising advancement is represented by a new generation of electron LINAC that has successfully overcome some of these technological challenges. In this review, we aim to provide a comprehensive summary of the existing literature on in vivo experiments using electron FLASH radiotherapy and explore the promising clinical perspectives associated with this technology.
Collapse
Affiliation(s)
- Noemi Giannini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Tuscany, Italy
- Centro Pisano Multidisciplinare Sulla Ricerca e Implementazione Clinica Della Flash Radiotherapy (CPFR), University of Pisa, Pisa, Italy
| | - Giovanni Gadducci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Tuscany, Italy
- Centro Pisano Multidisciplinare Sulla Ricerca e Implementazione Clinica Della Flash Radiotherapy (CPFR), University of Pisa, Pisa, Italy
| | - Taiusha Fuentes
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Tuscany, Italy
- Centro Pisano Multidisciplinare Sulla Ricerca e Implementazione Clinica Della Flash Radiotherapy (CPFR), University of Pisa, Pisa, Italy
| | - Alessandra Gonnelli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Tuscany, Italy
- Centro Pisano Multidisciplinare Sulla Ricerca e Implementazione Clinica Della Flash Radiotherapy (CPFR), University of Pisa, Pisa, Italy
| | - Fabio Di Martino
- Centro Pisano Multidisciplinare Sulla Ricerca e Implementazione Clinica Della Flash Radiotherapy (CPFR), University of Pisa, Pisa, Italy
- Unit of Medical Physics, Azienda Ospedaliero-Universitaria Pisana, Pisa, Tuscany, Italy
- National Institute of Nuclear Physics (INFN)-section of Pisa, Pisa, Tuscany, Italy
| | - Paola Puccini
- Department of Radiation Oncology, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Tuscany, Italy
| | - Monica Naso
- Department of Radiation Oncology, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Tuscany, Italy
| | - Francesco Pasqualetti
- Department of Radiation Oncology, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Tuscany, Italy
| | - Simone Capaccioli
- Centro Pisano Multidisciplinare Sulla Ricerca e Implementazione Clinica Della Flash Radiotherapy (CPFR), University of Pisa, Pisa, Italy
- Department of Physics, University of Pisa, Pisa, Tuscany, Italy
| | - Fabiola Paiar
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Tuscany, Italy
- Centro Pisano Multidisciplinare Sulla Ricerca e Implementazione Clinica Della Flash Radiotherapy (CPFR), University of Pisa, Pisa, Italy
- Department of Radiation Oncology, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Tuscany, Italy
| |
Collapse
|
13
|
Maggiorani D, Le O, Lisi V, Landais S, Moquin-Beaudry G, Lavallée VP, Decaluwe H, Beauséjour C. Senescence drives immunotherapy resistance by inducing an immunosuppressive tumor microenvironment. Nat Commun 2024; 15:2435. [PMID: 38499573 PMCID: PMC10948808 DOI: 10.1038/s41467-024-46769-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
The potential of immune checkpoint inhibitors (ICI) may be limited in situations where immune cell fitness is impaired. Here, we show that the efficacy of cancer immunotherapies is compromised by the accumulation of senescent cells in mice and in the context of therapy-induced senescence (TIS). Resistance to immunotherapy is associated with a decrease in the accumulation and activation of CD8 T cells within tumors. Elimination of senescent cells restores immune homeostasis within the tumor micro-environment (TME) and increases mice survival in response to immunotherapy. Using single-cell transcriptomic analysis, we observe that the injection of ABT263 (Navitoclax) reverses the exacerbated immunosuppressive profile of myeloid cells in the TME. Elimination of these myeloid cells also restores CD8 T cell proliferation in vitro and abrogates immunotherapy resistance in vivo. Overall, our study suggests that the use of senolytic drugs before ICI may constitute a pharmacological approach to improve the effectiveness of cancer immunotherapies.
Collapse
Affiliation(s)
- Damien Maggiorani
- Centre de recherche du CHU Sainte-Justine, Montréal, QC, Canada
- Département de pharmacologie et physiologie (Université de Montréal, Montréal, QC, Canada
| | - Oanh Le
- Centre de recherche du CHU Sainte-Justine, Montréal, QC, Canada
| | - Véronique Lisi
- Centre de recherche du CHU Sainte-Justine, Montréal, QC, Canada
| | | | | | - Vincent Philippe Lavallée
- Centre de recherche du CHU Sainte-Justine, Montréal, QC, Canada
- Département de pédiatrie (Université de Montréal, Montréal, QC, Canada
| | - Hélène Decaluwe
- Centre de recherche du CHU Sainte-Justine, Montréal, QC, Canada
- Département de pédiatrie (Université de Montréal, Montréal, QC, Canada
- Département de microbiologie, immunologie et infectiologie (Université de Montréal, Montréal, QC, Canada
| | - Christian Beauséjour
- Centre de recherche du CHU Sainte-Justine, Montréal, QC, Canada.
- Département de pharmacologie et physiologie (Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
14
|
Gonzalez-Meljem JM, Martinez-Barbera JP. Implications of cellular senescence in paediatric pituitary tumours. EBioMedicine 2024; 99:104905. [PMID: 38043401 PMCID: PMC10730348 DOI: 10.1016/j.ebiom.2023.104905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023] Open
Abstract
The long-standing view of senescent cells as passive and dysfunctional biological remnants has recently shifted into a new paradigm where they are main players in the development of many diseases, including cancer. The senescence programme represents a first line of defence that prevents tumour cell growth but also leads to the secretion of multiple pro-inflammatory and pro-tumourigenic factors that fuel tumour initiation, growth, and progression. Here, we review the main molecular features and biological functions of senescent cells in cancer, including the outcomes of inducing or targeting senescence. We discuss evidence on the role of cellular senescence in pituitary tumours, with an emphasis on adamantinomatous craniopharyngioma (ACP) and pituitary adenomas. Although senescence has been proposed to be a tumour-preventing mechanism in pituitary adenomas, research in ACP has shown that senescent cells are tumour-promoting in both murine models and human tumours. Future studies characterizing the impact of targeting senescent cells may result in novel therapies against pituitary tumours.
Collapse
Affiliation(s)
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London, UK.
| |
Collapse
|
15
|
Gazzillo A, Volponi C, Soldani C, Polidoro MA, Franceschini B, Lleo A, Bonavita E, Donadon M. Cellular Senescence in Liver Cancer: How Dying Cells Become "Zombie" Enemies. Biomedicines 2023; 12:26. [PMID: 38275386 PMCID: PMC10813254 DOI: 10.3390/biomedicines12010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Liver cancer represents the fourth leading cause of cancer-associated death worldwide. The heterogeneity of its tumor microenvironment (TME) is a major contributing factor of metastasis, relapse, and drug resistance. Regrettably, late diagnosis makes most liver cancer patients ineligible for surgery, and the frequent failure of non-surgical therapeutic options orientates clinical research to the investigation of new drugs. In this context, cellular senescence has been recently shown to play a pivotal role in the progression of chronic inflammatory liver diseases, ultimately leading to cancer. Moreover, the stem-like state triggered by senescence has been associated with the emergence of drug-resistant, aggressive tumor clones. In recent years, an increasing number of studies have emerged to investigate senescence-associated hepatocarcinogenesis and its derived therapies, leading to promising results. In this review, we intend to provide an overview of the recent evidence that unveils the role of cellular senescence in the most frequent forms of primary and metastatic liver cancer, focusing on the involvement of this mechanism in therapy resistance.
Collapse
Affiliation(s)
- Aurora Gazzillo
- Cellular and Molecular Oncoimmunology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.G.); (C.V.); (E.B.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
| | - Camilla Volponi
- Cellular and Molecular Oncoimmunology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.G.); (C.V.); (E.B.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
| | - Cristiana Soldani
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
| | - Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
| | - Barbara Franceschini
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Eduardo Bonavita
- Cellular and Molecular Oncoimmunology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.G.); (C.V.); (E.B.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
| | - Matteo Donadon
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
- Department of General Surgery, University Maggiore Hospital della Carità, 28100 Novara, Italy
| |
Collapse
|
16
|
Guo H, Chen J, Yu H, Dong L, Yu R, Li Q, Song J, Chen H, Zhang H, Pu J, Wang W. Activation of Nrf2/ARE pathway by Anisodamine (654-2) for Inhibition of cellular aging and alleviation of Radiation-Induced lung injury. Int Immunopharmacol 2023; 124:110864. [PMID: 37678028 DOI: 10.1016/j.intimp.2023.110864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Radiation-induced lung injury (RILI) is a common side effect of thoracic tumor radiotherapy, including early-stage radiation-induced lung injury (RP) and late-stage radiation-induced pulmonary fibrosis (RIPF). Currently, it is urgently needed to clarify the pathogenesis of RILI and find safe and effective RILI treatment methods. Irradiation causes DNA damage and oxidative stress in tissues and cells, induces cellular senescence, and promotes the occurrence and development of RILI. In recent years, Anisodamine (654-2) has shown potential therapeutic value in acute lung injury, acute kidney injury, chlamydial pneumonia, and COVID-19. However, there is currently no research on the mechanism of 654-2-mediated cellular senescence and its preventive and therapeutic effects on RILI. PURPOSE This study aimed to investigate the protective effect and mechanism of 654-2 on X-ray-induced RILI. METHODS In vivo experiments involved a mouse RILI model with 18 Gy X-ray irradiation. Mice were divided into control, model, medication (control + 654-2), and treatment (model + 654-2) groups. And mice in medication and treatment groups were intraperitoneal injection of 5 mg/kg 654-2 every other day until being sacrificed at week 6. In vitro experiments used MLE-12 cells irradiated with 16 Gy and divided into control, model, and model + 654-2(2 μM and 10 μM) groups. Various assays were performed to evaluate lung tissue morphology, fibrosis, apoptosis, cytokine expression, cellular senescence, protein expression, and antioxidant capacity. RESULTS 654-2 mitigated pulmonary pathological damage, inflammation, DNA damage, cellular senescence, and apoptosis in RILI mice and MLE-12 cells. It restored epithelial cell proliferation ability and enhanced antioxidant capacity. Additionally, 654-2 activated the Nrf2/ARE pathway, increased Nrf2 phosphorylation, and upregulated antioxidant gene expression. Inhibition of Nrf2 reversed the effects of 654-2 on ROS production, antioxidant capacity, and cell senescence. CONCLUSION 654-2 can activate the Nrf2/ARE pathway, enhance cellular antioxidant capacity, and inhibit cellular senescence, thereby exerting a protective effect against RILI.
