1
|
Senik MH, Abu IF, Fadhullah W. Analysis of K ATP Channels Opening Probability of Hippocampus Cells Treated with Kainic Acid. Malays J Med Sci 2021; 28:15-26. [PMID: 33679216 PMCID: PMC7909348 DOI: 10.21315/mjms2021.28.1.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/12/2020] [Indexed: 01/14/2023] Open
Abstract
Background Kainic acid (KA)-induced seizures may be a valuable tool in the assessment of anti-epileptic drug efficacy in complex partial seizures. This study investigated the effects of KA on ATP-sensitive K+ (KATP) channels opening probability (NPo), which plays a crucial role in neuronal activities. Methods For the optimisation and validation protocol, β-cells were plated onto 35 mm plastic petri dishes and maintained in RPMI-1640 media supplemented with 10 mM glucose, 10% FCS and 25 mM of N-2-hydroxyethylpiperazine-N-ethanesulfonic acid (HEPES). The treatment effects of 10 mM glucose and 30 μM fluoxetine on KATP channels NPo of β-cells were assessed via cell-attached patch-clamp recordings. For hippocampus cell experiments, hippocampi were harvested from day 17 of maternal Lister-hooded rat foetus, and then transferred to a Ca2+ and Mg2+-free HEPES-buffered Hank's salt solution (HHSS). The dissociated cells were cultured and plated onto a 25 mm round cover glasses coated with poly-d-lysine (0.1 mg/mL) in a petri dish. The KATP channels NPo of hippocampus cells when perfused with 1 mM and 10 mM of KA were determined. Results NPo of β-cells showed significant decreasing patterns (P < 0.001) when treated with 10 mM glucose 0.048 (0.027) as well as 30 μM fluoxetine 0.190 (0.141) as compared to basal counterpart. In hippocampus cell experiment, a significant increase (P < 0.001) in mean NPo 2.148 (0.175) of neurons when applied with 1 mM of KA as compared to basal was observed. Conclusion The two concentrations of KA used in the study exerted contrasting effects toward the mean of NPo. It is hypothesised that KA at lower concentration (1 mM) opens more KATP channels, leading to hyperpolarisation of the neurons, which may prevent neuronal hyper excitability. No effect was shown in 10 mM KA treatment, suggesting that only lower than 10 mM KA produced significant changes in KATP channels. This implies further validation of KA concentration to be used in the future.
Collapse
Affiliation(s)
- Mohd Harizal Senik
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Widad Fadhullah
- School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| |
Collapse
|
2
|
Real J, Miranda C, Olofsson CS, Smith PA. Lipophilicity predicts the ability of nonsulphonylurea drugs to block pancreatic beta-cell K ATP channels and stimulate insulin secretion; statins as a test case. Endocrinol Diabetes Metab 2018; 1:e00017. [PMID: 30815553 PMCID: PMC6354820 DOI: 10.1002/edm2.17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 01/18/2018] [Accepted: 02/18/2018] [Indexed: 12/26/2022] Open
Abstract
AIMS KATP ion channels play a key role in glucose-stimulated insulin secretion. However, many drugs block KATP as "off targets" leading to hyperinsulinaemia and hypoglycaemia. As such drugs are often lipophilic, the aim was to examine the relationship between drug lipophilicity (P) and IC 50 for KATP block and explore if the IC 50's of statins could be predicted from their lipophilicity and whether this would allow one to forecast their acute action on insulin secretion. MATERIALS AND METHODS A meta-analysis of 26 lipophilic, nonsulphonylurea, blockers of KATP was performed. From this, the IC 50's for pravastatin and simvastatin were predicted and then tested experimentally by exploring their effects on KATP channel activity via patch-clamp measurement, calcium imaging and insulin secretion in murine beta cells and islets. RESULTS Nonsulphonylurea drugs inhibited KATP channels with a Log IC 50 linearly related to their logP. Simvastatin blocked KATP with an IC 50 of 25 nmol/L, a value independent of cytosolic factors, and within the range predicted by its lipophilicity (21-690 nmol/L). 10 μmol/L pravastatin, predicted IC 50 0.2-12 mmol/L, was without effect on the KATP channel. At 10-fold therapeutic levels, 100 nmol/L simvastatin depolarized the beta-cell membrane potential and stimulated Ca2+ influx but did not affect insulin secretion; the latter could be explained by serum binding. CONCLUSIONS The logP of a drug can aid prediction for its ability to block beta-cell KATP ion channels. However, although the IC 50 for the block of KATP by simvastatin was predicted, the difference between this and therapeutic levels, as well as serum sequestration, explains why hypoglycaemia is unlikely to be observed with acute use of this statin.