Collapse
Affiliation(s)
- Haochun Guo
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Jiajia Chen
- Department of Radiotherapy, Lianshui People's Hospital, Kangda College of Nanjing Medical University, Huai'an 223400, China; Jiangsu Nursing Vocational and Technical College, Huai'an 223400, China
| | - Hanxu Yu
- Department of Radiotherapy, Lianshui People's Hospital, Kangda College of Nanjing Medical University, Huai'an 223400, China
| | - Lei Dong
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Ran Yu
- Department of Radiotherapy, Lianshui People's Hospital, Kangda College of Nanjing Medical University, Huai'an 223400, China; Jiangsu Nursing Vocational and Technical College, Huai'an 223400, China; School of Clinical Medicine, Medical College of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, China
| | - Qingju Li
- Department of Radiotherapy, Lianshui People's Hospital, Kangda College of Nanjing Medical University, Huai'an 223400, China; Jiangsu Nursing Vocational and Technical College, Huai'an 223400, China; School of Clinical Medicine, Medical College of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, China
| | - Jian Song
- Department of Radiotherapy, Lianshui People's Hospital, Kangda College of Nanjing Medical University, Huai'an 223400, China
| | - Haoyu Chen
- Department of Radiotherapy, Lianshui People's Hospital, Kangda College of Nanjing Medical University, Huai'an 223400, China
| | - Haijun Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.
| | - Juan Pu
- Department of Radiotherapy, Lianshui People's Hospital, Kangda College of Nanjing Medical University, Huai'an 223400, China.
| | - Wanpeng Wang
- Department of Radiotherapy, Lianshui People's Hospital, Kangda College of Nanjing Medical University, Huai'an 223400, China; Jiangsu Nursing Vocational and Technical College, Huai'an 223400, China; School of Clinical Medicine, Medical College of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, China.
| |
Collapse
|
17
|
Holloway K, Neherin K, Dam KU, Zhang H. Cellular senescence and neurodegeneration. Hum Genet 2023; 142:1247-1262. [PMID: 37115318 DOI: 10.1007/s00439-023-02565-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Advancing age is a major risk factor of Alzheimer's disease (AD). The worldwide prevalence of AD is approximately 50 million people, and this number is projected to increase substantially. The molecular mechanisms underlying the aging-associated susceptibility to cognitive impairment in AD are largely unknown. As a hallmark of aging, cellular senescence is a significant contributor to aging and age-related diseases including AD. Senescent neurons and glial cells have been detected to accumulate in the brains of AD patients and mouse models. Importantly, selective elimination of senescent cells ameliorates amyloid beta and tau pathologies and improves cognition in AD mouse models, indicating a critical role of cellular senescence in AD pathogenesis. Nonetheless, the mechanisms underlying when and how cellular senescence contributes to AD pathogenesis remain unclear. This review provides an overview of cellular senescence and discusses recent advances in the understanding of the impact of cellular senescence on AD pathogenesis, with brief discussions of the possible role of cellular senescence in other neurodegenerative diseases including Down syndrome, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Kristopher Holloway
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Kashfia Neherin
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Kha Uyen Dam
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Hong Zhang
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
18
|
Chen Q, Yao L, Liu Q, Hou J, Qiu X, Chen M, Wu Z, Hu D, Cui F, Yan T. Exosome-coated polydatin nanoparticles in the treatment of radiation-induced intestinal damage. Aging (Albany NY) 2023; 15:6905-6920. [PMID: 37466428 PMCID: PMC10415572 DOI: 10.18632/aging.204882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023]
Abstract
This study aimed to develop an exosome-coated polydatin (PD) nanoparticles (exo-PD) for improving the water solubility and bioavailability of polydatin and explore its salutary effects on intestinal radiation injury. Exosomes (exo) were extracted from the medium of human amniotic fluid stem cells (hAFSc). Mice were divided into control group, irradiation (IR) group, irradiation+PD (IR+PD) group, irradiation+exo (IR+exo) group and irradiation+exo-PD (IR+exo-PD) group. The results of characterization of protein markers, particle size, morphology and cellular uptake ability confirmed that exosomes were effectively isolated using ultracentrifugation. Compared with the IR group, exo-PD improved cell viability, prolonged survival of mice, improved leukocyte count and reduced diarrhea rate. Histological results showed that the exo-PD group had significant improvements in small intestinal villus length and crypt number and less crypt cell damage. exo-PD could reduce IL-1α and IL-6 levels, reduced γ-H2AX expression, increased mitochondrial membrane potential, enhanced oxidative phosphorylation, and delayed cellular senescence. exo-PD could alleviate intestinal injury by improving mitochondrial function through PI3K-AKT pathway. The exo-PD was able to reduce radiation damage to intestinal cells and could be a potential candidate for salvage of intestinal radiation damage.
Collapse
Affiliation(s)
- Qiu Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Lei Yao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Quanbin Liu
- Rocket Force Specialty Medical Center PLA, Beijing 100088, China
| | - Jun Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xinyu Qiu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Mengyuan Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Zhuojun Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Duanmin Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215123, China
| | - Fengmei Cui
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Tao Yan
- Rocket Force Specialty Medical Center PLA, Beijing 100088, China
| |
Collapse
|
19
|
Zhao X, Lu J, Zhang C, Chen C, Zhang M, Zhang J, Du Q, Wang H. Methamphetamine induces cardiomyopathy through GATA4/NF-κB/SASP axis-mediated cellular senescence. Toxicol Appl Pharmacol 2023; 466:116457. [PMID: 36914120 DOI: 10.1016/j.taap.2023.116457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
With the world pandemic of methamphetamine (METH), METH-associated cardiomyopathy (MAC) has become a widespread epidemic and is also recognized as a cause of heart failure in young people. The mechanism of occurrence and development of MAC is not clear. In this study, firstly, the animal model was evaluated by echocardiography and myocardial pathological staining. The results revealed that the animal model exhibited cardiac injury consistent with clinical alterations of MAC, and the mice developed cardiac hypertrophy and fibrosis remodeling, which led to systolic dysfunction and left ventricular ejection fraction (%LVEF) < 40%. The expression of cellular senescence marker proteins (p16 and p21) and senescence-associated secretory phenotype (SASP) was significantly increased in mouse myocardial tissue. Secondly, mRNA sequencing analysis of cardiac tissues revealed the key molecule GATA4, and Western blot, qPCR and immunofluorescence results showed that the expression level of GATA4 was significantly increased after METH exposure. Finally, knockdown of GATA4 expression in H9C2 cells in vitro significantly attenuated METH-induced cardiomyocyte senescence. Consequently, METH causes cardiomyopathy through cellular senescence mediated by the GATA4/NF-κB/SASP axis, which is a feasible target for the treatment of MAC.
Collapse
Affiliation(s)
- Xu Zhao
- Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528200, China
| | - Jiancong Lu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cui Zhang
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Chuanxiang Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Manting Zhang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jingyi Zhang
- Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528200, China
| | - Qingfeng Du
- Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528200, China; School of Traditional Chinese medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China.
| | - Huijun Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
20
|
Truskowski K, Amend SR, Pienta KJ. Dormant cancer cells: programmed quiescence, senescence, or both? Cancer Metastasis Rev 2023; 42:37-47. [PMID: 36598661 PMCID: PMC10014758 DOI: 10.1007/s10555-022-10073-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023]
Abstract
Metastasis is the overwhelming driver of cancer mortality, accounting for the majority of cancer deaths. Many patients present with metastatic relapse years after eradication of the primary lesion. Disseminated cancer cells can undergo a durable proliferative arrest and lie dormant in secondary tissues before reentering the cell cycle to seed these lethal relapses. This process of cancer cell dormancy remains poorly understood, largely due to difficulties in studying these dormant cells. In the face of these challenges, the application of knowledge from the cellular senescence and quiescence fields may help to guide future thinking on the study of dormant cancer cells. Both senescence and quiescence are common programs of proliferative arrest that are integral to tissue development and homeostasis. Despite phenotypic differences, these two states also share common characteristics, and both likely play a role in cancer dormancy and delayed metastatic relapse. Understanding the cell biology behind these states, their overlaps and unique characteristics is critical to our future understanding of dormant cancer cells, as these cells likely employ some of the same molecular programs to promote survival and dissemination. In this review, we highlight the biology underlying these non-proliferative states, relate this knowledge to what we currently know about dormant cancer cells, and discuss implications for future work toward targeting these elusive metastatic seeds.
Collapse
Affiliation(s)
- Kevin Truskowski
- Brady Urological Institute, Johns Hopkins School of Medicine, 600 North Wolfe St, Baltimore, MD, USA.