Collapse
Affiliation(s)
- Joana Real
- Department of Physiology/Metabolic PhysiologyInstitute of Neuroscience and PhysiologyGöteborgSweden
| | - Caroline Miranda
- Department of Physiology/Metabolic PhysiologyInstitute of Neuroscience and PhysiologyGöteborgSweden
| | - Charlotta S. Olofsson
- Department of Physiology/Metabolic PhysiologyInstitute of Neuroscience and PhysiologyGöteborgSweden
| | - Paul A. Smith
- School of Life Sciences University of NottinghamNottinghamUK
| |
Collapse
|
3
|
Sassano MF, Davis ES, Keating JE, Zorn BT, Kochar TK, Wolfgang MC, Glish GL, Tarran R. Evaluation of e-liquid toxicity using an open-source high-throughput screening assay. PLoS Biol 2018; 16:e2003904. [PMID: 29584716 PMCID: PMC5870948 DOI: 10.1371/journal.pbio.2003904] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 02/21/2018] [Indexed: 01/08/2023] Open
Abstract
The e-liquids used in electronic cigarettes (E-cigs) consist of propylene glycol (PG), vegetable glycerin (VG), nicotine, and chemical additives for flavoring. There are currently over 7,700 e-liquid flavors available, and while some have been tested for toxicity in the laboratory, most have not. Here, we developed a 3-phase, 384-well, plate-based, high-throughput screening (HTS) assay to rapidly triage and validate the toxicity of multiple e-liquids. Our data demonstrated that the PG/VG vehicle adversely affected cell viability and that a large number of e-liquids were more toxic than PG/VG. We also performed gas chromatography-mass spectrometry (GC-MS) analysis on all tested e-liquids. Subsequent nonmetric multidimensional scaling (NMDS) analysis revealed that e-liquids are an extremely heterogeneous group. Furthermore, these data indicated that (i) the more chemicals contained in an e-liquid, the more toxic it was likely to be and (ii) the presence of vanillin was associated with higher toxicity values. Further analysis of common constituents by electron ionization revealed that the concentration of cinnamaldehyde and vanillin, but not triacetin, correlated with toxicity. We have also developed a publicly available searchable website (www.eliquidinfo.org). Given the large numbers of available e-liquids, this website will serve as a resource to facilitate dissemination of this information. Our data suggest that an HTS approach to evaluate the toxicity of multiple e-liquids is feasible. Such an approach may serve as a roadmap to enable bodies such as the Food and Drug Administration (FDA) to better regulate e-liquid composition.
Collapse
Affiliation(s)
- M. Flori Sassano
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Eric S. Davis
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - James E. Keating
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Bryan T. Zorn
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Tavleen K. Kochar
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Matthew C. Wolfgang
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gary L. Glish
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Robert Tarran
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- * E-mail:
| |
Collapse
|
4
|
Artigas P, Al'aref SJ, Hobart EA, Díaz LF, Sakaguchi M, Straw S, Andersen OS. 2,3-butanedione monoxime affects cystic fibrosis transmembrane conductance regulator channel function through phosphorylation-dependent and phosphorylation-independent mechanisms: the role of bilayer material properties. Mol Pharmacol 2006; 70:2015-26. [PMID: 16966478 DOI: 10.1124/mol.106.026070] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
2,3-Butanedione monoxime (BDM) is widely believed to act as a chemical phosphatase. We therefore examined the effects of BDM on the cystic fibrosis transmembrane regulator (CFTR) Cl(-) channel, which is regulated by phosphorylation in a complex manner. In guinea pig ventricular myocytes, forskolin-activated whole-cell CFTR currents responded biphasically to external 20 mM BDM: a rapid approximately 2-fold current activation was followed by a slower (tau approximately 20 s) inhibition (to approximately 20% of control). The inhibitory response was abolished by intracellular dialysis with the phosphatase inhibitor microcystin, suggesting involvement of endogenous phosphatases. The BDM-induced activation was studied further in Xenopus laevis oocytes expressing human epithelial CFTR. The concentration for half-maximal BDM activation (K(0.5)) was state-dependent, approximately 2 mM for highly and approximately 20 mM for partially phosphorylated channels, suggesting a modulated receptor mechanism. Because BDM modulates many different membrane proteins with similar K(0.5) values, we tested whether BDM could alter protein function by altering lipid bilayer properties rather than by direct BDM-protein interactions. Using gramicidin channels of different lengths (different channel-bilayer hydrophobic mismatch) as reporters of bilayer stiffness, we found that BDM increases channel appearance rates and lifetimes (reduces bilayer stiffness). At 20 mM BDM, the appearance rates increase approximately 4-fold (for the longer, 15 residues/monomer, channels) to approximately 10-fold (for the shorter, 13 residues/monomer channels); the lifetimes increase approximately 50% independently of channel length. BDM thus reduces the energetic cost of bilayer deformation, an effect that may underlie the effects of BDM on CFTR and other membrane proteins; the state-dependent changes in K(0.5) are consistent with such a bilayer-mediated mechanism.
Collapse
Affiliation(s)
- Pablo Artigas
- Laboratory of Cardiac/Membrane Physiology, The Rockefeller University, 1230 York Ave., New York, NY 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
5
|
Milton SL, Lutz PL. Adenosine and ATP-sensitive potassium channels modulate dopamine release in the anoxic turtle (Trachemys scripta) striatum. Am J Physiol Regul Integr Comp Physiol 2005; 289:R77-83. [PMID: 15718391 DOI: 10.1152/ajpregu.00647.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Excessive dopamine (DA) is known to cause hypoxic/ischemic damage to mammalian brain. The freshwater turtle Trachemys scripta, however, maintains basal striatal DA levels in anoxia. We investigated DA balance during early anoxia when energy status in the turtle brain is compromised. The roles of ATP-sensitive potassium (K(ATP)) channels and adenosine (AD) receptors were investigated as these factors affect DA balance in mammalian neurons. Striatal extracellular DA was determined by microdialysis with HPLC in the presence or absence of the specific DA transport blocker GBR-12909, the K(ATP) blocker 2,3-butanedione monoxime, or the nonspecific AD receptor blocker theophylline. We found that in contrast to long-term anoxia, blocking DA reuptake did not significantly increase extracellular levels in 1-h anoxic turtles. Low DA levels in early anoxia were maintained instead by activation of K(ATP) channels and AD receptors. Blocking K(ATP) resulted in a 227% increase in extracellular DA in 1-h anoxic turtles but had no effect after 4 h of anoxia. Similarly, blocking AD receptors increased DA during the first hour of anoxia but did not change DA levels at 4-h anoxia. Support for the role of K(ATP) channels in DA balance comes from normoxic animals treated with K(ATP) opener; infusing diazoxide but not adenosine into the normoxic turtle striatum resulted in an immediate DA decrease to 14% of basal values within 1.5 h. Alternative strategies to maintain low extracellular levels may prevent catastrophic DA increases when intracellular energy is compromised while permitting the turtle to maintain a functional neuronal network during long-term anoxia.
Collapse
Affiliation(s)
- Sarah L Milton
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431, USA.
| | | |
Collapse
|
6
|
Lin CH, Wu CL, Lin MS, Liu MC, Lin PJ, Tsai MC. Effects of 2,3-Butanedione Monoxime on Induction of Action Potential Bursts in Central Snail Neurons: Direct and Indirect Modulations of Ionic Currents. Pharmacology 2005; 73:57-69. [PMID: 15452414 DOI: 10.1159/000081077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Accepted: 05/25/2004] [Indexed: 11/19/2022]
Abstract
The effects of 2,3-butanedione monoxime (BDM) on induction of action potential bursts were studied pharmacologically on the RP4 central neuron of giant African snail (Achatina fulica Ferussac). The effect of okadaic acid on the neuron was also tested. The RP4 neuron showed a spontaneous firing of action potential. Okadaic acid (1 micromol/l) did not alter the frequency of spontaneous action potential while BDM (3 mmol/l) reversibly elicited bursts of potential (BoP) of the RP4 neuron. The BoP elicited by BDM (3 mmol/l) were reversed 20 min after incubation with diazoxide (500 micromol/l) while the BoP were not altered in preparations treated with okadaic acid and BDM. The BDM-elicited BoP were not inhibited after administration with (a) hexamethonium (100 micromol/l), (b) atropine (1 mmol/l), (c) d-tubocurarine (100 micromol/l), (d) prazosin (100 micromol/l), (e) propranolol (100 micromol/l), (f) calcium-free solution, (g) high K(+) (12 mmol/l) or (h) with high Mg(2+) (30 mmol/l) solutions. The BDM-elicited BoP were inhibited by pretreatment with KT-5720 (10 micromol/l) or H89 (10 micromol/l), the protein kinase A inhibitors. However, the BoP were not affected after application of chelerythrine (10 micromol/l) or Ro 31-8220 (10 micromol/l), the protein kinase C inhibitors. Voltage-clamped studies revealed that BDM elicited a negative slope resistance (NSR) at membrane potentials between -50 and -10 mV. The NSR was not detectable at the same membrane potential in control RP4 neuron. It is suggested that the BoP elicited by BDM were not due to (1) the synaptic effects of neurotransmitters; (2) the activation of cholinergic, adrenergic receptors, or (3) phosphatase activity of the neuron. The BDM-elicited BoP were dependent on the protein kinase A related cAMP in the neuron and the delayed outward K(+) current may contribute to the BDM-elicited BoP.
Collapse
Affiliation(s)
- Chia Hsien Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
7
|
Arun KHS, Kaul CL, Poduri R. Tempol augments angiotensin II-induced AT2 receptor-mediated relaxation in diabetic rat thoracic aorta. J Hypertens 2004; 22:2143-52. [PMID: 15480099 DOI: 10.1097/00004872-200411000-00017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To assess angiotensin II type 2 receptor-mediated responses in thoracic aorta of streptozotocin-induced diabetic rats. METHODS The concentration-dependent relaxation response (in the presence of an AT1 receptor blocker) to angiotensin II (Ang II) was studied in phenylephrine (PE) or potassium chloride (KCl) precontracted rat thoracic aortic rings isolated from male Sprague-Dawley rats pretreated with streptozotocin (65 mg/kg i.p.) or vehicle 8 weeks prior to the study. RESULTS Ang II-induced relaxation response (% relaxation), evident only in the presence of an AT1 receptor blocker, was significantly enhanced in aortic rings isolated from diabetic (55%) compared to control (25%) rats. Tempol (100 micromol/l) augmented the relaxation response in aortic rings isolated from diabetic (80%) but not control (28%) rats. N-nitro-l-arginine methyl ester (L-NAME) (100-300 micromol/l) [a nitric oxide (NO) synthase inhibitor] partially inhibited the relaxation response in diabetic (25%) and control (15%) rats. However, l-NAME (100 micromol/l) and glipizide or butanedione monoxime (1 micromol/l) (ATP-sensitive K channel blockers) together completely blocked the relaxation response. [H]Ang II saturation binding at the AT2 receptor was enhanced in aortic membranes from diabetic [maximum binding capacity, (Bmax)=1.14 +/- 0.06 fmol/mg protein] compared to control rats (Bmax=0.75 +/- 0.03 fmol/mg protein), with no change in the dissociation equilibrium constant (Kd) value (2.55 +/- 0.12 versus 2.22 +/- 0.15 nmol/l). CONCLUSIONS The results suggest enhanced AT2-receptor density and function [mediated by a nitric oxide and ATP-sensitive K channel-dependent relaxation response (in presence of an AT1 receptor blocker)] in thoracic aorta isolated from diabetic rats. This could be a compensatory mechanism, which may be therapeutically exploited.