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, 1830 E. Monument St. Suite 20103, Baltimore, MD, 21205, USA.
- Cancer Ecology Center, Johns Hopkins School of Medicine, 600 North Wolfe St, Baltimore, MD, USA.
| | - Sarah R Amend
- Brady Urological Institute, Johns Hopkins School of Medicine, 600 North Wolfe St, Baltimore, MD, USA
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, 1830 E. Monument St. Suite 20103, Baltimore, MD, 21205, USA
- Cancer Ecology Center, Johns Hopkins School of Medicine, 600 North Wolfe St, Baltimore, MD, USA
| | - Kenneth J Pienta
- Brady Urological Institute, Johns Hopkins School of Medicine, 600 North Wolfe St, Baltimore, MD, USA
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, 1830 E. Monument St. Suite 20103, Baltimore, MD, 21205, USA
- Cancer Ecology Center, Johns Hopkins School of Medicine, 600 North Wolfe St, Baltimore, MD, USA
| |
Collapse
|
21
|
Zhou YJ, Tang Y, Liu SJ, Zeng PH, Qu L, Jing QC, Yin WJ. Radiation-induced liver disease: beyond DNA damage. Cell Cycle 2023; 22:506-526. [PMID: 36214587 PMCID: PMC9928481 DOI: 10.1080/15384101.2022.2131163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/03/2022] Open
Abstract
Radiation-induced liver disease (RILD), also known as radiation hepatitis, is a serious side effect of radiotherapy (RT) for hepatocellular carcinoma. The therapeutic dose of RT can damage normal liver tissue, and the toxicity that accumulates around the irradiated liver tissue is related to numerous physiological and pathological processes. RILD may restrict treatment use or eventually deteriorate into liver fibrosis. However, the research on the mechanism of radiation-induced liver injury has seen little progress compared with that on radiation injury in other tissues, and no targeted clinical pharmacological treatment for RILD exists. The DNA damage response caused by ionizing radiation plays an important role in the pathogenesis and development of RILD. Therefore, in this review, we systematically summarize the molecular and cellular mechanisms involved in RILD. Such an analysis is essential for preventing the occurrence and development of RILD and further exploring the potential treatment of this disease.
Collapse
Affiliation(s)
- Ying Jie Zhou
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yun Tang
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Si Jian Liu
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Peng Hui Zeng
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Qu
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qian Cheng Jing
- The Affiliated Changsha Central Hospital, Department of Otolaryngology Head and Neck Surgery,Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Otolaryngology Head and Neck Surgery, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Wen Jun Yin
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory, Changsha Central Hospital, University of South China, Changsha, Hunan, China
| |
Collapse
|
22
|
Ruggiero AD, Davis MA, Davis AT, DeStephanis D, Williams AG, Vemuri R, Fanning KM, Sherrill C, Cline JM, Caudell DL, Kavanagh K. Delayed effects of radiation in adipose tissue reflect progenitor damage and not cellular senescence. GeroScience 2023; 45:507-521. [PMID: 36136223 PMCID: PMC9886706 DOI: 10.1007/s11357-022-00660-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/08/2022] [Indexed: 02/03/2023] Open
Abstract
The pathogenesis of many age-related diseases is linked to cellular senescence, a state of inflammation-inducing, irreversible cell cycle arrest. The consequences and mechanisms of age-associated cellular senescence are often studied using in vivo models of radiation exposure. However, it is unknown whether radiation induces persistent senescence, like that observed in ageing. We performed analogous studies in mice and monkeys, where young mice and rhesus macaques received sub-lethal doses of ionizing radiation and were observed for ~ 15% of their expected lifespan. Assessments of 8-hydroxy-2' -deoxyguanosine (8-OHdG), senescence-associated beta-galactosidase (SAβ-gal), and p16Ink4a and p21 were performed on mitotic and post-mitotic tissues - liver and adipose tissue - 6 months and 3 years post-exposure for the mice and monkeys, respectively. No elevations in 8-OHdG, SA-βgal staining, or p16 Ink4a or p21 gene or protein expression were found in mouse and monkey liver or adipose tissue compared to control animals. Despite no evidence of senescence, progenitor cell dysfunction persisted after radiation exposure, as indicated by lower in situ CD34+ adipose cells (p = 0.03), and deficient adipose stromal vascular cell proliferation (p < 0.05) and differentiation (p = 0.04) ex vivo. Our investigation cautions that employing radiation to study senescence-related processes should be limited to the acute post-exposure period and that stem cell damage likely underpins the dysfunction associated with delayed effects of radiation.
Collapse
Affiliation(s)
- Alistaire D Ruggiero
- Department of Pathology, Wake Forest University School of Medicine, 575 N. Patterson Ave, Winston-Salem, NC, 27101, USA
| | - Matthew A Davis
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ashley T Davis
- Department of Pathology, Wake Forest University School of Medicine, 575 N. Patterson Ave, Winston-Salem, NC, 27101, USA
| | - Darla DeStephanis
- Department of Pathology, Wake Forest University School of Medicine, 575 N. Patterson Ave, Winston-Salem, NC, 27101, USA
| | - Abigail G Williams
- Department of Pathology, Wake Forest University School of Medicine, 575 N. Patterson Ave, Winston-Salem, NC, 27101, USA
| | - Ravichandra Vemuri
- Department of Pathology, Wake Forest University School of Medicine, 575 N. Patterson Ave, Winston-Salem, NC, 27101, USA
| | - Katherine M Fanning
- Department of Pathology, Wake Forest University School of Medicine, 575 N. Patterson Ave, Winston-Salem, NC, 27101, USA
| | - Chrissy Sherrill
- Department of Pathology, Wake Forest University School of Medicine, 575 N. Patterson Ave, Winston-Salem, NC, 27101, USA
| | - J Mark Cline
- Department of Pathology, Wake Forest University School of Medicine, 575 N. Patterson Ave, Winston-Salem, NC, 27101, USA
| | - David L Caudell
- Department of Pathology, Wake Forest University School of Medicine, 575 N. Patterson Ave, Winston-Salem, NC, 27101, USA
| | - Kylie Kavanagh
- Department of Pathology, Wake Forest University School of Medicine, 575 N. Patterson Ave, Winston-Salem, NC, 27101, USA.
- College of Health and Medicine, University of Tasmania, Hobart, Australia.
| |
Collapse
|
23
|
Abstract
Cellular senescence has become a subject of great interest within the ageing research field over the last 60 years, from the first observation in vitro by Leonard Hayflick and Paul Moorhead in 1961, to novel findings of phenotypic sub-types and senescence-like phenotype in post-mitotic cells. It has essential roles in wound healing, tumour suppression and the very first stages of human development, while causing widespread damage and dysfunction with age leading to a raft of age-related diseases. This chapter discusses these roles and their interlinking pathways, and how the observed accumulation of senescent cells with age has initiated a whole new field of ageing research, covering pathologies in the heart, liver, kidneys, muscles, brain and bone. This chapter will also examine how senescent cell accumulation presents in these different tissues, along with their roles in disease development. Finally, there is much focus on developing treatments for senescent cell accumulation in advanced age as a method of alleviating age-related disease. We will discuss here the various senolytic and senostatic treatment approaches and their successes and limitations, and the innovative new strategies being developed to address the differing effects of cellular senescence in ageing and disease.
Collapse
Affiliation(s)
- Rebecca Reed
- Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Satomi Miwa
- Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
24
|
Chibaya L, Snyder J, Ruscetti M. Senescence and the tumor-immune landscape: Implications for cancer immunotherapy. Semin Cancer Biol 2022; 86:827-845. [PMID: 35143990 PMCID: PMC9357237 DOI: 10.1016/j.semcancer.2022.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/03/2022] [Indexed: 01/27/2023]
Abstract
Cancer therapies, including conventional chemotherapy, radiation, and molecularly targeted agents, can lead to tumor eradication through a variety of mechanisms. In addition to their effects on tumor cell growth and survival, these regimens can also influence the surrounding tumor-immune microenvironment in ways that ultimately impact therapy responses. A unique biological outcome of cancer therapy is induction of cellular senescence. Senescence is a damage-induced stress program that leads to both the durable arrest of tumor cells and remodeling the tumor-immune microenvironment through activation of a collection pleiotropic cytokines, chemokines, growth factors, and proteinases known as the senescence-associated secretory phenotype (SASP). Depending on the cancer context and the mechanism of action of the therapy, the SASP produced following therapy-induced senescence (TIS) can promote anti-tumor immunity that enhances therapeutic efficacy, or alternatively chronic inflammation that leads to therapy failure and tumor relapse. Thus, a deeper understanding of the mechanisms regulating the SASP and components necessary for robust anti-tumor immune surveillance in different cancer and therapy contexts are key to harnessing senescence for tumor control. Here we draw a roadmap to modulate TIS and its immune-stimulating features for cancer immunotherapy.