Collapse
Affiliation(s)
- K H S Arun
- Cardiovascular and Receptorology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Phase-X, Sector 67, S.A.S.Nagar (Mohali)--160 062, Punjab, India
| | | | | |
Collapse
|
8
|
Funaki K, Nagata A, Akimoto Y, Shimada K, Ito K, Yamamoto K. The motility of Chara corallina myosin was inhibited reversibly by 2,3-butanedione monoxime (BDM). PLANT & CELL PHYSIOLOGY 2004; 45:1342-1345. [PMID: 15509860 DOI: 10.1093/pcp/pch154] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We studied the effects of 2,3-butanedione monoxime (BDM) on the cytoplasmic streaming of Chara corallina and on the motility of myosin prepared from the same plant to examine whether this reagent really affects the plant class XI myosin. It was found that BDM inhibited both cytoplasmic streaming and the motility of myosin at a very similar concentration range (10-100 mM). BDM introduced directly into tonoplast-free cells also inhibited cytoplasmic streaming. These results suggested that effect of BDM on cytoplasmic streaming was exerted through myosin and not through ion channels at least in Chara corallina, though a very high concentration of BDM was required.
Collapse
Affiliation(s)
- Keisuke Funaki
- Department of Biology, Chiba University, Inage-ku, Chiba, 263-8522 Japan
| | | | | | | | | | | |
Collapse
|
9
|
Cameron JS, Hoffmann KE, Zia C, Hemmett HM, Kronsteiner A, Lee CM. A role for nitric oxide in hypoxia-induced activation of cardiac KATP channels in goldfish (Carassius auratus). J Exp Biol 2003; 206:4057-65. [PMID: 14555746 DOI: 10.1242/jeb.00655] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Hypoxia-induced shortening of cardiac action potential duration (APD) has been attributed in mammalian hearts to the activation of ATP-sensitive potassium (KATP) channels. Since KATP channels are also present at high densities in the hearts of vertebrate ectotherms, speculation arises as to their function during periods of reduced environmental oxygen. The purpose of the present study was to determine whether nitric oxide (NO)plays a role in cardiac sarcolemmal KATP channel activation during hypoxia in a species with a high degree of tolerance to low oxygen environments: the goldfish (Carassius auratus). Conventional intracellular and patch-clamp recording techniques were used to record responses from excised ventricles or isolated ventricular myocytes and inside-out patches, respectively, from fish acclimated at 21°C. During moderate, substrate-free hypoxia (6.1±0.2 kPa), ventricular APD was significantly shortened at 50% and 90% of full repolarization, a response that was reversible upon reoxygenation and blocked by the KATP channel antagonist BDM. Under normoxic conditions, APD was also reduced in the presence of the NO-donor SNAP (100 μmol l-1). In cell-attached membrane patches, sarcolemmal KATP channel activity was enhanced after 10 min hypoxia, an effect that was reduced or eliminated by simultaneous exposure to BDM, to the guanylate cyclase inhibitor ODQ or to the NO synthase inhibitor l-NAME. In cell-free patches, KATP channel activity was abolished by 2 mmol l-1 ATP but increased by SNAP; the cGMP analog 8-Br-cGMP (200 μmol l-1) also enhanced activity, an effect that was eliminated by BDM. Our data indicate that NO synthesized in cardiac myocytes could enhance sarcolemmal KATP channel activation during moderate hypoxia in goldfish. This response may serve a cardioprotective role by helping to conserve ATP or by reducing intracellular Ca2+ accumulation.
Collapse
Affiliation(s)
- John S Cameron
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Pyle WG, Chen Y, Hofmann PA. Cardioprotection through a PKC-dependent decrease in myofilament ATPase. Am J Physiol Heart Circ Physiol 2003; 285:H1220-8. [PMID: 12763745 DOI: 10.1152/ajpheart.00076.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of myocardial kappa-opioid receptor-protein kinase C (PKC) pathways may improve postischemic contractile function through a myofilament reduction in ATP utilization. To test this, we first examined the effects of PKC inhibitors on kappa-opioid receptor-dependent cardioprotection. The kappa-opioid receptor agonist U50,488H (U50) increased postischemic left ventricular developed pressure and reduced postischemic end-diastolic pressure compared with controls. PKC inhibitors abolished the cardioprotective effects of U50. To determine whether kappa-opioid-PKC-dependent decreases in Ca2+-dependent actomyosin Mg2+-ATPase could account for cardioprotection, we subjected hearts to three separate actomyosin ATPase-lowering protocols. We observed that moderate decreases in myofibrillar ATPase were equally cardioprotective as kappa-opioid receptor stimulation. Immunoblot analysis and confocal microscopy revealed a kappa-opioid-induced increase in myofilament-associated PKC-epsilon, and myofibrillar Ca2+-independent PKC activity was increased after kappa-opioid stimulation. This PKC-myofilament association led to an increase in troponin I and C-protein phosphorylation. Thus we propose PKC-epsilon activation and translocation to the myofilaments causes a decrease in actomyosin ATPase, which contributes to the kappa-opioid receptor-dependent cardioprotective mechanism.
Collapse
Affiliation(s)
- W Glen Pyle
- Department of Physiology, University of Tennessee-Memphis, 894 Union Avenue, Memphis, TN 38163, USA
| | | | | |
Collapse
|
11
|
Proks P, Capener CE, Jones P, Ashcroft FM. Mutations within the P-loop of Kir6.2 modulate the intraburst kinetics of the ATP-sensitive potassium channel. J Gen Physiol 2001; 118:341-53. [PMID: 11585848 PMCID: PMC2233698 DOI: 10.1085/jgp.118.4.341] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ATP-sensitive potassium (K(ATP)) channel exhibits spontaneous bursts of rapid openings, which are separated by long closed intervals. Previous studies have shown that mutations at the internal mouth of the pore-forming (Kir6.2) subunit of this channel affect the burst duration and the long interburst closings, but do not alter the fast intraburst kinetics. In this study, we have investigated the nature of the intraburst kinetics by using recombinant Kir6.2/SUR1 K(ATP) channels heterologously expressed in Xenopus oocytes. Single-channel currents were studied in inside-out membrane patches. Mutations within the pore loop of Kir6.2 (V127T, G135F, and M137C) dramatically affected the mean open time (tau(o)) and the short closed time (tauC1) within a burst, and the number of openings per burst, but did not alter the burst duration, the interburst closed time, or the channel open probability. Thus, the V127T and M137C mutations produced longer tau(o), shorter tauC1, and fewer openings per burst, whereas the G135F mutation had the opposite effect. All three mutations also reduced the single-channel conductance: from 70 pS for the wild-type channel to 62 pS (G135F), 50 pS (M137C), and 38 pS (V127T). These results are consistent with the idea that the K(ATP) channel possesses a gate that governs the intraburst kinetics, which lies close to the selectivity filter. This gate appears to be able to operate independently of that which regulates the long interburst closings.
Collapse
Affiliation(s)
- Peter Proks
- University Laboratory of Physiology, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Charlotte E. Capener
- Laboratory of Molecular Biophysics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Phillippa Jones
- University Laboratory of Physiology, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Frances M. Ashcroft
- University Laboratory of Physiology, University of Oxford, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
12
|
Smith PA, Sellers LA, Humphrey PP. Somatostatin activates two types of inwardly rectifying K+ channels in MIN-6 cells. J Physiol 2001; 532:127-42. [PMID: 11283230 PMCID: PMC2278522 DOI: 10.1111/j.1469-7793.2001.0127g.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Western blotting revealed the presence of five somatostatin receptor types, sst1, sst2, sst3, sst4 and sst5, in the mouse pancreatic -cell line MIN-6. In MIN-6 cells, glucose-induced electrical activity was potently (pEC50 = 12.7) and irreversibly reduced by somatostatin (SRIF-14); this was associated with hyperpolarization of the membrane potential (pEC50 = 11.2) and a decrease in the input resistance (pEC50 = 12.7). The effects of SRIF-14 were mimicked by 100 nM L-362,855 (a partial agonist at sst5 receptors), but not BIM-23027 or NNC-26,9100 (selective agonists at sst2 and sst4 receptors, respectively). CH-275 at 100 nM (a selective agonist at sst1 receptors) partially inhibited electrical activity but without membrane potential hyperpolarization. One hundred nanomolar SRIF-28 activated an inwardly rectifying K+ current (ISRIF) ISRIF was activated neither by 1 M BIM-23056 nor CYN-154806 (antagonists at sst5 and sst2 receptors, respectively). The activation of ISRIF by 100 nM SRIF-28 was, however, inhibited 93 % by BIM-23056; CYN-154806 had no effect. Both 100 nM glibenclamide and 200 M tolbutamide, blockers of the -cell ATP-sensitive K+ channel (K-ATP), reduced ISRIF by ~44 %, whereas 1 mM Ba2+ abolished ISRIF. In cell-attached patches, 100 nM SRIF-14 activated two types of single-channel currents whose properties were consistent with those of K-ATP and GIRK channels. In conclusion, somatostatin can inhibit glucose-induced electrical activity in MIN-6 cells by the combined activation of K-ATP and GIRK channels. Studies with selective agonists and antagonists are consistent with this effect being mediated by the sst5 receptor.
Collapse
Affiliation(s)
- P A Smith
- Glaxo Institute of Applied Pharmacology, Department of Pharmacology, Tennis Court Road, Cambridge CB2 1QJ, UK.
| | | | | |
Collapse
|
13
|
Frolenkov GI, Mammano F, Kachar B. Action of 2,3-butanedione monoxime on capacitance and electromotility of guinea-pig cochlear outer hair cells. J Physiol 2001; 531:667-76. [PMID: 11251049 PMCID: PMC2278492 DOI: 10.1111/j.1469-7793.2001.0667h.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. Whole-cell patch-clamp recordings were obtained from isolated cochlear outer hair cells (OHCs) while applying 2,3-butanedione monoxime (BDM) by pressure. BDM (5 mM) shifted the range of voltage sensitivity of membrane capacitance and cell length in the hyperpolarised direction by -49.6 +/- 4.0 mV (n = 12; mean +/- S.E.M.), without appreciable effects on membrane conductance. The shift was completely reversible and dose dependent, with a Hill coefficient of 1.8 /- 0.4 and a half-maximal dose of 3.0 +/- 0.8 mM (values +/- S.D). 2. The shift of the capacitance curve was also reproducible in cells whose natural turgor had been removed. BDM had no detectable effect on the capacitance of Deiters' cells, a non-sensory cell type of the organ of Corti. 3. The effect of BDM on membrane capacitance was faster than that of salicylate. At similar saturating concentrations (20 mM), the time constant of the capacitance changes was 1.8 +/- 0.3 s (n = 3) for salicylate and 0.75 +/- 0.06 s (n = 3) for BDM. The recovery periods were 13 +/- 1 s and 1.7 +/- 0.4 s, respectively (means +/- S.E.M.). 4. The effect of BDM, a known inorganic phosphatase, was compared to the effects of okadaic acid, trifluoperazine and W-7, which are commonly used in studies of protein phosphorylation. Incubation of OHCs with okadaic acid (1 microM, 30-60 min) shifted the voltage sensitivity of the membrane capacitance in the hyperpolarised direction. Incubation with trifluoperazine (30 microM) and W-7 (150 microM) shifted it in the opposite, depolarised direction. BDM induced hyperpolarising shifts even in the presence of W-7. 5. Simultaneous measurement of membrane capacitance and intracellular free Ca2+ concentration ([Ca2+]i) showed that BDM action on OHC voltage-dependent capacitance and electromotility is not mediated by changes of [Ca2+]i. 6. Our results suggest that: (a) the effects of BDM are unrelated to its inorganic phosphatase properties, cell turgor conditions or Ca2+ release from intracellular stores; and (b) BDM may target directly the voltage sensor of the OHC membrane motor protein.