Collapse
Affiliation(s)
- Loretah Chibaya
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jarin Snyder
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Marcus Ruscetti
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Immunology and Microbiology Program, University of Massachusetts Chan Medical School, Worcester, MA, USA; Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
25
|
Zileuton Alleviates Radiation-Induced Cutaneous Ulcers via Inhibition of Senescence-Associated Secretory Phenotype in Rodents. Int J Mol Sci 2022; 23:ijms23158390. [PMID: 35955523 PMCID: PMC9369445 DOI: 10.3390/ijms23158390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Radiation-induced cutaneous ulcers are a challenging medical problem for patients receiving radiation therapy. The inhibition of cell senescence has been suggested as a prospective strategy to prevent radiation ulcers. However, there is no effective treatment for senescent cells in radiation ulcers. In this study, we investigated whether zileuton alleviated radiation-induced cutaneous ulcer by focusing on cell senescence. We demonstrate increased cell senescence and senescence-associated secretory phenotype (SASP) in irradiated dermal fibroblasts and skin tissue. The SASP secreted from senescent cells induces senescence in adjacent cells. In addition, 5-lipoxygenase (5-LO) expression increased in irradiated dermal fibroblasts and skin tissue, and SASP and cell senescence were regulated by 5-LO through p38 phosphorylation. Finally, the inhibition of 5-LO following treatment with zileuton inhibited SASP and mitigated radiation ulcers in animal models. Our results demonstrate that inhibition of SASP from senescent cells by zileuton can effectively mitigate radiation-induced cutaneous ulcers, indicating that inhibition of 5-LO might be a viable strategy for patients with this condition.
Collapse
|
26
|
Role of p53 in Regulating Radiation Responses. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071099. [PMID: 35888186 PMCID: PMC9319710 DOI: 10.3390/life12071099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 12/12/2022]
Abstract
p53 is known as the guardian of the genome and plays various roles in DNA damage and cancer suppression. The p53 gene was found to express multiple p53 splice variants (isoforms) in a physiological, tissue-dependent manner. The various genes that up- and down-regulated p53 are involved in cell viability, senescence, inflammation, and carcinogenesis. Moreover, p53 affects the radioadaptive response. Given that several studies have already been published on p53, this review presents its role in the response to gamma irradiation by interacting with MDM2, NF-κB, and miRNA, as well as in the inflammation processes, senescence, carcinogenesis, and radiation adaptive responses. Finally, the potential of p53 as a biomarker is discussed.
Collapse
|
27
|
Garrido AM, Kaistha A, Uryga AK, Oc S, Foote K, Shah A, Finigan A, Figg N, Dobnikar L, Jørgensen H, Bennett M. Efficacy and limitations of senolysis in atherosclerosis. Cardiovasc Res 2022; 118:1713-1727. [PMID: 34142149 PMCID: PMC9215197 DOI: 10.1093/cvr/cvab208] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/14/2021] [Accepted: 06/15/2021] [Indexed: 01/28/2023] Open
Abstract
AIMS Traditional markers of cell senescence including p16, Lamin B1, and senescence-associated beta galactosidase (SAβG) suggest very high frequencies of senescent cells in atherosclerosis, while their removal via 'senolysis' has been reported to reduce atherogenesis. However, selective killing of a variety of different cell types can exacerbate atherosclerosis. We therefore examined the specificity of senescence markers in vascular smooth muscle cells (VSMCs) and the effects of genetic or pharmacological senolysis in atherosclerosis. METHODS AND RESULTS We examined traditional senescence markers in human and mouse VSMCs in vitro, and in mouse atherosclerosis. p16 and SAβG increased and Lamin B1 decreased in replicative senescence and stress-induced premature senescence (SIPS) of cultured human VSMCs. In contrast, mouse VSMCs undergoing SIPS showed only modest p16 up-regulation, and proliferating mouse monocyte/macrophages also expressed p16 and SAβG. Single cell RNA-sequencing (scRNA-seq) of lineage-traced mice showed increased p16 expression in VSMC-derived cells in plaques vs. normal arteries, but p16 localized to Stem cell antigen-1 (Sca1)+ or macrophage-like populations. Activation of a p16-driven suicide gene to remove p16+ vessel wall- and/or bone marrow-derived cells increased apoptotic cells, but also induced inflammation and did not change plaque size or composition. In contrast, the senolytic ABT-263 selectively reduced senescent VSMCs in culture, and markedly reduced atherogenesis. However, ABT-263 did not reduce senescence markers in vivo, and significantly reduced monocyte and platelet counts and interleukin 6 as a marker of systemic inflammation. CONCLUSIONS We show that genetic and pharmacological senolysis have variable effects on atherosclerosis, and may promote inflammation and non-specific effects respectively. In addition, traditional markers of cell senescence such as p16 have significant limitations to identify and remove senescent cells in atherosclerosis, suggesting that senescence studies in atherosclerosis and new senolytic drugs require more specific and lineage-restricted markers before ascribing their effects entirely to senolysis.
Collapse
Affiliation(s)
- Abel Martin Garrido
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Anuradha Kaistha
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Anna K Uryga
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Sebnem Oc
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Kirsty Foote
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Aarti Shah
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Alison Finigan
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Nichola Figg
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Lina Dobnikar
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, UK
| | - Helle Jørgensen
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Martin Bennett
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| |
Collapse
|
28
|
Fielder E, Wan T, Alimohammadiha G, Ishaq A, Low E, Weigand BM, Kelly G, Parker C, Griffin B, Jurk D, Korolchuk VI, von Zglinicki T, Miwa S. Short senolytic or senostatic interventions rescue progression of radiation-induced frailty and premature ageing in mice. eLife 2022; 11:75492. [PMID: 35507395 PMCID: PMC9154747 DOI: 10.7554/elife.75492] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/03/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer survivors suffer from progressive frailty, multimorbidity, and premature morbidity. We hypothesise that therapy-induced senescence and senescence progression via bystander effects are significant causes of this premature ageing phenotype. Accordingly, the study addresses the question whether a short anti-senescence intervention is able to block progression of radiation-induced frailty and disability in a pre-clinical setting. Male mice were sublethally irradiated at 5 months of age and treated (or not) with either a senolytic drug (Navitoclax or dasatinib + quercetin) for 10 days or with the senostatic metformin for 10 weeks. Follow-up was for 1 year. Treatments commencing within a month after irradiation effectively reduced frailty progression (p<0.05) and improved muscle (p<0.01) and liver (p<0.05) function as well as short-term memory (p<0.05) until advanced age with no need for repeated interventions. Senolytic interventions that started late, after radiation-induced premature frailty was manifest, still had beneficial effects on frailty (p<0.05) and short-term memory (p<0.05). Metformin was similarly effective as senolytics. At therapeutically achievable concentrations, metformin acted as a senostatic neither via inhibition of mitochondrial complex I, nor via improvement of mitophagy or mitochondrial function, but by reducing non-mitochondrial reactive oxygen species production via NADPH oxidase 4 inhibition in senescent cells. Our study suggests that the progression of adverse long-term health and quality-of-life effects of radiation exposure, as experienced by cancer survivors, might be rescued by short-term adjuvant anti-senescence interventions.
Collapse
Affiliation(s)
- Edward Fielder
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Tengfei Wan
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Ghazaleh Alimohammadiha
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Abbas Ishaq
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Evon Low
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - B Melanie Weigand
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - George Kelly
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Craig Parker
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Brigid Griffin
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Diana Jurk
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Viktor I Korolchuk
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Thomas von Zglinicki
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Satomi Miwa
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| |
Collapse
|
29
|
Kudlova N, De Sanctis JB, Hajduch M. Cellular Senescence: Molecular Targets, Biomarkers, and Senolytic Drugs. Int J Mol Sci 2022; 23:ijms23084168. [PMID: 35456986 PMCID: PMC9028163 DOI: 10.3390/ijms23084168] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular senescence is defined as irreversible cell cycle arrest caused by various processes that render viable cells non-functional, hampering normal tissue homeostasis. It has many endogenous and exogenous inducers, and is closely connected with age, age-related pathologies, DNA damage, degenerative disorders, tumor suppression and activation, wound healing, and tissue repair. However, the literature is replete with contradictory findings concerning its triggering mechanisms, specific biomarkers, and detection protocols. This may be partly due to the wide range of cellular and in vivo animal or human models of accelerated aging that have been used to study senescence and test senolytic drugs. This review summarizes recent findings concerning senescence, presents some widely used cellular and animal senescence models, and briefly describes the best-known senolytic agents.
Collapse
Affiliation(s)
- Natalie Kudlova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
- Institute of Molecular and Translational Medicine Czech Advanced Technologies and Research Institute, Palacky University, 77147 Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
- Institute of Molecular and Translational Medicine Czech Advanced Technologies and Research Institute, Palacky University, 77147 Olomouc, Czech Republic
- Correspondence: ; Tel.: +42-0-585632082
| |
Collapse
|
30
|
Friedl AA, Prise KM, Butterworth KT, Montay-Gruel P, Favaudon V. Radiobiology of the FLASH effect. Med Phys 2022; 49:1993-2013. [PMID: 34426981 DOI: 10.1002/mp.15184] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Radiation exposures at ultrahigh dose rates (UHDRs) at several orders of magnitude greater than in current clinical radiotherapy (RT) have been shown to manifest differential radiobiological responses compared to conventional (CONV) dose rates. This has led to studies investigating the application of UHDR for therapeutic advantage (FLASH-RT) that have gained significant interest since the initial discovery in 2014 that demonstrated reduced lung toxicity with equivalent levels of tumor control compared with conventional dose-rate RT. Many subsequent studies have demonstrated the potential protective role of FLASH-RT in normal tissues, yet the underlying molecular and cellular mechanisms of the FLASH effect remain to be fully elucidated. Here, we summarize the current evidence of the FLASH effect and review FLASH-RT studies performed in preclinical models of normal tissue response. To critically examine the underlying biological mechanisms of responses to UHDR radiation exposures, we evaluate in vitro studies performed with normal and tumor cells. Differential responses to UHDR versus CONV irradiation recurrently involve reduced inflammatory processes and differential expression of pro- and anti-inflammatory genes. In addition, frequently reduced levels of DNA damage or misrepair products are seen after UHDR irradiation. So far, it is not clear what signal elicits these differential responses, but there are indications for involvement of reactive species. Different susceptibility to FLASH effects observed between normal and tumor cells may result from altered metabolic and detoxification pathways and/or repair pathways used by tumor cells. We summarize the current theories that may explain the FLASH effect and highlight important research questions that are key to a better mechanistic understanding and, thus, the future implementation of FLASH-RT in the clinic.