Collapse
Affiliation(s)
- G I Frolenkov
- Section on Structural Cell Biology, Laboratory of Cellular Biology, NIDCD-NIH, Bethesda, MD 20892-4163, USA
| | | | | |
Collapse
|
14
|
Thum T, Borlak J. Reprogramming of gene expression in cultured cardiomyocytes and in explanted hearts by the myosin ATPase inhibitor butanedione monoxime. Transplantation 2001; 71:543-52. [PMID: 11258434 DOI: 10.1097/00007890-200102270-00010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Butanedione monoxime (BDM) is a reversible myosin ATPase inhibitor. Its use in transplantation medicine may be of benefit in the preservation of hearts. As little is known about its ability to prevent stress and metabolic deregulation, we wanted to investigate the genomic response in cultured cardiomyocytes and explanted, preserved hearts at the transcriptional level. METHODS We thus investigated the gene expression of the transcription factors GATA-4, Nkx2.5, MEF-2c, and Oct-1 and of the downstream target genes atrial and brain natriuretic peptide, alpha- and beta-myosin heavy chain, alpha-cardiac actin, and alpha-skeletal actin. Additionally, lactate dehydrogenase and creatine kinase enzyme activities were measured as markers for membrane integrity and metabolic deregulation of cardiomyocytes. RESULTS In untreated cardiomyocyte cultures, expression of GATA-4 and Nkx2.5 was increased 7- and 4-fold, 72 hr after isolation, but the gene expression of MEF-2c and Oct-1 was reduced to 10% and 70%, at day 3 in culture. We show atrial natriuretic peptide and brain natriuretic peptide gene expression to be maximal 24 and 72 hr after isolation, the level being 3- and 2-fold, when compared with freshly isolated cells. The gene expression of alpha- and beta-myosin heavy chain was reduced to approximately 30% at day 3 in culture and similar observations were made for alpha-cardiac and alpha-skeletal actin, which declined to approximately 20% and 10% of control values, 72 hr after isolation. BDM prevented at the transcriptional level enhanced expression of markers for stress and metabolic deregulation, and the activities of lactate dehydrogenase and creatine kinase were highly significantly reduced. Similar results were obtained when explanted hearts were stored in BDM-containing organ preservation solution. CONCLUSIONS Preservation of metabolic function in donor organs is of critical importance in transplantation medicine, and we show gene markers for stress and metabolic deregulation in cultures of cardiomyocytes and explanted hearts to be significantly reduced by BDM. Reprogramming of gene expression of nuclear transcription factors and downstream target genes may prolong the acceptable storage time between explantation and transplantation.
Collapse
Affiliation(s)
- T Thum
- Centre of Drug Research and Medical Biotechnology, Fraunhofer Institute of Toxicology and Aerosol Research, Hannover, Germany
| | | |
Collapse
|
15
|
Drews G, Krämer C, Düfer M, Krippeit-Drews P. Contrasting effects of alloxan on islets and single mouse pancreatic beta-cells. Biochem J 2000; 352 Pt 2:389-97. [PMID: 11085932 PMCID: PMC1221470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Alloxan is used to induce diabetes in animals; however, the underlying mechanisms are still a matter of debate. Alloxan evoked a rapid hyperpolarization of the plasma membrane potential and suppressed electrical activity elicited by 15 mM glucose, thus terminating voltage-dependent Ca(2+) influx. Accordingly, glucose-induced oscillations in intracellular free Ca(2+) concentration were abolished. The effect of alloxan on membrane potential could not be reversed by glucose but was reversed by tolbutamide. However, the sensitivity to tolbutamide was decreased after treatment of the cells with alloxan. These effects closely resemble those described earlier for H(2)O(2). H(2)O(2) and alloxan decreased the mitochondrial membrane potential, indicating a decrease in ATP production and thus interference with cell metabolism. A decrease in ATP synthesis would explain the plasma membrane hyperpolarization observed in intact islets, reflecting the activation of ATP-dependent K(+) channels. Surprisingly, alloxan inhibited the whole-cell K(+)(ATP) current measured in single cells and the single-channel K(+)(ATP) current registered in excised patches. This inhibitory effect of alloxan is not mediated by changes in cell metabolism but seems to be due to direct interactions with the K(+)(ATP) channels via thiol-group oxidation. We have monitored the appearance of reactive oxygen species in single cells and islets treated with alloxan and H(2)O(2) for comparison. In contrast to H(2)O(2), alloxan induced the appearance of measurable reactive oxygen species only in islets but not in single cells. The results show that alloxan evokes different effects in islets and single cells, giving a possible explanation for inconsistent results reported in the past. It is concluded that alloxan exerts its diabetogenic effect by the production of H(2)O(2) in intact islets.
Collapse
Affiliation(s)
- G Drews
- Institute of Pharmacy, Department of Pharmacology, Auf der Morgenstelle 8, University of Tübingen, D-72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
16
|
Neusch C, Runde D, Moser A. G proteins modulate D2 receptor-coupled K(ATP) channels in rat dopaminergic terminals. Neurochem Res 2000; 25:1521-6. [PMID: 11152380 DOI: 10.1023/a:1026620316090] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The presynaptic dopamine (DA) D2 receptor-mediated regulation of ATP-sensitive potassium (K+ATP) channels was examined in slices of the rat caudate-putamen. When slices were incubated with the specific D2 receptor antagonist (-)-sulpiride (SLP), a concentration-dependent increase of extracellular DA release was observed. SLP-induced enhancement was completely antagonized by coincubation with the K+ATP channel opener diazoxide (DIA). Treatment of slices with the D2 receptor agonist quinpirole (QUI) almost completely inhibited DA outflow induced by the K+ATP channel blocker butanedione-monoxime (BDM). Coincubation of SLP and guanosine triphosphate (GTP) or its non-hydrolizable analogue guanylyl-5'-imidodiphosphate [Gpp(NH)p], significantly reduced the SLP-induced effect on DA levels. Furthermore, we observed that BDM-induced DA outflow was markedly inhibited by G protein activators suggesting an additional receptor-independent regulation of K+ATP channel gating. Our results suggest that PTX-sensitive G proteins are involved in the signal transduction between D2 receptors and K+ATP channels. Furthermore, K+ATP channels can be modulated in a receptor-independent mechanism by G protein activators.
Collapse
Affiliation(s)
- C Neusch
- California Institute of Technology, Division of Biology, Pasadena 91125, USA.
| | | | | |
Collapse
|
17
|
Drews G, Krämer C, Krippeit-Drews P. Dual effect of NO on K(+)(ATP) current of mouse pancreatic B-cells: stimulation by deenergizing mitochondria and inhibition by direct interaction with the channel. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1464:62-8. [PMID: 10704920 DOI: 10.1016/s0005-2736(99)00242-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) is assumed to contribute to the impairment of B-cell function in type 1 diabetes mellitus (IDDM). In the present paper we show that in mouse B-cells with intact metabolism authentic NO (20 microM) led to a biphasic effect on the K(+)(ATP) current, namely a transient increase and a consecutive almost complete inhibition. This resembles closely the effect that we have observed previously with the NO donor S-nitrosocysteine (SNOC, 1 mM) suggesting that merely NO caused both phases of this effect. We now demonstrate that the rise in the current amplitude was accompanied by a depolarization of the mitochondrial membrane potential DeltaPsi and a concomitant reduction in the ATP/ADP ratio. Thus, it seems likely that the increase in current amplitude is due to the interference of NO with cell metabolism. The subsequent inhibition of the K(+)(ATP) current is assumed to be caused by a direct effect on the channel since K(+)(ATP) single channel current activity measured in excised patches was strongly reduced by authentic NO and SNOC. Our data reveal new insights into the mechanisms underlying the biphasic action of NO on K(+)(ATP) channels in pancreatic B-cells.
Collapse
Affiliation(s)
- G Drews
- Institute of Pharmacy, Department of Pharmacology, Auf der Morgenstelle 8, University of Tübingen, D-72076, Tübingen, Germany.
| | | | | |
Collapse
|
18
|
Herzig S, Neumann J. Effects of serine/threonine protein phosphatases on ion channels in excitable membranes. Physiol Rev 2000; 80:173-210. [PMID: 10617768 DOI: 10.1152/physrev.2000.80.1.173] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review deals with the influence of serine/threonine-specific protein phosphatases on the function of ion channels in the plasma membrane of excitable tissues. Particular focus is given to developments of the past decade. Most of the electrophysiological experiments have been performed with protein phosphatase inhibitors. Therefore, a synopsis is required incorporating issues from biochemistry, pharmacology, and electrophysiology. First, we summarize the structural and biochemical properties of protein phosphatase (types 1, 2A, 2B, 2C, and 3-7) catalytic subunits and their regulatory subunits. Then the available pharmacological tools (protein inhibitors, nonprotein inhibitors, and activators) are introduced. The use of these inhibitors is discussed based on their biochemical selectivity and a number of methodological caveats. The next section reviews the effects of these tools on various classes of ion channels (i.e., voltage-gated Ca(2+) and Na(+) channels, various K(+) channels, ligand-gated channels, and anion channels). We delineate in which cases a direct interaction between a protein phosphatase and a given channel has been proven and where a more complex regulation is likely involved. Finally, we present ideas for future research and possible pathophysiological implications.
Collapse
Affiliation(s)
- S Herzig
- Institut für Pharmakologie, Universität Köln, Köln, Germany.
| | | |
Collapse
|
19
|
Steinberg G, McIntosh JR. Effects of the myosin inhibitor 2,3-butanedione monoxime on the physiology of fission yeast. Eur J Cell Biol 1998; 77:284-93. [PMID: 9930653 DOI: 10.1016/s0171-9335(98)80087-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
F-actin and associated myosins are thought to take part in a wide range of cellular processes, like motility and contraction, polarized growth, and secretion. The reagent 2,3-butanedione monoxime (BDM) is a well characterized inhibitor of the contraction of vertebrate muscle that reversibly affects myosin function and influences the intracellular concentration of Ca2+. Here we describe the influence of BDM on growth and division of the fission yeast Schizosaccharomyces pombe. At concentrations from 1-30 mM, BDM gradually inhibited formation and growth of S. pombe colonies on agar plates, with a lethal effect at > or = 15 mM. In strains of S. pombe that were blocked by elevated temperature from entry into mitosis, drug treatment reversibly decreased microtubule-independent tip growth and septation, with an IC50 value around 12 mM; nuclear division, on the other hand, was essentially unaffected by up to 15 mM BDM. At 30 mM BDM the secretion of invertase, which required both F-actin and microtubules, was decreased to the same extent as that seen when cytochalasin D was used to disrupt F-actin. However, the actin cytoskeleton was insensitive to up to 10 mM BDM, while the actin patches lost their polar distribution at 20-30 mM BDM. Cells treated with 5-20 mM BDM for 3 hours and then high pressure frozen did not show an accumulation of secretory vesicles. However, 10 mM BDM treatment disorganized the fungal cell wall, resulting in some unusually thick parts lying next to regions were the wall was almost absent. These defects could be rescued by incubating the cells in inhibitors of glucanases. Osmolytic stabilization with sorbitol rescued the effect of 15 mM BDM on colony survival, indicating that the secretion of wall components and/or wall-modifying enzymes may be the principal reason for cell death caused by BDM. Our results are consistent with the hypothesis that BDM influences actin-dependent processes in fission yeast and that actomyosin-dependent motility contributes to the secretory process of tip growth.