Collapse
Affiliation(s)
- Anna A Friedl
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Kevin M Prise
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Karl T Butterworth
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Pierre Montay-Gruel
- Department of Radiation Oncology, University of California at Irvine, Irvine, California, USA
| | - Vincent Favaudon
- Institut Curie, Inserm U 1021-CNRS UMR 3347, Université Paris-Saclay, PSL Research University, Centre Universitaire, Orsay, France
| |
Collapse
|
31
|
Maier I, Ruegger PM, Deutschmann J, Helbich TH, Pietschmann P, Schiestl RH, Borneman J. Particle Radiation Side-Effects: Intestinal Microbiota Composition Shapes Interferon-γ-Induced Osteo-Immunogenicity. Radiat Res 2022; 197:184-192. [PMID: 35130347 DOI: 10.1667/rade-21-00065.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/09/2021] [Indexed: 07/25/2024]
Abstract
Microbiota can both negatively and positively impact radiation-induced bone loss. Our prior research showed that compared to mice with conventional gut microbiota (CM), mice with restricted gut microbiota (RM) reduced inflammatory tumor necrosis factor (TNF) in bone marrow, interleukin (IL)-17 in blood, and chemokine (C-C motif) ligand 20 (CCL20) in bone marrow under anti-IL-17 treatment. We showed that Muribaculum intestinale was more abundant in intestinal epithelial cells (IECs) from the small intestine of female RM mice and positively associated with augmented skeletal bone structure. Female C57BL/6J pun RM mice, which were injected with anti-IL-17 antibody one day before exposure to 1.5 Gy 28Si ions of 850 MeV/u, showed high trabecular numbers in tibiae at 6 weeks postirradiation. Irradiated CM mice were investigated for lower interferon-γ and IL-17 levels in the small intestine than RM mice. IL-17 blockage resulted in bacterial indicator phylotypes being different between both microbiota groups before and after irradiation. Analysis of the fecal bacteria were performed in relation to bone quality and body weight, showing reduced tibia cortical thickness in irradiated CM mice (-15%) vs. irradiated RM mice (-9.2%). Correlation analyses identified relationships among trabecular bone parameters (TRI-BV/TV, Tb.N, Tb.Th, Tb.Sp) and Bacteroides massiliensis, Muribaculum sp. and Prevotella denticola. Turicibacter sp. was found directly correlated with trabecular separation in anti-IL-17 treated mice, whereas an unidentified Bacteroidetes correlated with trabecular thickness in anti-IL-17 neutralized and radiation-exposed mice. We demonstrated radiation-induced osteolytic damage to correlate with bacterial indicator phylotypes of the intestinal microbiota composition, and these relationships were determined from the previously discovered dose-dependent particle radiation effects on cell proliferation in bone tissue. New translational approaches were designed to investigate dynamic changes of gut microbiota in correlation with conditions of treatment and disease as well as mechanisms of systemic side-effects in radiotherapy.
Collapse
Affiliation(s)
- Irene Maier
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California
| | - Paul M Ruegger
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California
| | - Julia Deutschmann
- Department for Radiologic Technology, University of Applied Sciences Wiener Neustadt for Business and Engineering Ltd., Lower Austria, Austria
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Peter Pietschmann
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Robert H Schiestl
- Departments of Pathology and Environmental Health Sciences, University of California, Los Angeles, Los Angeles, California
| | - James Borneman
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California
| |
Collapse
|
32
|
Raffaele M, Vinciguerra M. The costs and benefits of senotherapeutics for human health. THE LANCET. HEALTHY LONGEVITY 2022; 3:e67-e77. [PMID: 36098323 DOI: 10.1016/s2666-7568(21)00300-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/09/2021] [Accepted: 11/21/2021] [Indexed: 12/24/2022] Open
Abstract
Cellular senescence is a major contributor to age-related diseases in humans; however, it also has a beneficial role in physiological and pathological processes, including wound healing, host immunity, and tumour suppression. Reducing the burden of cell senescence in animal models of cardiometabolic disorders, inflammatory conditions, neurodegenerative diseases, and cancer using pharmaceutical approaches that selectively target senescent cells (ie, senolytics) or that suppress senescence-associated secretory phenotype (ie, senomorphics) holds great promise for the management of chronic age-associated conditions. Although studies have provided evidence that senolytics or senomorphics are effective at decreasing the number of senescent cells in humans, the short-term and long-term side-effects of these therapies are largely unknown. In this Review, we systematically discuss the senolytics and senomorphics that have been investigated in clinical trials or have been used off-label, presenting their various adverse effects. Despite the potential of senotherapeutics to transform anti-ageing medicine, a cautionary approach regarding unwanted dose-dependent side-effects should be adopted.
Collapse
Affiliation(s)
- Marco Raffaele
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic
| | - Manlio Vinciguerra
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic; Division of Medicine, University College London, London, UK; Research Institute of the Medical University of Varna, Varna, Bulgaria.
| |
Collapse
|
33
|
Ionizing Radiation-Induced Brain Cell Aging and the Potential Underlying Molecular Mechanisms. Cells 2021; 10:cells10123570. [PMID: 34944078 PMCID: PMC8700624 DOI: 10.3390/cells10123570] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 01/10/2023] Open
Abstract
Population aging is occurring rapidly worldwide, challenging the global economy and healthcare services. Brain aging is a significant contributor to various age-related neurological and neuropsychological disorders, including Alzheimer's disease and Parkinson's disease. Several extrinsic factors, such as exposure to ionizing radiation, can accelerate senescence. Multiple human and animal studies have reported that exposure to ionizing radiation can have varied effects on organ aging and lead to the prolongation or shortening of life span depending on the radiation dose or dose rate. This paper reviews the effects of radiation on the aging of different types of brain cells, including neurons, microglia, astrocytes, and cerebral endothelial cells. Further, the relevant molecular mechanisms are discussed. Overall, this review highlights how radiation-induced senescence in different cell types may lead to brain aging, which could result in the development of various neurological and neuropsychological disorders. Therefore, treatment targeting radiation-induced oxidative stress and neuroinflammation may prevent radiation-induced brain aging and the neurological and neuropsychological disorders it may cause.
Collapse
|
34
|
Roger L, Tomas F, Gire V. Mechanisms and Regulation of Cellular Senescence. Int J Mol Sci 2021; 22:ijms222313173. [PMID: 34884978 PMCID: PMC8658264 DOI: 10.3390/ijms222313173] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022] Open
Abstract
Cellular senescence entails a state of an essentially irreversible proliferative arrest in which cells remain metabolically active and secrete a range of pro-inflammatory and proteolytic factors as part of the senescence-associated secretory phenotype. There are different types of senescent cells, and senescence can be induced in response to many DNA damage signals. Senescent cells accumulate in different tissues and organs where they have distinct physiological and pathological functions. Despite this diversity, all senescent cells must be able to survive in a nondividing state while protecting themselves from positive feedback loops linked to the constant activation of the DNA damage response. This capacity requires changes in core cellular programs. Understanding how different cell types can undergo extensive changes in their transcriptional programs, metabolism, heterochromatin patterns, and cellular structures to induce a common cellular state is crucial to preventing cancer development/progression and to improving health during aging. In this review, we discuss how senescent cells continuously evolve after their initial proliferative arrest and highlight the unifying features that define the senescent state.
Collapse
Affiliation(s)
- Lauréline Roger
- Structure and Instability of Genomes Laboratory, Muséum National d’Histoire Naturelle (MNHN), CNRS-UMR 7196/INSERM U1154, 43 Rue Cuvier, 75005 Paris, France;
| | - Fanny Tomas
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier, France;
| | - Véronique Gire
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier, France;
- Correspondence: ; Tel.: +33-(0)-434359513; Fax: +33-(0)-434359410
| |
Collapse
|
35
|
Yan P, Li Z, Xiong J, Geng Z, Wei W, Zhang Y, Wu G, Zhuang T, Tian X, Liu Z, Liu J, Sun K, Chen F, Zhang Y, Zeng C, Huang Y, Zhang B. LARP7 ameliorates cellular senescence and aging by allosterically enhancing SIRT1 deacetylase activity. Cell Rep 2021; 37:110038. [PMID: 34818543 DOI: 10.1016/j.celrep.2021.110038] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/24/2021] [Accepted: 11/01/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is associated with pleiotropic physiopathological processes, including aging and age-related diseases. The persistent DNA damage is a major stress leading to senescence, but the underlying molecular link remains elusive. Here, we identify La Ribonucleoprotein 7 (LARP7), a 7SK RNA binding protein, as an aging antagonist. DNA damage-mediated Ataxia Telangiectasia Mutated (ATM) activation triggers the extracellular shuttling and downregulation of LARP7, which dampens SIRT1 deacetylase activity, enhances p53 and NF-κB (p65) transcriptional activity by augmenting their acetylation, and thereby accelerates cellular senescence. Deletion of LARP7 leads to senescent cell accumulation and premature aging in rodent model. Furthermore, we show this ATM-LARP7-SIRT1-p53/p65 senescence axis is active in vascular senescence and atherogenesis, and preventing its activation substantially alleviates senescence and atherogenesis. Together, this study identifies LARP7 as a gatekeeper of senescence, and the altered ATM-LARP7-SIRT1-p53/p65 pathway plays an important role in DNA damage response (DDR)-mediated cellular senescence and atherosclerosis.
Collapse
Affiliation(s)
- Pengyi Yan
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Zixuan Li
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Junhao Xiong
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Zilong Geng
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Weiting Wei
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Yan Zhang
- Renji-Med Clinical Stem Cell Research Center, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gengze Wu
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Tao Zhuang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong New District, Shanghai 200120, China
| | - Xiaoyu Tian
- School of Biomedical Sciences, Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Zhijie Liu
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology and Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Sun
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Fengyuan Chen
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Yuzhen Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong New District, Shanghai 200120, China
| | - Chunyu Zeng
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Bing Zhang
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.
| |
Collapse
|
36
|
Paramos-de-Carvalho D, Jacinto A, Saúde L. The right time for senescence. eLife 2021; 10:72449. [PMID: 34756162 PMCID: PMC8580479 DOI: 10.7554/elife.72449] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Cellular senescence is a highly complex and programmed cellular state with diverse and, at times, conflicting physiological and pathological roles across the lifespan of an organism. Initially considered a cell culture artifact, senescence evolved from an age-related circumstance to an intricate cellular defense mechanism in response to stress, implicated in a wide spectrum of biological processes like tissue remodelling, injury and cancer. The development of new tools to study senescence in vivo paved the way to uncover its functional roles in various frameworks, which are sometimes hard to reconcile. Here, we review the functional impact of senescent cells on different organismal contexts. We provide updated insights on the role of senescent cells in tissue repair and regeneration, in which they essentially modulate the levels of fibrosis and inflammation, discussing how "time" seems to be the key maestro of their effects. Finally, we overview the current clinical research landscape to target senescent cells and contemplate its repercussions on this fast-evolving field.
Collapse
Affiliation(s)
- Diogo Paramos-de-Carvalho
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.,CEDOC, NOVA Medical School, Faculdade de Ciências Médicas da Universidade Nova de Lisboa, Lisbon, Portugal
| | - Antonio Jacinto
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas da Universidade Nova de Lisboa, Lisbon, Portugal
| | - Leonor Saúde
- Instituto de Medicina Molecular - João Lobo Antunes e Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
37
|
Fernandes SE, Saini DK. The ERK-p38MAPK-STAT3 Signalling Axis Regulates iNOS Expression and Salmonella Infection in Senescent Cells. Front Cell Infect Microbiol 2021; 11:744013. [PMID: 34746026 PMCID: PMC8569389 DOI: 10.3389/fcimb.2021.744013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/05/2021] [Indexed: 01/10/2023] Open
Abstract
The cellular changes occurring due to senescence like proliferation arrest, increase in free radical levels, and secretion of pro-inflammatory cytokines have been well studied, but its associated alteration in intracellular signalling networks has been scarcely explored. In this study, we examine the roles of three major kinases viz. p38 MAPK, ERK, and STAT3 in regulating iNOS expression and thereby the levels of the free radical Nitric oxide in senescent cells. Our study revealed that these kinases could differentially regulate iNOS in senescent cells compared to non-senescent cells. Further, we tested the physiological relevance of these alterations with Salmonella infection assays and established an inter-regulatory network between these kinases unique to infected senescent cells. Overall, our findings show how key signalling networks may be rewired in senescent cells rendering them phenotypically different.
Collapse
Affiliation(s)
- Sheryl Erica Fernandes
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
- Center For BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
38
|
Gao L, Wang Y, Liu Z, Sun Y, Cai P, Jing Q. Identification of a small molecule SR9009 that activates NRF2 to counteract cellular senescence. Aging Cell 2021; 20:e13483. [PMID: 34587364 PMCID: PMC8520720 DOI: 10.1111/acel.13483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/06/2021] [Accepted: 09/12/2021] [Indexed: 12/12/2022] Open
Abstract
The senescence-associated secretory phenotype (SASP) is a striking characteristic of senescence. Accumulation of SASP factors causes a pro-inflammatory response linked to chronic disease. Suppressing senescence and SASP represents a strategy to prevent or control senescence-associated diseases. Here, we identified a small molecule SR9009 as a potent SASP suppressor in therapy-induced senescence (TIS) and oncogene-induced senescence (OIS). The mechanism studies revealed that SR9009 inhibits the SASP and full DNA damage response (DDR) activation through the activation of the NRF2 pathway, thereby decreasing the ROS level by regulating the expression of antioxidant enzymes. We further identified that SR9009 effectively prevents cellular senescence and suppresses the SASP in the livers of both radiation-induced and oncogene-induced senescence mouse models, leading to alleviation of immune cell infiltration. Taken together, our findings suggested that SR9009 prevents cellular senescence via the NRF2 pathway in vitro and in vivo, and activation of NRF2 may be a novel therapeutic strategy for preventing cellular senescence.
Collapse
Affiliation(s)
- Li‐Bin Gao
- CAS Key Laboratory of Tissue Microenvironment and Tumor Innovation Center for Intervention of Chronic Disease and Promotion of Health Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of Sciences Shanghai China
| | - Ya‐Hong Wang
- Key Laboratory of Urban Environment and Health Institute of Urban Environment Chinese Academy of Sciences Xiamen China
- Xiamen Key Laboratory of Physical Environment Xiamen China
| | - Zhi‐Hua Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor Innovation Center for Intervention of Chronic Disease and Promotion of Health Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of Sciences Shanghai China
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor Innovation Center for Intervention of Chronic Disease and Promotion of Health Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of Sciences Shanghai China
| | - Peng Cai
- CAS Key Laboratory of Tissue Microenvironment and Tumor Innovation Center for Intervention of Chronic Disease and Promotion of Health Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of Sciences Shanghai China
- Key Laboratory of Urban Environment and Health Institute of Urban Environment Chinese Academy of Sciences Xiamen China
- Xiamen Key Laboratory of Physical Environment Xiamen China
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor Innovation Center for Intervention of Chronic Disease and Promotion of Health Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of Sciences Shanghai China
| |
Collapse
|
39
|
Cell aging related genes can be used to characterize clinical prognoses and further stratify diffuse gliomas. Sci Rep 2021; 11:19493. [PMID: 34593910 PMCID: PMC8484278 DOI: 10.1038/s41598-021-98913-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/13/2021] [Indexed: 01/05/2023] Open
Abstract
Increasing evidence has indicated that senescent cells are associated with the glioma development. Thus, we aimed to explore the relationship between the cellular senescence gene profile and the clinical prognosis of diffuse glioma. In total, 699 gliomas from The Cancer Genome Atlas (TCGA) dataset were used as the training cohort and 693 gliomas from the Chinese Glioma Genome Atlas (CGGA) dataset were used as the validation cohort. Bioinformatics statistical methods are used to develop the risk signature and to study the prognostic value of the risk signature. We identified a 14-gene risk signature and its risk score was an independent prognostic factor (P < 0.001) in the validation dataset. The risk signature had better prognostic value than traditional factors for the 3- and 5-year survival rate. Importantly, the risk signature could further stratify gliomas in specific subgroups of World Health Organization (WHO) classification by the survival rate. Furthermore, the mRNA levels of genes involved in the cell cycle, cell division and other processes were significantly correlated with the risk score. Our study highlighted a 14-gene risk signature for further stratifying the outcomes of patients with gliomas with definite WHO subgroups. These results indicate the potential clinical implications of cell aging-related genes in gliomas.
Collapse
|
40
|
Saito Y, Chikenji TS. Diverse Roles of Cellular Senescence in Skeletal Muscle Inflammation, Regeneration, and Therapeutics. Front Pharmacol 2021; 12:739510. [PMID: 34552495 PMCID: PMC8450382 DOI: 10.3389/fphar.2021.739510] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle undergoes vigorous tissue remodeling after injury. However, aging, chronic inflammatory diseases, sarcopenia, and neuromuscular disorders cause muscle loss and degeneration, resulting in muscular dysfunction. Cellular senescence, a state of irreversible cell cycle arrest, acts during normal embryonic development and remodeling after tissue damage; when these processes are complete, the senescent cells are eliminated. However, the accumulation of senescent cells is a hallmark of aging tissues or pathological contexts and may lead to progressive tissue degeneration. The mechanisms responsible for the effects of senescent cells have not been fully elucidated. Here, we review current knowledge about the beneficial and detrimental effects of senescent cells in tissue repair, regeneration, aging, and age-related disease, especially in skeletal muscle. We also discuss how senescence of muscle stem cells and muscle-resident fibro-adipogenic progenitors affects muscle pathologies or regeneration, and consider the possibility that immunosenescence leads to muscle pathogenesis. Finally, we explore senotherapy, the therapeutic targeting of senescence to treat age-related disease, from the standpoint of improving muscle regeneration.