Collapse
Affiliation(s)
- G Steinberg
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, USA.
| | | |
Collapse
|
20
|
Smith PA, Proks P. Inhibition of the ATP-sensitive potassium channel from mouse pancreatic beta-cells by surfactants. Br J Pharmacol 1998; 124:529-39. [PMID: 9647478 PMCID: PMC1565413 DOI: 10.1038/sj.bjp.0701858] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
1. We have used patch-clamp methods to study the effects of the detergents, Cremophor, Tween 80 and Triton X100 on the K(ATP) channel in the pancreatic beta-cell from mouse. 2. All three detergents blocked K(ATP) channel activity with the following order of potency: Tween 80 (Ki< approximately 83 nM)>Triton X100 (Ki=350 nM)>Cremophor. In all cases the block was poorly reversible. 3. Single-channel studies suggested that at low doses, the detergents act as slow blockers of the K(ATP) channel. 4. Unlike the block produced by tolbutamide, that produced by detergent was not affected by intracellular Mg2+-nucleotide, diazoxide or trypsin treatment, nor did it involve an acceleration of rundown or increase in ATP sensitivity of the chanel. 5. The detergents could block the pore-forming subunit, Kir6.2deltaC26, which can be expressed independently of SUR1 (the regulatory subunit of the K(ATP) channel). These data suggest that the detergents act on Kir6.2 and not SUR1. 6. The detergents had no effect on another member of the inward rectifier family: Kir1.1a (ROMK1). 7. Voltage-dependent K-currents in the beta-cell were reversibly blocked by the detergents with a far lower potency than that found for the K(ATP) channel. 8. Like other insulin secretagogues that act by blocking the K(ATP) channel, Cremophor elevated intracellular Ca2+ in single beta-cells to levels that would be expected to elicit insulin secretion. 9. Given the role of the K(ATP) channel in many physiological processes, we conclude that plasma borne detergent may have pharmacological actions mediated through blockage of the K(ATP) channel.
Collapse
Affiliation(s)
- P A Smith
- University Laboratory of Physiology Parks Road, Oxford, UK
| | | |
Collapse
|
21
|
Lizarraga I, Alfaro MJ, Goicoechea C, López F, Martín MI. Effect of butanedione monoxime on the contractility of guinea pig ileum and on the electrophysiological activity of myenteric S-type neurones. Neurosci Lett 1998; 246:105-8. [PMID: 9627191 DOI: 10.1016/s0304-3940(98)00249-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
2,3-Butanedione monoxime (BDM) has demonstrated protective effects on isolated cardiac tissues, and on smooth muscle but its mechanism of action is not fully understood. To simultaneously study the effect of BDM on muscle contractility and on neuronal activity, the effect of BDM was tested in the contractile force of myenteric plexus-longitudinal muscle strips and in electrophysiological activity of myenteric S-type neurones of guinea pig ileum. BDM reduces, in a dose-dependent manner, the force of the spontaneous motility and the contractions induced by acetylcholine, bethanechol and electrical stimulation. The same BDM concentrations depolarize the neuronal membrane and reduce the rate of evoked firing. The effect of BDM can be attributed to a direct effect on the smooth muscle and to modifications of the neuronal activity.
Collapse
Affiliation(s)
- I Lizarraga
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | | | | | | | | |
Collapse
|
22
|
Alekseev AE, Brady PA, Terzic A. Ligand-insensitive state of cardiac ATP-sensitive K+ channels. Basis for channel opening. J Gen Physiol 1998; 111:381-94. [PMID: 9450949 PMCID: PMC2222775 DOI: 10.1085/jgp.111.2.381] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mechanism by which ATP-sensitive K+ (KATP) channels open in the presence of inhibitory concentrations of ATP remains unknown. Herein, using a four-state kinetic model, we found that the nucleotide diphosphate UDP directed cardiac KATP channels to operate within intraburst transitions. These transitions are not targeted by ATP, nor the structurally unrelated sulfonylurea glyburide, which inhibit channel opening by acting on interburst transitions. Therefore, the channel remained insensitive to ATP and glyburide in the presence of UDP. "Rundown" of channel activity decreased the efficacy with which UDP could direct and maintain the channel to operate within intraburst transitions. Under this condition, the channel was sensitive to inhibition by ATP and glyburide despite the presence of UDP. This behavior of the KATP channel could be accounted for by an allosteric model of ligand-channel interaction. Thus, the response of cardiac KATP channels towards inhibitory ligands is determined by the relative lifetime the channel spends in a ligand-sensitive versus -insensitive state. Interconversion between these two conformational states represents a novel basis for KATP channel opening in the presence of inhibitory concentrations of ATP in a cardiac cell.
Collapse
Affiliation(s)
- A E Alekseev
- Division of Cardiovascular Diseases (G-7), Department of Medicine, Mayo Clinic, Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
23
|
POSTER COMMUNICATIONS. Br J Pharmacol 1995. [DOI: 10.1111/j.1476-5381.1995.tb16307.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|