Collapse
Affiliation(s)
- Yuki Saito
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takako S Chikenji
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Health Sciences, School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
41
|
Zhu W, Zhang X, Yu M, Lin B, Yu C. Radiation-induced liver injury and hepatocyte senescence. Cell Death Discov 2021; 7:244. [PMID: 34531376 PMCID: PMC8446062 DOI: 10.1038/s41420-021-00634-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/06/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Radiation-induced liver injury (RILI) is a major complication of radiotherapy during treatment for liver cancer and other upper abdominal malignant tumors that has poor pharmacological therapeutic options. A series of pathological changes can be induced by radiation. However, the underlying mechanism of RILI remains unclear. Radiation can induce cell damage via direct energy deposition or reactive free radical generation. Cellular senescence can be observed due to the DNA damage response (DDR) caused by radiation. The senescence-associated secretory phenotype (SASP) secreted from senescent cells can cause chronic inflammation and aggravate liver dysfunction for a long time. Oxidative stress further activates the signaling pathway of the inflammatory response and affects cellular metabolism. miRNAs clearly have differential expression after radiation treatment and take part in RILI development. This review aims to systematically profile the overall mechanism of RILI and the effects of radiation on hepatocyte senescence, laying foundations for the development of new therapies.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaofen Zhang
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mengli Yu
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bingru Lin
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
42
|
Epperly MW, Shields D, Fisher R, Hou W, Wang H, Hamade DF, Mukherjee A, Greenberger JS. Radiation-Induced Senescence in p16+/LUC Mouse Lung Compared to Bone Marrow Multilineage Hematopoietic Progenitor Cells. Radiat Res 2021; 196:235-249. [PMID: 34087939 PMCID: PMC8456367 DOI: 10.1667/rade-20-00286.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/12/2021] [Indexed: 11/03/2022]
Abstract
We defined the time course of ionizing radiation-induced senescence in lung compared to bone marrow of p16+/LUC mice in which the senescence-induced biomarker (p16) is linked to a luciferase reporter gene. Periodic in situ imaging revealed increased luciferase activity in the lungs of 20 Gy thoracic irradiated, but not 8 Gy total-body irradiated (TBI) mice beginning at day 75 and increasing to day 170. In serial sections of explanted lungs, senescent cells appeared in the same areas as did fibrosis in the 20 Gy thoracic irradiated, but not the 8 Gy TBI group. Lungs from 8 Gy TBI mice at one year did show increased RNA levels for p16, p21, p19 and TGF-β. Individual senescent cells in 20 Gy irradiated mouse lung included those with epithelial, endothelial, fibroblast and hematopoietic cell biomarkers. Rare senescent cells in the lungs of 8 Gy TBI mice at one year were of endothelial phenotype. Long-term bone marrow cultures (LTBMCs) were established at either day 60 or one year after 8 Gy TBI. In freshly removed marrow at both times after irradiation, there were increased senescent cells. In LTBMCs, there were increased senescent cells in both weekly harvested single cells and in colonies of multilineage hematopoietic progenitor cells producing CFU-GEMM (colony forming unit-granulocyte, erythrocyte, monocyte/macrophage, mega-karyocyte) that were formed in secondary cultures when these single cells were plated in semisolid media. LTBMCs from TBI mice produced fewer CFU-GEMM; however, the relative percentage of senescent cell-containing colonies was increased as measured by both p16-luciferase and β-galactosidase. Therefore, 20 Gy thoracic radiation, as well as 8 Gy TBI, induces senescent cells in the lungs. With bone marrow, 8 Gy TBI induced senescence in both hematopoietic cells and in colony-forming progenitors. The p16+/LUC mouse strain provides a valuable system in which to compare the kinetics of radiation-induced senescence between organs in vivo, and to evaluate the potential role of senescent cells in irradiation pulmonary fibrosis.
Collapse
Affiliation(s)
- Michael W. Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Wen Hou
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Diala Fatima Hamade
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Amitava Mukherjee
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Joel S. Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| |
Collapse
|
43
|
Ahmadi M, Barnard S, Ainsbury E, Kadhim M. Early Responses to Low-Dose Ionizing Radiation in Cellular Lens Epithelial Models. Radiat Res 2021; 197:78-91. [PMID: 34324666 DOI: 10.1667/rade-20-00284.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 07/06/2021] [Indexed: 11/03/2022]
Abstract
Cataract is the leading cause of visual impairment which can result in blindness. Cataract formation has been associated with radiation exposure; however, the mechanistic understanding of this phenomenon is still lacking. The goal of this study was to investigate mechanisms of cataract induction in isolated lens epithelial cells (LEC) exposed to ionizing radiation. Human LECs from different genetic backgrounds (SV40 immortalized HLE-B3 and primary HLEC cells) were exposed to varying doses of 137Cs gamma rays (0, 0.1, 0.25 and 0.5 Gy), at low (0.065 Gy/min) and higher (0.3 Gy/min) dose rates. Different assays were used to measure LEC response for, e.g., viability, oxidative stress, DNA damage studies, senescence and changes to telomere length/telomerase activity at two time points (1 h and 24 h, or 24 h and 15 days, depending on the type of assay and expected response time). The viability of cells decreased in a dose-dependent manner within 24 h of irradiation. Measurement of reactive oxygen species showed an increase at 1 h postirradiation, which was alleviated within 24 h. This was consistent with DNA damage results showing high DNA damage after 1 h postirradiation which reduced significantly (but not completely) within 24 h. Induction of senescence was also observed 15 days postirradiation, but this was not attributed to telomere erosion or telomerase activity reduction. Overall, these findings provide a mechanistic understanding of low-dose radiation-induced cataractogenesis which will ultimately help to inform judgements on the magnitude of risk and improve existing radiation protection procedures.
Collapse
Affiliation(s)
- Maryam Ahmadi
- Genomic Instability and Cell Communication Research Group, Department of Biological and Medical Science, Oxford Brookes University, Oxford, United Kingdom.,Kidney Genetics Group, Academic Unit of Nephrology, The Medical School, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Stephen Barnard
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Oxford, United Kingdom
| | - Elizabeth Ainsbury
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Oxford, United Kingdom
| | - Munira Kadhim
- Genomic Instability and Cell Communication Research Group, Department of Biological and Medical Science, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
44
|
Yamamoto Y, Minami M, Yoshida K, Nagata M, Miyata T, Yang T, Takayama N, Suzuki K, Okawa M, Yamada K, Miyamoto S. Irradiation Accelerates Plaque Formation and Cellular Senescence in Flow-Altered Carotid Arteries of Apolipoprotein E Knock-Out Mice. J Am Heart Assoc 2021; 10:e020712. [PMID: 34227406 PMCID: PMC8483483 DOI: 10.1161/jaha.120.020712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background Chronic inflammation through cellular senescence, known as the senescence‐associated secretory phenotype, is a mechanism of various organ diseases, including atherosclerosis. Particularly, ionizing radiation (IR) contributes to cellular senescence by causing DNA damage. Although previous clinical studies have demonstrated that radiotherapy causes atherosclerosis as a long‐term side effect, the detailed mechanism is unclear. This study was conducted to investigate the relationship between radiation‐induced atherosclerosis and senescence‐associated secretory phenotype in murine carotid arteries. Methods and Results Partial ligation of the left carotid artery branches in 9‐week‐old male apolipoprotein E‐deficient mice was performed to induce atherosclerosis. The mice received total body irradiation at a dose of 6 Gy using gamma rays at 2 weeks post operation. We compared the samples collected 4 weeks after IR with unirradiated control samples. The IR and control groups presented pathologically progressive lesions in 90.9% and 72.3% of mice, respectively. Plaque volume, macrophage accumulation, and phenotype switching of vascular smooth muscle cells were advanced in the IR group. Irradiated samples showed increased persistent DNA damage response (53BP1 [p53 binding protein 1]), upregulated cyclin‐dependent kinase inhibitors (p16INK4a and p21), and elevated inflammatory chemokines expression (monocyte chemotactic protein‐1, keratinocyte‐derived chemokine, and macrophage inflammatory protein 2). Conclusions IR promoted plaque growth in murine carotid arteries. Our findings support the possibility that senescence‐associated secretory phenotype aggravates atherogenesis in irradiated artery. This mice model might contribute to mechanism elucidation of radiation‐induced atherosclerosis.
Collapse
Affiliation(s)
- Yu Yamamoto
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan.,Department of Clinical Innovative Medicine Kyoto University Graduate School of Medicine Kyoto Japan
| | - Manabu Minami
- Department of Clinical Innovative Medicine Kyoto University Graduate School of Medicine Kyoto Japan.,Department of Data Science National Cerebral and Cardiovascular Center Suita Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan
| | - Manabu Nagata
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan.,Department of Clinical Innovative Medicine Kyoto University Graduate School of Medicine Kyoto Japan
| | - Takeshi Miyata
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan.,Department of Clinical Innovative Medicine Kyoto University Graduate School of Medicine Kyoto Japan
| | - Tao Yang
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan.,Department of Clinical Innovative Medicine Kyoto University Graduate School of Medicine Kyoto Japan
| | - Naoki Takayama
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan
| | - Keita Suzuki
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan
| | - Masakazu Okawa
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan
| | - Kiyofumi Yamada
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan
| | - Susumu Miyamoto
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan
| |
Collapse
|
45
|
Boerma M, Davis CM, Jackson IL, Schaue D, Williams JP. All for one, though not one for all: team players in normal tissue radiobiology. Int J Radiat Biol 2021; 98:346-366. [PMID: 34129427 PMCID: PMC8781287 DOI: 10.1080/09553002.2021.1941383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE As part of the special issue on 'Women in Science', this review offers a perspective on past and ongoing work in the field of normal (non-cancer) tissue radiation biology, highlighting the work of many of the leading contributors to this field of research. We discuss some of the hypotheses that have guided investigations, with a focus on some of the critical organs considered dose-limiting with respect to radiation therapy, and speculate on where the field needs to go in the future. CONCLUSIONS The scope of work that makes up normal tissue radiation biology has and continues to play a pivotal role in the radiation sciences, ensuring the most effective application of radiation in imaging and therapy, as well as contributing to radiation protection efforts. However, despite the proven historical value of preclinical findings, recent decades have seen clinical practice move ahead with altered fractionation scheduling based on empirical observations, with little to no (or even negative) supporting scientific data. Given our current appreciation of the complexity of normal tissue radiation responses and their temporal variability, with tissue- and/or organ-specific mechanisms that include intra-, inter- and extracellular messaging, as well as contributions from systemic compartments, such as the immune system, the need to maintain a positive therapeutic ratio has never been more urgent. Importantly, mitigation and treatment strategies, whether for the clinic, emergency use following accidental or deliberate releases, or reducing occupational risk, will likely require multi-targeted approaches that involve both local and systemic intervention. From our personal perspective as five 'Women in Science', we would like to acknowledge and applaud the role that many female scientists have played in this field. We stand on the shoulders of those who have gone before, some of whom are fellow contributors to this special issue.
Collapse
Affiliation(s)
- Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Catherine M. Davis
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Isabel L. Jackson
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jacqueline P. Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
46
|
Maggiorani D, Beauséjour C. Senescence and Aging: Does It Impact Cancer Immunotherapies? Cells 2021; 10:1568. [PMID: 34206425 PMCID: PMC8307798 DOI: 10.3390/cells10071568] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 01/10/2023] Open
Abstract
Cancer incidence increases drastically with age. Of the many possible reasons for this, there is the accumulation of senescent cells in tissues and the loss of function and proliferation potential of immune cells, often referred to as immuno-senescence. Immune checkpoint inhibitors (ICI), by invigorating immune cells, have the potential to be a game-changers in the treatment of cancer. Yet, the variability in the efficacy of ICI across patients and cancer types suggests that several factors influence the success of such inhibitors. There is currently a lack of clinical studies measuring the impact of aging and senescence on ICI-based therapies. Here, we review how cellular senescence and aging, either by directly altering the immune system fitness or indirectly through the modification of the tumor environment, may influence the cancer-immune response.
Collapse
Affiliation(s)
- Damien Maggiorani
- Centre de Recherche du CHU Ste-Justine, Montréal, QC H3T 1C5, Canada;
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Christian Beauséjour
- Centre de Recherche du CHU Ste-Justine, Montréal, QC H3T 1C5, Canada;
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
47
|
Killer K, Le O, Beauséjour C. The Intracerebroventricular Injection of Murine Mesenchymal Stromal Cells Engineered to Secrete Epidermal Growth Factor Does Not Prevent Loss of Neurogenesis in Irradiated Mice. Radiat Res 2021; 196:315-322. [PMID: 34107047 DOI: 10.1667/rade-21-00017.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/24/2021] [Indexed: 11/03/2022]
Abstract
Decreased neurogenesis after brain exposure to ionizing radiation is linked to neurocognitive impairments. Using transgenic mouse models, we previously showed that abrogation of radiation-induced senescence, or apoptosis, can partially rescue neurogenesis in the subventricular and hippocampus regions. Here, we evaluate whether the injection of recombinant epidermal growth factor (rEGF) or mesenchymal stromal cells (MSC) engineered to secrete EGF (MSC-EGF) can preserve neurogenesis. Using doublecortin (Dcx) expression and BrdU incorporation assays, we found that the injection of rEGF into the subventricular zone (SVZ) promotes neurogenesis, despite increasing apoptosis, in the brain of irradiated mice. The effect of rEGF was mostly localized, as Dcx expression was not induced in the hippocampus region and limited in the contralateral SVZ. Surprisingly, the injection of bone marrow-derived MSC alone, or secreting EGF, did not result in increased neurogenesis despite the fact that part of the MSC survived a few weeks after injection. Our results suggest that only a supraphysiological concentration of rEGF can promote neurogenesis, likely through a direct mitogenic effect.
Collapse
Affiliation(s)
- Kerstin Killer
- Centre de Recherche du CHU Ste-Justine, Université de Montréal, Montreal, Canada
| | - Oanh Le
- Centre de Recherche du CHU Ste-Justine, Université de Montréal, Montreal, Canada
| | - Christian Beauséjour
- Centre de Recherche du CHU Ste-Justine, Université de Montréal, Montreal, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montreal, Canada
| |
Collapse
|
48
|
Scaffa AM, Peterson AL, Carr JF, Garcia D, Yao H, Dennery PA. Hyperoxia causes senescence and increases glycolysis in cultured lung epithelial cells. Physiol Rep 2021; 9:e14839. [PMID: 34042288 PMCID: PMC8157762 DOI: 10.14814/phy2.14839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Supplemental oxygen and mechanical ventilation commonly used in premature infants may lead to chronic lung disease of prematurity, which is characterized by arrested alveolar development and dysmorphic vascular development. Hyperoxia is also known to dysregulate p53, senescence, and metabolism. However, whether these changes in p53, senescence, and metabolism are intertwined in response to hyperoxia is still unknown. Given that the lung epithelium is the first cell to encounter ambient oxygen during a hyperoxic exposure, we used mouse lung epithelial cells (MLE‐12), surfactant protein expressing type II cells, to explore whether hyperoxic exposure alters senescence and glycolysis. We measured glycolytic rate using a Seahorse Bioanalyzer assay and senescence using a senescence‐associated β galactosidase activity assay with X‐gal and C12FDG as substrates. We found that hyperoxic exposure caused senescence and increased glycolysis as well as reduced proliferation. This was associated with increased double stranded DNA damage, p53 phosphorylation and nuclear localization. Furthermore, hyperoxia‐induced senescence was p53‐dependent, but not pRB‐dependent, as shown in p53KO and pRBKO cell lines. Despite the inhibitory effects of p53 on glycolysis, we observed that glycolysis was upregulated in hyperoxia‐exposed MLE‐12 cells. This was attributable to a subpopulation of highly glycolytic senescent cells detected by C12FDG sorting. Nevertheless, inhibition of glycolysis did not prevent hyperoxia‐induced senescence. Therapeutic strategies modulating p53 and glycolysis may be useful to mitigate the detrimental consequences of hyperoxia in the neonatal lung.
Collapse
Affiliation(s)
- Alejandro M Scaffa
- Department of Molecular Pharmacology and Physiology, Brown University, Providence, Rhode Island, USA.,Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Abigail L Peterson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Jennifer F Carr
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - David Garcia
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Phyllis A Dennery
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA.,Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
49
|
Putavet DA, de Keizer PLJ. Residual Disease in Glioma Recurrence: A Dangerous Liaison with Senescence. Cancers (Basel) 2021; 13:1560. [PMID: 33805316 PMCID: PMC8038015 DOI: 10.3390/cancers13071560] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/24/2022] Open
Abstract
With a dismally low median survival of less than two years after diagnosis, Glioblastoma (GBM) is the most lethal type of brain cancer. The standard-of-care of surgical resection, followed by DNA-damaging chemo-/radiotherapy, is often non-curative. In part, this is because individual cells close to the resection border remain alive and eventually undergo renewed proliferation. These residual, therapy-resistant cells lead to rapid recurrence, against which no effective treatment exists to date. Thus, new experimental approaches need to be developed against residual disease to prevent GBM survival and recurrence. Cellular senescence is an attractive area for the development of such new approaches. Senescence can occur in healthy cells when they are irreparably damaged. Senescent cells develop a chronic secretory phenotype that is generally considered pro-tumorigenic and pro-migratory. Age is a negative prognostic factor for GBM stage, and, with age, senescence steadily increases. Moreover, chemo-/radiotherapy can provide an additional increase in senescence close to the tumor. In light of this, we will review the importance of senescence in the tumor-supportive brain parenchyma, focusing on the invasion and growth of GBM in residual disease. We will propose a future direction on the application of anti-senescence therapies against recurrent GBM.
Collapse
Affiliation(s)
| | - Peter L. J. de Keizer
- Center for Molecular Medicine, Division LAB, University Medical Center Utrecht, 3584CG Utrecht, The Netherlands;
| |
Collapse
|
50
|
Zorina TD. New Insights on the Role of the Mesenchymal-Hematopoietic Stem Cell Axis in Autologous and Allogeneic Hematopoiesis. Stem Cells Dev 2020; 30:2-16. [PMID: 33231142 DOI: 10.1089/scd.2020.0148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytoreductive protocols are integral both as conditioning regimens for bone marrow (BM) transplantation and as part of therapies for malignancies, but their associated comorbidities represent a long-standing clinical problem. In particular, they cause myeloablation that debilitates the physiological role of mesenchymal stem and precursor cells (MSPCs) in sustaining hematopoiesis. This review addresses the damaging impact of cytoreductive regimens on MSPCs. In addition, it discusses prospects for alleviating the resulting iatrogenic comorbidities. New insights into the structural and functional dynamics of hematopoietic stem cell (HSC) niches reveal the existence of "empty" niches and the ability of the donor-derived healthy HSCs to outcompete the defective HSCs in occupying these niches. These findings support the notion that conditioning regimens, conventionally used to ablate the recipient hematopoiesis to create space for engraftment of the donor-derived HSCs, may not be a necessity for allogeneic BM transplantation. In addition, the capacity of the MSPCs to cross-talk with HSCs, despite major histocompatibility complex disparity, and suppress graft versus host disease indicates the possibility for development of a conditioning-free, MSPCs-enhanced protocol for BM transplantation. The clinical advantage of supplementing cytoreductive protocols with MSPCs to improve autologous hematopoiesis reconstitution and alleviate cytopenia associated with chemo and radiation therapies for cancer is also discussed.
Collapse
Affiliation(s)
- Tatiana D Zorina
- Department of Medical Laboratory Science and Biotechnology, Jefferson College of Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|